
This Master’s Thesis is carried out as a part of the education at the

University of Agder and is therefore approved as a part of this education.

University of Agder, 2011 May

Faculty of Engineering and Science

Department of Information and Communication Technology

Time estimation for large scale of data

processing in Hadoop MapReduce scenario

Li Jian

Supervisors

Anders Aasgaard , Jan Pettersen Nytun

Abstract

The appearance of MapReduce technology gave rise to a strong blast in IT industry. Large
companies such as Google, Yahoo and Facebook are using this technology to facilitate
their data processing[12]. As a representative technology aimed at processing large dataset
in parallel, MapReduce received great focus from various organizations. Handling large
problems, using a large amount of resources is inevitable. Therefore, how to organize them
effectively becomes an important problem. It is a common strategy to obtain some learning
experience before deploying large scale of experiments. Following this idea, this mater
thesis aims at providing some learning models towards MapReduce. These models help us
to accumulate learning experience from small scale of experiments and finally lead us to
estimate execution time of large scales of experiment.

Preface

This report is the master thesis report in spring semester 2011. The topic derived from
Devoteam, a well-known IT consulting company in south Norway. The main goal of this
thesis is to discover how we can use cloud computing effectively. We choose the represen-
tative technology MapReduce as our research target.

Both cloud computing and MapReduce are complicated concepts. Through one semester’s
study and experiment, we came up with some learning models to make MapReduce serve
us in a better way. MapReduce is truly a useful and practical technology to process large
scale of data. It can solve some complicated enterprise level problems in an elegant way.

Last but not the least,I would like to thank my supervisors Anders Aasgaard and Jan P.
Nytun for their careful and patient supervision. Due to their efforts, I got a lot of construc-
tive ideas in doing experiments and academic report writing. Big thanks to them.

Grimstad Norway
January 2011
Li Jian

1

Contents

Contents 2

List of Figures 4

List of Tables 6

1 Introduction 7
1.1 Problem definition . 7
1.2 Research goals and facilities . 8
1.3 Thesis outline . 9
1.4 Constraints and limitations . 9

2 Prior research 10
2.1 Methodology . 10
2.2 Parallel computing . 11

2.2.1 Common network topologies . 11
2.2.2 Granularity . 13
2.2.3 Speedup . 13

2.2.3.1 Compute speedup by execution time 13
2.2.3.2 Compute speedup by Amdahl’s Law 14
2.2.3.3 Scaling behavior . 16

2.2.4 Data synchronization . 16

3 Research target:Hadoop MapReduce 17
3.1 Mechanism . 17

3.1.1 Job hierarchy . 18
3.1.2 Job execution workflow . 19
3.1.3 Hadoop cluster hierarchy . 21
3.1.4 Traffic pattern . 22

2

CONTENTS

3.2 Supportive platform:Hadoop Distributed File System 24
3.3 Key feature:speculative execution . 24
3.4 Hadoop MapReduce program structure . 25
3.5 MapReduce applications . 26
3.6 Experiment plan . 27

4 Proposed models and verification 28
4.1 Assumptions . 28
4.2 Key condition:execution time follows regular trend 29

4.2.1 The effect of increasing total data size 30
4.2.2 The effect of increasing nodes . 31

4.2.2.1 Speedup bottleneck due to network relay device 33
4.2.2.2 Speedup bottleneck due to an Http server’s capacity . . . 35
4.2.2.3 Decide boundary value 36
4.2.2.4 Summary . 37

4.3 Wave model . 38
4.3.1 General form . 39
4.3.2 Slowstart form . 41
4.3.3 Speedup bottleneck form . 42
4.3.4 Model verification for general form 44
4.3.5 Model verification for slowstart form 46

4.4 Sawtooth model . 47
4.4.1 General form . 48
4.4.2 Model verification for general form 49

4.5 Summary . 50

5 Discussion 51
5.1 Scalability analysis . 51
5.2 The essence of wave model and sawtooth model 53
5.3 Extend models to more situations . 53
5.4 Deviation analysis . 54
5.5 Summarize learning workflow . 56

6 Conclusion 57

A Raw experiment results 58

Bibliography 62

3

List of Figures

2.1 Problem abstraction. 10
2.2 A star network:each circle represents a node. 12
2.3 Typical two-level tree network for a Hadoop Cluster [30] 12
2.4 Speedup computation example[1] . 14
2.5 Parallelizable and non-Parallelizable work 15
2.6 Amdahl’s Law limits speedup [1] . 15
2.7 Scaling behavior . 16

3.1 Google use mapreduce . 17
3.2 Job Hierarchy . 18
3.3 map and reduce function [6] . 18
3.4 The workflow of WordCount . 18
3.5 MapReduce cluster execution workflow [6] 19
3.6 MapReduce partitioner[18] . 20
3.7 Disambiguate concepts in reduce phase 21
3.8 Hadoop cluster hierarchy . 22
3.9 Traffic pattern:servers and fetchers are the same set of nodes. 22
3.10 Intermittent copy . 23
3.11 Speculative execution . 25
3.12 MapReduce program structure . 25
3.13 Distributed sort scenario: the vertical bar stands for a key. 27

4.1 Simplified MapReduce workflow: a grid represents a task 28
4.2 Scenario of expanding the network . 32
4.3 Models to describe a MapReduce job . 32
4.4 Bottleneck due to limitation on shared resources 32
4.5 Three data fetching behaviors . 34
4.6 Expand two-level network . 35

4

LIST OF FIGURES

4.7 Boundary detection experiment illustration 36
4.8 The illustration of concept “wave” . 39
4.9 General form of wave model . 39
4.10 Slowstart . 41
4.11 Slowstart analysis model . 41
4.12 Partial copy . 43
4.13 Downgraded full copy . 43
4.14 Map wave of WordCount. 45
4.15 Reduce wave of WordCount. 45
4.16 Once-and-for-all copy[23] . 46
4.17 Current slowstart copy pattern . 47
4.18 Proposed new copy pattern . 47
4.19 Sawtooth model . 48
4.20 Map sawtooth of WordCount. 49
4.21 Reduce sawtooth of WordCount. 49

5.1 Periodical workload . 54
5.2 A deviation situation. 55
5.3 Not all tasks are launched at the same time[23] 55

5

List of Tables

4.1 Notations for general form of wave model 40
4.2 Notations for slowstart form of wave model 42
4.3 Verify wave model for WordCount program 45
4.4 Verify wave model for Terasort program 45
4.5 Verify wave model for slowstart form . 46
4.6 Verify sawtooth model for WordCount program 49
4.7 Verify sawtooth model for Terasort program 49

5.1 Execution time for WordCount program(unit:sec) 52
5.2 Execution time for Terasort program(unit:sec) 52

A.1 WordCount,929MB,4nodes . 58
A.2 WordCount,1.86GB,4nodes . 58
A.3 WordCount,929MB,8nodes . 58
A.4 WordCount,1.86GB,8nodes . 59
A.5 WordCount,3.72GB,16nodes . 59
A.6 Terasort,2GB,4nodes . 59
A.7 Terasort,4GB,4nodes . 60
A.8 Terasort,2GB,8nodes . 60
A.9 Terasort,4GB,8nodes . 60
A.10 Terasort,8GB,16nodes . 61

6

Chapter 1

Introduction

The advent of cloud computing has triggered a tremendous trend on its research and prod-
ucts development. Basically, it is a network-based computing [5]. It combines technologies
such as virtualization, Distributed File System, Distributed computing and so on to make
it a very powerful resource pool. As a representative technology in cloud computing er-
a, MapReduce also attracted great attention from both industry and academic institutions.
Simply speaking, MapReduce is a programming model targeted at processing large scale
of data in a parallel manner. “Large scale” refers to a dataset that may exceed terabyte or
even petabyte. Facing with such a huge dataset, how to estimate its execution time under
certain amount of hardware and how to customize just-enough hardware under certain bot-
tleneck is quite important . As data size and computing nodes grow, how is the execution
time curve like and how we tune our program to make it predictable are also important
questions.

1.1 Problem definition

Based on the knowledge above, we describe our research problem to be estimating the
execution time for large scale of dataset processing through small scale of experiment.
Namely, given a huge dataset and sufficient machines, we aim to estimate its execution
time by sampling a part of data and using a part of available machines.

Basically, our work is a practice of learning theory. We learn from completed experi-
ments and apply this learning experience to new experiments. Our main problem generates
the following subproblems:

7

CHAPTER 1. INTRODUCTION

• How does MapReduce parallelize a problem?

• What effect comes into being once we increase total data size and computing nodes?
And how does MapReduce handle these effect?

• What approximation and assumptions do we need to achieve our estimation?

In parallel computing, communication and data synchronization are complicated prob-
lems, so it is the same with scheduling and coordination. Unlike traditional parallel pro-
gramming model MPI(Message Passing Interface) [21], MapReduce shifts its focus from
parallelizing a problem via point-to-point communication to designing basic task unit. How
MapReduce simplifies parallel programming will be illustrated in Chapter 3. Further more,
what factors may bring about bottleneck for parallelism will also be revealed.

1.2 Research goals and facilities

Our main goal is to propose convenient models to learn Hadoop MapReduce effectively.
These models guide us on what to learn and how to apply learning experience on new
experiments.

We use Amazon’s cloud service Elastic Computing Cloud(EC2)[7] to accomplish our
experiments. EC2 is an infrastructure service which provides virtual machines for cus-
tomers. All virtual machines we use are 1.7 GB of memory, 1 EC2 Compute Unit,which
is equivalent to 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor [15]. Except virtual
machine’s performance, Amazon also has guarantee on the network connection and point-
to-point bandwidth [3].

We use on-demand virtual servers from Amazon. This service allows us to terminate
virtual servers immediately after we finish our computation tasks. Standing at customer’s
view, it saves cost. But one problem is each time we start a new cluster environment, the
network topology can not stay the same with the previous network. As servers are virtual-
ized, network is also virtualized, therefore changes to virtual servers introduces change to
network. Because of various concerns, cloud providers normally prohibit customers prob-
ing network topology. But their ensurance on point-to-point bandwidth provides a good
reason to divert customers’ attention away from this aspect.

8

CHAPTER 1. INTRODUCTION

1.3 Thesis outline

Up till here, we have described research problem and experiment environment in detail.
Chapter 2 will mainly introduce necessary theories that will help us solve our research
problem. Chapter 3 gives a detailed introduction about our research target Hadoop MapRe-
duce. It’s mechanism will be elaborated. In Chapter 4, we deepen our understanding of
Hadoop MapReduce by proving a key proposition. Then we propose two models to solve
our research problem. Chapter 5 is Discussion chapter, which gives a detailed analysis of
our experiment results. Chapter 6 is Conclusion chapter, which can be seen as a summary
of our research work.

1.4 Constraints and limitations

MapReduce is a network based programming model. The more computing nodes, the more
complex the network is. In order to simplify our problem, we limit computing nodes to be
less than 1024. The reasons that we choose 1024 as our boundary include:(1) According to
IEEE 802.3i standard(10BASE-T)[14] , a star network can accommodate 1024 nodes. (2)
Star network is simple to achieve and a network of 1024 nodes can do a great many things
for an enterprise. Further more, Yahoo has experimented Terabyte sort program on more
than 1406 nodes[24]. As of 15 May 2010, Yahoo has used 3452 nodes to finish 100TB’s
sort within 173 minutes[10]. Because most of our research is based on star network, we
suppose limiting the number of nodes to be 1024 is necessary and reasonable.

This thesis is not working on actual enterprise problems. Therefore, the experiment
data is generated by some tools. Because of budget limitation, we are not able to work on a
real “huge” dataset and a very big number of machines. We just use our current experiment
and theoretical analysis to prove our models and other conclusions are reasonable.

Since we use virtual servers from Amazon, the network is maintained by Amazon. Due
to the limitation set by Amazon ,we couldn’t configure proper experiment environment for
some special situations. In other words, our experiments can only support a part of analysis
and conclusions. But we will use proper assumptions, math and other knowledge to support
other analysis and conclusions.

