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Abstract

There are many complex problems in computer science that occur in knowledge-representation (artificial
thinking), artificial learning, Very Large Scale Integration (VLSI) design, security protocols and other areas.
These complex problems may be deduced into satisfiability problems where the Boolean Satistfiability Problem
(SAT) may be applied. This deduction is made in order to simplify complex problems into a specific
propositional logic problem. The SAT problem is the most well-known nondeterministic polynomial time
(NP) complete problem in computer science. It is a Boolean expression which is composed of a specific
amount of variables (literals), clauses that contain disjunctions of the literals and conjunctions of the clauses.
The literals have the logical values TRUE and FALSE, the task is to find a truth assignment that makes the
entire expression TRUE. The main goal of the thesis is to solve the SAT problem using a clustering technique
- Multilevel - combined first with Tabu Search and combined thereafter with finite Learning Automata. Tabu
Search and finite Learning Automata are two very efficient approaches that have been used to solve SAT.
Benchmark experiments are conducted in order to disclose whether combining Multilevel with existing
solutions to solve SAT will provide better results - than the two mentioned approaches alone - mainly in terms
of computational efficiency.
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1 Introduction

In this chapter the background of the problem is explained in detail. The problem is then stated, the
hypothesis, the motivation and the limitations and key assumptions. Finally a literature review is given followed
by a short outline of the rest of the thesis report.

1.1 Background

There are many complex problems in computer science that occur in knowledge-representation (artificial
thinking), artificial learning, Very Large Scale Integration (VLSI) design, security protocols and other areas.
These complex problems may be deduced into satisfiability problems where the Boolean Satisfiability Problem
(SAT) may be applied. This deduction is made in order to simplify a complex problem into a specific
mathematical problem. Once the deduction is made, one only needs to solve the SAT problem in order to
solve the more complex problem. Therefore, efficient ways to solve the SAT problem draw a growing
attention in the field of computer science.

One example application is the SAT-based analysis of protocol insecurity problems in [1]. In this paper, A.
Armando and L. Compagna from the University of Florence in Italy have managed to represent protocol
insecurity problems as SAT, and have built an automatic model-checker for security protocols based on SAT
solver algorithms. By doing this, they could use the model-checker to help solve the complex protocol
insecurity problems. Similatly, F. Guillaume presented in his paper the SAT representation of MU-calculus
over Petri Nets [2]. The model checking problem for Petri Nets has been known to be undecidable for almost
fifteen years [3]. Guillaume showed that this undecidability can be represented in SAT, making the problem
context much simpler.

The ability to represent a complex problem as a propositional logic problem such as SAT, makes things very
easy in terms of solving complexity - since one only needs to satisfy the set of logical values. As a result of this,
efficient ways to solve SAT are also important. There has been an increase in the development of SAT solver
algorithms. Two notable approaches to solve SAT are Tabu Search and finite Learning Automata, these two
approaches have recently been proved to be very efficient. However, there is no boundary on the efficiency
aspect and it is believed that the efficiency of the two latter approaches could still be increased. Because the
two mentioned approaches use a single level technique, which could be replaced by a multi level that gives a
better sampling of the solution space.
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1.2 Problem and Hypothesis

The SAT problem is a well-known nondeterministic polynomial time (NP) complete [1] problem in computer
science. It is composed of an N amount of literals, clauses that contain disjunctions of the literals and
conjunctions of the clauses. The literals can either have the value TRUE or FALSE. To solve the SAT
problem, the total set of clauses must give the value TRUE; it is then said that the problem is satistied. A SAT
problem with two literals, two clauses and two literals per clause is shown in figure 1.

Literal Disjunction Negation Conjunction

(x, OR (NOT x,)) AND ((NOT x,) OR x,)

Clanse l [Apply solving algorithm]
(TRUE OR (NOT TRUE)) AND ((NOT TRUE) OR TRUE)

Figure 1: The Boolean Satisfiability Problem. After solving SAT, all clauses get the logical value TRUE.

