
1

This Master’s Thesis is carried out as a part of the education at the

University of Agder and is therefore approved as a part of this

education

University of Agder, 2011

Faculty of Engineering and Science

Department of ICT

Privacy-preserving document similarity detection

Ksenia Khelik

Supervisor
Vladimir Oleshchuk

2

Abstract

The document similarity detection is an important technique used in many applications. The
existence of the tool that guarantees the privacy protection of the documents during the comparison
will expand the area where this technique can be applied. The goal of this project is to develop a
method for privacy-preserving document similarity detection capable to identify either semantically
or syntactically similar documents. As the result two methods were designed, implemented, and
evaluated. In the first method privacy-preserving data comparison protocol was applied for secure
comparison. This original protocol was created as a part of this thesis. In the second method
modified private-matching scheme was used. In both methods the Natural Language processing
techniques were utilized to capture the semantic relations between documents. During the testing
phase the first method was found to be too slow for the practical application. The second method,
on the contrary, was rather fast and effective. It can be used for creation of the tool for detecting
syntactical and semantic similarity in a privacy-preserving way.

3

Thesis definition

Privacy-preserving document similarity detection

Group 13: Ksenia Khelik

Detection of document similarity is an important problem with many applications in the areas of for
instance plagiarism detection, copyright protection, file management, document searching etc.
There can be distinguished two types of document similarity: syntactic and semantic one. The
documents are syntactically similar if they are written with the same words. The documents are
semantically similar if they contain the same information. Many tools have been developed for
documents comparisons based both on semantic and syntactic analysis.

In this project we consider the problem of privacy-preserving similarity detection of documents.
Such solution is needed when users want to compare documents without disclosing them to each
other. The privacy-preserving similarity detection implies existence of the secure protocol that
protects document contexts from disclosing to the other side during the comparison. The goal of
this master project is to design and implement such solution in order to create a tool that can be
used for privacy-preserving document comparison.

4

Contents
1 Introduction ... 7

1.1 Background ... 7
1.2 Problem statement .. 8
1.3 Literature review ... 8
1.4 Problem solution ... 9

2 Theoretical background ... 10
2.1 Natural Language Processing .. 10

2.1.1 Natural Language Processing techniques .. 10
2.2 Private matching scheme ... 12

2.2.1 Private matching scheme description ... 12
2.2.2 Paillier’s cryptosystem ... 13

2.3 Privacy-Preserving Data Comparison Protocol .. 14
2.3.1 Privacy-preserving Data Comparison Protocol Description 15
2.3.2 Massey-Omura cryptosystem ... 16

3 Solution .. 18
3.1 Requirements .. 18
3.2 Input Data .. 18
3.3 Output Data ... 18
3.4 Design Specification ... 19

3.4.1 Methods overview .. 19
3.4.2 Areas finding .. 20
3.4.3 Footprint finding ... 21
3.4.4 Footprint comparison ... 21
3.4.5 Area names comparison ... 27
3.4.6 Result finding ... 30

3.5 Implementation ... 32
3.5.1 Method 1 implementation .. 32
3.5.2 Method 2 implementation .. 38
3.5.3 Non-privacy document similarity detection method implementation 42

3.6 Testing .. 42
3.6.1 Testing environment description ... 42
3.6.2 Testing data ... 43
3.6.3 Method 1 performance measurement ... 43
3.6.4 Method 2 performance measurement: .. 46
3.6.5 Functionality validation .. 47

4 Discussion .. 48
5 Conclusion .. 50

5

List of figures

Figure 1: Private matching scheme outline .. 13
Figure 2: Privacy-preserving data comparison protocol outline .. 16
Figure 3: Massey-Omura message transfer protocol .. 16
Figure 4: Privacy-preserving document similarity detection process outline 20
Figure 5: Ontology structure ... 20
Figure 6: Footprint finding process... 21
Figure 7: Method 1 footprint comparison algorithm outline ... 23
Figure 8: Method 2 footprint comparison algorithm outline ... 26
Figure 9: Modified private matching scheme overview .. 26
Figure 10: Method 1 area names comparison algorithm outline ... 29
Figure 11: Method 2 area names comparison algorithm outline ... 30
Figure 12: Method 1 implementation steps overview .. 33
Figure 13: Ontology object diagram ... 34
Figure 14: Knowledge base overview .. 35
Figure 15: Modulus finding procedure ... 37
Figure 16: Method 2 footprint comparison implementation description .. 39
Figure 17: Sets comparison algorithm description .. 41
Figure 18: find_coeff() function implementation .. 41
Figure 19: Method 2 area names comparison implementation description 42
Figure 20: Footprint size versus original document size ... 43
Figure 21: Footprint finding execution time .. 44
Figure 22: Method 1 performance versus Non-private method performances 44
Figure 23: Comparison of time required to detect the similarity type between duplicates and
different documents .. 45
Figure 24: Comparison of time required to compare Bob's document with several Alice's documents
at once or separately for each document pair. .. 45
Figure 25: Method 1 performance versus the number of documents at each side........................... 46
Figure 26: Method 2 performance .. 46

6

List of tables

Table 1: Symbol encoding table ... 27
Table 2: Notations for Table 3 .. 31
Table 3: Documents similarity type finding table ... 32
Table 4: PoS database files ... 33
Table 5: Document pairs participating in functionality validation process ... 47
Table 6: Obtained types of similarity .. 47

7

1 Introduction
The document similarity detection is used in many different applications, such as plagiarism
detection, copyright protection and file management. A lot of methods are developed and many
tools, i.e. [23], [24], [25], were created in order to effectively compare the documents, but only few
of these methods ([6], [10], [14]) and none of tools can be applied to confidential document
similarity detection. The handling of the documents of such type implies the comparison process is
organized in such way that it guarantees the privacy protection of document contents. The existing
methods, satisfying this condition, reveal only the syntactically similar confidential documents. In
this project it was attempted to develop a method which along with a syntactic similarity can also
detect a semantic one in the privacy-preserving way.

1.1 Background
The document similarity detection is an important technique used in many applications. It can be
applied to efficient data management, to detection of copyright violations and plagiarism. But only
few of the existing methods and none of tools provide privacy protection of the documents they
compare. Development of the method for privacy-preserving documents comparison enables to
expand the area where document similarity detection can be applied. Some examples of privacy-
preserving similar document detection usage are given below.

At first it can be used in universities to prevent plagiarism in project reports. Sometimes project can
be given by the company. Working on such project, a student can get an access to some
company’s confidential documents and use their parts in his or her report without references. The
creation of a common database, consisting of companies’ documents, related to the project topics,
can help to deal with this problem. The presence of a secure protocol for data transfer and
comparison will provide documents confidentiality. At second, this technique can be applied to
reveal duplicated conference registrations or paper submissions. Nowadays, there is no effective
procedure to detect the paper that is submitted to obtain the permission for the author to participate
in different conferences or to be published in different journals. Privacy-preserving document
similarity detection enables to unite conference committees or journal redactors to find dishonest
applicants. Thirdly, this tool can help the customers to decide whether or not they need to buy the
chosen articles or books. In many online book shops there is no preview option available, so
sometimes it is impossible to check if this article or book is the same one that the customer already
has or how many changes the authors have made in their new editions as compared to the
previous ones. Opportunities, the privacy-preserving document similarity detection provides, allows
the customer to resolve doubts before buying without infringing the copyrights.

It can be distinguished 4 kinds of document similarity: semantic, syntactic, lexical and structural one.
In this project only semantic and syntactic similarities are taken into consideration. Two documents
are syntactically similar if they are written with the same words placed in the same order. The
documents are semantically similar if they contain the same information possibly written with
different words. Unfortunately, it is not always enough to check only whether the documents are

8

syntactically similar. Very often different changes are applied to the document to hide the fact that
this document is a copy of another one. The most widespread methods are: changing the order of
words, sentences, paragraphs, using synonyms, paraphrasing the sentences, adding and/or
deleting some parts. So in order to compare the documents correctly, it is also necessary to check
the presence of semantic document similarity. The existence of the method, that detects both
semantic and syntactic similarity and guarantees the privacy protection for the confidential
documents, will improve the quality of document comparison and expand the area where document
similarity detection can be applied.

1.2 Problem statement
Let Alice and Bob represent two parties each of whom has a collection of documents. The
document is considered as a text, paragraph, sentence or just several distinct words. Both Alice’s
and Bob’s documents are assumed to be confidential. The goal of this project is to develop a
method that enables to detect whether or not Bob’s collection contains a document, similar to the
some document from Alice’s collection without disclosing Bob’s data to Alice and vice-versa. This
method should indentify either semantically or syntactically similar documents.

The aim implies the creation of a secure protocol for privacy-preserving data comparison. This
protocol should be design in such manner that it doesn’t require the presence of the trusted third
party.

1.3 Literature review
Several approaches were proposed in order to detect the syntactically similar documents. One of
the widely used methods is to introduce vector space model [1], [2], [3]. All words, met in both
documents, form the global vector space. Then the individual vector for each document is created.
This vector consists of elements representing how much times the words from global space
appeared in the text. More common words the documents share, closer the vectors are. To find the
distance between the vectors the cosine theorem [4] can be used. If the distance is greater than
some pre-defined threshold, then the documents are considered to be similar.

Some attempts were made to use vector space model for privacy-preserving document comparison.
In [5] the authors proposed a method for similarity-based text retrieval that safeguard the content of
the user queries and the retrieved documents. To provide the privacy the trusted third party was
involved. In [6], [7] two different ways for privacy-preserving distance finding were described. The
first one is based on random matrix-based privacy-preserving dot product protocol [8]. The second
way is to employ the properties of homomorphic encryption. Both of these methods guarantee the
privacy of the individual vectors and, consequently, the document contents.

The comparison of the fingerprints is an alternative way to find a syntactical document similarity.
The idea to map a text into a bit-string, called fingerprint, was introduced in [9] by M.O. Rubin. Later
in [10] A. Z. Broder showed how Rubin’s fingerprints can be applied for similar document detection.
Since then, some work has been done to optimize this approach. In [11] the attack-resistant

9

method for identifying plagiarized documents was presented. The security was provided by
unpredictable fingerprint counting process. The algorithms, described in [12], [13], were able to
detect near-duplicated documents. As fingerprints comparison doesn’t reveal the document
contents to another party, it can be used for privacy-preserving similarity detection.

One more approach, called private matching scheme, was described in [14]. It was created to find
the intersection of private datasets of two parties. The method is based on the homomorphic
encryption properties that are used for operation performed on polynomial whose roots are the
dataset elements of one of the party. Unfortunately, this scheme doesn’t provide confidentiality to
all elements in datasets, but can be easy modified to be applied to privacy-preserving document
similarity detection.

As for revealing semantic similarity in the documents, the usage of the natural language processing
techniques is one of the effective ways to do it. In [15] it was proposed to parse the document to
extract the distinct words, called tokens. The parsing process includes the removal of high
frequency words and the stemming of the remaining words. The obtained sets of tokens are used
for documents comparison. In [16] it was experimentally shown that it is enough to compare only
nouns, adjectives and verbs to detect the semantic similarity of the documents. The authors of [17],
[18] suggested to use the ontology, as it enables to reflect semantic relationship between
documents and make comparison process more effective. The overview of all natural language
processing techniques that can be used for semantic similarity detection is given in [19].

1.4 Problem solution
The analysis of the existing methods for different document similarity types detection showed there
is no such method that reveals both semantically and syntactically similar documents in privacy-
preserving way. So it was decided to combine some found approaches to be able to do it. As the
result two methods were developed. Both of these methods have the following structure. At first for
all documents of each party the areas, the documents are related to, are found employing ontology.
Then every document is processed, using Natural Languages Processing techniques, and
transformed into a set of distinct meaningful words, called footprint. After that footprint and areas of
each document of one party are compared respectively with a footprint and areas of every
document of another party in privacy-preserving way. In the first method privacy-preserving data
comparison protocol, created as a part of this thesis, was employ for secure comparison. In the
second method private matching scheme [14] was applied after some modifications for this purpose.
For methods implementation Python programming language was used.

10

2 Theoretical background
As it was mentioned in paragraph 1.4, two methods for privacy-preserving document similarity
detection were developed. To create them, several approaches were used. They are Natural
Language Processing techniques [19], private matching scheme [14], and privacy-preserving data
comparison protocol. The description of these approaches is given in this chapter.

2.1 Natural Language Processing

Natural Language Processing (NLP) is a theoretically motivated range of computational techniques
for analyzing and representing texts in natural human-languages [20]. All NLP systems aim to
achieve a human-like performance during language processing. For this purpose they use different
levels of linguistic analysis utilized by humans to produce or comprehend language. The following
levels of linguistic analysis can be distinguished [20]: phonology, morphology, lexical, syntactic,
semantic, discourse, and pragmatic one.

Phonology level deals with the interpretation of speech sounds within and across words. The NLP
systems analyze the sound waves and encoded them into a digitized signal for further processing.
Morphology level analyzes the form and structure of words. All words are composed of the smallest
units of meaning, called morphemes. Since the meaning of each morpheme remains the same
across words, the NPL systems exploit this property to gain the meaning of the unknown words. At
the lexical level the sentences are divided into separate words. The NLP system assigns the part-
of-speech tag to each word according to the context in which this word occurs and then determines
its possible meanings. Syntactic level focuses on analyzing the words in a sentence in order to
uncover the structural dependency between the words. The semantic level goal is to determine the
meaning of the sentences based on the words meanings. This stage includes the semantic
disambiguation of polysemous words. Discourse and pragmatic levels are the highest levels of
processing. Discourse is focusing on finding of the connections between sentences. Pragmatic
level is concentrated on the context over and above the text contents for better text understanding
[20].

The NLP techniques are used in many applications, such as information retrieval, text mining,
language understanding, and text classification. The description of the often-used techniques is
given below.

2.1.1 Natural Language Processing techniques

Stop list
Stop list contains high frequency words, such as ’of’, ‘a’, or ‘is’. Usually these words are ignored to
improve the performance. But in some applications, i.e. text mining, they can help to determine a
part of speech or to clarify the semantics of the text segment [19].

Stemming

11

Stemming is the process of reducing the word to its root. For example, ‘derives’ and ‘derivation’ can
be replaced by ‘deriv’. It leads to the reducing of the number of meaningful words, but can also
affect the semantics.

Lemmatization
Lemmatization is the process of reducing the word to its canonical form. For example, ‘is’, ’are’, and
‘been’ will be replaced by ‘be’. As well as stemming, it leads to reducing the number of meaningful
words, but make it in more proper way, using vocabulary and morphology analysis of the words [21].

Noisy data
Noisy data refers to the words with spelling mistakes, acronyms and abbreviations. It can be very
useful to correct all mistakes and to replace all acronyms and abbreviations at the beginning of
analysis.

Word sense disambiguation
The word sense disambiguation problem is about finding out the most probable meaning of a
polysemous word [19]. Several approaches can be used to deal with this problem: dictionary and
knowledge based, supervised, and unsupervised methods. Dictionary and knowledge based
methods suppose that the sense of the word can be extracted from definitions of the words, so they
use dictionaries, thesauri and other lexical knowledge bases. Supervised methods mainly adopt
context to disambiguate words. These methods include training and testing phases. In the training
phase, a sense-annotated training corpus is required, from which syntactic and semantic features
are extracted to create a classifier using machine learning techniques [22]. When lexical knowledge
bases or training data are unavailable, the unsupervised methods are used. These methods
acquire contextual information directly from unannotated raw text, and senses can be induced from
text using some similarity measure [22].

