

An Expert System for Safety
Instrumented System in petroleum

industry

By

Yi Xiong

Dawei Zhu

Thesis submitted in Partial Fulfillment of the

Requirements for the Degree Master of Technology in

Information and Communication Technology

Faculty of Engineering and Science

University of Agder

Grimstad

May 2010

http://www.uia.no/no�

Abstract

The expert system technology has been developed since 1960s and now it has
proven to be a useful and effective tool in many areas. It helps shorten the time
required to accomplish a certain job and relieve the workload for human staves by
implement the task automatically.

This master thesis gives general introduction about the expert system and the
technologies involved with it. We also discussed the framework of the expert system
and how it will interact with the existing cause and effect matrix.

The thesis describes a way of implementing automatic textual verification and the
possibility of automatic information extraction in the designing process of safety
instrumented systems. We use the Protégé application [*] to make models for the
Cause and Effect Matrix and use XMLUnit to implement the comparison between two
files of interest.

Preface

This thesis is proposed by Origo Engineering AS. First of all, we would like to thank for
the guidance of our supervisor Trond Friisø who has helped us to comprehend the
concept of the problem at hand and provide constant assistant for us.

And we would also like to thank Vladimir A Oleshchuk for the high level guidance. He
gave us a direction toward which we build our project and valuable suggestions on
thesis writing.

Grimstad, May 2009
Dawei Zhu, Yi Xiong

Table of contents

Abstract ... 2
Preface .. 3
Table of contents ... 4
List of figures ... 5
List of tables .. 6
1. Introduction .. 7

1.1 Background .. 7
1.2 First glance at Expert system ... 7
1.4 Report outline ... 8

2. Problem description .. 9
2.1 Problem statement ... 9
2.2 problem delimitations: .. 12

2.2.1 Safety Instrumented system .. 12
2.2.2 Introduction of Expert system .. 14

2.2.3 Automatic Information extraction ... 19
2.3 Use Cases and System Analysis ... 19

2.3.1 Use Case ... 19
2.4.2 System Structure and components .. 21

3. Natural language processing .. 23
3.1 Information Extraction .. 24
3.2 Example of IE ... 25
3.3 Methods of IE ... 25
3.3 XML and Information Extraction ... 26
3.4 Limitations of Information extraction system .. 26

4. Standardizing format ... 27
4.1 XML.. 27
4.2 RDF.. 28
4.3 XML vs RDF ... 31

4.3.1. Simplicity ... 31
4.3.2. Tree and graph structure for relation and query 31
4.3.3. Exchange of data .. 33

5. Ontologies and applications .. 36
5.1 Ontology introduction ... 36

5.1.1 Original meaning of ontologies .. 36
5.1.2 Ontologies in computer science ... 36
5.1.3 Component of ontologies ... 37
5.1.4 Ontology engineering ... 38

5.2 Ontology language(OWL) .. 38
5.2.1 Ontology language ... 38
5.2.2 Status of ontology in the project .. 39
5.2.3 OWL and its sub-languages ... 40

5.2.4 OWL-DL with its syntax .. 41
5.3 Protégé and FaCT++--implementation and reasoning tools 43

5.3.1 Protégé and its structures .. 43
5.3.2 Reasons for choosing Protégé .. 46
5.3.3 Protégé with OWL plug-in .. 47
5.3.4 FaCT++--analyzing and reasoning .. 48

6. Verification implementation ... 50
6.1 verification process .. 50

6.1.2 Identical elements recognition ... 51
6.1.3 Comparison between elements in different order 52
6.1.4 Ignore the comments ... 53
6.1.5 Ignore the extra space in elements .. 55
6.1.6 Identify the missing element .. 56

6.2 Limitations of this verification process ... 58
7. Discussion ... 60
8. Conclusion and future work ... 61

8.1 Conclusion ... 61
Future work .. 61

Reference.. 63

List of figures

Figure 1 Cause and Effect Matrix--5
Figure 2 Interface of Cause and Effect editor---11
Figure 3 basic SIS layout---12
Figure 4 SIS safety life-cycle phases--14
Figure 5 Expert system structure---15
Figure 6 Use case of the expert system---20
Figure 7 System structure of the Expert system---21
Figure 8 Structure of Linguistics ---24
Figure 9 Example of ontology structure---38
Figure10. Status of ontologies in this project--39
Figure11. Example of Protégé-OWL syntax--44
Figure12. Protégé class hierarchy--45
Figure13. Protégé subordinate functions--46
Figure14. Protégé with OWL plug-in---47
Figure15. Class structure after reasoning--48
Figure 16 Standardization of two files in different forms-----------------------------------49

List of tables

Table 1 Comparison between Programs and Expert systems---------------------16
Table 2 OWL-DL descriptions, data ranges, individuals and data values--------42
Table3. OWL-DL axioms and facts--43
Table 4 Safety specifications--58

1. Introduction

Chapter 1.1 introduces the background of the project and the specific field that we are
about to dive in. Chapter 1.2 describes the previous work of automatic transform of
data types. By introducing the current status of the process of producing SIS
specification, we will see the benefit of applying automatic implementation and the
possible improvement resulted from the automation. Chapter 1.3 gives the layout of
the following chapters of this project.

1.1 Background

In an increasingly complex industrial environment with multidisciplinary factors, which
work as interactive constituents within a system, any slight mistake might result in
severe consequences such as conflagration, toxic gas leak or abnormal pressure
level that will cost the company huge amount of money, in the worst cases lives could
be lost. Thus it is obviously necessary to deploy a robust and reliable safety system to
protect the asset from possible hazardous event.

Before we make plans to build this safety system, the first thing that has to be done is
to list all the regulations and policy into an official document, upon which the future
system will be built. Judging by the scale of the industry, building such a system
wouldn’t be easy and it would take lots of manpower and time to finish building a
thorough and detailed document. Once the document has been formalized and
produced, before building the safety instrumented system on the basis of the
document, it is necessary to analyze the whole document to check if there is anything
wrong or missing, since if the construction went wrong from the start, it will result in
huge amount of financial loss of the customer and most likely the construction has to
be reset and restarted all over again. Thus it is a common practice to let an
experienced engineer to manually construct and verify the documents, likewise this
could take lots of time and may not be accurate as required.

1.2 First glance at Expert system

The first expert system was developed in 1965 by Edward Feigenbaum and Joshua
Lederberg of Stanford University in California, U.S. Dendral. It was firstly designed to
help the chemists find unknown chemical compounds. Since then the expert system
had been evloved through three stages and scientists are now working on the fourth
generation.

Nowadays expert systems are deployed in various areas such as chemistry, biology,

medical science, etc. The applications could be used to make financial decisions,
perform diagnostic functions for patients, and many other tasks that normally requires
human expert.

1.4 Report outline

The thesis will be organized as following:
Chapter 2 describes the problem with scenarios as examples.
Chapter 3 gives introduction of the natural language processing.
Chapter 4 shows the two choices of ontology.

Chapter 6 shows the prototype implementing the verification process.
Chapter 7 discusses the possibility of fully automatic application in the future.
Chapter 8 concludes the thesis.

2. Problem description

Section 2.1 gives the current status regarding the problem in Origo Engineering AS
and the final goal we want to achieve.
Section 2.2 analyzes the problem from different angle, and the goal of the expert
system.

2.1 Problem statement

Origo engineering AS devote to provide reliable safety solutions for their customers.
Their product could be implemented in Offshore Drilling, Offshore Production, FPSO,
Petrochemical onshore industry (Refineries), onshore process industry (focus on
Energy intensive processes), which are all safety-sensitive industries, a common way
of provide safety solution is to design and implement a safety instrumented system.

“A Safety Instrumented System (SIS) is a form of process control usually implemented
in industrial processes, such as those of a factory or an oil refinery. The SIS performs
specified functions to achieve or maintain a safe state of the process when
unacceptable or dangerous process conditions are detected.” [1] It is composed of
logic solvers, sensors and control elements and it implements one or more Safety
Instrumented Functions to bring the process to a safety state if the current situation
requires safety measures.

Implementing SIS in the process industry for precaution reason is quite crucial and in
order to fulfill the requirement of designing such an SIS, safety requirement
specification (SRS) was introduced. SRS is used to specify all the requirements of
safety instrumented systems that need to be fulfilled throughout the safety system
building process.

Origo Engineering has already developed a prototype of Cause and Effect editor,
which allows users to record the information described in the document and rearrange
them in a structured form. The left hand side is the causal event such as “gas
detection”, “fire detection” and voting value such as “1ooN” or “2ooN”; the upper part
of the matrix is the corresponding “effect” that describes the action taken to bring the
faulty system state back to normal state, such as “initiate ESD”, “sounding alarm and
start sprinkler”.

Steps of the CEM working process are described below:
1. First the template document describing the list of causes and effects is imported

into the editor, usually in the excel form. However, a template actually refers to two
files, an excel sheet with formatting but no data and a file describing the locations

of interest in the sheet, this form of separation is very beneficial for the
modification of data in the input document and also the excel export. After cause
and effect data have been imported to the editor, a sheet of matrix linking them is
formed as the preconditions for dealing with the control logic. It should also be
worth noting that in this step the causes would be well-classified according to
incident types for easier fill-in process of logic in the later process.

2. Next step would be the defining of logic rules for this CEM sheet, which are
corresponding linking between possible incidents and coping measures., the logic
rules also have classifications describing sorts of control measures as different
signs in the CEM shows. Currently this step is managed manually by experience
engineers, an example of the CEM sheet is illustrated in figure with the rows as
causes and the columns as effects.

Figure 1 Cause and Effect Matrix

3. On the other hand, general rules related to the specific system environments and

causing incidents are extracted from text documents describing requirements
defined in standards of all kinds, including general international and national
regulations, and principles oil companies have set up. The resulted document
would be in a form that could be handled by the CEM editor showing different
types of requirements that the logic rules in the CEM have to comply with, an
example is shown in figure:

Figure 2 Interface of Cause and Effect editor

4. Now that CEM sheet and rule documents have been generated, the last step

would be the verification process, that is, to check if the logic rules in the CEM
sheet satisfy all the requirements listed in the general rule text. The expected
result would be a confirmation indication if there’s no discrepancy, or else a
warning figuring out at which point inconsistency exists, which should be
illustrated in a way for easy check and change.

Now we already have a prototype of Cause & Effect editor, which is used for
extracting the clauses from the document and reorganize them into a systematic way.
Currently the designing specifications and verification are processed manually by
experienced engineers, they will examine each of the clauses in the document and fill
them in the cause and effect matrix (CEM). After that they will also verify that
everything in the document is consistent with the generated CEM.