The problem is represented as the following propositional formula:

1]

O=A"C

Cj= \/Xk \Y4 I\ZK
elj

kEIJ

Where C i is the disjunction of literals, M is the number of clauses, N is the number of literals and X; is a

literal, 7 €' {1, .. n}. I T S {1, .. n}, N [} = @ and X, denotes the negation of X; . The assignment is satisfied

if the propositional formula @ evaluates to TRUE. This formula representation can be found in [3].

As the growing need of efficient ways to solve SAT continues, it is in this paper hypothesised that combining
the Multilevel technique with existing approaches will drastically increase efficiency of solving SAT. The reason
to this is that the Multilevel technique simplifies the problem drastically by clustering literals together. Tabu
Search and Finite Learning Automata are two existing approaches (see [13] and [3], respectively) which have
been proved to be very efficient methods to solve SAT, therefore these two approaches have been chosen to
be combined with the Multilevel technique, in order to prove if combining Multilevel will increase the
efficiency to solve SAT or not. This combination will create the Multilevel Tabu Search and Multilevel
Learning Automata algorithms.

1.3 Importance of Topic

Many complex problems in computer science can be simplified by representing them in SAT, therefore SAT is
very important for helping solve complex problems in computer science and has played a major role. One
example application is the SAT-based analysis of protocol insecurity problems in [4]. In this paper, A.
Armando and L. Compagna from the University of Florence in Italy have managed to represent protocol
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insecurity problems as SAT, and have built an automatic model-checker for security protocols based on SAT
solver algorithms. By doing this, they could use the model-checker to help solve the complex protocol
insecurity problems. Similarly, F. Guillaume presented in his paper the SAT representation of MU-calculus
over Petri Nets [5]. The model checking problem for Petri Nets has been known to be undecidable for almost
fifteen years [6]. Guillaume showed that this undecidability can be represented in SAT, making the problem
context much simpler.

The ability to represent a complex problem as a propositional logic problem such as SAT, makes things very
easy in terms of solving complexity - since one only needs to satisfy the set of logical values. As a result of this,
efficient ways to solve SAT are also important. There has been an increase in the development of SAT solver
algorithms. Two notable approaches to solve SAT are Tabu Search and finite Learning Automata, these two
approaches have been proved to be very efficient. However, there is no boundary on the efficiency aspect and
it is believed that the efficiency of the two mentioned approaches could still be increased. Because these two
approaches use a single level technique, which could be replaced by a multi level that gives a better sampling of
the solution space. Therefore, combining Multilevel technique with these two existing methods may increase
the efficiency of using them alone.

If the hypothesis is proved to be true, the research will introduce a new, more efficient way of solving SAT by
introducing the Multilevel technique. For example, combining Multilevel with Tabu Search or combining
Multilevel with finite Learning Automata will become the new, more efficient way to solve SAT.

1.4 Motivation

If the problem is solved, the research will introduce a new, more efficient way of solving SAT by introducing
the Multilevel technique. Adding a new algorithm approach to the collection of solver algorithms is a step
further of solving complex problems that can be represented as SAT, and an advancement in the science of

SAT.

If however not solved, the work will be used further for research. Continuing the research will no doubt
improve the proposed solutions in this thesis.

1.5 Limitations and Key Assumptions

The implementation of our proposed Multilevel Tabu Search and Multilevel Learning Automata algorithms
will be done in the C++ programming language. Although Tabu Search and Learning Automata algorithms
may require much work to be implemented very efficiently in C++, they will still be implemented in this
research, because the efficiencies of these two algorithms have to be used to compare with the efficiencies of
the two new proposed algorithms. However, we cannot state with 100 % certainty that the combination of the
Multilevel technique is the reason to the efficiency increase or decrease. That is because personal programming
experiences might have side effects on the implementation results. The implementation will also prove difficult
due to the nature of the context, thus a clear understanding of the problems prior to implementation is a vital
step.

The Multilevel technique is assumed to increase the efficiency of existing SAT solver algorithms, for example,
Tabu Search and Learning Automata. However, if this hypothesis is disproved, then the implementation will
need to be revised and fixed. Attempts will be made to find out the cause, it is expected that this part will take
a significant amount of time. If the hypothesis is disproved and also no reasonable cause could be found, then
a discussion will be engaged as to why this happened. Ideas for further work will also be provided.