9

Chapter 2

Prior research

2.1 Methodology

Before stepping into our problem, we present a further problem abstraction. This abstrac-
tion is shown in the following Figure 2.1. Right now, our problem becomes experimenting

Figure 2.1: Problem abstraction.

the dark area in Figure 2.1 and then estimating T (m,n), where m represents the number of
computing nodes and n denotes data size, eg. we can define n = 1 as 1GB’s data.

Figure 2.1 gives us hint that execution time T can be expressed as a function T (nodes,

size), where variable nodes stands for the number of parallel nodes and size stands for the
size of input data . If T (size, nodes) can be generated through small scale of experiment,
and most importantly the trend of T is regular, then we can use it to estimate execution time
given a certain size and nodes. Our strategy is to fix nodes and then compute T (size).
Similarly, we attempt to get T (nodes) by fixing size. Finally, we combine these two
functions together to form T (size, nodes).

In fact, T (size) here is another format of time complexity. T (nodes) measures when
nodes changes how execution time T changes. This change is often described by speedup.

10

CHAPTER 2. PRIOR RESEARCH

We assume readers to this thesis already have some knowledge about time complexity.
Therefore, we only introduce speedup theory in the following section.

2.2 Parallel computing

Parallel computing aims at shortening the execution time of a problem by distributing com-
putation tasks to multiple computing nodes. Parallel algorithms must be designed to make
it work. The designers must consider communication, load balancing, scheduling and da-
ta synchronization across nodes. Comparing with sequential execution, these complicated
problems often cause headache for designers. How Hadoop MapReduce solves these prob-
lems will be covered in Chapter 3.

The performance of a parallel system is measured by speedup. Mature theories such
as Amdahl’s Law[1] and Gustafson’s Law[11] provide useful guidance for our research.
Similar to any parallel architectures, data synchronization is also a big problem for Hadoop
MapReduce. The next few sections will cover speedup,data synchronization and other
important issues in detail.

2.2.1 Common network topologies

Parallel computing can be classified into many categories. A distributed cluster environ-
ment is a way of achieving parallel computing, where each node has independent processor
and memory and they communicate through network. Data exchange is a very frequen-
t activity over the network. Therefore, network topology plays a very important role for
cluster-based parallel computing.

In order to facilitate the following description, we emphasize an important concept:
point-to-point bandwidth. It describes the transmission speed between one computer and
another computer.

Topologies such as star network, tree network and mesh network can be used for parallel
computing. The simplest star network showed in Figure 2.2 is that each node is directly
connected to a central device such as a switch or router but no pair of nodes has direct
connection. In such a network, data communication between nodes is handled by a central
device. Its performance decides the performance of the network.

In fact, data centers often organize a group of servers on a rack and one rack normally

11

CHAPTER 2. PRIOR RESEARCH

Figure 2.2: A star network:each circle represents a node.

contains 30-40 servers. One rack has a centralized switch in connection with those servers.
This topology on a rack is a star topology. Different racks are connected via anther level of
switch. Thus several star networks compose a tree network, which is shown in Figure 2.3.

Figure 2.3: Typical two-level tree network for a Hadoop Cluster [30]

Considering this two-level tree network, the point-to-point bandwidth available for each
of the following scenarios becomes progressively less[30]: (1) Different nodes on the same
rack; (2) Nodes on different racks in the same data center.

For an infrastructure owner, he can build a star, mesh or tree network according to his
will. But in a public cloud1, different vendors may adopt different topologies. Due to vari-
ous concerns such as security, commercial secrets and so on, they often don’t let customers
know what exact physical topologies they use. For example, Amazon Web Service allows
users to build a virtual cluster, but it is banned to trace its network topology. Amazon just
has a guarantee to customers that it ensures a certain point-to-point bandwidth. How the
bandwidth is allocated and its relationship to network topology are unknown to customers.

1Public cloud is a form of cloud computing that vendors provide computing service to customers but hide
technology details.

12

CHAPTER 2. PRIOR RESEARCH

2.2.2 Granularity

Granularity means the size of a basic operation unit that we take into consideration. Coarse-
grained systems consist of fewer, larger units than fine-grained systems [9]. For a parallel
algorithm, a basic operation such as addition, subtraction and multiplication can be seen as
a basic computing unit. For data parallelism, the size of evenly partitioned data unit can
serve as a granularity unit. The larger a data split is, the coarse-grained it is.

2.2.3 Speedup

Speedup is an important measurement criteria to the performance of a parallel system. It
measures how faster a parallel system performs than a sequential execution scheme[8]. It
is widely applied to describe the scalability of a parallel system [17, 29]. Amdahl’s Law[2]
provides a method to compute speedup by workload, but it can also be computed through
execution time. This section gives a detailed introduction of speedup and its relationship
with our research.

2.2.3.1 Compute speedup by execution time

Speedup is a concept that only applies to parallel system. Its original definition is the ratio
of sequential execution time to parallel execution time[8] which is defined by the following
formula:

S(n) =
T (1)

T (n)
(2.1)

where:

• n is the number of processors. We assume one node has one processor, thus the
number of computing nodes equals processors.

• T (1) is sequential execution time, namely using one node. T(1) is the reference
standard or baseline to compute speedup.

• T (n) is the parallel execution time when running n nodes.

Theoretically, T (1) is a necessary component to compute speedup, however, as far as
enormous computation work is concerned, we normally don’t do such a heavy experiment
on a single machine. There are two strategies to handle this: (1) use a bundle of machines
and take the bundle as baseline; (2) estimate T (1) by small scale of experiment on one
node.

13

CHAPTER 2. PRIOR RESEARCH

Considering several consecutive phases and each phase is parallelizable, we should
compute speedup for each phase separately and then merge them to be the final speedup.
Denote Tpi as execution time for the ith phase, we can use the following equation to com-
pute speedup:

if T (1) = Tp1 + Tp2 + ... + Tpk

then T (n) =
Tp1

S1(n)
+

Tp2

S2(n)
+ ... +

Tpk

Sk(n)

S(n) =
T (1)

T (n)
=

Tp1 + Tp2 + ... + Tpk

Tp1

S1(n)
+ Tp2

S2(n)
+ ... +

Tpk

Sk(n)

(2.2)

Equation 2.2 tells us the final speedup is computed through subcomponents (S1(n),

S2(n), .., Sk(n)). We can view the vector (Tp1, Tp2, .., Tpk) as the weight of vector (S1(n),

S2(n), .., Sk(n)).

In order to enhance our readers’ understanding, we provide an example in Figure 2.4[1].
Assume part A and B must be executed sequentially, part A takes 80% of the whole time
and part B only occupies 20%. If we accelerate part A 4 times and part B 2 times ,the final

speedup is (0.8 + 0.2)/(
0.8

5
+

0.2

2
) = 3.8. From this example we see that, the larger the

weight of a phase is, the more influence it has on the final speedup.

Figure 2.4: Speedup computation example[1]

2.2.3.2 Compute speedup by Amdahl’s Law

Functioning the same as the formula 2.1, Amdahl’s Law defines speedup from another
angle. This law describes speedup S as follows:

S =
Ws + Wp

Ws + Wp/n
(2.3)

where:

• n is the number of computing nodes;

• Ws represents the non-parallelizable work of the total work.

• Wp refers to the parallelizable work of the whole work;

14

CHAPTER 2. PRIOR RESEARCH

The key to understand Amdahl’s Law is to make sense of Ws and Wp. Figure 2.5 shows
their difference.

Figure 2.5: Parallelizable and non-Parallelizable work

Amdahl’s Law has a different form with Formula 2.1, but in fact they are consistent.
Assume each processor has the same processing speed V , then the T (1) = Wp+Ws

V
and

T (n) = Wp/n

V
+ Ws

V
. Replacing T (1) and T (n) in Formula 2.1 naturally derives Amdahl’s

Law.

The importance of Amdahl’s Law is that it classifies work to be parallelizable work
and non-parallelizable work. This strategy further reveals the upper bound of a parallel
system. As n approaches infinity, S approaches Ws+Wp

Ws
, which is the maximum speedup

of a system[2]. On the other hand, if we know the ratio of parallelizable work to the
whole work, the maximum speedup can be calculated. For instance, if parallelizable work
occupies 95% of the whole work, then maximum speedup is 20. Figure 2.6 shows Amdahl’s
Law lays limitation on speedup.

Figure 2.6: Amdahl’s Law limits speedup [1]

15

CHAPTER 2. PRIOR RESEARCH

2.2.3.3 Scaling behavior

Generally speaking, there are three types of scaling behaviors. They are super-linear scal-
ing, linear scaling and sub-linear scaling. These three scaling behaviors are described in
Figure 2.7. They actually described three speedup patterns. Speedup is calculated by he
gradient of each line in Figure 2.7. Super-linear scaling means speedup is growing up, and
sub-linear scaling means speedup is decreasing and linear scaling means speedup is kept
the same.

Figure 2.7: Scaling behavior

2.2.4 Data synchronization

Data synchronization aims at keeping consistency among different parts of data[28]. We
use traditional WordCount algorithm to illustrate this. Assume there is a huge dataset, the
size of which is much greater than the memory of our available computer. In a typical
traditional WordCount algorithm, we make key/value pair (wordi, 1) for wordi that we
encounter for the first time. Then we store it on hard disk. When we meet wordi for the
second time, we query the position of wordi on hard disk and then load it to memory and
plus one to its value. Thus its key/value pair becomes (wordi, 2). Similarly, the kth time
we meet wordi, its key/value pair becomes (wordi, k). That is to say, pairs (wordi, value1)

and (wordi, value2) are put together and merged to be (wordi, value1 + value2). In this
scenario, placing the pairs with the same key together is data synchronization. It helps us
merge data. The problem with this traditional algorithm is there are too many queries. This
data synchronization gives rise to a large amount of workload. In Hadoop MapReduce,
how this heavy workload is relived is covered in Chapter 3 Section 3.1.2 Job execution
workflow.

16

Chapter 3

Research target:Hadoop MapReduce

MapReduce is programming model aimed at large scale of dataset processing. It originated
from functional language Lisp. Its basic idea is to connect a large number of servers to
process dataset in a parallel manner. Google started using this technology from the year
2003. Thousands of commodity servers can be connected through MapReduce to run a
computation task. Figure 3.3 shows Google’s use of MapReduce in 2004.

Figure 3.1: Google use mapreduce

3.1 Mechanism

The execution workflow of MapReduce has been elaboratively described in Jeffrey Dean’s
paper [6]. Although it covered the core workflow, it didn’t cover the architecture and
deployment. Therefore, we choose a bottom-to-top strategy to show the whole view of
Hadoop MapReduce. However, we should emphasize that Google MapReduce and Hadoop
MapReduce are not the same in every aspect. As an open source framework inspired
by Google MapReduce, Hadoop MapReduce implemented most of the characteristics de-
scribed in Jeffrey Dean’s paper [6], but it still has some features of its own.

17

CHAPTER 3. RESEARCH TARGET:HADOOP MAPREDUCE

3.1.1 Job hierarchy

Figure 3.2: Job Hierarchy Figure 3.3: map and reduce function [6]

Figure 3.2 shows the sketch of a basic working unit job for MapReduce. A job is
similar to the term project in C++ or Java development environment. As shown in Figure
3.2, a job contains multiple tasks, and each task should either be a MapTask or ReduceTask.
The functions map() and reduce() are user-defined functions. They are the most important
functions to achieve a user’s goal.

Map function transforms a key/value pair into a list of key/value pairs; while reduce
function aggregates all the pairs sharing the same key and processes their values. Figure
3.3 shows the function of map and reduce.

The combination of map and reduce simplifies some traditional algorithms. We use the
program WordCount to illustrate this. By default, the input of a map function is (key,value)
pairs, in which key is line content of a text file, and value is line number. The map function
of WordCount splits the line content to be words list, each word is key and its value is
1. Then reduce function aggregates all the pairs which have the same key and adds their
values together. The sum of these values sharing the same key is the total number of its
correspondent word. The workflow of WordCount is shown in Figure 3.4.