This is the traditional and reliable method of verification for the moment, yet it seems
to be more and more inefficient, because nowadays the industry often involves
multidisciplinary knowledge and the amount of information in instruction manuscript
and specification increase so fast that manual verification gradually becomes
error-prone and sluggish.

The main focus of the project is to make improvements to the current process of
designing such a SIS in the process industries. By introducing semantic and ontology
technology into the process, engineers could be relieved from the tedious, error-prone
work of checking and the possibility of automatically retrieve information from a textual
document doesn’t seem so unrealistic.

2.2 problem delimitations:

2.2.1 Safety Instrumented system

It is a known fact that all systems, more or less, are subject to potential accident or
malfunction. There are too many factors involved that could influence the operation
process of the system and absolute safety simply does not exist, which is why SIS
has been introduced. By employing the SIS, we could reduce the risk level to an
expected, acceptable level, often been referred to as “as low as reasonably
practicable” (ALARP).

A SIS consists of the following parts, and the main structure of the system is shown in
figure 1 below:

1. Sensors used for detection;
2. Signal input processor;
3. Logic solver;
4. Signal output processor;
5. Switch apparatus used for controlling device

Figure 3 basic SIS layout

To properly design a safety instrumented system we have to list all the requirement of
such a system in an official form, which is referred to as safety requirement
specifications.

The exact definition of safety requirement specification is given by the standard IEC
61511:

“Safety requirement specification is a specification that contains all the requirements
of the safety instrumented functions that have to be performed by the safety
instrumented systems.” [2]

The requirements need to be planned before designing the safety system, as we can
see from the next figure which shows the general steps of building a SIS, the SRS is
generated in the third step after hazard assessment and allocation of the safety
functions. This safety life cycle was proposed by IEC 61511-1.

Figure 4 SIS safety life-cycle phases.1

The internationally accepted IEC 61508 and IEC 61511 are the standards for safety
instrumented systems, IEC 61508 has now becoming the European Norm where IEC
61511 is especially used for the process industries, we will take these standards as
examples as to how the safety instrumented system is designed. The IEC 61511 and
IEC 61508 use similar building steps for constructing a SIS.

The SIS design documents include SIS overall drawing, Cause and effect matrix,
power distribution drawing, and SIS instrument index. What we are concerning here
mainly involves cause and effect matrix, which shows the cause of certain unexpected
disturbance and the corresponding countermeasure that will be taken in order to
mitigate the causal event. The matrix also contains voting, notes and other forms of
explanations. The following is an example of a complete matrix:

2.2.2 Introduction of Expert system

Expert systems are computer programs derived from computer science, it copes with
concepts of inference process for computers and the knowledge that is used to
represent those inferences in terms of a machine. Expert systems are developed to
provide problem solving solutions using knowledge of some specific domain that

1 http://webstore.iec.ch/preview/info_iec61511-2%7Bed1.0%7Den.pdf

related to the problem. It contains knowledge that used by human experts, even
though the “thinking” process is not the same as that of a human expert.

The system essentially is a type of information processing system, what makes it
different from others is that expert system processes knowledge while general
information processing system handles information. Knowledge could be derived from
various sources, such as textual instructions, databases or personal experience.
Expert systems could be roughly divided into three components according to:

1. The knowledge base:
Knowledge base is the collection of domain knowledge required for solving a certain
problem, including fundamental facts, rules and other information. The representation
of knowledge could be shown in variety of ways such as framework, rules and
semantic web, etc. The knowledge base is a major component in expert system and it
could be separated from other functions inside the expert system which makes it
easier to modify and improve the performance of the system.
2. Inference engine:
Inference engine is considered to be the core component inside the expert system, it
takes the query of the user as input and make decisions based on preset logic
reasoning mechanism, the expansion of knowledge base does not affect the
inference engine, however, increasing the size of the knowledge base improves the
inference precision as well as enlarges the extent of solvable problem.
3. User interface:
Users interact with expert system through the user interface. User input their
necessary information regarding to the specific problem, then the system output the
result from inference engine, and provide explanations of that result if available.

User Interface

Knowledge
acquisition

Inference Engine Reasoning

Knowledge base General database

Knowledge
engineer

User

Expert knowledge
Explanation

Figure 5 Expert system structure

2.2.2.1 Comparison between Programs and Expert systems:

 Expert system General computer system

functions Solve problem, explain result,
make decision and determine

strategy.

Solve problem

Types of process Algorithm heuristic

Types of subject digits and symbols digits

Types of
capabilities

Handle problems of uncertainty Couldn’t handle uncertainty

Difficulty of
modification

Easy Hard

Table 1 Comparison between Programs and Expert systems

2.2.2.2 Advantages of expert system:

Compare to human expert, the advantages of expert systems are obvious:
1. Unlimited work hour:
Human experts could not work continuously without a break, but expert systems could
work at 24 hours a day since the day they were constructed;
2. Low cost of operation:
It took a lot of time and money to train or hire a competent engineer, despite of the
initial cost of the expert system, the daily cost is much less than using a human
engineer.
3. Knowledge distribution:
Expertise and knowledge are scarce resource. In today’s knowledge-concentrated
working environment, training a new staff requires lots of practice. When valuable
employees leave the company, it is unlikely that the knowledge of him will be
maintained. Expert system, on the other hand, could easily copy and restore the
expertise knowledge.
4. Consistency:
Different experts may make different decisions on a same issue according to their
understanding of the current situation. Expert systems give consistent output.
5. Capability of computing:
Because of the preset knowledge base and logical inference program, the expert
system would do much better than its human counterpart in some time-consuming,
complicated computing problem.

Even though the future of expert system looks very promising, there are some
drawbacks:
Because of the difficulties in collecting knowledge base and building inference rules,
expert systems are currently used for specific knowledge domain in small scale.
When the required knowledge covers a large extent, human experts are necessary to
finish the work.

2.2.2.3 Importance of the research on Expert system

Despite what has been described above, the requirements for a secure and stable
SIS are also strict, as the correct operation needs a series of equipment to function
properly. There can be no compromise on safety within an industrial environment. As
major incidents such as Texas City Disaster in 1947, US and Buncefield fire in 2005,
UK demonstrates, there is an increasing reliance on safety instrumented systems to
achieve satisfactory risk levels, some main reasons are listed as follows:

1. Process accidents could result in disastrous consequences for both institutions

and individuals, ranging from loss of life, equipment damage to the environment,
litigation, destroying corporate reputations, and the potential for extremely
expensive financial penalties.

2. If the safety system is not well configured, it may not function efficiently against an
emergency incident. The result is that the security of the industrial assets is not
assured when emergency situations occur.

3. The bugs in the system could also trigger false alarms that will put the whole
operation in a halt, cost the company for a fake hazard.

4. Specifically related to the field in this project, spurious activation of safety

instrumented systems in the oil and gas industry may lead to production loss,
stress on affected components and systems, and hazards during system
restoration.*

With this background international standards have been gradually established to
guarantee the reliability of safety instrumented systems. The most overall one IEC
61508 is a generic standard for design, construction, and operation of
electrical/electronic/programmable electronic systems, it establishes design standard
for Safety Instrumented Systems to reduce risk to a tolerable level by following the
overall hardware and software safety life cycle procedures, and by maintaining the
associated stringent documentation. Based on this IEC 61511 is published in 2003 to
provide guidance to end-users on the application of Safety Instrumented Systems in
the process industries. These two form the very general standards that nations as well

as companies should adhere to while formulating their own principles and regulations
related to the specific SIS. Safety regulators are gradually using international
standards such as these two to decide on what is acceptable and it is generally
accepted that it would be essential for the effective implementation of the
requirements of these standards.

However, types of working with these international standards vary widely as many
companies experience continual try and test process and make constant refinements
and reviews while others experience much less due to the fact that the exposure of
their processes to the safety instrumented systems is much less frequent. Thus it’s a
dynamic environment in which new technology trends are developed to cope with
challenges that lie in implementation and operation of safety systems to process
companies, both large and small. These current trends could be concluded as below:

1. Emphasis on overall safety. This focuses on the fieldbus solutions for process

systems whose benefits lie in ongoing operations and maintenance savings made
available through advanced diagnostics and asset management tools, users could
assess information at any time in intelligent SIS components and enable analysis
of safety performance and access data and diagnostic information which is
essential for testing. As a result, this solution would be of much information
advantage as well as considerable reduction in the cost of installation,
maintenance and testing of the system.

2. Safety lifecycle tool. International standard IEC61511 has introduced safety life
cycle approach, although the widespread cause-and-effect matrix for dealing with
documenting and defining the process safety logic is gradually perfected,
additional lifecycle tools that would be helpful for engineering community is also
very beneficial. Since this kind of tools will allow engineers to document
cause-and–effect matrix logic required for SIS in a familiar form while in the later
process of automatic creation of associated code in the SIS, testing and
commissioning, they could using the same cause-and-effect matrix format for
visualization. From this it could be concluded that human error and
misinterpretation could be largely reduced and systematic error would be
inherently decreased, also these tools could both create logic of the system
controller and generate the operator interface. Another exciting development
would be automatically generating cause and effects from safety instrumented
logic verification tools based on safety instrumented function architectures, which
is similar to the main aim of this project—automatically generation of the logic
rules in a cause-and-effect matrix.

3. Flexibility and scalability. The sizes of SIS applications range from the smallest
HIPPS system containing just a few signals up to large ESD systems with several
thousand I/O points, thus it would be beneficial if these systems are scalable while
satisfy the requirements for high availability.

4. Integration with the control systems. The above standards give rise to the

separation of process safety and process control. Originally, diverse systems and
separation of physical components have been used to achieve this, but currently it
has been concluded that integrated approach is more beneficial, for instance,
using an integrated controller could provide simplified engineering, reduced
training, spare parts reduction and convenient visualization of the process
situations. However, the integration process should meet the intent of the
standards for the functional separation between the two.

2.2.3 Automatic Information extraction

As we discuss in section 2.1, the process of making the Cause and Effect matrix
would be much more efficient if we could automatize the procedure instead of
manually picking words out of the document, as we could imagine people are capable
of this task due to years of experience in language process, but it is a hard job for
machines to understand the meaning of the texts and make appropriate judgment
upon them, after all they have essentially been dealing with digits in most applications
with preset algorithm. In order to enable the computers to not only treat the text as a
combination of several characters but also “understand” the meaning of the text,
Natural Language Processing technology has been developed.

2.3 Use Cases and System Analysis

2.3.1 Use Case

The use case of the desired whole system is illustrated as below:

Figure 6 use case of the expert system

The descriptions of each use case are listed as below:

1. User inputs selected rules from certain standards corresponding to the information

in CEM.
User presses the check button and waits for the result.
--system will indicate if the CEM logic rules comply with the input requirements.

