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Abstract 
 
There are many complex problems in computer science that occur in knowledge-representation (artificial 
thinking), artificial learning, Very Large Scale Integration (VLSI) design, security protocols and other areas. 
These complex problems may be deduced into satisfiability problems where the Boolean Satisfiability Problem 
(SAT) may be applied. This deduction is made in order to simplify complex problems into a specific 
propositional logic problem. The SAT problem is the most well-known nondeterministic polynomial time 
(NP) complete problem in computer science. It is a Boolean expression which is composed of a specific 
amount of variables (literals), clauses that contain disjunctions of the literals and conjunctions of the clauses. 
The literals have the logical values TRUE and FALSE, the task is to find a truth assignment that makes the 
entire expression TRUE. The main goal of the thesis is to solve the SAT problem using a clustering technique 
- Multilevel - combined first with Tabu Search and combined thereafter with finite Learning Automata. Tabu 
Search and finite Learning Automata are two very efficient approaches that have been used to solve SAT. 
Benchmark experiments are conducted in order to disclose whether combining Multilevel with existing 
solutions to solve SAT will provide better results - than the two mentioned approaches alone - mainly in terms 
of computational efficiency. 
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1 Introduction 

 
In this chapter the background of the problem is explained in detail. The problem is then stated, the 
hypothesis, the motivation and the limitations and key assumptions. Finally a literature review is given followed 
by a short outline of the rest of the thesis report. 
 

1.1 Background 

 
There are many complex problems in computer science that occur in knowledge-representation (artificial 
thinking), artificial learning, Very Large Scale Integration (VLSI) design, security protocols and other areas. 
These complex problems may be deduced into satisfiability problems where the Boolean Satisfiability Problem 
(SAT) may be applied. This deduction is made in order to simplify a complex problem into a specific 
mathematical problem. Once the deduction is made, one only needs to solve the SAT problem in order to 
solve the more complex problem. Therefore, efficient ways to solve the SAT problem draw a growing 
attention in the field of computer science.   
 
One example application is the SAT-based analysis of protocol insecurity problems in [1]. In this paper, A. 
Armando and L. Compagna from the University of Florence in Italy have managed to represent protocol 
insecurity problems as SAT, and have built an automatic model-checker for security protocols based on SAT 
solver algorithms. By doing this, they could use the model-checker to help solve the complex protocol 
insecurity problems. Similarly, F. Guillaume presented in his paper the SAT representation of MU-calculus 
over Petri Nets [2]. The model checking problem for Petri Nets has been known to be undecidable for almost 
fifteen years [3]. Guillaume showed that this undecidability can be represented in SAT, making the problem 
context much simpler.  
 
The ability to represent a complex problem as a propositional logic problem such as SAT, makes things very 
easy in terms of solving complexity - since one only needs to satisfy the set of logical values. As a result of this, 
efficient ways to solve SAT are also important. There has been an increase in the development of SAT solver 
algorithms. Two notable approaches to solve SAT are Tabu Search and finite Learning Automata, these two 
approaches have recently been proved to be very efficient. However, there is no boundary on the efficiency 
aspect and it is believed that the efficiency of the two latter approaches could still be increased. Because the 
two mentioned approaches use a single level technique, which could be replaced by a multi level that gives a 
better sampling of the solution space. 
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1.2 Problem and Hypothesis 

 
The SAT problem is a well-known nondeterministic polynomial time (NP) complete [1] problem in computer 
science. It is composed of an N amount of literals, clauses that contain disjunctions of the literals and 
conjunctions of the clauses. The literals can either have the value TRUE or FALSE. To solve the SAT 
problem, the total set of clauses must give the value TRUE; it is then said that the problem is satisfied. A SAT 
problem with two literals, two clauses and two literals per clause is shown in figure 1. 
 
 

 
 
Figure 1: The Boolean Satisfiability Problem. After solving SAT, all clauses get the logical value TRUE. 
 

The problem is represented as the following propositional formula: 
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Where jC  is the disjunction of literals, m  is the number of clauses, n  is the number of literals and ix  is a 

literal, i Є {1, ... n}. Ij, Īj  {1, ... n}, Ij ∩ Īj = Ø and ix  denotes the negation of ix . The assignment is satisfied 

if the propositional formula   evaluates to TRUE. This formula representation can be found in [3]. 
 
As the growing need of efficient ways to solve SAT continues, it is in this paper hypothesised that combining 
the Multilevel technique with existing approaches will drastically increase efficiency of solving SAT. The reason 
to this is that the Multilevel technique simplifies the problem drastically by clustering literals together. Tabu 
Search and Finite Learning Automata are two existing approaches (see [13] and [3], respectively) which have 
been proved to be very efficient methods to solve SAT, therefore these two approaches have been chosen to 
be combined with the Multilevel technique, in order to prove if combining Multilevel will increase the 
efficiency to solve SAT or not. This combination will create the Multilevel Tabu Search and Multilevel 
Learning Automata algorithms. 
 

1.3 Importance of Topic 

 
Many complex problems in computer science can be simplified by representing them in SAT, therefore SAT is 
very important for helping solve complex problems in computer science and has played a major role. One 
example application is the SAT-based analysis of protocol insecurity problems in [4]. In this paper, A. 
Armando and L. Compagna from the University of Florence in Italy have managed to represent protocol 
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insecurity problems as SAT, and have built an automatic model-checker for security protocols based on SAT 
solver algorithms. By doing this, they could use the model-checker to help solve the complex protocol 
insecurity problems. Similarly, F. Guillaume presented in his paper the SAT representation of MU-calculus 
over Petri Nets [5]. The model checking problem for Petri Nets has been known to be undecidable for almost 
fifteen years [6]. Guillaume showed that this undecidability can be represented in SAT, making the problem 
context much simpler.  
 
The ability to represent a complex problem as a propositional logic problem such as SAT, makes things very 
easy in terms of solving complexity - since one only needs to satisfy the set of logical values. As a result of this, 
efficient ways to solve SAT are also important. There has been an increase in the development of SAT solver 
algorithms. Two notable approaches to solve SAT are Tabu Search and finite Learning Automata, these two 
approaches have been proved to be very efficient. However, there is no boundary on the efficiency aspect and 
it is believed that the efficiency of the two mentioned approaches could still be increased. Because these two 
approaches use a single level technique, which could be replaced by a multi level that gives a better sampling of 
the solution space. Therefore, combining Multilevel technique with these two existing methods may increase 
the efficiency of using them alone. 
 
If the hypothesis is proved to be true, the research will introduce a new, more efficient way of solving SAT by 
introducing the Multilevel technique. For example, combining Multilevel with Tabu Search or combining 
Multilevel with finite Learning Automata will become the new, more efficient way to solve SAT. 
 

1.4 Motivation  

 
If the problem is solved, the research will introduce a new, more efficient way of solving SAT by introducing 
the Multilevel technique. Adding a new algorithm approach to the collection of solver algorithms is a step 
further of solving complex problems that can be represented as SAT, and an advancement in the science of 
SAT. 
 
If however not solved, the work will be used further for research. Continuing the research will no doubt 
improve the proposed solutions in this thesis. 
 

1.5 Limitations and Key Assumptions 

 
The implementation of our proposed Multilevel Tabu Search and Multilevel Learning Automata algorithms 
will be done in the C++ programming language. Although Tabu Search and Learning Automata algorithms 
may require much work to be implemented very efficiently in C++, they will still be implemented in this 
research, because the efficiencies of these two algorithms have to be used to compare with the efficiencies of 
the two new proposed algorithms. However, we cannot state with 100 % certainty that the combination of the 
Multilevel technique is the reason to the efficiency increase or decrease. That is because personal programming 
experiences might have side effects on the implementation results. The implementation will also prove difficult 
due to the nature of the context, thus a clear understanding of the problems prior to implementation is a vital 
step.  
 
The Multilevel technique is assumed to increase the efficiency of existing SAT solver algorithms, for example, 
Tabu Search and Learning Automata. However, if this hypothesis is disproved, then the implementation will 
need to be revised and fixed. Attempts will be made to find out the cause, it is expected that this part will take 
a significant amount of time. If the hypothesis is disproved and also no reasonable cause could be found, then 
a discussion will be engaged as to why this happened. Ideas for further work will also be provided. 
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1.6 Contributions to Research 

 
Potential outcomes of the research are summarized in the list below. 
 

 Simplification of SAT instances prior to solving them by using the Multilevel clustering technique, 
because literals can be clustered together. This allows metaheuristic algorithms to handle clusters of 
literals as a single entity, making the search space guided and restricted to only those literals within the 
clusters. This offers a better sampling of the solution space compared to single level computations. 
 

 Increase in SAT solving efficiency. Applying the Multilevel clustering technique will increase the 
efficiency of solving SAT instances; this is due to the previous bullet point. 
 

 Introduction of two new, efficient SAT solver algorithms. Given that the hypothesis is proved, the 
thesis will introduce two, new SAT solver algorithms; Multilevel Tabu Search and Multilevel Learning 
Automata. Based on the properties of Multilevel, these two new algorithms will be more efficient than 
their predecessors. 
 

1.7 Literature Review 

 
Many complex problems have been successfully represented as SAT, equally many efficient algorithms have 
been implemented to solve the latter and the state-of-the-art is very wide. The focus here is on the literature of 
two specific (as an example) complex problems and the most popular solver algorithms for SAT; local search 
algorithms. This chapter gives a quick review of all the relevant papers, while chapter 2 provides an in-depth 
explanation of each.  
 
In their paper, The SAT-based Analysis of Protocol Insecurity Problems [1], A. Armando and L. Compagna 
from the University of Florence in Italy managed to represent protocol insecurity problems as SAT, in an 
attempt to build an automatic model-checker for security protocols based on SAT solver algorithms. Similarly, 
F. Guillaume presented in his paper the SAT representation of MU-calculus over Petri Nets [2]. The model 
checking problem for Petri Nets has been known to be undecidable for almost fifteen years [3]. Guillaume 
showed that this undecidability can be represented in SAT, making the problem context simpler. 
 
B. Selman, H. Levesque and D. Mitchell presented in their paper a new method for solving hard SAT 
problems; GSAT [7]. GSAT is one of the most popular local search algorithms that has been used to solve 
SAT. B. Selman, Henry A. Kautz and B. Cohen made an extension of GSAT; GSAT with Random Walk [8] 
with the purpose of escaping local optima, thus preventing stagnation. Another variant of GSAT is Walk SAT 
[9], introduced by D. McAllester, B. Selman and H. Kautz.  
 
W. M. Spears presented in his paper the Simulated Annealing (SASAT) [12] algorithm which managed to scale 
up better as the number of literals increased and managed to solve many hard SAT instances with little effort. 
 
A.E. Eiben and J.K. van der Hauw from Leiden University in The Netherlands presented in their paper a way 
of adapting Genetic Algorithms [13] (GAs) that increases GAs' performance of solving 3-SAT (3 literals pr. 
clause) instances. This adaptation called Stepwise Adaptation of Weights (SAW). 
 
B. Mazure, L. Saïs and E. Gregoire presented in their paper the Tabu Search (TSAT) [14] algorithm.  
 
Associate professors O-C. Granmo and N. Bouhmala from the Univeresity of Agder and Vestfold University 
College in Norway wrote the first paper on combining finite Learning Automata with traditional Random Walk 
algorithm [6] to solve SAT. 
 
B. Cha and K. Iwama presented in their paper [15] a way of assigning weight values to SAT clauses. J. Frank 
wrote an extensive study on the same method in his paper [16]. 
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P. Hansen and B. Jaumand, I. Gent and T. Walsh presented in their papers [25, 26, 27] algorithms using history 
based literal selection strategies. 
 

1.8 Thesis Report Outline 

 
The rest of the thesis report is structured as follows: 
 
In chapter 2 the theoretical background of the problem  is given. Here the state-of-the-art is discussed in detail 
giving an insight of the background and prior work. Significant prior work is discussed in this chapter. 
 
In chapter 3 the proposed solutions are discussed. An in-depth explanation of the solutions is provided here 
including the pseudo-code of each proposed solution, and the best solutions are then selected in this chapter. 
 
In chapter 4 the experimental results are presented in the form of running benchmark tests and a comparative 
analysis of the algorithms is made. 
 
In chapter 5 the experimental results of the algorithms from chapter 4 are discussed in detail, focusing on 
efficiency among other factors. 
 
In chapter 6 a brief look is made on the problem, the proposed solutions to the latter and the outcome of the 
experimental results. The hypothesis and further work are also briefly discussed in this chapter. 
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2 Significant Prior Research 

 
The focus in this chapter is on significant prior work. Efficient methods that have been used to solve SAT will 
be explained in the following sections. Local search algorithms have been widely used to solve SAT. This is 
due to their ability to give up completeness. Since SAT is NP-complete, local search algorithms are therefore 
appropriate to use in contrast to systematic search algorithms which are guaranteed to return a solution to a 
problem, or otherwise prove it unsolvable. In the following chapters, the focus will be on these. 
 

2.1 Solving SAT Using GSAT 

 
GSAT is one of the most famous local search algorithms that have been used to solve SAT. B. Selman, H. 
Levesque and D. Mitchell introduced GSAT in their paper as a new method for solving hard satisfiability 
problems [7]. GSAT randomly assigns TRUE values to the literals, it then flips the assignment of the literals 
that lead to the largest increase in the total number of satisfied clauses. The flips are repeated until either the 
problem is solved or a maximum number of flips (MAX-FLIPS) is reached. The process is repeated up to a 
maximum number of tries (MAX-TRIES). So basically, GSAT performs greedy local search. The pseudo code 
below shows the GSAT procedure. 
 

Procedure GSAT 
Begin 
for i:= 1 to MAX-TRIES 
     T := a randomly generated TRUE assignment 
     for j:= 1 to MAX-FLIPS 
         if T satisfies set_of_clauses then return T 
         p := a propositional value such that a change  
                in its TRUE assignment gives the largest 
                increase in the total number of clauses 
               of set_of_clauses that are satisfied by T 
         T := T with TRUE assignment of p reversed  
     end-for 
end-for 
return "no satisfying assignment found" 
End 

 
A comparative analysis of GSAT and Davis-Putman (DP) [10] was made in [7]. The latter is a systematic 
search algorithm which does a backtracking search on all TRUE assignments, assigning values to each literal. It 
returns a solution to the problem if it exists and does not give up completeness. For more on systematic 
searching, the reader is referred to [10]. From the results that can be seen in [7], GSAT is clearly better than 
DP. The former is faster than the latter in terms of efficiency and since the latter is a systematic search 
algorithm, it does not even return a solution to problems it cannot solve. 
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2.1.1 GSAT with Random Walk 

 
An extension of GSAT is GSAT with Random Walk [8]. The idea of this extension is to escape local optima 
and avoid stagnation. When a random walk move is made, a randomly unsatisfied clause is selected, then one 
of the literals in the clause is flipped thus satisfying the selected clause. The idea is to decide at each step 
whether to perform a GSAT or Random Walk move. As can be seen in [8], GSAT with Random Walk solves 
more problems than its predecessor and doing so more efficiently. 
 
 

2.1.2 Walk SAT 

 
Another variant of GSAT is Walk SAT [9], introduced by D. McAllester, B. Selman and H. Kautz. Walk SAT 
maintains a "break count" associated with each literal. The break count is the number of clauses that would be 
unsatisfied by flipping the literal associated with that break count. An unsatisfied clause is first randomly 
picked, then the literal with the lowest break count is then randomly selected. One of the other literals in the 
clause may also be selected with a certain probability. The random picking of unsatisfied clauses and the 
random selection of literals inside helps Walk SAT to escape local optima and avoid stagnation. This also adds 
to the exploration factor of the search space. 
 
B. Ferris and J. Froehlich from the University of Washington in the US made a comparative analysis of Walk 
SAT and a systematic search algorithm called DPLL [11] DPLL enumerates all possible assignment models in 
the search space. For more on the latter, the reader is referred to [11]. As can be seen in [9], the ISR of Walk 
SAT is relatively low in normally distributed and hard random problems. It can also be observed that DPLL 
has a harder time solving SAT instances than Walk SAT. As the clause/literal ratio increases, DPLL is 
gradually weakened whilst Walk SAT manages to solve the problems. 
 

2.2 Solving SAT Using Simulated Annealing 

 
Simulated Annealing [12] is an algorithm that outperformed GSAT [7] in the context of neural networks. 
Dropping the latter and focusing on SAT, the algorithm is deduced into SASAT. SASAT has a structure which 
is similar to GSAT, the pseudo code below shows the SASAT procedure. 
 

Procedure SASAT 
Begin 
Input: number_of_clauses, MAX_TRIES, MAX_TEMP, MIN_TEMP  
Output: T 
i = 0 tries=0 
while (tries < MAX_TRIES) do  
    randomly assign TRUE/FALSE values to the literals 
    T = number_of_trues 
    while (T < number_of_clauses) do  

          temperature = 
_MAX _ TEMP j decay ratee   

          if (temperature < MIN_TEMP) then break 
         for v=1 to number_of_literals 
            flip v 
            Compute gain 
            flip v 

            flip v with probability 
1

1

gain

temperaturee




 

            if v was flipped then update T 
        end-for 
        j++ tries++ 
     end-while  
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     i++ 
end-while  
End 

 
The outer while-loop generates a random solution for every iteration, this provides independent attempts at 
solving the problem. The temperature is set to MAX_TEMP for every iteration. The inner while-loop 
probabilistically updates the number of TRUE clauses based on the gain provided by the flip. Based on the 
function - which is the standard logistic function for simulated annealing - used, if the gain is positive then the 
flip is likely to be performed. Likewise, if the gain is negative then the flip is unlikely to be performed. The 
temperature measure is used to control the moves of SASAT. If the temperature is high, the moves are almost 
random. If the temperature is low, then the moves are similar to those of GSAT. As j increases, the 
temperature decreases according to the decay rate. When MIN_TEMP is reached, i is incremented and the 
algorithm tries again to solve the problem by randomly assigning TRUE/FALSE values to the literals. The 
decay rate is set as follows:     

1
_

_ _
decay rate

i number of literals



 

 
Each time i is increased, the decay rate is decreased. Reducing the decay rate for every iteration of the outer 
while-loop allows the algorithm to perform more flips during each iteration of the inner while-loop. 
MAX_TEMP is set to 0.3 and MIN_TEMP to 0.01 [12]. What is desired here is to reduce the number of 
independent attempts to be able to search thoroughly during each given attempt. This is possible by increasing 
the temperature or decreasing the decay rate. According to Spears, it is not clear whether it is better to make 
more independent attempts or to search  thoroughly during each attempt. 
 
It was difficult for Spears to make a proper comparison between SASAT and GSAT because of the metrics 
used for measurement. However, using a combination of gains and flips, Spears was able to illustrate that 
SASAT scaled better on larger problems while GSAT had an advantage on easier problems [12]. SASAT 
managed to solve a higher percentage of problems doing fewer flips, while GSAT solved only few problems.  
 
Since a proper comparison between the algorithms was difficult to make, Spears made a slight modification to 
SASAT to make it more similar to GSAT by using a zero temperature logistic function [12]. Spears then 
compared SASAT, zero temperature SASAT and GSAT. Zero temperature SASAT did indeed behave like 
GSAT, and it was observed that SASAT outperformed zero temperature SASAT, consequently outperforming 
GSAT.  
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2.2.1 SASAT with Random Walk 

 
Similar to GSAT, SASAT is enhanced with a Random Walk approach. Recall that the purpose of Random 
Walk is to allow the algorithm to escape local optima (by randomly choosing an unsatisfied clause and 
randomly flipping a literal inside that clause), the same occurs in SASAT having the following modification to 
the algorithm: 
 

                                     
                        flip v with probability p 
 
  probability p{ 
   if v is in an unsatisfied clause then return 1.0 
   else return 0.0 
   } 
  else probability 1 - p{ 

  return 
1

1

gain

temperaturee




 

 

    
 
So with probability p, if the literal is inside an unsatisfied clause, it is flipped. Otherwise, it is not flipped. With 
probability 1 - p, the standard logistic function is used. Doing this, the random walk moves are focused on the 

clauses that are difficult for the algorithm to handle. p is set to 
1

_ _number of literals
 [12]. 

 
This modification of SASAT slightly increased the performance of the algorithm, however according to Spears 
it is not clear whether the random walk, the annealing schedule or a combination of the two is the reason to 
the performance increase. This remains to be investigated in the future. 
 