Figure 3.4: The workflow of WordCount

18

CHAPTER 3. RESEARCH TARGET:HADOOP MAPREDUCE

3.1.2 Job execution workflow

Based on the knowledge of map and reduce function, now let’s look at their execution
workflow in a cluster environment. Figure 3.5 shows Google’s MapReduce cluster execu-
tion workflow. Hadoop MapReduce’s workflow is the same with it.

Figure 3.5: MapReduce cluster execution workflow [6]

Jeffrey Dean’s paper [6] illustrated this workflow elaboratively. Here We just interpret it
by decoupling this workflow in our own words. Nevertheless, our logic is similar to Jeffrey
Dean. Since Hadoop MapReduce was inspired by Google MapReduce, here we just use
the mechanism of Google MapReduce to illustrate Hadoop MapReduce.

Before we start out, it is necessary to explain the key words appeared in Figure 3.5:

master Master is a computer that handles the management work such as scheduling tasks
and resource allocation for tasks. There is only one master node in a Hadoop cluster,
and the other nodes serve as slave nodes. Sometimes, we use one node to be a backup
node for master. The backup node doesn’t participate any actual management job. It
only backup the most important information for the running master node.

fork It is the process of distributing user program to all machines in the cluster.

split A big file is divided into many splits and each split is usually customized to be 64MB.
Splits facilitates data parallelism and backup. They are distributed to slave nodes for
processing. Each split can be replicated to other machines as backup.

19

CHAPTER 3. RESEARCH TARGET:HADOOP MAPREDUCE

worker The worker in the figure is a logical concept, not a physical machine. A worker
has the same meaning with a task. A node can have many workers to execute basic
map or reduce operations. A map worker is also named as a mapper or a map task
and a reduce worker is named as a reducer or a reduce task.

Basically, a job contains two sequential phases:map and reduce phase. The map phase
in Figure 3.5 is simple. It takes file splits as input and writes intermediate results to local
disks. The reduce phase is a bit complicated. Mappers and reducers have many-to-many
relationship. One reducer fetches data from all mappers; and one mapper partitions its
output to all reducers. This action is performed by partition function. In Hadoop, parti-
tion function is allowed to be overwritten by users . Partition function plays the role of
a connector between map and reduce phase. It decides which key goes to which specific
reducer and achieves data synchronization. The partition function for WordCount program
is hash(key) mod R ,where R is the number of reducers. This partition function achieves
data synchronization in an elegant way. It doesn’t need any query to put the same word to
the same reducer.

The result of partition function is a reducer gets a lot of pairs (wordi, 1) and the same
pair (wordi, 1) may appear multiple times. For example, a reducer might get such pairs
sequentially: (wordi, 1), (wordj, 1), (wordi, 1), (wordk, 1).... In Hadoop MapReduce, a
reducer doesn’t merge pair (wordi, 1) with its previous occurrence immediately after it
fetches one more (wordi, 1). The strategy is after a reducer obtains all its pairs and then
it sorts all of them by key so that the pairs sharing the same key are naturally grouped
together.

Figure 3.6: MapReduce partitioner[18]

20

CHAPTER 3. RESEARCH TARGET:HADOOP MAPREDUCE

The details of partition function and reduce phase is explained via Figure 3.6. This
figure shows that partitioner is executed in between a mapper and reducer. It is executed in
the same machine with its mapper. Partitioner is a bridge between a mapper and a reducer.
In Figure 3.6, “copy1” means reducers fetch intermediate results from mappers though Http
protocol. “Sort” achieves aggregation for reducers. In Hadoop MapReduce, each reduce
task has three subphases:copy, sort and reduce. The subphase reduce fulfils user-defined
function. In WordCount program, the reduce operation is to sum the values sharing the
same key.

Notice that we use “reduce phase”,“reduce tasks(reducers)”, “subphase reduce(or sub-
reduce)” and “reduce operation(reduce function)” to distinguish their differences. Similar-
ly, “map phase”,“map tasks(mappers)” and “map operation(map function)” are also used to
differentiate them. The hierarchy and multiplicity relationship among them are important.
Figure 3.7 shows the relationship among these reduce-related concepts.

Figure 3.7: Disambiguate concepts in reduce phase

3.1.3 Hadoop cluster hierarchy

Figure 3.8 shows Hadoop cluster hierarchy. It shows us how a job and its tasks are arranged
among physical machines. Master node is also named as job tracker, which manages all the
nodes. It needs an IP address table containing all IP addresses of all nodes. The slave nodes
are also called datanode or task tracker. They contribute their local hard disk to form a
Hadoop Distributed File System(HDFS). They process data directly. From the perspective
of a master node, all the slave nodes are dummy nodes. Except configuring slave nodes
to be able to run Hadoop MapReduce program, we just use master node to control job
execution and manage slaves.

1The operation is actually moving data, rather than copying data. In order to be in line with the description
of Hadoop’s official documents, we still use the term copy.

21

CHAPTER 3. RESEARCH TARGET:HADOOP MAPREDUCE

Figure 3.8: Hadoop cluster hierarchy

3.1.4 Traffic pattern

In parallel computing, data exchange is inevitable, therefore making sense of traffic pattern
is of great importance. Large scale of data exchange over the cluster often reveals some
bottlenecks. In Hadoop MapReduce, large scale of data exchange happens after the com-
pletion of map phase. This data exchange process refers to subphase “copy” in Figure 3.6.
From the perspective of a reducer, it is executed on an individual node but its input data is
constructed from multiple mappers. From the perspective of a mapper, it partitions data to
multiple reducers and it is likely to produce a part of input data dedicated to any reducer.
Thus, from the perspective of tasks, data transmission between mappers and reducers is a
many-to-many relationship. Correspondingly, from the perspective of computing nodes, it
is a multipoint-to-multipoint transmission relationship, because every node contains both
mappers and reducers. Thus, if all nodes are executing copy operation simultaneously, ev-
ery node is transmitting data bidirectionally. Under this situation, the reducer of a node is
downloading data from all nodes including itself, and the mappers of that node are upload-
ing their results to all nodes. Therefore, referring to Figure 3.5 we see that one mapper
spills data to multiple reducers and one reducer fetches data from multiple mappers. This
bidirectional multipoint-to-multipoint data exchange process is described in Figure 3.9.

Figure 3.9: Traffic pattern:servers and fetchers are the same set of nodes.

22

CHAPTER 3. RESEARCH TARGET:HADOOP MAPREDUCE

After map phase is finished, data exchange is not fulfilled once and for all. Every re-
ducer always follows such an execution seqence:copy and then sort and finally reduce. In
other words, copy is bound with sort and reduce operation so that copy operation is exe-
cuted intermittently. Between one reducer’s copy operation and its subsequent reducer’s
copy operation, there is a time interval for sort and reduce operation. Figure 3.10 pro-
vides a graphical description of this intermittent copy. We emphasize this intermittent copy
because in previous Hadoop version pre-0.18.0[23], it is once-and-for-all copy. Without
explicit explanation, it is very confusing.

Figure 3.10: Intermittent copy

Even though we mentioned it’s a multipoint-to-multipoint data exchange process, the
data fetching pattern is not very complicated. We view this data fetching activity from two
perspectives: an individual reducer and a set of parallel reducers.

Hadoop has a property mapred.reduce.parallel.copies, which is set to be 20 by default.
It means that a reducer can fetch data from 20 mappers simultaneously. This value is fixed
during the execution of a MapReduce job. Therefore, if the total number of mappers is
larger than 20, from the perspective of an individual reducer, its data fetching can be seen
as a sequential process. Thus, once the input data size of a reducer is fixed, no matter the
input data is constructed from n nodes or 2n nodes, the number of mappers to that reducer
is almost the same and the data volume from every mapper of them also doesn’t change,
thus the fetching time is the same. For simplicity reason we ignore the time delay due to
Http connection setup and teardown. It is obvious that fetching data from 2n nodes needs
more Http connection setup and teardown than n nodes. From the perspective of a set of
parallel reducers, data fetching is parallelized. One reducer’s data fetching activity happens
simultaneously with other reducers’ data fetching.

From this introduction we see that Hadoop lays more focus on logical entities such
as mappers and reducers than physical entities computing nodes. According to common
knowledge, the total input data is more associated to the number of mappers than the num-
ber of nodes, thus removing the concern about the number of nodes simplifies our problem.
Facing with the same problem, the number of mappers will not change even if the number
of nodes increases. That is to say, a MapReduce program is adaptive to different number
of nodes without any necessity to change its code.

23

CHAPTER 3. RESEARCH TARGET:HADOOP MAPREDUCE

3.2 Supportive platform:Hadoop Distributed File System

MapReduce was originally designed to solve large dataset problems. The “large” dataset
may exceed several terabytes. Storage is a challenge for such big datasets. Google designed
Google File System(GFS) to solve this problem and accordingly Hadoop has Hadoop Dis-
tributed File System(HDFS). The details of GFS is unknown to public, here we just intro-
duce HDFS. As Figure 3.8 shows, a lot of slaves are under the control of a master machine.
The master uses Secure Shell(SSH) to start HDFS daemon on every slave. HDFS calcu-
lates the storage space on every slave and combine them to be a big storage system. Unlike
traditional file system, HDFS doesn’t have partitions. The master node and any slave node
can upload files to HDFS and download them. Similar to GFS, users can define the size of
split, typically 64MB. This value 64MB means that an uploaded file is partitioned by the
basic unit 64MB. Therefore, a big file usually have multiple splits.

In order to facilitate data fetching, HDFS distributes splits to all slaves. Local split-
s have higher processing priority than remote splits, so that in some cases, slaves do not
have to fetch remote data to accomplish distributed computing. This mechanism reduces
network burden for distributed computing. Further more, considering the failure of ma-
chines, HDFS allows users to define a replica value. Its default value is 3, which means
every split has three copies(including itself), and they are also distributed over the network.
Hence, the failure of a single machine does not cause data loss and computation failure for
a computation task. In a word, HDFS is a scalable and fault-tolerant distributed file system.

3.3 Key feature:speculative execution

Speculative execution[27] is a feature of Hadoop MapReduce. It computes the execution
progress of tasks and speculates whether they are slow. Slow tasks are re-executed by
another node. This mechanism avoids slow tasks from lasting too long, and reduces the
gap among tasks’ execution time. In other words, it boosts the balance of the execution
time of tasks. An example of speculative execution is shown in Figure 3.11.

24

CHAPTER 3. RESEARCH TARGET:HADOOP MAPREDUCE

Figure 3.11: Speculative execution

3.4 Hadoop MapReduce program structure

Up till now MapReduce has many implementations. Its libraries have been written in C++,
C#, Erlang, Java[19] and so on. Hadoop MapReduce is written in Java, hence we only
provide the program structure for Hadoop MapReduce. Figure 3.12 shows its program
structure.

Figure 3.12: MapReduce program structure

Basically, Figure 3.12 is consistent with job hierarchy showed in Figure 3.2. The only
difference is this figure is at the standpoint of a programmer. The entrance class is MyDriver

class, in which a programmer defines which mapper/reducer class he uses. The whole
workflow such as the number of total chained jobs and when to submit them is also defined
in this class. Map and Reduce class rewrite the inherited method map() and reduce() to
define how to process a task unit. Communication, coordination and task scheduling are
embedded into Hadoop’s library file. Thus, a programmer is exempt from this tough and
heavy work. A mapper class is instantiated when it gets the command of processing one
data split. In text processing programs, it’s map method is invoked when it reads in a
line. Normally, a mapper instance does not communicate with another map instance. Their
status information is reported to master node and handled by embedded library. Namely,
a programmer doesn’t have to define which node processes which map tasks and he also
doesn’t have to define any communication rule for any two map tasks. These details about
map task are the same as reduce tasks.