10
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1.6 Contributions to Research

Potential outcomes of the research are summarized in the list below.

e Simplification of SAT instances prior to solving them by using the Multilevel clustering technique,
because literals can be clustered together. This allows metaheuristic algorithms to handle clusters of
literals as a single entity, making the search space guided and restricted to only those literals within the
clusters. This offers a better sampling of the solution space compared to single level computations.

e Increase in SAT solving efficiency. Applying the Multilevel clustering technique will increase the
efficiency of solving SAT instances; this is due to the previous bullet point.

e Introduction of two new, efficient SAT solver algorithms. Given that the hypothesis is proved, the
thesis will introduce two, new SAT solver algorithms; Multilevel Tabu Search and Multilevel Learning
Automata. Based on the properties of Multilevel, these two new algorithms will be more efficient than
their predecessors.

1.7 Literature Review

Many complex problems have been successfully represented as SAT, equally many efficient algorithms have
been implemented to solve the latter and the state-of-the-art is very wide. The focus here is on the literature of
two specific (as an example) complex problems and the most popular solver algorithms for SAT; local search
algorithms. This chapter gives a quick review of all the relevant papers, while chapter 2 provides an in-depth
explanation of each.

In their paper, The SAT-based Analysis of Protocol Insecurity Problems [1], A. Armando and L. Compagna
from the University of Florence in Italy managed to represent protocol insecurity problems as SAT, in an
attempt to build an automatic model-checker for security protocols based on SAT solver algorithms. Similarly,
F. Guillaume presented in his paper the SAT representation of MU-calculus over Petri Nets [2]. The model
checking problem for Petri Nets has been known to be undecidable for almost fifteen years [3]. Guillaume
showed that this undecidability can be represented in SAT, making the problem context simpler.

B. Selman, H. Levesque and D. Mitchell presented in their paper a new method for solving hard SAT
problems; GSAT [7]. GSAT is one of the most popular local search algorithms that has been used to solve
SAT. B. Selman, Henry A. Kautz and B. Cohen made an extension of GSAT; GSAT with Random Walk [8]
with the purpose of escaping local optima, thus preventing stagnation. Another variant of GSAT is Walk SAT
[9], introduced by D. McAllester, B. Selman and H. Kautz.

W. M. Spears presented in his paper the Simulated Annealing (SASAT) [12] algorithm which managed to scale
up better as the number of literals increased and managed to solve many hard SAT instances with little effort.

A.E. Eiben and J.K. van der Hauw from Leiden University in The Netherlands presented in their paper a way
of adapting Genetic Algorithms [13] (GAs) that increases GAs' performance of solving 3-SAT (3 literals pr.
clause) instances. This adaptation called Stepwise Adaptation of Weights (SAW).

B. Mazure, L. Sais and E. Gregoire presented in their paper the Tabu Search (TSAT) [14] algorithm.

Associate professors O-C. Granmo and N. Bouhmala from the Univeresity of Agder and Vestfold University
College in Norway wrote the first paper on combining finite Learning Automata with traditional Random Walk

algorithm [6] to solve SAT.

B. Cha and K. Iwama presented in their paper [15] a way of assigning weight values to SAT clauses. J. Frank
wrote an extensive study on the same method in his paper [10].

11
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P. Hansen and B. Jaumand, I. Gent and T. Walsh presented in their papers [25, 26, 27] algorithms using history
based literal selection strategies.

1.8 Thesis Report Outline

The rest of the thesis report is structured as follows:

In chapter 2 the theoretical background of the problem is given. Here the state-of-the-art is discussed in detail
giving an insight of the background and prior work. Significant prior work is discussed in this chapter.

In chapter 3 the proposed solutions are discussed. An in-depth explanation of the solutions is provided here
including the pseudo-code of each proposed solution, and the best solutions are then selected in this chapter.

In chapter 4 the experimental results are presented in the form of running benchmark tests and a comparative
analysis of the algorithms is made.

In chapter 5 the experimental results of the algorithms from chapter 4 are discussed in detail, focusing on
efficiency among other factors.

In chapter 6 a brief look is made on the problem, the proposed solutions to the latter and the outcome of the
experimental results. The hypothesis and further work are also briefly discussed in this chapter.

12
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2 Significant Prior Research

The focus in this chapter is on significant prior work. Efficient methods that have been used to solve SAT will
be explained in the following sections. Local search algorithms have been widely used to solve SAT. This is
due to their ability to give up completeness. Since SAT is NP-complete, local search algorithms are therefore
appropriate to use in contrast to systematic search algorithms which are guaranteed to return a solution to a
problem, or otherwise prove it unsolvable. In the following chapters, the focus will be on these.

2.1 Solving SAT Using GSAT

GSAT is one of the most famous local search algorithms that have been used to solve SAT. B. Selman, H.
Levesque and D. Mitchell introduced GSAT in their paper as a new method for solving hard satistiability
problems [7]. GSAT randomly assigns TRUE values to the literals, it then flips the assignment of the literals
that lead to the largest increase in the total number of satisfied clauses. The flips are repeated until either the
problem is solved or a maximum number of flips (MAX-FLIPS) is reached. The process is repeated up to a
maximum number of tries (MAX-TRIES). So basically, GSAT performs greedy local search. The pseudo code
below shows the GSAT procedure.

Procedure GSAT
for i:= 1 to MAX-TRIES
T := a randomly generated TRUE assignment
for j:= 1 to MAX-FLIPS
if T satisfies set_of_clauses then return T
p := a propositional value such that a change
in its TRUE assignment gives the largest
increase in the total number of clauses
of set_of_clauses that are satisfied by T
T := T with TRUE assignment of p reversed
end-for
end-for
return "no satisfying assignment found"
End

A comparative analysis of GSAT and Davis-Putman (DP) [10] was made in [7]. The latter is a systematic
search algorithm which does a backtracking search on all TRUE assignments, assigning values to each literal. It
returns a solution to the problem if it exists and does not give up completeness. For more on systematic
searching, the reader is referred to [10]. From the results that can be seen in [7], GSAT is clearly better than
DP. The former is faster than the latter in terms of efficiency and since the latter is a systematic search
algorithm, it does not even return a solution to problems it cannot solve.

13
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2.1.1 GSAT with Random Walk

An extension of GSAT is GSAT with Random Walk [8]. The idea of this extension is to escape local optima
and avoid stagnation. When a random walk move is made, a randomly unsatistied clause is selected, then one
of the literals in the clause is flipped thus satistying the selected clause. The idea is to decide at each step
whether to perform a GSAT or Random Walk move. As can be seen in [8], GSAT with Random Walk solves
more problems than its predecessor and doing so more efficiently.

2.1.2 Walk SAT

Another variant of GSAT is Walk SAT [9], introduced by D. McAllester, B. Selman and H. Kautz. Walk SAT
maintains a "break count” associated with each literal. The break count is the number of clauses that would be
unsatisfied by flipping the literal associated with that break count. An unsatisfied clause is first randomly
picked, then the literal with the lowest break count is then randomly selected. One of the other literals in the
clause may also be selected with a certain probability. The random picking of unsatisfied clauses and the
random selection of literals inside helps Walk SAT to escape local optima and avoid stagnation. This also adds
to the exploration factor of the search space.

B. Ferris and J. Froehlich from the University of Washington in the US made a comparative analysis of Walk
SAT and a systematic search algorithm called DPLL [11] DPLL enumerates all possible assignment models in
the search space. For more on the latter, the reader is referred to [11]. As can be seen in [9], the ISR of Walk
SAT is relatively low in normally distributed and hard random problems. It can also be observed that DPLL
has a harder time solving SAT instances than Walk SAT. As the clause/literal ratio increases, DPLL is
gradually weakened whilst Walk SAT manages to solve the problems.

2.2 Solving SAT Using Simulated Annealing

Simulated Annealing [12] is an algorithm that outperformed GSAT [7] in the context of neural networks.
Dropping the latter and focusing on SAT, the algorithm is deduced into SASAT. SASAT has a structure which
is similar to GSAT, the pseudo code below shows the SASAT procedure.