Part of speech tagging
Part of speech (POS) tagging is a process of assigning a part of speech to each word in a sentence.
It helps to determine the right word sense. There following basic POS tags are used by all taggers:
verb, noun, pronoun, adjective, adverb, preposition, conjunction, and interjection with some taggers
adding the article [16]. Many tagging systems extend these basic tags to describe additional
grammatical features, such as singular/plural, number, tense, gender, and even punctuation [16].

Ontology
Ontology is a knowledge structure that specified terms, their properties and relations among them
to enable knowledge extraction from the text [18]. It consists of concept, concept-relations, axiom
and instances [19].The selection of concepts depends on the task and the domain information that
need to be captured. Thus before constructing the ontology, it is important to know what it will be
used for. The ontology reflects the structure of the certain domain and clarifies the meaning of
thespecial terms appeared in the text. Thus it can be used to provide expert, background
knowledge about the domain and constrain the possible senses of the terms. The application of

12

ontology to the document comparison can reveal the semantic similarity that hasn’t been noticed
before [18].

Tokenization
Tokenization is the process of breaking up the sequence of characters in a text by locating the word
boundaries, the points where one word ends and another begins [26]. The derived words are called
tokens. Tokenization is rather easy task for the languages, like English, Russian, or German, in
which words are separated by space character. But it can be complicated for Chinese and some
other languages, because a word may be represented as a single character or series of several
characters, and there may be no space between words [26].

2.2 Private matching scheme
Private matching (PM) scheme was proposed in [14] by B. Pinkas, M.J. Freedman and K. Nissim,
to find the intersection of private datasets elements taken from the same domain. It is a two-party
protocol based on the use of encryption function ܿ݊ܧ, satisfying following properties:

(1) Encryption function is a homomorphic function:
Given two ciphertexts ܿ݊ܧሺ݉ଵሻ and ܿ݊ܧሺ݉ଶሻ, then ܿ݊ܧሺ݉ଵ ൅ ݉ଶሻ ൌ ሺ݉ଵሻܿ݊ܧ ْ ሺ݉ଶሻ, for someܿ݊ܧ
operation .

(2) It allows multiplication by a constant:
Given ciphertext ܿ݊ܧሺ݉ሻ and some constant ܿ, then it’s possible to compute ܿ݊ܧሺܿ · ݉ሻ, without
decrypting ciphertext

As an example of the encryption function, satisfying these properties, Paillier’s cryptosystem [27]
can be taken. It is described in paragraph 2.2.2.

2.2.1 Private matching scheme description
Let Alice and Bob represent two parties. Alice’s input is a set ܺ ൌ ሼݔଵ, … , ,ேሽ from some domainݔ
Bob’s input is a set Yൌ ሼݕଵ, … , ௄ሽ from the same domain. According to [14] protocol has theݕ
following basic structure. Alice defines a polynomial P, whose roots are her inputs:

Pሺtሻ ൌ ሺxଵ െ tሻሺxଶ െ tሻ … ሺxN െ tሻ ൌ ෍ a୳t୳
N

୳ୀ଴

She sends to Bob encrypted coefficients of this polynomial. Bob employs the homomorphic
properties of the encryption system to evaluate the polynomial at each of his inputs. Then he
multiplies each result by a random number r, adds to it an encryption of the value of his input, to get
ଵݎሺܿ݊ܧ · ܲሺݕଵሻ ൅ ,ଵሻݕ … , ௄ݎሺܿ݊ܧ · ܲሺݕ௄ሻ ൅ ௄ሻݕ and sends them to Alice. She decrypts received
values and compares obtained values with her inputs. The result is a number of common elements
and their values. Other decrypted values, not equal to some Alice’s element values, are just
random numbers, and don’t reveal the corresponding Bob’s element values. The scheme is

13

organized in such way that Bob can’t know the Alice’s element values. The detailed protocol
description is given Figure 1.

Alice

 Bob

1. Choose the parameters for a
homomorphic encryption
function Enc

Public parameters

2. Define the polynomial P with
roots ݔଵ, … , ே and coefficientsݔ
ܽଵ, … , ܽே

3. Encrypt coefficients, to get
set ሼܿ݊ܧሺܽ଴ሻ, … , ሺܽேሻሽܿ݊ܧ

ሼܿ݊ܧሺܽ଴ሻ, … , ሺܽேሻሽܿ݊ܧ

 For every Bob’s input y repeat
steps 1-2:

 1. Choose a random value r

 2. compute ܿ݊ܧሺݎ · ܲሺݕሻ ൅ ሻݕ

3. randomly permute
ଵݎሺܿ݊ܧ · ܲሺݕଵሻ ൅ ,ଵሻݕ … , ௄ݎሺܿ݊ܧ ·
 to get ܭݕ൅ܭݕܲ
ଵݎሺܿ݊ܧ · ܲሺݕଵԢሻ ൅ ,ଵԢሻݕ … , ௄ݎሺܿ݊ܧ ·
 ԢܭݕԢ൅ܭݕܲ

ଵݎሺܿ݊ܧ

ᇱ · ܲሺݕଵԢሻ ൅ ,ଵԢሻݕ … , ௄ݎሺܿ݊ܧ
ᇱ · ܲሺݕ௄Ԣሻ ൅ ௄Ԣሻݕ

4. Decrypt ciphertexts received
and compare obtained values
with ݔଵ, … , ேݔ

5. Return the number of
common elements and their
values

Figure 1: Private matching scheme outline

2.2.2 Paillier’s cryptosystem
Paillier’s cryptosystem was first proposed in [27]. This is a public-key encryption, based on usual
modular arithmetic.

Key generation
1. Choose two large prime numbers ݌ and ݍ

14

2. Set ݊ ൌ ݌ · ߣ and ݍ ൌ ݈ܿ݉ሺ݌ െ 1, ݍ െ 1ሻ
3. Randomly select ݃ א Ժ௡మ

כ : gcdሺ௚ഊ௠௢ௗ௡మିଵ
௡

, ݊ሻ ൌ 1
4. Consider ݊, ݃ as public parameters and ݌, .as private ones ݍ

Encryption
1. Given message ݉ א Ժ௡

כ
2. Select a random ݎ ൏ ݊
3. Compute ciphertext ܿ ൌ ݃௠ · ଶ݊ ݀݋݉ ௡ݎ

Decryption
1. Given ciphertext ܿ א Ժ௡మ

כ

2. Compute plaintext ݉ ൌ ଶ൯݊ ݀݋݉ ൫ܿఒܮ · ቀܮ൫݃ఒ ݉݀݋ ݊ଶ൯ቁ
ିଵ

ሻݑሺܮ where , ݊ ݀݋݉ ൌ ௨ିଵ
௡

Properties
Paillier’s encryption function satisfies the following properties:

1. It is a homomorphic function.

Proof:
,ଵ݉ ׊ ݉ଶ א ܼ௡

כ :
ሺ݉ଵܿ݊ܧ ൅ ݉ଶሻ ൌ ݃௠భା௠మ · ଶ݊ ݀݋݉ ௡ݎ ൌ ݃௠భ · ݃௠మ · ଶ݊ ݀݋݉ ௡ݎ ൌ

ൌ ሺ݃௠భ · ଶሻ݊ ݀݋݉ ௡ݎ · ሺ݃௠మ · ଶ݊ ݀݋ଶሻ݉݊ ݀݋݉ ௡ݎ ൌ ሺ݉ଵሻܿ݊ܧ · ଶ݊ ݀݋ሺ݉ଶሻ݉ܿ݊ܧ
□

2. It allows multiplication by a constant

Proof: ׊ ݉ א ܼ௡

כ , ݇ א Գ “
ሺ݇ܿ݊ܧ · ݉ሻ ൌ ݃௞·௠ · ଶ݊ ݀݋݉ ௡ݎ ൌ ሺ݃௠ሻ௞ · ଶ݊ ݀݋݉ ௡ݎ ൌ ሺ݃௠ · ଶ݊ ݀݋݉ ଶሻ௞݊ ݀݋݉ ௡ݎ ൌ
 ൌ ሺܿ݊ܧሺ݉ሻሻ௞݉݊݀݋ଶ

□

Thus Paillier’s encryption function satisfies the properties listed in paragraph 2.2, so it can be used
in private matching scheme described in paragraph Private matching scheme description 2.2.1

2.3 Privacy-Preserving Data Comparison Protocol
This original privacy-preserving data comparison protocol was created as an alternative way to
perform documents comparison in privacy-preserving way. This protocol is based on the use of
commutative encryption, that is:

 If ܿ݊ܧଵ and ܿ݊ܧଶ are two commutative encryption functions and ݉ is a plaintext, then ciphertexts
 .ଵሺ݉ሻሻ are equalܿ݊ܧଶሺܿ݊ܧ ଶሺ݉ሻሻ andܿ݊ܧଵሺܿ݊ܧ

15

 As the example of commutative encryption, The Massey-Omura cryptosystem [28] can be used. It
is described in paragraph 2.3.2.

2.3.1 Privacy-preserving Data Comparison Protocol Description

Let Alice and Bob represent two parties. Alice has a set of elements ܺ ൌ ሼݔଵ, … , ேሽ. Bob has a setݔ
of elements ܻ ൌ ሼݕଵ, … , .ேሽ. Protocol is organized as followsݕ

Alice and Bob define the commutative encryption functions ܿ݊ܧଵ and ܿ݊ܧଶ, respectively. Both of
them encrypt their elements with the corresponding encryption function and send the obtained sets
to each other. Having received the encrypted Alice’s elements, Bob encrypts them, using ܿ݊ܧଶ,
permutes and sends to Alice. Meanwhile, Alice encrypts Bob’s encrypted elements, using ܿ݊ܧଵ.
Then she receives back her elements, modified by Bob. At the moment Alice has two sets:
 ଶሺܻሻ. Because of commutative encryption property, the ciphertexts of theܿ݊ܧଵܿ݊ܧ ଵሺܺԢሻ andܿ݊ܧଶܿ݊ܧ
elements, that contains in X and Y set intersection, are identical. So the number of common
elements in ܺ, ܻ sets are the same as the number of common elements in ܿ݊ܧଶܿ݊ܧଵሺܺԢሻ and ܿ݊ܧଵ
 ଶሺܻሻ sets. All Alice needs to get a result is to compare these new sets. Since Bob has shuffledܿ݊ܧ
Alice’s encrypted elements, Alice can’t determine which of her elements are identical to Bob’s ones.
The detailed protocol description is given in Figure 2.

Alice

 Bob

1. Choose the parameters for a
homomorphic encryption function ܿ݊ܧଵ

 1. Choose the parameters for a
homomorphic encryption function ܿ݊ܧଶ

2. Encrypt Alice’s elements with ܿ݊ܧଵ
to get set ܧଵሺܺሻ

 2. Encrypt Bob’s elements with ܿ݊ܧଶ to
get ܧଶሺܻሻ

 ଵሺܺሻܧ

 ଶሺܻሻܧ

3. Encrypt ܧଶሺܻሻwith ܿ݊ܧଵ to get set
 ଶሺܻሻܧଵܧ

 3. Encrypt ܧଵሺܺሻ with ܿ݊ܧଶ to get set
 ଵሺܺሻܧଶܧ

 4. Randomly permute ܧଶܧଵሺܺሻ to get set
 ଵሺܺԢሻܧଶܧ

 ଵሺܺԢሻܧଶܧ

4. compare ܧଵܧଶሺܻሻand ܧଶܧଵሺܺԢሻ
5.return the number of common
elements

16

Figure 2: Privacy-preserving data comparison protocol outline

2.3.2 Massey-Omura cryptosystem
The Massey-Omura cryptosystem was described in [28]. It was created for secure data transfer
between 2 parties. Let Alice and Bob represent two parties. Alice needs to send message M to Bob.
The message transfer scheme is described below.

Key generation:
1. Alice choose a large prime number ݍ
 is considered as a public key ݍ .2
3. Alice selects a random positive integer ݁ଵ , such that ݁ଵ ൏ ݍ and ݃ܿ݀ሺ݁ଵ, ݍ െ 1ሻ ൌ 1 , and
computes ݀ଵ ൌ ݁ଵ

ିଵ݉ݍ ݀݋ െ 1
4. Bob selects a random positive integer ݁ଶ, such that ݁ଶ ൏ ,and ݃ܿ݀ሺ݁ଶ ݍ ݍ െ 1ሻ ൌ 1, and computes
 ݀ଶ ൌ ݁ଶ

ିଵ݉ݍ ݀݋ െ 1
5. ݁ଵ, ݀ଵ are Alice’s private keys, ݁ଶ, ݀ଶ are Bob’s private keys.

Encryption:
1. Given message ݉ א Ժ௤

כ
2. Let ݁ be a private key
3. Compute ciphertext ܿ ൌ ݍ ݀݋݉ ௘ܯ

Decryption:
1. Given ciphertext ܿ߳Ժ௤

כ
2. Let ݀ be a private key, such that ݀ ൌ ݁ିଵ ݉ݍ ݀݋ െ 1
3. Compute message ݉ ൌ ܿௗ ݉ݍ ݀݋

Message transfer:
The Massey-Omura cryptosystem requires three messages to be sent to achieve a secure
transmission. This process is shown in Figure 3.

Alice Bob

Alice needs to send a
message ܯ

ܣ .1 ൌ ݀݋௘భ݉ܯ ݍ

 2. Bൌ ݀݋௘మ݉ܣ ݍ

 3. Cൌ ݀݋ௗభ݉ܤ ݍ

 4. Bob calculates ܦ ൌ ݀݋ௗమ݉ܥ ݍ

and gets the message ܯ, that is
equal to ܦ

Figure 3: Massey-Omura message transfer protocol

17

Properties
Massey-Omura cryptosystem satisfies the property of commutative encryption.

Proof:
Let ݍ be a public key. ܿ݊ܧଵ is an encryption function with ݁ ଵ private key, and ܿ݊ܧଶ is an encryption
function with ݁ଶ private key. Given message ݉ א Ժ௤

כ . Then
ሻ൯ܯଶሺܿ݊ܧଵ൫ܿ݊ܧ ൌ ሻݍ ݀݋݉ ௘మܯଵሺܿ݊ܧ ൌ ሺܯ௘మሻ௘భ ݉ݍ ݀݋ ൌ ݍ ݀݋௘భ·௘మ݉ܯ ൌ
ൌ ሺܯ௘భሻ௘మ ݉ݍ ݀݋ ൌ ሻݍ ݀݋݉ ௘భܯଶሺܿ݊ܧ ൌ ሻ൯ܯଵሺܿ݊ܧଶ൫ܿ݊ܧ

□

Thus, Massey-Omura encryption functions satisfy the property mentioned in paragraph 2.3. So they
can be used in protocol described in paragraph 2.3.1.

18

3 Solution
Within the bounds of IKT590 project, two methods for privacy-preserving documents similarity
detection were designed, implemented and tested. The description of these steps is given in this
chapter.

3.1 Requirements
As it was said in paragraph 1.2, the goal of this project is to develop a method for privacy-
preserving document similarity detection. This method should satisfy the following requirements:

General requirements:

1. It should take as little time as possible.
2. The number of data transfers should be minimized.

Functional requirements:

1. It should find semantically similar documents.
2. It should find syntactically similar documents.
3. It should detect a document that is a part of another one.
4. It should detect documents that contain common part.
5. It should be possible to compare several documents at once.

Security requirements:

1. No third party should be involved.
2. It is allowed to know the number of words, participating in comparison.
3. Every party have a right to know the number of words, containing in both compared

documents.
4. There should be no way to know the words, containing in both compared documents.
5. There should be no way for each party to know the words of another party.