25

CHAPTER 3. RESEARCH TARGET:HADOOP MAPREDUCE

A sample WordCount program written in pseudo code is shown as follows:

Program 1 WordCount pseudo code
class MyDriver:

main():
Define a job
set input/output format for that job
Associate a mapper class to that job
Associate a reducer class to that job
Set the number of reducers
Run this job

class MyMapper:
map(String key,String value):
//key:document line number
//value:line content

for each word w in value:
store key/value pair (w,1);

class MyReducer:
reduce(String word,Iterator values):
//key:a word
//values: a list of counts

count=0;
for each v in values:

count=count+1;
store key/value pair (word,count)

We need to emphasize that it is required to set the number of reducers, but not required
to set the number of mappers. The number of mappers equals the number of splits. Up till
now, the current Hadoop MapReduce is not smart enough to do everything for users. Users
have to set the number of reducers according to their own requirement.

3.5 MapReduce applications

MapReduce is extensively used by Google, Yahoo,Facebook and so on. The application
area mainly covers: distributed search, log batch processing ,sorting[6] and so on. We
briefly describe some examples as follows:

Distributed search[6] The map operation returns a line when it matches a user-defined
pattern. Since there is no use of reduce function, we don’t have to set a reduce class
and write its function.

26

CHAPTER 3. RESEARCH TARGET:HADOOP MAPREDUCE

Distributed sort A typical example is Terasort [23], where results are sorted by keys.
The map phase does nothing but distributes data to reducers. Assume user sets N

reducers. User’s Driver program selects N−1 sampled keys from map and sort them.
According to these N − 1 sorted keys, a user-defined partition function partitions
(key, value) pairs to the intervals of N−1 sorted keys. This measure guarantees that
the keys distributed to ith reducers are always within the range of sorted (i − 1)th

key and ith key. The scenario is shown in Figure 3.13.

Figure 3.13: Distributed sort scenario: the vertical bar stands for a key.

File format batch conversion It’s reported that New York times converted 4TB’s scanned
picture format files into PDF format [22]. This application only uses map phase to
parallelize batch processing work.

3.6 Experiment plan

Previous research [25, 31, 18, 16, 12, 13] have customized several experiments on Hadoop
MapReduce. These experiments include WordCount, matrix multiplication, Bayesian Clas-
sification, Sorting, Page rank ,K-means clustering and so on. Among all the experiments,
WordCount and Sorting are widely adopted benchmarks [13]. We choose these two exper-
iments to fulfil our needs. The reasons are that they are easy to parallelize by MapReduce
and they are the basic ingredients for many other experiments.

27

Chapter 4

Proposed models and verification

According to the execution workflow of Hadoop MapReduce , we abstracted a more un-
derstandable model to describe it. This model is shown in 4.1. In our context, the term
model refers to a simplified description of a problem, which leads to a solution directly.
However, Figure 4.1 is an ideal situation, which must be based on certain assumptions and
conditions. Therefore, it is important to clarify those important assumptions and conditions
first. After that, we propose two models to estimate the execution time of a MapReduce
job.

Figure 4.1: Simplified MapReduce workflow: a grid represents a task

4.1 Assumptions

Establishing a model is not an easy thing, questions like why a model is reasonable, what
conditions it must satisfy and does it really match the real situation are very important. In
order to remove those suspicion, we made some necessary assumptions and conditions in
this section. The most important assumptions and conditions are listed as follows:

Homogeneous computing environment and stability Computers have the same perfor-
mance. They are running the same type of operating system. The network is stable
so that the bandwidth will not shrink during our program running time.

28

CHAPTER 4. PROPOSED MODELS AND VERIFICATION

No severe workload imbalance We assume that each task handles almost the same work-
load. That is to say, the computation density is evenly distributed for data splits.

Granularity unit:a task A job may contain tens of thousands of map and reduce tasks,
taking one map/reduce task as granularity unit can simplify our analyzing work [6].
In map phase, granularity unit is a map task and in reduce phase it is a reduce task.

Ignore management cost It is the master machine that mainly handles scheduling and
other coordination work. We normally use a very powerful machine to be master
machine, and its management work is normally far less than slaves’ workload, there-
fore we assume master’s management doesn’t bring about explicit time delay for the
whole job.

One node has one processor Current computers normally have multiple processors, we
limit that one computer node has only one processor. Thus, the number of nodes is
the same as the number of processors. This limitation just simplifies our explanation.

No node failure Hadoop MapReduce can handle node failures by diverting workload to
other nodes. In our case, we don’t consider node failure. We just use experiments
that have no node failures for analysis.

Condition of approximate equality In the process of experiment verification, we are sup-
pose to check whether value A and B are equal. For instance, A could be a measured
value and B could be an estimated value. We use the following expression to judge
whether they are equal:

|A−B| ≤ 1

10
min{A,B} (4.1)

4.2 Key condition:execution time follows regular trend

Before we propose our models, one critical proposition must be proved: the execution time
of tasks obeys regular trend under certain conditions even if the number of nodes and the
input data size change. We focus on the influence on two aspects: (1) the behaviors of an
individual node, (2) the behaviors of a set of parallel nodes.

Individual behavior mainly refers to the time consumption of the same type of tasks
within an individual node. In terms of group behavior, we mainly focus on the following
two aspects:

29

CHAPTER 4. PROPOSED MODELS AND VERIFICATION

• When the number of nodes increases, is there any change to the parallel behavior of
all parallel nodes?

• When the total data size changes, is there any change to the workload of a task, and
does it affect parallel behavior?

Assume we have n nodes, parallel behavior refers to whether n parallel tasks can by
running simultaneously. It is in contrast with such a scenario: when the number of nodes
reaches a certain value, because of some bottleneck, the growth of nodes couldn’t give rise
to the growth of parallel tasks. That is to say, parallelism is limited to a bottleneck.

The following subsection will give a detailed analysis on the influence of increasing
computing nodes and total input data size.

4.2.1 The effect of increasing total data size

Assume we keep the number of nodes fixed, we analyze the effect of increasing total data
size for map and reduce phase separately.

Considering map phase, the input data is a number of evenly partitioned data splits(only
one split is an exception). This partition process is performed before any MapReduce
program is running. Once we upload any data to Hadoop Distributed File System, data
is automatically partitioned to multiple splits according to a certain split size. Because of
this, the number of unique splits equals the number of map tasks and they form a queue
waiting to be processed. If we keep the split size fixed, increasing the total data size will
not affect the size and workload of such a working unit. It just increases the total number
of map tasks. Further more, Hadoop MapReduce only allows us to load a certain number
of map tasks into the memory of one node each time, eg. two map tasks. This threshold
value makes sure memory and CPU are utilized regularly.

As for reduce phase, its input is constructed from many map tasks’ intermediate results.
These results are stored in local disks. because before map phase is finished the size of
intermediate results is unknown, the number of reduce tasks is a user-defined value. That is
to say Hadoop MapReduce does not automatically increase the number of reducers. If we
increase this value proportionally while increasing total data size, the input data size for a
reducer also doesn’t change.

According to the analysis of above, if we keep the split size fixed and tune the number
of reducers proportional to total data size, both the workload of a map and reduce task are

30

CHAPTER 4. PROPOSED MODELS AND VERIFICATION

not affected by increasing total data size.

4.2.2 The effect of increasing nodes

A direct effect of changing the number of nodes is the change to the arrangement of data
splits. More nodes means more splits can be processed in parallel. Its negative effect is
when the number of nodes reaches a certain value, increasing nodes couldn’t bring about
any speedup. Namely, it exposes the speedup bottleneck. This bottleneck might come
from the problem itself, or the limitation of shared resources. As mentioned before, if a
problem’s non-parallelizable workload occupies 5% of the whole workload, the maximum
speedup is 20 [1]. More nodes means more traffic and heavier burden to the network. In fact
many resources can be seen as shared resources, for instance, when a node serves as an Http
server for all the nodes in the network, then the node itself is a shared resource. Another
type of shared resource is the network relay device. Such devices are hubs,switches routers
and so on. They are shared by a set of nodes. We also took the same analyzing strategy as
before: fix the total data size, just increase nodes.

Considering map phase, the only process might be affected is partition function. But
partition function just partitions a map task’s results to reducers and the number of them is
not related to the number of parallel nodes, for example, partition function for WordCount
program is hash(key) mod R, where R is the number of reducers, hence partition function
is not affected. Further more there is no communication between any pair of map tasks.
Hence, the whole map phase is not affected by the number of nodes.

Considering reduce phase, which has three subphases:copy,sort and reduce. Both sort
and reduce operation are handled independently inside a node, thus from the perspective
of parallel nodes, more nodes will surely accelerate sort and reduce operation. But from
the perspective of an individual node, there is no impact on the processing time of sort
and reduce operation. As for copy operation, it is involved with the utilization of shared
resources such as the network and other nodes. On the other hand, increasing the nodes
will evidently result in more reducers run in parallel. Thus, they will put heavier burden on
the shared resources. This scenario is shown in Figure 4.2.

Figure 4.2 gives us hint that increasing nodes but not increasing the capacity of shared
resources will give rise to speedup bottleneck to subphase copy. Figure 4.3 can help us
understand what this bottleneck means. The lower part of the figure shows intermittent
copy, which represents current MapReduce’s actual workflow. If we extract all the copy

31

CHAPTER 4. PROPOSED MODELS AND VERIFICATION

Figure 4.2: Scenario of expanding the network

operation from reduce phase and connect them together, we have the three-phase model
shown in the upper part in Figure 4.3. We name this centralized copy as once-and-for-all

copy. The meaning of bottleneck is that, the time consumption of copy phase shown in
three-phase model couldn’t be reduced even if we increase the number of nodes. Because
of this, the speedup of copy phase couldn’t grow. This speedup behavior is roughly shown
in Figure 4.4. Even though copy speedup doesn’t affect map speedup and other phases’
speedup, as a part of the whole job, according to Equation 2.2, it does affect the final
speedup.

Figure 4.3: Models to describe a MapReduce job

Figure 4.4: Bottleneck due to limitation on shared resources

32

CHAPTER 4. PROPOSED MODELS AND VERIFICATION

In a word, two types of physical entities may cause speedup bottleneck for copy phase.
Both a network relay device and any individual node may cause speedup bottleneck for
copy phase.

4.2.2.1 Speedup bottleneck due to network relay device

As mentioned before, a reducer fetches data from the network sequentially, but a batch of
reducers fetch data in a parallel manner. There is no doubt that data exchange must be
based on the most important shared resource:network. Therefore, due to the limitation of
network bandwidth, the speedup of data fetching couldn’t grow all the time. For instance,
if one reducer is supposed to fetch 100MB data from 10 parallel nodes, then 10 parallel
reducers require to fetch 100*10=1000MB data simultaneously from the network. Thus
1000 nodes requires to fetch 1000*100=97.7GB of data simultaneously. It is obvious that
transmitting 97.7GB of data lays much more burden on network than 1000MB. It is hard
to guarantee that 97.7GB and 1000MB of data finish their transmission within the same
amount of time.

The ideal situation of such data parallelism has the following characteristics:(1) one
reducer fetches d bytes of data from a network consumes the same time with n parallel
reducers fetching nd bytes of data; (2) if one node fetches data from the network with
transmission speed s, k nodes should have transmission speed ks.

Considering a star network, all the nodes are connected to a centralized switch or other
devices. The switch helps nodes achieve point-to-point communication. Normally, the
switch has a certain processing capacity. We denote it as h (bytes per sec), which is also a
constraint for data transmission. The h means that at most h bytes of data can be processed
simultaneously by the switch every second. we consider such a scenario:

Suppose we have a MapReduce job, which has D bytes of data to transmit after
map phase. We use n nodes and 2n nodes to run the job separately. Denote
Tc(n) as its total data fetching time by use of n nodes. Accordingly, denote
Tc(2n) as the total data fetching time for 2n nodes. Denote tc(n) as one reduc-
er’s data fetching time from n nodes, accordingly tc(2n) is used for 2n nodes.
Denote s0 as point-to-point transmission speed. Therefore, n nodes require to
have transmission speed ns0 and 2n nodes require transmission speed 2ns0.
Assume for both n nodes and 2n nodes, we use r reducers, therefore, each

reducer is supposed to fetch data d =
D

r
bytes. We ignore time delay due to

33

CHAPTER 4. PROPOSED MODELS AND VERIFICATION

Http connection setup and teardown.