Procedure SASAT
Input: number_of_clauses, MAX_TRIES, MAX_TEMP, MIN_TEMP
Output: T
1= 0 tries=0
while (tries < MAX_TRIES) do
randomly assign TRUE/FALSE values to the literals
T = number_of_trues
while (T < number_of_clauses) do

temperature = MAX _ TEMP x g~ decv-rate

if (temperature < MIN_TEMP) then break
for v=1 to number_of _literals

flip v

Compute gain

flip v

flip v with probability o
1+ e temperature

if v was flipped then update T
end-for
j++ tries++
end-while

14
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it++
end-while
End

The outer while-loop generates a random solution for every iteration, this provides independent attempts at
solving the problem. The temperature is set to MAX TEMP for every iteration. The inner while-loop
probabilistically updates the number of TRUE clauses based on the gain provided by the flip. Based on the
function - which is the standard logistic function for simulated annealing - used, if the gain is positive then the
flip is likely to be performed. Likewise, if the gain is negative then the flip is unlikely to be performed. The
temperature measure is used to control the moves of SASAT. If the temperature is high, the moves are almost
random. If the temperature is low, then the moves are similar to those of GSAT. As j increases, the
temperature decreases according to the decay rate. When MIN_TEMP is reached, i is incremented and the
algorithm tries again to solve the problem by randomly assigning TRUE/FALSE values to the literals. The
decay rate is set as follows:

1
decay _rate =- -
ixnumber _of _literals

Each time i is increased, the decay rate is decreased. Reducing the decay rate for every iteration of the outer
while-loop allows the algorithm to perform more flips during each iteration of the inner while-loop.
MAX_TEMP is set to 0.3 and MIN_TEMP to 0.01 [12]. What is desired here is to reduce the number of
independent attempts to be able to search thoroughly during each given attempt. This is possible by increasing
the temperature or decreasing the decay rate. According to Spears, it is not clear whether it is better to make
more independent attempts or to search thoroughly during each attempt.

It was difficult for Spears to make a proper comparison between SASAT and GSAT because of the metrics
used for measurement. However, using a combination of gains and flips, Spears was able to illustrate that
SASAT scaled better on larger problems while GSAT had an advantage on easier problems [12]. SASAT
managed to solve a higher percentage of problems doing fewer flips, while GSAT solved only few problems.

Since a proper comparison between the algorithms was difficult to make, Spears made a slight modification to
SASAT to make it more similar to GSAT by using a zero temperature logistic function [12]. Spears then
compared SASAT, zero temperature SASAT and GSAT. Zero temperature SASAT did indeed behave like
GSAT, and it was observed that SASAT outperformed zero temperature SASAT, consequently outperforming
GSAT.
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2.21 SASAT with Random Walk

Similar to GSAT, SASAT is enhanced with a Random Walk approach. Recall that the purpose of Random
Walk is to allow the algorithm to escape local optima (by randomly choosing an unsatisfied clause and
randomly flipping a literal inside that clause), the same occurs in SASAT having the following modification to
the algorithm:

flip v with probability p

probability p{

if v is in an unsatisfied clause then return 1.0

else return 0.0

}
else probability 1 - p{

1
__gain

1+e temperature

return

So with probability p, if the literal is inside an unsatisfied clause, it is flipped. Otherwise, it is not flipped. With
probability 1 - p, the standard logistic function is used. Doing this, the random walk moves are focused on the

1
- (12
number _of _literals

clauses that are difficult for the algorithm to handle. p is set to

This modification of SASAT slightly increased the performance of the algorithm, however according to Spears
it is not clear whether the random walk, the annealing schedule or a combination of the two is the reason to
the performance increase. This remains to be investigated in the future.

2.3 Solving SAT Using Adaptive Genetic Algorithms

Genetic Algorithms (GAs) have a challenge solving NP-complete problems such as SAT. Much of the
challenge is due to constraints that make finding solutions to the problems difficult. A. E. Eiben and J. K. van
der Hauw presented in their paper [13] a way of adapting constraints in the form of weights in order to solve
3-SAT problems. They called this method Stepwise Adaptation of Weights (SAW). They proved in their paper
that using this metho