2.3 Solving SAT Using Adaptive Genetic Algorithms 

 
Genetic Algorithms (GAs) have a challenge solving NP-complete problems such as SAT. Much of the 
challenge is due to constraints that make finding solutions to the problems difficult. A. E. Eiben and J. K. van 
der Hauw presented in their paper [13] a way of adapting constraints in the form of weights in order to solve 
3-SAT problems. They called this method Stepwise Adaptation of Weights (SAW). They proved in their paper 
that using this method increased the performance of GAs and it made the latter superior to another heuristic 
method - WGSAT. WGSAT is a modification of GSAT which is based on [22] where each clause in a SAT 
problem is associated with a weight and the weights of all unsatisfied clauses at the end of a try are updated. In 
WGSAT, the weights are updated after each flip instead of after each try [23, 24].  
 
The genetic representation of SAT is a bit representation where each literal is represented by a gene that can 
have the value 0 for FALSE and 1 for TRUE. A chromosome then represents a given clause. A fitness 
function is the truth value of the chromosome. In the case of SAT, the whole fitness landscape is not known. 
In [13], bit representation is used and a fitness function that counts unsatisfied clauses. 2-tournament selection 
and worst fitness deletion is applied. The maximum fitness evaluations is set to 300 000 and each problem 
instance is run 50 times [13]. The success rate (SR) is the percentage of all cases where a solution was found. 
Several tests were performed in order to find the best operators and optimal population sizes. The SAW 
procedure is shown on the next page. 
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Procedure SAW 
Begin 
initialize weights (and get fitness function f) 
while not termination do  

     for i=0 to pT _fitness_evaluations 

        run GA with f 
     end-for       
     get new f and recalculate fitness of individuals 
end-while 
End 

 
SAW provides the ability to not needing to set constraint weights, hence removing the possibility of wrongly 

defining constraint weights (which gives bad results). Once the pT  fitness evaluations is reached, the best 

individual in the population is taken and the weights of the constraints that it violates are increased 

( i iw w w  ). Using the SAW mechanism increased the success rates in GA at the cost of more evaluations 

[13]. SAW-ing GA also gave better results than WGSAT in all cases that were tested. In addition, GAs were 
compared with traditional SAT solving heuristics (not mentioned which, however) and results showed that 
SAW-ing GAs outperformed these heuristics [13].  
   

2.4 Solving SAT Using Tabu Search 

 
Tabu Search (TSAT) [14] has been proved as an efficient method in solving SAT. Many local search algorithms 
tend to stagnate while attempting to solve SAT after an amount of time, that is being unable to generate a flip 
that will make a difference in the results - thus giving an incorrect (unsatisfied) result (local minima). TSAT 
avoids this problem by maintaining a so called tabu list. The tabu list contains information about the literals, it 
does this to avoid recurrent flips and thus escape local minima. The tabu list is updated each time a flip is 
made. The list is a fixed length, chronologically ordered, First In First Out (FIFO) list of flipped variables [14]. 
Using the list, TSAT prevents the variables in the list from being flipped again during the computation. Figure 
2 illustrates a tabu list. 
 

 
Figure 2: A tabu list contains chronologically ordered flipped literals in a FIFO fashion.  
 

B. Mazure, L. Saïs and E. Gregoire from the University of d'Artois in France showed in their paper that the 
length of the tabu list plays a major role in the performance of the algorithm [14]. To that end, the optimal 
length of the tabu list is desired. The curve illustrated by Mazure, Saïs and Gregoire appears to be linear in the 
number of literals given. That is: 
 

optimal length of tabu list = 0.01875 2.8125n   

     
where n  = number of literals 

A slight change of the optimal length of a tabu list, leads to a decrease in the performance of TSAT. Similarly, 
a big change leads to a dramatic decrease of performance. As seen, the optimal length depends on the number 
of variables. 
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A comparative analysis was made by Mazure, Saïs and Gregoire of TSAT and Random Walk GSAT (RW-
GSAT) [14]. The former solved more problems than the latter and showed better performance. As can be seen 
from the results in [14], TSAT successfully managed to satisfy more clauses than RW-GSAT in each SAT 
problem using less time and making fewer flips overall. Based on these results, TSAT is no doubt more 
efficient in solving SAT instances than RW-GSAT. 
 

2.5 Solving SAT Using Finite Learning Automata 

 
Another efficient method to solve SAT is to use finite Learning Automata. Associate professors O-C. Granmo 
and N. Bouhmala from the Univeresity of Agder and Vestfold University College in Norway wrote the first 
paper on combining finite Learning Automata with traditional Random Walk algorithm [6] to solve SAT. They 
presented a comparative analysis of the algorithm's efficiency, by solving benchmark sets containing SAT 
instances as well as SAT-represented problems from various complex domains. 
 
Learning Automata have been successful in solving many optimization problems including the 
Equipartitioning Problem [17, 18], the Graph Partitioning Problem [19] and the List Organization Problem 
[20]. Learning Automata excels in solving problems due to their ability to learn the optimal actions when 
operating in unknown, stochastic environments. In addition, they combine fast and accurate convergence with 
low computational complexity [6]. 
 
In their paper, associate professors Granmo and Bouhmala defined a learning SAT automaton as well as an 
unknown environment that the automaton would interact with. A finite learning automaton interacts with the 
environment by performing actions, the environment then responds to each action with some sort of reward 
or penalty based on that action. Based on the responses from the environment, the aim of the automaton is to 
find the action that minimizes the number of penalties received. Figure 3 illustrates the interaction between an 
automaton and the environment. 
 

 
Figure 3: A learning automaton sends an action to an environment, which responds with either a reward  
or penalty. [6] 

 
Each literal in SAT is assigned a learning automaton, which results in a team of learning automata. The goal of 
the Learning Automata is to find the solution of the SAT instance. Figure 4 illustrates each automaton 
associated with a literal. 
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Figure 4: Each literal in SAT is assigned a learning automaton. If the automaton state is positive, action TRUE is chosen 
by the automaton. If the state is negative, action FALSE is chosen. [6] 
 

If the state of the learning automaton is positive, then the action TRUE will be performed by the automaton. 
If the state is negative, then the action FALSE will be performed. The optimal action is not known initially, 
therefore the initial state of each automaton is randomly set to either -1 or 0. 
 
The environment is the SAT instance. Providing a reward response from the environment to the automaton 
strengthens the currently chosen action, this makes it less likely that the other action will be chosen in the 
future. Similarly, a penalty response weakens the current action by making it more likely that the other action 
will be chosen in the future. 
 
Since SAT is NP-complete, local search algorithms have been used to solve SAT because they give up 
completeness. Granmo and Bouhmala combined Learning Automata with Random Walk algorithm and below 
are the steps of how to use this new algorithm.   
 
                              1. Each LA assigns a truth value to its corresponding variable. 
 
                              2. Pick an unsatisfied clause randomly. 
 
                              3. Randomly select a literal within that clause 
                                (a) Penalize the LA corresponding to the literal variable. 
                                (b) Ask the penalized LA to assign a truth value to its variable. 
 
                              4. Pick a satisfied clause randomly. 
 
                              5. Randomly select a literal within that clause 
                                (a) If the literal evaluates to TRUE, reward the LA corresponding to the literal 
                                   variable. 
                                (b) Ask the LA to assign a truth value to its variable. 
 
                             6. If all clauses are satisfied, stop. Otherwise, go to 2. [5] 
 
 
To evaluate the results, Granmo and Bouhmala solved benchmark sets containing SAT instances. The results 
were compared with the results obtained by using the Random Walk algorithm. The SAT instances that were 
solved in their paper range from a 125-literal random problem with 528 clauses to a 459-literal Blocks World 
problem with 4675 clauses. In all cases Granmo and Noureddine proved in their paper that solving SAT using 
finite Learning Automata combined with Random Walk algorithm drastically outperformed the latter alone. 
The harder the SAT instances were, the better their algorithm performed compared to Random Walk. Based 
on this conclusion, the Learning Automata combination with Random Walk has proved much more efficient 
in solving SAT than the latter alone. 
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2.6 Others 

 
Clause weighting algorithms [15, 16] have been introduced to solve SAT problems. The idea is to associate 
weight values to the clauses and to increase the weights of all clauses that are unsatisfied as soon as a local 
minimum is discovered. 
 
Other algorithms [25, 26, 27] use history based literal selection strategies to solve SAT in order to keep track of 
truth value assignments (similar to the method discussed in chapter 2.4). 
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3 Research Approach 

 
The proposed solutions of the problem are presented in this chapter. In the following sections, the Multilevel 
paradigm is explained in detail as well as the combination of the latter with Tabu Search and finite Learning 
Automata. The implementations of the new algorithms are then discussed in detail. 
 

3.1 Multilevel Paradigm 

 
Associate professor N. Bouhmala - our supervisor - from Vestfold University College in Norway along with 
other authors have introduced in his 1995 PhD paper a new multilevel technique for solving problems. It is 
Bouhmala's idea to use this technique, for the first time, in the SAT context to see if efficiency will be 
increased or not.  
 
The Multilevel clustering technique simplifies the computation of SAT instances by dividing the number of 
literals in several levels - literals get clustered together. The Multilevel paradigm consists of three phases: 
clustering, initial solution and refinement. 
 
As an example, consider a SAT instance with 20 literals. The literals are initialized in the initial level, in the first 
level the literals get clustered together (two and two) and this continues. So in the first level there would be 10 
literals, in the second 5 literals, in the third 3 literals and so on. The amount of levels created is optional, 
however a relatively big amount is recommended. Figure 5 illustrates the clustering process of a SAT instance 
with 20 literals. 
 

 
Figure 5: The Multilevel clustering technique used on a SAT instance with 20 literals. 

Once the clustering phase is complete, the clusters in the final level are assigned logical TRUE/FALSE values 
and an initial solution is calculated. The solution found is then extended to provide a solution for the level 
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above and then refined using a metaheuristic algorithm. This is done on all levels until a solution to SAT is 
found. If the initial level is reached and a solution is not found, then the SAT instance could not be solved. 
 
The following steps summarize the Multilevel process: 
 

1. Initialize literals. 
 

2. Randomly cluster two literals together, or cluster two neighbouring literals in each level. 
 

3. Do step 2 until the wished amount of clusters is reached. 
 

4. Randomly assign logical TRUE/FALSE values to the clusters in the final level. 
 

5. Compute initial solution. 
 

6. Start refinement phase using metaheuristic algorithm. 
 
The core strength of the Multilevel technique is that during the refinement phase, the algorithm used will 
compute clusters of literals instead of single literals at a time. This allows the algorithm to view clusters of 
literals as a single entity, making the search space guided and restricted to only those literals within the clusters. 
This offers a better sampling of the solution space compared to single level computation. 
 

3.2 Combining Multilevel with Tabu Search 

 
During the refinement phase of the Multilevel technique, an algorithm such as Tabu Search can be used. As 
discussed earlier in chapter 4, Tabu Search maintains a tabu list which contains flipped literals. Instead of 
containing flipped literals, it will in this case contain flipped clusters. The tabu list is updated each time a 
cluster of literals is flipped. Using the list, the algorithm prevents the clusters in the list from being flipped 
again during the computation. 
 

3.3 Combining Multilevel with Finite Learning Automata 

 
Similarly, during the refinement phase of the Multilevel technique, a technique such as finite Learning 
Automata can be used. Since this is a technique, it must be combined with an algorithm. For simplicity, it can 
be combined with the Tabu Search algorithm. As discussed earlier in chapter 4, finite Learning Automata 
assigns each literal a dedicated learning automaton. In this case, it will assign each cluster a learning automaton. 
It will then handle the cluster as a single entity, affecting all literals within the cluster. The state of the learning 
automaton can either be positive or negative. In the latter case, the action FALSE will be performed by the 
learning automaton. In the former, the action TRUE will be performed. The environment is the SAT instance, 
which can provide a reward or penalty response to the learning automaton depending on the automaton's 
action, as explained earlier in chapter 4. 
 

3.4 Tabu Search Implementations 

 
Several Tabu Search variants (five in total) were implemented in order to find the most efficient of the latter. 
In the following sections each variant is thoroughly examined. 
 
 

3.4.1 Tabu Search Version 1.0 

 
This is the basic version of Tabu Search. Each version (with the exception of the greedy version) is based on 
this one. The pseudo code below shows the procedure of Tabu Search version 1.0 (TS v.1.0). 
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Procedure Tabu Search version 1.0 
Begin 
initialize tabu list 
randomly assign TRUE/FALSE values to the literals 
current = evaluate initial solution 
bestSoFar = current 
while current < number_of_clauses do 
      bestGain = -999 
      gain = 0 
     for i = 1 to number_of_clauses - current 
          pick an unsatisfied clause i 
          randomly pick a literal inside the clause i which is not visited 
          mark literal visited 
          flip literal 
          gain = compute new_gain 
          if literal is tabu then 
              store the literal and its gain 
          else if literal is not tabu then 
              if gain == bestGain then 
                   pick a gain randomly 
                   bestGain = gain 
                   store the literal and its gain if not stored already 
               else if gain > bestGain then 
                   bestGain = gain 
                   store the literal and its gain 
           flip literal 
     end-for 
     pick literal with best gain 
     if literal is tabu AND gain + current < bestSoFar then 
        do not flip 
     else  
        flip literal 
        update clauses, current, bestSoFar 
     tabuBestUnsatisfied = find the tabu literal from tabu list which has the lowest number of unsatisfied clauses 
        if literal is not tabu AND number_of_clauses - current < tabuBestUnsatisfied then 
            make literal tabu with the value (number_of_clauses - current) 
        else if literal is not tabu AND number_of_clauses - current >= tabuBestUnsatisfied then 
            make literal tabu with the value tabuBestUnsatisfied 
   decrease all other literals in tabu list with value bigger than 0 by 1 
end-while 
End 

 
 
The idea of Tabu Search is to use a history based selection strategy where flipped literals along with the 
number of unsatisfied clauses are stored in a so called tabu list. The algorithm will run as long as there are 
unsatisfied clauses present or a maximum amount of flips is reached (this constraint can be substituted by a 
time limit). A loop will go through all unsatisfied clauses, picking an unsatisfied clause each time and randomly 
choosing an unhandled/unvisited literal from the clause. The unvisited literal is then flipped and marked 
visited and its truth value gain is computed. The literal is then checked if it is tabu or not. If it is tabu, the literal 
and its gain is stored. If it is not tabu, its gain is checked with the best gain so far. If they are equal, one of 
them is stored randomly. If the gain is bigger, the best gain so far is updated and the new gain is stored. Once 
the loop is finished, the literal with the best gain so far is picked. This literal is first checked if it is tabu, and if 
its gain has improved the total number of satisfied clauses. If that is not the case, the literal is not flipped. 
Otherwise the literal is flipped and the clauses are updated. The next process is to make this literal tabu - if it is 
not already tabu - and update the tabu list. In this version of Tabu Search, the tabu literal with the lowest 
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number of unsatisfied clauses (that is not zero) is located from the tabu list. This tabu literal's number of 
unsatisfied clauses is then checked with the current number of unsatisfied clauses. If the latter is smaller than 
the former, then the flipped literal is made tabu with the current number of unsatisfied clauses. If opposite or 
if they are equal, then the flipped literal is made tabu with the lowest number of unsatisfied clauses from the 
tabu list. If the flipped literal is already tabu, then this process is ignored. Once this is finished, all tabu literals 
(with values bigger than zero) are decreased by one. The idea here is to make a literal tabu for a certain length 
of time. The algorithm is then terminated if all clauses are satisfied or if a maximum number of flips is reached 
(a time limit could also be used). 

 

 
3.4.2 Tabu Search Version 2.0 

 
This version of Tabu Search (TS v.2.0) is similar to the one in the previous section except that here if a literal is 
tabu it is not handled. Simply put, tabu literals are ignored during the loop. This has the consequence of 
increasing the number of tabu literals in the tabu list. 

 
 
3.4.3 Tabu Search with Fixed Tabu List Lengths 

 
This version of Tabu Search is similar to the one in section 3.4.1 except that here static lengths are used for the 
tabu list. It has been observed in earlier research [14] that using static lengths has a positive effect on increasing 
the number of satisfied clauses. In the following sections, we investigate this by setting various lengths. 
 
3.4.3.1 Static Lengths 
 
Suggested by associate professor Bouhmala, when making a literal tabu we set its value to 1 (in contrast to 
setting this value to the number of unsatisfied clauses). The process of making the literal tabu and updating the 
tabu list would then look as shown in the pseudo code below. 
 

             
           if literal is not tabu then 
                make literal tabu with the value 1 
           decrease all other literals in tabu list with value bigger than 0 by 1 
 

  
The lengths from ten to thirty-five were also suggested by associate professor Bouhmala, and were tested in 
the following sequence; ten, fifteen, twenty, twenty-five, thirty, thirty-five.   
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3.4.3.2 Static Optimal Lengths 
 
As mentioned earlier in chapter 2.4, B. Mazure, L. Saïs and E. Gregoire showed in their paper a certain optimal 
length that can be used when setting the tabu list length. This value seemed to be linear with the amount of 
literals present. Using this length, the pseudo code of making a literal tabu and updating the tabu list would 
then look as shown below. 
 

             
           if literal is not tabu then 

                make literal tabu with the value (0.01875 _ _ 2.8125)number of literals   

           decrease all other literals in tabu list with value bigger than 0 by 1 
 

  
 
3.4.4 Greedy Tabu Search 

 
This version of Tabu Search is based on a greedy approach introduced by associate professor Bouhmala. This 
version is seen as a possible extension for future work on Tabu Search. The pseudo code below shows the 
procedure of Greedy Tabu Search (GTS). 
 

Procedure Greedy Tabu Search  
Begin 
initialize tabu list 
randomly assign TRUE/FALSE values to the literals 
current = evaluate initial solution 
bestSoFar = current 
while current < number_of_clauses do 
      gain = 0 
     for i = 1 to number_of_clauses - current 
          pick an unsatisfied clause i 
          randomly pick a literal inside the clause i which is not visited 
          mark literal visited 
          flip literal 
          gain = compute new_gain 
          if literal is tabu then 
               if gain <= 0 then  
                    flip literal 
               else 
               put the literal and its gain in a sequence list 
          else if literal is not tabu then 
               put the literal and its gain in a sequence list 
     end-for 
     find the sequence that best increases the gain from the sequence list 
     flip back the literals after this sequence because they decrease the gain 
     update clauses, current, bestSoFar 
     tabuBestUnsatisfied = find the tabu literal from tabu list which has the lowest number of unsatisfied clauses 
     for i=1 to literals_in_sequence_list 
        if literal i is not tabu AND number_of_clauses - current < tabuBestUnsatisfied then 
            make literal i tabu with the value (number_of_clauses - current) 
        else if literal i is not tabu AND number_of_clauses - current >= tabuBestUnsatisfied then 
            make literal i tabu with the value tabuBestUnsatisfied 
     decrease all other literals in tabu list (which are not in the sequence list) with value bigger than 0 by 1 
     clear sequence list 
end-while End 

This greedy approach for Tabu Search maintains a sequence list that contains literals and their gains. The main 
idea of this approach is to flip literals during the loop and put them in the sequence list, if a flipped literal is 
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tabu and the gain gives no improvement, then this literal is flipped back. Otherwise, literals are flipped 
consecutively without being flipped back. Once the loop is finished, the sequence that gives the best gain 
increase is chosen from the sequence list. The literals after this sequence are flipped back because they decrease 
the gain. The flipped literals are then all made tabu using the same process in Tabu Search version 1.0 
(discussed in section 3.4.1) and the tabu list is updated. After this is done, the sequence list is cleared and the 
same process is repeated for the next iteration of the while-loop. The algorithm will terminate if all clauses are 
satisfied or if a maximum number of flips is reached (a time limit could also be used). 
 

3.5 Selecting the Best Tabu Search Implementation 

 
In order to decide which Tabu Search implementation is the most efficient, the algorithms were tested on the 
following random benchmark problems from SATLIB [21]; 600 literals and 2550 clauses (f600), 1000 literals 
and 4250 clauses (f1000) and 2000 literals and 8500 clauses (f2000). Each algorithm ran each problem with a 
600 seconds timeout, 10 times in order to make a mean estimate. Tables 1, 2 and 3 show the results of solving 
each problem. 
 
 

Algorithm Problem Mean solved (%) Mean time (seconds) 

TS v.1.0 f600 99.4 % 605.4 s. 

TS v.2.0 f600 99.7 % 606 s. 

TS with fixed lengths f600 99.4 % 617.2 s. 

GTS f600 97.1 % 604.6 s. 
Table 1: Tabu Search implementations solving a 600 literals and 2550 clauses (f600) random SATLIB benchmark 
problem. The percentage solved is the number of satisfied clauses. Time limit set to 600 seconds. 
 

Algorithm Problem Mean solved (%) Mean time (seconds) 

TS v.1.0 f1000 99 % 607 s. 

TS v.2.0 f1000 99.1 % 606.6 s. 

TS with fixed lengths f1000 99 % 606.4 s. 