We analyze the following situations:

1. ns0 < 2ns0 ≤ h. Since each reducer fetches d bytes of data sequentially, natu-

rally tc(n) = tc(2n) =
d

s0
. According to D = Tc(2n) · 2ns0 = Tc(n) · ns0, we

have Tc(2n) =
1

2
Tc(n). Under this situation, both n nodes and 2n nodes fetch data

simultaneously.

2. h ≤ ns0 < 2ns0. Under this situation, h causes speedup bottleneck. Following the
same logic as the item above, we have D = Tc(2n) · h = Tc(n) · h, thus Tc(2n) =

Tc(n). Under this situation, even if we have n or 2n nodes, actually only
h

s0
nodes

fetch data simultaneously or the transmission speed of each node decreases from s0 to
h

n
and

h

2n
. These two situations are accordingly manifested by: (1) tc(n) = tc(2n);

(2) tc(n) < tc(2n).

The main difference between these two situations is Tc(2n) =
1

2
Tc(n) becomes Tc(2n) =

Tc(n). Actually, this difference represents two different data fetching behaviors. They are
described in Figure 4.5. We name the left data fetching behavior as full copy, the mid-
dle one as partial copy and the right one as downgraded full copy. Both partial copy and
downgraded full copy indicate that data fetching bottleneck occurs.

Figure 4.5: Three data fetching behaviors

Considering a two-level tree network, if two levels of switches have sufficient capacity,
the network can be seen as a star network.The difference between transmission speed of
in-rack nodes and cross-rack nodes makes two-level tree network a bit more complicated

34

CHAPTER 4. PROPOSED MODELS AND VERIFICATION

than a star network. We denote s0 as in-rack point-to-point transmission speed, and s1 as
cross-rack point-to-point transmission speed. We denote d = d0 + d1, where d represents
a reducer’s input data and d0 is the part of data distributed within the same rack with that
reducer, and d1 represents the data distributed outside the reducer’s rack. Figure 4.6 shows
these notations in detail. Obviously, s0 is greater than s1.

Figure 4.6: Expand two-level network

For a large cluster, expanding the network is mainly done through increasing the num-
ber of racks. Thus the bottleneck is often caused by the first-level switch, rather than the

second-level switch. Similar to the analysis above, we have tc(n) =
d0
s0

+
d1
s1

. Without

considering any bottleneck, the two-level tree network can actually be approximate to a

star network, therefore Tc(2n) =
1

2
Tc(n).

Under the premise of d = d0 + d1, we have tc(n) =
d0
s0

+
d1
s1

, where d is fixed all the

time. The increase of n or rather the increase of racks will increase d1 and decrease d0.

Since s0 > s1, the increase of
d1
s1

is greater than the decrease of
d0
s0

. As a result, tc(n) will

increase when we increase n, even if there is no bottleneck.

4.2.2.2 Speedup bottleneck due to an Http server’s capacity

The capacity of an Http server can cause speedup bottleneck. In Hadoop MapReduce ,
every node serves as a server. An Http server’s capacity depends on a server’s memory and
CPU capacity. Denote this maximum Http connections as c. Similar to the analysis above
we list the following situations:

1. c ≥ 2n. This situation is similar to the first situation of our previous analysis on the
bottleneck caused by network relay device . It is not difficult to get tc(2n) = tc(n)

35

CHAPTER 4. PROPOSED MODELS AND VERIFICATION

and Tc(2n) =
1

2
Tc(n). Both n nodes and 2n nodes fetch data simultaneously

2. c ≤ n. Under this situation, n nodes are divided into [
n

c
] + 1 groups. The operation

[
n

c
] means calculating integer part of

n

c
. Data transmission is handled sequentially

among these groups. Under this situation, only c nodes can fetch data simultaneously.
Therefore, tc(n) = tc(2n) and Tc(n) = Tc(2n).

Obviously, the situation of c ≤ n causes speedup bottleneck. even though we have n or
2n parallel nodes, it only allows c nodes fetch data in parallel.

4.2.2.3 Decide boundary value

Our previous analysis shows that once we meet any bottleneck, full copy will either turn to
partial copy or downgraded full copy. It is important to find out when this change happens.
We denote b as the boundary value to describe this copy behavior change. When the number
of nodes is less than b, the copy behavior is full copy, when it surpasses b, it turns to be
either partial copy or downgraded full copy. As for which exact copy behavior it turns
to be, it depends on how the infrastructure program configure the switch. We can use an
empty MapReduce program to detect whether our customized number of nodes is within
boundary b. We design such a MapReduce program that the map operation does nothing
but transmits data directly to reduce phase, and the reduce operation also does nothing. We
illustrate this experiment by use of Figure 4.7.

Figure 4.7: Boundary detection experiment illustration

Figure 4.7 shows that k is less than boundary b. T (k) represents the execution time
of the whole MapReduce job by use of k nodes; Ti stands for the ith reducer’s execution
time and tc(k) represents average copy time of a reducer. We do an experiment by use of k
nodes at first. Then we increase k to be k′. We aim at detecting whether k′ nodes exceeds
boundary b. In both experiments, the input data is the same. Further more, the number of
mappers and reducers are kept the same. The judgement steps are described as follows:

36

CHAPTER 4. PROPOSED MODELS AND VERIFICATION

1. Firstly, compare T (k) with T (k′) first, if T (k) = T (k′) then the copy behavior of k′

nodes is full copy, otherwise it is either downgraded full copy or partial copy.

2. If T (k) 6= T (k′), compare tc(k) with tc(k
′). If tc(k) = tc(k

′), the copy behavior is
partial copy, otherwise it is downgraded full copy.

Actually, this experiment is not every efficient, because it requires to test the same set
of data on both k and k′ nodes. Once k is far less than k′, the experiment on k nodes will
still consume a large amount of time. But this experiment does give us hint to propose
another more efficient experiment. This experiment scheme is described as follows:

Make an empty MapReduce program as described before. Test small amount
of data by use of k nodes and compute tc(k). Test proper amount of data on
k′ nodes. This data is larger than previous data on k nodes. Accumulate all
reducers’ execution time in the experiment of k′ nodes as T . The ith reduc-
er’s execution time is marked as Ti in Figure 4.7. The judgement steps are
described as follows:

1. Compare
T

k′ with T (k′), where T (k′) is the execution time for the whole

MapReduce job. If
T

k′ = T (k′), then the copy behavior is either full copy
or downgraded full copy.

2. If
T

k′ = T (k′), compare tc(k) with tc(k
′), if tc(k) = tc(k

′) then the copy
behavior is full copy, otherwise it is downgraded full copy.

4.2.2.4 Summary

We mainly analyzed the effect of increasing nodes in a star network. Its negative effect is
full copy may become partial copy and downgraded full copy. We suppose partial copy and
downgraded full copy are two forms of bottleneck. The conditions of full copy are listed
as follows:

1. ns0 < h , where h represents capacity of central switch and s0 represents point-to-
point transmission speed.

2. c ≥ n , where c represents the maximum Http connections to a server and n repre-
sents the number of servers.

These two conditions are manifested in two aspects:

37

CHAPTER 4. PROPOSED MODELS AND VERIFICATION

1. One reducer’s fetching time tc(n) is fixed, even if n grows.

2. When n grows, the data fetching time of a parallel group Tc(n) will decrease.

In fact, those two conditions essentially stand for the same thing: the limitation on
shared resources. A server node has connections with all other nodes. It means it is con-
sumed or shared by all other nodes. Its Network Interface Card(NIC), CPU and memory
are shared resources. Data exchange must make use of the network, thus the replay devices
on network become shared resources. As we increase nodes, the limitation on any shared
resources can bring about bottleneck to subphase copy. Once shared resources meet their
limitation, copy cannot speed up, but other phases can still speed up. Even if we meet any
form of bottleneck, previous experience is still useful.

Our analysis ignored time delay caused by Http connection setup and teardown. Con-
sidering this effect, one reducer’s data fetching time tc(n) is not always fixed. As the
increase of n, tc(n) will have slight increase. We also did a short analysis on a two-level
tree network. From a certain angle, it can be seen as a star network. The increase of n will
also cause slight increase of tc(n) even if no bottleneck occurs. However, within a certain
allowable range, we can ignore this slight increase.

The conclusion that one reducer’s fetching time tc(n) is fixed is of great significance.
It leads to the conclusion that one reducer’s processing time Tr is fixed. This is because
a reducer is composed of three operations: copy, sort and reduce and none of their time
consumption is affected by n. Considering one mapper’s processing time Tm is also fixed,
Tm and Tr can be seen as useful learning experience. That is to say, they can be used to
estimate the execution time of a MapReduce job, which aims at handling a larger scale of
data on larger scale of nodes.

4.3 Wave model

Our previous analysis gives us some hint to propose a computation model to estimate ex-
ecution time for a MapReduce job. In order to facilitate our description we define a term
wave.

Definition: A wave is a group of parallel tasks, the length of which is the number of
parallel nodes n. There is map wave in map phase and reduce wave in reduce phase. The

38

CHAPTER 4. PROPOSED MODELS AND VERIFICATION

number of waves is computed by:

Nwave = [
Ntask

n
] + 1

where Ntask represents the number of tasks. The operation [
Ntask

n
] means obtaining the

integer part of
Ntask

n
. The number of waves Nwave indicates that roughly Nwave tasks

will be allocated to one node. Figure 4.8 shows that three tasks form a wave, which are
represented by three vertical grids in the figure. Further more, in order to facilitate our
description, we name the series of tasks executed by an individual node as a task chain.
Figure 4.8 shows that three nodes have three task chain.

Figure 4.8: The illustration of concept “wave”

4.3.1 General form

Figure 4.9: General form of wave model

This model is described in Figure 4.9. This figure shows that we apply the learning
experience on p nodes to q nodes(p < q). The most important condition for this model is
q is less or equal than boundary b. How to test whether q is within boundary b has been
illustrated in subsection 4.2.2.3 Decide boundary value.

39

CHAPTER 4. PROPOSED MODELS AND VERIFICATION

This model derives the following expression to estimate execution time:

T̂ = T̂M + T̂R (4.2)

= TmNmw + TrNrw (4.3)

where Nmw is computed by [
Nm

n
] + 1 and Nrw is computed by [

Nr

n
] + 1.

The meanings of notations are described in Table 4.1:

T̂ estimation of execution time
T̂M the estimated time consumption for map phase
T̂R the estimated time consumption for reduce phase
Tm the time consumption of a map task
Tr the time consumption of a reduce task
Nmw the number of map waves
Nrw the number of reduce waves
n the number of parallel nodes
Nm the number of map tasks
Nr the number of reduce tasks

Table 4.1: Notations for general form of wave model

Assume we have verified q is within the boundary b. The steps of how to accumulate
learning experience and how to apply the learning experience on p nodes to q nodes are
described as follows:

1. Do training experiment on p nodes by use of small sale of data, obtain Tm and Tr.

2. When it comes to large scale of data, according to the total input size and split size
set in HDFS, compute the number of map tasks Nm and the number of reduce tasks
Nr.

3. Compute the number of map waves Nmw and the number of reduce waves Nrw ac-

cording to Nwave = [
Ntask

n
] + 1.

4. Use Tm and Tr obtained in training experiment, Nm and Nr to compute T̂ = TmNmw+

TrNrw. T̂ is our estimated value for large scale of data on q nodes.

From the step description above, we see that our useful experience information is Tm

and Tr. From now on we will not provide detailed step description unless it’s necessary.
Pointing out what is experience information is enough for readers to catch our ideas.

40

CHAPTER 4. PROPOSED MODELS AND VERIFICATION

4.3.2 Slowstart form

The model shows in Figure 4.9 just presents the ideal situation that reduce phase waits for
the completion of all mappers. But Hadoop MapReduce has a slowstart mechanism, which
needs special treatment. Slowstart value indicates that a part of reducers can be launched
after the a fraction of mappers are completed[26]. Comparing with reducers wait for the
completion of all mappers, this slowstart mechanism appears to be more efficient. Figure
4.10 shows the effect of slow start. As long as some map tasks are finished, their results can
be copied to reducers. The whole copy phase for a reduce task occupies 33.3% 1 progress
in that reduce task.

Figure 4.10: Slowstart

Even though Hadoop MapReduce utilizes slowstart to warm up reduce tasks, only the
first wave of reduce tasks are affected. Further more, slowstart only performs copy op-
eration earlier. This is because sort and reduce operation couldn’t start until the data is
completely copied from all mappers. Reducers have to start sort and reduce operation after
the arrival of the last (key,value) pair from the last mapper. Therefore, although the first
wave of reduce tasks starts early, they are actually in an “idle” state, which means they oc-
cupy computation resources by fetching data, but couldn’t start sort and reduce operation.
The math computation process of slowstart form is illustrated under the help of Figure 4.11.

Figure 4.11: Slowstart analysis model

A part of the notations can be found in Table 4.1, and the same notation stands for the
same meaning. New notations are described in the following Table 4.2:

1This value is obtained from Hadoop MapReduce runtime monitoring webpage.

41

CHAPTER 4. PROPOSED MODELS AND VERIFICATION

T̂ the estimation of completion time
T0 the start time of job
T1 the start time of reduce phase
T2 the end time of map phase
T3 the end time of first reduce wave
∆ equals T3− T2
Tov overlapped time,equals Tr −∆

Table 4.2: Notations for slowstart form of wave model

The goal here is to compute T̂ . Estimating TM is easy, which is achieved by T̂M =

NmwTm, however because of the abnormal behavior of the first reduce wave, T̂R couldn’t
be simply computed by NrwTr.

Let T ′
R = NrwTr, refer to Figure 4.11, we have:

T̂ = TM + T ′
R − Tov (4.4)

= TmNmw + TrNrw − (Tr −∆) (4.5)

= TmNmw + TrNrw − (Tr − T3 + T2) (4.6)

An important question here is as long as Tm and Tr are fixed, ∆ doesn’t change even
if scaling plan changes. As we mentioned before, reduce phase couldn’t start sorting and
reduce until map phase is completely finished, therefore it is reasonable to treat Tov as the
time consumption for copy operation of the first reduce wave. We see from the expression
above that our experience information is Tm, Tr and Tov.

Figure 4.11 shows that slowstart only saves time Tov, which is less than Tr. Considering
huge amount of reduce tasks, this amount of time is ignorable. Therefore, the following
models will not consider slowstart situation, even if Hadoop MapReduce has provided such
a mechanism.

4.3.3 Speedup bottleneck form

We analyzed several possible situations which might cause speedup bottleneck. Because
speedup bottleneck just happens in subphase copy, if we treat it differently, we can still find
proper models to estimate execution time. According to Equation 2.2, as long as subphase
copy doesn’t occupy a great percentage in the whole job, it is still meaningful to intensify
parallelism for other phases by increasing nodes.

42

CHAPTER 4. PROPOSED MODELS AND VERIFICATION

Figure 4.12: Partial copy

Our previous analysis has revealed two copy behaviors caused by copy bottleneck.
These two copy behaviors are partial copy and downgraded full copy. By use of Figure
4.12, we can use the following expression to estimate execution time:

T̂ = T̂M + T̂R + Toffset (4.7)

= TmNmw + TrNrw + Toffset (4.8)

where Tm, Tr and Toffset are experience information.

Considering downgraded full copy, we concluded that one reducer’s data fetching time
tc(n) will increase if n increases. Figure 4.13 described this phenomenon clearly. Actually,
even if we don’t consider this bottleneck, considering time delay brought by Http connec-
tion setup and teardown will also have some slight impact on tc(n). Further more, our
analysis on two-level tree network also revealed that the increase of n will increase tc(n).
This side-effect of increasing n is not so severe as the effect of bottleneck, but they behave
very similarly. Thus, we don’t aim to distinguish them here.

Figure 4.13: Downgraded full copy

43

CHAPTER 4. PROPOSED MODELS AND VERIFICATION

On the basis of the empty MapReduce program we proposed to test whether it is full
copy or downgraded full copy in Subsection 4.2.2.3 Decide boundary value, we propose a
solution to estimate execution time when we meet tc(m) > tc(n) where m > n.

Assume we aim to estimate the execution time of a practical problem on m nodes. We
use three experiments to achieve our goal:(1) empty MapReduce experiment on n nodes
where n is far less than m; (2) empty MapReduce experiment on m nodes; (3) practical
problem-solving experiment on n nodes. From Figure 4.13 we see that the execution time
on sort and reduce operation do not change, no matter we use n or m nodes. Therefore,
our main goal is to estimate the copy time of practical experiment on m nodes, which is
denoted as t′c(m). Similarly, we denote the copy time of practical experiment on n nodes
as t′c(n). We estimate t′c(m) by the following expression:

t′c(m) = t′c(n) ∗ tc(m)

tc(n)

According to the execution workflow of a reduce task. Its execution time Tr is com-
posed of three parts:Tcopy, Tsort and Treduce. Comparing the experiment on n and m nodes,
only the value of Tcopy is changed from t′c(n) to t′c(m). Therefore, we just replace t′c(n)

with t′c(m) to compute the execution time of a reduce task and finally compute the whole
execution time by T̂ = TmNmw + TrNrw (Expression 4.3).

4.3.4 Model verification for general form

We mainly did experiments on WordCount and Terasort program. We have two types of
experiments:traning experiments and test experiments. Training experiments are used to
accumulate experience, while test experiments are used to verify the correctness of our
model. We obtained the start time and end time of every task. The duration is represented
by their gap. We gathered them to form task chains and traced their execution time.

In stead of executing a job several times to compute its average execution time, we
measure it by computing the expectancy from task chains. The advantage of this is we can
reduce the number of experiment time.

We first present the behavior of map and reduce wave. Figure 4.14 and 4.15 show
map and reduce wave separately. This result shows the experiment of 4 nodes processing
1.86GB data. For WordCount and Terasort program, we customized five experiments for
each program. The verification results are shown in Table 4.3 and Table 4.4.

44

CHAPTER 4. PROPOSED MODELS AND VERIFICATION

Figure 4.14: Map wave of WordCount. Figure 4.15: Reduce wave of WordCount.

4nodes 8nodes 16nodes
Tmeasure T̂ gap Tmeasure T̂ gap Tmeasure T̂ gap

929MB learn learn - 185.375 172.26 13.115 - - -
1.86G 702.25 689.4 12.85 360.75 344.52 16.23 - - -

1.86G*2 - - - - - - 363.63 344.52 19.11

Table 4.3: Verify wave model for WordCount program

4nodes 8nodes 16nodes
Tmeasure T̂ gap Tmeasure T̂ gap Tmeasure T̂ gap

2GB learn learn - 161 156.12 4.88 - - -
4GB 657.5 624.48 33.02 313 312.24 0.76 - - -
8GB - - - - - - 318.9 312.24 6.66

Table 4.4: Verify wave model for Terasort program

These two tables show that the gaps are within 10% of min{Tmeasure, T̂}. It means
our measured values are consistent with estimated values. Theoretically speaking, if Tm

and Tr in our learning experiment are closer to Tm and Tr in new experiments, the gap
should be smaller. However, the fact is Tm and Tr are just average of a set of values. It
is the fluctuation or deviation of this set of values decides whether estimated value are
closer to measured value. From this point of view, we see that wave model requires a strict
homogeneous computing environment. But on the other hand, if accuracy requirement is
not very high, the simplicity of wave model is a good reason of choosing it.

45

CHAPTER 4. PROPOSED MODELS AND VERIFICATION

4.3.5 Model verification for slowstart form

The verification for slowstart form is shown in Table 4.5. This experiment result verifies
that our computation method for slowstart situation is reasonable. The gaps are still within
10% of min{Tmeasure, T̂}. Even though slowstart doesn’t really save too much time, it does
introduce an interesting problem: the current slowstart just serves the first reduce wave,
why designers don’t let it serve all the reduce waves is an interesting problem. Logically
speaking, after a map task is finished, which part of its result belongs to which reducer
is fixed by partition function, then the system knows which result should be delivered to
which target machine.

8 nodes(Terasort) 8 nodes(WordCount)
Tmeasure T̂ gap Tmeasure T̂ gap

2 GB - - - - - -
4 GB 384.375 382.956 1.419 548.05 538 10.05

Table 4.5: Verify wave model for slowstart form

Essentially, this problem is about the argument between intermittent data exchange and
once-and-for-all data exchange. We noticed that in previous version Hadoop pre-0.18.0,
once-and-for-all data exchange was used. Yahoo’s One Terabyte Sort experiment shows
this clearly. The task execution details is shown in Figure 4.16[23].

Figure 4.16: Once-and-for-all copy[23]

From our point of view,once-and-for-all copy is a bandwidth intensive process. Data
exchange is straightforward, but it also shows that CPU and memory are not fully utilized
in this process. Thus, recent Hadoop versions(our experiment version is 0.20.2) use inter-
mittent copy to replace it. For intermittent copy if a part of reducers take less copy time
than others,they can start sort and reducer operation earlier, thus less parallel nodes are

46

CHAPTER 4. PROPOSED MODELS AND VERIFICATION

using the network. That is to say not all the nodes utilize network simultaneously. This al-
ternate utilization of network relieves the burden on network. Figure 4.17 shows slowstart
copy pattern used in Hadoop 0.20.2.

Figure 4.17: Current slowstart copy pattern

The problem with this slowstart copy pattern is during map phase copy operation just
serves the first wave, comparing with once-and-for-all copy it is quite slow. Combining
intensive copy in previous pattern with current intermittent copy, we propose a new copy
pattern. This copy pattern is shown in the Figure 4.18. This copy pattern combines the
benefits of intermittent copy and intensive copy.

Figure 4.18: Proposed new copy pattern

4.4 Sawtooth model

The previous section described wave model, which focuses on the group behavior of all
parallel nodes. In fact, we can also focus on the individual behavior of every node. Based
on this idea, we come up with a Sawtooth model. We suppose that slowstart just reduce the
processing time for first reduce wave. We do not provide the slowstart form in this section.

47

CHAPTER 4. PROPOSED MODELS AND VERIFICATION

4.4.1 General form

This model is described in Figure 4.19.

Figure 4.19: Sawtooth model

Basically, from each machine’s view, as tasks are gradually processed by itself, their
execution time forms a trend line. Therefore, we can use some math tools such as linear
regression to generate its trend function and finally estimate the whole execution time for
a job by collecting each machine’s trend function. An important thing is this model should
be applied to map and reduce phase separately. We add their estimation value together to
be the execution time for a job. In order to make our results more accurate, it is better to
accomplish more waves to draw trend line.

The details of our ideas are summarized to be the following steps, we just use map
phase as our illustration example:

1. Accumulate experience by generating linear function for every experiment node:
fi(x) = aix + bi, where 1 ≤ i ≤ n, n is the number of our experiment nodes. The
gradient ai represents the average execution time of a map task on nodei.

2. Facing with large scale of data, estimate the number of waves Nmw. Assume we have
increased computing nodes from n to m;

3. Compute fi(Nmw), where 1 ≤ i ≤ n;

4. Sort fi(Nmw), and balance them. This balanced value is our estimated value. The
reason for this step is there might be a big gap between the biggest fj(Nmw) and
the smallest fk(Nmw). If this gap exceeds execution time of a map task aj and ak,
then we should amend this by deducting one task from nodej and adding one task
to nodek. This goal is achieved by computing fj(Nmw − 1) and fk(Nmw + 1). This
procedure is performed recursively until the gap is small enough.

48

CHAPTER 4. PROPOSED MODELS AND VERIFICATION

The estimation for reduce phase is the same as map phase. After this is done, we add
these two estimated value together to be our final estimation.

4.4.2 Model verification for general form

We first present the behavior of map and reduce sawtooth. Figure 4.20 and 4.21 show map
and reduce sawtooth separately. This result shows the experiment of 4 nodes processing
1.86GB data. These two figures match our model very well.

Figure 4.20: Map sawtooth of WordCount. Figure 4.21: Reduce sawtooth of WordCount.

The verification of our computation method is shown in the Table 4.7 and 4.6. The
results show that the gap is within 10% of min{Tmeasure, T̂}. It means our measured
values are consistent with estimated values.

4nodes 8nodes 16nodes
Tmeasure T̂ gap Tmeasure T̂ gap Tmeasure T̂ gap

929MB - - - 185.375 173.935 gap - - -
1.86G learn learn - 360.75 371.42 10.67 - - -

1.86G*2 - - - - - - 363.63 371.42 7.79

Table 4.6: Verify sawtooth model for WordCount program
4nodes 8nodes 16nodes

Tmeasure T̂ gap Tmeasure T̂ gap Tmeasure T̂ gap
2GB - - - 161 161.6 0.6 - - -
4GB learn learn - 313 323.26 10.26 - - -
8GB - - - - - 318.9 323.26 4.36

Table 4.7: Verify sawtooth model for Terasort program

49

CHAPTER 4. PROPOSED MODELS AND VERIFICATION

4.5 Summary

This chapter is the most important chapter of all. We started from describing key assump-
tions and conditions. The proposition that execution time follows regular trend is the basis
of our proposed models. The analysis on the effect of increasing total data size and increas-
ing nodes revealed possible bottlenecks to copy operation. We name the two possible bot-
tleneck behaviors as partial copy and downgraded full copy. Then, based on this analysis
result we proposed two models to estimate execution time of a MapReduce job. These two
models are named as wave model and sawtooth model. They mainly address two problem-
s:(1) what experience information should be learned from training experiment; (2) What
formula or expression should be used to compute the estimated value. In sawtooth mod-
el, we just provided the general form. Under the guidance of slowstart form and speedup
bottleneck form of wave model, it is not difficult to adapt current sawtooth model to these
situations. Due to budget limitation, we just provided possible bottleneck behaviors and
conditions but didn’t do practical experiment to verify them.

50

Chapter 5

Discussion

5.1 Scalability analysis

For a parallel system, scalability analysis is a necessary step. Scalability often covers two
aspects: (1) scaling input data (2) scaling computing nodes. Scaling computing nodes is
often analyzed via speedup, which is an important performance evaluation criteria. It aims
at studying how much faster can a system achieves after expanding the number of nodes.
In a multi-phase process, Equation 2.2 can facilitate our analysis quite a lot. In this aspect,
MapReduce divides its process to be a map phase and reduce phase, which simplified our
analysis. Even if when facing with a job chain, the speedup for the whole process can be
computed easily by analyzing every job separately. Consider map phase individually, its
scaling behavior is linear scaling, if no bottleneck occurs reduce phase also scales linearly.
After combining them together, the scaling behavior is also linear scaling, which means
speedup is linear.

Considering the effect of scaling data size on execution time, the ideal situation is in-
creasing the data size just linearly increases its workload. In such case, the time consump-
tion on (n nodes, d megabyte) is the same with (2n nodes, 2d megabyte). However, for
many algorithms, workload is not proportional to their data size. For instance, considering
bubble sort[4], whose average time complexity is O(n2). Increasing data size n to be 2n

results in increasing workload approximately
(2n)2

n2
= 4 times. Therefore, assuming it’s

parallelizable, simply doubling computing nodes while doubling data size will not keep
the execution time the same. Considering MapReduce programming model, when taking a
task as granularity unit, linear scaling on total data size also brings about linear scaling on

51

CHAPTER 5. DISCUSSION

total workloads. However, one thing we should notice is the scaling of total data size can
automatically scale the number of mappers, but it doesn’t scale the number of reducers ac-
cordingly. Therefore in order to make the learning experience of one experiment consistent
with another experiment, it is necessary to make sure the execution time of each reduce
task is the same in both of the experiments. An easy strategy is to make the number of
reducers proportional to the total data size. If we use 6 reducers for 1GB’s data(the input
size for map), then we use 12 reducers for 2GB’s data.

4nodes 8nodes 16nodes
929M 368.5 185.375 -
1.86G 702.25 360.75 -

1.86G*2 - - 363.63

Table 5.1: Execution time for WordCount program(unit:sec)

4nodes 8nodes 16nodes
2GB 318.5 161 -
4GB 657.5 313 -
8GB - - 318.9

Table 5.2: Execution time for Terasort program(unit:sec)

Due to the analysis above we conclude that by use of Hadoop MapReduce if workload
is balanced and no bottleneck affects parallelism, execution time is proportional to data size
and inverse proportional to the number of computing nodes. We describe this conclusion
by the following expression:

T (nodes, datasize) ∝ datasize

nodes

The experiment results in Table 5.1 and 5.2 are consistent with this expression. On the
other hand, assume T (1) is execution time on a single node, we have:

speedup =
T (1)

T (nodes, size)
∝ nodes

datasize

This expression tells that once we fix datasize, we can achieve linear scaling under
certain conditions.

52

CHAPTER 5. DISCUSSION

5.2 The essence of wave model and sawtooth model

In Chapter 2 we mentioned that our main method is to find out a function T (nodes, datasize)

and its valid boundary to estimate the execution time of a larger problem. Readers may
wonder why we turned to wave model and sawtooth model afterwards. Actually, they
stand for the same idea.

The key factor in wave model is the number of map waves Nmw and reduce waves Nrw.
Nmw and Nrw are decided by both the number of nodes and total data size. In other words,
instead of study T (nodes, datasize) directly, we use a middle ware Nmw(nodes, datasize)

and Nrw(nodes, datasize) to study it. We have a more simplified understanding: assume

one node needs t time units to finish a MapReduce job, then n nodes need
t

n
time units. It’s

like a string with length t is folded n times, then its folded length becomes
t

n
. The strategy

of wave model is to compute the unit length of a string Tm, and then multiply it with the
total number of units Nm and finally divide it by the number of parallel strings n. That is

to say the folded length is expressed by TmNm
1

n
, where

Nm

n
equals the number of waves.

The idea behind sawtooth model is similar to wave model. Sawtooth model generates
trend line function fi(x) = aix+bi, and finally merge the value of every fi(x). The number
of waves is used to replace x. Wave model computes the average value for a task unit first
and then multiply it by number of waves Nwave. This multiplication is similar to replacing
x with Nwave. Further more, in the expression fi(x) = aix + bi, the gradient ai actually
means the execution time of a task unit. If every trend function fi(x) = aix + bi are the
same, this particular case of sawtooth model can be seen as wave model. That is to say,
wave model is actually a special case of sawtooth model.

The focus of wave model is the group behavior of all parallel nodes, but the focus of
sawtooth model is every individual node. Therefore, wave model requires a heterogeneous
computing environment more than sawtooth model. But on the other hand, wave model
is obviously easier to perform. When the requirement of estimation accuracy is not very
strict, the simplicity of wave model is a good reason for us to choose it.

5.3 Extend models to more situations

Even though our proposed models must satisfy certain conditions, in fact they can be ex-
tended to more situations. In some cases, small modification can adapt them to new situa-

53

CHAPTER 5. DISCUSSION

tions. We list these possible situations as follows:

Workload of task unit changes periodically In this case, average time consumption for
map task Tm and reduce task Tr also changes periodically. Wave model can be s-
lightly modified to use a periodic function to describe. This scenario is described by
the following figure:

Figure 5.1: Periodical workload

Heterogeneous computing environment We assume workload density is balanced for the
total data, but computing nodes have computation capacity variation or some nodes
have better throughput capacity. In such case, sawtooth model can still be useful.

5.4 Deviation analysis

Like any experiment, when comparing measured value and estimated value, there is a gap.
Why there is such a gap and how it comes out are important for scientific researchers.
We measure the execution time of a job by all task chains’ average ending time. But the
estimated value is the addition of T̂Map and T̂Red. In fact, there is a gap between T̂Map

and the start time of reduce phase, because reduce phase couldn’t start until the last map
task is finished. This scenario is described by Figure 5.2. This figure shows that even
we use measured values TMap and TRed to compute execution time T , there is still a gap.
Therefore, using estimated value T̂Map and T̂Red, this gap should be wider.

Another reason of deviation comes from the computation problem. For example, we
observed that WordCount is a CPU intensive program. When map phase is running, CPU
utilization is always 100%, therefore, the worse the computers’ quality is and the longer
the map phase lasts the wider the gap is.

54

CHAPTER 5. DISCUSSION

Figure 5.2: A deviation situation.

Figure 5.3: Not all tasks are launched at the same time[23]
.

For a large amount of parallel tasks for instance 1024 mappers, they cannot be launched
completely at the same time. From Yahoo’s experiment result of One Terabyte Sort showed
in Figure 5.3 we see that approximately 1800 mappers are supposed to run in parallel. This
figure roughly shows that the gap between the start time of the first mapper and 1800th
mapper is within 25 seconds. Accordingly, the gap between the first reducer and the 1800th
is also within 25 seconds. This fact tells us that if we don’t count this offset, we will have a
deviation of 25 seconds. If a MapReduce job runs several hours, this 25 seconds could be
ignored. In our experiments, we did’t consider this offset, because our maximum number
of nodes is 16. This small number didn’t give rise to evident deviation.

Further more, we mentioned that the increase of number of nodes n will result in slight
increase of copy time tc(n) because of more Http connection setup and teardown. If we
don’t treat it the same as the handling of downgraded partial copy, it brings about deviation.
As for our experiment, the gap between 4 nodes and 16 nodes is too small, so that there is
almost no change on tc(n) when n is increased from 4 to 16. Therefore, this is not a good

55

CHAPTER 5. DISCUSSION

reason that bring about deviation for our experiment. But for large scale of increasing n,
for example changing n from 32 to 1024, the change on tc(n) is not ignorable.

5.5 Summarize learning workflow

A complete learning process should achieve at least two goals: (1) accumulate learning
experience; (2) decide the valid boundary of this learning experience. We need at least
three experiments to estimate the execution time of a big problem:

1. An experiment using customized MapReduce program on small scale of data and
small scale of computing nodes.

2. An experiment using empty MapReduce program on small scale of data and small
scale of computing nodes.

3. An experiment using empty MapReduce program on all available nodes.

The first experiment aims at obtaining the main experience information. The second
and the third experiment are used to detect the boundary of learning experience. If any
bottleneck occurs, special form of models must be used. Based on these knowledge, we
summarize the learning workflow as follows:

1. Fairly sample a part of nodes and data.

2. Apply an empty MapReduce program and customized MapReduce program to sam-
pled nodes. Empty program is used to detect whether copy subphase meets any
bottleneck and customized program is used to accumulate main learning experience.

3. Apply an empty MapReduce program to all available nodes. Compare the results
of previous empty program experiment and current one. Judge whether we meet
bottleneck according to this comparison.

4. Decide which model to use according to the step3’s test result and accuracy require-
ment.

56

Chapter 6

Conclusion

We started this thesis report by describing the research problem. Then we gradually re-
vealed the mechanism of Hadoop MapReduce. Review our whole report, we mainly did
three things:(1) proved execution time of map/reduce tasks follow regular trend under cer-
tain conditions;(2) proposed two models to estimate execution time of a MapReduce job;(3)
fulfilled scalability analysis.

MapReduce is essentially a parallel programming model, thus we use speedup to mea-
sure its performance. We emphasized that the utilization of shared resources is the cause
of speedup bottleneck. For a MapReduce job, speedup bottleneck only occurs to copy
operation. We name the two copy behaviors which manifest bottleneck as partial copy

and downgraded full copy. An empty MapReduce program is proposed to handle these
bottlenecks. If bottleneck is detected, bottleneck form of proposed models has to be used
to estimate execution time. In order to address how learning process is performed, we
proposed a learning workflow. It serves as a guidance of how to carry out a streamlined
learning. Based on the virtual infrastructure service provided by Amazon Web Service, we
fulfilled experiment verification for some models. The experiment result further boosts us
to fulfil scalability analysis. It reveals the most important conclusion in this thesis: under

certain conditions, we can tune MapReduce to achieve T (nodes, datasize) ∝ datasize

nodes
.

This expression further reveals that, MapReduce can be tuned to achieve linear scaling.

From our research we see that MapReduce is a simple and powerful parallel program-
ming framework. Grasping the discipline of MapReduce can greatly help us carry out large
scale of experiment on MapReduce.

57

Appendix A

Raw experiment results

Our raw experiment results are shown in the following tables. The first row of each table
represents the start time of first wave of tasks. The second row represents the end time of
first wave of tasks, and it also represents the start time of second wave of tasks. The time
unit of the following results is second.

map chain0 map chain1 map chain2 map chain3 red chain0 red chain1 red chain2 red chain3
1 1 0 3 345 343 344 346
77 83 83 84 357 356 356 358

156 167 169 169 367 368 368 371
239 250 252 253
315 340 299

Table A.1: WordCount,929MB,4nodes

map chain0 map chain1 map chain2 map chain3 red chain0 red chain1 red chain2 red chain3
4 0 4 4 654 653 654 653
82 81 82 84 667 665 667 671

165 163 162 165 672 677 679 684
247 245 243 242 685 689 690 695
330 327 326 322 697 701 703 708
411 410 407 402
489 492 487 483
568 575 570 564
650

Table A.2: WordCount,1.86GB,4nodes

map chain0 main chain1 map chain2 map chain3 map chain4 main chain5 map chain6 map chain7
1 1 0 1 1 2 1 1
80 80 81 82 83 84 86 88

158 160 160 165 170 169 133

red chain0 red chain1 red chain2 red chain3 red chain4 red chain5 red chain6 red chain7
172 173 173 174 171 173 174 174
184 185 185 185 186 186 186 186

Table A.3: WordCount,929MB,8nodes

58

APPENDIX A. RAW EXPERIMENT RESULTS

map chain0 map chain1 map chain2 map chain3 map chain4 map chain5 map chain6 map chain7
1 1 2 3 0 2 1 2

79 79 81 81 83 83 86 84
157 158 159 161 163 168 168 170
237 237 239 243 246 248 254 257
316 317 319 323 310 332

red chain0 red chain1 red chain2 red chain3 red chain4 red chain5 red chain6 red chain7
333 333 334 333 334 335 335 334
345 345 347 348 349 348 348 349
357 358 359 360 361 363 364 364

Table A.4: WordCount,1.86GB,8nodes

map chain0 map chain1 map chain2 map chain3 map chain4 map chain5 map chain6 map chain7
0 1 1 4 1 7 7 1
77 81 78 79 82 84 85 81

157 157 156 161 161 163 161 164
234 235 236 239 241 241 243 243
313 317 315 318 322 321 324 304

map chain8 map chain9 map chain10 map chain11 map chain12 map chain13 map chain14 map chain15
1 1 1 4 7 1 5 46
82 84 83 87 84 81 94 123

166 166 164 168 168 169 186 201
249 250 251 251 252 268 279 283
333 334 333 319

red chain0 red chain1 red chain2 red chain3 red chain4 red chain5 red chain6 red chain7
337 337 337 337 338 338 338 338
349 349 349 349 349 350 350 350
361 362 362 362 362 362 362 362

red chain8 red chain9 red chain10 red chain11 red chain12 red chain13 red chain14 red chain15
338 339 339 339 341 337 339 340
351 351 351 352 353 352 355 355
363 363 363 364 365 366 369 370

Table A.5: WordCount,3.72GB,16nodes

map chain0 map chain1 map chain2 map chain3 red chain0 red chain1 red chain2 red chain3
0 1 0 1 157 158 158 156
16 18 19 18 197 197 198 199
35 36 40 36 237 240 237 242
52 54 61 54 273 279 280 284
73 73 81 73 307 319 322 326
91 91 98 94

111 112 115 112
130 131 134 133
148 152 152 154

Table A.6: Terasort,2GB,4nodes

59

APPENDIX A. RAW EXPERIMENT RESULTS

map chain0 map chain1 map chain2 map chain3 red chain0 red chain1 red chain2 red chain3
1 3 0 1 329 329 334 331
18 21 20 20 372 372 377 375
37 42 40 41 415 417 420 421
57 64 62 62 454 460 462 466
76 83 83 83 496 500 504 514
93 105 102 102 538 545 547 562

112 126 123 125 581 588 589 609
130 149 144 146 624 632 632 657
148 168 165 166 670 677 679 700
167 187 185 187
189 210 204 206
211 230 223 225
222 248 239 244
250 268 259 264
269 291 285 285
290 309 304 304
312 321 324 327

Table A.7: Terasort,4GB,4nodes

map chain0 map chain1 thread2 thread3 thread4 thread5 thread6 thread7
1 3 2 2 3 3 0 3

18 18 19 18 19 20 18 19
35 36 36 35 37 37 36 38
52 54 55 53 54 55 54 55
72 72 72 73 73 73 75 75

red chain0 red chain1 thread2 thread3 thread4 thread5 thread6 thread7
78 79 80 78 79 80 80 81
119 122 123 122 122 123 124 123
161 162 162 163 164 165 166 169

Table A.8: Terasort,2GB,8nodes

map chain0 map chain1 map chain2 map chain3 map chain4 map chain5 map chain6 map chain7
0 1 0 2 1 2 2 2

16 17 16 17 17 19 19 19
35 35 35 36 35 36 37 37
53 53 53 54 53 54 55 54
70 72 71 72 71 72 74 74
90 91 89 91 90 92 92 92
108 108 109 109 109 110 110 110
126 126 126 127 126 128 128 129
144 144 144 145 146 146 147 147

red chain0 red chain1 red chain2 red chain3 red chain4 red chain5 red chain6 red chain7
149 149 148 150 149 149 150 151
195 192 192 196 191 192 193 197
240 235 236 236 237 237 235 240
276 277 278 279 283 283 281 286
312 320 321 326 328 328 330 335

Table A.9: Terasort,4GB,8nodes

60

APPENDIX A. RAW EXPERIMENT RESULTS

map chain0 map chain1 map chain2 map chain3 map chain4 map chain5 map chain6 map chain7
1 1 1 1 1 0 2 1
18 18 18 18 18 17 19 19
36 37 35 36 35 35 37 36
54 54 53 56 53 53 56 57
72 72 74 73 73 72 75 75
89 90 90 90 91 91 93 93

107 108 108 108 109 109 110 111
125 126 126 126 127 128 129 129
144 144 144 145 145 146 147 147

map chain8 map chain9 map chain10 map chain11 map chain12 map chain13 map chain14 map chain15
3 0 0 2 2 3 3 1
19 20 19 22 20 20 20 20
39 38 36 42 39 39 40 39
55 57 56 61 58 60 59 58
74 75 76 80 76 79 78 77
93 93 94 97 94 96 95 95

111 112 112 115 113 114 115 114
129 130 131 135 131 133 132 131
148 148 149 149 150 151 152 153

Table A.10: Terasort,8GB,16nodes

61

Bibliography

[1] Amdahl’s law. [Online]. Available: http://en.wikipedia.org/wiki/Amdahl’s law

[2] G. M. Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” in Proceedings of the April 18-20, 1967, spring joint com-
puter conference, ser. AFIPS ’67 (Spring). New York, NY, USA: ACM, 1967, pp.
483–485.

[3] Amazon web service. [Online]. Available: http://aws.amazon.com/

[4] Bubble sort. [Online]. Available: http://en.wikipedia.org/wiki/Bubble sort

[5] Cloud computing. [Online]. Available: http://en.wikipedia.org/wiki/Cloud
computing

[6] J. Dean, S. Ghemawat, and G. Inc, “Mapreduce: simplified data processing on large
clusters,” in In OSDI04: Proceedings of the 6th conference on Symposium on Opeart-
ing Systems Design & Implementation. USENIX Association, 2004.

[7] Elastic computing cloud. [Online]. Available: http://aws.amazon.com/ec2/

[8] A. Y. Grama, A. Gupta, and V. Kumar, “Isoefficiency: Measuring the scalability of
parallel algorithms and architectures,” IEEE Parallel Distrib. Technol., vol. 1, pp. 12–
21, August 1993.

[9] granularity. [Online]. Available: http://en.wikipedia.org/wiki/Granularity

[10] graysort. [Online]. Available: http://sortbenchmark.org/

[11] Gustafson’s law. [Online]. Available: http://en.wikipedia.org/wiki/Gustafson’s law

[12] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, “The hibench benchmark suite:
Characterization of the mapreduce-based data analysis,” in Data Engineering Work-
shops (ICDEW), 2010 IEEE 26th International Conference on, march 2010, pp. 41
–51.

[13] S. Ibrahim, H. Jin, L. Lu, L. Qi, S. Wu, and X. Shi, “Evaluating mapreduce on virtual
machines: The hadoop case,” in Proceedings of the 1st International Conference on
Cloud Computing, ser. CloudCom ’09. Berlin, Heidelberg: Springer-Verlag, 2009,
pp. 519–528.

62

BIBLIOGRAPHY

[14] IEEE 802.3i(10BASE-T), IEEE Std.

[15] Amazon instance. [Online]. Available: http://aws.amazon.com/ec2/#instance

[16] K. Kim, K. Jeon, H. Han, S.-g. Kim, H. Jung, and H. Y. Yeom, “Mrbench: A bench-
mark for mapreduce framework,” in Proceedings of the 2008 14th IEEE International
Conference on Parallel and Distributed Systems. Washington, DC, USA: IEEE
Computer Society, 2008, pp. 11–18.

[17] V. Kumar and A. Gupta, “Analyzing scalability of parallel algorithms and architec-
tures,” J. Parallel Distrib. Comput., vol. 22, pp. 379–391, September 1994.

[18] J. Lin and C. Dyer, Data-Intensive Text Processing with MapReduce, 2010.

[19] Mapreduce. [Online]. Available: http://en.wikipedia.org/wiki/MapReduce

[20] mesh network. [Online]. Available: http://en.wikipedia.org/wiki/Mesh networking

[21] Message passing interface(mpi). [Online]. Available: http://en.wikipedia.org/wiki/
Message Passing Interface

[22] Newyork. [Online]. Available: http://open.blogs.nytimes.com/2007/11/01/
self-service-prorated-super-computing-fun/

[23] O. O’Malley, “Terabyte sort on apache hadoop,” May 2008.

[24] ——, “Winning a 60 second dash with a yellow elephant,” April 2009.

[25] W.-C. Shih, S.-S. Tseng, and C.-T. Yang, “Performance study of parallel program-
ming on cloud computing environments using mapreduce,” in Information Science
and Applications (ICISA), 2010 International Conference on, april 2010, pp. 1–8.

[26] Hadoop mapreduce configuration file. [Online]. Available: http://hadoop.apache.org/
mapreduce/docs/current/mapred-default.html

[27] speculative execution. [Online]. Available: http://developer.yahoo.com/hadoop/
tutorial/module4.html

[28] Data synchronization. [Online]. Available: http://en.wikipedia.org/wiki/
Data synchronization

[29] E. Tambouris and P. v. Santen, “A methodology for performance and scalability anal-
ysis,” in Proceedings of the 22nd Seminar on Current Trends in Theory and Practice
of Informatics, ser. SOFSEM ’95. London, UK: Springer-Verlag, 1995, pp. 475–480.

[30] T. White, Hadoop:The definitive guide, M. Loukides, Ed. O’Reilly Media, 2009.

[31] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica, “Improving mapre-
duce performance in heterogeneous environments,” in Proceedings of the 8th USENIX
conference on Operating systems design and implementation, ser. OSDI’08. Berke-
ley, CA, USA: USENIX Association, 2008, pp. 29–42.

63

	cover
	main