3.2 Input Data
For each party input data are one or several documents in .txt format. The documents should be
written in English language. The tables and drawing are not processed. The documents, containing
none or one word, don’t participate in the comparison process.

3.3 Output Data
The output data shows the type of similarity relationship between each document of one party and
each document of another party. Let ܿ݋ܦଵ and ܿ݋ܦଶ are two documents, have been compared. The
similarity relationship types between them can be following:

1. The documents are syntactically similar (duplicates)
2. The documents are almost syntactically similar (near duplicates)
3. The documents are semantically similar

19

4. The documents share common part
 ଶܿ݋ܦ ଵ is a semantically similar to some part ofܿ݋ܦ .5
 ଵܿ݋ܦ ଶ is a semantically similar to some part ofܿ݋ܦ .6
7. Documents are different

3.4 Design Specification
According to the requirements, given in paragraph 3.1, two methods for privacy-preserving
document similarity detection were designed and implemented. In this chapter the detailed
overview of these methods can be found.

3.4.1 Methods overview
Let Alice and Bob represent two parties. Alice has a set of documents ܣ_ܿ݋ܦ, Bob has a set of
documents ܤ_ܿ݋ܦ. They want to know the types of similarity relationship between their documents.
To find the answer, they use one of two developed methods: Method 1 or Method 2. These
methods have similar basic structure.

At first Alice and Bob prepare their documents and determine the areas, the documents are related
to, using ontology. Then each party process every document, applying Natural Language
Processing techniques described in paragraph 2.1.1, and transforms it to the set of distinct
meaningful words, called footprint. According to the method parties have chosen, Alice compares
her every footprint with each Bob’s one in privacy-preserving way and gets the number of common
words in each footprint pair. Also she finds the semantic relationship between her and Bob’s
documents performing the secure area names comparison. To guarantee the privacy of footprints
and area names during comparison process, Method 1 employs the privacy-preserving data
comparison protocol, while Method 2 uses the modified private-matching scheme. According to the
numbers of common words and semantic relationship, Alice finds the types of similarity relationship
between her and Bob’s documents. The generalized description of privacy-preserving document
similarity detection process is shown in Figure 4.

Alice

 Bob

For every Alice’s document repeat
steps 1-2:

 For every Bob’s document repeat
steps 1-2:

1. Find areas, document is
related to

 1. Find areas, document is
related to

2. Find footprint

 2. Find footprint

3. Compare every Alice’s footprint
with each Bob’s footprint according
to the selected method to get the
number of common words

 3. Participate in footprint
comparison process

4. Compare area names of every
Alice’s document with areas
name’s of every Bob’s document

 4. Participating in area names
comparison

20

according to selected method to get
the semantic relationship between
documents

5. Find result according to the
number of common words and
semantic relationship

Figure 4: Privacy-preserving document similarity detection process outline

3.4.2 Areas finding
To find the areas, document is related to, ontology is used. It is one of the Natural Language
Processing technique described in paragraph 2.1.1. Ontology consists of areas that, in turn, can
contain some other areas. Every area is described by the set of terms in an unique way. Each term
can be a phrase or a single word. It is allowed to include the same term in several sets. The
ontology structure is presented in Figure 5.

Figure 5: Ontology structure

The areas are determined according to the ontology terms the document contains. The finding
process consists of following steps:

 For every ontology area repeat steps 1-2:

1. Search for all terms this area is described by.
2. If the number of found terms is greater than some predefined value, add the name of this area

to the list of area names
3. Return the list of area names

The threshold was introduced to avoid the wrong area detection in the following cases:
1. There are homonymous words to the ontology terms in the document
2. A few terms from some area are mentioned in the document, but the document actually isn’t

related to this area.

21

3.4.3 Footprint finding
Footprint finding is a second step in a privacy-preserving document similarity detection process. It
is based on the application of several Natural language processing techniques described in
paragraph 2.1.1. This step is performed to transform a document into a set of distinct meaningful
words, called footprints. Meaningful words are the words reflecting the semantics of the document
content. They are nouns, adjectives and verbs. In [16] it was experimentally shown by the example
of English language that it is enough to compare only the words, marked with these parts of speech,
in order to detect the semantic similarity of the documents. The removal of other parts of speech
allows to increase the algorithm performance during the footprint comparison step. But there is one
disadvantage of this approach. The users can’t be sure whether the documents are 100% identical
in case of document footprints equality. If it is important for the users, the additional word-by-word
documents comparison can be performed.

The following Natural Language Processing techniques are used to find document footprint:
tokenization, part-of-speech tagging, stemming. All of them, except tokenization, require the
presence of the knowledge base.

The footprint finding process starts with the knowledge base preparation (it will be explained in
3.5.1.1). Then all letters are converted to lower-case and the document is divided into separate
words, called token. After that every token is marked with appropriate part-of-speech tag and the
ones with noun, adjective and verbs tags are selected. The chosen tokens are stemmed. Then
repetitions in list of stemmed tokens are deleted and footprint is ready. The overview of the footprint
finding process is shown in Figure 6.

1. Prepare knowledge base
2. Convert all letters to lower-case
3. Perform document tokenization
4. Perform part-of-speech tagging
5. Choose words with nouns, verbs and adjectives tags.
6. Perform stemming
7. Delete repetitions

Figure 6: Footprint finding process

3.4.4 Footprint comparison
During the footprint comparison step every footprint of one party is compared with each footprint of
another party and number of common words between them is found. The comparison is performed
by one of the parties. Let it be Alice. According to the chosen method for privacy-preserving
document similarity detection, she can compare the footprints in one of two ways: using privacy-
preserving data comparison protocol or applying modified private-matching scheme. The
description of Method 1 and Method 2 footprint comparison steps are given below.

22

3.4.4.1 Method 1 footprint comparison algorithm

Method 1 footprint comparison algorithm is based on privacy-preserving data interchanging
protocol described in paragraph 2.3 and has the following structure.

Let Alice has a set of footprints ݎ݌ݐ݋݋ܨ஺ ൌ ሼ݂ݎ݌ݐ݋݋஺ଵ, … , .஺ேሽݎ݌ݐ݋݋݂ Bob has a set of footprints
஻ݎ݌ݐ݋݋ܨ ൌ ሼ݂ݎ݌ݐ݋݋஻ଵ, … , ஻௄ሽݎ݌ݐ݋݋݂ . The algorithm starts from the footprints preparation for
comparison process. Alice divides each footprint into 2 subsets. The first one consists of the words,
containing in all her footprints. The second one consists of the rest of the words, not containing in
the first subset. Alice transforms every word in the subsets into numerical representation. As the
result she gets subsets ݉݋ܥ஺, ݂݅ܦ ஺݂ଵ ,…, ݂݅ܦ ஺݂ே. The same actions are performed by Bob and he
obtains the subsets ݉݋ܥ஻, ݂݅ܦ ஻݂ଵ,…, ݂݅ܦ ஻݂௄. The footprints are divided into 2 subsets to avoid the
encryption and transfer of the words that are in all footprints of one party several times. In some
cases, e.g. when all documents are related to the same area, the saving of time can be significant.

Then Alice and Bob define homomorphic encryption functions ܿ݊ܧଵ and ܿ݊ܧଶ, respectively. They
encrypte their subsets with corresponding encryption functions and send them to each other.
Having received the encrypted Alice’s subsets, Bob encrypts them with ܿ݊ܧଶ, permutes elements in
every subset and sends to Alice. Meanwhile, Alice encrypts Bob’s encrypted subsets, using ܿ݊ܧଵ.
Then she receives back her subsets, modified by Bob. At the moment Alice has following sets:
஺݉݋ܥଵሺܿ݊ܧଶܿ݊ܧ

ᇱ ሻ, ܿ݊ܧଶܿ݊ܧଵሺ݂݅ܦ ஺݂ଵ
ᇱ ሻ , … , ݂݅ܦଵሺܿ݊ܧଶܿ݊ܧ ஺݂ே

ᇱ ሻ, ܿ݊ܧଵܿ݊ܧଶሺ݉݋ܥ஻ሻ, ܿ݊ܧଵܿ݊ܧଶሺ݂݅ܦ ஻݂ଵሻ, …,
݂݅ܦଶሺܿ݊ܧଵܿ݊ܧ ஻݂௄ሻ . She unions ܿ݊ܧଶܿ݊ܧଵሺ݉݋ܥ஺

ᇱ ሻ with ܿ݊ܧଶܿ݊ܧଵሺ݂݅ܦ ஺݂ଵ
ᇱ ሻ, … , ݂݅ܦଵሺܿ݊ܧଶܿ݊ܧ ஺݂ே

ᇱ ሻ to
get her encrypted footprints ܿ݊ܧଶܿ݊ܧଵሺ݂ݎ݌ݐ݋݋஺ଵ

ᇱ ሻ, … , ஺ேݎ݌ݐ݋݋ଵሺ݂ܿ݊ܧଶܿ݊ܧ
ᇱ ሻ and unions

஻ሻ݉݋ܥଶሺܿ݊ܧଵܿ݊ܧ with ܿ݊ܧଵܿ݊ܧଶሺ݂݅ܦ ஻݂ଵሻ, … , ݂݅ܦଶሺܿ݊ܧଵܿ݊ܧ ஻݂௄ሻ to get Bob’s encrypted footprints
,஻ଵሻݎ݌ݐ݋݋ଶሺ݂ܿ݊ܧଵܿ݊ܧ … , ஻௄ሻ.Then she compares each of her encrypted footprintsݎ݌ݐ݋݋ଶሺ݂ܿ݊ܧଵܿ݊ܧ
with every Bob’s encrypted footprint to find the number of common words. The detailed algorithm
description is given in Figure 7.

Alice

 Bob

1. Find the words, that are in all Alice’s
footprints and transform them into
numerical representation to get set ݉݋ܥ஺

 1. Find the words, that are in all Bob’s
footprints and transform them into
numerical representation to get set ݉݋ܥ஻

For every Alice’s footprint ݂ݎ݌ݐ݋݋஺௜ repeat
step 2:

 For every Bob’s footprint ݂ݎ݌ݐ݋݋஻௝ repeat
step 2:

2. Transform the footprint words, that are
not in ݉݋ܥ஺ into numerical representation
and add them to the set ݂ݎ݌ݐ݋݋஺௜

 2. Transform the footprint words, that
are not in ݉݋ܥ஻ into numerical
representation and add them to the set
 ஻௝ݎ݌ݐ݋݋݂

3. Choose the parameters for a
commutative encryption function ܿ݊ܧଵ

 3. Choose the parameters for a
commutative encryption function ܿ݊ܧଶ

Encryption public parameters

23

4. Encrypt ݉݋ܥ஺, ݂݅ܦ ஺݂ଵ ,…, ݂݅ܦ ஺݂ே with ܿ݊ܧଵ

 4. Encrypt ݉݋ܥ஻, ݂݅ܦ ஻݂ଵ,…, ݂݅ܦ ஻݂௄
with ܿ݊ܧଶ

,஺ሻ݉݋ܥଵሺܿ݊ܧ ݂݅ܦଵሺܿ݊ܧ ஺݂ଵሻ, … , ݂݅ܦଵሺܿ݊ܧ ஺݂ேሻ

,஻ሻ݉݋ܥଶሺܿ݊ܧ ݂݅ܦଶሺܿ݊ܧ ஻݂ଵሻ, … , ݂݅ܦଶሺܿ݊ܧ ஻݂௄ሻ

5. Encrypt ܿ݊ܧଶሺ݉݋ܥ஻ሻ, ݂݅ܦଶሺܿ݊ܧ ஻݂ଵሻ, …,
݂݅ܦଶሺܿ݊ܧ ஻݂௄ሻ with ܿ݊ܧଵ

 5. Encrypt
,஺ሻ݉݋ܥଵሺܿ݊ܧ ݂݅ܦଵሺܿ݊ܧ ஺݂ଵሻ, …,
݂݅ܦଵሺܿ݊ܧ ஺݂ேሻ with ܿ݊ܧଶ

 6. Randomly permute elements in
,஺ሻ݉݋ܥଵሺܿ݊ܧଶܿ݊ܧ ݂݅ܦଵሺܿ݊ܧ ଶܿ݊ܧ ஺݂ଵሻ, …,
݂݅ܦଵሺܿ݊ܧଶܿ݊ܧ ஺݂ேሻ

஺݉݋ܥଵሺܿ݊ܧଶܿ݊ܧ

ᇱ ሻ, ܿ݊ܧଶܿ݊ܧଵሺ݂݅ܦ ஺݂ଵ
ᇱ ሻ, … , ݂݅ܦଵሺܿ݊ܧଶܿ݊ܧ ஺݂ே

ᇱ ሻ

6. Union ܿ݊ܧଵܿ݊ܧଶሺ݉݋ܥ஻ሻ with
݂݅ܦଶሺܿ݊ܧଵܿ݊ܧ ஻݂ଵሻ, … , ݂݅ܦଶሺܿ݊ܧଵܿ݊ܧ ஻݂௄ሻ to
get
,஻ଵሻݎ݌ݐ݋݋ଶሺ݂ܿ݊ܧଵܿ݊ܧ … , ஻௄ሻݎ݌ݐ݋݋ଶሺ݂ܿ݊ܧଵܿ݊ܧ

7. Unite ܿ݊ܧଶܿ݊ܧଵሺ݉݋ܥ஺
ᇱ ሻ with

݂݅ܦଵሺܿ݊ܧଶܿ݊ܧ ஺݂ଵ
ᇱ ሻ, … , ݂݅ܦଵሺܿ݊ܧଶܿ݊ܧ ஺݂ே

ᇱ ሻ to
get
஺ଵݎ݌ݐ݋݋ଵሺ݂ܿ݊ܧଶܿ݊ܧ

ᇱ ሻ, … , ஺ேݎ݌ݐ݋݋ଵሺ݂ܿ݊ܧଶܿ݊ܧ
ᇱ ሻ

For every encrypted Alice’s footprint
஺௜ݎ݌ݐ݋݋ଵሺ݂ܿ݊ܧଶܿ݊ܧ

ᇱ ሻ and for every encrypted
Bob’s footprint ܿ݊ܧଵܿ݊ܧଶ൫݂ݎ݌ݐ݋݋஻௝൯ repeat
steps 8-9:

8. compare ܿ݊ܧଶܿ݊ܧଵሺ݂ݎ݌ݐ݋݋஺௜
ᇱ ሻ and

 ஻௝൯ݎ݌ݐ݋݋ଶ൫݂ܿ݊ܧଵܿ݊ܧ

9. return the number of common
words

Figure 7: Method 1 footprint comparison algorithm outline

3.4.4.2 Method 2 footprint comparison algorithm

Method 2 exploits modified private-matching scheme to perform footprint comparison in privacy-
preserving way. Modified private-matching scheme is a two-party protocol based on private-
matching scheme described in paragraph 2.2. Unfortunately, it wasn’t possible to use original
private-matching scheme without any changes, because it reveals the words, containing in
footprints intersection. In modified private matching scheme this drawback was eliminated. It

24

guarantees the privacy protection for all footprints words of every party. The description of modified
private matching scheme steps can be found in Figure 9 below.