2. User chooses to import rule document generate from specific standards.
 User chooses the desired output file of CEM editor.
 User presses the check button and waits for the result.
 --system will indicate if the CEM logic rules comply with the specific standards
3. User chooses to import rule document generate from specific standards.
 User chooses the desired output file of CEM editor.
 User presses the check button.
 User uses the “view detail” function to see the indication for the position of

discrepancy.
 User may check the warning points and make adjustments.
 --system will indicate ok if no inconsistency occurs or else the point of inconsistency

(suggested solution not included).

Subordinate function for 2&3:
 User chooses to import standard description documents such as Excel
 User uses the “generate rules” function and waits to see the corresponding

 uc Use Case Model

 l Version EA 7.5 Unregistered Trial Version EA 7.5 Unregistered Trial Version EA 7.5 Unregistered Trial Ve

 l Version EA 7.5 Unregistered Trial Version EA 7.5 Unregistered Trial Version EA 7.5 Unregistered Trial Ve

 l Version EA 7.5 Unregistered Trial Version EA 7.5 Unregistered Trial Version EA 7.5 Unregistered Trial Ve

 l Version EA 7.5 Unregistered Trial Version EA 7.5 Unregistered Trial Version EA 7.5 Unregistered Trial Ve

 l Version EA 7.5 Unregistered Trial Version EA 7.5 Unregistered Trial Version EA 7.5 Unregistered Trial Ve

 l Version EA 7.5 Unregistered Trial Version EA 7.5 Unregistered Trial Version EA 7.5 Unregistered Trial Ve

 l Version EA 7.5 Unregistered Trial Version EA 7.5 Unregistered Trial Version EA 7.5 Unregistered Trial Ve

 l Version EA 7.5 Unregistered Trial Version EA 7.5 Unregistered Trial Version EA 7.5 Unregistered Trial Ve

 l Version EA 7.5 Unregistered Trial Version EA 7.5 Unregistered Trial Version EA 7.5 Unregistered Trial Ve

 l Version EA 7.5 Unregistered Trial Version EA 7.5 Unregistered Trial Version EA 7.5 Unregistered Trial Ve

 l Version EA 7.5 Unregistered Trial Version EA 7.5 Unregistered Trial Version EA 7.5 Unregistered Trial Ve

 l Version EA 7.5 Unregistered Trial Version EA 7.5 Unregistered Trial Version EA 7.5 Unregistered Trial Ve

 l Version EA 7.5 Unregistered Trial Version EA 7.5 Unregistered Trial Version EA 7.5 Unregistered Trial Ve

 l Version EA 7 5 Unregistered Trial Version EA 7 5 Unregistered Trial Version EA 7 5 Unregistered Trial Ve

Users

Validate if CEM satisfy
giv en specific rule(s)

Input desired
requirement from

standard

Data source

Semantic processing
engine

Include structured and
unstructured contents

Include RDF data store
and SPAQL data
processing

Ontologies and
v ocabularies

Include equipment
ontology, production
ontoloy, etc.

Check if CEM comply
with rules in the

standards

Input rule document

Require identification of
the position of
inconsistency

Generate necessary
rules from giv en

standards

Dsicov er position of
inonsistency

Make refinements
and modifications

«include»

«include»

«include»

«include»

«include»

«include»

requirements
 --system will provide extraction of the requirements, a list of necessary rules that is
corresponding to the specific CEM

2.4.2 System Structure and components

The whole system designing structure could be presented as follows:

Figure 7 System structure of the Expert system

The system include one data source for the prototype of control logic in XML form,
ontology and vocabulary for the reflexion from natural language to structured terms
corresponding to the ones in CEM, and a semantic processing engine for the
semantic extraction.
The whole process would be designed to include 3 parts: the extraction of natural
language from standards into structured format with logic, the conversion from text
documents to machine files such as XML & RDF, and the comparison & checking
process with the output of CEM in the data source.
1. Extraction of natural language from standards into structure format with logic: this
part doesn't involve document format conversion but from natural language described
in the standards to the terminologies used in the CEM editor. Thus here SPARQL and
OWL are used for semantic reasoning, or mapping between the two linguistic formats
with the help of relation, description logic and SPARQL queries to establish the
correspondence.
2. Conversion of document format: this part mainly deals with storing the information
in the text documents into one that is convenient to compare with the output files from

the CEM editor such as XML or RDF form. Programming languages like C or VB could
be used to deal with the already-format files such as comma-separated value files
(CSV), or tab-separated files (TSV or TAB) and related functions could be
implemented to parse the strings and do the mapping process into the desired format.
3. Comparison and checking process: In this part, the focus lies on the realization of
the validation whether the CEM output complies with the standard extraction of the 2nd
part within XML or RDF document, which could be achieved by functions in XML or
SPARQL query language. Additionally, many other attachment functions could be
added into this block such as figuring out the position of the inconsistency and
suggestions for adjustment.
Reason for using semantic-web technologies such as OWL and RDF:

1. Enables distinct semantics for the various concepts in the domain, through
definition of multiple schemas.
2. Provides a crisp and simple mechanism to represent an ontology using the <s-p-o>
structure of RDF.
3. Provides mechanisms to formulate generic queries (SPARQL) and instantiate them
at runtime in order to answer the queries posed.
4. Provides mechanisms to create parts of the ontology and query on it seamlessly,
using various technologies.
5. Provides rule evaluation and execution mechanism to create derived facts.
6. Provides mechanisms to link in external concepts with existing concepts of the
domain through simple <s-p-o> structures.

3. Natural language processing

In this chapter we will discuss the development and applications of Natural language
processing.
In terms of our subject in this thesis, automatically generating a formalized and
structured data files falls into the category of Natural language processing technique
（NLP）, to which Bill Manaris gave a definitio: “NLP could be defined as the discipline
that studies the linguistic aspects of human-human and human-machine
communication, develops models of linguistic competence and performance, employs
computational frameworks to implement process incorporating such models, identifies
methodologies for iterative refinement of such processes/models, and investigates
techniques for evaluating the result systems.”[3]
When received a document of Safety requirement specification written in natural
language, engineers have to read through the information presented in natural
language that could be understand by human but not machines. This is the traditional
and most used technique of requiring information from data source. Not satisfied by
the inefficiency and error-prone tendency of this manual implementation, automatic
extraction had been put on the discussion table. To let machines do the job that
requires judgments and determinations means they have to know which part of the
information is useful and which part of that is useless. To enable the machines to
understand the meaning of certain words or paragraph, there are four steps to
follow:[4]
1. Formalize the problem of interest linguistically, build the formalization model so as

to express the problem in a mathematical way, this could be called “formalization
of the language.”

2. “Algorithmize” the mathematical representation of the raw data;
3. Construct the application based on the algorithm generated from the previous step

and build practical natural language processing system;
4. Assess the NLP system and improve the performance of the system.

Natural language processing could be used in several areas, such as database query,
machine translation and information extraction. But even though after years of
development, NLP is still one of the most difficult problems encountered by scientists,
it covers many aspects of linguistic processing such as acoustics, lexicology, syntax,
semantics, and etc. In this thesis we concentrate our interest on one of the aspects:
semantics.

The next figure shows the structure of NLP and the relationships between its
elements:

Figure 8 Structure of Linguistics

3.1 Information Extraction

“Information Expert systems extract domain-specific information from natural
language text. The domain and types of information to be extracted must be defined in
advance. IE systems often focus on object identification, such as reference to people,
places, companies, and physical objects. Domain –specific extraction patterns (or
something similar) are used to identify relevant information.” [5]

As the name suggests, Information Extraction means retrieve information from
unstructured data source, typical examples are: text, pictures, video and audio files.
“Unstructured” refers to the way of information expression that is easy for human to
understand but difficult for computers to process, by adding metadata to the raw data
we could associate the unstructured data with certain “meaning” so that computers
could “understand” the information it is processing. “An information extraction system
will use a set of extraction patterns, which are either manually constructed or
automatically learned, to take information out of a text and put it in a more structured
format” [6]

3.2 Example of IE

We will take an example regarding this project, suppose we have a document
containing the next regulations in text:

The above example is quite simple and yet it displayed the main idea: pick the word
you need, discard the useless ones.

3.3 Methods of IE

The application that used for information extraction from a web page is called Wrapper,
it is very time-consuming task to build the application manually and it has an obvious
maintenance issue that once the structure of the data source changes, people will
have to rebuild it again. It is natural to think: is there a way that could relieve the
engineers of this problem and leave it to the computers? There are two types of
methods that could be used as an automatic tool:

1. Machine learning

“In firewater pump room and the emergency generator room with diesel engine, if
there are more than 2 flame detections, then trigger alarm in central computer room,
implement automatic shut down system and automatic fire protection, close damper
and fans”

Location: firewater pump room, the emergency generator room
Event: flame detections
 ------condition: >=2
Action 1: trigger alarm
 ------location: central computer room
Action 2: Implement automatic shut down system
Action 3: implement automatic fire protection

This type of information extraction depends on the separator in the data source to
locate the required information and automatically learning the rules of extraction.

2. Ontology
This type of method depends on a knowledge base, which will define extract
pattern for each element and relationships among them. It uses ontology to locate
the key information and utilize them to build a ontology library.

Both methods requires manually provide samples for the machines to learn the
extraction rule and this is not a easy task. As the development of the Internet,
Information extraction from a web document attracts more and more attention and has
become an intriguing problem, the difference between a web page and a textual file is
that web page contains lots of markup, which separate the contents of the page and
provide additional information for this web page, so as to extract information from the
page. These useful tags could help display the page in a hierarchical way, but the web
page itself isn’t structured. Nowadays web pages still use HTML language and
because this markup method is only used for displaying purpose, it does not describe
any semantic or “meaning” of the page.

3.3 XML and Information Extraction

Unlike HTML, XML does not deal with the display of data but rather the structure of
the data. In fact, if the source document and the one that need to be verified were all
presented in standardized XML format, IE would be unnecessary. And due to the fact
that many words have ambiguity or similarity in certain context. Different engineers
may come up with different terms. It is hard to manually annotate documents with
appropriate XML tags. Sometimes these industrial files may be considered as
confidential and the easy access nature of XML makes this another security issue.

3.4 Limitations of Information extraction system

In this thesis we are mainly concerned about information extraction from SRS, as we
all know that even though this type of documents are basically deals with safety
system, there are huge amount of information available for it, thus it usually contains a
vocabulary that could be used for Information extraction, which requires lot of
preparation for the system to be functional, and since the computer process the data
according to probabilities, it doesn’t have the ability to understand fuzzy logic like
humans do, which may result in ridiculously inaccurate answers. So there may be a
lot of room for improvement.

4. Standardizing format

As has been mentioned, for the comparison block the two documents should be in the
same format so as to be comparable in programming languages. Following two types
of suitable format—XML and RDF are discussed and compared.