GTS f1000 97.3 % 606.4 s. 
Table 2: Tabu Search implementations solving a 1000 literals and 4250 clauses (f1000) random SATLIB benchmark 
problem. The percentage solved is the number of satisfied clauses. Time limit set to 600 seconds. 
 

Algorithm Problem Mean solved (%) Mean time (seconds) 

TS v.1.0 f2000 93.7 % 615.3 s. 

TS v.2.0 f2000 93.4 % 617.2 s. 

TS with fixed lengths f2000 93.4 % 617.2 s. 

GTS f2000 92.7 % 617.5 s. 
Table 3: Tabu Search implementations solving a 2000 literals and 8500 clauses (f2000) random SATLIB benchmark 
problem. The percentage solved is the number of satisfied clauses. Time limit set to 600 seconds. 
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Tables 4, 5 and 6 show the mean solved, variance and standard deviation. 
 

Algorithm Problem Mean solved (%) Variance Standard 
deviation 

TS v.1.0 f600 99.4 % 0.5 0.71 

TS v.2.0 f600 99.7 % 0.4 0.63 

TS with fixed 
lengths 

f600 99.4 % 0.4 0.63 

GTS f600 97.1 % 8.2 2.86 
Table 4: Tabu Search implementations solving a 600 literals and 2550 clauses (f600) random SATLIB benchmark 
problem. The mean solved, variance and standard deviation are shown. 
 

Algorithm Problem Mean solved (%) Variance Standard 
deviation 

TS v.1.0 f1000 99 % 0.5 0.71 

TS v.2.0 f1000 99.1 % 0.3 0.55 

TS with fixed 
lengths 

f1000 99 % 0.3 0.55 

GTS f1000 97.3 % 80.2 8.96 
Table 5: Tabu Search implementations solving a 1000 literals and 4250 clauses (f1000) random SATLIB benchmark 
problem. The mean solved, variance and standard deviation are shown. 
 

Algorithm Problem Mean solved (%) Variance Standard 
deviation 

TS v.1.0 f2000 93.7 % 0.2 0.45 

TS v.2.0 f2000 93.4 % 0.1 0.32 

TS with fixed 
lengths 

f2000 93.4 % 0.1 0.32 

GTS f2000 92.7 % 8.1 2.85 
Table 6: Tabu Search implementations solving a 2000 literals and 8500 clauses (f2000) random SATLIB benchmark 
problem. The mean solved, variance and standard deviation are shown. 
 

In addition to these problems that were tested, seven other random problems (specifically f100, f125, f150, 
f175, f200, f225 and f250) from SATLIB benchmarks were tested and all algorithms gave high success rates 
ranging from 97.8 % to 100 %. Tabu Search version 2.0 was the only version to have solved six of these 
problems 100 %, and the seventh 99.3 %. Based on these results and the results shown in tables 1, 2 and 3, 
Tabu Search version 2.0 proved to be the best overall algorithm. It was therefore selected to be combined with 
the Multilevel paradigm (and later with Learning Automata).  
 
Tables 4, 5 and 6 further illustrate the variance and standard deviation of each algorithm solving f600, f1000 
and f2000. As can be seen, the variance and standard deviation are relatively low in almost all cases (with the 
exception of the GTS algorithm). This indicates that the algorithms are overall stable and the results are not 
widely spread around the mean. GTS seems to be the only algorithm that contradicts this, as it in all cases gave 
a rather high variance and standard deviation. 
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3.6 Learning Automata with Tabu Search Implementation 

 
The implementation of Learning Automata with Tabu Search (LATS) is based on the algorithm discussed in 
section 2.5. The idea here is to integrate the Learning Automata implementation for SAT into Tabu Search, the 
pseudo code below shows the procedure of this. 

 
Procedure Learning Automata with Tabu Search 
Begin 
initialize tabu list 
for i=1 to number_of_literals 
    randomly set the state of literal i to -1 or 1 
    if state == -1 then 
        set literal i to FALSE 
    else 
        set literal i to TRUE 
end-for 
current = evaluate initial solution 
bestSoFar = current 
while current < number_of_clauses do 
      /*Learning Automata start*/ 
      randomly pick an unsatisfied clause 
      randomly pick a literal or its negation from inside the clause 
      if literal was picked AND state < (number_of_clauses – current) then 
          increase the state of the literal by 1 
          if state == 0 then 
               flip literal 
               update clauses, current, bestSoFar 
      else if negated literal was picked AND state > -(number_of_clauses - current) then 
          decrease the state of the negated literal by 1 
          if state == -1 then 
               flip negated literal 
               update clauses, current, bestSoFar 
      randomly pick a satisfied clause 
      randomly pick a literal or its negation from inside the clause 
     if literal was picked AND state >= 0 AND state < (number_of_clauses – current) then 
               increase the state of the literal by 1 
     else if negated literal was picked AND state < 0 AND state > -(number_of_clauses - current) then 
               decrease the state of the negated literal by 1 
     /*Tabu Search start*/ 
     bestGain = -999 
     gain = 0 
     for i = 1 to number_of_clauses - current 
          pick an unsatisfied clause i 
          randomly pick a literal inside the clause i which is not visited 
          mark literal visited 
          flip literal 
          gain = compute new_gain 
          if literal is not tabu then 
              if gain == bestGain then 
                   pick a gain randomly 
                   bestGain = gain 
                   store the literal and its gain if not stored already 
               else if gain > bestGain then 
                   bestGain = gain 
                   store the literal and its gain 
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          flip literal 
     end-for 
     pick literal with best gain 
     if literal is tabu AND gain + current < bestSoFar then 
          do not flip 
    else  
          flip literal 
          update clauses, current, bestSoFar 
           tabuBestUnsatisfied = find the tabu literal from tabu list which has the lowest number of unsatisfied 
clauses 
          if literal is not tabu AND number_of_clauses - current < tabuBestUnsatisfied then 
              make literal tabu with the value (number_of_clauses - current) 
          else if literal is not tabu AND number_of_clauses - current >= tabuBestUnsatisfied then 
              make literal tabu with the value tabuBestUnsatisfied 
    decrease all other literals in tabu list with value bigger than 0 by 1 
end-while 
End 

 
The idea of Learning Automata with Tabu Search is to use the techniques of the latter and former together. As 
discussed in section 2.5, Learning Automata with a Random Walk approach provided good results when 
solving SAT instances. Therefore, combining Learning Automata (using a Random Walk approach) with Tabu 
Search should in theory provide better results than using the latter alone. 
 
In Learning Automata, each literal has an automaton resulting in a team of automata. Each automaton starts 
randomly with a certain state value; -1 or 1. Literals with negative state values are assigned FALSE values, and 
literals with positive state values are assigned TRUE values (as illustrated in figure 6). The algorithm randomly 
picks an unsatisfied clause and a literal or its negation from inside the clause. The state value of the literal or its 
negation is strengthened by either increasing it (if it is positive) or decreasing it (if it is negative). If the state 
value of the literal or its negation changes from negative to positive - or vice versa - then it is flipped. The 
minimum state value is set to minus the number of unsatisfied clauses and the maximum state value is set to 
the number of unsatisfied clauses (we set these limitations in order to have a finite amount of state values). The 
algorithm then randomly picks a satisfied clause and a literal or its negation from inside the clause, this literal 
or its negation is then strengthened (rewarded) if its truth assignment contributes to the satisfaction of the 
clause. Its state value is increased (if it is positive) or decreased (if it is negative). Eventually, literals found in 
unsatisfied clauses are penalized and frequently flipped while literals found in satisfied clauses (which with their 
truth assignments contribute to the satisfaction of the clauses) are rewarded. Once the Learning Automata 
process is complete, Tabu Search - which we have covered in sections 3.4.1 and 3.4.2 - starts its process. The 
algorithm is then terminated if all clauses are satisfied or if a maximum number of flips is reached (a time limit 
could also be used). 
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3.7 Multilevel Paradigm Implementation 

 
As mentioned in section 3.1, the Multilevel paradigm consists of three phases; clustering, initial solution and 
refinement. A metaheuristic algorithm is used in the last phase of the paradigm, in our case, Tabu Search and 
Learning Automata. 
 

 
3.7.1 Clustering, Evaluation of Initial Solution and Refinement Phases 

 
Clustering, evaluation of initial solution and refinement are the three phases of the Multilevel paradigm. The 
pseudo code below shows how the first two phases work. The third phase will be explained in the next 
sections. 
 

 
 
The Multilevel paradigm works as explained in section 3.1. A size limit on the number of clusters at the final 
level decides how far the clustering process will go. Setting this value to 10 % of the total number of literals is a 
good measurement. Once the clustering process is complete, the clusters at the final level are randomly 
assigned TRUE/FALSE values. The initial solution is then computed and the refinement phase is ready to 
start. 
 

Procedure Multilevel Paradigm 
Begin 
level = 0 
clusterCollection = initialize literals 
while clusterCollectionSize != size_limit do  
     randomly cluster two literals or clusters together and put them in clusterCollection 
     update clusterCollection, clusterCollectionSize 
     if reached_end_of_clusterCollection then 
           increase level by 1 
end-while 
randomly assign TRUE/FALSE values to the clusters in clusterCollection (final level) 
current = evaluate initial solution 
start refinement phase 
End 
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3.8 Multilevel Tabu Search Implementation 

 
Tabu Search is slightly modified in order to work properly in the refinement phase of the Multilevel paradigm. 
The modifications to the algorithm will be explained in the next section. 
 

 
3.8.1 Refinement Phase Using Tabu Search 

 
The implementation of Tabu Search is slightly modified in order to handle clusters of literals. The pseudo code 
below shows the Tabu Search refinement procedure. 
 
 

Procedure Multilevel Tabu Search (refinement phase) 
Begin 
bestSoFar = current 
while current < number_of_clauses do 
      initialize tabu list for level 
      bestGain = -999 
      gain = 0 
      if level != 0 then 
           for i = 1 to number_of_clusters_in_level 
                 randomly pick a cluster i 
                 mark cluster i visited 
                 flip cluster i 
                 gain = compute new_gain 
                 if cluster i is not tabu then 
                    if gain == bestGain then 
                         pick a gain randomly  
                         bestGain = gain 
                    else if gain > bestGain then 
                         bestGain = gain 
                    store cluster i and its gain 
                 flip cluster i 
            end-for 
            decrease level by 1 
            pick cluster with best gain 
            if cluster is tabu AND gain + current < bestSoFar then 
                do not flip 
            else 
                flip cluster 
                update clauses, current, bestSoFar 
  tabuBestUnsatisfied = find the tabu cluster from tabu list which has the lowest number of unsatisfied clauses 
                if cluster is not tabu AND number_of_clauses - current < tabuBestUnsatisfied then 
                     make cluster tabu with the value (number_of_clauses - current) 
               else if cluster is not tabu AND number_of_clauses - current >= tabuBestUnsatisfied then 
                     make cluster tabu with the value tabuBestUnsatisfied 
               decrease all other clusters in tabu list with value bigger than 0 by 1 
      else  
          start procedure Tabu Search 
end-while 
End 

  
The Multilevel variant of Tabu Search (MTS) works as the latter except that here clusters of literals instead of 
single literals are handled at a time; a loop runs through all the clusters in a level and handles each cluster. 
Once finished with a level, the best cluster is flipped and made tabu (if not already tabu). The tabu list is then 
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updated. The algorithm will then proceed to the next level and repeat the process. Once the final level is 
reached, the Tabu Search procedure discussed in sections 3.4.1 and 3.4.2 will start running. The algorithm will 
terminate if all clauses are satisfied or if a maximum number of flips set for each level is reached (a time limit 
could also be used and a number of iterations per level). 
 

3.9 Multilevel Learning Automata with Tabu Search Implementation 

 
Learning Automata with Tabu Search is slightly modified in order to work properly in the refinement phase of 
the Multilevel paradigm. In addition, the evaluation of initial solution phase is changed to accommodate the 
clusters of literals in the final level. The pseudo code below shows the change. 
 

 
for i=1 to clusterCollection 
    randomly set the state of cluster i to -1 or 1 
    if state == -1 then 
        set cluster i to FALSE 
    else 
        set cluster i to TRUE 
end-for 
current = evaluate initial solution 
 

 
In the Multilevel variant of Learning Automata with Tabu Search (MLATS), state values are set to clusters of 
literals instead of single literals. Once the final level is reached, a loop runs through all clusters in the final level 
and randomly sets state values to -1 or 1. The state values set to the clusters are propagated to the literals 
inside. If a cluster has state value -1, it is assigned a FALSE value. Similarly if it has a state value 1, it is assigned 
a TRUE value.  

 
 
3.9.1 Refinement Phase Using Learning Automata with Tabu Search 

 
The implementation of Learning Automata with Tabu Search is slightly modified in order to handle clusters of 
literals in the refinement phase of the Multilevel paradigm. The pseudo code below shows the Learning 
Automata with Tabu Search refinement procedure. 
 

Procedure Multilevel Learning Automata with Tabu Search (refinement phase) 
Begin 
bestSoFar = current 
while current < number_of_clauses do 
      if level != 0 then 
          /*Learning Automata start*/ 
           randomly pick a cluster from current level 
           for i=1 to number_of_literals_in_cluster 
               randomly pick literal i or its negation 
               if literal i was picked then  
                  pick a clause that has literal i 
               else if negated literal i was picked then 
                  pick a clause that has negated literal i 
               if the clause is unsatisfied then 
                   if literal i was picked AND state < (number_of_clauses – current) then 
                        increase the state of the literal i by 1 
                        if state == 0 then 
                           flip literal i 
                           update clauses, current, bestSoFar                    
                   else if negated literal i was picked AND state > -(number_of_clauses - current) then 
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                        decrease the state of the negated literal i by 1 
                        if state == -1 then 
                            flip negated literal i 
                            update clauses, current, bestSoFar 
                 else if the clause is satisfied then 
                     if literal i was picked AND state >= 0 AND state < (number_of_clauses – current) then 
                          increase the state of the literal i by 1 
                       else if negated literal i was picked AND state < 0 AND state > -(number_of_clauses - current) 
then 
                          decrease the state of the negated literal i by 1 
           end-for 
          /*Tabu Search start*/ 
          initialize tabu list for level 
          bestGain = -999 
          gain = 0 
          for i = 1 to number_of_clusters_in_level 
                 randomly pick a cluster i 
                 mark cluster i visited 
                 flip cluster i 
                 gain = compute new_gain 
                 if cluster i is not tabu then 
                    if gain == bestGain then 
                         pick a gain randomly  
                         bestGain = gain 
                    else if gain > bestGain then 
                         bestGain = gain 
                    store cluster i and its gain 
                 flip cluster i 
            end-for 
            decrease level by 1 
            pick cluster with best gain 
            if cluster is tabu AND gain + current < bestSoFar then 
                do not flip 
            else 
                flip cluster 
                update clauses, current, bestSoFar 
  tabuBestUnsatisfied = find the tabu cluster from tabu list which has the lowest number of unsatisfied clauses 
                if cluster is not tabu AND number_of_clauses - current < tabuBestUnsatisfied then 
                     make cluster tabu with the value (number_of_clauses - current) 
               else if cluster is not tabu AND number_of_clauses - current >= tabuBestUnsatisfied then 
                     make cluster tabu with the value tabuBestUnsatisfied 
               decrease all other clusters in tabu list with value bigger than 0 by 1 
      else  
          start procedure Learning Automata with Tabu Search 
end-while 
End 

 
The Multilevel variant of Learning Automata with Tabu Search (MLATS) works as its predecessor except that 
here clusters of literals instead of single literals are handled at a time. A cluster is randomly picked from a level 
and a loop runs through all literals inside the cluster, a literal or its negation is picked during this loop and a 
clause that has the literal or its negation. The clause is then handled as we previously discussed in section 3.6; if 
it is unsatisfied, the state value of the picked literal or its negation is strengthened by either increasing it (if it is 
positive) or decreasing it (if it is negative). If the state value of the literal or its negation changes from negative 
to positive - or vice versa - then it is flipped. The minimum state value is set to minus the number of 
unsatisfied clauses and the maximum state value is set to the number of unsatisfied clauses (we set these 
limitations in order to have a finite amount of state values). If the clause is satisfied however, the picked literal 
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or its negation is then strengthened (rewarded) if its truth assignment contributes to the satisfaction of the 
clause. Its state value is increased (if it is positive) or decreased (if it is negative). As mentioned in section 3.6, 
eventually literals found in unsatisfied clauses are penalized and frequently flipped while literals found in 
satisfied clauses (which with their truth assignments contribute to the satisfaction of the clauses) are rewarded. 
Once the loop iterates through all clusters in the given level and performs this process, Multilevel Tabu Search 
- which we have covered in section 3.8.1 - starts its process. Once the final level is reached, the Learning 
Automata with Tabu Search procedure discussed in section 3.6 will start running. The algorithm will terminate 
if all clauses are satisfied or if a maximum number of flips set for each level is reached (a time limit could also 
be used and a number of iterations per level). 
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4 Experimental Results 

 
Benchmarks from SATLIB (Random, Planning, SAT Competition Beijing, AIM, All Interval Series, Graph 
Colouring SW and Quasi Groups) [21] and Max SAT (Industry) [29] were tested by the algorithms. Each 

instance was tested 10 times, each with a maximum flip set to 610 or in the case where time was used, the time 
limit set to 900 seconds. The average of flips, time and satisfied clauses were computed. In the end of the 
chapter, the mean solved, variance and standard deviation of the tested instances are shown. 
   

4.1 Tabu Search vs. Multilevel Tabu Search 

 
The performances of Tabu Search and Multilevel Tabu Search are compared and the results of the algorithms 
are shown in the next sections. 

 
 
4.1.1 SATLIB Benchmark Problems 

 
4.1.1.1 Random 
 
Figures 6, 7 and 8 illustrate the results of solving the following random problems; 600 literals and 2550 clauses 
(f600), 1000 literals and 4250 clauses (f1000) and 2000 literals and 8500 clauses (f2000). 
 

 
Figure 6: Tabu Search vs. Multilevel Tabu Search solving a 600 literals and 2550 clauses (f600) random  
problem. Along the horizontal axis the mean time is given and along the vertical axis the mean number of  
satisfied clauses. 
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Figure 7: Tabu Search vs. Multilevel Tabu Search solving a 1000 literals and 4250 clauses (f1000) random  
problem. Along the horizontal axis the mean time is given and along the vertical axis the mean number of satisfied  
clauses. 

 
 

 
Figure 8: Tabu Search vs. Multilevel Tabu Search solving a 2000 literals and 8500 clauses (f2000) random  
problem. Along the horizontal axis the mean time is given and along the vertical axis the mean number of satisfied  
clauses. 

 
Figure 6 illustrates that f600 is a small problem, and thus the Multilevel variant is not as effective as assumed. 
However, as can be seen from the graph, while Tabu Search starts to stagnate after around 400 seconds the 
Multilevel variant continues to converge until around 600 seconds from which it starts to stagnate as well. This 
occurs because the problem is small and the search space is restricted. As a result, it seemed that single space 
searching seemed most efficient for this problem. 
 
f1000 is also a small problem and thus the Multilevel variant is also not as effective as assumed, looking at 
figure 7. As a result, it seemed that single space searching seemed most efficient for this problem. 
 
f2000 is also a small problem. As observed in figure 8, the Multilevel variant's performance is approaching 
Tabu Search's as the problems grow bigger. Both algorithms steadily converge and Tabu Search manages to 
satisfy more clauses than the Multilevel variant. 
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4.1.1.2 Planning 
 
Figures 9, 10, 11 and 12 illustrate the results of solving the following Blocks World problems; 116 literals and 
953 clauses (medium), 459 literals and 7054 clauses (huge),  3016 literals and 50457 clauses (bw_large.c) and 
6325 literals and 131973 clauses (bw_large.d). 
 

 
Figure 9: Tabu Search vs. Multilevel Tabu Search solving a Blocks World  problem with 116 literals and 953  
clauses problem (medium). Along the horizontal axis the mean number of flips is given and along the vertical axis  
the mean number of satisfied clauses. 
 

 
Figure 10: Tabu Search vs. Multilevel Tabu Search solving a Blocks World  problem with 459 literals and 7054  
clauses problem (huge). Along the horizontal axis the mean number of flips is given and along the vertical axis  
the mean number of satisfied clauses. 
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Figure 11: Tabu Search vs. Multilevel Tabu Search solving a Blocks World problem with 3016 literals and 50457  
clauses problem (bw_large.c). Along the horizontal axis the mean number of flips is given and along the vertical axis  
the mean number of satisfied clauses. 

 

 
Figure 12: Tabu Search vs. Multilevel Tabu Search solving a Blocks World problem with 6325 literals and 131973 
clauses (bw_large.d). Along the horizontal axis the mean number of flips is given and along the vertical axis  
the mean number of satisfied clauses. 