Method 2 footprint comparison algorithm is the following. Let Alice has a set of footprints ݎ݌ݐ݋݋ܨ஺ ൌ
ሼ݂ݎ݌ݐ݋݋஺ଵ, … , ஻ݎ݌ݐ݋݋ܨ ஺ேሽ. Bob has a set of footprintsݎ݌ݐ݋݋݂ ൌ ሼ݂ݎ݌ݐ݋݋஻ଵ, … , ஻௄ሽ. As well as inݎ݌ݐ݋݋݂
Method1 the algorithm starts from the footprints preparation for comparison process. Alice divides
each footprint into 2 subsets. The first one consists of the words, containing in all her footprints.
The second one consists of the rest of the words, not containing in the first subset. Alice transforms
every word in the subsets into numerical representation. As the result she gets subsets ݉݋ܥ஺ ,
݂݅ܦ ஺݂ଵ ݂݅ܦ ,…, ஺݂ே . The same actions are performed by Bob and he obtains the subsets
஻݉݋ܥ , ݂݅ܦ ஻݂ଵ ݂݅ܦ ,…, ஻݂௄ . Alice defines a homomorphic encryption function and sends public
parameters to Bob. Then for every of Alice’s subsets the following steps are performed:

Let Alice ‘s subset consist of {ݔଵ, … , :௅ }. Alice defines a polynomial ܲ, as shown belowݔ

Pሺtሻ ൌ ሺxଵ െ tሻሺxଶ െ tሻ … ሺxL െ tሻ ൌ ෍ a୳t୳
L

୳ୀ଴

She sends encrypted coefficients to Bob. Bob evaluates the polynomial at each of his numbers of
each of his subsets. As the result he obtains the sets
,஻ሻ൯݉݋ܥ൫ܲሺܿ݊ܧ ݂݅ܦ൫ܲሺܿ݊ܧ ஻݂ଵሻ൯, . . . , ݂݅ܦሺܲሺܿ݊ܧ ஻݂௄ሻሻ . He raises each of his result to a random
power ݎ and multiplies it by an encryption of 1 to get sets ܿ݊ܧሺݎ଴ · ܲሺ݉݋ܥ஻ሻ ൅ 1ሻ ଵݎሺܿ݊ܧ , ·
ܲሺ݂݅ܦ ஻݂ଵሻ ൅ 1ሻ ,…, ܿ݊ܧሺݎ௄ · ܲሺ݂݅ܦ ஻݂௄ሻ ൅ 1ሻ. He sends them to Alice. Alice decrypts received data,
count the number of 1’s in each of Bob’s decrypted set. This number represents the number of
common words, sharing by Alice’s subset and corresponding Bob’s subset.

The number of common words, containing in Alice’s footprint ݂ݎ݌ݐ݋݋஺௜ and Bob’s footprint ݂ݎ݌ݐ݋݋஻௝
for ݅ ൌ 1, ܰ , ݆ ൌ 1, :is calculated as follows ܭ

,஺௜ݎ݌ݐ݋݋ሺ݂ݏ݀ݎ݋ݓ_݉ݑ݊ ஻௝ሻݎ݌ݐ݋݋݂ ൌ ,஺݉݋ܥሺݏ݀ݎ݋ݓ_݉ݑ݊ ஻ሻ݉݋ܥ ൅ ,஺݉݋ܥሺݏ݀ݎ݋ݓ_݉ݑ݊ ݂݅ܦ ஻݂௝ሻ ൅

 ൅݊ݏ݀ݎ݋ݓ_݉ݑሺ݂݅ܦ ஺݂௜, ஻ሻ݉݋ܥ ൅ ݂݅ܦሺݏ݀ݎ݋ݓ_݉ݑ݊ ஺݂௜, ݂݅ܦ ஻݂௝ሻ,

where ݊ݏ݀ݎ݋ݓ_݉ݑሺܺ, ܻሻ is a number of common words, containing in set ܺ and set ܻ

The detailed description of Method 2 footprint comparison algorithm is given in Figure 8. The
overview of modified private matching scheme is represented in Figure 9.

25

Alice

 Bob

1. Find the words, that are in all Alice’s
footprints and transform them into
numerical representation to get set ݉݋ܥ஺

 1. Find the words, that are in all
Bob’s footprints and transform them
into numerical representation to get
set ݉݋ܥ஻

For every Alice’s footprint ݂ݎ݌ݐ݋݋஺௜ repeat
step 2:

 For every Bob’s footprint
஻௝ݎ݌ݐ݋݋݂ repeat step 2:

2. Transform the footprint words, that
are not in ݉݋ܥ஺ into numerical
representation and add them to the set
݂݅ܦ ஺݂௜

 2. Transform the footprint words,
that are not in ݉݋ܥ஻ into numerical
representation and add them to
the set ݂݅ܦ ஻݂௝

3. Choose the parameters for a
homomorphic encryption function ܿ݊ܧ

Public encryption parameters

For every set ܵ݁ܣݐ in { ݉݋ܥ஺ , ݂݅ܦ ஺݂ଵ ,…,
݂݅ܦ ஺݂ே} repeat steps 4-6:

4. define polynomial ܲ with coefficients
ܽ଴, … , ܽ௅

5. Encrypt coefficients, to get set
,ሺܽ଴ሻܿ݊ܧ} … , {ሺܽ௅ሻܿ݊ܧ

,ሺܽ଴ሻܿ݊ܧ} … , {ሺܽ௅ሻܿ݊ܧ

 For every set ܵ݁ܤݐ in { ݉݋ܥ஻ ,

݂݅ܦ ஻݂ଵ,…, ݂݅ܦ ஻݂௄} do steps 3-4:
 3. For every element in ܵ݁ܤݐ

repat steps a-b:
 a. Choose a random value ݎ

 b. compute ܿ݊ܧሺݎ ൉ ܲሺݕሻ ൅ 1ሻ

 4. randomly permute elements

in set ܿ݊ܧሺݎ ൉ ܲሺܵ݁ܤݐሻ ൅ 1ሻ to
get ܿ݊ܧሺݎ ൉ ܲሺܵ݁ܤݐᇱሻ ൅ 1ሻ

଴ݎሺܿ݊ܧ ൉ ܲሺ݉݋ܥ஻
ᇱ ሻ ൅ 1ሻ, ଵݎሺܿ݊ܧ ൉ ܲሺ݂݅ܦ ஻݂ଵ

ᇱ ሻ ൅ 1ሻ,…,
௄ݎሺܿ݊ܧ ൉ ܲሺ݂݅ܦ ஻݂௄

ᇱ ሻ ൅ 1ሻ

6. For every set ܵ݁ܤݐ in { ܿ݊ܧሺݎ଴ ൉
,…,1Ԣሻ൅1ሻܤ݂݂݅ܦ1൉ܲሺݎሺܿ݊ܧ ,Ԣ൅1ܤ݉݋ܥܲ
௄ݎሺܿ݊ܧ ൉ ܲሺ݂݅ܦ ஻݂௄

ᇱ ሻ ൅ 1ሻ }
repeat steps a-b:

a. Decrypt all values in ܵ݁ܤݐ
b. Count number of 1Ԣݏ to get

26

number of common words between
ܣݐ݁ܵ and ܵ݁ܤݐ , denoted
nݏ݀ݎ݋ݓ_݉ݑሺܵ݁ܣݐ, ሻܤݐ݁ܵ

For every Alice’s footprint ݂ݎ݌ݐ݋݋஺௜ and
every Bob’s footprint ݂ݎ݌ݐ݋݋஻௝ repeat
steps 7-8:

7. Find the number of common
words ݊ݏ݀ݎ݋ݓ_݉ݑሺ݂ݎ݌ݐ݋݋஺௜, ஻௝ሻݎ݌ݐ݋݋݂

8. Return the number of common
words

Figure 8: Method 2 footprint comparison algorithm outline

Alice

 Bob

1. Choose the parameters for a
homomorphic encryption
function ܿ݊ܧ

 Public parameters

2. Define the polynomial ܲ with
roots ݔଵ, … , and coefficients ܰݔ
ܽ଴, … , ܽ௅

3. Encrypt coefficients, to get
set {ܿ݊ܧሺܽ଴ሻ, … , {ሺܽ௅ሻܿ݊ܧ

,ሺܽ଴ሻܿ݊ܧ} … , {ሺܽ௅ሻܿ݊ܧ

 For every Bob’s input y repeat
steps 1-2:

 1. Choose a random value ݎ

 2. compute ܿ݊ܧሺݎ ൉ ܲሺݕሻ ൅ 1ሻ

 3. randomly permute { ܿ݊ܧሺݎଵ ൉
ܲሺݕଵሻ ൅ 1ሻ,…, ܿ݊ܧሺݎ௄ ൉ ܲሺݕ௄ሻ ൅ 1ሻ}
to get
{ ଵݎሺܿ݊ܧ ൉ ܲሺݕଵ

ᇱ ሻ ൅ 1ሻ,…, ܿ݊ܧሺݎ௄ ൉
ܲሺݕ௄

ᇱ ሻ ൅ 1ሻ}

ଵݎሺܿ݊ܧ } ൉ ܲሺݕଵ
ᇱ ሻ ൅ 1ሻ,…, ௄ݎሺܿ݊ܧ ൉ ܲሺݕ௄

ᇱ ሻ ൅ 1ሻ}

4. Decrypt ciphertexts received
and count the number of 1’s

5. Return the number of 1’s

Figure 9: Modified private matching scheme overview

27

3.4.4.3 Word transformation into numerical representation
Both modified private matching scheme and privacy-preserving data comparison protocol operate
with numbers. So in order to use these methods for footprints comparison, it is necessary to
transform all words into numerical representation. This is done according to the following rule:

Each word is considered as a string of symbolsݔଵ, … , ,௜ݔ ே, whereݔ ݅ ൌ 1, ܰ can be a number, a
Latin letter, or one of the symbols ‘-‘, ‘ ‘, ’’ (empty symbol). For each symbol the number,
corresponding to this symbol, is determined according to the Table 1. Then the word is represented
as a number ܨሺݔ଴ݔଵ … :ேሻ, calculated by the formula belowݔ

ଵݔ଴ݔሺܨ … ேሻݔ ൌ ܽ଴ሺݔேሻ · 39଴൅ܽଵሺݔேିଵሻ39ଵ ൅ ڮ ൅ ܽேሺݔ଴ሻ39ே,

where ܽ௜ሺݔேି௜ሻ is a number corresponding to the symbol ሺݔேି௜ሻ

Symbol Number Symbol Number Symbol Number

0 27 d 4 q 17
1 28 e 5 r 18
2 29 f 6 s 19
3 30 g 7 t 20
4 31 h 8 u 21
5 32 i 9 v 22
6 33 j 10 w 23
7 34 k 11 x 24
8 35 l 12 y 25
9 36 m 13 z 26
a 1 n 14 ‘ ‘ 37
b 2 o 15 ‘-‘ 38
c 3 p 16 ‘’ 0

Table 1: Symbol encoding table

3.4.5 Area names comparison
The goal of the area names comparison is to find out the type of semantic relationship between a
pair of documents. Without the information about semantic relationship the documents will be just
considered as having a common part.

The types of semantic relationship are the following:

1. The area names are equal
2. The area names of one party is equal to the some area names of another party
3. The areas names are not equal

The type of semantic relationship between documents is detected by the performing of two steps.
During the first step the area names are compared according to the chosen method for privacy-

28

preserving document similarity detection and the number of common names is found. In Method 1
privacy-preserving data comparison protocol, given in paragraph 2.3, is used. In Method 2 modified
private matching scheme, described in paragraph 3.4.4.2 in Figure 9, is applied. During the second
step the type of semantic relationship between documents is determined as it described below:

Let ݄ܶଵ be Alice’s list of area names and ݄ܶଶ be Bob’s list of area names. ܮଵ is a power of ݄ܶଵ, ܮଶ
is a power of ݄ܶଶ and ݉݋ܥ is a number of common areas, founded in first step. Then:

If 0==݉݋ܥ:
 Area names are not equal
else:
If ܮଵ ൌ ଶܮ and ݉݋ܥ ൌ :݉݋ܥ
 Area names are equal
If ܮଵ ൐ ଶܮ and ݉݋ܥ ൌ :݉݋ܥ
 Bob’s area names are equal to some Alice’s area names
If ܮଵ ൌ ଶܮ and ݉݋ܥ ൐ :݉݋ܥ
 Alice’s area names are equal to some Bob’s area names
If ܮଵ ൐ ଶܮ and ݉݋ܥ ൐ :݉݋ܥ
 Area names are not equal

The general description of Method 1 and Method 2 area names comparison algorithms is given in
Figure 10 and Figure 11, respectively.

Alice

 Bob

For every Alice’s document repeat
steps 1-4:

 For every Bob’s document repeat
steps 1-3:

1. Transform every area name into
numerical representation and
encrypt with ܿ݊ܧଵ to get set
 ଵሺ݄ܶ஺ሻܧ

 1. Transform every area name
into numerical representation and
encrypt with ܿ݊ܧଶ to get set
 ଶሺ݄ܶ஻ሻܧ

 ଵሺ݄ܶ஺ሻܧ

 ଶሺ݄ܶ஻ሻܧ

2. Encrypt ܧଶሺ݄ܶ஻ሻ with ܿ݊ܧଵ to
get set ܧଵܧଶሺ݄ܶ஻ሻ

 2. Encrypt ܧଵሺ݄ܶ஺ሻ with ܿ݊ܧଶ to
get set ܧଶܧଵሺ݄ܶ஺ሻ

 3. Randomly permute ܧଶܧଵሺ݄ܶ஺ሻto
get set ܧଶܧଵሺ݄ܶ஺

ᇱ ሻ

ଵሺ݄ܶ஺ܧଶܧ
ᇱ ሻ

3. compare ܧଵܧଶሺ݄ܶ஻ሻ and
ଵሺ݄ܶ஺ܧଶܧ

ᇱ ሻ

29

4.return the number of common
areas

Figure 10: Method 1 area names comparison algorithm outline

Alice

 Bob

For every Alice’s document
 :஺ repeat steps 1-4ܿ݋ܦ

 For every Bob’s document repeat
step 1:

1. Transform every area
name into numerical
representation to get
,ଵ݄ܶܣ … , ௅݄ܶܣ

 1. Transform every area name
into numerical representation to
get the set ݏ݄݁݉݁ܶܤ

2. Define the polynomial ܲ
with roots ݄ܶܣଵ, … , ௅݄ܶܣ
and coefficients ܽଵ, … , ܽ௅

3. Encrypt coefficients, to
get set
ሼܿ݊ܧሺܽ଴ሻ, … , ሺܽ௅ሻሽܿ݊ܧ

ሼܿ݊ܧሺܽ଴ሻ, … , ሺܽ௅ሻሽܿ݊ܧ

 For every Bob’s document do steps 3-

4:
 3. For every area name ݄ܶܤ in

 :repeat steps a-b ݏ݄݁݉݁ܶܤ
 a. Choose a random value ݎ

 b. compute ܿ݊ܧሺݎ · ܲሺ݄ܶܤሻ ൅

1ሻ

 4. randomly permute elements in
set
ଵݎሺܿ݊ܧ · ܲሺ݄ܶܤଵሻ ൅ 1ሻ, … , ெݎሺܿ݊ܧ ·
 ൅1 to getܯ݄ܶܤܲ
ᇱݎሺܿ݊ܧ · ܲሺݏ݄݁݉݁ܶܤᇱሻ ൅ 1ሻ

ଵݎሺܿ݊ܧ}
ᇱ · ܲሺݏ݄݁݉݁ܶܤଵ

ᇱ ሻ ൅ 1, … , ௄ݎሺܿ݊ܧ
ᇱ · ܲሺݏ݄݁݉݁ܶܤ௄

ᇱ ሻ ൅ 1ሻሻ}

4. For every Bob’s document
 :஻ repeat steps a-cܿ݋ܦ

a. Decrypt all values in
ᇱݎሺܿ݊ܧ · ܲሺݏ݄݁݉݁ܶܤᇱሻ ൅ 1ሻ

b. Count number of 1’s to get

30

number of common area
names between ܿ݋ܦ஺ and
 ஻, called Comܿ݋ܦ

c. Return Com

Figure 11: Method 2 area names comparison algorithm outline

.
3.4.6 Result finding
The following types of similarity can be determined using one of the methods for privacy-preserving
document similarity detection:

1. The documents are syntactically similar (duplicates)
2. The documents are almost syntactically similar (near duplicates)
3. The documents are semantically similar
4. The documents share common part
 ܤ is semantically similar to the some part of ܣ .5
 ܣ is semantically similar to the some part of ܤ .6
7. Documents are different

In order to find a type of similarity between pair of documents, it is necessary to calculate ଵܰ and ଶܰ
according to the formulas below:

ଵܰ ൌ
ݏ݀ݎ݋ݓ ݊݋݉݉݋ܿ ݂݋ ݎܾ݁݉ݑ݊

ݐ݊݅ݎ݌ݐ݋݋݂ ݏᇱ݈݁ܿ݅ܣ ݊݅ ݏ݀ݎ݋ݓ ݈݈ܽ ݂݋ ݎܾ݁݉ݑ݊

ଶܰ ൌ
ݏ݀ݎ݋ݓ ݊݋݉݉݋ܿ ݂݋ ݎܾ݁݉ݑ݊

 ݐ݊݅ݎ݌ݐ݋݋݂ ݏᇱܾ݋ܤ ݊݅ ݏ݀ݎ݋ݓ ݈݈ܽ ݂݋ ݎܾ݁݉ݑ݊

Such similarity metric was chosen because it allows to detect the situations when one document is
a part of another one.