4.1 XML

XML (Extensible Markup Language) is an electronically encoding mechanism to
format the documents according to a set of rules, it was put forward by the World
Wide Web Consortium (W3C) for the generality, simplicity and usability of documents
over the Internet, defined in the XML 1.0 Specification[7]. Started in 1996, XML has
been combined with many programming interfaces such as Java, C++, C#, etc,
additionally XML-based format has been widely used by many application tools and
software, it’s also widely used for the representation of arbitrary data structures rather
than confining within documents.

One of the biggest advantages and features for XML document is its compact and
strict format, typically an XML document is made up of the following constructs:
1. Markup and content: All strings begin with “<” and end with “>”, or begin with “&”
and end with “;” constitute markups that set up the main format for XML, the other
strings are contents for description.
2. Tag: Strings contained within the markups are called tags, there are three types of
tags, start tag such as <name>, end tag such as </name>, and empty-element tag
such as <name/>
3. Elements: Characters between the start and end tags are called elements that
constitute the content, it could also be in the form that only contain an empty-element
tag such as <name/> itself.
4. Attribute: It consists of a name or value pair within a start tag or empty-element
which belongs to a markup that adds up more information to the tag item.

A typical example that includes all the constructs above could be shown as below:
<?xml version="1.0" encoding='UTF-8'?>
<document>
 <details>
 <uri>href="page"</uri>

 <author>
 <name>Ora</name>
 </author>
 </details>
</document>
From the above it could be concluded that XML format is highly-structured and
well-formed as correspondent pair of start and end tags represent, making it more
scalable and interoperable, satisfying the goal of generality. On the other hand, as
XML supports any Unicode characters in the constructs mentioned above, even in a
single XML document characters from different languages could exist together, thus
this format is widely accepted and used by software and applications all over the
world since initiated, satisfying the goal of usability.

In this project the output generated by the CEM of the existing system that describing
the cause and effect relationships is in the XML format, fragments of the CEM output
are shown as below:
<ProtectionSheet DocumentName="U13-2">

<AreaClassification>

 <Zone1>False</Zone1>

 <Zone2>False</Zone2>

 <NonHazardLocat>True</NonHazardLocat>

 <NonHazardVent>False</NonHazardVent>

 </AreaClassification>

This part describes the area which the fire and gas system resides in, the other parts
represent each links for causes and effects using XML blocks. The whole file illustrate
information of the CEM sheet in quite a structured way.

4.2 RDF

RDF(Resource Description Framework) is a metadata model started also by World
Wide Web Consortium (W3C), It is used as a general method for conceptual
description or modeling of information that is implemented in web resources, using a
variety of syntax formats and provide a lightweight ontology system to support
exchanges of knowledge on the Web. The RDF specification integrates a variety of
applications from library catalogs and world-wide directories to syndication and
aggregation of news, software, and content to personal collections of music, photos

http://en.wikipedia.org/wiki/World_Wide_Web_Consortium�
http://en.wikipedia.org/wiki/World_Wide_Web_Consortium�

and events using XML as an interchange syntax. It also allows structured and
semi-structured data to be mixed, exposed, and shared across different applications.

RDF is based on the idea of making web resources in the form of “subject predict
object” which are defined as triples. As abstract model, there two serialization formats
for RDF: XML format and Notation 3 format of RDF models that is easier for
handwriting and easier to follow. Each subject of RDF statement is a URI(Uniform
Resource Identifier) or blank node, resources in them sometimes could truly
representing actual data on the Internet. It is clearly concluded that rather than XML
which represent an annotated tree data model, RDF is based on a directed labeled
graph data model. The syntax of an RDF document uses specific XML-based. An
RDF example with a simple graph model that it illustrates are show below:
<?xml version="1.0"?>
 <Description

 xmlns="http://www.w3.org/TR/WD-rdf-syntax#"
 xmlns:s="http://docs.r.us.com/bibliography-info/"

 about="http://www.w3.org/test/page"
 s:Author ="http://www.w3.org/staff/Ora" />

As has been mentioned, RDF mainly deals with the relationships between subjects
and objects, thus, it’s more suitable for semantic framework that emphasizes
inference over constraint. It could be found that in analyzing relations of words that
has a structure more like a graph than a tree, RDF has advantages over XML as it’s
more or less constructing a relational model rather than following a well-formed
format[11].

The body of knowledge modeled by a collection of statements may be subjected to
reification, in which each statement (that is each triple subject-predicate-object
altogether) is assigned a URI and treated as a resource about which additional
statements can be made, as in "Jane says that John is the author of document X".
Reification is sometimes important in order to deduce a level of confidence or degree
of usefulness for each statement.

http://en.wikipedia.org/wiki/Uniform_Resource_Identifier�
http://en.wikipedia.org/wiki/Uniform_Resource_Identifier�
http://en.wikipedia.org/wiki/Reification_(knowledge_representation)�

In a reified RDF database, each original statement, being a resource, itself, most
likely has at least three additional statements made about it: one to assert that its
subject is some resource, one to assert that its predicate is some resource, and one
to assert that its object is some resource or literal. More statements about the original
statement may also exist, depending on the application's needs.

The body of knowledge modeled by a collection of statements may be subjected to
reification, in which each statement (that is each triple subject-predicate-object
altogether) is assigned a URI and treated as a resource about which additional
statements can be made, as in "Jane says that John is the author of document X".
Reification is sometimes important in order to deduce a level of confidence or degree
of usefulness for each statement.

In a reified RDF database, each original statement, being a resource, itself, most likely
has at least three additional statements made about it: one to assert that its subject is
some resource, one to assert that its predicate is some resource, and one to assert
that its object is some resource or literal. More statements about the original statement
may also exist, depending on the application's needs.

Borrowing from concepts available in logic (and as illustrated in graphical notations
such as conceptual graphs and topic maps), some RDF model implementations
acknowledge that it is sometimes useful to group statements according to different
criteria, called situations, contexts, or scopes, as discussed in articles by RDF
specification co-editor Graham Klyne[9]. For example, a statement can be associated
with a context, named by a URI, in order to assert an "is true in" relationship. As
another example, it is sometimes convenient to group statements by their source,
which can be identified by a URI, such as the URI of a particular RDF/XML document.
Then, when updates are made to the source, corresponding statements can be
changed in the model, as well.

Implementation of scopes does not necessarily require fully reified statements. Some
implementations allow a single scope identifier to be associated with a statement that
has not been assigned a URI, itself. Likewise named graphs in which a set of triples is
named by a URI can represent context without the need to reify the triples

Now that the formats that could be used to represent the documents that are to be
checked in the comparison block have been introduced, it’s time to combine with the
situation of this project to decide which format or model is more suitable.

http://en.wikipedia.org/wiki/Reification_(knowledge_representation)�
http://en.wikipedia.org/wiki/Logic�
http://en.wikipedia.org/wiki/Conceptual_graphs�
http://en.wikipedia.org/wiki/Topic_map�
http://en.wikipedia.org/w/index.php?title=Graham_Klyne&action=edit&redlink=1�

4.3 XML vs RDF

First we compare them form a global overview. There was a clear difference of view
between those who wanted to query documents and those who wanted to extract the
"meaning" in some form and query that. From the syntax view, since most of the RDF
documents use more or less the same constructs as XML, both are almost equal.
However, as has been mentioned, RDF is based upon a graph data model, making it
more convenient for query process.

4.3.1. Simplicity

If the following relationship is to be represented: “The author of the page is Ora”
In RDF it’s just a relation triple
triple(author, page, Ora)

but in XML it could only be represented following the format like
<document>

 <details>

 <uri>href="page"</uri>

 <author>

 <name>Ora</name>

 </author>

 </details>

</document>

It could be seen that although XML is quite general and easy to follow so as to be
widely used, it has to follow the strict syntax format, making it not so concise as RDF
model, which uses triple to identify ”predicate” relations.

4.3.2. Tree and graph structure for relation and query

XML documents could have a number of different representations, to a person
reading then they mean the same thing [8]. To a machine parsing them, they produce
different XML trees. For instance, in the following XML document
<v>

 <x>

 <y> a="ppppp"</y>

 <z>

 <w>qqqqq</w>

 </z>

 </x>

</v>

It’s not so obvious to deduce the structure of it, there’re other XML documents that
could illustrate the same meaning for this example seeing from human aspect,
however, for parsers of the machine, they may provide quite different tree structures,
since there is a mapping from XML documents to semantic graphs. In brief, it is quite
hairy in a way due to the following reasons:
1. The mapping is many to one
2. A schema is needed to know what the mapping is
(The schemas we are talking about for XML at the moment do not include that anyway
and would have to have a whole inference language added)
3. The expression in need for querying something in terms of the XML tree is
necessarily more complicated than the one in need for querying something in terms of
the RDF tree.
For the last point, if it is needed to combine more than one property into a combined
expression, in XML it will be quite difficult to consider due to the complexity of
querying structures.
The complexity of querying the XML tree is because there are in general a large
number of ways in which the XML maps onto the logical tree, and the query you write
has to be independent of the choice of them. So much of the query is an attempt to
basically convert the set of all possible representations of a fact into one statement.

This is just what RDF does. It gives some standard ways of writing statements so that
however it occurs in a document, they produce the same effect in RDF terms. The
same RDF tree results from many XML trees, thus, it could be concluded that it’ll be
more difficult for the parser to analyze the structures of the XML documents due to the
many-to-one mapping relationship. Beyond that, in RDF we could label the
information and items, so that when the parser read it, it could find the assertions
(triples) and distinguish their subjects and objects, so as to just deduce the logical
assertions, thus it would be very convenient to identify the relationships such as
semantics.

On the other hand, RDF is very flexible - it can represent triples in many ways in XML
so as to be able to fit in with particular applications. To illustrate the differences from
XML form, the below example is provided:
<?xml version="1.0"?>

 <Description

 xmlns="http://www.w3.org/TR/WD-rdf-syntax#"

 xmlns:s="http://docs.r.us.com/bibliography-info/"

 about="http://www.w3.org/test/page"

 s:Author ="http://www.w3.org/staff/Ora" />

The "description" RDF element gives the clue to the parser as to how to find the
subjects, objects and verbs in what follows, so that to generate clear structure of the
subject-object relationship for a graph representation. Thus in RDF for the querying
process, the semantic tree could be parsed, which end up providing a set of (possibly
mutually referential) triples and then you can use the ones you want ignoring the ones
you don't understand. While in XML when an XML schema changes, it could typically
introduce new intermediate elements (like "details" in the tree above or "div" is HTML).
These may or may or may not invalidate any query which has been based on the
structure of the document.