 
Figure 9 illustrates that Tabu Search converges in a linear manner and manages to solve the problem at close to 
10000 flips. The Multilevel variant shows a good convergence at the start, however it crosses with Tabu Search 
and manages to solve the problem at 10000 flips. 
 
Figure 10 illustrates that the Multilevel variant managed to solve this problem after around 13000 flips, while 

Tabu Search started to stagnate from around 200000 flips and continued up to 610 without managing to solve 
the problem. As seen in the graph, the Multilevel variant is clearly superior to Tabu Search in terms of 
convergence efficiency. 
 
As illustrated in figure 11, the Multilevel variant is superior to Tabu Search. It managed to solve this problem 

after around 600000 flips, while Tabu Search did not solve the problem after reaching 610 flips. 
 
As illustrated in figure 12, the Multilevel variant is once again superior to Tabu Search. Multilevel excels in 
solving this problem due to its big size. While reaching the maximum amount of flips, the convergence rate of 



Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques 

39 

Multilevel is much higher than Tabu Search. It can be clearly observed here that the bigger the SAT problem 
is, the more it is in favour of the Multilevel variant. 
 
Figure 13 illustrate the results of solving a Logistics problem with 4713 literals and 21991 clauses (logistics.d). 
 

 
Figure 13: Tabu Search vs. Multilevel Tabu Search solving a Logistics problem with 4713 literals 21991 clauses 
(logistics.d). Along the horizontal axis the mean number of flips is given and along the vertical axis  
the mean number of satisfied clauses. 

 
Figure 13 illustrates that Multilevel is clearly superior to Tabu Search in terms of convergence efficiency and 
quality. 
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4.1.1.3 SAT Competition Beijing 
 
Figures 14 and 15 illustrate the results of solving the following Beijing problems; 21800 literals and 118607 
clauses (ewddr2-10-by-5-1) and 22500 literals and 123329 clauses (ewddr2-10-by-5-8). 
 

 
Figure 14: Tabu Search vs. Multilevel Tabu Search solving a Beijing problem with 21800 literals and 118607 
clauses (ewddr2-10-by-5-1). Along the horizontal axis the mean number of flips is given and along the vertical axis  
the mean number of satisfied clauses. 

 
 

 
Figure 15: Tabu Search vs. Multilevel Tabu Search solving a Beijing problem with 22500 literals and 123329 
clauses (ewddr2-10-by-5-8). Along the horizontal axis the mean number of flips is given and along the vertical axis  
the mean number of satisfied clauses. 
 

Figures 14 and 15 illustrate that the Multilevel variant however close to Tabu Search, provides a slightly better 
convergence rate overall. Tabu Search provides a linear convergence while the Multilevel variant provides a 
more variable convergence here. 
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4.1.1.4 AIM 
 
Figures 16 and 17 illustrate the results of solving the following AIM problems; 200 literals and 400 clauses 
(aim-200-2_0-yes1-4) and 200  literals and 680 clauses (aim-200-3_4-yes1-2). 
 

 
Figure 16: Tabu Search vs. Multilevel Tabu Search solving an AIM problem with 200 literals and 400 
clauses (aim-200-2_0-yes1-4). Along the horizontal axis the mean number of flips is given and along the vertical axis  
the mean number of satisfied clauses. 

 

 
Figure 17: Tabu Search vs. Multilevel Tabu Search solving an AIM problem with 200 literals and 680 
clauses (aim-200-3_4-yes1-2). Along the horizontal axis the mean number of flips is given and along the vertical axis  
the mean number of satisfied clauses. 
 

Figures 16 and 17 illustrate that Tabu Search clearly outperforms the Multilevel variant in terms of 
convergence. However, the former shows an early stagnation which is not observed in the latter. The apparent 
convergence favour to Tabu Search in both cases confirms that the Multilevel variant does not work well in 
relatively small problems, excelling instead in rather large ones. 
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4.1.1.5 All Interval Series (AIS) 

 
Figures 18 and 19 illustrate the results of solving the following All Interval Series (AIS) problems; 181 literals 
and 3151 clauses (ais10) and 265 literals and 5666 clauses (ais12). 
 

 
Figure 18: Tabu Search vs. Multilevel Tabu Search solving an AIS problem with 181 literals and 3151 
clauses (ais10). Along the horizontal axis the mean number of flips is given and along the vertical axis  
the mean number of satisfied clauses. 

 

 
Figure 19: Tabu Search vs. Multilevel Tabu Search solving an AIS problem with 265 literals and 5666 
clauses (ais12). Along the horizontal axis the mean number of flips is given and along the vertical axis  
the mean number of satisfied clauses. 
 

Figure 18 illustrates a slight convergence favour to Multilevel until it starts to stagnate at around 200000 flips 
and continues until it manages to solve the problem at around 400000 flips. Tabu Search starts to stagnate at 
the same time and continues on without managing to solve the problem. 
 
Figure 19 also illustrates a slight convergence favour, however in this case to Tabu Search. While Multilevel 
manages to solve the problem at around 200000 flips, Tabu Search starts to stagnate at this point and 
continues on without managing to solve the problem. 
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4.1.1.6 Graph Colouring SW 
 
Figures 20 and 21 illustrate the results of solving the following Graph Colouring SW problems; 500 literals and 
3100 clauses (sw100-98) and 500 literals and 3100 clauses (sw100-99). 
 

 
Figure 20: Tabu Search vs. Multilevel Tabu Search solving an Graph Colouring SW problem with 500 literals and 3100 
clauses (sw100-98). Along the horizontal axis the mean number of flips is given and along the vertical axis  
the mean number of satisfied clauses. 

 

 
Figure 21: Tabu Search vs. Multilevel Tabu Search solving an Graph Colouring SW problem with 500 literals and 3100 
clauses (sw100-99). Along the horizontal axis the mean number of flips is given and along the vertical axis  
the mean number of satisfied clauses. 
 

Figures 20 and 21 illustrate that Tabu Search clearly beats Multilevel in terms of convergence, solving both 
problems in well under 200000 flips. Multilevel manages to solve both problems slightly above 200000 flips. 
The results of both algorithms are quite similar due to their respective sizes. 
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4.1.1.7 Quasi Groups 
 
Figures 22 and 23 illustrate the results of solving the following Quasi Groups problems; 1331 literals and 
49204 clauses (qg6-11) and 1728 literals and 69931 clauses (qg6-12). 
 

 
Figure 22: Tabu Search vs. Multilevel Tabu Search solving a Quasi Groups problem with 1331 literals and 49204 clauses 
(qg6-11). Along the horizontal axis the mean number of flips is given and along the vertical axis  
the mean number of satisfied clauses. 

 

 
Figure 23: Tabu Search vs. Multilevel Tabu Search solving a Quasi Groups problem with 1728 literals and 69931 clauses 
(qg6-12). Along the horizontal axis the mean number of flips is given and along the vertical axis  
the mean number of satisfied clauses. 
 

Figures 22 and 23 illustrate that the Multilevel variant clearly outperforms Tabu Search, both in convergence 
rate and quality. In figure 22 it is seen that Tabu Search starts to stagnate at around 600000 and continues on 
without managing to solve the problem, while Multilevel manages to solve the problem in well under 400000 
flips. Similarly, figure 23 shows that Tabu Search does not manage to solve the problem while Multilevel does 
so at around 400000 flips. 
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4.1.2 Max SAT Problems 

 
4.1.2.1 Industry 
 
Figures 24, 25, 26, 27 and 28 illustrate the results of solving the following Max SAT (Industry) problems; 5484 
literals and 13894 clauses (mot_comb2._red-gate-0.dimacs.seq.filtered), 11265 literals and 29520 clauses 
(mot_comb3._red-gate-0.dimacs.seq.filtered), 44079 literals and 117720 clauses (c6_DD_s3_f1_e1_v1-bug-
onevec-gate-0.dimacs.seq.filtered), 84525 literals and 236942 clauses (c2_DD_s3_f1_e2_v1-bug-onevec-gate-
0.dimacs.seq.filtered) and 200944 literals and 540984 clauses (c5_DD_s3_f1_e1_v1-bug-gate-
0.dimacs.seq.filtered). 
 

 
Figure 24: Tabu Search vs. Multilevel Tabu Search solving a Max SAT  problem with 5484 literals and 13894 clauses  
(mot_comb2._red-gate-0.dimacs.seq.filtered). Along the horizontal axis the mean number of flips is given and along the 
vertical axis the mean number of satisfied clauses. 
 

 
Figure 25: Tabu Search vs. Multilevel Tabu Search solving a Max SAT  problem with 11265 literals and 29520 clauses  
(mot_comb3._red-gate-0.dimacs.seq.filtered). Along the horizontal axis the mean number of flips is given and along the 
vertical axis the mean number of satisfied clauses. 
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Figure 26: Tabu Search vs. Multilevel Tabu Search solving a Max SAT  problem with 44079 literals and 117720 clauses 
(c6_DD_s3_f1_e1_v1-bug-onevec-gate-0.dimacs.seq.filtered). Along the horizontal axis the mean number of flips is given 
and along the vertical axis the mean number of satisfied clauses. 
 

 
Figure 27: Tabu Search vs. Multilevel Tabu Search solving a Max SAT  problem with 84525 literals and 236942 clauses 
(c2_DD_s3_f1_e2_v1-bug-onevec-gate-0.dimacs.seq.filtered). Along the horizontal axis the mean number of flips is given 
and along the vertical axis the mean number of satisfied clauses. 
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Figure 28: Tabu Search vs. Multilevel Tabu Search solving a Max SAT  problem with 200944 literals and 540984 clauses 
(c5_DD_s3_f1_e1_v1-bug-gate-0.dimacs.seq.filtered). Along the horizontal axis the mean number of flips is given and 
along the vertical axis the mean number of satisfied clauses. 
 
Figures 24, 25, 26 and 27 illustrate that the Multilevel variant's convergence rate is slightly higher than Tabu 
Search and the latter ends up satisfying less clauses than the former in all cases. 
 
Figure 28 illustrate that the Multilevel variant once again outperforms Tabu Search in terms of convergence. 
As can be seen in the graph, the algorithms cross at around 800000 flips. From that point, both algorithms 
continue to converge and once reaching the maximum amount of flips the Multilevel variant manages to 
satisfy more clauses than Tabu Search. 
 
In all cases, the Multilevel variant has an advantage by having an initial solution which is higher than the initial 
solution of Tabu Search. The process of randomly assigning truth values to the literals differs for Multilevel 
(random values are assigned to clusters of literals), this could have had an effect on the initial solution. To that 
end, we tested a different mechanism; after the clustering process, each literal in a cluster was assigned a 
random logical value. The clusters would then contain literals that have different values, instead of having a 
single value. This mechanism did not give better results. Therefore, the manner in which literals are randomly 
assigned truth values does indeed affect the initial solution of a problem, and - as we have seen - the way this is 
done in Multilevel gives better results. 
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Tables 7 and 8 show the mean solved, variance and standard deviation of each problem solved by Tabu Search 
(TS) and Multilevel Tabu Search (MTS). 
 

Algorithm Problem Mean solved (%) Variance Standard 
deviation 

TS f600 99.9 % 0.4 0.63 

TS f1000 99.7 % 0.3 0.55 

TS f2000 99.3  % 0.1 0.32 

TS medium 100 % 0 0 

TS huge 100 % 0 0 

TS bw_large.c 92.4 % 0.6 0.77 

TS bw_large.d 81.6 % 0.5 0.71 

TS logistics.d 88.8 % 0.6 0.77 

TS ewddr2-10-by-5-1 88.3 % 0.5 0.71 

TS ewddr2-10-by-5-8 88 % 0.7 0.84 

TS aim-200-2_0-yes1-4 99.8 % 0.3 0.55 

TS aim-200-3_4-yes1-2 99 % 0.4 0.63 

TS ais10 99.9 % 0.6 0.77 

TS ais12 99.9 % 0.4 0.63 

TS sw100-98 100 % 0 0 

TS sw100-99 100 % 0 0 

TS qg6-11 99.8 % 0.2 0.45 

TS qg6-12 99.8 % 0.4 0.63 

TS Max SAT #1* 80.7 % 0.3 0.55 

TS Max SAT #2* 78.8 % 0.5 0.71 

TS Max SAT #3* 78.8 % 0.7 0.84 

TS Max SAT #4* 79.8 % 0.3 0.55 

TS Max SAT #5* 79.3 % 0.2 0.45 

Table 7: Mean solved, variance and standard deviation of the problems solved by the Tabu Search (TS) algorithm. *See 
page 49 footnote. 
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Algorithm Problem Mean solved (%) Variance Standard 
deviation 

MTS f600 98.3 % 0.3 0.55 

MTS f1000 97.8 % 0.4 0.63 

MTS f2000 97.5 % 0.2 0.45 

MTS medium 100 % 0 0 

MTS huge 100 % 0 0 

MTS bw_large.c 100 % 0 0 

MTS bw_large.d 89.6 % 0.4 0.63 

MTS logistics.d 95.3 % 0.5 0.71 

MTS ewddr2-10-by-5-1 88.4 % 0.7 0.84 

MTS ewddr2-10-by-5-8 87.7 % 0.5 0.71 

MTS aim-200-2_0-yes1-4 98.3 % 0.6 0.77 

MTS aim-200-3_4-yes1-2 97.5 % 0.5 0.71 

MTS ais10 100 % 0 0 

MTS ais12 100 % 0 0 

MTS sw100-98 100 % 0 0 

MTS sw100-99 100 % 0 0 

MTS qg6-11 100 % 0 0 

MTS qg6-12 100 % 0 0 

MTS Max SAT #1* 82 % 0.4 0.63 

MTS Max SAT #2* 79.5 % 0.2 0.45 

MTS Max SAT #3* 78.9 % 0.3 0.55 

MTS Max SAT #4* 79.8 % 0.3 0.55 

MTS Max SAT #5* 79.3 % 0.6 0.77 
Table 8: Mean solved, variance and standard deviation of the problems solved by the Multilevel Tabu Search (MTS) 

algorithm. *See page 49 footnote. 
 
Studying the mean solved in tables 7 and 8, it can be observed that TS provides slightly better results than 
MTS while solving relatively small problems. As the problems grow bigger, however, the reverse effect is 
observed. This indicates that the Multilevel's strength lies in solving relatively big problems, something which 
was initially expected. Multilevel provides better results as problems grow bigger which is a good property 
when it comes to solving large, complex problems. As can be seen in the tables, the variance and standard 
deviation are quite low in almost all cases. This is quite good as it indicates that the algorithms are overall 
stable and the results are not widely spread around the mean, but rather close to it. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
*Max SAT #1: mot_comb2._red-gate-0.dimacs.seq.filtered  
Max SAT #2: mot_comb3._red-gate-0.dimacs.seq.filtered 
Max SAT #3: c6_DD_s3_f1_e1_v1-bug-onevec-gate-0.dimacs.seq.filtered 
Max SAT #4: c2_DD_s3_f1_e2_v1-bug-onevec-gate-0.dimacs.seq.filtered 
Max SAT #5: c5_DD_s3_f1_e1_v1-bug-gate-0.dimacs.seq.filtered 
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4.2 Learning Automata with Tabu Search vs. Multilevel Learning Automata with 
Tabu Search 

 
The performances of Learning Automata with Tabu Search and Multilevel Learning Automata with Tabu 
Search are compared. The same set of SAT instances used in section 4.1 were used here (along with the same 

conditions; each instance was tested 10 times, each with a maximum flip set to 610 or in the case of time, 900 
seconds limit), in order to perform a comparison between the algorithms. The results of the algorithms are 
shown in the next sections. 
 
 

4.2.1 SATLIB Benchmark Problems 

 
4.2.1.1 Random 
 
Figures 29, 30 and 31 illustrate the results of solving the following random problems; 600 literals and 2550 
clauses (f600), 1000 literals and 4250 clauses (f1000) and 2000 literals and 8500 clauses (f2000). 

 

 
Figure 29: LA with Tabu Search vs. Multilevel LA with Tabu Search solving a 600 literals and 2550 clauses (f600) random  
problem. Along the horizontal axis the mean time is given and along the vertical axis the mean number of  
satisfied clauses. 
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Figure 30: LA with Tabu Search vs. Multilevel LA with Tabu Search solving a 1000 literals and 4250 clauses (f1000) 
random problem. Along the horizontal axis the mean time is given and along the vertical axis the mean number of 
satisfied clauses. 

 
 

 
Figure 31: LA with Tabu Search vs. Multilevel LA with Tabu Search solving a 2000 literals and 8500 clauses (f2000) 
random problem. Along the horizontal axis the mean time is given and along the vertical axis the mean number of 
satisfied clauses. 
 

Figure 29 illustrates that f600 is a small problem, and thus the Multilevel variant is not as effective as assumed. 
However, as can be seen from the graph, while Learning Automata with Tabu Search starts to stagnate after 
around 400 seconds the Multilevel variant continues to converge until around 800 seconds from which it starts 
to stagnate as well. This occurs because the problem is small and the search space is restricted. As a result, it 
seemed that single space searching seemed most efficient for this problem. 
 
f1000 is also a small problem and thus the Multilevel variant is also not as effective as assumed, looking at 
figure 30. As a result, it seemed that single space searching seemed most efficient for this problem. 
 
f2000 is also a small problem. As observed in figure 31, the Multilevel variant's performance is approaching 
Learning Automata with Tabu Search's as the problems grow bigger. Both algorithms steadily converge (with a 
slight advantage to the Multilevel variant at the start) and Learning Automata with Tabu Search manages to 
satisfy more clauses than the Multilevel variant. 
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4.2.1.2 Planning 
 
Figures 32, 33, 34 and 35 illustrate the results of solving the following Blocks World problems; 116 literals and 
953 clauses (medium), 459 literals and 7054 clauses (huge),  3016 literals and 50457 clauses (bw_large.c) and 
6325 literals and 131973 clauses (bw_large.d). 
 

 
Figure 32: LA with Tabu Search vs. Multilevel LA with Tabu Search solving a Blocks World  problem with 116 literals 
and 953 clauses problem (medium). Along the horizontal axis the mean number of flips is given and along the vertical axis  
the mean number of satisfied clauses. 
 

 
Figure 33: LA with Tabu Search vs. Multilevel LA with Tabu Search solving a Blocks World  problem with 459 literals 
and 7054 clauses problem (huge). Along the horizontal axis the mean number of flips is given and along the vertical axis 
the mean number of satisfied clauses. 
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Figure 34: LA with Tabu Search vs. Multilevel LA with Tabu Search solving a Blocks World problem with 3016 literals 
and 50457 clauses problem (bw_large.c). Along the horizontal axis the mean number of flips is given and along the 
vertical axis the mean number of satisfied clauses. 
 

 
Figure 35: LA with Tabu Search vs. Multilevel LA with Tabu Search solving a Blocks World problem with 6325 literals 
and 131973 clauses (bw_large.d). Along the horizontal axis the mean number of flips is given and along the vertical axis  
the mean number of satisfied clauses. 
 

Figure 32 illustrates a clear difference between the two algorithms, greatly favouring Learning Automata with 
Tabu Search. This algorithm manages to solve the problem at around 6200 flips, while its Multilevel variant 
does so at 10000 flips having a relatively poor convergence rate. 
 

Figure 33 illustrates that Learning Automata with Tabu Search managed to solve this problem after around 
850000 flips, while the Multilevel variant solved the problem at the maximum amount of flips. In this case, the 
combination of Learning Automata with Tabu Search beat its Multilevel variant. 
 
As illustrated in figure 34, the Multilevel variant shows a clear dominance to Learning Automata with Tabu 
Search. While both algorithms do not manage to solve the problem, the convergence rate favours the 
Multilevel variant. 
 
As illustrated in figure 35, the Multilevel variant is once again superior to Learning Automata with Tabu 
Search. Multilevel excels in solving this problem due to its fairly big size. While reaching the maximum amount 
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of flips, the convergence rate of Multilevel is much higher than Learning Automata with Tabu Search. It can be 
clearly observed here that the bigger the SAT problem is, the more it is in favour of the Multilevel variant. 
 
Figure 36 illustrate the results of solving a Logistics problem with 4713 literals and 21991 clauses (logistics.d). 
 

 
Figure 36: LA with Tabu Search vs. Multilevel LA with Tabu Search solving a Logistics problem with 4713 literals 21991 
clauses (logistics.d). Along the horizontal axis the mean number of flips is given and along the vertical axis  
the mean number of satisfied clauses. 
 

Figure 36 illustrates that the Multilevel variant is clearly superior to Learning Automata with Tabu Search in 
terms of convergence efficiency and quality. 
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4.2.1.3 SAT Competition Beijing 
 
Figures 37 and 38 illustrate the results of solving the following Beijing problems; 21800 literals and 118607 
clauses (ewddr2-10-by-5-1) and 22500 literals and 123329 clauses (ewddr2-10-by-5-8). 
 