Then according to the ଵܰ and ଶܰ values and type of semantic relationship, the type of document
similarity is determined as it shown in Table 3. The intervals for ଵܰand ଶܰvalues are preliminary and
must be revised after implementation and testing phases depending on experiments results. The
notations, used in Table 3 are explained in Table 2.

Notation Meaning
 Alice’s document ܣ
 Bob’s document ܤ
݄ܶଵ ൌ ݄ܶଶ Area names are equal

݄ܶଵ ݄ܶଶ
Alice’s area names are equal to some Bob’s
area names

݄ܶଶ ݄ܶଵ
Bob’s area names are equal to some Alice’s
area names

31

݄ܶଵ ݄ܶଶ Area names are not equal

ܣ ൌ syntactically The documents are syntactically similar ܤ
(duplicates)

ܣ ൎ syntactically ܤ
Near duplicated

The documents are almost syntactically similar
(near duplicates)

ܣ ൌ semantically The documents are semantically similar ܤ

ܣ semantically ܤ
 ܤ is semantically similar to the some part of ܣ

ܤ ܣ is semantically similar to the some part of ܤ semantically ܣ

Common part The documents share common part
ܣ Documents are different ܤ

Table 2: Notations for Table 3

Input parameters Output parameters

N1 N2 Type of semantic
relationship

Type of document similarity

1.0

1.0 any ܣ ൌ syntactically ܤ
Duplicate

[0.85;1.0) any ܣ ൎ syntactically ܤ
Near duplicated

[0.4;0.85) any ܣ syntactically ܤ
(0;0.4) any ܣ syntactically ܤ

[0.85;1.0) 1.0 any ܣ ൎ syntactically ܤ

Near duplicated
[0.85;1.0) any ܣ ൎ syntactically ܤ

Near duplicated
[0.4;0.85) ݄ܶଵ ൌ ݄ܶଶ ܣ ൌ semantically ܤ

݄ܶଵ ݄ܶଶ ܣ semantically ܤ
݄ܶଶ ݄ܶଵ ܤ semantically ܣ
݄ܶଵ ݄ܶଶ Common part

(0;0.4) ݄ܶଵ ൌ ݄ܶଶ ܣ semantically ܤ
݄ܶଵ ݄ܶଶ ܣ semantically ܤ
݄ܶଶ ݄ܶଵ ܤ semantically ܣ
݄ܶଵ ݄ܶଶ Common part

[0.4;0.85) 1.0 any ܤ syntactically ܣ

[0.85;1.0) ݄ܶଵ ൌ ݄ܶଶ ܣ ൌ semantically ܤ
݄ܶଵ ݄ܶଶ ܣ semantically ܤ
݄ܶଶ ݄ܶଵ ܤ semantically ܣ
݄ܶଵ ݄ܶଶ Common part

[0.4;0.85) ݄ܶଵ ൌ ݄ܶଶ ܣ ൌ semantically ܤ
݄ܶଵ ݄ܶଶ ܣ semantically ܤ

32

݄ܶଶ ݄ܶଵ ܤ semantically ܣ
݄ܶଵ ݄ܶଶ Common part

(0;0.4) any ܣ ܤ

(0;0.4) 1.0 any ܤ syntactically ܣ

[0.85;1.0) ݄ܶଵ ൌ ݄ܶଶ ܤ semantically ܣ
݄ܶଵ ݄ܶଶ ܣ semantically ܤ
݄ܶଶ ݄ܶଵ ܤ semantically ܣ
݄ܶଵ ݄ܶଶ Common part

[0.4;0.85) any ܣ ܤ
(0;0.4) any ܣ ܤ

0 0 any ܣ ܤ

Table 3: Documents similarity type finding table

3.5 Implementation
In this paragraph the implementation step is given in details. In contrast to the design part, the
description is presented separately for each method.

3.5.1 Method 1 implementation
Method 1 was implemented according to the design specification described in paragraph 3.4 in the
following way. Let Alice and Bob represent two parties. Alice is responsible for finding the similarity
types between documents. Method 1 starts with the procedure that checks if both parties have
documents to compare. The next step is a knowledge base preparation. During this step each party
gathers together all necessary data for footprint and area finding steps execution. Having prepared
the knowledge base, Alice and Bob find areas and footprints for their documents. If some document
contains less than 20 words, this document doesn’t participate in comparison process any more.
It’s prohibited to compare small size footprints in order to eliminate the opportunity to reveal the
words of the other party footprints. If at least one party has all footprint containing less than 20
words, Method 1 execution is stopped. Else method execution is proceeding and parties send the
lists of their document names to each other. After that Alice and Bob choose the parameters for
their Massey-Omura encryption functions. Then footprints are compared and Alice gets the number
of common words between each of her footprints and every Bob’s one. According to these results,
she finds the types of similarity between their documents.

The general overview of all Method 1 implementation steps is given in Figure 12. The detailed
overview of each step can be found below.

1. Check if Alice and Bob have documents to compare. If they have, go step 2, else STOP
2. Each party performs knowledge base preparation step
3. Each party finds areas and footprint for every document
4. Each party deletes all documents, whose footprints contain less than 20 words
5. Check if Alice and Bob have documents to compare. If they have, go step 6, else STOP
6. Each party sends the list of the document names to another party

33

7. Footprint comparison
8. Alice finds the types of similarity between documents

Figure 12: Method 1 implementation steps overview

3.5.1.1 Knowledge base preparation

Several databases were used to form a knowledge base. The first one, called in the report as NLTK
database, consists of the databases proposed by Natural Language Toolkit (NLTK). NLTK is an
open source library that can be freely downloaded from [29]. “It was originally created in 2001 as a
part of a computational linguistics course in the Department of Computer and Information Science
at the University of Pennsylvania.
Since then it has been developed and expanded with the help of dozens of contributors. It has now
been adopted in courses in dozens of universities, and serves as the basis of many research
projects.” [30]. NLTK database is used for part of speech tagging and stemming.

The second database, called PoS (Part of Speech) database, was created to improve the part of
speech tagging process and to be used for deleting of the frequently used words. It consists of
seven .txt files. The file names and their description can be found in Table 4. The content of all files
can be found in Appendix A. The stop words and phrases were taken from [31], [32], [33], the
prepositions - from [34], [35], [36], and adverbs – from [37], [38], [39].

File name Description
stopwords_mult.txt Contains stopwords, that are phrases
stopwords_one.txt Contains stopwords, that are single words
preposit_mult.txt Contains prepositions, that are phrases
preposit_one.txt Contains prepositions, that are single words
adverb_mult.txt Contains adverb, not ending with –ly, that are phrases
adverb_one.txt Contains adverb words, not ending with –ly, that are single words
nonadverb.txt Contains the words, ending with –ly, that are not adverbs

Table 4: PoS database files

Another data base, called Ontology database, was created for ontology implementation. This
database consists of 3 files: ontology_structure.txt, ontology_mult.txt, ontology_one.txt. The first file
contains information about ontology areas names, and number of terms, describing these areas.
The second file contains ontology term phrases, and the third one contains ontology single words
terms. These files have fixed structures. They are the following:

ontology_structure.txt structure:

File_line::=Area’:’Name_parent’:’Num_area’:’Synonym*[‘,’Synonym]*
Area::=String
Name_parent::=String
Num_ area::=NUM+
Synonym::=String
NUM::=’0’|-|’9’

34

Area is a name of area,
Name_parent is a name of ancestor area for Area
Num_area is a number of terms, describing Area
Synonym is a synonym for Area

ontology_mult.txt structure:

File_line::=Term’:’ Area
Term::=String
Area::=String

Term denotes the ontology term, consisting of two or more words.
Area is a name of area, described by Term

ontology_one.txt structure:

File_line::=Term’:’ Area
Term::=String
Area::=String

Term denote the ontology term, consisting of single word.
Area is a name of area, described by Term

For ontology implementation the computer security domain was chosen. For the testing purpose
only the authorization area was processed. Authorization area contains the role-based access
control, mandatory access control, discretionary access control and multilevel access control areas.
Multilevel access control consists of Bel-Lapadula area. For formation of the ontology term sets, the
following sources were used: [47], [48], [49]. The ontology object diagram is presented in Figure
13.The content of ontology database can be found in Appendix B.

Figure 13: Ontology object diagram

35

The knowledge base structure overview is given below in Figure 14.

Figure 14: Knowledge base overview

In order to prepare the knowledge base the following steps should be performed:

1. Load stop words : phrases, words from stopwords_mult.txt, stopwords_one.txt
2. Load prepositions: phrase, words from preposit_mult.txt, preposit_one.txt
3. Load adverbs: phrases, words from adverb_mult.txt, adverb_one.txt
4. Load not adverbs, ending with –ly from nonadverb_ly.txt
5. Load data base from NLTK module
6. Load ontology terms: phrases, words from ontology_mult.txt, ontology_one.txt
7. Load ontology structure from ontology_structure.txt

3.5.1.2 Area and footprint finding

The area and footprint finding steps are implemented according to the description given in
paragraphs 3.4.2 and 3.4.3, respectively. During the implementation these steps were united
together for optimization of the finding process.

In order to find areas and footprint the following steps are implemented:

1. Make all letters to be lower-case
2. Delete all end of line symbols ‘\n’
3. For every phrase in the list of ontology term phrases, check if it is in the document. If it is, then

delete it from the document, and add to the list of document terms without stemming and to the
footprint after stemming

4. For every phrase in the list of preposition phrases, check if it is in the document. If it is, then
delete it from the document.

5. For every phrase in the list of adverb phrases, check if it is in the document. If it is, then delete it
from the document.

6. For every phrase in the list of stop words phrases, check if it is in the document. If it is, then
delete it from the document.

7. Tokenize the reduced document. Tokens shouldn’t include any symbols or be the symbol.
Composite adjective should be divided into 2 parts. No repetitions are allowed.

36

8. For every word in the list of ontology terms, check if it is in the token list. If it is, then delete it
from the token, and add to the list of document terms without stemming and to the footprint after
stemming, if it hasn’t been added before.

9. For every token, check if it is in the list of preposition words. If it is, then delete it from the token
list

10. For every token, check if it is in the list of stopwords. If it is, then delete it from the token list
11. For every token check if it is an adverb :

a. Check if it is in the list of adverb words .If it is, then delete it from the token list
b. Check if it ends with –ly. If it does and it is in the list with not adverbs words, ending with –ly,

then add this token to the footprint after stemming . Delete token from the token list .
12. For every token find its part of speech.
13. Delete all tokens, except nouns, adjectives and verbs
14. Make stemming for every token
15. Delete repetitions in stemming token list and add them to the footprint list. Footprint is ready
16. For every found ontology term find the areas it describes.
17. For every found area ݄ܶ do following:

Let ்ݏ݉ݎ݁ݐ௛ be the number of founded in document terms describing the area ݄ܶ , and
 .݄ܶ ௛ be the number of ontology terms in term set, describing area்ݏ݉ݎ݁ݐ_݈݈ܣ

Find ܧ ൌ ௧௘௥௠௦೅೓

஺௟௟_௧௘௥௠௦೅೓

If 0.1 >ܧ, then document contents doesn’t related to the area ݄ܶ. Otherwise add its name to the
list of document area names.

Stemming, part of speech tagging and tokenization were performed by functions ݉݁ݐݏሺሻ, ݃ܽݐ_ݏ݋݌ሺሻ,
and ݁ݖ݅݊݁݇݋ݐ_݀ݎ݋ݓሺሻ, respectively, implemented in NLTK module.

3.5.1.3 Footprint comparison

Footprint comparison was implemented exactly as it was described in paragraph 3.4.4. In order to
encrypt footprint words and area names the Massey-Omura cryptosystem was applied. It was
implemented in the following way:

Key generation:

1. Bob generates public key ݍ, that is a random positive prime 1024 bit long number.
2. Alice selects public key ݁ଵ , a random positive prime 256 bit long number and computes

݀ଵ ൌ ݁ଵ
ିଵ݉ݍ ݀݋ െ 1.

3. Alice selects public key ݁ଶ , a random positive prime 256 bit long number and computes
݀ଶ ൌ ݁ଶ

ିଵ݉ݍ ݀݋ െ 1.

37

The usage of prime numbers as a public keys ݁ଵ, ݁ଶ guaranties that conditions ݃ܿ݀ሺ݁ଵ, ݍ െ 1ሻ ൌ 1
and ݃ܿ݀ሺ݁ଶ, ݍ െ 1ሻ are met. For finding large prime number the function ݃݁݁݉݅ݎܲݐሺሻ from standard
python module “number”, was used. To find ݀ଵ and ݀ଶ, the function ݅݊݁ݏݎ݁ݒሺሻ, containing in the
same module, was utilize.

Encryption:

Let ݉ to be a number to be encrypted. Then encryption of ݉ will be calculated as ܿ ൌ ,ݍ ݀݋݉݁݉
where ݁ is Alice’s or Bob’s private key.

Unfortunately, it wasn’t possible to use standard python function ݓ݋݌ሺሻ for encryption, because it
can’t operate with a numbers of such long size. So the new procedure was created. It calculates
the modulus of the numbers of any length and is based on the modulus properties and function
 :ሺሻ. The following modulus properties were usedݓ݋݌

1. If ܾ is odd, then ܽ௕݉݀݋ ܰ ൌ ሺܽ ݉݀݋ ܰ כ ܽ௕ିଵ݉݀݋ ܰሻ ݉݀݋ ܰ.

2. If ܾ is even, then ܽ௕݉݀݋ ܰ ൌ ሺܽ
್
మ ݉݀݋ ܰሻଶ݉݀݋ ܰ

The code of procedure for finding ܽ௕݉݀݋ ܰ, is presented below in Figure 15

def large_modulus(a,b,N):

 m=1
 while b>0:
 if not b%2==0:
 m=m*a
 m=pow(m,1,N)
 b=b/2
 a=pow(a*a,1,N)

 return m

Figure 15: Modulus finding procedure

3.5.1.4 Result finding
Since it is not always required to find the semantic relationship between documents, the area
names comparison step is executed only when it is needed. Decision if semantic relationship
finding is needed is made during the result finding step.