4.3.3. Exchange of data

For information, differences in syntax description could be solved by the necessary
data format conversions to change the desired information into a format that the
targeted application could deal with. Of course the more ideal situation is to let all the
information to be described following the same syntax and language, thus the
initiation of XML makes it possible to let different sorts of data structures to be
represented by the same format. XML has become the true representation of data
representation and exchange on the Web and a way to share data between different
applications and machines. The development of XML and its relating technologies has
driven forward the uniform of syntax description in information expression and
exchange, so that more and more application has began to select XML as the syntax
description mode for data, setting, information and service. Nowadays, XML has
become the most ideal way for data representation on the web. One of the special
features that makes XML differs from other mark language is its scalability. The core
of XML is to build the structure that data represent in a standardized way while leave
the definition of detailed marking to the users. This scalability makes XML could
satisfy the needs of data description from various fields and be able to encode any

data that is exchanged between different machines.

But XML is enough?

When we first encounter XML, we might be excited about the representation ability,
scalability and other bright future ahead. But one question comes ahead: how to
realize the exchange process between information or data from two different XML
document? Would it be the case that once we put these documents into XML format,
then it will be ok for the data exchange of the two? XML provides us with a format that
could be read by the application automatically, but it doesn’t provide a way promote to
the level for supporting automatic data exchange, we still need special program to
explain the data contained in XML documents to acquire the parts which the targeted
application could deal with, it’s worth noting that the explanation here is different from
analysis of the XML document, although analysis of the XML documents is necessary
for the whole explanation[10]. XML has several kinds of parsers, but the function of
them is to load and process XML document rather than provide the whole explanation
that contains an illustration of the whole structure. Thus we have to explain the
contents of XML document using specific application program, and it’s obvious that
these programs don’t have the ability to exchange and inter-operate.

However, the above question could be solved by using RDF format as the model
represent the relationship in quite a clear way from the directed graph so that we don’t
need parsers to provide the detailed explanation—it could clearly be seen from the
triples that indicate the subject-predict-object relationship.

For a summary it could be conclude that

XML
1. Is a purely syntactic framework for structured data and documents
2. Is based on an annotated tree data model
3. Defines structure, not semantics
4. XML schema constrains the syntax of conforming XML documents
5. Ad-hoc composition

RDF
1. Uses a specific XML based syntax
2. Is based on a directed labeled graph data model
3. Is a semantic framework (as XML is a syntactic framework)
4. RDF schema emphasizes inference over constraint

5. General composition

For the given project, for the reason of semantic extraction, RDF model is more
suitable for the comparison block, since for the two documents—output of the CEM
and the other generated from the standards, the terminologies could not exactly
match. Thus a number of ontology should be built to analyze the relationships and link
the correspondent terminologies that have the same meaning so as to let the data
exchange process in the comparison block work. However, due to the fact that the
CEM output file is already in the XML format, and XML has already been accepted
and widely used by a number of programming languages. So in the end for the reason
of convenience XML format is chosen as the implementation of comparison block.

5. Ontologies and applications

5.1 Ontology introduction

5.1.1 Original meaning of ontologies

Ontology is the philosophical study of the nature of being, existence or reality in
general, as well as the basic categories of being and their relations. Traditionally
listed as a part of the major branch of philosophy known as metaphysics,
ontology deals with questions concerning what entities exist or can be said to
exist, and how such entities can be grouped, related within a hierarchy, and
subdivided according to similarities and differences[12].
One common approach is to divide the extant entities into groups called
categories. Of course, such lists of categories differ widely from one another,
and it is through the co-ordination of different categorical schemes that
ontology relates to such fields as library science and artificial intelligence. Such
an understanding of ontological categories, however, is merely taxonomic,
classificatory. The categories are, properly speaking, the ways in which a
being can be addressed simply as a being, such as what it is, how it is, how
much it is, where it is, its relatedness to other beings, etc.

5.1.2 Ontologies in computer science

In computer science and information science, ontology is a formal
representation of the knowledge by a set of concepts within a domain and the
relationships between those concepts. It is used to reason about the properties
of that domain, and may be used to describe the domain.
In theory, an ontology is a "formal, explicit specification of a shared
conceptualisation". [13] An ontology provides a shared vocabulary, which can
be used to model a domain — that is, the type of objects and/or concepts that
exist, and their properties and relations.
Ontologies are used in artificial intelligence, the Semantic Web, systems
engineering, software engineering, biomedical informatics, library science,
enterprise bookmarking, and information architecture as a form of knowledge
representation about the world or some part of it. The creation of domain

http://en.wikipedia.org/wiki/Philosophy�
http://en.wikipedia.org/wiki/Being�
http://en.wikipedia.org/wiki/Existence�
http://en.wikipedia.org/wiki/Reality�
http://en.wikipedia.org/wiki/Category_of_being�
http://en.wikipedia.org/wiki/Metaphysics�
http://en.wikipedia.org/wiki/Entities�
http://en.wikipedia.org/wiki/Hierarchy�
http://en.wikipedia.org/wiki/Category_of_being�
http://en.wikipedia.org/wiki/Library_and_information_science�
http://en.wikipedia.org/wiki/Artificial_intelligence�
http://en.wikipedia.org/wiki/Computer_science�
http://en.wikipedia.org/wiki/Information_science�
http://en.wikipedia.org/wiki/Domain_of_discourse�
http://en.wikipedia.org/wiki/Reasoning�
http://en.wikipedia.org/wiki/Artificial_intelligence�
http://en.wikipedia.org/wiki/Semantic_Web�
http://en.wikipedia.org/wiki/Systems_engineering�
http://en.wikipedia.org/wiki/Systems_engineering�
http://en.wikipedia.org/wiki/Software_engineering�
http://en.wikipedia.org/wiki/Biomedical_informatics�
http://en.wikipedia.org/wiki/Library_science�
http://en.wikipedia.org/wiki/Enterprise_bookmarking�
http://en.wikipedia.org/wiki/Information_architecture�
http://en.wikipedia.org/wiki/Knowledge_representation�
http://en.wikipedia.org/wiki/Knowledge_representation�

ontologies is also fundamental to the definition and use of an enterprise
architecture framework.

5.1.3 Component of ontologies

Contemporary ontologies share many structural similarities, regardless of the
language in which they are expressed. [14]As mentioned above, most
ontologies describe individuals (instances), classes (concepts), attributes, and
relations. In this section each of these components is discussed in turn.
Common components of ontologies include:
1. Individuals: instances or objects (the basic or "ground level" objects)
2. Classes: sets, collections, concepts, classes in programming, types of
objects, or kinds of things.
3. Attributes: aspects, properties, features, characteristics, or parameters that
objects (and classes) can have
4. Relations: ways in which classes and individuals can be related to one
another
5. Function terms: complex structures formed from certain relations that can be
used in place of an individual term in a statement
6. Restrictions: formally stated descriptions of what must be true in order for
some assertion to be accepted as input
7. Rules: statements in the form of an if-then (antecedent-consequent)
sentence that describe the logical inferences that can be drawn from an
assertion in a particular form
8. Axioms: assertions (including rules) in a logical form that together comprise
the overall theory that the ontology describes in its domain of application. This
definition differs from that of "axioms" in generative grammar and formal logic.
In those disciplines, axioms include only statements asserted as a priori
knowledge. As used here, "axioms" also include the theory derived from
axiomatic statements.
9. Events: the changing of attributes or relations
Ontologies are commonly encoded using ontology languages. An example of
ontology structure could be presented as below:

http://en.wikipedia.org/wiki/Enterprise_architecture_framework�
http://en.wikipedia.org/wiki/Enterprise_architecture_framework�
http://en.wikipedia.org/wiki/Class_(set_theory)�
http://en.wikipedia.org/wiki/Class_(set_theory)�
http://en.wikipedia.org/wiki/Class_(computer_science)�
http://en.wikipedia.org/wiki/Class_(philosophy)�
http://en.wikipedia.org/wiki/Class_(philosophy)�
http://en.wikipedia.org/wiki/Attribute_(computing)�
http://en.wikipedia.org/wiki/Relation_(mathematics)�
http://en.wikipedia.org/wiki/Logical_form�
http://en.wikipedia.org/wiki/Generative_grammar�
http://en.wikipedia.org/wiki/Formal_logic�
http://en.wikipedia.org/wiki/Event_(philosophy)�
http://en.wikipedia.org/wiki/Ontology_language�

Figure 9 Example of ontology structure

5.1.4 Ontology engineering

Ontology engineering (or ontology building) is a subfield of knowledge
engineering that studies the methods and methodologies for building
ontologies. It studies the ontology development process, the ontology life cycle,
the methods and methodologies for building ontologies, and the tool suites and
languages that support them.
Ontology engineering aims to make explicit the knowledge contained within
software applications, and within enterprises and business procedures for a
particular domain. Ontology engineering offers a direction towards solving the
interoperability problems brought about by semantic obstacles, such as the
obstacles related to the definitions of business terms and software classes.
Ontology engineering is a set of tasks related to the development of ontologies
for a particular domain.

5.2 Ontology language(OWL)

5.2.1 Ontology language

An ontology language is a formal language used to encode the ontology. There
are a number of such languages for ontologies, both proprietary and
standards-based. OWL is a language for making ontological statements,

http://en.wikipedia.org/wiki/Ontology_engineering�
http://en.wikipedia.org/wiki/Knowledge_engineering�
http://en.wikipedia.org/wiki/Knowledge_engineering�
http://en.wikipedia.org/wiki/Ontology_language�
http://en.wikipedia.org/wiki/Formal_language�
http://en.wikipedia.org/wiki/Web_Ontology_Language�

developed as a follow-on from RDF and RDFS, as well as earlier ontology
language projects including OIL, DAML and DAML+OIL. OWL is intended to
be used over the World Wide Web, and all its elements (classes, properties
and individuals) are defined as RDF resources, and identified by URIs.

5.2.2 Status of ontology in the project

In this project, ontologies are mainly built as links in the comparison block. As
has been mentioned, it is the aim to generate the comparison result between
the XML output from the CEM and the document extracted from the desired
standards. Since the terminologies that describing the same concepts might
be different In the two concept, it would be necessary in the part of XML
comparison programme to add some in-built terminologies which could make
the computer recognize that different words are of the same meaning and treat
them as same concept for comparison. Thus, ontologies here are used as a
dictionary for subordinate functions of searching, correspondence and relating,
a graph that illustrates the status of ontologies is presented as below, with the
addition of ontology functions that extracted from both documents, the
comparison and validation block could implement its work without having to
provide specific indications to let the computer know that different
terminologies represent the same concept.