 
Figure 37: LA with Tabu Search vs. Multilevel LA with Tabu Search solving a Beijing problem with 21800 literals and 
118607 clauses (ewddr2-10-by-5-1). Along the horizontal axis the mean number of flips is given and along the vertical axis  
the mean number of satisfied clauses. 

 

 
Figure 38: LA with Tabu Search vs. Multilevel LA with Tabu Search solving a Beijing problem with 22500 literals and 
123329 clauses (ewddr2-10-by-5-8). Along the horizontal axis the mean number of flips is given and along the vertical axis  
the mean number of satisfied clauses. 

 
Figures 37 and 38 illustrate that Learning Automata with Tabu Search beats its Multilevel variant while solving 
these fairly big problems. The results here indicate that the combination of Learning Automata and Tabu 
Search actually provides better results than using a Multilevel variant of the two while solving these fairly big 
problems. 
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4.2.1.4 AIM 
 
Figures 39 and 40 illustrate the results of solving the following AIM problems; 200 literals and 400 clauses 
(aim-200-2_0-yes1-4) and 200  literals and 680 clauses (aim-200-3_4-yes1-2). 
 

 
Figure 39: LA with Tabu Search vs. Multilevel LA with Tabu Search solving an AIM problem with 200 literals and 400 
clauses (aim-200-2_0-yes1-4). Along the horizontal axis the mean number of flips is given and along the vertical axis  
the mean number of satisfied clauses. 

 

 
Figure 40: LA with Tabu Search vs. Multilevel LA with Tabu Search solving an AIM problem with 200 literals and 680 
clauses (aim-200-3_4-yes1-2). Along the horizontal axis the mean number of flips is given and along the vertical axis  
the mean number of satisfied clauses. 
 

Figure 39 illustrates that Learning Automata with Tabu Search clearly outperforms the Multilevel variant in 
terms of convergence. However, the former shows an early stagnation which is not observed in the latter. 
Similarly as in section 4.1.1.4, the convergence favour to Learning Automata with Tabu Search here confirms 
that the Multilevel variant does not work well in relatively small problems. 
 
Figure 40 illustrates that Learning Automata with Tabu Search once more clearly outperforms its Multilevel 
variant. In this case having a steep convergence without stagnating. 
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4.2.1.5 All Interval Series (AIS) 

 
Figures 41 and 42 illustrate the results of solving the following All Interval Series (AIS) problems; 181 literals 
and 3151 clauses (ais10) and 265 literals and 5666 clauses (ais12). 
 

 
Figure 41: LA with Tabu Search vs. Multilevel LA with Tabu Search solving an AIS problem with 181 literals and 3151 
clauses (ais10). Along the horizontal axis the mean number of flips is given and along the vertical axis  
the mean number of satisfied clauses. 

 

 
Figure 42: LA with Tabu Search vs. Multilevel LA with Tabu Search solving an AIS problem with 265 literals and 5666 
clauses (ais12). Along the horizontal axis the mean number of flips is given and along the vertical axis  
the mean number of satisfied clauses. 
 

Figure 41 illustrates a slight convergence favour to Learning Automata with Tabu Search until it starts to 
stagnate at around 200000 flips. Similarly, the Multilevel variant starts to stagnate at the same time and 
continues on without managing to solve the problem. 
 
Figure 42 also illustrates a slight convergence favour, however in this case to the Multilevel variant. While 
Multilevel manages to solve the problem at around 200000 flips, Learning Automata with Tabu Search starts to 
stagnate at this point and continues on without managing to solve the problem. 
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4.2.1.6 Graph Colouring SW 
 
Figures 43 and 44 illustrate the results of solving the following Graph Colouring SW problems; 500 literals and 
3100 clauses (sw100-98) and 500 literals and 3100 clauses (sw100-99). 
 

 
Figure 43: LA with Tabu Search vs. Multilevel LA with Tabu Search solving an Graph Colouring SW problem with 500 
literals and 3100 clauses (sw100-98). Along the horizontal axis the mean number of flips is given and along the vertical 
axis the mean number of satisfied clauses. 

 

 
Figure 44: LA with Tabu Search vs. Multilevel LA with Tabu Search solving an Graph Colouring SW problem with 500 
literals and 3100 clauses (sw100-99). Along the horizontal axis the mean number of flips is given and along the vertical 
axis the mean number of satisfied clauses. 
 

Figures 43 and 44 illustrate that Learning Automata with Tabu Search clearly beats Multilevel in terms of 
convergence, solving both problems in well under 200000 flips. Multilevel manages to solve both problems 
slightly above 200000 flips. The results of both algorithms are quite similar due to their respective sizes. 
Interestingly, these results are quite similar to those earlier shown in section 4.1.1.6. 



Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques 

59 

4.2.1.7 Quasi Groups 
 
Figures 45 and 46 illustrate the results of solving the following Quasi Groups problems; 1331 literals and 
49204 clauses (qg6-11) and 1728 literals and 69931 clauses (qg6-12). 
 

 
Figure 45: LA with Tabu Search vs. Multilevel LA with Tabu Search solving a Quasi Groups problem with 1331 literals 
and 49204 clauses (qg6-11). Along the horizontal axis the mean number of flips is given and along the vertical axis  
the mean number of satisfied clauses. 

 

 
Figure 46: LA with Tabu Search vs. Multilevel LA with Tabu Search solving a Quasi Groups problem with 1728 literals 
and 69931 clauses (qg6-12). Along the horizontal axis the mean number of flips is given and along the vertical axis  
the mean number of satisfied clauses. 
 

Figures 45 and 46 illustrate that the Multilevel variant clearly outperforms Learning Automata with Tabu 
Search, both in convergence rate and quality. In figure 45 it is seen that Learning Automata with Tabu Search 
starts to stagnate at around 600000 and continues on without managing to solve the problem, while Multilevel 
manages to solve the problem at around 400000 flips. Similarly, figure 46 shows that Learning Automata with 
Tabu Search starts to stagnate at around 800000 flips and does not manage to solve the problem while 
Multilevel does in just under 400000 flips. 
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4.2.2 Max SAT Problems 

 
4.2.2.1 Industry 
 
Figures 47, 48, 49, 50 and 51 illustrate the results of solving the following Max SAT (Industry) problems; 5484 
literals and 13894 clauses (mot_comb2._red-gate-0.dimacs.seq.filtered), 11265 literals and 29520 clauses 
(mot_comb3._red-gate-0.dimacs.seq.filtered), 44079 literals and 117720 clauses (c6_DD_s3_f1_e1_v1-bug-
onevec-gate-0.dimacs.seq.filtered), 84525 literals and 236942 clauses (c2_DD_s3_f1_e2_v1-bug-onevec-gate-
0.dimacs.seq.filtered) and 200944 literals and 540984 clauses (c5_DD_s3_f1_e1_v1-bug-gate-
0.dimacs.seq.filtered). 
 

 
Figure 47: LA with Tabu Search vs. Multilevel LA with Tabu Search solving a Max SAT  problem with 5484 literals and 
13894 clauses (mot_comb2._red-gate-0.dimacs.seq.filtered). Along the horizontal axis the mean number of flips is given 
and along the vertical axis the mean number of satisfied clauses. 

 

 
Figure 48: LA with Tabu Search vs. Multilevel LA with Tabu Search solving a Max SAT  problem with 11265 literals and 
29520 clauses (mot_comb3._red-gate-0.dimacs.seq.filtered). Along the horizontal axis the mean number of flips is given 
and along the vertical axis the mean number of satisfied clauses. 
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Figure 49: LA with Tabu Search vs. Multilevel LA with Tabu Search solving a Max SAT  problem with 44079 literals and 
117720 clauses (c6_DD_s3_f1_e1_v1-bug-onevec-gate-0.dimacs.seq.filtered). Along the horizontal axis the mean number 
of flips is given and along the vertical axis the mean number of satisfied clauses. 

 

 
Figure 50: LA with Tabu Search vs. Multilevel LA with Tabu Search solving a Max SAT  problem with 84525 literals and 
236942 clauses (c2_DD_s3_f1_e2_v1-bug-onevec-gate-0.dimacs.seq.filtered). Along the horizontal axis the mean number 
of flips is given and along the vertical axis the mean number of satisfied clauses. 
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Figure 51: LA with Tabu Search vs. Multilevel LA with Tabu Search solving a Max SAT  problem with 200944 literals and 
540984 clauses (c5_DD_s3_f1_e1_v1-bug-gate-0.dimacs.seq.filtered). Along the horizontal axis the mean number of flips 
is given and along the vertical axis the mean number of satisfied clauses. 
 

Figures 47 and 48 illustrate that the Multilevel variant's convergence rate is higher than Learning Automata 
with Tabu Search and the latter satisfies less clauses than the former in those cases in both cases. 
 

Figures 49, 50 and 51 illustrate rather interesting and surprising results. Learning Automata with Tabu Search 
seem to outperform the Multilevel variant while solving these large problems, both in terms of convergence 
and quality. This is an indication that Learning Automata with Tabu Search is a solid algorithm that manages to 
beat Multilevel while solving these problems. 
 



Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques 

63 

Tables 9 and 10 show the mean solved, variance and standard deviation of each problem solved by Learning 
Automata with Tabu Search (LATS) and Multilevel Learning Automata with Tabu Search (MLATS). 
 

Algorithm Problem Mean solved (%) Variance Standard 
deviation 

LATS f600 100 % 0 0 

LATS f1000 99.8 % 0.3 0.55 

LATS f2000 99.5 % 0.4 0.63 

LATS medium 100 % 0 0 

LATS huge 100 % 0 0 

LATS bw_large.c 95.4 % 0.2 0.45 

LATS bw_large.d 82.3 % 0.5 0.71 

LATS logistics.d 89.3 % 0.6 0.77 

LATS ewddr2-10-by-5-1 88.7 % 0.4 0.63 

LATS ewddr2-10-by-5-8 88.7 % 0.3 0.55 

LATS aim-200-2_0-yes1-4 99.8 % 0.7 0.84 

LATS aim-200-3_4-yes1-2 99.3 % 0.5 0.71 

LATS ais10 99.9 % 0.8 0.89 

LATS ais12 99.9 % 0.3 0.55 

LATS sw100-98 100 % 0 0 

LATS sw100-99 100 % 0 0 

LATS qg6-11 99.8 % 0.4 0.63 

LATS qg6-12 99.8 % 0.9 0.95 

LATS Max SAT #1* 82.3 % 0.4 0.63 

LATS Max SAT #2* 79.5 % 0.7 0.84 

LATS Max SAT #3* 80 % 0.7 0.84 

LATS Max SAT #4* 79.8 % 0.5 0.71 

LATS Max SAT #5* 79.2 % 0.8 0.89 
Table 9: Mean solved, variance and standard deviation of the problems solved by the Learning Automata with Tabu 

Search (LATS) algorithm. *See page 64 footnote. 
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Algorithm Problem Mean solved (%) Variance Standard 
deviation 

MLATS f600 98 % 0.4 0.63 

MLATS f1000 97.9 % 0.3 0.55 

MLATS f2000 97.4 % 0.6 0.77 

MLATS medium 97.6 % 0.5 0.71 

MLATS huge 99.4 % 0.3 0.55 

MLATS bw_large.c 99.8 % 0.3 0.55 

MLATS bw_large.d 89.4 % 0.2 0.45 

MLATS logistics.d 94.1 % 0.7 0.84 

MLATS ewddr2-10-by-5-1 87.5 % 0.5 0.71 

MLATS ewddr2-10-by-5-8 87.7 % 0.3 0.55 

MLATS aim-200-2_0-yes1-4 97.5 % 0.6 0.77 

MLATS aim-200-3_4-yes1-2 96.8 % 0.4 0.63 

MLATS ais10 99.4 % 0.6 0.77 

MLATS ais12 100 % 0 0 

MLATS sw100-98 100 % 0 0 

MLATS sw100-99 100 % 0 0 

MLATS qg6-11 100 % 0 0 

MLATS qg6-12 100 % 0 0 

MLATS Max SAT #1* 82.5 % 0.4 0.63 

MLATS Max SAT #2* 79.8 % 0.6 0.77 

MLATS Max SAT #3* 78.9 % 0.3 0.55 

MLATS Max SAT #4* 77.4 % 0.7 0.84 

MLATS Max SAT #5* 79.1 % 0.5 0.71 
Table 10: Mean solved, variance and standard deviation of the problems solved by the Multilevel Learning Automata with 

Tabu Search (MLATS) algorithm. *See page 64 footnote. 
 

While studying the mean solved in tables 9 and 10, rather interesting results are observed. As expected, LATS 
provides slightly better results than MLATS while solving relatively small problems. However, it is also 
observed that LATS in some cases beats its Multilevel variant while solving relatively big problems. This 
phenomenon is especially observable in the SAT competition Beijing and Max SAT problems, as illustrated in 
the tables. Studying the results obtained earlier in tables 7 and 8 in section 4.1 - while analysing TS and MTS -  
the results obtained here are rather surprising. While the Multilevel variant was expected to beat its counterpart 
in solving all large problems, it did not here. The single combination of Learning Automata and Tabu Search 
gave slightly better results than a Multilevel approach while solving relatively big problems. This is not entirely 
conclusive however, since in other cases the Multilevel variant gave better results. In any case, this is something 
worth investigating in the future. Once again, the variance and standard deviation are quite low in almost all 
cases here. As previously mentioned, this is quite good as it indicates that the algorithms are overall stable and 
the results are not widely spread around the mean, but rather close to it. 
 
 
 
 
 
 
 
 
 
 

*Max SAT #1: mot_comb2._red-gate-0.dimacs.seq.filtered 
Max SAT #2: mot_comb3._red-gate-0.dimacs.seq.filtered 
Max SAT #3: c6_DD_s3_f1_e1_v1-bug-onevec-gate-0.dimacs.seq.filtered 
Max SAT #4: c2_DD_s3_f1_e2_v1-bug-onevec-gate-0.dimacs.seq.filtered 
Max SAT #5: c5_DD_s3_f1_e1_v1-bug-gate-0.dimacs.seq.filtered 
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5  Discussion 

 
Having run the implemented algorithms on SAT problems from SATLIB [21] and Max SAT [29], rather 
interesting results were obtained. Tabu Search (TS) seemed to be an effective algorithm solving relatively small 
problems, while the new Multilevel Tabu Search (MTS) algorithm excelled primarily in solving relatively big 
problems. This observation was expected initially due to the Multilevel technique's unique mechanism of 
effectively handling big amounts of literals. It was observed that the size of problems was proportional to the 
performance of MTS. Meaning that as the problems got bigger, the better MTS performed, and vice versa. 
 
Interestingly, this was not the case with the new Learning Automata with Tabu Search (LATS) and Multilevel 
Learning Automta with Tabu Search (MLATS) algorithms. It seemed that the combination of Learning 
Automata and Tabu Search gave good results, to the extent of being on level with its Multilevel variant, when 
it came to solution quality. LATS managed to slightly beat MLATS in some cases while solving relatively big 
problems. This was a surprising observation that shows the advantage of using Learning Automata, and the 
indication that this is a good algorithm. When it came to convergence time, the Multilevel technique was a 
clear winner in all cases. To obtain a general overview of the results of the algorithms, consider table 11 which 
shows the mean solution quality and convergence time of each algorithm solving the entire set of the SAT 
instances (23 problems in total).  
 

Algorithm Mean solution 
quality (%) 

Mean convergence 
time (seconds) 

Tabu Search (TS) 88.42 % 3136.5 s. 

Multilevel Tabu Search (MTS) 93.47 % 1009.29 s. 

Learning Automata with Tabu Search (LATS) 93.17 % 2994.72 s. 

Multilevel Learning Automata with Tabu Search (MLATS) 93.05 % 1254.03 s. 
Table 11: The mean solution quality and convergence time of each algorithm solving the set of SAT instances (23 
problems in total). 
 

As can be seen in table 11, the difference in mean solution quality between TS and MTS is quite clear. MTS 
has a mean solution quality advantage of just above 5 %. This shows that a Multilevel approach is better (than 
a non-Multilevel) overall. This is not the case when it comes to LATS and MLATS, as seen in the table. Both 
algorithms have quite similar mean solution quality, with a 0.12 % advantage to LATS. As mentioned earlier, 
this observation is rather surprising. Comparing TS to LATS, it is clear that LATS is the better algorithm with 
a mean solution quality advantage of 4.75 %. This is an indication that Learning Automata is a technique that 
works quite well with Tabu Search, and is definitely worth investigating in the future. The best overall 
algorithm is MTS, this is an(other) indication that Multilevel is a technique that works quite well with Tabu 
Search - specifically excelling in solving relatively big SAT problems (as previously observed from the results in 
section 4.1). Looking at the mean convergence time, it can be seen that MTS is more than three times faster 
than TS, reaching a better solution than the latter. Similarly, MLATS is almost three times faster than LATS. It 
is quite clear that Multilevel is a technique that greatly increases the efficiency of the algorithms. Based on these 
results, using a Multilevel approach to solve SAT is definitely recommendable. In addition, the calculated 
variance and standard deviation of the algorithms are relatively low in all cases which indicates that the 
algorithms are quite stable and the results are not widely spread around the mean, but close to it. 
 



Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques 

66 

6 Conclusion and Further Work 

 
In this work, the problem was to solve the Boolean Satisfiability Problem (SAT) by introducing a clustering 
technique - Multilevel - and combining the latter with two existing approaches - Tabu Search and Learning 
Automata. Thereafter disclosing whether this combination provides better results - than using the two 
mentioned approaches alone - while solving SAT. SAT is a nondeterministic polynomial time (NP) complete 
problem which is a Boolean expression composed of a specific amount of variables (literals), clauses that 
contain disjunctions of the literals and conjunctions of the clauses. The literals have logical values TRUE and 
FALSE and the task is to find a truth assignment that makes the entire expression TRUE (satisfied).  
 
The proposed Multilevel paradigm consists of three phases; clustering, initial solution and refinement. In the 
first phase, the SAT instance is simplified by dividing the number of literals in several levels - literals are 
clustered together. The clustering process can either be performed randomly, or deterministically (by clustering 
neighbouring literals). Once the clustering process is complete and a final desired level is reached, the clusters 
(of literals) are randomly assigned logical TRUE/FALSE values and an initial solution is calculated in the 
second phase. In the final phase of the paradigm, any metaheuristic algorithm may be used. In this work, we 
have used Tabu Search and Learning Automata.  A total of four algorithms were implemented; Tabu Search 
(TS), Multilevel Tabu Search (MTS), Learning Automata with Tabu Search (LATS) and Multilevel Learning 
Automata with Tabu Search (MLATS) - the last three algorithms being an all-new contribution. Having 
implemented each algorithm and a Multilevel variant of itself, we were able to conduct a comparison analysis 
to disclose whether the Multilevel clustering technique provided better results in terms of solution quality and 
computational efficiency.   
 
The obtained results were interesting. TS seemed to be an effective algorithm solving relatively small problems, 
while MTS excelled primarily in solving relatively big problems. It was observed that the size of problems was 
proportional to the performance of MTS. Meaning that the bigger the problems became, the better MTS 
performed, and vice versa. This phenomenon was due to the Multilevel's unique mechanism of handling big 
amounts of literals as clusters. This was however not always the case with LATS and MLATS, as the latter was 
sometimes beaten by the former in solving relatively big problems. This was a surprising observation that 
showed the great advantage of using Learning Automata. When it came to mean convergence time, using 
Multilevel was a definite advantage as results showed the latter being up to three times faster than a single level 
approach (see table 11).  
 
Based on the results obtained, using the Multilevel technique definitely increased the efficiency of the Tabu 
Search and Learning Automata approaches. By these results, we have proven our hypothesis; combining the 
Multilevel technique with existing approaches did indeed increase the efficiency of solving SAT. As steps for 
further work, it is worth mentioning that the singular combination of Learning Automata and Tabu Search 
showed great promise and is definitely worth investigating.
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Appendices 

 
Appendix A       Source Code 
 
Multilevel Paradigm - Clustering and Initial Solution Phases 

 
std::cout << "Running Multilevel clustering....." << std::endl << std::endl; 
 
std::cout << "Clustering literals randomly....." << std::endl << std::endl; 
 
const int NUMBER_OF_LITERALS = atoi(numberOfXLiterals.c_str()); 
const int NUMBER_OF_CLAUSES = atoi(numberOfClauses.c_str()); 
TimeElapsed te; 
double timeElapsedMultilevelClustering = 0; 
clock_t end = 0; 
std::string satisfaction = ""; 
int trueClauseCounter = 0; 
bool literalValues[2] = {true, false}; 
int entranceCounter = 0; 
int entranceCounter2 = 0; 
std::string cluster; 
std::vector<int> vectorVariable; 
int randomVariableOne = 0; 
int oppositeValue = 0; 
int levelIndex = 0; 
std::vector<std::string> vectorCheckedClauses; 
 
//Iterator vector, to help find elements 
std::vector<std::string>::iterator iteratorVector; 
 
//Iterator map, to be able to find stuff 
std::map<std::string, bool>::iterator iteratorMap; 
 
//Iterator vector, to help find elements 
std::vector<std::string>::iterator iteratorVectorString; 
 
bool firstEntrance = true; 
 
while(firstEntrance || clusterCollection.size() >= atoi(numberOfXLiterals.c_str()) * 
0.10) 
{ 
 firstEntrance = false; 
 
 if(entranceCounter == 0) 
 { 
  entranceCounter++; 
  std::cout << "LEVEL " << levelCounter << std::endl << std::endl; 
 
  for(int i = 1; i <= NUMBER_OF_LITERALS; i++) 
  { 
   vectorVariable.push_back(i); 
 
   //int -> string 
   char sizeTemp = (char)i; 
   char bufferTemp[sizeof(sizeTemp)/sizeof(char) + 10]; 
   std::string tempLiteral = itoa(i, bufferTemp, 10); 
 
   //int -> string 
   char sizeTemp2 = (char)levelCounter; 
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   char bufferTemp2[sizeof(sizeTemp2)/sizeof(char) + 10]; 
   std::string stringLevelCounter = itoa(levelCounter, bufferTemp2, 10); 
 
   //int -> string 
   char size3 = (char)levelIndex; 
   char buffer3[sizeof(size3)/sizeof(char) + 10]; 
   std::string stringLevelIndex = itoa(levelIndex, buffer3, 10); 
 
   //Update the map level with literals 
   mapLevelClusters[stringLevelCounter + " " + stringLevelIndex] = 
tempLiteral; 
 
   //Increment level index 
   levelIndex++; 
  } 
 
  /**Stop timer**/ 
  end = clock(); 
 
  timeElapsedMultilevelClustering = te.GetTimeElapsed(end, begin)/1000; 
 
  //Level 0 complete 
  std::cout << "Time used: " << timeElapsedMultilevelClustering << " seconds" 
<< std::endl << std::endl; 
    
  //Reset 
  levelIndex = 0; 
 
  levelCounter++; 
  std::cout << "LEVEL " << levelCounter << std::endl << std::endl; 
 
  //Cluster and create LEVEL 1 (Initial cluster collection) 
  while(vectorVariable.size() != 0) 
  { 
   if(vectorVariable.size() == 1) 
    break; 
 
   //Random shuffle 
   std::random_shuffle(vectorVariable.begin(), vectorVariable.end()); 
 
   char sizeVariableOne = (char)vectorVariable[0]; 
   char bufferVariableOne[sizeof(sizeVariableOne)/sizeof(char) + 10]; 
   cluster += itoa(vectorVariable[0], bufferVariableOne, 10); 
   cluster += " "; 
 
   char sizeVariableTwo = (char)vectorVariable[1]; 
   char bufferVariableTwo[sizeof(sizeVariableTwo)/sizeof(char) + 10]; 
   cluster += itoa(vectorVariable[1], bufferVariableTwo, 10); 
   cluster += " "; 
 
   while(cluster[0] == ' ') 
    cluster.erase(cluster.begin()); 
 
   while(cluster[cluster.length() - 1] == ' ') 
    cluster.erase(cluster.end() - 1); 
 
   initialClusterCollection.push_back(cluster); 
 
   //Erase 
   vectorVariable.erase(vectorVariable.begin()); 
   vectorVariable.erase(vectorVariable.begin()); 
 
   //int -> string 
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   char sizeTemp2 = (char)levelCounter; 
   char bufferTemp2[sizeof(sizeTemp2)/sizeof(char) + 10]; 
   std::string stringLevelCounter = itoa(levelCounter, bufferTemp2, 10); 
 
   //int -> string 
   char size3 = (char)levelIndex; 
   char buffer3[sizeof(size3)/sizeof(char) + 10]; 
   std::string stringLevelIndex = itoa(levelIndex, buffer3, 10); 
 
   //Update the map level with cluster 
   mapLevelClusters[stringLevelCounter + " " + stringLevelIndex] = 
cluster; 
 
   //Increment level index 
   levelIndex++; 
 
   //Reset 
   cluster = ""; 
  } 
 
  //Push the rest into initialClusterCollection 
  if(vectorVariable.size() == 1) 
  {     
   char sizeVariableOne = (char)vectorVariable[0]; 
   char bufferVariableOne[sizeof(sizeVariableOne)/sizeof(char) + 10]; 
   cluster = itoa(vectorVariable[0], bufferVariableOne, 10); 
 
   while(cluster[0] == ' ') 
    cluster.erase(cluster.begin()); 
 
   while(cluster[cluster.length() - 1] == ' ') 
    cluster.erase(cluster.end() - 1); 
 
   initialClusterCollection.push_back(cluster); 
 
   //Erase 
   vectorVariable.erase(vectorVariable.begin()); 
 
   //int -> string 
   char sizeTemp2 = (char)levelCounter; 
   char bufferTemp2[sizeof(sizeTemp2)/sizeof(char) + 10]; 
   std::string stringLevelCounter = itoa(levelCounter, bufferTemp2, 10); 
 
   //int -> string 
   char size3 = (char)levelIndex; 
   char buffer3[sizeof(size3)/sizeof(char) + 10]; 
   std::string stringLevelIndex = itoa(levelIndex, buffer3, 10); 
 
   //Update the map level with cluster 
   mapLevelClusters[stringLevelCounter + " " + stringLevelIndex] = 
cluster; 
 
   //Increment level index 
   levelIndex++; 
  } 
 
  /**Stop timer**/ 
  end = clock(); 
 
  timeElapsedMultilevelClustering = te.GetTimeElapsed(end, begin)/1000; 
 
  //Level 1 complete 
  std::cout << "Time used: " << timeElapsedMultilevelClustering << " seconds" 
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<< std::endl << std::endl;    
 } 
 
 //Clear cluster 
 cluster = ""; 
 
 std::string trueClusters = ""; 
 std::string falseClusters = "";  
 std::string substring = " "; 
 
 int clusterCounter = 0;   
 
 //Reset level index 
 levelIndex = 0; 
 
 //int -> string 
 char sizeTemp = (char)levelCounter; 
 char bufferTemp[sizeof(sizeTemp)/sizeof(char) + 10]; 
 std::string stringLevelCounter = itoa(levelCounter, bufferTemp, 10); 
 
 if(entranceCounter2 == 0) 
 { 
  entranceCounter2++; 
    
  levelCounter++; 
  std::cout << "LEVEL " << levelCounter << std::endl << std::endl; 
 
  //int -> string 
  char sizeTemp = (char)levelCounter; 
  char bufferTemp[sizeof(sizeTemp)/sizeof(char) + 10]; 
  std::string stringLevelCounter = itoa(levelCounter, bufferTemp, 10); 
 
  //Cluster and create the next level 
  while(initialClusterCollection.size() != 0) 
  { 
   if(initialClusterCollection.size() == 1) 
    break; 
 
   //Random shuffle 
   std::random_shuffle(initialClusterCollection.begin(), 
initialClusterCollection.end()); 
 
   trueClusters += initialClusterCollection[0]; 
   trueClusters += " "; 
   trueClusters += initialClusterCollection[1]; 
   trueClusters += " "; 
 
   while(trueClusters[0] == ' ') 
    trueClusters.erase(trueClusters.begin()); 
 
   while(trueClusters[trueClusters.length() - 1] == ' ') 
    trueClusters.erase(trueClusters.end() - 1); 
 
   clusterCollection.push_back(trueClusters); 
 
   //Erase 
   initialClusterCollection.erase(initialClusterCollection.begin()); 
   initialClusterCollection.erase(initialClusterCollection.begin()); 
 
   //int -> string 
   char sizeTemp = (char)levelIndex; 
   char bufferTemp[sizeof(sizeTemp)/sizeof(char) + 10]; 
   std::string stringLevelIndex = itoa(levelIndex, bufferTemp, 10); 
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   //Update the map level with cluster 
   mapLevelClusters[stringLevelCounter + " " + stringLevelIndex] = 
trueClusters; 
 
   //Increase level index 
   levelIndex++; 
 
   trueClusters = ""; 
  } 
 
  //Push the rest into cluster collection 
  if(initialClusterCollection.size() == 1) 
  { 
   trueClusters = initialClusterCollection[0]; 
     
   while(trueClusters[0] == ' ') 
    trueClusters.erase(trueClusters.begin()); 
 
   while(trueClusters[trueClusters.length() - 1] == ' ') 
    trueClusters.erase(trueClusters.end() - 1); 
 
   clusterCollection.push_back(trueClusters); 
 
   //Erase 
   initialClusterCollection.erase(initialClusterCollection.begin()); 
 
   //int -> string 
   char sizeTemp = (char)levelIndex; 
   char bufferTemp[sizeof(sizeTemp)/sizeof(char) + 10]; 
   std::string stringLevelIndex = itoa(levelIndex, bufferTemp, 10); 
 
   //Update the map level with TRUE cluster 
   mapLevelClusters[stringLevelCounter + " " + stringLevelIndex] = 
trueClusters; 
 
   //Increase level index 
   levelIndex++; 
 
   clusterCounter = 0; 
   trueClusters = ""; 
  } 
 
  //Reset cluster counter 
  clusterCounter = 0;  
 
  /**Stop timer**/ 
  end = clock(); 
 
  timeElapsedMultilevelClustering = te.GetTimeElapsed(end, begin)/1000; 
 
  //Level 2 complete 
  std::cout << "Time used: " << timeElapsedMultilevelClustering << " seconds" 
<< std::endl << std::endl; 
 } 
   
 levelCounter++; 
 std::cout << "LEVEL " << levelCounter << std::endl << std::endl; 
 
 //Reset level index 
 levelIndex = 0; 
 
 //int -> string 
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 char sizeLevelCounter = (char)levelCounter; 
 char bufferLevelCounter[sizeof(sizeLevelCounter)/sizeof(char) + 10]; 
 std::string stringUpdatedLevelCounter = itoa(levelCounter, bufferTemp, 10); 
 
 //Cluster and create the next level 
 while(clusterCollection.size() != 0) 
 { 
  if(clusterCollection.size() == 1) 
   break; 
 
  //Random shuffle 
  std::random_shuffle(clusterCollection.begin(), clusterCollection.end()); 
 
  trueClusters += clusterCollection[0]; 
  trueClusters += " "; 
  trueClusters += clusterCollection[1]; 
  trueClusters += " "; 
   
  substring += clusterCollection[0]; 
  substring += " "; 
  substring += clusterCollection[1]; 
  substring += " "; 
 
  while(trueClusters[0] == ' ') 
   trueClusters.erase(trueClusters.begin()); 
 
  while(trueClusters[trueClusters.length() - 1] == ' ') 
   trueClusters.erase(trueClusters.end() - 1); 
 
  //Erase 
  clusterCollection.erase(clusterCollection.begin()); 
  clusterCollection.erase(clusterCollection.begin()); 
 
  //int -> string 
  char sizeTemp = (char)levelIndex; 
  char bufferTemp[sizeof(sizeTemp)/sizeof(char) + 10]; 
  std::string stringLevelIndex = itoa(levelIndex, bufferTemp, 10); 
 
  //Update the map level with TRUE cluster 
  mapLevelClusters[stringUpdatedLevelCounter + " " + stringLevelIndex] = 
trueClusters; 
 
  //Increase level index 
  levelIndex++; 
      
  substring += "|"; 
  trueClusters = ""; 
 } 
 
 if(clusterCollection.size() == 1) 
 { 
  trueClusters = clusterCollection[0]; 
   
  substring += clusterCollection[0]; 
 
  while(trueClusters[0] == ' ') 
   trueClusters.erase(trueClusters.begin()); 
 
  while(trueClusters[trueClusters.length() - 1] == ' ') 
   trueClusters.erase(trueClusters.end() - 1); 
 
  //Erase 
  clusterCollection.erase(clusterCollection.begin()); 
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  //int -> string 
  char sizeTemp = (char)levelIndex; 
  char bufferTemp[sizeof(sizeTemp)/sizeof(char) + 10]; 
  std::string stringLevelIndex = itoa(levelIndex, bufferTemp, 10); 
 
  //Update the map level with TRUE cluster 
  mapLevelClusters[stringUpdatedLevelCounter + " " + stringLevelIndex] = 
trueClusters; 
 
  //Increase level index 
  levelIndex++; 
      
  substring += "|"; 
  trueClusters = ""; 
 } 
 
 //Temp cluster 
 std::string tempCluster = ""; 
 
 //Reset cluster collection 
 clusterCollection.clear(); 
 
 //Update cluster collection 
 for(int i = 0; i < substring.length(); i++) 
 { 
  if(substring[i] != '|') 
   tempCluster += substring[i]; 
    
  else if(substring[i] == '|') 
  { 
   while(tempCluster[0] == ' ') 
    tempCluster.erase(tempCluster.begin()); 
 
   while(tempCluster[tempCluster.length() - 1] == ' ') 
    tempCluster.erase(tempCluster.end() - 1); 
 
   clusterCollection.push_back(tempCluster); 
   tempCluster = ""; 
  } 
 } 
 
  
       //Clear substring 
 substring = ""; 
 
 //Clear tempCluster 
 tempCluster = ""; 
 
 //Reset cluster counter 
 clusterCounter = 0; 
 
 /**Stop timer**/ 
 end = clock(); 
 
 timeElapsedMultilevelClustering = te.GetTimeElapsed(end, begin)/1000; 
 
 //Level X complete 
 std::cout << "Time used: " << timeElapsedMultilevelClustering << " seconds" << 
std::endl << std::endl; 
 
 //We have reached the final level 
 if(clusterCollection.size() <= atoi(numberOfXLiterals.c_str()) * 0.10) 
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 { 
              /**Tabu Search Initialization Phase**/ 
 
  std::cout << "Assigning the clusters TRUE/FALSE values randomly....." << 
std::endl << std::endl; 
 
  std::string tempCluster = ""; 
  std::string tempLiteral = ""; 
  int randomIndex = 0; 
  int levelIndex = 0;   //Cluster index 
  int lowerLevelIndex = 0; //Literal index 
 
  //Assign the clusters random TRUE/FALSE values as well as the literals 
within the clusters 
  for(int j = 0; j < clusterCollection.size(); j++) 
  { 
   randomIndex = rand () % 2; 
   tempCluster = clusterCollection[j]; 
 
   while(tempCluster[0] == ' ') 
    tempCluster.erase(tempCluster.begin()); 
 
   while(tempCluster[tempCluster.length() - 1] == ' ') 
    tempCluster.erase(tempCluster.end() - 1); 
 
   mapLiteralValues[tempCluster] = literalValues[randomIndex];  
 
   //If FALSE, all literals inside must be FALSE 
   if(mapLiteralValues[tempCluster] == false) 
   { 
    for(int k = 0; k < tempCluster.length(); k++) 
    {       
     if(tempCluster[k] != ' ') 
      tempLiteral += tempCluster[k]; 
 
     if(tempCluster[k] == ' ' || k == tempCluster.length() - 
1) 
     { 
      //FALSE literal 
      mapLiteralValues[tempLiteral] = 
literalValues[randomIndex]; 
 
      //Opposite value will be TRUE 
      int temp = atoi(tempLiteral.c_str()) * -1; 
      char sizeTempOpposite = (char)temp; 
      char 
bufferTempOpposite[sizeof(sizeTempOpposite)/sizeof(char) + 10]; 
      std::string oppositeTempLiteral = itoa(temp, 
bufferTempOpposite, 10); 
 
      mapLiteralValues[oppositeTempLiteral] = 
literalValues[randomIndex - 1]; 
      tempLiteral = ""; 
     } 
    } 
   } 
 
   //If TRUE, all literals inside must be TRUE 
   else if(mapLiteralValues[tempCluster] == true) 
   { 
    for(int k = 0; k < tempCluster.length(); k++) 
    {       
     if(tempCluster[k] != ' ') 
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      tempLiteral += tempCluster[k]; 
 
     if(tempCluster[k] == ' ' || k == tempCluster.length() - 
1) 
     { 
      //TRUE literal 
      mapLiteralValues[tempLiteral] = 
literalValues[randomIndex]; 
 
      //Opposite value will be FALSE 
      int temp = atoi(tempLiteral.c_str()) * -1; 
      char sizeTempOpposite = (char)temp; 
      char 
bufferTempOpposite[sizeof(sizeTempOpposite)/sizeof(char) + 10]; 
      std::string oppositeTempLiteral = itoa(temp, 
bufferTempOpposite, 10); 
 
      mapLiteralValues[oppositeTempLiteral] = 
literalValues[randomIndex + 1]; 
      tempLiteral = ""; 
     } 
    } 
   } 
  } 
 
 /**Learning Automata Initialization Phase** 
 
 //Assign the clusters random state values as well as the literals within the 
clusters 
 for(int j = 0; j < clusterCollection.size(); j++) 
 { 
 randomIndex = rand () % 2; 
 tempCluster = clusterCollection[j]; 
 
 while(tempCluster[0] == ' ') 
  tempCluster.erase(tempCluster.begin()); 
 
 while(tempCluster[tempCluster.length() - 1] == ' ') 
  tempCluster.erase(tempCluster.end() - 1); 
 
 mapClustersStates[tempCluster] = states[randomIndex]; 
 
 if(states[randomIndex] == -1) 
  mapLiteralValues[tempCluster] = false; 
 else 
  mapLiteralValues[tempCluster] = true; 
 
 //If FALSE, all literals inside must be FALSE 
 if(mapLiteralValues[tempCluster] == false) 
 { 
  for(int k = 0; k < tempCluster.length(); k++) 
  {       
   if(tempCluster[k] != ' ') 
    tempLiteral += tempCluster[k]; 
 
   if(tempCluster[k] == ' ' || k == tempCluster.length() - 1) 
   { 
    //FALSE literal 
    mapClustersStates[tempLiteral] = -1; 
    mapLiteralValues[tempLiteral] = false; 
 
    //Opposite value will be TRUE 
    int temp = atoi(tempLiteral.c_str()) * -1; 
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    char sizeTempOpposite = (char)temp; 
    char bufferTempOpposite[sizeof(sizeTempOpposite)/sizeof(char) 
+ 10]; 
    std::string oppositeTempLiteral = itoa(temp, 
bufferTempOpposite, 10); 
 
    mapClustersStates[oppositeTempLiteral] = 1; 
    mapLiteralValues[oppositeTempLiteral] = true; 
    tempLiteral = ""; 
   } 
  } 
 } 
 
 //If TRUE, all literals inside must be TRUE 
 else if(mapLiteralValues[tempCluster] == true) 
 { 
  for(int k = 0; k < tempCluster.length(); k++) 
  {       
   if(tempCluster[k] != ' ') 
    tempLiteral += tempCluster[k]; 
 
   if(tempCluster[k] == ' ' || k == tempCluster.length() - 1) 
   { 
    //TRUE literal 
    mapClustersStates[tempLiteral] = 1; 
    mapLiteralValues[tempLiteral] = true; 
 
    //Opposite value will be FALSE 
    int temp = atoi(tempLiteral.c_str()) * -1; 
    char sizeTempOpposite = (char)temp; 
    char bufferTempOpposite[sizeof(sizeTempOpposite)/sizeof(char) 
+ 10]; 
    std::string oppositeTempLiteral = itoa(temp, 
bufferTempOpposite, 10); 
 
    mapClustersStates[oppositeTempLiteral] = -1; 
    mapLiteralValues[oppositeTempLiteral] = false; 
    tempLiteral = ""; 
   } 
  } 
 } 
 }**/ 
  //Assign TRUE/FALSE values to the SAT formula 
  std::cout << "Assigning TRUE/FALSE values to the clauses of the SAT 
formula....." << std::endl << std::endl; 
 
  int trueCounter = 0; 
  std::string stringClause = ""; 
 
  for(int j = 0; j < vectorStringNumbers.size(); j++) 
  { 
   if(vectorStringNumbers[j] != "|") 
   { 
    stringClause += vectorStringNumbers[j]; 
    stringClause += " "; 
 
    if(mapLiteralValues[vectorStringNumbers[j]] == true) 
     trueCounter++; 
   } 
     
   else if(vectorStringNumbers[j] == "|") 
   { 
    //Erase the space at the end of string 
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    stringClause.erase(stringClause.end() - 1); 
 
    iteratorVectorString = std::find(vectorCheckedClauses.begin(), 
vectorCheckedClauses.end(), stringClause); 
 
    if(iteratorVectorString == vectorCheckedClauses.end()) 
    { 
     vectorCheckedClauses.push_back(stringClause); 
 
     if(trueCounter >= 1) 
     { 
      //Set the clause to TRUE 
      mapClauseValues.insert(std::pair<std::string, 
bool>(stringClause, true)); 
      trueClauseCounter++; 
     } 
       
     else if(trueCounter == 0) 
     { 
      //Set the clause to FALSE 
      mapClauseValues.insert(std::pair<std::string, 
bool>(stringClause, false)); 
     }     
    } 
 
    //Reset 
    stringClause = ""; 
    trueCounter = 0; 
   } 
  } 
 } 
} 
 
bestSoFar = trueClauseCounter; 
 
//Reset 
trueClauseCounter = 0; 
vectorCheckedClauses.clear(); 
 
foutput << "Literals: " << numberOfXLiterals << "  Clauses: " << NUMBER_OF_CLAUSES << 
"\n\n"; 
std::cout << "Number of TRUE clauses (initial solution): " << std::endl << std::endl << 
bestSoFar << std::endl << std::endl; 
foutput << "Level     Satisfied clauses     Time     Flips\n\n"; 
foutput << levelCounter << "                         " << bestSoFar << "                         
" << 0 << "                         " << 0 << "\n"; 
 
if(bestSoFar == NUMBER_OF_CLAUSES) 
{ 
 satisfaction = "SATISFIED"; 
 std::cout << "SAT with " << numberOfXLiterals << " literals and " <<  
NUMBER_OF_CLAUSES << " clauses is " << satisfaction << " at LEVEL " << levelCounter << 
"." << std::endl << std::endl; 
} 
else 
{ 
 satisfaction = "NOT SATISFIED"; 
 std::cout << "SAT with " << numberOfXLiterals << " literals and " <<  
NUMBER_OF_CLAUSES << " clauses is " << satisfaction << " at LEVEL " << levelCounter << 
"." << std::endl << std::endl; 
} 
 
//Finished! 
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if(satisfaction == "SATISFIED") 
{ 
 system("pause"); 
 system("exit"); 
} 
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Tabu Search All Versions 
 
The code can be downloaded online at: 
 
https://ikt590-sat-tabu-search.googlecode.com/svn/trunk 
 
 

Multilevel Tabu Search 

 
The code can be downloaded online at: 
 
https://ikt590-sat-multilevel-tabu-search.googlecode.com/svn/trunk 
 
 

Learning Automata with Tabu Search 

 
The code can be downloaded online at: 
 
https://ikt590-sat-learning-automata.googlecode.com/svn/trunk/ 
 

 
Multilevel Learning Automata with Tabu Search 

 
The code can be downloaded online at: 
 
https://ikt590-sat-multilevel-learning-automata.googlecode.com/svn/trunk/ 

 
 
You can also refer to Appendix C for the source code on CD attached with the thesis report.

https://ikt590-sat-tabu-search.googlecode.com/svn/trunk
https://ikt590-sat-multilevel-tabu-search.googlecode.com/svn/trunk
https://ikt590-sat-learning-automata.googlecode.com/svn/trunk/
https://ikt590-sat-learning-automata.googlecode.com/svn/trunk/
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Appendix B       Experimental Results Data 
 
Tabu Search solving bw_large.d (BlocksWorld) 

 
Problem: bw_large.d 
Literals: 6325  Clauses: 131973 
 
Mean solved: 81.6 % Variance: 0.5 Standard deviation: 0.71 
 
Mean satisfied clauses   Mean time           Mean flips 
 
102984                         0                         0 
102984                         0                         10 
102984                         0                         100 
102984                         0                         1000 
103015                         0                         5014 
103015                         11.763                         10000 
103045                         11.763                         10032 
103075                         24.062                         15033 
103104                         37.196                         20057 
103132                         50.413                         25045 
103160                         63.785                         30049 
103188                         76.984                         35026 
103216                         90.147                         40033 
103243                         103.348                         45022 
103270                         116.473                         50000 
103297                         129.837                         54968 
103324                         142.918                         59982 
103351                         156.133                         64941 
103378                         169.185                         69912 
103405                         182.248                         74890 
103432                         195.588                         79847 
103458                         208.613                         84824 
103484                         221.698                         89787 
103510                         234.744                         94772 
103536                         247.845                         99744 
103536                         261.167                         100000 
103562                         261.167                         104702 
103588                         274.213                         109661 
103614                         287.263                         114642 
103639                         300.347                         119611 
103664                         313.382                         124577 
103689                         326.661                         129505 
103714                         339.59                         134450 
103739                         352.571                         139357 
103764                         365.461                         144295 
103789                         378.431                         149238 
103814                         391.713                         154186 
103839                         404.754                         159116 
103864                         417.769                         164073 
103889                         430.793                         168996 
103914                         443.745                         173942 
103939                         456.968                         178876 
103964                         469.931                         183815 
103989                         482.908                         188757 
104014                         495.901                         193646 
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104039                         508.749                         198587 
104063                         521.959                         203513 
104087                         534.904                         208455 
104111                         547.892                         213375 
104135                         561.02                         218308 
104159                         574.112                         223250 
104183                         587.335                         228172 
104209                         600.271                         233042 
104233                         613.065                         237956 
104257                         625.965                         242847 
104281                         638.806                         247745 
104305                         651.831                         252651 
104329                         664.834                         257533 
104353                         677.705                         262447 
104377                         690.645                         267341 
104401                         703.526                         272249 
104425                         716.541                         277131 
104449                         729.528                         282036 
104473                         742.413                         286949 
104496                         755.358                         291827 
104519                         768.178                         296775 
104542                         781.168                         301642 
104565                         794.272                         306532 
104588                         807.153                         311425 
104611                         820.011                         316265 
104634                         832.736                         321143 
104657                         845.576                         326028 
104680                         858.632                         330908 
104703                         871.443                         335803 
104726                         884.293                         340671 
104749                         897.077                         345569 
104772                         909.927                         350421 
104795                         922.89                         355275 
104818                         935.628                         360160 
104841                         948.472                         365048 
104864                         961.31                         369927 
104887                         974.123                         374805 
104910                         987.154                         379665 
104933                         999.913                         384546 
104956                         1012.76                         389399 
104979                         1025.53                         394247 
105002                         1038.27                         399132 
105025                         1051.29                         403979 
105048                         1064.05                         408828 
105071                         1076.78                         413699 
105094                         1089.75                         418532 
105117                         1102.61                         423376 
105140                         1115.48                         428191 
105163                         1128.25                         433049 
105186                         1141                         437861 
105209                         1153.65                         442695 
105232                         1166.36                         447526 
105255                         1179.11                         452332 
105277                         1191.99                         457167 
105299                         1204.95                         462004 
105321                         1218.29                         466843 
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105343                         1232.41                         471690 
105365                         1246.91                         476537 
105387                         1261.43                         481373 
105409                         1275.88                         486201 
105431                         1290.31                         491055 
105453                         1304.81                         495876 
105475                         1319.34                         500707 
105497                         1333.77                         505520 
105519                         1348.17                         510345 
105541                         1362.52                         515168 
105563                         1376.77                         519964 
105585                         1391.24                         524783 
105607                         1405.32                         529582 
105629                         1419.68                         534412 
105651                         1434.14                         539229 
105673                         1448.65                         544019 
105695                         1463.02                         548827 
105717                         1477.4                         553641 
105739                         1491.82                         558435 
105761                         1506.05                         563232 
105783                         1520.87                         568033 
105805                         1535.03                         572810 
105827                         1549.11                         577597 
105849                         1563.14                         582389 
105871                         1577.22                         587185 
105893                         1591.39                         591974 
105915                         1605.12                         596785 
105937                         1618.86                         601575 
105959                         1632.62                         606360 
105981                         1646.69                         611123 
106003                         1660.72                         615915 
106025                         1674.76                         620678 
106047                         1688.89                         625430 
106069                         1701.42                         630188 
106091                         1715.63                         634949 
106113                         1729.1                         639699 
106135                         1741.97                         644441 
106156                         1754.49                         649194 
106177                         1766.97                         653953 
106198                         1779.63                         658748 
106219                         1792.24                         663547 
106240                         1804.75                         668288 
106261                         1817.17                         673044 
106282                         1829.59                         677818 
106303                         1842.04                         682528 
106324                         1854.57                         687283 
106345                         1866.98                         692029 
106366                         1879.38                         696794 
106387                         1891.8                         701546 
106408                         1904.23                         706302 
106429                         1917.04                         711040 
106450                         1929.38                         715776 
106471                         1941.76                         720551 
106492                         1954.25                         725293 
106513                         1966.63                         730036 
106534                         1979.2                         734775 
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106555                         1993.03                         739510 
106576                         2007.04                         744262 
106597                         2021.07                         748975 
106618                         2035.09                         753700 
106639                         2049.17                         758443 
106660                         2063.25                         763206 
106681                         2075.91                         767956 
106702                         2088.38                         772706 
106723                         2100.81                         777441 
106744                         2113.41                         782210 
106765                         2125.85                         786927 
106786                         2138.21                         791647 
106807                         2152.2                         796405 
106828                         2164.82                         801143 
106849                         2177.93                         805862 
106870                         2190.88                         810552 
106891                         2203.21                         815247 
106912                         2215.63                         819945 
106933                         2228.1                         824639 
106954                         2240.62                         829374 
106975                         2253.38                         834092 
106996                         2265.82                         838819 
107018                         2278.32                         843537 
107039                         2290.79                         848229 
107060                         2303.1                         852927 
107081                         2315.61                         857629 
107102                         2328.44                         862292 
107123                         2341.87                         866977 
107144                         2354.74                         871693 
107165                         2371.02                         876389 
107186                         2387.97                         881097 
107207                         2402.03                         885776 
107228                         2414.4                         890466 
107249                         2426.97                         895146 
107270                         2439.54                         899828 
107291                         2452.14                         904517 
107312                         2464.43                         909224 
107332                         2477.2                         913906 
107352                         2489.79                         918559 
107372                         2502.15                         923236 
107392                         2514.67                         927927 
107412                         2527.49                         932589 
107432                         2539.96                         937252 
107452                         2554.46                         941916 
107472                         2569.68                         946612 
107493                         2584.97                         951302 
107513                         2600.07                         955964 
107533                         2615.14                         960636 
107553                         2630.1                         965324 
107573                         2645.3                         969998 
107593                         2660.34                         974650 
107613                         2675.29                         979306 
107633                         2690.23                         983991 
107653                         2705.29                         988674 
107673                         2720.29                         993327 
107693                         2735.23                         997977 
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107693                         2750.16                         1e+006 
107713                         2750.16                         1e+006 
 
Total time elapsed: 2832.61 seconds 
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Multilevel Tabu Search solving bw_large.d (BlocksWorld) 

 
Problem: bw_large.d 
Literals: 6325  Clauses: 131973 
 
Mean solved: 89.6 % Variance: 0.4 Standard deviation: 0.63 
 
Level                   Mean satisfied clauses    Mean time          Mean flips 
 
4                         102379                         0                         0 
4                         102379                         0                         16 
4                         102379                         0                         112 
4                         102379                         0                         1000 
4                         102691                         0                         6325 
4                         102691                         3.82                         10005 
4                         102998                         3.82                         12634 
4                         103301                         7.437                         18943 
4                         103596                         11.118                         25252 
4                         103890                         14.78                         31561 
4                         104181                         18.433                         37870 
4                         104467                         22.084                         44179 
4                         104750                         25.75                         50488 
4                         105031                         29.456                         56797 
4                         105311                         33.193                         63106 
4                         105590                         36.849                         69415 
4                         105864                         40.519                         75724 
4                         106137                         44.199                         82033 
4                         106405                         47.88                         88342 
4                         106671                         51.558                         94651 
4                         106671                         55.243                         100000 
4                         106935                         55.243                         100960 
4                         107198                         58.92                         107269 
4                         107457                         62.593                         113578 
4                         107713                         66.252                         119887 
4                         107969                         69.915                         126196 
4                         108223                         73.579                         132505 
4                         108476                         77.233                         138814 
4                         108729                         80.91                         145123 
4                         108977                         84.567                         151432 
4                         109225                         88.237                         157741 
4                         109471                         91.891                         164050 
4                         109716                         95.602                         170359 
4                         109959                         99.33                         176668 
4                         110203                         102.961                         182977 
4                         110443                         106.586                         189286 
4                         110682                         110.225                         195595 
4                         110682                         113.884                         200000 
4                         110918                         113.884                         200000 
3                         110918                         116.458                         16 
3                         110918                         116.458                         104 
3                         110918                         116.458                         1007 
3                         111052                         116.458                         6325 
3                         111052                         121.235                         10004 
3                         111186                         121.235                         12642 
3                         111317                         125.629                         18959 
3                         111447                         130.022                         25276 



Sirar Salih & Yujie Song Solving SAT Using Multilevel Techniques 

88 

3                         111576                         134.446                         31593 
3                         111704                         138.905                         37910 
3                         111831                         143.146                         44228 
3                         111956                         147.384                         50545 
3                         112081                         151.64                         56862 
3                         112205                         156.071                         63179 
3                         112328                         160.55                         69496 
3                         112451                         165.04                         75813 
3                         112573                         169.458                         82130 
3                         112695                         173.862                         88447 
3                         112817                         178.261                         94764 
3                         112817                         182.651                         100002 
3                         112938                         182.651                         101081 
3                         113059                         187.036                         107398 
3                         113179                         191.42                         113715 
3                         113299                         195.818                         120032 
3                         113418                         200.201                         126349 
3                         113537                         204.582                         132666 
3                         113653                         208.972                         138983 
3                         113769                         213.365                         145300 
3                         113885                         217.756                         151617 
3                         114000                         222.157                         157934 
3                         114115                         226.554                         164251 
3                         114228                         231.051                         170568 
3                         114341                         235.471                         176885 
3                         114453                         239.865                         183202 
3                         114568                         244.303                         189519 
3                         114680                         248.702                         195836 
3                         114680                         253.16                         200003 
3                         114792                         253.16                         200003 
2                         114792                         256.141                         12 
2                         114792                         256.141                         100 
2                         114792                         256.141                         1000 
2                         114859                         256.141                         6325 
2                         114859                         263.437                         10001 
2                         114925                         263.437                         12646 
2                         114989                         270.495                         18967 
2                         115053                         277.287                         25288 
2                         115116                         284.137                         31609 
2                         115178                         290.955                         37930 
2                         115241                         297.884                         44251 
2                         115303                         304.716                         50572 
2                         115364                         311.548                         56893 
2                         115424                         318.375                         63214 
2                         115484                         325.209                         69535 
2                         115544                         332.04                         75856 
2                         115604                         338.869                         82177 
2                         115664                         345.709                         88498 
2                         115724                         352.541                         94819 
2                         115724                         359.399                         100002 
2                         115783                         359.399                         101140 
2                         115841                         366.378                         107461 
2                         115899                         373.204                         113782 
2                         115957                         380.019                         120103 
2                         116015                         386.821                         126424 
2                         116073                         393.964                         132745 
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2                         116130                         400.894                         139066 
2                         116187                         407.706                         145387 
2                         116244                         414.536                         151708 
2                         116301                         421.37                         158029 
2                         116359                         428.259                         164350 
2                         116416                         435.146                         170671 
2                         116473                         441.962                         176992 
2                         116529                         448.792                         183313 
2                         116585                         455.604                         189634 
2                         116641                         462.441                         195955 
2                         116641                         469.279                         200003 
2                         116697                         469.279                         200003 
1                         116697                         473.652                         10 
1                         116697                         473.652                         100 
1                         116697                         473.652                         1000 
1                         116731                         473.652                         6325 
1                         116731                         485.744                         10000 
1                         116764                         485.744                         12648 
1                         116797                         497.994                         18971 
1                         116830                         510.092                         25294 
1                         116863                         522.197                         31617 
1                         116895                         534.295                         37940 
1                         116927                         546.395                         44263 
1                         116959                         558.488                         50586 
1                         116991                         570.752                         56909 
1                         117023                         583.08                         63232 
1                         117054                         595.355                         69555 
1                         117085                         607.549                         75878 
1                         117116                         619.701                         82201 
1                         117147                         631.934                         88524 
1                         117178                         644.029                         94847 
1                         117178                         656.112                         100000 
1                         117209                         656.112                         101170 
1                         117240                         668.199                         107493 
1                         117271                         680.293                         113816 
1                         117302                         692.416                         120139 
1                         117333                         704.62                         126462 
1                         117364                         716.703                         132785 
1                         117395                         728.79                         139108 
1                         117426                         740.87                         145431 
1                         117457                         752.965                         151754 
1                         117487                         765.21                         158077 
1                         117517                         777.296                         164400 
1                         117547                         789.414                         170723 
1                         117577                         801.577                         177046 
1                         117607                         813.734                         183369 
1                         117637                         825.935                         189692 
1                         117667                         838.156                         196015 
1                         117667                         849.2                         200000 
1                         117697                         849.2                         200000 
0                         117697                         855.865                         10 
0                         117697                         855.865                         100 
0                         117697                         855.865                         1000 
0                         117697                         855.865                         3987 
0                         117697                         946.399                         7970 
0                         117697                         960.195                         10000 
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0                         117697                         960.195                         11961 
0                         117697                         973.952                         15917 
0                         117697                         987.516                         19871 
0                         117697                         1001.16                         23824 
0                         117697                         1014.79                         27783 
0                         117697                         1028.78                         31716 
0                         117697                         1042.59                         35650 
0                         117697                         1056.4                         39576 
0                         117697                         1070.18                         43460 
0                         117697                         1083.79                         47366 
0                         117697                         1097.59                         51287 
0                         117697                         1111.26                         55176 
0                         117697                         1124.8                         59058 
0                         117697                         1138.3                         62876 
0                         117697                         1151.71                         66746 
0                         117697                         1165.55                         70599 
0                         117711                         1179.19                         74446 
0                         117728                         1193.23                         78230 
0                         117744                         1206.8                         82041 
0                         117760                         1220.53                         85815 
0                         117776                         1234.33                         89569 
0                         117792                         1248.06                         93357 
0                         117808                         1261.74                         97140 
0                         117808                         1275.22                         100000 
0                         117824                         1275.22                         100932 
0                         117840                         1288.83                         104693 
0                         117856                         1302.52                         108457 
0                         117872                         1316.09                         112190 
0                         117888                         1329.55                         115934 
0                         117904                         1343.03                         119658 
0                         117920                         1356.48                         123364 
0                         117936                         1369.91                         127059 
0                         117952                         1383.23                         130728 
0                         117968                         1396.43                         134413 
0                         117984                         1409.67                         138082 
0                         118000                         1422.9                         141722 
0                         118016                         1436.1                         145373 
0                         118032                         1449.22                         149007 
0                         118048                         1462.27                         152635 
0                         118064                         1475.36                         156267 
0                         118080                         1488.56                         159867 
0                         118096                         1501.63                         163465 
0                         118112                         1514.65                         167023 
0                         118128                         1527.52                         170576 
0                         118144                         1540.38                         174131 
0                         118160                         1553.25                         177700 
0                         118176                         1566.31                         181240 
0                         118192                         1579.11                         184766 
0                         118208                         1591.86                         188311 
0                         118224                         1604.76                         191856 
0                         118240                         1617.61                         195331 
0                         118256                         1630.33                         198846 
0                         118256                         1643.03                         200000 
0                         118272                         1643.03                         200000 
 
Total time elapsed: 1727.69 seconds 
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Learning Automata with Tabu Search solving mot_comb3._red-gate-0.dimacs.seq.filtered 
(MaxSAT Industry) 

 
Problem: mot_comb3._red-gate-0.dimacs.seq.filtered 
Literals: 11265  Clauses: 29520 
 
Mean solved: 79.5 % Variance: 0.7 Standard deviation: 0.84 
 
Mean satisfied clauses  Mean time      Mean flips 
 
22600                         0                         0 
22603                         0                         1 
22603                         0                         10 
22603                         0                         100 
22603                         0                         1000 
22614                         0                         5381 
22614                         17.331                         10000 
22622                         17.331                         10792 
22629                         35.92                         16214 
22636                         55.26                         21622 
22643                         74.457                         27007 
22643                         93.322                         27008 
22650                         93.322                         32413 
22657                         112.543                         37856 
22659                         131.454                         37857 
22666                         131.454                         43246 
22668                         150.648                         43247 
22675                         150.648                         48620 
22681                         169.706                         53996 
22682                         188.464                         53997 
22688                         188.464                         59374 
22694                         207.231                         64783 
22700                         226.098                         70157 
22700                         244.839                         70158 
22706                         244.839                         75568 
22706                         263.736                         75569 
22711                         263.736                         80931 
22716                         282.462                         86299 
22721                         301.264                         91672 
22723                         320.065                         91673 
22728                         320.065                         97040 
22728                         338.896                         100000 
22733                         338.896                         102400 
22738                         357.676                         107785 
22743                         376.673                         113153 
22743                         396.15                         113154 
22748                         396.15                         118520 
22753                         415.145                         123861 
22753                         434.033                         123862 
22758                         434.033                         129224 
22763                         453.047                         134554 
22768                         471.976                         139929 
22773                         491.074                         145315 
22778                         510.226                         150634 
22780                         528.93                         150635 
22785                         528.93                         155970 
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22790                         549.136                         161293 
22795                         568.245                         166663 
22796                         587.872                         166664 
22800                         587.872                         172013 
22804                         606.927                         177350 
22808                         625.855                         182689 
22808                         644.995                         182690 
22812                         644.995                         188013 
22816                         664.046                         193364 
22820                         682.602                         198713 
22824                         701.858                         204039 
22828                         720.703                         209429 
22832                         739.464                         214764 
22836                         758.507                         220035 
22837                         777.251                         220036 
22841                         777.251                         225366 
22845                         796.27                         230657 
22849                         814.944                         235996 
22852                         833.77                         235997 
22856                         833.77                         241339 
22860                         852.593                         246606 
22864                         871.174                         251942 
22865                         889.973                         251943 
22869                         889.973                         257247 
22873                         908.641                         262549 
22875                         927.261                         262550 
22879                         927.261                         267818 
22881                         945.892                         267819 
22885                         945.892                         273111 
22889                         964.807                         278422 
22893                         983.769                         283735 
22893                         1002.69                         283736 
22897                         1002.69                         289050 
22897                         1021.43                         289051 
22901                         1021.43                         294396 
22905                         1040.27                         294397 
22909                         1040.27                         299647 
22913                         1058.77                         304964 
22917                         1077.54                         310258 
22921                         1096.21                         315606 
22923                         1115.02                         315607 
22927                         1115.02                         320889 
22927                         1133.61                         320890 
22930                         1133.61                         326188 
22934                         1152.24                         326189 
22938                         1152.24                         331446 
22942                         1170.73                         336706 
22942                         1189.23                         336707 
22947                         1189.23                         341987 
22949                         1207.87                         341988 
22953                         1207.87                         347249 
22957                         1226.39                         352535 
22961                         1245.09                         357802 
22965                         1263.68                         363065 
22968                         1282.38                         363066 
22972                         1282.38                         368306 
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22976                         1300.9                         368307 
22980                         1300.9                         373570 
22982                         1319.48                         373571 
22986                         1319.48                         378792 
22990                         1338.01                         384065 
22990                         1356.6                         384066 
22994                         1356.6                         389268 
22997                         1375.65                         389269 
23001                         1375.65                         394501 
23004                         1393.07                         394502 
23008                         1393.07                         399729 
23012                         1408.98                         404978 
23012                         1425.13                         404979 
23016                         1425.13                         410205 
23018                         1439.04                         410206 
23022                         1439.04                         415459 
23025                         1452.47                         415460 
23029                         1452.47                         420663 
23029                         1465.6                         420664 
23033                         1465.6                         425872 
23037                         1478.5                         431088 
23041                         1491.72                         436260 
23043                         1504.56                         436261 
23047                         1504.56                         441477 
23047                         1517.41                         441478 
23051                         1517.41                         446702 
23053                         1530.28                         446703 
23057                         1530.28                         451911 
23061                         1543.08                         457125 
23064                         1555.89                         457126 
23068                         1555.89                         462342 
23072                         1568.71                         467507 
23076                         1581.41                         472716 
23080                         1594.22                         477911 
23082                         1605.94                         477912 
23086                         1605.94                         483104 
23090                         1613.21                         488291 
23090                         1620.38                         488292 
23094                         1620.38                         493456 
23098                         1627.58                         498609 
23102                         1634.76                         503846 
23106                         1642.07                         509008 
23106                         1649.27                         509009 
23110                         1649.27                         514223 
23114                         1656.56                         519444 
23114                         1663.84                         519445 
23118                         1663.84                         524572 
23122                         1673.4                         529712 
23126                         1686.53                         534845 
23130                         1700.07                         540042 
23132                         1713.45                         540043 
23136                         1713.45                         545218 
23140                         1726.24                         550384 
23143                         1739.92                         550385 
23147                         1739.92                         555535 
23151                         1753.08                         560664 
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23151                         1765.85                         560665 
23155                         1765.85                         565808 
23155                         1778.37                         565809 
23159                         1778.37                         570976 
23159                         1791.15                         570977 
23163                         1791.15                         576126 
23165                         1803.84                         576127 
23169                         1803.84                         581287 
23173                         1816.62                         586404 
23174                         1829.41                         586405 
23178                         1829.41                         591569 
23182                         1842.17                         596722 
23185                         1854.75                         596723 
23189                         1854.75                         601879 
23193                         1867.29                         607046 
23193                         1879.84                         607047 
23197                         1879.84                         612177 
23198                         1892.3                         612178 
23202                         1892.3                         617327 
23202                         1904.81                         617328 
23205                         1904.81                         622438 
23208                         1917.23                         622439 
23212                         1917.23                         627589 
23216                         1929.75                         632691 
23219                         1942.15                         632692 
23223                         1942.15                         637803 
23227                         1954.56                         642911 
23231                         1966.97                         648042 
23235                         1979.42                         653184 
23235                         1991.93                         653185 
23238                         1991.93                         658280 
23242                         2004.31                         663403 
23246                         2016.76                         668481 
23249                         2029.11                         668482 
23253                         2029.11                         673593 
23257                         2041.53                         678713 
23257                         2053.97                         678714 
23261                         2053.97                         683805 
23264                         2066.34                         683806 
23268                         2066.34                         688882 
23272                         2078.67                         693981 
23276                         2091.05                         699079 
23278                         2103.43                         699080 
23281                         2103.43                         704203 
23284                         2115.88                         704204 
23287                         2115.88                         709284 
23290                         2128.23                         714354 
23291                         2140.56                         714355 
23294                         2140.56                         719410 
23297                         2152.85                         724493 
23297                         2165.22                         724494 
23300                         2165.22                         729577 
23303                         2177.57                         734680 
23303                         2189.99                         734681 
23306                         2189.99                         739764 
23309                         2202.35                         744806 
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23311                         2214.62                         744807 
23314                         2214.62                         749913 
23314                         2227.05                         749914 
23315                         2227.05                         754989 
23318                         2239.38                         760055 
23321                         2251.7                         765118 
23324                         2264                         770178 
23327                         2276.28                         775235 
23330                         2288.57                         780300 
23330                         2300.86                         780301 
23333                         2300.86                         785364 
23336                         2313.16                         790406 
23339                         2325.42                         795443 
23339                         2337.67                         795444 
23342                         2337.67                         800519 
23345                         2350.02                         805529 
23346                         2362.19                         805530 
23349                         2362.19                         810588 
23352                         2374.48                         810589 
23355                         2374.48                         815627 
23357                         2386.73                         815628 
23360                         2386.73                         820681 
23363                         2399.02                         825708 
23363                         2411.24                         825709 
23366                         2411.24                         830743 
23369                         2423.49                         835805 
23372                         2435.79                         840825 
23373                         2448.04                         840826 
23377                         2448.04                         845893 
23377                         2460.37                         845894 
23378                         2460.37                         850926 
23381                         2472.6                         855960 
23384                         2484.82                         861018 
23387                         2497.1                         866028 
23388                         2509.27                         866029 
23392                         2509.27                         871040 
23394                         2521.44                         871041 
23397                         2521.44                         876057 
23397                         2533.64                         876058 
23399                         2533.64                         881066 
23402                         2545.82                         886081 
23405                         2558                         891090 
23405                         2570.17                         891091 
23408                         2570.17                         896097 
23411                         2582.35                         901073 
23412                         2594.44                         901074 
23415                         2594.44                         906109 
23415                         2606.69                         906110 
23418                         2606.69                         911136 
23419                         2618.89                         911137 
23422                         2618.89                         916162 
23424                         2631.1                         916163 
23427                         2631.1                         921190 
23427                         2643.33                         921191 
23430                         2643.33                         926170 
23433                         2655.45                         931172 
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23433                         2667.6                         931173 
23436                         2667.6                         936194 
23437                         2679.8                         936195 
23441                         2679.8                         941226 
23444                         2692.01                         946223 
23446                         2704.18                         946224 
23449                         2704.18                         951199 
23449                         2716.26                         951200 
23452                         2716.26                         956183 
23455                         2728.37                         961151 
23455                         2740.45                         961152 
23458                         2740.45                         966118 
23458                         2752.51                         966119 
23460                         2752.51                         971100 
23463                         2764.61                         976084 
23463                         2776.72                         976085 
23466                         2776.72                         981090 
23468                         2788.87                         981091 
23471                         2788.87                         986103 
23474                         2801.3                         991070 
23477                         2814.28                         996042 
23477                         2826.81                         1e+006 
23480                         2826.81                         1e+006 
 
Total time elapsed: 2844.21 seconds 
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Multilevel Learning Automata with Tabu Search solving mot_comb3._red-gate-
0.dimacs.seq.filtered (MaxSAT Industry) 
 

Problem: mot_comb3._red-gate-0.dimacs.seq.filtered 
Literals: 11265  Clauses: 29520 
 
Mean solved: 79.8 % Variance: 0.6 Standard deviation: 0.77 
 
Level                Mean satisfied clauses  Mean time        Mean flips 
 
4                         22418                         0                         0 
4                         22418                         0                         1 
4                         22421                         0                         2 
4                         22421                         0                         3 
4                         22421                         0                         19 
4                         22421                         0                         115 
4                         22421                         0                         1011 
4                         22421                         0                         10004 
4                         22451                         0                         11268 
4                         22477                         3.153                         22533 
4                         22479                         6.039                         22534 
4                         22479                         6.039                         22535 
4                         22503                         6.039                         33800 
4                         22503                         8.966                         33801 
4                         22503                         8.966                         33802 
4                         22504                         8.966                         33803 
4                         22508                         8.966                         33804 
4                         22508                         8.966                         33805 
4                         22531                         8.966                         45070 
4                         22531                         12.088                         45071 
4                         22531                         12.088                         45072 
4                         22531                         12.088                         45073 
4                         22532                         12.088                         45074 
4                         22533                         12.088                         45075 
4                         22533                         12.088                         45076 
4                         22535                         12.088                         45077 
4                         22557                         12.088                         56342 
4                         22560                         15.188                         56343 
4                         22560                         15.188                         56344 
4                         22560                         15.188                         56345 
4                         22560                         15.188                         56346 
4                         22561                         15.188                         56347 
4                         22566                         15.188                         56348 
4                         22588                         15.188                         67613 
4                         22588                         18.264                         67614 
4                         22588                         18.264                         67615 
4                         22588                         18.264                         67616 
4                         22590                         18.264                         67617 
4                         22590                         18.264                         67618 
4                         22611                         18.264                         78883 
4                         22612                         21.29                         78884 
4                         22614                         21.29                         78885 
4                         22616                         21.29                         78886 
4                         22616                         21.29                         78887 
4                         22619                         21.29                         78888 
4                         22622                         21.29                         78889 
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4                         22622                         21.29                         78890 
4                         22623                         21.29                         78891 
4                         22626                         21.29                         78892 
4                         22629                         21.29                         78893 
4                         22629                         21.29                         78894 
4                         22629                         21.29                         78895 
4                         22646                         21.29                         90160 
4                         22646                         24.422                         90161 
4                         22649                         24.422                         90162 
4                         22649                         24.422                         90163 
4                         22651                         24.422                         90164 
4                         22654                         24.422                         90165 
4                         22654                         24.422                         100011 
4                         22674                         24.422                         101430 
4                         22676                         27.41                         101431 
4                         22677                         27.41                         101432 
4                         22679                         27.41                         101433 
4                         22680                         27.41                         101434 
4                         22682                         27.41                         101435 
4                         22684                         27.41                         101436 
4                         22686                         27.41                         101437 
4                         22689                         27.41                         101438 
4                         22709                         27.41                         112703 
4                         22710                         30.397                         112704 
4                         22713                         30.397                         112705 
4                         22715                         30.397                         112706 
4                         22715                         30.397                         112707 
4                         22734                         30.397                         123972 
4                         22737                         33.346                         123973 
4                         22756                         33.346                         135238 
4                         22757                         36.37                         135239 
4                         22759                         36.37                         135240 
4                         22760                         36.37                         135241 
4                         22760                         36.37                         135242 
4                         22776                         36.37                         146507 
4                         22780                         39.414                         146508 
4                         22780                         39.414                         146509 
4                         22782                         39.414                         146510 
4                         22800                         39.414                         157775 
4                         22803                         42.445                         157776 
4                         22821                         42.445                         169041 
4                         22839                         45.424                         180306 
4                         22839                         48.379                         180307 
4                         22839                         48.379                         180308 
4                         22839                         48.379                         180309 
4                         22839                         48.379                         180310 
4                         22839                         48.379                         180311 
4                         22839                         48.379                         180312 
4                         22844                         48.379                         191577 
4                         22844                         51.34                         191578 
4                         22844                         51.34                         191579 
4                         22844                         51.34                         200012 
4                         22860                         51.34                         200012 
3                         22860                         53.546                         16 
3                         22860                         53.546                         104 
3                         22860                         53.546                         1000 
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3                         22860                         53.546                         10005 
3                         22874                         53.546                         11265 
3                         22888                         58.838                         22530 
3                         22891                         64.258                         22531 
3                         22905                         64.258                         33796 
3                         22907                         69.636                         33797 
3                         22907                         69.636                         33798 
3                         22910                         69.636                         33799 
3                         22910                         69.636                         33800 
3                         22910                         69.636                         33801 
3                         22911                         69.636                         33802 
3                         22925                         69.636                         45067 
3                         22938                         75.207                         56332 
3                         22938                         80.608                         56333 
3                         22940                         80.608                         56334 
3                         22953                         80.608                         67599 
3                         22953                         86.009                         67600 
3                         22953                         86.009                         67601 
3                         22953                         86.009                         67602 
3                         22954                         86.009                         67603 
3                         22955                         86.009                         67604 
3                         22968                         86.009                         78869 
3                         22970                         91.351                         78870 
3                         22971                         91.351                         78871 
3                         22971                         91.351                         78872 
3                         22972                         91.351                         78873 
3                         22984                         91.351                         90138 
3                         22986                         96.69                         90139 
3                         22986                         96.69                         100004 
3                         22998                         96.69                         101404 
3                         23000                         101.991                         101405 
3                         23003                         101.991                         101406 
3                         23015                         101.991                         112671 
3                         23015                         107.313                         112672 
3                         23027                         107.313                         123937 
3                         23038                         112.632                         135202 
3                         23049                         118.077                         146467 
3                         23060                         123.598                         157732 
3                         23071                         128.996                         168997 
3                         23073                         134.466                         168998 
3                         23073                         134.466                         168999 
3                         23084                         134.466                         180264 
3                         23086                         139.973                         180265 
3                         23087                         139.973                         180266 
3                         23098                         139.973                         191531 
3                         23098                         145.302                         200003 
3                         23108                         145.302                         200003 
2                         23109                         149.298                         1 
2                         23109                         149.298                         2 
2                         23111                         149.298                         3 
2                         23111                         149.298                         11 
2                         23111                         149.298                         103 
2                         23111                         149.298                         1003 
2                         23111                         149.298                         10000 
2                         23120                         149.298                         11268 
2                         23129                         159.515                         22533 
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2                         23138                         169.687                         33798 
2                         23146                         179.867                         45063 
2                         23146                         190.045                         45064 
2                         23154                         190.045                         56329 
2                         23162                         200.243                         67594 
2                         23170                         210.417                         78859 
2                         23170                         220.595                         78860 
2                         23176                         220.595                         90125 
2                         23176                         230.808                         90126 
2                         23176                         230.808                         100000 
2                         23184                         230.808                         101391 
2                         23192                         241                         112656 
2                         23192                         251.167                         112657 
2                         23199                         251.167                         123922 
2                         23201                         261.383                         123923 
2                         23209                         261.383                         135188 
2                         23217                         271.624                         146453 
2                         23217                         281.852                         146454 
2                         23222                         281.852                         157719 
2                         23222                         292.047                         157720 
2                         23222                         292.047                         157721 
2                         23229                         292.047                         168986 
2                         23237                         302.26                         180251 
2                         23245                         312.511                         191516 
2                         23247                         322.743                         191517 
2                         23247                         322.743                         200002 
2                         23255                         322.743                         200002 
1                         23255                         330.459                         1 
1                         23255                         330.459                         11 
1                         23255                         330.459                         101 
1                         23255                         330.459                         1001 
1                         23255                         330.459                         10000 
1                         23263                         330.459                         11266 
1                         23270                         350.653                         22531 
1                         23270                         371.469                         22532 
1                         23277                         371.469                         33797 
1                         23279                         391.792                         33798 
1                         23286                         391.792                         45063 
1                         23286                         412.036                         45064 
1                         23292                         412.036                         56329 
1                         23298                         432.356                         67594 
1                         23298                         452.901                         67595 
1                         23301                         452.901                         78860 
1                         23307                         473.083                         90125 
1                         23307                         493.396                         100000 
1                         23313                         493.396                         101390 
1                         23319                         514.549                         112655 
1                         23325                         535.461                         123920 
1                         23331                         556.472                         135185 
1                         23337                         577.053                         146450 
1                         23340                         597.367                         146451 
1                         23346                         597.367                         157716 
1                         23352                         617.872                         168981 
1                         23358                         638.425                         180246 
1                         23364                         658.319                         191511 
1                         23364                         679.015                         191512 
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1                         23364                         679.015                         200001 
1                         23370                         679.015                         200001 
0                         23373                         694.405                         10 
0                         23373                         694.405                         100 
0                         23373                         694.405                         1000 
0                         23379                         694.405                         4976 
0                         23385                         717.815                         9953 
0                         23385                         735.523                         10000 
0                         23390                         735.523                         14957 
0                         23390                         753.474                         14958 
0                         23395                         753.474                         19958 
0                         23400                         771.218                         24990 
0                         23405                         788.978                         30016 
0                         23410                         806.7                         34990 
0                         23415                         824.212                         39972 
0                         23417                         841.782                         39973 
0                         23422                         841.782                         44978 
0                         23422                         859.431                         44979 
0                         23425                         859.431                         49941 
0                         23430                         876.915                         54916 
0                         23435                         894.391                         59911 
0                         23437                         911.956                         59912 
0                         23442                         911.956                         64883 
0                         23447                         929.634                         69862 
0                         23452                         947.551                         74814 
0                         23454                         965.091                         74815 
0                         23459                         965.091                         79822 
0                         23464                         982.873                         84759 
0                         23465                         1000.28                         84760 
0                         23469                         1000.28                         89706 
0                         23473                         1017.69                         94674 
0                         23474                         1035.2                         94675 
0                         23478                         1035.2                         99643 
0                         23478                         1052.74                         100000 
0                         23482                         1052.74                         104606 
0                         23483                         1070.24                         104607 
0                         23487                         1070.24                         109523 
0                         23491                         1087.54                         114471 
0                         23495                         1104.95                         119399 
0                         23497                         1122.27                         119400 
0                         23501                         1122.27                         124323 
0                         23501                         1139.59                         124324 
0                         23505                         1139.59                         129237 
0                         23509                         1156.87                         134184 
0                         23510                         1174.3                         134185 
0                         23514                         1174.3                         139075 
0                         23514                         1191.53                         139076 
0                         23518                         1191.53                         143988 
0                         23522                         1208.89                         148894 
0                         23526                         1226.24                         153817 
0                         23530                         1243.6                         158690 
0                         23534                         1260.94                         163586 
0                         23538                         1278.23                         168475 
0                         23538                         1295.48                         168476 
0                         23541                         1295.48                         173369 
0                         23545                         1312.85                         178278 
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0                         23549                         1330.16                         183172 
0                         23553                         1348.08                         188074 
0                         23553                         1364.88                         188075 
0                         23556                         1364.88                         192962 
0                         23558                         1379.79                         192963 
0                         23562                         1379.79                         197847 
0                         23562                         1394.73                         200000 
0                         23566                         1394.73                         200000 
 
Total time elapsed: 1411.15 seconds 

 
 
You can also refer to Appendix C for the entire experimental results on CD attached with the thesis report. 
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Appendix C       Source Code, Documentation and Experimental Results CD 

 
Refer to the CD attached with the thesis report. 
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Appendix D       Paper Publication 

 
The work conducted in this thesis and some of the experimental results have been included in the following 
paper: 
 
N. Bouhmala, O-C. Granmo, Sirar Salih, Yujie Song: A Tabu Search Algorithm Combined with Learning Automata 
for the Satisfiability Problem. 
 
As of June 15, 2011, the paper is to be submitted as a chapter in book. 
 

 