Result finding step was implemented as it is described in paragraph 3.4.5. The area name
comparison step is implemented according to the description given in paragraph 3.4.5 in Figure 10.

38

3.5.2 Method 2 implementation
Method 2 was implemented according to the description given in paragraph 3.4. It has the same
steps, as Method 1 has. They can be found in paragraph 3.5.1 in Figure 12. These steps, except of
footprint and area names comparison ones, are implemented in the same way as it were done for
Method 1 (see paragraph 3.5.1). The description of footprint and area names comparison steps
implementation is given below.

3.5.2.1 Footprint comparison
Footprint comparison was implemented according to the algorithm, given in Figure 8 in paragraph
3.4.4.2. This algorithm is based on the usage of homomorphic encryption. In Method 2 Paillier’s
cryptosystem was used. It was implemented as follows:

Key generation

1. Choose two 512 bit long prime numbers ݌ and ݍ
2. Set ݊ ൌ ݌ · ݍ
3. Set ݃ ൌ ݊ ൅ 1
4. Consider ݊, ݃ as public parameters and ݌, .as private ones ݍ

Encryption

1.Let ݉ be a plaintext to be encrypted, where ݉ א Ժ௡
כ

2. Select a random 1023 bits long number ݎ
3. Compute ciphertext ܿ ൌ ݃௠ · ଶ ൌ݊ ݀݋݉ ௡ݎ ሺ݃௠ ݉݀݋ ݊ଶ · ଶ݊ ݀݋݉ ଶሻ݊ ݀݋݉ ௡ݎ

Decryption

1. Given ciphertext ܿ א Ժ௡మ
כ

2. Compute plaintext ൌ ଶ൯݊ ݀݋݉ ൫ܿఒܮ · ቀܮ൫݃ఒ ݉݀݋ ݊ଶ൯ቁ
ିଵ

ሻݑሺܮ where , ݊ ݀݋݉ ൌ ௨ିଵ
௡

and ߣ ൌ ሺ௣ିଵሻ·ሺ௤ିଵሻ
ீ஼஽ሺ௣ିଵ,௤ିଵሻ

The functions, applied for prime numbers finding, calculating of the modulus of large numbers and
multiplicative inverse to the modulus are the same as in Massey-Omura Cryptosystem
implementation description in paragraph 3.5.5.3. Function ܦܥܩሺሻ from standard python module
“number” was used to find the great common divisor.

In order to use Paillier’s cryptosystem, the modified private matching scheme was adapted. Instead
of comparison of all elements the set at once, the set is divided into subsets, so that the
multiplication of all elements in every subset is less than public key n. This is done to be sure that
all coefficients are less than n and will be encrypted in a proper way. The number of common
elements between two sets is a summation of number of common elements between each subset
of one party and set of another party.

The footprint comparison step was implemented in such way that while one party is finding the
polynomial values, the other party finds the coefficient of the new polynomial and decrypts the

39

values of the previous one. The simultaneous performance of operations by parties reduces the
execution time significantly.

The overview of footprint comparison implementation step is given in Figure 16. The description of
function for any two sets comparison is presented in Figure 17.

Alice

 Bob

1. Find the words, that are in all Alice’s
footprints and transform them into
numerical representation to get set ݉݋ܥ஺

 1. Find the words, that are in all
Bob’s footprints and transform
them into numerical
representation to get set ݉݋ܥ஻

For every Alice’s footprint ݂ݎ݌ݐ݋݋஺௜ repeat
step 2:

 For every Bob’s footprint ݂ݎ݌ݐ݋݋஻௝
repeat step 2:

2. Transform the footprint words, that are
not in ݉݋ܥ஺ into numerical representation
and add them to the set D݂݅ ஺݂௜

 2. Transform the footprint
words, that are not in ݉݋ܥ஻ into
numerical representation and
add them to the set ݂݅ܦ ஻݂௝

3. Choose the parameters for a
homomorphic encryption function ܿ݊ܧ

Public encryption parameters

For every set ܵ݁ܣݐ in { ݉݋ܥ஺ , D݂݅ ஺݂ଵ ,…,
D݂݅ ஺݂ே } repeat steps 4:

4. find the number of common
elements between ܵ݁ܣݐ and every
set from the { ஻݉݋ܥ , ݂݅ܦ ஻݂ଵ ,…,
݂݅ܦ ஻݂௄}, according to the algorithm
in Figure 17

 3. help Alice to compare Alice’s
setA and Bob’s set
{ ஻݉݋ܥ , ݂݅ܦ ஻݂ଵ ݂݅ܦ ,…, ஻݂௄ },
according to the algorithm in
Figure 17

Figure 16: Method 2 footprint comparison implementation description

Alice

 Bob

1.Start position ܵݐ ൌ 0

 1.Receive ݂݁݋ܥ_ܿ݊ܧ

2.Find the index ݀݊ܧ of ܵ݁ܣݐ element,
such that ݈݁ௌ௧ · … · ݈݁ா௡ௗ ൏ ܰ and
݈݁ௌ௧ · … · ݈݁ா௡ௗାଵ ൐ ܰ

 For every element ݕ in every set
,஻ଵݐ݁ܵ} . . , :஻௄}, do steps 2-3ݐ݁ܵ

3. Define polynomial ܲ with set of
coefficients ݂݁݋ܥ with roots
݈݁ௌ௧, … , ݈݁ா௡ௗ

 2. generate random number ݎ in range
(5;35)

4. Encrypt coefficients to get set
 ݂݁݋ܥ_ܿ݊ܧ

 3. Find the value of ܿ݊ܧሺݎ · ܲሺݕሻ ൅ 1ሻ

40

5.Send ݂݁݋ܥ_ܿ݊ܧ

 4. Send values Val

6. If ܵݐ ൌ do steps 7-10, else go to ,ܮ
the step 11:

 5. data =”more”

7. Receive encrypted values of
polynomial with coefficients
ܽଵ, … , ܽௌ௧ିா௡ௗ form Bob

 While data is not equal to ”done”, do steps 6-
7:

8. send “done” to Bob

 6.Receive data

9.Decrypt values and count the
number of 1’s for every Bob’s set
separately

 7. If data not =”done” do steps 8-10:

10. Return the number of 1’s for
every set

 8.Receive C݂݁݋

11. for ݅ ൌ 0, ݕ ௜=0 9.For every element y in݁݊݋_݉ݑܰ ܭ in every set
,஻ଵݐ݁ܵ} . . , :஻௄} do step a-bݐ݁ܵ

12. while ݀݊ܧ ് repeat steps 13-23: a. generate random number r in range ,ܮ
(5;35)

ݐܵ .13 ൌ b. Find the value of ݀݊ܧ
ݎሺܿ݊ܧ · ܲሺݕሻ ൅ 1ሻ

݈݀݋_݂݁݋ܥ.14 ൌ ݂݁݋ܥ

 10. Send all values

15. Find the new index ݀݊ܧ of ܵ݁ܣݐ
element, such that ݈݁ௌ௧ · … · ݈݁ா௡ௗ ൏
ܰ and ݈݁ௌ௧ · … · ݈݁ா௡ௗାଵ ൐ ܰ

16. Define polynomial ܲ with set of
coefficients ݂݁݋ܥ with roots
݈݁ௌ௧, … , ݈݁ா௡ௗ

17. Encrypt coefficients to get
 ݂݁݋ܥ_ݎܿ݊ܧ

18.Receive encrypted values of
polynomial with coefficient ݈݀݋_݂݁݋ܥ

15.send “more”
15. send ݂݁݋ܥ_ݎܿ݊ܧ
16. Decrypt values of polynomial
with coefficient ݈݀݋_݂݁݋ܥ and count
the number of 1’s for every Bob’s
set separately to get
,଴݉ݑ݊} ,ଵ݉ݑ݊ . . , {௄݉ݑ݊

19. ݅ ൌ 0, ܭ ௢௡௘೔݉ݑܰ ൌ ௢௡௘೔݉ݑܰ ൅
 ௜݉ݑ݊

20. If ݀݊ܧ ൌ do steps a-c, else go ,ܮ
to the step 11

41

a. receive encrypted values of
polynomial with coefficients
 ݂݁݋ܥ

b. Decrypt values of polynomial
with coefficient ݈݀݋_݂݁݋ܥ and
count the number of 1’s for
every Bob’s set separately to get
,଴݉ݑ݊} ,ଵ݉ݑ݊ . . , {௄݉ݑ݊

c. ݅ ൌ 0, ௢௡௘೔݉ݑܰ ܭ ൌ ௢௡௘೔݉ݑܰ ൅
 ௜݉ݑ݊

d. return ܰ݁݊݋_݉ݑ

Figure 17: Sets comparison algorithm description

The polynomial coefficients are found using the function find_coeff(). Its implementation is given in
Figure 18

def find_coeff(number_list):
 n=len(number_list)
 coeff=[0,0]

 M1=[-1*number_list[0],1]
 M2=[0,0]
 for k in range(1,n):
 M2=[-1*number_list[k],1]
 for t in range(k+1):
 coeff[t]=0
 coeff.append(0)

 for i in range(0,k+1):
 for j in range(0,2):
 coeff[i+j]+=M1[i]*M2[j]

 M1.append(0)

 for t in range(k+2):
 p=coeff[t]
 M1[t]=p

 return coeff
Figure 18: find_coeff() function implementation

Let polynomial Pሺtሻ ൌ ሺxଵ െ tሻሺxଶ െ tሻ … ሺxL െ tሻ ൌ ∑ a୳t୳L

୳ୀ଴ and N to be a public key of Pailier’s
cryptosystem. Then value of expression ܿ݊ܧሺݎ · ܲሺݕሻ ൅ 1ሻ is found according to the following
formula:
ݎሺܿ݊ܧ · ܲሺݕሻ ൅ 1ሻ ൌ ሻ൯௥ݕ൫ܲሺܿ݊ܧ · ଶ, whereܰ ݀݋ሺ1ሻ݉ܿ݊ܧ
ሻ൯ݕ൫ܲሺܿ݊ܧ ൌ ቀ∏ ሺܽ௜ሻ௬೔௅ܿ݊ܧ

௜ୀ଴ ଶቁܰ ݀݋݉ ሺ1ሻܿ݊ܧ ଶ andܰ ݀݋݉ ൌ ሺܽ௅ሻܿ݊ܧ

42

3.5.2.2 Area names comparison

During the result finding the type of semantic relationship between documents may be required.
The area names comparison is based on the algorithm described in Figure 11 in paragraph 3.4.5
and the algorithm for sets comparison presented in Figure 17 in paragraph 3.5.2.1. The description
of area names comparison algorithm implementation is given in Figure 19.

Alice Bob
For every Alice’s document repeat step 1-3: For every Bob’s document repeat

step 1-2:
1. Transform area names into numerical
representation to get set ݄ܶ݁݉ ஺݁

 1. Transform area names into
numerical representation to get
set ݄ܶ݁݉݁஻

2.Compare ݄ܶ݁݉ ஺݁ with every set
{݄ܶ݁݉݁஻ଵ,…,݄ܶ݁݉݁஻௄} to get the number
of common area names according to
algorithm in Figure 17

 2. help Alice to compare
݄ܶ݁݉ ஺݁ and sets
{ ݄ܶ݁݉݁஻ଵ ,…, ݄ܶ݁݉݁஻௄ }
according to the algorithm in
Figure 17

3.Return the number of common area names
Figure 19: Method 2 area names comparison implementation description

3.5.3 Non-privacy document similarity detection method implementation
The algorithm for non-privacy document similarity detection, called non-privacy method, was
implemented to find out in how many times the performance of methods for privacy-preserving
document similarity detection will increase in comparison with non-privacy method.

Non-privacy method has the same steps as Methods 1. They can be found in paragraph 3.5.1 in
Figure 12. The only difference is that for comparison of footprints and area names secure protocol
isn’t used.

3.6 Testing
Different experiments were executed to estimate performance and to check functionality of Method
1 and Method 2. The description of the testing process is given in this chapter. The obtained results
are interpreted in Discussion.

3.6.1 Testing environment description
CPU Intel Celeron (32bit) 2GHz, RAM 1GB
OS Ubuntu Linux 10.04
Python version 2.6.5
Both peers were run on the same machine.
For execution time calculation standard python function time() was used. Execution time was
checked only for the peer who finds the type of document similarity.

43

3.6.2 Testing data
41 articles were selected from ACM [50] and IEEE [51] digitals libraries. Their sizes varied between
200 and 1000 words. Articles are related to the different areas, such as role-based access control,
encryption, text mining, document similarity detection and so on.

3.6.3 Method 1 performance measurement
All experiments were done with aim to estimate performance and to check functionality. The
obtained results are given below.

1. Since comparison execution time depends on the size of footprints, the series of tests were
performed to compare footprint size with original document size. Their results are presented in
Figure 20.

Figure 20: Footprint size versus original document size

2. Another experiments were performed to measure the time required to find footprint depending
on document size. Their results are presented in Figure 21.

0

2000

4000

6000

8000

10000

12000

14000

16000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

N
um

be
r o

f w
or
ds

Document number

Footprint

Document

44

Figure 21: Footprint finding execution time

3. The next experiments were done to compare Method 1 and Non-private method performances.
The results are given in Figure 22.

Figure 22: Method 1 performance versus Non-private method performances

4. Also there were some experiments whose aim was to compare the execution time needed to find
the type of similarity between duplicates and different documents with the same size of footprints as
duplicates have. It was done to be sure that the Method 1 performance doesn’t depend on the type
of document similarity. The results are represented in Figure 23.

0
1
2
3
4
5
6
7
8
9

10
Ex
ec
ut
io
n
 t
im

e,
 s
ec

Document words number

0

20

40

60

80

100

120

140

20
4

29
7

30
7

32
7

34
1

40
3

44
6

48
0

50
2

53
5

55
9

57
4

60
0

60
8

65
0

69
3

71
4

75
2

79
6

82
7

97
5

12
90

Ex
ec
ut
io
n
ti
m
e,
 s
ec

Footrprint words number

Method 1

Non‐privacy

45

Figure 23: Comparison of time required to detect the similarity type between duplicates and different
documents

5. Also some experments were performed to check if performance was improved because of
dividing each footprint into two subsets (subset with the words, contains in every footprint of one
party and the one with rest footprint words). This were done by the comparisson of the execution
time, required to compare one Bob’s documents with several Alice’s documents at once or
seperately for each document pair. The results are shown in Figure 24.

Figure 24: Comparison of time required to compare Bob's document with several Alice's documents at once
or separately for each document pair.

6. The aim of these experiments was to find out how the Method 1 performance increases if the
number of documents of each party grows proportionally. The results are given in Figure 25

0

10

20

30

40

50

60

70

80

90

307 480 572 608 715 819

pr
oe

ss
or
 ti
m
e,
 s
ec

number of words in footprint

Similar documents

different documents

0

100

200

300

400

500

600

1 2 3 4 5

Ex
ec
ut
io
n
ti
m
e,
 s
ec

number of documents, the Alice have

at one time

several times

46

Figure 25: Method 1 performance versus the number of documents at each side.

3.6.4 Method 2 performance measurement:

1. Several experiments were performed to measure Method 2 performance. The results are
presented in Figure 26.

Figure 26: Method 2 performance

The execution time was unreasonable long therefore no more experiments were performed with the
Method 2

0

500

1000

1500

2000

2500

1 5 10 15 20 25 30 35 40

Ex
ec
ut
io
n
ti
m
e,
 s
ec

Number of documents at each side

Method 1

non‐privacy

0
200
400
600
800
1000
1200
1400
1600
1800

30 50 99 381

Ex
ec
ut
io
n
nu

m
be

r,
 s
ec

words number in document

Method 2

47

3.6.5 Functionality validation
In order to validate the methods functionality 41 articles were pairwise compared. The list of
document pairs together with short description is given in Table 5. The obtained type of similarity is
presented in Table 6.