Cause-and
Effect

Text
Standard

Extracted
information

XML
representation
of standards

Ontology

Output
document
(XML)

Comparison and
validation

http://en.wikipedia.org/wiki/Resource_Description_Framework�
http://en.wikipedia.org/wiki/RDFS�
http://en.wikipedia.org/wiki/Ontology_Inference_Layer�
http://en.wikipedia.org/wiki/DARPA_Agent_Markup_Language�
http://en.wikipedia.org/wiki/DAMLplusOIL�
http://en.wikipedia.org/wiki/World_Wide_Web�
http://en.wikipedia.org/wiki/Resource_(Web)�
http://en.wikipedia.org/wiki/Uniform_Resource_Identifier�

Figure 10. Status of ontologies in this project

After identifying the usage of ontologies, it would be the next step to select
implementation languages or application tools. Efficient development tools are
a prerequisite for the wide adoption of a new technology. For instance, visual
web design tools like DreamWeaver have significantly reduced the
development costs of Internet content, and have brought Web technology to
the fingertips of people who are not familiar with the details of HTML. The
concept of the Semantic Web is often regarded as the next “big” technology
leap for the Internet. Now that the Web Ontology Language (OWL) has been
officially standardized, it is the task of tool builders to explore and provide
suitable infrastructures that help make the Semantic Web vision a reality.

5.2.3 OWL and its sub-languages

The Web Ontology Language (OWL) is a family of knowledge representation
languages for authoring ontologies endorsed by the World Wide Web
Consortium. They are characterized by formal semantics and RDF/XML-based
serializations for the Semantic Web. OWL has attracted academic, medical
and commercial interest. OWL has three sublanguages that are: OWL-Lite,
OWL-full, and OWL-DL.
OWL-Lite is the simplest one that is used to illustrate simple class hierarchies
with few constraints. For the OWL-DL, it’s based on the description language
that could accomplish the task of automatic reasoning, consistency checking
and establishment of class hierarchies. The OWL-full is compatible with RDF
schemas and is the most complicated one that could be used when the other
two languages are not sufficient to handle the class hierarchies as well as the
constraints.
 These three languages are layered in a sense that every legal OWL-Lite
ontology is a legal OWL DL ontology, every legal OWL DL ontology is a legal
OWL Full ontology, every valid OWL-Lite conclusion is a valid OWL DL
conclusion, and every valid OWL DL conclusion a valid OWL Full
conclusion.[15] The inverses of these relations generally do not hold. Also,
every OWL ontology is a valid RDF document (i.e., DL expressions are
mapped to triples), but not all RDF documents are valid OWL-Lite or OWL DL
documents. In this project for simplicity and the automatic completion process
the OWL-DL is chosen, also Protégé is used as the application tools while

http://en.wikipedia.org/wiki/Knowledge_representation�
http://en.wikipedia.org/wiki/Ontology_(computer_science)�
http://en.wikipedia.org/wiki/World_Wide_Web_Consortium�
http://en.wikipedia.org/wiki/World_Wide_Web_Consortium�
http://en.wikipedia.org/wiki/Formal_semantics�
http://en.wikipedia.org/wiki/Resource_Description_Framework�
http://en.wikipedia.org/wiki/XML�
http://en.wikipedia.org/wiki/Semantic_Web�

FaCT++ is selected as the semantic reasoning analyzer that is embedded
within Protégé.

5.2.4 OWL-DL with its syntax

As we can see, OWL DL is the description logic SHOIN with support of data
values, data types and data-type properties, i.e., SHOIN(D), but since OWL is
based on RDF(S), the terminology slightly differs. A concept from DL is
referred to as a class in OWL and a role from DL is referred to as a property in
OWL. Also for description of OWL ontology or knowledge base, the DL syntax
can be used. There is an "abstract" LISP-like syntax defined that is easier to
write in ASCII character set (see also the first and the second table below).
Since OWL is syntactically embedded into RDF, all of the RDF serializations
can be used. RDF/XML is the normative syntax and should be used to
exchange information between systems. The OWL DL descriptions, data
ranges, properties, individuals and data values syntax and semantics are
summarized in the first table below, OWL DL axioms and facts are summarized
in the second table below.

http://www.w3.org/TR/owl-semantics/�
http://www.obitko.com/tutorials/ontologies-semantic-web/owl-dl-semantics.html#owl-dl-description�
http://www.obitko.com/tutorials/ontologies-semantic-web/owl-dl-semantics.html#owl-dl-axioms�
http://www.obitko.com/tutorials/ontologies-semantic-web/owl-dl-semantics.html#owl-dl-description�
http://www.obitko.com/tutorials/ontologies-semantic-web/owl-dl-semantics.html#owl-dl-description�
http://www.obitko.com/tutorials/ontologies-semantic-web/owl-dl-semantics.html#owl-dl-description�
http://www.obitko.com/tutorials/ontologies-semantic-web/owl-dl-semantics.html#owl-dl-axioms�
http://www.obitko.com/tutorials/ontologies-semantic-web/owl-dl-semantics.html#owl-dl-axioms�

Table2. OWL-DL descriptions, data ranges, individuals and data values

Table 3. OWL-DL axioms and facts

5.3 Protégé and FaCT++--implementation and reasoning

tools

5.3.1 Protégé and its structures

Protégé is an open platform for ontology modelling and knowledge acquisition.
The OWL Plug-in can be used to edit OWL ontologies, to access description

logic (DL) reasoners, and to acquire instances for semantic mark-up. Protégé
has a community of thousands of users. Although the development of Protégé
has historically been mainly driven by biomedical applications, the system is
domain-independent and has been successfully used for many other
application areas as well. The Protégé integrates OWL syntax and establishes
ontologies using class hierarchy with the support of relations and logic
descriptions of OWL syntax. The following table is the snapshot from Protégé
to illustrate most frequently used syntax with the meanings and specific
examples:

Figure11. Example of Protégé-OWL syntax

Like most of the modelling tools, the architecture of Protégé is separated into
two parts: the “model” and “view” parts. Protégé’s model is the internal
representation mechanism for ontologies and knowledge bases.[16] Protégé’s
view components provide a user interface to display and manipulate the
underlying model. Protégé’s model can represent ontologies consisting of
classes, properties, property characteristics and instances. The default class
of the Protégé base system is the STANDARD CLASS and has properties
such as :NAME and :DIRECT-SUBCLASSES, this structure is quite suitable
for extension, scalability and adoption by other systems.[17]
What users most frequently deal with is the user interface of Protégé’s view
components, in which users could create classes assign properties to the
classes, establish class hierarchies that representing super or sub-class
relationships, make links for different classes that describing the same concept,
and restrict the properties’ facets at certain classes. For each class in the
ontology, the system creates one form with editing components for each
property of the class, The generated forms can be further customized with

Protégé’s form editor, where users can select alternative user interface
widgets for their project. In addition to the collection of standard tabs for editing
classes, properties, forms and instances, a library of other tabs exists that
perform queries, access data repositories, visualize ontologies graphically, and
manage ontology versions [18]. An example illustrating user interface and
class hierarchies built within Protégé is shown as below:

Figure12. Protégé class hierarchy
From the figure it could be found the overall class relationships could be
represented the time users have finished the creation process. On the other
hand, other in-built functionalities such as equivalent class, super-class,
disjoint class and members could provide users convenience to construct the
relationship of the whole system within a single hierarchy or several relating
hierarchies, the below figure shows the sub-functions which could be used to
support main class structure establishment:

Figure13. Protégé subordinate functions

5.3.2 Reasons for choosing Protégé

Now that the application tool has been introduced for its functionalities and
structures, but why Protégé is selected as the ontology establishment tools
and the system should build on its top? Since ontologies play such an
important role in Semantic Web applications, it was straight-forward to take an
existing ontology development environment as a starting point. Some of the
reasons could be listed as the following:
1. Protégé provides a highly scalable database back-end, allowing users to
create ontologies with hundreds of thousands of classes.
2. In Protégé there’re a number of built-in library of plug-ins, which could
directly be used in OWL or adapted by other applications of OWL.
3. Protégé is an open-source application software, this feature will encourage
more and more plug-ins to be developed to provide users with more
convenience.
4. Protégé is backed by quite a considerable number of users and developers,
feedback from those people could provide refinement of this application to
make it more suitable in creating ontologies and implementation of OWL.

5. Protégé currently can be used to load, edit and save ontologies in various
formats, including CLIPS, RDF, XML, UML and relational databases, and the
formats that is used in the comparison block is just in the XML form.

5.3.3 Protégé with OWL plug-in

Next the architecture of Protégé as well as the OWL plug-in model are briefly
introduced. The OWL plug-in provides access to OWL-related services such
as classification, consistency checking, and ontology testing within the Protégé
and extends the Protégé model and its API with classes to represent the OWL
specification, the relationship structure with Protégé could be shown in the
following figure:

Figure14. Protégé with OWL plug-in

After the class hierarchy has been constructed, the next step would be to
analyze the established model and try to represent the entire model in a way
that could be added into the comparison and validation of the XML-format
documents, thus a semantic reasoner is needed and FaCT++ is chosen here
for the analysis and reasoning of the user-constructed model.

5.3.4 FaCT++--analyzing and reasoning

FaCT++ is a new DL reasoner designed as a platform for experimenting with
new tableaux algorithms and optimization techniques. It supports OWL DL and
(partially) OWL 2 and is released under a GNU public license and is available
for download both as a binary file and as source code. To build FaCT++, a C++
compiler and GNU make are both needed. In order to build a DIG version of a
reasoner, the XML parsing library Xerces-C++ is also required. FaCT++
incorporates most of the standard optimization techniques, including those
introduced in the FaCT system, but also employs many novel ones. [19] When
we finish the class hierarchy set-up process and use FaCT++ as reasoner to
classify the class relationships, the following example figure that illustrating
part of the cause-and-effect matrix of this project are reasoning and analyzing
is shown:

Figure15. Class structure after reasoning

From the graph it could be seen that different terminologies are classified to
their super-classes and the process goes on until the main default class “Thing”
is reached, constructing a tree-structure. For both documents that are to be
checked in the comparison block, such a structure of representation could be
established after reasoning. Thus, using the subordinate function of equivalent
classes in the Protégé user interface, ontologies could be set up by indicating
that different leaf elements for the two class hierarchies mean the same
concept. During the comparison process, after the corresponding ontologies
from different documents have been found, the compiler would go through the
tree structure for their super-classes to identify the positions in the CEM,
reducing considerable time and efforts.

6. Verification implementation

6.1 verification process

Now we assume that the raw data has been translated in to a structured form like
RDF or XML, manually or by using expert system, the next step is to verify that if
these two match. In the process of verification, we have to represent the CEM of
interest in a form that is consistent with the document, in this project we choose to
transform them both into XML format before we conduct comparison. For convenient
purpose here only a piece of a XML will be presented as an example:

Figure 16 Standardization of two files in different forms
There are two types of verifying approach:

The user may have a specific rule that need to be certain if it’s in the generated
specification, he will input the name of the rule to the user interface and the result will
be given as “Find” or “Missing”.

The user could also verify the entire specification to see if everything in the
document is included in it. He could take both XML files as inputs and let the
application to traverse through all the nodes to see if there is any discrepancy
between them.
The problem is translated as a form of comparison between two XML files.
Consider two XML files, Compared.xml and Reference.xml. At first the two files
contain exactly the same contents:

<?xml version="1.0"?>
<CAUSEEFFECT>
 <Document>
 <Name>U13-2</Name>
 <Drawing_No/>
 <Revision>A</Revision>
 <Area>
 </Area>
 <Locked>true</Locked>
 <Layout>
 <ID>-1</ID>
 <Name>Default Layout</Name>
 <IsStandardLayout>True</IsStandardLayout>
 </Layout>
 </Document>
</CAUSEEFFECT>
When we conduct comparison between these two file, we get this output:

This means that XMLUnit could identify these two files contain the same content.

6.1.2 Identical elements recognition

Now let’s take a look at the example below:

Similar? True
Identical? True

<?xml version="1.0"?>
<CAUSEEFFECT>
<Document>
<Name>U13-2</Name>
<Drawing_No/>
<Revision>A</Revision>
<Area>
</Area>
<Locked>true</Locked>
<Layout>
<ID>-1</ID>
<Name>Default Layout</Name>
<IsStandardLayout>True</IsStand
ardLayout>
</Layout>
</Document>
</CAUSEEFFECT>

<?xml version="1.0"?>
<CAUSEEFFECT>
<Document>
<Name>U13-2</Name>
<Drawing_No>
</Drawing_No>
<Revision>A</Revision>
<Area>
</Area>
<Locked>true</Locked>
<Layout>
<ID>-1</ID>
<Name>Default Layout</Name>
<IsStandardLayout>True</IsStand
ardLayout>
</Layout>
</Document>
</CAUSEEFFECT>

Reference Compared

Because in XML using start tag and end tag express the same meaning as using “/” at
the end of a single tag if it is an empty element, the XMLUnit could understand the two
forms of expression are actually saying the same thing, so it will give the results:

6.1.3 Comparison between elements in different order

But what if the generated XML display certain elements in different sequence while
this in fact does not influence the integrity of the code? If we make the following
modifications to the code as:

Reference Compared

<?xml version="1.0"?>
<CAUSEEFFECT>
<Document>
<Name>U13-2</Name>
<Drawing_No/>
<Revision>A</Revision>
<Area>
</Area>
<Locked>true</Locked>
<Layout>
<Name>Default Layout</Name>
<ID>-1</ID>
<IsStandardLayout>True</IsStand
ardLayout>
</Layout>
</Document>
</CAUSEEFFECT>

<?xml version="1.0"?>
<CAUSEEFFECT>
<Document>
<Name>U13-2</Name>
<Drawing_No/>
<Revision>A</Revision>
<Area>
</Area>
<Locked>true</Locked>
<Layout>
<ID>-1</ID>
<Name>Default Layout</Name>
<IsStandardLayout>True</IsStand
ardLayout>
</Layout>
</Document>
</CAUSEEFFECT>

Similar? True
Identical? True

The only changes made here is that two elements switched places with each other.
The result of running the program again is:

The program examines the two pieces of code and finds out that there is another
change occurred in the Compared.xml, the positions of ID element and Name element
were interchanged, because of which, the two files are structurally different, so they
are not identical even if they have similar pattern. So the program could locate the
minor difference between two XML files.

6.1.4 Ignore the comments

When documenting the specifications sometimes it is necessary to add comments or
descriptions to the element as an explanation, what will that influence the decision
made by XMLUnit? Take a look at the next example:

Similar? true
Identical? false

Expected sequence of child nodes '0' but was '1' - comparing <ID...> at
/CAUSEEFFECT[1]/Document[1]/Layout[1]/ID[1] to <ID...> at
/CAUSEEFFECT[1]/Document[1]/Layout[1]/ID[1]

Expected sequence of child nodes '1' but was '0' - comparing <Name...> at
/CAUSEEFFECT[1]/Document[1]/Layout[1]/Name[1] to <Name...> at
/CAUSEEFFECT[1]/Document[1]/Layout[1]/Name[1]

<?xml version="1.0"?>
<CAUSEEFFECT>
<Document>
<Name>U13-2</Name><!—the room number-->
<Drawing_No/>
<Revision>A</Revision>
<Area>
</Area>
<Locked>true</Locked>
<Layout>
<ID>-1</ID>
<Name>Default Layout</Name>
<IsStandardLayout>True</IsStandardLayout>
</Layout>
</Document>
</CAUSEEFFECT>

Compared

Reference

The only difference we have here is the comment line, the rest of the code in
Compared.xml is exactly the same as that in Reference.xml. The result of this is:

<?xml version="1.0"?>
<CAUSEEFFECT>
<Document>
<Name>U13-2</Name>
<Drawing_No/>
<Revision>A</Revision>
<Area>
</Area>
<Locked>true</Locked>
<Layout>
<ID>-1</ID>
<Name>Default Layout</Name>
<IsStandardLayout>True</IsStandardLayout>
</Layout>
</Document>
</CAUSEEFFECT>

Similar? false
Identical? false

Expected number of child nodes '8' but was '9' - comparing <Document...> at
/CAUSEEFFECT[1]/Document[1] to <Document...> at
/CAUSEEFFECT[1]/Document[1]

Expected sequence of child nodes '1' but was '2' - comparing <Description...> at
/CAUSEEFFECT[1]/Document[1]/Description[1] to <Description...> at
/CAUSEEFFECT[1]/Document[1]/Description[1]

.

Only the first several parts of the result are shown, that’s more than enough to tell us
that the two files are neither similar nor identical. But if a human expert was
processing this two files, he would think of these two as the same because comments
are just descriptive text which has nothing to do with the function and meaning of the
Code, so it should be considered as the same. To let XMLUnit to understand this, we
could make use of the command:

Then the output become:

This means that the compiler could understand the function of the comment line and
will ignore the “seemingly” extra code if it is a comment.

6.1.5 Ignore the extra space in elements

When building xml document by some computer applications without having to do it
manually, we might get the unexpected difference in the code. For example the xml
element may contain extra spaces:

The compiler will show the error message:

XMLUnit.setIgnoreComments(Boolean.TRUE);

Similar? True
Identical? True

<Name>Default Layout</Name> <Name>Default

Similar? false
Identical? false

Expected text value 'Default Layout' but was 'Default Layout' - comparing
<Name ...>Default Layout</Name> at
/CAUSEEFFECT[1]/Document[1]/Layout[1]/Name[1]/text()[1] to <Name ...>Default
Layout</Name> at /CAUSEEFFECT[1]/Document[1]/Layout[1]/Name[1]/text()[1]

But in reality if the extra space does not affect the meaning of the document,
engineers would have ignored them and consider this content as the same as
Reference document. Then we could set the extra condition to ignore the white space:

The result will be both similar and identical. This is optional constraint depend on the
actual requirements of the document, if white space does affect the meaning of the
content, we could remove this function to get a more strict verification rule.

6.1.6 Identify the missing element

Considering the next scenario:

Compared Reference

During the xml construction process, there may be some unintended omissions in the

 XMLUnit.setIgnoreDiffBetweenTextAndCDATA(Boolean.TRUE);

<?xml version="1.0"?>
<CAUSEEFFECT>
<Document>
<Name>U13-2</Name>
<Drawing_No/>
<Revision>A</Revision>
<Area>
</Area>
<Locked>true</Locked>
<Layout>
<Name>Default Layout</Name>
<IsStandardLayout>True</IsStand
ardLayout>
</Layout>
</Document>
</CAUSEEFFECT>

<?xml version="1.0"?>
<CAUSEEFFECT>
<Document>
<Name>U13-2</Name>
<Drawing_No/>
<Revision>A</Revision>
<Area>
</Area>
<Locked>true</Locked>
<Layout>
<ID>-1</ID>
<IsStandardLayout>True</IsStand
ardLayout>
</Layout>
</Document>
</CAUSEEFFECT>

generated file, take the above xml files as an example:
The name of the <Layout> element has been removed from the Compared file and
the ID of the <Layout>element has been removed from the Reference file, the result
will be:

The result shows that the ID tag was compared with Name tag and of course the
compiler would send an unmatch message, but what if we want the ID and Name tag
both be present in the document? Slight changes could be applied by using the
following method:

The result will still show unmatch messages, but with different reason this time:

Alternatively, we could use assertXMLEqual() method to compare two pieces of XML
files. For example:

Similar? false
Identical? false

Expected element tag name 'Name' but was 'ID' - comparing <Name...> at
/CAUSEEFFECT[1]/Document[1]/Layout[1]/Name[1] to <ID...> at
/CAUSEEFFECT[1]/Document[1]/Layout[1]/ID[1]

Expected text value 'Default Layout' but was '-1' - comparing
<Name ...>Default Layout</Name> at
/CAUSEEFFECT[1]/Document[1]/Layout[1]/Name[1]/text()[1] to
<ID ...>-1</ID> at /CAUSEEFFECT[1]/Document[1]/Layout[1]/ID[1]/text()[1]

XMLUnit.setCompareUnmatched(Boolean.FALSE);

Similar? false
Identical? false

Expected presence of child node 'Name' but was 'null' - comparing <Name...>
at /CAUSEEFFECT[1]/Document[1]/Layout[1]/Name[1] to at null

Expected presence of child node 'null' but was 'ID' - comparing at null to
<ID...> at /CAUSEEFFECT[1]/Document[1]/Layout[1]/ID[1]

Now we’ve seen some basic but useful functions provided by the XMLUnit, it’s quite
skillful in terms of dealing with XML files, especially conducting comparison between
files and it showed a lot of flexibilities that could be customized by engineers
according to specific requirements.

6.2 Limitations of this verification process

There is one more scenario which we need to discuss, when we want to compare a
machine generated XML file with a engineer produced XML file, there must be some
terms that represent the same thing but with different names, this is almost inevitable,
because the machine doesn’t think like the engineer does, it couldn’t understand the
connection between an object with difference expressions, like “the pet that barks at
the neighbors” with “dog”, which would instantly be understood by human that these
two are actually describing the same animal. But if the machine received these two
objects it would identify these two as distinct unless being told otherwise.

In our case, a safety rule could be described differently, for example,The cause and
effect matrix may express the following meaning:
“When detect confirmed fire (2ooN), start off coincident fire LED and visual alarm
platform wide, then start fire damper”.
While the document table states:

Table 4 safety specifications
AFP: activate fire protection.
HVAC: heating, ventilation and air conditioning.

Area/Room Type of
detection

Alarm type Automatic
shut down

Automatic
AFP

HVAC
interface

Firewater
pump room

and
em.generator

room with
diesel engine

Flame
1ooN

CCR

None

None

None

Flame
2ooN

CCR

None

Release
AFP

Close damper
And fans

public void testForEquality() throws Exception {
 String myControlXML = "AAAAAAAAAAA";
 String myTestXML = "BBBBBBBBBBBB";
 assertXMLEqual("Comparing test xml to control xml",
 myControlXML, myTestXML);

CCR: Central computer room

Engineers could understand that the “”alarm type CCR” in the table is correspond to
the “coincident fire LED and visual alarm platform wide” and the “start fire damper” is
correspond to “Release AFP”, so he will not notify this as a mistake or missing
element.
But when machine is coping with this information, it will send warning that “couldn’t
find type of alarm” or lack of description of “Automatic AFP”.

In order for the machines to learn that connection, it is natural to think of coming up a
vocabulary to do the “mapping”. This “vocabulary” will connect the two types of
expression, when the application finds an inconsistency in the two compared files,
then it will look up the vocabulary to see if there is a connection, if the connection
indicates this discrepancy in the name is just a “false positive”, it will ignore the
difference and move on, if there isn’t a connection for the different names then it will
mark this as a discrepancy and send a warning to the user interface.

Building this vocabulary takes a lot of time and it doesn’t seem to have scalability
because every time a new document is about to be processed the engineers have to
build a new vocabulary for the document，so the scalability issue could not be
addressed in this practice.

7. Discussion
In this chapter we will discuss the possibility of automatic information extraction. The
ultimate goal of the research in expert system used for automatic information
extraction is that machines could “understand” the key information from natural
language used by human and arrange them into a form that is readable by computers.
It has some inherent difficulties because of the ambiguity existed in natural language,
to fully understand the context takes a lot of knowledge and capabilities of inference,
how to store these data in the computer in a proper form so as to be able to use them
to eliminate the ambiguity is not easy task. In other words, a word may have multiple
meanings in different context and a single object may have different words used to
express them.

With the help of ontology technology, we could establish formal representation of a
variety of concepts and have a clear view of the relationships among them, so
ontology could be used to establish connections between different object or concept.
In the process of verification of two documents, being able to identify the meaning of
the element is a necessary function.

In this project we simply transform the process of comparing two documents into a
comparison between two XML files, because the data is already stored as XML format
in the database and XML is a common tool in representing data. But the RDF is
known as a better choice than XML when it comes to represent the concept model in
knowledge domain. XML uses the structure of the files to express the relationships,
such as nesting of elements, adjacent elements, attribute of the elements. Apparently
it is not suitable for representing concept model. When data is represented by XML
language, the semantics have to be embedded in the language syntax, thus a large
portion of semantic information could be lost this way.

The verification makes use of XMLUnit, which is suitable for the requirement of the
project. It enables us to verify if a system generated information is consistent with the
data stored in database.

8. Conclusion and future work

8.1 Conclusion

Information and Communication technology have proved its usefulness in the Oil &
Gas industry, especially in respect of control process such as Safety Instrumented
Systems. SIS is a necessary component in the process industry and it serves as a
reliable guardian against hazardous event. As a sub system inside the whole process
system, SIS itself is complex enough for engineers making huge effort to plan in detail
just in order to build it. There are a variety of standards and polices for each process
industry, reading through every one of the documents presents a big burden for the
engineers and that is where the idea of automatic document processing jumped in.

Origo has developed a prototype of Cause and Effect editor and it has to be manually
operated by human to generate Cause and Effect Matrix sheet, we analyzed the
possibility of automatic information extraction and the application of ontology
technology. We also analyzed the applications of XML, RDF and OWL of the semantic
web technology. The pros and cons of choosing XML format and RDF model are
analyzed and the reason why XML is chosen is provided. We find a suitable tool
XMLUnit to implemented the verification process of two XML files, which could be
perfected and further developed to cope with comparison between industry standards.
In addition to that, ontologies are built using application tools of OWL to make the
comparison program work without manual indication of objects that represent the
same concept. Thus we make the conclusion that the verification of the specifications
could be achieved by compare two files in common format, XML and ontology could
be used to establish the mapping between elements. Also the use of natural language
processing could contribute to the effort of making automatic information process.

Future work

We tested the verifying application in the project as a proof of the advantages of
automatic processing technique, but it has a lot of room for improvement, the
following features could be developed in the future to make this application more user
friendly and powerful:
1. User interface with full functional options such as “search through XML file” and

“Check inconsistency between files”.
2. Incorporate the ontology mapping function into that application so that it could

operate in a more intelligent way and avoid “false positive”.
3. Using the default library provided by the ISO, fulfill the scalability attributes of the

ontology-building process, so that automatic matching could be realized without
having to establish ontologies each time for different documents.

The expected expert system will be able to provide automatic information extraction. It
is possible to develop this system by either arranging the texture structure so as to
make it easier for computers to extract information or applying Natural Language
Processing.

Reference
[1] Safety instrumented system: Available from
http://en.wikipedia.org/wiki/Safety_instrumented_system

[2] Safety Requirements Specification Guideline: Available from
http://www.sp.se/sv/index/services/functionalsafety/Documents/Safety%20requireme
nts%20specification%20guideline.pdf

[3] Bill Manaris: 《Natural language processing: A human-computer interaction
perspective>, Advances in Computers, Volume 47，1999》

[4] The development characteristic and discipline position of Natural Language
Processing. Feng Zhiwei

[5] Riloff and Lorenzen, 1999, p.169

[6] Information Extraction: Algorithm and prospects in a Retrieval Context
Marie-Francine Moens

[7] "XML 1.0 Origin and Goals". Available from
http://www.w3.org/TR/REC-xml/#sec-origin-goals
Retrieved July 2009.

[8] Tim Berners-Lee, Why RDF model is different from the XML model ,An attempt to
explain the difference between the XML and RDF models; Available from
www.w3.org/DesignIssues/RDF-XML

[9] RDF semantics; Available from http://www.w3.org/TR/rdf-mt/

[10] Jingtao Zhou, Mingwei Wang, XML+RDF-- Realization of description of web-data
based on semantics

[11] Graham Klyne, Semantic Web and RDF; Available from
http://www.ninebynine.org/Presentations/20040505-KelvinInsitute.pdf

[12] Ontology in philosophy [cited 13th May]; Available from
http://en.wikipedia.org/wiki/Ontology

[13] Ontology in computer science [cited 14th May]; Available from
http://en.wikipedia.org/wiki/Ontology_(information_science)

[14] OWL Web Ontology Language Reference W3C Recommendation 10 February

http://en.wikipedia.org/wiki/Safety_instrumented_system�
http://www.sp.se/sv/index/services/functionalsafety/Documents/Safety%20requirements%20specification%20guideline.pdf�
http://www.sp.se/sv/index/services/functionalsafety/Documents/Safety%20requirements%20specification%20guideline.pdf�
http://www.w3.org/TR/REC-xml/#sec-origin-goals�
http://www.w3.org/DesignIssues/RDF-XML�
http://www.w3.org/TR/rdf-mt/�
http://www.ninebynine.org/Presentations/20040505-KelvinInsitute.pdf�
http://en.wikipedia.org/wiki/Ontology�
http://en.wikipedia.org/wiki/Ontology_(information_science)�

2004 [cited 1st. April]; Available from: http://www.w3.org/TR/owl-ref/

[15] Web Ontology Language OWL [cited 22nd April]; Available from
http://www.obitko.com/tutorials/ontologies-semantic-web/web-ontology-language-owl.
html

[16] Holger Knublauch, Ray W. Fergerson, Natalya F. Noy and Mark A. Musen, The
Protégé OWL Plugin: An Open Development Environment for Semantic Web
Applications

[17] N. Noy, M. Sintek, S. Decker, M. Crub´ezy, R. Fergerson, and M. Musen. Creating
Semantic Web contents with Prot´eg´e-2000. IEEE Intelligent Systems, 2(16):60–71,
2001.

[18] I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF to
OWL: The making of a web ontology language. Journal of Web Semantics, 1(1),
2003.

[19] Dmitry Tsarkov and Ian Horrocks, FaCT++ Description Logic Reasoner: System
Description. In Proc. of IJCAI 2005, 2005.

http://www.w3.org/TR/owl-ref/�
http://www.obitko.com/tutorials/ontologies-semantic-web/web-ontology-language-owl.html�
http://www.obitko.com/tutorials/ontologies-semantic-web/web-ontology-language-owl.html�

	Abstract
	Preface
	Table of contents
	List of figures
	List of tables
	Introduction
	1.1 Background
	1.2 First glance at Expert system
	1.4 Report outline

	2. Problem description
	2.1 Problem statement
	2.2 problem delimitations:
	2.2.1 Safety Instrumented system
	2.2.2 Introduction of Expert system
	2.2.2.1 Comparison between Programs and Expert systems:
	2.2.2.2 Advantages of expert system:
	2.2.2.3 Importance of the research on Expert system

	2.2.3 Automatic Information extraction
	2.3 Use Cases and System Analysis
	2.3.1 Use Case
	2.4.2 System Structure and components

	3. Natural language processing
	Information Extraction
	3.2 Example of IE
	3.3 Methods of IE
	XML and Information Extraction
	Limitations of Information extraction system

	4. Standardizing format
	4.1 XML
	4.2 RDF
	4.3 XML vs RDF
	4.3.1. Simplicity
	4.3.2. Tree and graph structure for relation and query
	4.3.3. Exchange of data

	5. Ontologies and applications
	5.1 Ontology introduction
	5.1.1 Original meaning of ontologies
	5.1.2 Ontologies in computer science
	5.1.3 Component of ontologies
	5.1.4 Ontology engineering

	5.2 Ontology language(OWL)
	5.2.1 Ontology language
	5.2.2 Status of ontology in the project
	5.2.3 OWL and its sub-languages
	5.2.4 OWL-DL with its syntax

	5.3 Protégé and FaCT++--implementation and reasoning tools
	5.3.1 Protégé and its structures
	5.3.2 Reasons for choosing Protégé
	5.3.3 Protégé with OWL plug-in
	5.3.4 FaCT++--analyzing and reasoning

	6. Verification implementation
	6.1 verification process
	6.1.2 Identical elements recognition
	6.1.3 Comparison between elements in different order
	6.1.4 Ignore the comments
	6.1.5 Ignore the extra space in elements
	6.1.6 Identify the missing element

	6.2 Limitations of this verification process

	7. Discussion
	8. Conclusion and future work
	8.1 Conclusion
	Future work

	Reference