Number of pair Expected type of similarity Articles description
1 Different Both articles have the same topic. Authors

analyzing the same articles. But they are written in
absolutely different ways

2 Different Both articles have the same topic. But their contents
are different

3 Semantically similar (since
RBAC area is contained in
ontology)

The articles have the same structures across all
documents. There are identical parts of text as well
as rephrased ones. In the article the same RBAC
system is discussed, but authors use different
names for the system components.

4 different Authors discuss absolutely different algorithms for
duplicates finding

5 Common part (because
articles topic is not in
ontology)

The articles have the same author. The article [7] is
a short version of [10].

6 Different (since the
common part is too short
to detect any similarity)

The abstract and little part in the introduction is
identical. The rest of the documents are absolutely
different.

Other pairs Different All other articles are different.
Table 5: Document pairs participating in functionality validation process

Document pair Expected type of

similarity
Obtained type of
similarity with ontology
usage

1 Different Common part
2 Different Common part
3 Semantically similar Semantically similar
4 Different Common part
5 Common part Common part
6 Different Different
Other pairs Different Different
Table 6: Obtained types of similarity

48

4 Discussion

In a scope of this project the attempt were made to develop a method for identification of both
syntactically and semantically similar documents in a privacy-preserving way. Documents are
analysed using the ontology and main document subject areas are identified. Obtained subject
areas are securely compared to determine semantic relationship between corresponding
documents. Then documents are transformed into the sets of distinct meaningful words, called
footprints and these sets are compared in privacy-preserving way. The type of similarity between
two documents is determined according to the number of common words in footprints and
documents semantic relationship The usage of the footprints but not the complete original
document for documents comparison leads to the significant execution time reduction. But such
approach has a drawback. It's not possible to determine if two compared documents are absolutely
similar or one document was obtained from another one by making inessential changes, such as
substitution of some words with synonyms, or changing the words order. To distinguish such cases,
additional word-by-word comparison may be needed. As the area of application of document
comparison tools (plagiarism detection and etc.) assumes that most of the documents are different,
such additional word-by-word comparison step is needed rarely and thus doesn't lead to significant
performance degradation.

To transform the document into the footprint some Natural Language Processing techniques were
applied. There are a lot of tools for NLP processing available, for example [40],[41],[42]. In this
project the natural language toolkit [29] was used. It was chosen because it's distributed under
open source license, has large knowledge base and good documentation. Unfortunately, it doesn’t
always determine the part of speech correctly, therefore some additional measures were taken to
guarantee that method works in a proper way.

To find the documents subject areas the ontology was used. For this project only the ontology for
authorization area of computer security domain was developed. But it can be easily extended with
the other areas or domains. The main difference of this project ontology from the existing ones is
that it is focused on the terms and what areas they describe, rather than on the areas of computer
security domain and relations between them, as it is done in ontologies, described in [43], [44], [45],
[46]. Real tool for the document comparison will use large ontology database and of course it will
worsen the tool performance. But the subject area searching time can be reduced due to the fact
that in a real use case the documents from the same domain most likely to be compared. It doesn't
take sense to use astrophysics ontology comparing the anatomy articles.

Several approaches were considered for privacy-preserving footprints and subject areas
comparison. They are vector space model, fingerprints and private-matching scheme. It was
decided to use the private - matching scheme in this project. The vector space model was refused
because it doesn't allow to detect the situation, when one document is a part of another one. The
disadvantage of fingerprint approach is that it is very sensitive to the word order and, thus not

49

suitable for finding near duplicates. Such documents will be considered to be different. The private
matching scheme doesn't have such disadvantages. It enables to identify all situations listed in
paragraph 3.1. Also it is rather uncommon approach that has never been applied to the document
comparison. It was interesting to evaluate its performance in such application. The drawback of
private matching scheme is that it requires a lot of calculations in order to get the number of
common words.

 As the alternative way for secure comparison, original privacy preserving comparison protocol
utilising the properties of commutative encryption, was designed. If each party has several
documents for comparison than this protocol requires much less data transfers comparing with
private-matching scheme. Additional time, consuming by calculation apart from the encryption, are
not required. The method, based on this protocol, was expected to be rather fast and effective.
As the result, two methods for privacy-preserving document similarity detection were designed,
implemented and tested. The testing showed that Method 2, based on modified privacy-preserving
scheme, is very slow and isn't suitable for documents comparison. Execution time grows very fast,
because it is necessary to divide the footprint into different parts to be able to encrypt the
coefficients correctly. Method 1, based on privacy-preserving data comparison protocol, shows a
good performance. It was experimentally determined that its execution time depends on the size of
footprints and the number of documents of each party and has linear growth. Also It was proved
(Figure 24) that separate handling of the common part of the footprints significantly speeds up
Method 1 execution.

As for detecting of similarity types between documents, the Method1 has done it correctly, except
of two cases. The first case was described in first paragraph of this chapter. The second case is
following. When documents are from the same narrow area but contain different information, they
considered as having common part. The reason of that is that the meaningful words are almost the
same although they describe different things. To deal with it, the additional word-by-word
comparison of documents is required. The wrong detection of similarity type showed that it is
possible to apply this approach for privacy-preserving document clustering.

In order to prevent the revealing of the document contents during the comparison process, two
approaches were applied. Both modified private matching scheme and privacy-preserving data
comparison protocol guarantee the privacy of the data transfers, if the parameters of cryptosystems,
used in them, are chosen correctly. During the implementation of Paillier’s and Massey-Omura
cryptosystems the size for public and private keys were selected in such way that the decryption of
the transfer data will be practically useless. The developed methods don’t required the presence of
third party but doesn’t guarantee the protection against man-in-the-middle attacks. So the secure
connection should be established between peers. In order to provide privacy protection against
malicious parties, the limitation for minimum footprint number was introduced.

50

5 Conclusion
The goal of this project was to develop a method for privacy-preserving document similarity
detection. It should identify either semantically or syntactically similar documents. As the result two
methods were developed. Both of them have the following structure. At first, the areas the
documents are related to are found. Then documents are transformed into the set of distinct
meaningful words. These sets as well as documents subject areas are compared in a secure way.
In the first method the original privacy-preserving data comparison protocol was used for secure
comparison. In the second method the modified private-matching scheme was used for same
purpose. Based on the comparison results the type of similarity between documents is identified.
Both of the methods provide privacy protection for the documents content of the parties.

Currently, based on testing results, the following types of document similarity are detected: near
duplicates, one document is semantically or syntactically contained in another one, syntactically
similar documents and different ones. In order to detect if two documents are syntactically similar or
share the common part the additional word-by-word document comparison should be performed.

During the testing phase the method, based on the modified private-matching scheme, showed that
it is very slow and isn't suitable for the privacy-preserving document similarity detection. Another
method, on the contrary, was found to have very good performance and can be used for creation of
the tool for privacy-preserving document detection. But it needs some improvements, such as
adding the extra comparison of all documents words when it might be required. More statistics
should be accumulated to assure that the algorithm detects the document similarity types in a
proper way.

51

References
[1] G. Salton et al. A vector space model for automatic indexing. Communications of the ACM
18(11), Nov. 1975

[2] K.M. Hammouda, M. S. Kamel. Document similarity using a phrase indexing graph model.
Knowledge and Information Systems 6(6), Nov. 2004

[3] N. Shivakumar, H. Garcia-Molina. SCAM: a copy detection mechanism for digital documents. In
proceedings of the 2nd International Conference in Theory and Practice of Digital Libraries (DL‘95),
Austin, Texas, USA, Jun. 11-13 1995

[4] E. Garsia. Cosine similarity and Term Weight Tutorial: an information retrieval tutorial on cosine
similarity measures, dot products and term weight calculations. http://www.miislita.com/information-
retrieval-tutorial/cosine-similarity-tutorial.html, 2006

[5] H. Pang, J. Shen, R. Krishnan. Privacy-preserving similarity-based text retrieval. ACM
Transactions on Internet Technology 10(1), Feb. 2010

[6] M. Murugesan et al. Efficient privacy-preserving similar document detection. The VLDB Journal
— The International Journal on Very Large Data Bases 19(4), Aug. 2010

[7] Wei Jiang et al. Similar document detection with limited information disclosure. In proceedings of
IEEE 24th International Conference on Data Engineering, Cancun, Mexico. Apr. 7-12 2008

[8] J. Vaidya, C. Clifton. Privacy preserving association rule mining in vertically partitioned data.
Sixth IEEE International Conference on Data Mining (ICDM06), Hong Kong, China, pp. 1070-1075,
Dec 18-12 2006

[9] M. O. Rabin. Fingerprinting by random polynomials. Center for Research in Computing
Technology, Harvard University, Tech Report TR-15-81, 1981

[10] A. Z. Broder. On the resemblance and containment of documents. In proceedings of the
Compression and Complexity of Sequences 1997. Salerno, Italy, Jun 11-13 1997

[11] M. Malkin, R. Venkatesan. Comparison of texts streams in the presence of mild adversaries.
ACSW Frontiers '05 Proceedings of the 2005 Australasian workshop on Grid computing and e-
research - Volume 44.

[12] Udi Manber. Finding similar files in a large file system. WTEC'94: Proceedings of the USENIX
Winter 1994 Technical Conference on USENIX Winter 1994 Technical Conference. Jan. 1994

[13] Daniel Micol, Oscar Ferrandez et al. A textual-based similarity approach for efficient and
scalable external Plagiarism Analysis. Lab Report for PAN at CLEF2010 (Conference on
Multilingual and Multimodal Information Access Evaluation), Padua, Italy, Sep 20-23 2010

[14] M. J. Freedman et al. Efficient private matching and set intersection. In proceedings of
International Conference on the Theory and Applications of Cryptographic Techniques
(EUROCRYPT 2004), Interlaken, Switzerland, May 2-6 2004

52

[15] V.A. Narayana, P.Premchand, A.Govardhan. Fixing the threshold for effective detection of near
duplicate web documents in web crawling. In proc.: ADMA'10 Proceedings of the 6th international
conference on Advanced data mining and applications: Part I. Chongqing, China, Nov 19-21 2010

[16] Mohamed Elhadi and Amjd Al-Tobi. Part of speech(POS) tags sets reduction and analysis
using rough set techniques. RSFDGrC '09 Proceedings of the 12th International Conference on
Rough Sets, Fuzzy Sets, Data Mining and Granular Computing. Delhi, India, Dec. 15-18 2009

[17] I. Spasic, S. Ananiadou et al. Text mining and ontologies in biomedicine: making sense of raw
text. Brief Bioinform 6 (3) 239-251, 2005.

[18] V. Oleshchuk, A. Pedersen. Ontology Based Semantic Similarity Comparison of Documents.
DEXA '03 Proceedings of the 14th International Workshop on Database and Expert Systems
Applications. Prague, Czech Republic, Sep. 1-5 2003

[19] A. Stavrianou, P. Andritsos, N. Nicoloyannis. Overview and Semantic Issues of text mining.
ACM SIGMOD Record 36(3), Sep. 2007

[20] Liddy, E.D. 2001. Natural Language Processing. In Encyclopedia of Library and Information
Science, 2nd Ed. NY. Marcel Decker, Inc.

[21] C. D. Manning, P. Raghavan, H. Schütze. Introduction to Information Retrieval. Cambridge
University Press, 2008.

[22] P. Chen et al. A fully unsupervised word sense disambiguation method using dependency
knowledge. NAACL '09 Proceedings of Human Language Technologies: The 2009 Annual
Conference of the North American Chapter of the Association for Computational Linguistics.
Stroudsburg, USA, May 21 –Jun 5 2009

[23] http://www.intellexer.com/solutions.html

[24] Sentiment analysis and language processing tools,
http://lordpimpington.com/codespeaks/drupal-5.1/?q=node/5

 [25] http://www.cogilex.com/products.htm

[26] X.R. Hu, E Atwell. A survey of machine learning approaches to analysis of large corpora.
Proceedings of the Workshop on Shallow Processing of Large Corpora, Lancaster University, UK,
pp. 45–52, Mar 26 2003.

[27] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.
Advances in Cryptology – EUROCRYPT’99, Prague, Czech Republic, May 2-6 1999

[28] J. Massey, J. Omura. Method and apparatus for maintaining the privacy of digital message
conveyed by public transmission. United States Patent number: 4567600

[29] http://www.nltk.org/

[30] Steven Bird. Natural Language Processing with Python. O’Reilly, 2009

[31] http://jmlr.csail.mit.edu/papers/volume5/lewis04a/a11-smart-stop-list/english.stop

[32] http://nlp.cs.nyu.edu/GMA_files/resources/english.stoplist

[33] http://www.ranks.nl/resources/stopwords.html

53

[34] http://en.wikipedia.org/wiki/List_of_English_prepositions

[35] http://www.englishclub.com/vocabulary/prepositions.htm

[36] http://www.advanced-english-grammar.com/preposition-list.html

[37] http://www.paulnoll.com/Books/Clear-English/English-adverbs.html

[38] http://www.esldesk.com/vocabulary/adverbs/list-3

[39] http://www.momswhothink.com/reading/list-of-adverbs.html

[40] http://en.wikipedia.org/wiki/Natural_language_processing_toolkits

[41] http://lordpimpington.com/codespeaks/drupal-5.1/?q=node/5

[42] http://pypi.python.org/pypi/stemming/1.0

[43] A.Kim, J. Luo, M. Kang. Security ontology for annotating resources. Naval Research lab
Washington DC, Memorandum report: NRL/MR/5542-05-8903, Aug 31 2005.

[44] http://www.ai.sri.com/daml/services/owl-s/security.html

[45] http://www.ida.liu.se/~iislab/projects/secont/

[46] C. Blanco et al. A systematic review and comparison of security ontologies. ARES '08
Proceedings of the 2008 Third International Conference on Availability, Reliability and Security.
Washington DC, USA, 2008.

[47] RFC2828

[48] M. Stamp. Information security: Principles and practice. John Wiley & Sons, Inc. 2006.

[49] W. Stallings, L. Brown. Computer Security: Principles and Practice. Prentice Hall, 2008.

[50] http://portal.acm.org/dl.cfm

[51] http://ieeexplore.ieee.org/Xplore/guesthome.jsp

54

Appendix A

PoS database files contents

Stopwords_mult.txt

a's
ain't
aren't
c'mon
c's
can't
couldn't
didn't
doesn't
don't
hadn't
hasn't
haven't
he's
here's
i'd
i'll
i'm
i've

isn't
it'd
it'll
it's
let's
shouldn't
t's
that's
there's
they'd
they'll
they're
they've
thoroughly
wasn't
we'd
we'll
we're
we've

weren't
what's
where's
who's
won't
wouldn't
you'd
you'll
you're
you've
no one
now nowadays
out outside
he'd
he'll
daren't
co.
e.g.
inc.

mayn't
mightn't
she'll
she's
that'll
that've
there'd
there'll
there're
there've
what'll
what've
who'd
who'll
how's
when's
why's
et.al.
proc.

Stopwords_one.txt

a
ab
able
according
allow
allows
although
am
an
and
another
anybody
anyhow
anyone
anything
anyways
appear
appreciate
appropriate
are
ask
asking
associated

got
gotten
greetings
h
had
happens
has
have
having
he
hello
help
her
hereafter
hereby
herein
hereupon
hers
herself
hi
him
himself
his

others
ought
our
ours
ourselves
overall
own
p
particular
placed
please
possible
provides
q
que
qv
r
rd
re
regards
s
said
same

whereafter
whereas
whereby
wherein
whereupon
wherever
whether
which
while
whither
thereupon
they
think
third
thorough
those
though
three
thru
thus
took
tried
tries

dost
doth
double
dr
dual
due
eb
ec
eu
excepted
exception
exclude
exclusive
fa
fae
farther
farthest
ff
found
free
front
furthest
gcn

srd
stave
staves
studies
supposing
ta
tested
thee
thenceforth
thereabout
thereabouts
thereof
thereon
thereto
tho
thou
thy
thyself
time
types
unable
upwards
vol

55

available
b
be
became
become
becomes
becoming
been
being
believe
both
brief
c
came
can
cannot
cant
cause
causes
certain
changes
co
com
come
comes
consider
contain
containing
contains
corresponding
could
course
d
described
did
different
do
does
doing
done
downwards
e
each
edu
eg
eight
either
else
et
etc
everybody
everyone
everything

hither
howbeit
i
ie
if
ignored
immediate
inasmuch
inc
indeed
indicate
indicated
indicates
inner
insofar
is
it
its
itself
j
k
keep
keeps
kept
know
knows
known
l
latter
lest
let
liked
look
looking
looks
ltd
m
may
me
mean
might
moreover
must
my
myself
n
name
nd
necessary
need
needs
neither
nevertheless

saw
say
saying
says
second
see
seeing
seem
seemed
seeming
seems
seen
self
selves
sensible
sent
serious
seven
several
shall
she
should
six
some
somebody
someone
something
sometime
sorry
specified
specify
specifying
sub
such
sup
sure
t
take
taken
tell
tends
th
thank
thanks
thanx
thats
the
their
theirs
them
themselves
thence
thereafter

try
trying
two
u
un
unless
unto
us
use
used
useful
uses
using
uucp
v
value
whole
whose
will
willing
wish
wonder
would
x
y
you
your
yours
yourself
yourselves
z
zero
item
login
ac
ads
ae
af
albeit
asp
author
av
baf
bf
biz
ca
canst
cd
cee
cf
cfm
cfrd
cgi

general
gif
gm
halves
hast
hath
henceforth
hereabouts
hereto
hindmost
hitherto
howsoever
hr
include
included
indoors
insomuch
investigated
jpg
kg
kind
km
la
low
made
meantime
mr
mrs
ms
net
news
nope
nu
obtained
org
page
performance
performed
pl
plenty
post
present
presented
presents
provide
provided
related
report
required
results
roll
sake
sang

week
whatsoever
whensoever
whereabouts
whereat
wherefore
wherefrom
whereinto
whereof
whereon
wheresoever
whereto
whereunto
wherewith
whew
whichever
whichsoever
whilst
whoa
whomever
whomsoever
whosoever
wilt
wow
www
ye
year
yippee
ble
adj
begin
caption
dare
eighty
end
ending
fewer
half
hundred
make
makes
mine
miss
neverf
neverless
ninety
recent
someday
taking
thing
things
thirty
undoing

56

ex
example
f
few
fifth
five
followed
follows
former
four
g
get
gets
getting
gives
go
goes
going
gone

new
nine
nobody
non
none
noone
nor
not
nothing
novel
o
oh
ok
okay
old
one
ones
or
other

thereby
therefore
therein
theres
various
viz
vs
w
want
wants
was
way
we
welcome
went
were
whatever
whence
whenever

choose
click
cm
conducted
considered
contrariwise
cos
crd
cu
cx
date
day
describes
designed
determine
determined
dfe
discussed
dont

save
selected
sfrd
shalt
show
shows
shown
significant
slept
slew
slung
slunk
smote
sort
spat
spoke
spoken
sprang
sprung

al
nt
md
pp
1st
2nd
3d
3rd
4th
5th
6th
7th
8th
9th
10th
0
ps
pc
ca

Preposit_mult.txt

in time
in the forefront of
at the forefront of
in demand
on demand
in focus
out of focus
in touch
out of touch
in sight
within sight
in a flash
in a hurry
in a mess
in a sense
in advance
in agreement with
in aid of
in all likelihood
in an instant
in brief
in bulk
in common
in comparison with
in confinement
in conjunction with
in connection with
in consequence of
in contrast with
in contrast to
in disorder

outside of
once in a while
of course
side by side
side to side
so that
very much
during long time
during short time
for lack of
for life
for love
for real
for the good of
for the sake of
for want of
in accordance with
in addition to
in case of
inside of
instead of
in front of
in lieu of
in place of
in point of
in spite of
in the end
owing to
on behalf of
on sight
on the double

in return
in reverse
in short
in succession
in terms of
in the aftermath
in the balance
in the case of
in the course of
in the event of
in the extreme
in the eyes of
in the flesh
in the form of
in the habit of
in the light of
in the long run
in the meantime
in the name of
in the open
in the space of
in the wake of
in the way of
in theory
in time for
in times of
in tune with
in turn
in two minds
in unison
in vain

to the detriment of
to the exclusion of
to the full
under cover of
under lock and key
with a view to
with an eye to
with regard to
with respect to
with the exception of
as far as
ahead of
according to
along with
as per
as regards
aside from
as well as
at the outset
at the end
at sight
at the double
at a time
at a glance
at a loss
at a low ebb
at a moment's notice
at all costs
at all events
at any cost
at any rate

57

in due course
in earnest
in effect
in essence
in excess of
in exchange for
in fact
in favor of
in full
in gear
in general
in good faith
in hand
in harmony with
in harmony
in haste
in hiding
in line with
in mind
in moderation
in name
in spare time
by virtue of
by way of
behind the scenes
close to
except for
far from
far away
from the outset
for a change
for certain
for sure
for fear of
for good
for granted
for hire
over there
on top of

prior to
pursuant to
regardless of
thanks to
that of
to the benefit
where as
with respect to
a bit
a lot
how many
how much
how long
how tall
how high
hardly ever
next to
in operation
in opposition to
in other words
in particular
in person
in pieces
in practice
in preference to
in principle
in private
in proportion to
in proportion with
in public
in pursuit of
in quantity
in reality
in recognition of
in relation to
in reply to
in respect of
in response to
in retrospect

in view of
in words
behind schedule
on the air
of the air
on balance
off balance
on a regular basis
on account of
on average
on condition that
on display
on the brink of
on the dot
on the edge of
on the eve of
on the grounds of
on the horizon
on the hour
on the off-chance
on the part of
on the point of
on the strength of
on the stroke of
on the way to
on time
on tiptoe
out of print
in print
out of step
in step
out of date
out of hand
out of the question
to the contrary
on the contrary
to an extent
to date
to excess

at ease
at large
at least
at length
at most
at once
at one time
at present
at random
at the beginning
at the expense of
at the foot of
at the hands of
at the height of
at the latest
at the mercy of
at the peak of
at the same time
at the top of
at this juncture
at times
because of
by means of
by chance
by any chance
by the name of
by luck
by accident
by all accounts
by all means
by dint of
by far
by force
by hand
by heart
by no means
by oneself
by sight
by the side of

Preposit_one.txt

abaft
aboard
about
above
abroad
absent
across
afore
after
against
along

around
aside
astride
athwart
atop
ago
apart
away
as
at
before

beyond
but
because
by
behind
concerning
considering
circa
despite
down
during

given
hence
into
including
in
inside
like
minus
mid
midst
near

over
on
out
past
per
plus
pace
pro
qua
regarding
round

to
toward
towards
underneath
unlike
until
up
upon
under
versus
via

58

alongside
amid
amidst
among
amongst
anti
apropos

barring
below
beneath
beside
besides
between
betwixt

except
excepting
excluding
following
failing
for
from

next
notwithstanding
of
off
onto
opposite
outside

since
sans
than
through
throughout
till
times

vice
within
worth
withal
with
without

Adverb_mult.txt
arm-in-arm
back-and-forth
back-to-back
both-ways
counter-clockwise
face-first
feet-first

forward-and-back
hand-in-hand
head-first
head-to-toe
just-so
left-and-right
left-to-right

non-stop
now-and-then
now and then
off-key
off-tune
right-and-left
rightside-up

right-to-left
side-by-side
side-to-side
to-and-fro
up-and-down
upside-down
right now

Adverb_one.txt

afterwards
ahead
almost
aloud
already
also
altogether
always
anew
anymore
anywhere
askew
aslant
awry
again
agape
alone
amuck
anyway
askance
awhile
aback
afresh
all
any
back
backward
backwards
beforehand
bent

better
best
clearer
clockwise
closer
close
deadpan
deeper
downward
downstairs
downtown
doubtless
earlier
even
evermore
eastward
elsewhere
everywhere
every
ever
enough
far
fast
forever
forth
forward
further
furthermore
hard
harder

headlong
higher
however
here
home
how
instead
inward
inwards
just
left
less
ladylike
leftward
lengthwise
likewise
lots
louder
lower
last
later
little
least
more
meanwhile
much
most
maybe
many
never

not
now
nowhere
nearer
nonetheless
northward
nearby
no
often
once
onward
otherwise
outward
outwards
overhead
overmuch
paler
parallel
partway
pointblank
pretty
perhaps
quicker
quite
rearward
right
red
regardless
rightward
rather

seldom
sometimes
somewhat
somewhere
soon
sooner
soonest
sideways
skyward
slower
soaked
softer
somehow
southward
still
straight
stupefied
so
then
tomorrow
too
thrice
tighter
together
twice
there
today
tonight
this
that

these
upright
unannounced
unawares
underfoot
unseen
upbeat
upward
underground
upstairs
very
verbatim
well
westward
withdrawn
worrisome
worse
worst
why
when
where
who
what
whoever
whom
yesterday
yet
yeah
yes

59

Non_adverb_ly.txt

sully
bully
rely
ally

rally
fly
butterfly
ply

sly
apply
italy

60

Appendix B

Ontology database files content

Ontology_mult.txt

enforcement of the security policy:authorization
access control center:authorization
access control service:authorization
access control services:authorization
access control mechanism:authorization
protection of data:authorization
access control mechanisms:authorization
privilege management infrastructure:authorization
role based access control:role-based access control
dynamic separation of duty:role-based access control
static separation of duty:role-based access control
group of users:role-based access control
groups of users:role-based access control
role-based access control:role-based access control
separation of duty:role-based access control
rule-based security policy:role-based access control
discretionary access control:discretionary access control
identity-based access control:discretionary access control
access control list:discretionary access control
delegation of rights:discretionary access control
access control matrix:discretionary access control
mandatory access control:mandatory access control
rule-based access control:mandatory access control
policy of competence:mandatory access control
military security policy:mandatory access control
chinese wall policy:mandatory access control
clark-wilson integrity model:mandatory access control
clark wilson model:mandatory access control
multilevel-secure computer system:multilevel security
multi-level access control:multilevel security
multilevel access control:multilevel security
multilevel security mode:multilevel security
security clearance level:bell-lapadula
security classification level:bell-lapadula
security clearance levels:bell-lapadula
security classification levels:bell-lapadula
rbac model:role-based access control
access right:role-based access control
access rights:role-based access control
assigned role:role-based access control
assigned roles:role-based access control
core rbac:role-based access control
constrained rbac:role-based access control
consolidated rbac:role-based access control
hierarchical rbac:role-based access control
limited hierarchy:role-based access control
limited hierarchies:role-based access control
general hierarchy:role-based access control
general hierarchies:role-based access control
least privilege:role-based access control

simple security property:bell-lapadula
confidentiality service:authorization
confidentiality services:authorization
confidential policy:authorization
data privacy:authorization
access permission:authorization
access permissions:authorization
access privilege:authorization
access privileges:authorization
authorized entity:authorization
authorized entities:authorization
authorization process:authorization
security clearance:authorization
security policy:authorization
security service:authorization
security services:authorization
secure state:authorization
security violation:authorization
sensitive information:authorization
sensitive resources:authorization
sensitive resource:authorization
unauthorized access:authorization
unauthorized manner:authorization
unauthorized disclosure:authorization
unauthorized use:authorization
system resources:authorization
system resource:authorization
system entity:authorization
limit access:authorization
data security:authorization
restrict access:authorization
data protection:authorization
protected status:authorization
access control:authorization
access mode:authorization
privilege process:authorization
access modes:authorization
access right:authorization
access rights:authorization
multilevel security:authorization
multilateral security:authorization
dedicated security mode:authorization
eligible to access:authorization
denial of service:authorization
mandatory access control:authorization
role-based access control:authorization
role based access control:authorization
discretionary access control:authorization
identity-based access control:authorization
rule-based access control:authorization

61

least privileges:role-based access control
permission assignment:role-based access control
user assignment:role-based access control
biba model:mandatory access control
biba's model:mandatory access control
clark-wilson model:mandatory access control
classified status:mandatory access control
classification category:mandatory access control
security labels:mandatory access control
security label:mandatory access control
clearance level:mandatory access control
clearance levels:mandatory access control
security clearance:mandatory access control
classification level:mandatory access control
classification levels:mandatory access control
need-to-know model:mandatory access control
access matrix:discretionary access control
capability ticket:discretionary access control
capability list:discretionary access control
capability lists:discretionary access control
dac model:discretionary access control
need-to-know:mandatory access control
attribute-based access control:authorization

star-property:bell-lapadula
ss-property:bell-lapadula
ds-property:bell-lapadula
bell-lapadula:bell-lapadula
*-property:bell-lapadula
top secret:multilevel security
secure state:bell-lapadula
confinement property:bell-lapadula
simple-security condition:bell-lapadula
security clearance:bell-lapadula
top secret:bell-lapadula
security classification:bell-lapadula
security class:bell-lapadula
tranquility property:bell-lapadula
bell-lapadula:multilevel security
need-to-know:multilevel security
multilevel security:multilevel security
multi-level security:multilevel security
security level:multilevel security
security clearance:multilevel security
need-to-know model:multilevel security
confidentiality policy:multilevel security

Ontology_one.txt

assign:role-based access control
assigned:role-based access control
constrain:role-based access control
constrains:role-based access control
hierarchy:role-based access control
hierarchies:role-based access control
operation:role-based access control
operations:role-based access control
permission:role-based access control
permissions:role-based access control
privilege:role-based access control
privileges:role-based access control
right:role-based access control
rights:role-based access control
classification:multilevel security
secret:multilevel security
confidential:multilevel security
unclassified:multilevel security
clearance:multilevel security
dac:discretionary access control
classification:mandatory access control
classified:mandatory access control
clearance:mandatory access control
unclassified:mandatory access control
mac:mandatory access control
authorization:authorization
authorize:authorization
authorized:authorization
authorizes:authorization

grants:authorization
identity:authorization
mac:authorization
object:authorization
objects:authorization
permission:authorization
permissions:authorization
permitted:authorization
permit:authorization
permits:authorization
privilege:authorization
privileges:authorization
resources:authorization
resource:authorization
rbac:authorization
subject:authorization
subjects:authorization
system:authorization
user:authorization
violation:authorization
violate:authorization
violated:authorization
violates:authorization
unauthorized:authorization
confidentiality:bell-lapadula
clearance:bell-lapadula
secret:bell-lapadula
confidential:bell-lapadula
unclassified:bell-lapadula

62

authorizing:authorization
confidentiality:authorization
dac:authorization
disclosure:authorization

classification:bell-lapadula
mls:authorization
disclosed:authorization
disclose:authorization

Ontology_structure.txt

authorization:authorization:89:access control
role-based access control:authorization:39:rbac,role based access control
discretionary access control:authorization:11:dac
mandatory access control:authorization:25:mac
multilevel security:authorization:18:mls
bell-lapadula:multilevel security:24:

