
Rush attack AI in ORTS

1

Abstract:

What will you fell when play with an unchangeable AI in RTS game? Of cause, it is
boring. You can beat them easily and that’s no fun. In this research, we will try to
design an AI with learning-ability and return the fun to players. We firstly abstract a
simple AI mode, and then implement a suitable learning method . Due to some
developing problems, we simulate the system (ORTS). Finally, we establish a new
learning system for RTS AI. It’s an advanced point system based on the conception of
the evaluation system in commercial RTS game . Decision making processes could
depend on the points of each unit. Point is calculated by unit information, current
game states and “experience” and. The increase “experiences” lead the value to a
precise number. These changes would affect some process and up to the whole game.

Rush attack AI in ORTS

2

Table of contents

Abstract: ..1

1. Introduction ..4
1.1 Outline 5

2. Background and relevant literature7
2.1 RTS game 7

2.1.1 Units. 8

2.1.2 Technology tree 9

2.1.3 Terrain definition. 10

2.2 ORTS 11

2.3 AI in RTS. 12

2.4 Relevant learning theories 14

2.4.1 Learning automaton [7] 14

2.4.2 Decision tree 17

2.5 Other related conceptions 19

3. Problem description and analysis21
3.1 Sub problem................................ 21

3.2 Simple solution to sub problems 22

3.2.1 Type of RTS game [12] 22

3.2.2 ORTS develop environment 24

3.2.3 Rush-attack. 26

3.2.4 Learning method 28

3.3 Requirement specification 28

3.3.1 Experiment goal 28

3.3.2 Game Specifications 28

3.3.3 Strategy specification................................ 30

3.3.4 Learning specification 30

4. Design ..31
4.1 AI blueprint 31

4.1.1 Three-layer architecture 31

4.1.2 Our design................................ 32

4.2 Learning theory 37

4.2.1 Main learning method. 38

4.2.2 Decision making process. 41

4.2.3 Sum up 46

4.3 working with ORTS 47

4.3.1 Problem 1: lower FPS 47

4.3.2 Problem 2: move continuity 48

Rush attack AI in ORTS

3

4.3.3 Problem 3: building 49

5. Implementation ..50
5.1 System overview................................ 50

5.1.1 Overview 50

5.1.2 Map in three-layer architecture 51

5.2 Implementation of each class 52

5.2.1 Worker 52

5.2.2 A_object................................ 53

5.2.3 B_object................................ 54

5.2.4 Gui 55

5.2.5 AIcore. 56

6. Testing...59
6.1 Correctness 59

6.2 Efficient 61

6.3 Reactivity................................ 63

7. Discussion ..65

8. Conclusion...67

REFERENCES ...68

APPENDIX ...69
A1 SEARCH TABLE 69

A2 CODE RESOURCE................................ 70

Rush attack AI in ORTS

4

1. Introduction

Commercial computer games is an important parts of entertainment industry, it is very
popular both in young and old people. As we know there are many kinds of games.
Simulations based game is the most important one; even it is used as a critical aspect
of specialist training, like pilot. By the highly development of personal computers,
this kinds of games became very popular. These games always have an environment
simulates the real time world. Players are able to control the objects or units in this
world. It brings you a real sense while playing. In order to enhance the sense and
reactivity of the world, a strong demand of real-time AI this is able to solve real-world
decision tanks correctly and quickly. In our research, we concern one of simulation
based game: RTS game. We are doing an AI research based on these games.

RTS is short for real time strategy. RTS game simulates a military section. There are
some cross-sectional games. Such as million -seller Starcraft and Warcraft produced by
Blizzard. In general, several players struggle in a resource scat tered map. Player
commands the game units to developing economy, climbing technology, crafting new
troop. The aim is crafting a powerful troop and guiding them into battle. Afterwards,
destroy you opponents’ base and troop.

RTS game already developed for over 10 years. There are many good products. In
early time, we have command and conquer(C&C) and red alertness. Nowadays,
Starcraft, Warcraft are well known in world wide. RTS game is randomly, real time,
and unpredictable. Hence, i t brings high competition and intensity attention to players ,
especially when you play with a human player.

However, many players are aware of the AI is so weak and changeless. Why the AI
develops didn’t follow game step like the relevant arena such as classic board game.
There are some reasons:

a) Firstly, the RTS game world is really complex . It contains various objects, a huge
number of features, partial visible information, micro actions, and real -time decisions.
In contrast, current RTS game AI players performance in a n opposite direction. Its
turn based, perfect information, most action have a predict sequences. The most
important is decision making based on a stable manner.

b) Commercial RTS game doesn’t open its source for commercial reasons. Also, in
order to make the graphics of the game more realistic, most time are spend. It means
only a few time is cost in AI research. In addition, lack of resource restrains the third
party and fans to develop AI.

c) Most people are interested in human competition. We have a lot competition for
humans, such as WCG, ESWC, but lack of AI competition . It decreases the

Rush attack AI in ORTS

5

motivation of those people that are able to develop AI. [1]

We‘d like to introduce an open source environment: ORTS. It designed for people
who are interested in AI research. Also it holds AI competition every year. Our
research is based on this environment. We start at the weakness point of currently AI
which is the learning ability. In general, the predicted sequence can ’t handle the
situation that would occur in complex RTS world. In this case, a learning ability is a
great enhance for AI. It helps AI to learn from the world and change some old fashion
and mechanism. However, we can’t suppose the AI would do perfectly; it still gives
AI more opportunity to make the right decision and win the game. So, we would
investigate the learning ability in RTS AI and try to find a suitable one.

In general plan, we divide research process into two steps. At the first, we analyses the
standard game information in ORTS. Afterwards, we design our AI package with
rush-attack strategy. Our experience of playing RTS game is a great enhance in
package design. Then we could investigate learning methods based on it. As the
research going, we have deeper understand of RTS game. As a player, we only got
unperfected information and unstable game states. It’s really hard to find a decision
sequences with universal power. Also it is impossible to presents all possible decision
sequences. Cause it would be so huge and infinite. Hence, we decide to design a new
method. We notice that the evaluation system in commercial games always present the
winner with higher point. In same sense, the point gives some clue of the game
process. Based on this inspiration, we design an advanced point system. It gives a
point to each game unit. AI tries to make decisions to maximal the points . The higher
points AI get the higher probability to win. The point is calculated by units’
information, current game states and “experience”. Experience is a kind of feature that
can influence the game in an indirect manner, such as the lost attack power problem.
AI learns the “experience” from game to game. It makes the point more precise and
game process would change due to the update of “experience”. Our implementation
uses the lost attack power as the only feature. It gives stronger evidence to the point
system.

1.1 Outline

The first chapter of this paper gives an introduction of this AI research project,
including some relevant reasons. Then chapter 2 presents background and relevant
literatures such as the RTS game, working environment : ORTS, and two learning
methods. Afterwards, we re-describe our projects and divide it into four sub problems.
The feasible solutions are simply described in the following. At the end of chapter 3,
requirement specification is given. In chapter 4, we follow the specifica tion to
presents our design in detail. It would divided into three parts, the overview of the AI
package, learning theory and the problems we me t while implement our design in
ORTS. Those insoluble problems described in the end part of chapter 4 lead us to

Rush attack AI in ORTS

6

simulate ORTS environment and implement our design in it . Chapter 5 presents the
detail of implementation, including an overview and function details of each class. As
always, testing is right behind the implementation in chapter 6. It would test our
design in three aspects: correctness, validity and reactivity. Chapter 7 discusses the
reasons why we investigate our own learning method instead of use the previous ones.
We take the methods described in background as samples. Finally, we come to the
conclusion part. It summarizes our work, and presents our design in a nice format.
The end part of this paper is references and appendix.

Rush attack AI in ORTS

7

2. Background and relevant literature

RTS AI research covers a large scope. Before the research, we view a large number of
related literatures. First of all, we give a well definition of RTS games. Then, a short
description of ORTS presents the research environment. The following section defines
the AI, and describes some exist AI packages , including the previous AI research
conceptions and methods. The last section is a description of previous learning
theories. We mention the potential theories that may useful in our research.

2.1 RTS game

RTS is short for real-time strategy. It is an important type of popular game nowadays.
It simulates the considerations and circumstances of operational warfare and military
tactics. [2] Players struggle in a predicted map, collecting resource, crafting units,
climb technology tree, and so on. It ’s not turn based; player’s actions and commands
are independently of other player s. [3]

RTS games developing over 10 years. There are many good products. We will use one
of them to describe the generally game logic of RTS game. We choose the most
famous game which prevails 10 years. Its names “Starcraft” produced by Blizzard
entertainment.

As most RTS games, player starts with a control center and several basic units that
used to collection resource. The player is given a top-down perspective of the
battlefield. Around control center, the map is invisible. Player need explore the
environment himself. There is an abstract action list for each unit, which presents its
main function. Player can control them with technique of clicking and drawing. Then
player controls these units to build new buildings and climb technology tree to enable
units that is not able to craft or build. Such as, player wants to craft a tank, then player
needs to have barracks first, then it enables academy. It requires academy to building
factory. Tank is crafted in factories only if factory get its attachment: machine shop.
These kinds of restrains in building or crafting draw the outline of technology tree.
We would like to presents a partial tree in follow section. Players repeat its actions,
like crafting, building to initial his troop. The player which lost all buildings loses the
game.

For more detail, we present some important features of Starcraft. It helps to
understand how RTS game works. Of cause, features are different from game to game.

Rush attack AI in ORTS

8

2.1.1 Units.

In general, we have two kinds of units in RTS game. Units as basic workers can move
around the map, doing some specified work, such as collectin g resources, attacking
creeps and opponent troop. It called moveable units. The second kinds of units , it is
buildings. They can’t move. They have function as factories and academy, crafting
moveable units, upgrade technology. However, in most satiation buildings can’t move,
there are exceptions too. For instance, Terran barracks can lift up and move from
current location.

a) Moveable units.

These units play a main rule of RTS game. They accomplish most works in the game,
collecting resource, attacking opponent, and scouting over the map. Beside basic
movement function, they could attack, patrol, stop, and h old. In addition, it may have
extra functions due to different units. For instance, workers have collect resource,
repair, and building. Tanks have an anchoring function. All this function presents as a
blue print. F1 presents a sample of blue print; it’s a terran worker in Starcraft

Fig1 blueprint sample [4]

Look deep in this kind of units, we take unit tank in Starcraft as a n example to view
detail features.

Tank

Mode: Normal Anchoring.

Hit Box Large / 31*31 --------
Supply 2 --------
Cost(crystal/gas) 150/100 --------
Energy 0 --------
Building Time 50 --------
Armor 1(+1 upgrade) --------
Hit Point 150 150

Rush attack AI in ORTS

9

Attack Power(ground/air) 30+3/0 70+5/0
Attack Type E ES
Splash Damage 0 Radius=10/25/40
Attack Cool Down 37 75
Attack Range 7 12
Sight 10 10
Move speed 1.8 0

Tab1 feature of Tank in Starcraft. [4]

In this table, the information is unperfected. But still it presents the most important
features. In addition, we should notice armor type and attack ty pe. There is always a
restrained relation between these two features. Besides the normal attack power, a
specified attack may reduce or increase its damage due to the target’s armor type. In
Starcraft, it works in another way, armor type is equal to hit box. Attack type E has
additional damage to large Hit Box, and only 50% damage to small one.

b) Buildings.

Buildings accomplish the crafting and upgrade technology. Some of them simulate the
contravallation. Also the technology tree present as a building requirement of
buildings. (More details see 2.1.2). Normally, the blue print of buildings only includ es
the units that can be craft and technology upgrade options. In order to make it clear
for players, Starcraft asunder them.

2.1.2 Technology tree

It is an important conception in RTS game. It is an abstract hierarchical visual
representation of the possible paths of research that a player can take. [5] In a simple
words, at the beginning of a RTS session, player only have a few options to building
and craft. Player starts at root of the tree. After player finishes a specified research, it
opens more branches. Player gets more options to craft or build. Analysis of a tech
tree can lead players to memorize and use specific build orders . Actually, how to and
when climb the technology tree in RTS. It is a real challenge for both players and AI.

Fig 2 shows the technology tree for Terran race in Starcraft. It presents the
relationship of buildings. You can easily find the requirement of each buildings and its

attachment. For instance, the airport requires factory; to building factories, it needs a exist barrack.

In addition, moveable units have same kind of technology tree.

Rush attack AI in ORTS

10

Fig 2 Technology tree of terran race in Starcraft [4]

2.1.3 Terrain definition.

Beside the features we presents abo ve, RTS game has features to define the terrain information,

such as trees, highland, lowlands, rivers and pools. They simulate the real world terrain. In the

earlier games, this kind of features is used to making the terrain diversiform. They don’t affect the

battles. Later, game developers make them genuine. They could affect the sight of game units. For

example, a unit located at the edge of high land, it may have a unit in lowland. But the units in the

lowlands can see it. Even, they can affect the atta ck power of units. In Starcraft, attacking units on

highland from lower area, it has 50% miss chance in attack.

Rush attack AI in ORTS

11

2.2 ORTS

As we mention in chapter 1, commercial RTS game close its resource code.
Researching based on those games is inconvenient. We need an open source
environments for our research. ORTS is the right one.

ORTS is short for open real time strategy. It is an open environment for RTS designers
and funs. “It is a programming environment for studying real -time AI problems such
as path finding, dealing with imperfect information, scheduling, and plannin g in the
domain of RTS games”.[2]

It provides a standard RTS game, contains everything that you can find in commercial
ones. Also, you can use blueprint files to define you own game. The whole system is
implemented using C++. ORTS use C/S mode instead of peer to peer mode. Generally,
a server simulates game, and clients receive current game view from it. AI design in
ORTS is free; there is low level behavior. Client is totally controlled by designed AI.
Developers can investigate partial part of the game AI, like path finding; also they
could stand on a high level to design the whole AI using some exist library. Our
research belongs to the second one. Tab 2 gives an overview of ORTS
characteristics.

ORTS characteristics

License Free software (GPL)
Topology Client/Server, server simulates game, sends the game view to

Client. Fair game.
Communication
Protocol

Open.

Game complexity
and specification.

Users can define their own games using blueprint (.bp) file,
when game starts, Server reads the game and world description
from .bp file.

GUI It provides both 2D and 3D viewer.
Unit control Parallel, free define.
AI AI is local to each client.
Remote AI Design you AI in client.
Tab 2 ORTS characteristics [2]

More details see ORTS Homepage

http://www.cs.ualberta.ca/~mburo/orts/#Overview

http://www.cs.ualberta.ca/~mburo/orts/#Overview

Rush attack AI in ORTS

12

2.3 AI in RTS.

AI is the essence of intelligence that controls intelligent agent, where intelligent agent
is a system that perceives its environment and take actions to maximize the benefit to
the certain goal. [6]

In RTS, AI can divide into two layers. At first, AI controls and optimal basic behavior.
For Instance, path finding, collect resource. It is a low level AI affects single unit. The
second layer, AI works in macroscopically, it “thinks” the strategy in general. AI
implements scheduling, planning and making decision to take the right and suitable
actions, Such as when to craft units, when you upgrade technology and so on.
Furthermore, some exist AI packages have temporal reasoning functions . F3 presents
more detail of this two layer conception.

Fig 3 Detail of two layer conception

In the following, we analyze exist commercial RTS game logic and find AI mode
hiding in it. As a professional Starcraft (SC for short) player, we will explain the AI
conception based on the game SC. First of all, some kinds of resources scatter in the

Strategy in general

Single units

Path-finding

Move

Buildings

Movable units
Attack

Create units

Technology

Develop

Build and mend

Decision

making

Planning Scheduling

Temporal

reasoning

Rush attack AI in ORTS

13

map. They should be collected for future using. Such as technology developer,
buildings, units craft. In SC, we have crystal and gas. AI should have a strategy to
discover them. As we develop our economy in real world, player needs balance the
number of work and the number of resource point. In addition, there is a balance
between develop economy and develop technology . Secondly, there is always a
conception that different units may have extra damage to one speci fied type of units.
In this case, we need to scout the set up of opponent troops. So our crafting gains
more pertinence. It is impossible to find a setup of troop that is invincibility. A bad set
up will lead player to lose. Hence, scouting is a key to win. At last, as a simulation of
military tactic, RTS game is full of conflicts. These may occur any time during the
game. Consequently, AI has a strategy of control its troop. This package named battle
control. Even you have more powerful troop and more resource and other
predominance, a bad control in a key battle , you will lose the whole game.

Sum up, we abstract an AI mode. It is a mode in high level, the strategy in general
level. Fig 4 presents its relationship among those packages.

Fig 4 AI mode

There are 4 packages: scouting, resource collection, technology and craft and battle
control. In the following part, we would present some basic description of each
package.

Scouting package implement the observing function. It defines a strategy, which let
AI player explore the environment in suitable time and maximize the information. The
main aim is find opponent control center, and scout their developing process and troop
set up. Because there is war fog1 around the map, scouting is processing all the time.

1, War fog: it is a conception in RTS game. Player explored an unknown place; after the units leave, fog comes.

Then we can saw the terran but only terran. Unit action is hided, if no friend unit located there. We call this fog for

hiding is war fog.

AI mode

Resource collection

Scouting

Technology and

craft units

Battle control

Game states

Rush attack AI in ORTS

14

Resource collection defines a serial of action to finish basic resource collection.
Beside the basic functions, it contains a strategy to balance the economy and crafting.
Including, when to build more control center and more works.

Technology and craft units, this package implement the upgrade process and crafting
process. It decides when and what to cra fting, and upgrade. Decisions making is based
on the game state. It works with scouting package.

Battle control, It defines the commands while in conflicts, including movements,
attack sequence. In F4, there is a dashed collect to scouting. Scouting effect battle
control indirectly, it only decide when and where to fight.

2.4 Relevant learning theories

Most AI packages in commercial games are lack of planning, and learning. It is the
reason that why current human player are much better then AI. Actually, In AI
research and other relevant area, learning automaton is highly investigated. Due to the
special environment in RTS games, we need to choose a suitable method. In this
section, we introduce some methods, that may used and discuss in our research.

Before introduce these methods, we presents the definition of learning in computer
world. Learning defined as any relatively permanent change in behavior resulting
from past experience, and a learning system is characterized by its ability to improve
its behavior with time, in some sense tending towards an ultimate goal. [7] For
example, consider a mode that a finite number to actions should be done to reach a
certain goal. In the beginning of this system, we don’t know the best sequence of
these actions. It takes actions in a random manner, for each action, system response in
a binary manner indicate whether the selected action is good or bad. System iterates
this manner; obtain a final evaluation of a sequence. Under these circumstances
system should plan a choice of a sequence of actions and process the information so
that it learns the best sequence.

After definition of learning, we start to introduce some learning methods. In addition,
some related conceptions are presented. These conceptions may not direc tly used to
solve our problems. But it works like a mirror to let your know which is special in our
design. In addition, you could have some basic ideas while we discuss the reason why
our design is more suitable then others.

2.4.1 Learning automaton [7]

Learning automaton is an abstract name of those learning methods. It presents the
normal definitions in this learning area, including conceptions and normal behaviors.

Rush attack AI in ORTS

15

It contains three main parts. At first part, we introduce stochastic automaton; secondly,
we describe the based environment of learning automaton; at last we give a prospect
of processing in learning automaton.

a) Stochastic automaton

In stochastic automaton, it defines a sextuple{x, Φ, α, p, A, G}.

x Input set (0-1).
Φ Internal states
α Output, or chose actions
p Probability vector governs the choice of

state of at each stage
A A is algorithm of update p (n+1) from p

(n). (reinforcement scheme, see 2.4.3)
G An output function φ->α.

Tab 3 sextuple of stochastic automaton.

Fig 5 Stochastic automaton

Take a student-teacher pair for example; student answers teacher’s questions in a
random manner. Due to student answer, teacher responses in a binary manner indicate
whether the answer is good or not. X denotes the response of the teacher. Φ indicates
the teacher’s state. Because of current states and response of teacher, student answers
a certain answer. The certain answer is decided by p. now it’s clear to see function G.
in general stochastic automaton define a manners to choose the next ac tion and
decision due to the past information.

b) Environment

In this case, environment is unknown and unpredictable. We only interest in the
environment with a random response characteristics in this problem consider (shown
in Fig 6). An actions influence the environment as an input. Response due to the
actions is output. Response in a binary manner, it belongs to a set x from 0 to 1. Zero
is a nonpenalty response or a reword, one is penalty response. Ci denotes the
probability of penalty depends on the in put. Environment is stationary if Ci do esn’t
depend on n. otherwise, it’s nonstationary.

Stochastic
automaton

INPUT Actions (output)

X ∈{0，

1}
α∈ {α1 , α2, α 3,…αn}

Rush attack AI in ORTS

16

Fig 6 Environment

c) Learning automaton.

Connecting automaton with the certain environment, the action of automaton is an
input to environment. The response of t he environment sends to automaton. In these
turns, responses influence the updating of the probability of actions. In a initial view,
response and probability vector p (n) both are random.(connection shows in F7)

Fig 7 Learning automaton

“Learning automaton is a stochastic automaton that operates in a random environment
and updates its action probabilities in accordance with the inputs received from
environment so as to improve its performance in sp ecified sense”[7]. A system may
have some learning automatons. They work together to reach a certain goal, a final
response from environment. System analyses the response and using a recursion
method to update p(n) in each automaton.

Mode of learning automaton can be divided based on the response types of
environment. The first one is called P-model, environment response in binary manner.
The input set only have {0, 1}. Otherwise, it’s a Q-model, which input set is a finite
collection of distinct symbols. These modes appear appropriate in specified situations.

ENVIRONMENT
INPUT (action)

α∈ {α1 , α2,…αn}

OUTPUT (response)

X ∈{0，1}

{c1, c2, c3….cr}

X ∈{0，1}

INPUT

{c1, c2, c3….cr}

OUTPUT (response)INPUT (action)

α∈ {α1, α2…αn}

X ∈{0，

1}

ACTION

ENVIRONMENT

STOCHASTIC
AUTOMATONα∈{α1 , α2, α 3…αn}

Rush attack AI in ORTS

17

2.4.2 Decision tree

In machine learning area, a decision tree is a predictive model. It maps all possible
way from observations of system. Deferent branches represent variety of decisions.
It starts from a root, a serial of decisions lead the system goes through branches to
reach a final leaf. It uses a kind of choosing manner to fill of decision tree. Analysis
this tree, an optimal sequence of decision is learned from it. F5 presents an example of
decision tree with some following comments.

Fig 8 Example of decision tree [8]

It is a decision tree to decide whether develop a new product or improve one. It starts
with a root, a decision is branch. Try to draw the possible decisions to full of decision
tree. The original tree is show without values. Works in this tree manner would be
done and the possible outcomes are gained. In initial states, the value of tree and even
the branches are not uncertain, you need iterate works to full of it.

Once, we have worked out the value of these outcomes, and th e probabilities of the
uncertainly response. It starts to calculate the value to helping decision making. Take

Rush attack AI in ORTS

18

values in F8 as an example. The branch “thorough product” gets a value of $420,400.
F9 shows how to calculate and the tree after calculated.

Fig 9 Decision tree after calculated[8]

By applying this technology, we easily research a result that the best decision is “new
product”. The processing of this tree can be thinking as a kind of learning. The
uncertain information is learned from its environment and decision making finally
depends on these information. In some situation the value of the nodes may changes
from time to time, so values are updated during this period. Always, it choose s the
current best decision.

Decision tree have some advantage s. It’s a graphic represents decision alternatives,
possible outcomes and chance events schematically. It’s clear and intuitionistic.
Second, it is efficient; you can quickly map a complex decision problem in such a tree
very clearly. Also it is convenient to modify the tree while new information becomes
available. [11]

Rush attack AI in ORTS

19

2.5 Other related conceptions

In this section, we present other conceptions used in this AI research.

a) FSM

Finite State Machine, it is a basic foundation machine learning and AI. In Wiki pedia,
FSM defined as a model of behavior composed of a finite number of states, transitions
between those states, and actions. [9] For modern computers, we can consider it as an
exceedingly complicated machine. In order to understand the essential nature we skip
all the complexity and consider the simplest machine mode. It’s the original FSM.
[10]

A finite state machine consists of the following:

(1) Set I called the input alphabet;

(2) Set S whose elements are called states;

(3) Function T: S Χ I→ S called the transition function;

(4) A particular element, s0 ∈S called the initial state;

The functioning of the machine is as follows:

The machine starts in the initial state s0. The input is a string of characters from the
input Alphabet which are read one at a time (from the left). At each stage the machine

the machine moves to state T(s, c) and awaits the next input character. The process
continues in this way until all the input characters have been processed. [8]

For instance, we can input set {1, 2} and four states A, B, C, D. Take A as the initial
states. Output is based on the input and currently state, the set of output is {0, 1}. A
figure presents below.

Rush attack AI in ORTS

20

Fig 10 Sample of FSM

Soft agent can be considered as a FSM too. It observes the environment and collects
the information from environment. It takes information as an input, due to the input it
makes an action (transaction) then change t o another states. Then Re-roll this manner.

A B

C D

2

1

1
2

1

2

1

2

Rush attack AI in ORTS

21

3. Problem description and analysis

In original project description, the problem is designing a rush-attack AI mode in
ORTS which has some learning ability in sense. First of all, it’s an AI mode for RTS
games. As we mentioned in section 2.3, it should satisfy the specified RTS game due
to the game features are quite different from game to game. Secondly, ORTS is the
design environment. For the characteristics described in section 2.2, ORTS have much
more convenient for RTS AI researchers. Before the “AI mode” there is a modifier:
rush-attack, which denotes the main strategy and goal in this AI. At last, this AI
should implement the learning ability. This is the most important part. It requires the
AI automatically change its decision making process depends on the responses of the
game result or other features.

In section 3.1, we describe the sub problems in detail following the presentation above.
Hypothesis and feasibility analysis come foll ow. We would change and drop some
undoable part, and redefine our precise research description. At last, it’s a short
presentation of except outcome.

3.1 Sub problem

Sub problem 1: This is an AI research in RTS game. Due to the features are different,
the AI will be different from game to game. What kind of RTS games is used in our
research? Although, in the develop environment, there is a standard game type. Still
we need to find the key feature of this game. A short analysis of the game type should
be done before we start research. It gives guidance to our project.

Sub problem 2: In the main description, ORTS specify the design environment. It is
open source development for RTS AI researcher. Furthermore, ORTS have a different
architecture for RTS games. Unlike the normal peer to peer mode, it uses a
client/server mode to implement the real fair game. In this case, how does ORTS work
in this architecture? For more details, how ORTS implement RTS games? What does
it provide to AI researcher?

Sub problem 3: what modifier “rush attack” means, and what kind of AI can be
considered as a rush-attack AI. In literal aspect, rush-attack means attack your
opponent as fast as you can. It is a complex definition. We don’t suppose to develop
under this definition. In the aspect of RTS player, they plan of how to do a rush-attack?
Players may develop economy first, or crafting troops as soon as possible, also they
may choose a strategy between. This problem seems easy, players can change their
idea based on the game states , then defeat his opponent quickly. C ould an AI deal with
this changes as human player. It is hard to answer; we must consider a way to redefine
the conception in order to make it simple and easy to implement.

Rush attack AI in ORTS

22

Sub problem 4: As a human player, we can easily learning from the past game
experiments and improve our playing skills. As an AI, how and what to learn? In
another words what kinds of learning method is th e most suitable for RTS AI. We
would like to implements some previous methods. Also, based on a chosen method,
what kinds of feature are useful? The decision making processes, generally strategy or
some other things that can influence the game. In addition, for single researcher, I
would like to simplify the problem so that I can handle.

3.2 Simple solution to sub problems

We give simple solution and short invest igate to each sub problem and feasibility
analysis follows each hypothesis in this section.

3.2.1 Type of RTS game [12]

The type of RTS game may influence the AI mode. So an AI solution should base on a
specified game. As our research environment, ORTS allows research to define its own
game features of RTS game. It uses BP files as the definition of such games. But we
are not game designer. Fortunately, it also provides a standard game type. I t locates in
file orts\trunk\testgame. All the information is defined in BP files. Let go deep in this
information, and find out what kind of game it is. We should notice that the game
logic of RTS game almost the same, the different is the game units, ter rain type and
other features may influence the game result.

The standard game defines in 9 BP files. (F11 shows the file system) this game relates
to Starcraft. Most of his feature inherit form terran race in Starcraft. Analysis of these
BP files helps to understand the game and find its characteristics.

Fig 11 BP files of standard game

a) Armor and weapons:

Like we described in section 2.1, this standard game have armor type and weapons.
There are some restrains between armor and weapon. These kinds of in formation are
defined in armor.bp and weapons.bp. F12 (a) presents a sample definition of armor, (b)

Rush attack AI in ORTS

23

shows a sample definition of weapons.

(a)

 (b)
Fig 12 Sample definition of armor and weapon

Most information is similar with Starcraft. But we don ’t find the words to definition
the restrains of each armor type and weapon type. It uses another way. In a n attack
function, the code shows this restrains. (F13 codes form weapons.bp) The value of
specified armor value could reduce the corresponding weapo ns type.

if (damage_type != NORMAL) {

 if (damage_type == SLASHING) shield_dmg -= targ.shielding.slashing;

 if (damage_type == PIERCING) shield_dmg -= targ.shielding.piercing;

 if (damage_type == EXPLOSIVE) shield_dmg -= targ.shielding.explosive;

 if (damage_type == BLUNT) shield_dmg -= targ.shielding.blunt;

}

Fig 13 Codes form weapons.bp

b) Units and Buildings

Rush attack AI in ORTS

24

These two BP files define the feature of units and its actions. The feature definition is
following the style in F12. Uni t’s actions are defined as function in unit class. There is
an example of it.

Fig 14 Example of action definition (tank anchor)

c) Sum up:

After viewing all information, the standard game inherits most features from the
terran race in Starcraft. There is a few differences, we present the difference may
influence our design. At first, Armor and armor restrains works in different way.
Secondly, the technology tree is a bit different (discuss later).

3.2.2 ORTS develop environment

In this section, we would give a high overview of ORTS; then pick out the useful
information for our research. Our working environment is windows.

a) System overview [1]

We start with the system overview. ORTS use a client/server mode. When starting the
server, it reads the game information in the BP files together with terran description
and initial unit locations (F11, start_loc.bp). After this processing, the server holds on,
and waits for all clients connect to the server. As soon as all connection established,
server sends game description to them, and enters the simulation loop. In these loops,
clients only got its individual world views, actions based on these unperfected
information sent back to server. Due to the actions of each loop, the views are updated
and the game state accordingly. Client and server repeat this loop till the game ends.
(F 15 shows the processing)

ORTS already provide critical components to implement the object vision, motion and
collision computation, as well as data transmission protocol. These kind s of efficient
algorithms are presented in [13]. Furthermore, the source library provides most basic

Rush attack AI in ORTS

25

functions, like path finding, moving, and so on. These are contributed by previous
researchers.

Fig 15. System overview of ORTS

In addition, it provides a 3D graphic interface for games. Distinguish to commercial
games, it give a widely world view. In my opinion, it is a convenience to AI designer;
we don’t suppose to change view frequently to check my AI is works well or not.

b) Develop detail

After the overview, we look deeper in this system and introduce develop detail of
ORTS for developers.

First of all, ORTS simulate RTS game in 8 frames per second. A loop function will
loaded both in server and client. In this case, client could communicate wit h server
and synchronization. Once per frame, server sends the individual view and client can
have maximal one actions per game object that under their control. Then client send
the action back to server. These actions then randomly shuffled and executed i n
server.

Secondly, AI is located in each client. For developer, getting start with your own AI is
very simple. If you use windows (we use windows in our research). ORT provides a
VSTOOL located in \orts\trunk\misc\windows, compile it, and then we could use it to
create an empty client project in VC++. Secondly open this project, find the method
computer_actions() located in SampleEventHander.C. This method is automatically

Server

Client 1

Client 2

Client n

Game

states

BP files

Individual view and actions flow

Connection from client to server

Rush attack AI in ORTS

26

loaded in each frame (loop), and it’s the starting point of the AI develop ment.

Then we can have real start in ORTS. There is a sample code show in F16.

Fig 16 sample code.[14]

In this sample, client get currently game states then pick out the friend object by using
the client id. For each that in game object, client gets its type and position. For
workers, client set action to move one step to the right. [15]

Till now, we get a simple conception of how to develop in ORTS. It is convenient and
powerful.

3.2.3 Rush-attack.

Rush-attack is a popular strategy in RTS game. Before introduce this conception,
we‘d like to discuss a common RTS player’s game strategy. As a semi-pro RTS player,
most players in solo game, they would develop their economy and technology first
and only craft a small number of low level units for basic defense. There a re main
troop set up will be middle level units and high level units. This troop setup is
powerful but it takes time. It has an obvious weakness, in the beginning of this
strategy, majority of resource is spending on development, and its defense is very
weak. Rush attack is a corresponding strategy to attack this weakness.

Rush attack AI in ORTS

27

Rush attack means crafting a troop with mass low level units, and attack your
opponent‘s base as soon as possible. The aim is destroy the key buildings before they
are able to craft powerful units for defense. Although, it may leaves the rusher’s force
greatly weakened, and a bad economy situation. Actually, in a perfect executed, this
strategy has more advantages then disadvantages , even win in the first attack. The
gambit is to slow or cripple the opponent’s ability to expand and upgrade his forces.
Destroy of key buildings takes a lot of time to recover. In this sense, rushers get time
to develop its economy and keep ahead in technological levels and production
capability. Finally rushers reach the victory.

In the following part, we analysis the strategy and try to find the basic conditions of
rush attack.

a) Information

In RTS game, information is very important. Actually, player’s strategy is based on
how many information he got. As we presents in F4, scouting which gives more
information to player, leads other packages to work. In Rush -attack, information is a
key. Player drops its economy and technology development, and gamble in rush attack.
In this sense, when and where to attack, a lso the number of units in the troop is the
most important. A bad attack may lead him to lose. How to make these decisions? He
needs information to decide the appropriateness of rush. In a word, more information,
more wins.

b) Distance

This is an impersonality element. It affects the result very simply. In order to make the
rush more effective, player tries to limit the opponent ability to recovery. It means the
longer rusher spends in transit, the longer defender can prepare countermeasure.

c) Balance in development and crafting.

Rushers drop development to craft troop. But still, they need basic economy and
technology. Then there is a balance between these choices. Furthermore, because of
the tech-tree, the troop requires some prior research. Rushers must be proficient in
building order so that rush may come even earlier.

d) Macro-control in conflict.

Beside those prepares, the final goal is defeat you opponent in conflicts. This
condition is not only for rush attack but also for all RTS strategy. Conflict is
unpredictable, there isn’t a true power. [16]

Rush attack AI in ORTS

28

3.2.4 Learning method

The choice of the learning methods is base on what goal we want to achieve. Those
existent methods already presented in section 2.4. O ur design will present after the
requirement specification. See section 4.2.

3.3 Requirement specification

In this section, we define the experiment goal of this project. For each point in the
goal, we give a short analysis and following a requirement specification .

3.3.1 Experiment goal

Our research tries to design an AI package with learning ability. It implements a rush
attack strategy and learn the best troop set up during its game process and the result of
each game. In this case, we focus on the building order and crafting decision during
the game, and find a most efficient method to “learn”. In addition, a relationship
between game states and decision need to be investigated.

3.3.2 Game Specifications

The whole RTS game is so unpredictable; many features influence the game result. It
needs to be simplified to satisfy a certain goal. A specification give following, it
would help in testing some feature.

First of all, we need discuss the beginning stage of the game. Normally, players would
have a certain number a worker (basic units) and a control center. We follow this style.
Our AI will choose the game style one in ORTS; it starts with 4 works and 1 control
center.

Secondly, in these kinds of AI research, resource collection is a complex problem. We
need find a balance in required gathering speed and nu mbers of workers. Furthermore,
what time to expand economy and found a new control center need to be considered
while the game going, this decision is hard to make. It needs a well temporal
reasoning ability, and excellent corporation of each AI package. I t is not the important
part of our design. It doesn’t worth of developing such a complex problem . In most
commercial games, the AI just doubles its resource per gathering . Following this style,
we declare that no resource collection is need, the resource i ncrease stably number,
which is predefined.

In order to simplify the game and focus on the crafting decision, scouting is defined in

Rush attack AI in ORTS

29

another way, no war fog in this game. In other word, the opponent is exposure to
player and no scouting is needed.

We only use three kinds of attacking units in our game. They are marine, motor bike
and tank. In Starcraft, these kinds of units have obvious restrains to each other. After
analysis the game type in our research. A table shows the comparison of these units.

Marine Bike Tank

Level Low Mid High

HP 40 80 150

AP 4-6 18-22 35

CD Fast 2*8 Mid 4*8 Slow 5*8

Building time 24 30 50

Money 50 70 250

Tab 4 comparison of marine, bike and tank

Marine is the low level units, with crappy attack power and low HP, but he has
advantages in crafting time and cost. In contrast, tank has more attack power and HP,
as an opposite feature, the crafting time and cost is really annoyed. Bike is a mid
course choice, fine HP, fine attack power. We suppose to find function to calcula te its
real effective in the conflict.

Specification:

1. Game starts with 1 control center and 4 workers,

2. Resource increase in a certain number in each second . No need to gathering.

3. No war fog in Game, the opponent stats are exposure.

4. Only three kinds of unit will be used. Marines, motor-bikes, and tank.

5. Opponent troop is a static group which already g iven at the beginning of a game .

6. The game style is the Standard game in ORTS.

7. The final conflict decides the winner or loser. No need to destroy all buildin gs.

Rush attack AI in ORTS

30

3.3.3 Strategy specification

In general, we use rush attack strategy. AI needs to climb the technology tree, and
crafts a certain number of units to defeat his opponent as soon as possible. Upgrade
should be considered if needed.

3.3.4 Learning specif ication

Learning methods would take place in finding the best group set up. In addition, the
group is may change in different game; the AI would have some responses due to the
changes of opponent group. Furthermore, three kinds of units have relationships that
restrict each other. We should dig out this relationship. Decision making depends on
this relationship would be more efficient.

Rush attack AI in ORTS

31

4. Design

4.1 AI blueprint

In section 2.3, we describe an AI mode with two layers. Our design abstracts this
mode and draws three layers architecture for AI mode. We divide strategy in general
level into two layers. AI decisions are presents in higher layers. Before describe our
design, we would like give an overview of this three-layer architecture.

4.1.1 Three-layer architecture

General description:

1. AI works on high level commands.

2. Linear analysis, while the game is running, there is a coordinate line of time to
show its process. AI is able to make a linear analysis. This mechanism to have a
temporal reasoning.

3. Decision make base on a measureable environment. In other words, the system
has a value on each object. The higher the point, the more possibility to win.
(more detail see section 4.2)

Principles:

We mapping actions and commands into three layers . Single actions defined in Basic
action. A serial of actions to finish a certain job or function is defined as the second
layer. In the second layer we sort the serial of actions into 4 packages, Battle control,
Scout, Resource Collect, Tech and Craft. In highest layer, a learn AI package are
located to analysis and make high level decisions.

Fig17 Three layer architecture of AI

Battle Control Scout Resource Collection Tech and Craft

Basic actions

AI CORE (divide later)

Rush attack AI in ORTS

32

Description of each package:

1. Basic actions: in this layer, it contains the basic single action, such as move (),
attack ()… these actions provide the basic capability of units. They are already
defined in ORTS. Furthermore, these actions may fail due to the game
situation. Hence, ORTS provide simple error check method in this layer, like
collision_check ().

2. Resource Collection: this package defined a serial of commands to finish resource
collection. It contains commands to let the works find and gather the resources
like crystal and gas in game. It may work with scouting to find the crystal and
give an optimal number of works. Also, i t is influenced by the number of
current resource and game state.

3. Scout: this is a scout method to find opponent base as soon as possible. Once it
finds their base, a consecutive scout would be executed to collect more
information of opponents. This information includes number of buildings,
number of units, possible technology tree, the attacking purpose.

4. Tech and Craft: it defines the commands to upgrade technology tree and crafting
if it is needed. In RTS game, technology tree is an important element, th e
higher you climb, the powerful units you can craft. But in order to climb the
tree, a lot of resource is cost; you may fail in defense opponents attack. The AI
core would find the balance between crafting and climb technology tree. This
package just implements the decision and gives feedback.

5. Battle control: the final purpose of RTS game is defeati ng your opponent. So you
need to attack it, fight with it. Hence, this package is the most important part.
It defines the commands while in conflicts, including movements, attack
sequence. Battle snapshot send s to AI core as a feedback. After analysis, new
control conception would return to this package.

6. AI core: this package works with the second layers, it observe the second layer
and make decisions in a high level. We must insist on a conception. AI works
on a “thinking” level, it doesn’t change game directly. Instead, some fetal
variables will sends to second layers. So the packages in second layers can
make changes due to these changes of variable.

4.1.2 Our design

First of all, it gives a system view of our design . As we mentioned in pervious parts,
our design don’t have Scout and Resource collection. The figure below presents the
relationship of these AI package. Only short conceptions of each package expla ined in
this section, more detail see specification design.

Rush attack AI in ORTS

33

Fig 18 AI system overview

In ORTS environment, compute_action() is loaded each frame. It is the entrance
point of the design. After the AI obvious the current game stat e, it makes a general
decision. Then the decision forwards to mid layer packages. In mid layers, the
general decision is disassembled, and implement by using basic Action package in
lowest layer. The serial of basic actions calls the event handler, to set its actions.
Some actions may last a few frames. The middle layer package have a strategy to
make sure is finished in the right order. Then event handler receive this actions and
run them in a randomly sequence. At last, updates the current game state.

Game state:

We store the game state in a date structure. In order to store the all useful
information, it contains 4 single variables to denote current money, gas, supply and
frame. In addition, 4 four structures denote building situation, workers, my troop
and opponent troop.

Details:
1. Single variable.

Int c_crystal; // current number of crystals.
Int cycle; // number of frame now, time of the game.
Int I_crystal; //the increasing number of crystal.

2. Structure: Buildings
{ int ID ; //primal key, it’s a unique ID to distinguish it.
 String name; // the name of the building. It is defined in blueprint.

Int x, y; // location of the building.
Boolean Attachmen;t // if the building have a attachment.
String C_object; // current object in crafting.
Int time_left; // how much time till the object finish. Initial= 0;

Obvious

Update ()

Set_Action()

Game state.

Event

handler
AI CORE

Battle control Tech and craft

Basic action

Rush attack AI in ORTS

34

}
3. Structure: Worker.

{ Int ID; // primal key, unique
 String building; // the name of building that worker works on. If the

worker is free, building = none;
 Int timer; // how much time till the building finish. If builing ==

none;
 timer = 0;

}
4. Structure :a_object;

{ Int ID; //primal key,
Int timer; //how long time it finish
Int AP; // attack power
Int CD; // cool down to at tacking
Int HP; //hit points
}

5. structure: Mytroop
{ Int type; // type of attack units. Type = 1, units is tank. Type =2, unit

is bike. Type=3, unit is marine.
 Int number // number of units.
 A_object[n];

}
 Opponent_troop is the same as Mytroop. They record the troop set up of each
side.
In ORTS, It gives a GSM to record the game states, but when you want get
information from it. It is inconvenient. That is why we redefine date structures.
Decision making will based on this d ata.

AI core:

This is a complex package. We would like to describe it in a general way. It presents
in two parts. These parts are divided by its functionality. The first one is building part,
second one is crafting. It only decides to make decision that w hat kind of buildings
and crafting is needed in a certain time. Once, the decision is made, it forwards to
second layer.

One thing should be notice that, in our design, AI core package don’t contain the
battle control strategy and the precise macro actions for each kinds of unit. Instead,
core package make the decision that when to attack and other general decisions . In
addition, control strategy is defined in battle control package

Rush attack AI in ORTS

35

Tech tree:
Due to our game specification, only three units are used in our testing game. There are
marines, bikes and tanks. In this case, the partial technology tree is present below. We
use a FSM to accomplish the climbing process, and also the additional buildings if
needed

Fig19 Technology tree in our game

In order to craft most powerful units in the shortest time, we should climb technology
tree as soon as possible. It has the highest priority. Then building process stops in an
unstable state. So the AI should obvious the game state an d the money situation to
decide that if we need more barrack, factory or nothing. A FSM show its process,

Fig20 FSM for building process.

Name require
Marine Barracks
Bike Factory
Tank Factory with machine

shop.

Control centerSupply

Barracks

Academy

Factory

Engineering

Bunker

Machine shop

0 1 2 3 4

5 6

7

Rush attack AI in ORTS

36

State 0: the beginning of the game. All resources is saved, because climb the
technology tree has the highest priority.

State 1: barracks completed.

State 2: academy completed

State 3: factory completed.

State 4: machine shop completed, technology tree reaches the end. From now on,
FSM stops to get ready to receive decisions from AI core. If it needs more barracks
go states 5, after the barrack finish, it turns to state 4 again. if it decide to have more
factories, FSM go to 6, or 7 it depends on the requirement of machine shop , after
finish, turn back to 4. Furthermore, we can craft more than one buildings at the same
time.

Crafting

As it defined in project goal, we need to craft the most powerful troop in the shortest
time. There are some questions need to be solve. At first, in this AI, we only conside r
3 kinds of unit. Which one of them is the most powerful unit? Secondly, the most
powerful unit got a universal power? At last, how to decide the crafting sequence?
Read the follow sections, you will find answers.

In normal conceptions, the powerful un its have high hit point and more damage per
seconds (DPS). We quote the definition of each unit in BluePrint; you can easily
find the answer. (See Table 5)

TANK MARINE HOVERBIKE

Armor/AC Medium_armor/1 Light_armor/0 Light_armor/0

Weapon/damage Weapon_manager/28-32 Assult_rifle/5-7 Grenade_launcher/18-22

Damage type Explosive Piercing explosive

Cool Down 37 15 30

HPmax 150 40 80

Supply 2 1 2

Cost(crystal/gas) 150/100 (250) 50/0 70/0

Time 50*8 24*8 30*8

Range 7*16 4*16 5*16

Tab 5 Definition of tank bike and marine.

Obviously, tank is the most powerful unit in this three. But which means a universal
power? In RTS game, there are other feature may influence the unit s too. As we
presented in section 3.2.1, the restrains of the armor and attacking t ype. It has a

Rush attack AI in ORTS

37

function presents its relationship (see Fig13). Unfortunately, in the standard game bl ue
print, marine, bike and tank armor only contains defense value in AC. It means that
this restrain has a quite small influence in game. What’s more? The differences in
attack-power, hit-points and cool-down cause the lost of damage, for instance, a tank
attacks a marine, marine dead in 2 shots. But within two shots tank cause 60 dama ge,
its more than marine’s HP. The extra 20 damage is useless, it is lost . So the force is
not universal, we need a variable to modify its power. This variable should be learned
in games.

Now we face the last question. It’s very complex for AI to decide which one would
like to craft first, second, and so on. The FSM is for every building which can craft
units. Factories have higher priority to decid e what to craft. After all factories make its
decision, the barracks can be taken in process.

Fig21 FSM for crafting process

A, B, C denote the states in factories, A is the sta rt point. After it decides the units to
craft, it changes to states B or C. when it finishes craft, state return to the start point. If
it stay in start point, a decision making process is loaded in every game cycle. D, E
denotes states in barracks.

4.2 Learning theory

This section has two parts. In the first one we focus on introduce our method of
learning. These would explain the reason to choose, and also what features is learned
and changes during its process. In the second part, we present influence to the AI
system which caused by “learning”, and design details of each segments. In another
words, due to learning process, some key features are change to fix the situation.
Those segments make its decision depends on the current features.

D E

A

B

C

Rush attack AI in ORTS

38

4.2.1 Main learning method.

Before introduce our design, we‘d like to explain an evaluation system that widely
used in commercial RTS games. Everyone who has played RTS game like Starcraft
may have experiments. After the game ends, the view automatically changes to a
statistics pages, which presents the evaluation of player performance in the last game.

Fig22 Sample of evaluation in war craft 3

Normally, the winner got higher points. In Fig21, player bibivsvivi wins, its total
score is much more then the loser. As we found in this figure, units, heroes② and
resource are all calculated as this points. Look deeper in this figure, we open the
“units” column (Fig23).

Fig23 “Units” column

We find some new features, units produced, units killed, building produced, bu ilding
razed and largest army, all these kinds of information are elements for the score
calculation. After a serial of compute actions, finally the system got the scores
presents in “unit score” column. As always, winner got higher point.

1, hero is a units conception in Warcraft 3, hero has more force, it is a flag of you troop

Rush attack AI in ORTS

39

It prove a truth that commercial games use a point system for evaluate the game after
game ends. It shows a way for design RTS AI. Can we combine the system into the
game AI? In this case, the AI could make decision more precise based on this system.
A learning method can be located to update the point system. After these kinds of
“learning”, the point system finds more accurate value for each element. In sense, AI
is “learning”.

Because the safeguard of commercial game, we can’t get the resource codes of these
system. Fortunately, we find the basic data of Starcraft . It recovers a partial view of
this system. At the ends of each unit, there is a score of it. Tab 6 shows the score of
those three units which used in our game. This is a evidence of point system.

Type of unit Score

Marine 100

Motor bike 150

Tank 700

Tab 6 Scores table

Now, we get the main conception of our learning method. It is a strategy to update the
point system in our game. Turn back to the specifications, we are using a rush attack
AI, which requires product force as soon as possible. In principle, it need s crafting the
biggest force per cycle. We abstract an expression for calculating the force of a unit in
Rule 1, attack power and the force are direct proportion. Rule 2, the longer units stay
in the conflict the more power it have. In other words, HP and force are direct
proportion. Rule 3, it’s easy to understand that unit has longer Cool Down would
reduce his force in some cases. Hence, Cool Down and force are inverse proportion.
Follow these rules, we got an expression shows in Fig24. N value denotes rate of lost
damage which set as a adjust value for its true force. (See section 4.1.2 crafting part)

Fig24 Expression of force

The game features in standard game are almost the same with Starcraft. We calculate
the force of those three units. A comparison with the point system in Starcraft
presented as a simple proof to show if our expression works . In general, the rate
should be nearly the same. T7 presents the comparison.

 Attack power * HP

 CD
* n = Force i

Rush attack AI in ORTS

40

Score (Starcraft) Score (standard game)

Marine 100 16n

Bike 150 53n

Tank 700 121n

Tab 7 Scores comparison (Starcraft and standard game).

In Tab 7, the rate between marine and tank i s fine. But it seems something effect the
force of bike in standard game. Look deeper in it, the armor type in standard game
doesn’t reduce the attack power as it shows in Starcraft. Bike’s attack type does half
damage to units with large hit box. In standard game it doesn’t work like this. Bike
damage only reduced if the target’s armor has a value in that type (see section Fig12
(a)). In this sense, bike’s force are doubled or even tripled. It explains the difference
rate in standard game. Sum up, our expression is works, plus some other features
which based on the requirement. Decision making will based on these final score. At
the end of this section we introduce the learning process. The decision making
processing is explained in section 4.2.2.

The key of learning is finding the lost damage of each unit during the conflict. The
precise percentage is updated as the adjust value N. The update process defined in
such a way. In the specification, we only have a final conflict to decide winner or loser.
It means the final conflict is the only chance to find and update the adjust value N. We
need calculate the lost damage of units during the conflict. Different kinds of unit
have different N value; also for specified target the N is deferent too. Fig25 presents
the expression of value N.

 Shpi: the sum of lost HP, target type i.
 Sapi: the sum of attacking power. Target type i.
 Tn: number of units that is target type.
 Troopn: number of whole troop.

Fig25 Expression of adjust value N.

N is a sum up of percentage of valid damage to different target type multiplied the
percentage of the unit type in opponent troop.

N (type) = ∑
Sapi

Shpi Tn

Troop n
i=1

Rush attack AI in ORTS

41

4.2.2 Decision making process .

Scenario 1: Decide what to build.

In this part, we present all situation that meet during t he game processing. At the
beginning of the game, climbing the technology tree has the highest priority. All
money is saved for these kinds of using. Second, after the tree is finished, we need to
decide whether more factories or barracks.

a) Climb the technology tree.

This is a simple process. As soon as the game starts, process is loaded. It commands
the worker to build buildings in a specified order which follows the FSM in Fig20. In
each game cycle, this process is loaded to check the current FSM states and make the
next decision.Fig26 presents the process.

Fig 26 Partial process graphic of building check

Fig 26, only presents the process while building_state=0. The others are the same with
it, just the required building is different. For example, if building_state=2, then we

Check(building_state)

Build(barrack)

Building_States=

1

Build(academy

)

Check if there is

a barrack.

Check if barrack.

Is finished

N

N

Y

Y

Rush attack AI in ORTS

42

would check if there is factory. If no we set action to start build. Otherwise, if factory
is in building, we stay waiting. Else, we change the building_state= 3, and build the
next building “machine shop”. Tab 8 shows the pseudo code of this process.

Building_check() {
 Switch (building_states)
 Case 0: if (barracks is in building)
 Break;
 If (barracks is completed)
 { Building_states=1;
 Build(academy);
 Break; }

If (no barracks)
{ Build (barracks);

break; }
 Case 1:

Tab 8 Pseudo code of building check

b) More buildings.

As we presented in Fig20, when FSM reach state 4, it stops in this unstable state. A
temporal reasoning method is imported to decide if we need more factories . Only
factories are considered here. Because, compare with tank and bike, marine is useless
while the game pass the beginning phase. In this case, FSM is simplified.

In general, we expand our productivity while income in bigger then expenditure.
Beside, the general conception, we have a lot of deposit resource while we climb the
technology tree. Hence, we use a method to reasoning the expenditure in future.
Based on this assumption, AI decides how many buildings are needed. Take tank as a
checking unit, we define expression like this. (Fig 27).

Cur_money

endcycle – cur_cycle + E_money

Tank_comsume_percycle

F_num = 1+

Rush attack AI in ORTS

43

Cur_money: current resources.
Endcycle : the finial cycle when the conflict starts. In another words, it is the

end of crafting process. This have a initial value, and it changes after
games.

Cur_cycle: current cycle.
E_money: resource gain in each cycle.
Tank_comsume_percycle: the cost of crafting a tank percycle.

Fig 27 Expression of F_num

After FSM reach state 4, AI calculates the F_num and compare with the number of
current number factories. If it is bigger than current num, FSM move to state 6. After
factory completed, state automatically move to state 7. We simplified the FSM, cause
after a simple compute this process brings very little influence to the game result, but
it makes the system very complex . Some time the required factories are more than one,
due to the FSM, it may building it one by one. We can’t afford this waste. A trick used
here to solve this problem. As Tab 9 shows, we using switch to implement the FSM.
We put state 6 before stat 4 without a break. Then the state 4 would run every cycle.
In this case, we could build more than one factory at once.

Building_check(){
Switch (building_state)
Case (0 :

………
Case (6): for factories

If finish
Build(“machine shop”);

If all factories is finished.
Building_States=4;

Case (4): calculate F_num;
If (F_num > current_num) //current num cont ains the one in building

Building(“factory”);
Break;

……….

Tab. 9 Trick in build more buildings.

Scenario 2: decide what to craft.

What to craft is the most important decision in AI. A certain number of troops and a
right setup, win becomes so easy. In this rush attack AI; time is the first thing to
consider. In order to craft the troop with highest force, the expression in Fig 24 would
divide the building time to gain a value that denote the force is produced per cycle.
Secondly, we must using resource in a right way. Hence there is a method to

Rush attack AI in ORTS

44

temporally reason the crafting process. This method would help AI to make a crafting
plan which is most suitable with current money. At last, crafting check is loaded by
each buildings, a “For” function view all buildings with crafting ability.

a) Crafting Reasoning

As Fig 24 presents, we take time in consideration. Besides time, money is an extra
element. Overall, time should be first, and then money. This conception provides to
maximal the force in the limited time.

First of all we describe the situation when money is enough. In this case we just craft
the unit with most force per cycle. Obviously, tank has the biggest force. It is the
simplest decision.

Secondly, in standard game definition, barracks only can craft marine; factories
without machine shop could craft bike and those with machine shop craft tank. As we
present in scenario 1, all factories would have machine shop. Hence, the situation is
simplified; factories handle bo th bike crafting and tank crafting.

Let we introduce the barrack process first. In the beginning, compare marine with bike,
the crafting time and cost is a bit higher then marine but the force is almost triple as
marine (T7). Consequently, once the factory is completed, no marine crafting is
needed. View the expression below, we would introduce the reasoning process.

Fig 27 Expression of RS_force.

This RS_force indicate the force that would gain if we c ontinue crafting the same unit.
For instance, building states still in state 2, it means factory starts to build or already
in processing. Now we need to decide craft a marine first or wait for the factory
completed. Use the RS_force above, proc_time for marine is from the current cycle to
the cycle that the first tank crafting process finish. It is equal to remain of factory
building time plus building time of machine shop and the crafting time of a tank. In

Force i

C_time
* proc_time = RS_force

Force i : force of one type of units.
C_time : crafting time.
Proc_time: the possible crafting time.
RS_force: a value used in comparison, craft

or waiting for craft the units with higher
RS_force.

Rush attack AI in ORTS

45

this case, if RS_force (marine) > RS_force(tank), a decision is made that start to craft
marine.

Now we come to the building states that some factories were finished. In general, if
the money is enough to craft tank, it is no doubt to crafting tank. Otherwise, we
calculate RS_force, in this situation, proc_time have a different way to compute (Fig
28).

Fig 28 compute proc_time

RS_force is the way that used in our design. A learning method in the final conflict
will change the value N. the change of N cause s the change of Force expand to
RS_force and the whole crafting sequence . Furthermore, the value i is calculate based
on the opponent troop. Hence, in the new crafting sequence more suitable units have a
certain priority. Detail presents in scenario 3.

Scenario 3: Updates adjust value N.

As we presented in Fig 25, the expression shows the way to compute the adjust value
N. In game processing, this calculation would be finished after the game ends.
Collections of the variables that used in Fig 25 should be done during the final
conflict. The section describes the battle control strategy. Afterwa rds, we give the
updating detail.

In the final conflict, we use the simplest attacking method: random attack. Attacking
units randomly choose a target and fire till target is dead. Target changing only occurs
while its target dead. Variables SHPi and SAPi record the total damage done by a
specified units and its target. Two elements influence the sum of HP. The first one,
due to the armor type (see Fig 13), armor works as shield with absorb the attack power.
In this case, the HP is equal to attack power minus armor. In the second, in some
situation that its target doesn’t have as much HP as the damage it can cause. Hence,
the lost HP is equal to its current HP; the additional Attack power is wasted.
Consequently, the adjust value try to confirm that it value presents the influence of
these kinds very precisely.

Proc_time =
250 – cur_money

E_money + C_time(tank)

Cur_money: current money
E_money: money gain per cycle
C_time(tank): crafting time of tank
250: cost of a tank

Rush attack AI in ORTS

46

Recording part is simple, now it is the updating part. In order to show the learning
process, we give up some efficient method. In our design, the updating uses an old
and slow method. It is an average method that just sum value N in different games,
and divide the total number of games. Each time when N is updated, the new value
would used in the next game. In addition, we try to make sure the value N would be
universal from different opponent troops . Value N split into smaller elements:
V (type, target). Fig 29 presents the expression and update method.

 VN+1: the V value in the next game.
 VN: the V value in the Nth game.

Fig 29 V (type, target) and update method.

4.2.3 Sum up

We re-describe our design in a general format. Then we explain our design as this
form. It is an Advanced Point system based on the conception of evaluation system in
commercial RTS games. We add the game states effect and the experience to make the
point changeable. The point is “learning” from game to game. The more precise it is,
the higher probability win the AI have.

It is a quintuple {P, F, S, E, M }.Fig 30 represents its relationship.

 P: the point of units.

 F: the unchangeable game information, like hit point, attack power and so on.

 S: game states which may influence the point. For example the set up of opponent
troop

 E: Experience, it the key structure in this system, it’s a probability that denotes
the performance of units in real c onflict. It could have different format.

 M: method to learning, in a word how to make the experience more precise and
efficient.

V (type, target) =
Shp i

Sap i

V N+1 (type, target) =

VN (type, target) * N + V (type, target)

N+1

Rush attack AI in ORTS

47

Fig30 Relationship of expressions

The expressions used in our design is presented in F ig n. we just implement a most
simple way to proof our conception. Only three units are considered and opponent
troop is predicted. In addition, the structure of each expression can be more complex
to show other RTS game features, these could be the future research.

Fig 31 Example of advanced point system

The method in our design it doesn’t show in the Figure. As we presented in 4.2.2
scenario 3, it is use an average method.

4.3 working with ORTS

Till now, we almost finish our design. Just one step left to implement the theory in
ORTS. Unfortunately, we meet some problems in this implementation. These
problems lead us to choose an eclectic implementation: simulation. In the following
part, we explain these problems. Some of them have solved, some not.

4.3.1 Problem 1: lower FPS

In original design, ORTS is working in Linux. Our specified operation system is
Windows. Although, a WIN32 package is designed to fix Windows environment, we
still have some inconvenient.

CD * ∑(*) = Force

SHPi

SAPi

HP*AP Num_i

T_num

F E S P
Num_i: number of units i in opponent troop.

T_num: total number of units in opponent troop.

P = F * ∑(E*S);

Enew =M (E);

Rush attack AI in ORTS

48

First of all, we open ORTS project in VS 2005 edition. After compile, we get four
executable files with the suffix “.exe” including the server and client. These files
automatically store in the path:”orts/trunk/bin”. The server runs fine in this path, but
fatal errors take place when the client runs. Fig 3 2 presents the error.

Fig 32 Runtime error in client

After debug several times, we can ’t find the solution. We forward this problem to
ORTS help forum. Fortunately, we got an efficient response. Although it doesn’t
explain the reasons, it just tell s that copy these files to path:”/orts/trunk”. The first
problem is solved.

The second mini problem actually is not a real problem. We found that if we run client
with 3D graphic interface. The client performed really badly. The FPS is really low,
like one or two FPS. It is not work. We have done many things to improve, such as,
updating the graphic support package. The performance is improved a bit. But still it
is more than 8 FPS. In this case we drop the 3D graphic interface. Alternatively, a 2D
graphic is used to check if the units are working in the right order.

4.3.2 Problem 2: move continuity

After solve the graphic interface, we can starts to implement our design. At the
beginning steps, implementation is about the basic movements, such as move,
building and attack. In this section, we describe the problem in basic move () function.

As we mentioned in above sections, compute_action () is loaded in each cycle (see
section 3.2.2). Clients can set action to in game units. Based on the pervious
information, we implement move () with a chosen unit, a destination and the max
speed. The tutorial said that the unit would move to destination in the following frame.
But, problem raised here. In the graphic interface, the unit only moves one step after
the action is set. In order to make the movement continuity, we go ORTS help forum
again. We find an answer that this happens in the latest snapshot. It doesn’t have a real
solution. However, it gives two suggestions. One is using path finding to set a
predicted path to unit. The second one is using a destination variable, that the unit can

Rush attack AI in ORTS

49

check its current position in each cycle and keep moving till it reaches. We choose the
easier way: the second. There is a nice implementation of this path finding process.
It is written by Asbj_rn Bydal, Frode Nilsen [17].

4.3.3 Problem 3: building

Besides move () function, Build () is another important basic behavior in ORTS. We
tried several times in our research, but it doesn’t work. We also post this in help forum.
Anyway, no response is available yet. This is the direct reason to why we choose
simulate ORTS system and implement our design in simulation.

Build action is a function defined in PlayerCommander and PlayerActions. We tried
both way, but they don’t work.

Firstly, we start with PlayerActions. In the eventhandler, we include PlayerAction.h,
and then create an object PA of class PlayerActionHandler. In this case, build function
can be loaded in eventhandler class. After set up the parameters, it seems that
everything is in right way now. Then we compile client program and run it. The
compiling is successes; also no error happens when it runs. But nothing happens in
game, work doesn’t implement the build commands.

Secondly, we tried another way: Player commander, the beginning steps is the sa me,
including head file and create object. The first problem take place here, the
constructor needs an initial class object “ModuleSet”. After statisfied the initial
requirements, we could sucessfully creat object and compile the client. A fatal error
occur when the client runs.

We present the erroe page and the partial codes appendix A2.1.Due to the time issue;
we finally implement in a simulation system instead of ORTS.

Rush attack AI in ORTS

50

5. Implementation

In this chapter, we implement our design in a simulation sys tem. It is a simple
simulation of ORTS. It only implements the basic function which is related to our
design. In a word, it is a test bed only for our design.

5.1 System overview

In general the simulation environment is written in JAVA. The game type in
simulation is ORTS standard game. Due to some structure changes in simulation, the
game information is kindly adjusted to fix new environment. First of all, we give a
system overview of simulation system. Then, we introduce the simulation functions
that the system provided. At last, it is the changes of game information.

5.1.1 Overview

This section, we present the relation of each class. Before introduce the system we
would like to discuss the definition of game style.

As we know ORTS is a huge system. Our simulation would like to implement partial
function that relevant to AI research in this paper. In requirement specification
(section 3.3), we describe that research is focus on decision making and learning. It is
a single AI play the game to craft a well troop to fights with a predicted opponent
troop. The learning process located at the end of battle to change the adjust value N.
Hence, the system simulates the process of AI player. AI use a rush attack strategy to
craft a troop as soon as possible and do c onflict with a predicted opponent troop. At
last N is updated to increase the probability of win and decrease the time to attacking.
The main task of AI is building, crafting and fighting, other element of RTS would be
ignored in simulation system.

System contains 5 classes. There are Worker, A_object, B_object, AIcore and Gui.
The first three classes are game units. AIcore contains the AI function. The game
environment is provided by Gui. Fig 33 presents their relationship.

In initial stage, AI starts with 4 workers. Then Gui provide the game cycle function:
loop(). In each loop, it loads process in AIcore. After a serial decision making process ,
instant effect of decision is update to the game data which is stored in data. Besides
these instant effects, the data also changes because of the time steps . Changes of this
kind are updated by Gui. Loop is reloading till the game reach a result. Some special
cycle number would be recorded in Gui, such as, time for attacking.

Rush attack AI in ORTS

51

Fig 33 System overview

In ORTS, one loop is presents 1/8 seconds in real life. This brings the real-time felling
to players. In simulation, we just need check if everything is in the design order and
evaluation its performance. Consequently, there is no time holding method in loop ().
Instead, we just assume that one cycle is one second in game world. Class Gui
implements the time assumption.

In addition, data for the units in our design is based on the 1/8 second system. In order
to march the simulation, we adjust some values. The information relevant to frame
number is cut down to 1/8. Most values could divide exactly by 8 except cool down.
After circumspect consideration, we give the cool down value of each units, marine: 2,
bike:4 and tank:5 (other information refer to T5) .

5.1.2 Map in three-layer architecture

In this simulation, system has 5 classes. There are Worker, A_object, B_object, AIcore
and Gui. In Fig 34, we map these classes to the three -layer architecture. Also it
contains the key methods in each class.

In general, classes in basic layer provide basic behaviors. Class worker provide the
build () function. A_object is an abstract class for those units that can attack others.
B_object denotes buildings. Three basic behaviors are build, attack and craft.
However, this system doesn’t contain a move behavior. View the goal, we would find
the answer. Research is focus on how to make decisions to craft a powerful troop and
learning. In this case, a move function would add a lot of works in design the
simulation system and the AI clas s would so complex that we can ’t handle.

AIcore

Process;

Update;

Gui

Loop()

Update;

Data

Work[];

Building[];

Troop[];

Opponent troop[];

Worker

A_object

B_object

Rush attack AI in ORTS

52

Fig 34 Mapping simulation system in three-layer architecture.

AIcore is contains functions that both in high layer and mid layer. High layer
functions provide a decision making mechanism. All, general decisions are made in
this layer, such as time for attacking. These general decisions forwards to mid layer.
Functions in mid layer dissemble decision and implement it. The implementation
would be a single behavior or a serial of behaviors.

Class Gui can’t map to the three layer architecture , because it works as a server in
ORTS. It provides the basic process of each cycle. For instance, AIcore is a package
of car, which contains all parts; then Gui works like a assemble line, it give the right
order to involve those function, and let the “car” looks like a real “car”. In addition,
Gui could restart game easily, it gives convenient to testing.

5.2 Implementation of each class

5.2.1 Worker

Worker is basic type in the game. Normally it handles gathering resource, building
and mending task. In some special time, it would join conflict too, but there are attack
power is very low. In our simulation, we redefine worker. It only needs to build
buildings. Those features that don’t relevant to building task are exterminated.

Worker

Build ();

A_object

Attack();

B_object

Craft();

AIcore

Build_pro();

Crafting_check();

Check_AT;

Building_check();

Money_pres();

Build();

Craft();

Battle();

Check_result();

Update();

High

Mid

Basic

Rush attack AI in ORTS

53

In our definition, work has two properties. The first is ID, which is a unique. The
second is time. When a work is building, time presents the building time. Hence,
while time>0 means that it is occupied. Time minus one while a cycle is finished.
When time reach 0, it stops decrease. A work with time=0 that is free handle other
building task. In addition, it implements the basic behavior build. Source code of
build() see appendix A2.2.

5.2.2 A_object

This class abstracts the units which compose the attacking troop. Beside the
information of units, it should contain some other variables to describe the current
state of units in conflict, such as current hit point, time for next attacking. Table 10
presents all variables and short description of each .

Name(type) description

Name(string) Type of unit. In the constructor, name would decide other variables.

ID (int) Unique ID.

Target(int) It presents unit’s target in conflict.

If target <0, no target. If target >0, target= an ID in opponent troop.

Max_hp(int) Maximal HP.

Cur_hp(int) Current hp. if current hp= 0, the unit is dead.

Ap(int) Attack power.

Cd(int) Cool down.

Cd_time;(int) A counter for cool down. When Cd_time remain to 0, unit could
attack again.

Armor(int) Armor value.

B_time(int) The remained Crafting time of unit.

Table 10 variables in A_object.

In this variables description, we simplified armor type. It doesn’t include those
specified armor type. Because, in the definition of ORTS standard game. It has
deferent type of armor, but the actually value of them are all zero. So the function
shows in Fig 13 is useless. Secondly, due to the crafting process, we have B_time to
presents the remained Crafting time. In the beginning of crafting, the unit is already
adds to my troop array. But, this unit don’t published to other functions until its
b_time = 0.

Rush attack AI in ORTS

54

Variables initialed in constructor. Name of the unit decide the type, each type has their
unique variable value. a partial code presents how it works.

public A_object(String cname, i nt n ,int m){
// m control the crafting side. m=1, troop m=0, op _troop
ai=ai.getInstance();
if (cname=="marine"){

id=n;
max_hp=cur_hp=40;
ap=5;
cd=2;
armor=0;
b_time=24;
this.name = cname;
if (m==1){
ai.money - =50;} //AI is game stats, whom is using singleton pattern.

}

Tab 11 Partial code of A_object constructor

There are three input parameters. The first one cname denotes the type, N presents the
unique ID, and the final is M. As the comments said, M is used to disti nguish the units
from our troop and opponent troop. In game specification, opponent troop is predicted.
Hence, a single “IF” checks the m value so that the initial of opponent troop didn’t
alter the money states. Furthermore, there are two variables don’t initialed in
constructor: Cd_time and target. Cd_time initial value is 0, and target is automatically
set to no target :“-1”.

Beside the constructor, A_object implements an important basic behavior: attack ().
This function has two input parameters and no return. One input is a new target. The
other one distinguish the attack is from troop to opponent troop or inverse . At first the
function would check if the unit doesn’t have a target, and then set the target N equal
to the first parameter. Otherwise, it checks the current target whether is dead or not. If
the current is alive, then the unit keeps this target, else it targets another one. Secondly,
attack is done if the cd_time equal to zero. Then the attack power, lost hp of its target
and target number is recorded. The records is updated to data in AIcore for calculate
the SHPi and SAPi. If it’s an attack from opponent troop to our troop, the same
process is running except the updating. (Source code see appendix, A 2.3)

5.2.3 B_object

Compare with A_object, B_object has the similar structure. It is abstract class for all
buildings. First of all let’s view the variables present the relevant information of
buildings. See Tab 12

Rush attack AI in ORTS

55

Name Description

ID (int) Unique ID.

Name(string) The type of building

Attachment(int) If the building is a factory, this variable is used to present its
machine shop. 1: it has. 0: it doesn’t.

B_time. Time left to finish crafting.

<0, the building is not completed.

=0, the building is free

>0, it’s in process. B_time equal to the time left.

Tab 12 variables in B_object.

The same as A_object, when the building is start to build. It already added to building
array, so B_time is used to check if the building is completed. In addition, we extend
B_time to present if the building is cu rrently crafting something.

The last basic behavior is defined in this class. In section 4.1.2, we design the decision
make process for each buildings. Hence, after the decision is disassembled in mid
layer, and then forward to this. Nothing should be checked. The build() function is
quite simple, just find the a new position in troop array and initial a A_object with the
specified type.

5.2.4 Gui

The basic function of Gui is implementing the game environment. It provides the
game cycle issues and the upda ting due to the time going. In order to presents the
“learning” process; it is able to restart the game. In addition, some variables are used
to denote the current game number and value N. (details see Table 13)

Name(type) Description

Cycle(int) Current game cycle.

Turn (int) It presents that current game is the Nth game.

Win(Boolean) How many games did AI win in the past N games?

Ntank, nbike, nmarie.(int) The initial number of each unit in opponent troop

Tankn[4], biken[4],

Marinen[4]

N value. tankn[0]: the adjust N for tank,
tankn[1-3]present the Vi.

Tab 13 variables in Gui class

Rush attack AI in ORTS

56

After present the variables, we introduce the functions in Gui class. In the simulation,
we defined game process into two parts, the normal phase and the conflict phase. It
would check the attack decision which located in AIcore at the starts of each loop
during normal phase. Once the decision is made, normal phase reaches the end and
simulation enters conflict phase . Due to the deferent phase, there are two kinds of
loop and update functions, finally, a result check value is received from AIcore and
game reach the end. Updating N is done right after the game ends. In this case, Gui
runs a restart function to initial a new game. (Main loop presents in appendix A2.4)

5.2.5 AIcore.

This the core class of our system. It contains the data of this game. At first we use a
table to show all these game data and a short description after each variable.

Name Description

Money The number of current money

Emoney The money gain after each cycle.

Building_state Current building state.

Worker[] Array stores the date of workers.

Building[] Array stores the data of buildings.

Troop[] Array stores the data of my troop.

Op_troop[] Array stores the data of op_troop.

Tab 14 variables in AIcore

Besides these variables, this class contains adjust value N for each unit type and
variables to record damage done and lost HP which is used in calculate the SHPi and
SAPi. (Resource code See appendix A2.5)

In the previous class introductions, some variables would be used in other classes. In
order to void the duplicate problem , AIcore use a singleton pattern. We set the
constructor as a private function so that other classes can’t create this object. Then it
defines a private static INSTANCE and a public method that returns the same instance.
Different to other singleton applications, a Del () function is used so that we reset
INSTANCE. In this case, we could reset game data for another game run. (Definition
see appendix A2.6)

We sort the functions in AIcore into three kinds. The first one implements the building
process. The second one is the crafting process. These two processes would be loaded
in each normal loop. We call the last one battle or conflict process which implement

Rush attack AI in ORTS

57

the conflict and the functions relevant. We would explain them one by one.

At first, it is the building process. In section 4.2.2 the first scenario , it already
presented the detail of process . Hence, we would explain the process in another aspect,
which presents the functions structure of it. Process starts with function build_pro(). It
loads function building_check (), and it got a return string that denote the decision. if
the string could match our predefined building types , build_pro would implement this
decision. Then it calls the middle layer function build (). Finally, the decision is
realized in class worker. Pseudo code of these functions presents in Table 15.

Class AIcore:
Void building_pro(){
 String = Building_check(building_states);
 If (string is match one o f the predefined type)
 Build(string).
}

String building_check(int){
 Switch (building_state) ,
 Case(0):

Case(4):
Tmp=Money_pers(); // check if money states. See Fig 27.

If (tmp>current money consume)
Return” factory”;

 ……..//detail see secntion 4.2.2 first scenario.
 Return string;
}

Boolean Build(string){
Choose a free worker;
Worker.build(string); //detail see A2.2 build();
}

Tab 15 Functions relevant to building process.

Secondly, we introduce the crafting process in the same aspect (decision making
details see section 4.2.2 second scenario) . A crafting_check function handle s this job.
It checks buildings that can craft attack units. If they’re not occupied, a decision is
made due to the money issues (see section 4.2.2 scenario two) . Then the decision is
forwarded to basic layer and implement in class B _object. (crafting_check() see
A2.7)

The last part is the conflict process. It is the only process in conflict phase. Game
starts in normal phase. How could game enter the conflict phase? There is a function
called check_AT is loaded in each loop during the normal phase. It checks the force of

Rush attack AI in ORTS

58

my troop and opponent troop. Once, my troop get more force than opponent, it stops
normal phase. Then the game enters conflict phase. While in conflict, function battle ()
realize the attacking process. It uses a random strategy for both sides. Basic attack
function is implemented in A_object. The result of each attacking would be recorded
by update (). In addition, at the beginning of each conflict loop, check_result is
running, this returns a symbol that indicates the result of battle. Once the result show a
winner, the game ends.

Rush attack AI in ORTS

59

6.Testing

In this section, we test our implementation in three aspects: correctness, efficient and
reactivity. Testing environment and data are described in pair. Tab 16 presents the
initialization values of game system.

Name of variable value

Set up of opponent troop.(tank,bike,marine) （15.5.5）

Adjust value n for tank 1

Adjust value n for marine 1

Adjust value n for bike 1

Start money 150

Money earned per cycle 10

Assumed end cycle 600

How many games 500

Tab 16 Game initialization values

6.1 Correctness

Correctness check is aimed to test that the single game process is running correctly.
The results presents below. We already cut the useless cycle information .

start
cycle: 1 money == 160
barracks 0
cycle: 2 money == 20
cycle: 81 money == 810
academy 1
marine crafting. ID: 0 610 //marine starts to craft, the id is 0, the money

//left is 610
cycle: 82 money == 620 //current cycle number, and money.
cycle: 105 money == 850
marine crafting. ID: 1 800
cycle: 106 money == 810
cycle: 161 money == 1360
factory 2 //factory starts to build, the ID is 2.
cycle: 162 money == 1070

Rush attack AI in ORTS

60

cycle: 281 money == 2160
tank crafting. ID: 2 1910
cycle: 282 money == 1920
factory 3
cycle: 283 money == 1630
factory 4
cycle: 284 money == 1340
cycle: 300 money == 1500
factory 5
cycle: 301 money == 1210
cycle: 331 money == 1510
tank crafting. ID: 3 1260
cycle: 332 money == 1270
cycle: 381 money == 1460
tank crafting. ID: 4 1210
cycle: 382 money == 1220
cycle: 402 money == 1420
tank crafting. ID: 5 1170
cycle: 403 money == 1180
tank crafting. ID: 6 930
cycle: 404 money == 940
cycle: 420 money == 1100
tank crafting. ID: 7 850
cycle: 421 money == 860
cycle: 431 money == 960
tank crafting. ID: 8 710
cycle: 432 money == 7 20
cycle: 452 money == 920
tank crafting. ID: 9 670
cycle: 453 money == 680
tank crafting. ID: 10 430
cycle: 454 money == 440
cycle: 470 money == 600
tank crafting. ID: 11 350
cycle: 471 money == 360
cycle: 481 money == 460
tank crafting. ID: 12 210
cycle: 482 money == 220
cycle: 502 money == 420
tank crafting. ID: 13 170
cycle: 503 money == 180
cycle: 511 money == 260
tank crafting. ID: 14 10
cycle: 512 money == 20

Rush attack AI in ORTS

61

cycle: 536 money == 260
tank crafting. ID: 15 10
cycle: 537 money == 20
cycle: 561 money == 260
tank crafting. ID: 16 10
cycle: 562 money == 20
cycle: 586 money == 260
tank crafting. ID: 17 10
cycle: 587 money == 20
cycle: 611 money == 260
tank crafting. ID: 18 10
cycle: 612 money == 20
cycle: 636 money == 260
tank crafting. ID: 19 10
cycle: 637 money == 20
cycle: 661 money == 260
tank crafting. ID: 20 10
cycle: 662 money == 20
cycle: 686 money == 260
end cycle of normal phase: 686
opponent troop win
0.911329727293216 1.0 1.0

Tab 17 Single game process details

In Tab17, the process is very clearly. Our design is correctly running. There are some
comments present the meaning of each line. One thing should be notice that the last
line shows the updated adjust value N after the first game.

6.2 Efficient

This part tests the influence of learning process. It would test two game styles:
original one and game with our learning method . In the following figure, we present
the curve of probability of win and the end cycle. Data presented in figures prove that
our design is efficient; it increases the probability and short the cycle of normal phase.
In addition, Fig 37, 38, 39 shows the curve of V values for each unit.

Rush attack AI in ORTS

62

Fig 35 Probability of win

600

620

640

660

680

700

end cycle

learning

original

Fig 36 The end cycle of game

Fig 37 V value curve of tank

0．26

0

1

100 200 300 400 500

With learning method

Original

0.83

Rush attack AI in ORTS

63

Fig 38 V value curve of bike

Fig 39 V value curve of marine

6.3 Reactivity

We would find the average time which the system returns to a stable stage from the
moment opponent changes took place. After testing, we found that this time actually
can be ignored in our research. Because, learning process gain the V value for each
units. It means while the opponent troop change its set up, AI just recalculate it’s
adjust value N with the set up information. Very little changes occur in the V value.

Rush attack AI in ORTS

64

Fig 40 shows some sample for the V value of different troop set up.

0

0.2

0.4

0.6

0.8

1

(15.5.10) (10,5,10) (12,7,9) (10,10,5)

target:tank

target:bike

target:marine

Fig 40 V value table for tank(deferent opponent set up)

We found a strange phenomenon while we test reactivity. The probability of win is
increased before learning. But, while the opponent is in some special set up, the
probability of win still very low. While opponent troop set up is (10, 15, 10), the win
probability is increase from 0 to 10%. We admire this result and present the reason.
RTS game is so changeable, but we only consider one effect element the attacking lost.
It is not enough for sure. We just implement one element to prove our conception. To
cover all these effect elements would be done in future works.

Rush attack AI in ORTS

65

7. Discussion

In this section, we discuss the reasons why we design our own method instead of exist
learning methods, such as learning automaton and decision tree.

First of all, based on the information that presented above, we would find that the RTS
game is not stable, and the minimal cycle is 1/8 seconds. Hence, we can’t
independently say a decision is good or it’s bad. Even, a serial of decisions may
suitable for some situation. However, opponent is changes his strategy too. There isn ’t
such an absolute powerful serial of decisions. To say the least, there isn’t such a serial
of decision that could always have the highest probability to win. In this case, we
design our method, that each decision is made based on the current game states, and
experience that gain from games as an enhancement. It maximal the benefit of each
decision and lead the AI to win. Fig 41 presents an abstract conception.

Fig 41 Features of decision making in our design

Current game state is the most important part to ma ke decision. It computes both the
states from each side, including the troop set up, number of units, snapshoot of
tech-tree and so on. Then this information are evaluated depend on old experience to
work out a certain point. AI would choose the decision which got the highest point. A
direct connection from old experience to current game states shows that old
experience is an enhancement of game states, and help to calculate the point. For
instance in our implement, adjust value N is a sum of products of V (type, target) and
opponent set up.

Secondly, let’s analysis what learning automaton can provide. In section 2.4.1, we
present the basic idea. Now we try to merge it to RTS game environment. In general,
the decision making is depends on the previous respon se. After certain times, we
could gain the probability of rewards for each action. In this case, we could imagine
after certain number of games. It meets a situation to make a decision, and then it
could find some clue of the past decisions. What’s more? The old experience shows
the probability of rewards for such a decision. Fig 40 shows the decision in a way that

Game feature Current

game states

Old experience

Decision

Rush attack AI in ORTS

66

familiar with Fig 42.

Fig 42 feature of decision making in learning automaton

It’s obvious that learning automaton make its decision depen ds on its experience of
old games. Can we trust these kinds of experience? The answer is no. first of all; the
most efficient decisions could limit opponent action to gain benefit. In other sense, the
decision is directly reacted of opponent actions. In learning automaton, we can’t find
certain method can achieve this aim. Secondly, we admire that after number of games,
it could have the right and well experience for a specified game strategy. Then if
changes take place in this strategy, learning automaton would choose the decision in
the old order. And the opposite response is received from the game. In this case,
learning automatons “learn” from it and change those probabilities. So it could take a
long time to reach a right and well decision making mechanism again. But, this
process takes a long period. In other words, it is not an efficient method. We drop this
method because of these two reasons.

At last, we present the reasons why don’t choose decision tree. In general, decision
tree is a tech that map all the possible way of decisions to reach a certain ends. Some
result of the decision are predictable, some are not. Hence, learning methods is import
to uncover the unpredictable parts. The learning process shows in a following way. It
would starts in a random manner, and maps the decision sequence in the dec ision tree.
After the system ran certain times, the decision tree would able to cover all possible
decision sequences or major of them. Till this situation, decision tree could follow the
decision tree to choose the best way and reach a good result. Unfortunately, RTS
game is so huge and changeful. Although, we believe that we could uncover the
decision tree in a finite time. Actually, it ’s not doable and not efficient.

Game feature Previous decision

in this game

Old experience

Decision

Rush attack AI in ORTS

67

8. Conclusion

In this research, we try to abstract a rush-attack Ai mode from exist ones and then
combine it with a suitable learning method. In our plan, Ai would be designed as a
client in ORTS. Unfortunately, due to some develop reasons; we implement it in a
simulation system.

Our main focus is the learning method. After consider some exist methods, such as
learning automaton and decision tree, we found that their not suitable for the complex
RTS games. Finally, we investigate our own design.

It’s an advanced point system that devel oped base on the calculation system in
commercial RTS games. In this system, each units and buildings have a point which is
calculated by unit information, current game states and some “experience”. AI makes
decisions depend on the point. It would maximal the point gain. In general, players
who got higher point, who got the highest probability to win. Our implement only
covers the “experience” of the lost attacking power.

Our testing simply proves the effect of the system. In general, the probability of win is
increased while the learning process is going. Finally it stops at a certain value.
However, we just implement a partial element that could influence the game. So in
some special situation, the probability would decrease or still very bad after learnin g.
There are other elements that influence the game result. These would be future works.

Rush attack AI in ORTS

68

REFERENCES

[1] Michael Buro & Timothy M. Furtak : RTS Games and Real –Time AI Research
Department of Computing Science, University of Alberta, Edmonton, AB, T 6J
2E8, Canada

[2] Homepage of ORTS. http://www.cs.ualberta.ca/~mburo/orts/#Overview
[3] RTS page in wikipedia. http://en.wikipedia.org/wiki/Real -time_strategy
[4] Starcraft data resource package

http://www.wfbrood.com/Soft/ShowSoft.asp?SoftID=291
[5] Technology tree page in wikipedia.

http://en.wikipedia.org/wiki/Technology_tree
[6] AI homepage in wikipedia.

http://en.wikipedia.org/wiki/Artificial_intelligence#cite_note -1
[7] Kumpati s. narendra, and M. A. L Thathachar : Learning Automata- A Survey.
[8] Decision tree analysis. Maintools.
 http://www.mindtools.com/dectree.html
[9] Finite states machine

http://en.wikipedia.org/wiki/Finite_state_mach ine
[10] Introduction to finite states machine IKT 505(correct system), course material

UIA, 2007
[11] A Primer for Decision-making Professionals Rafael Olivas
 http://www.projectsphinx.com/decision_trees/index.html
[12] ORTS source package.

[13] M. Buro. ORTS: A hack-free RTS game environment. In Proceedings of the
Third International Conference on Computers and Games , pages 156–161, 2002.
Software: http://www.cs.ualberta.ca/˜mburo/orts/orts.html.

[14] Johan Hagelbäck : ORTS Tutorial
[15] Tapani Utriainen & Michael Buro: ORTS Competition:geting started.
[16] Tank rush wikipedia.

http://en.wikipedia.org/wiki/Tank_rush
[17] Asbj_rn Bydal , Frode Nilsen: path finding for orts. UIA, web mining course

project 2007.

http://www.cs.ualberta.ca/~mburo/orts/#Overview
http://en.wikipedia.org/wiki/Real-time_strategy
http://www.wfbrood.com/Soft/ShowSoft.asp
http://en.wikipedia.org/wiki/Technology_tree
http://en.wikipedia.org/wiki/Artificial_intelligence#cite_note-1
http://www.mindtools.com/dectree.html
http://en.wikipedia.org/wiki/Finite_state_machine
http://www.projectsphinx.com/decision_trees/index.html
http://www.cs.ualberta.ca/
http://en.wikipedia.org/wiki/Tank_rush

Rush attack AI in ORTS

69

APPENDIX

A1 SEARCH TABLE

Figure search.
ID Page Description

Fig 1 8 Blueprint sample

Fig 2 10 Technology tree of terran race in Starcraft

Fig 3 12 Detail of two layer conception
Fig 4 13 AI mode
Fig 5 15 Stochastic automaton
Fig 6 16 Environment

Fig 7 16 Learning automaton

Fig 8 17 Example of Decision tree

Fig 9 18 Decision tree after calculated

Fig 10 20 Sample of FSM

Fig 11 22 BP files of standard game

Fig 12 23 Sample definition of armor and weapon
Fig 13 23 Code from weapon.bp

Fig 14 24 Example of action definition (tank anchor)
Fig 15 25 System overview of ORTS
Fig 16 26 Sample code

Fig 17 31 Three layers architecture of AI

Fig 18 33 System overview of AI
Fig 19 35 Technology tree in our game
Fig 20 35 FSM for building process
Fig 21 36 FSM for crafting process
Fig 22 38 Sample of evaluation in war craft 3
Fig 23 38 “Units” column

Fig 24 39 Expression of force
Fig 25 40 Expression of adjust value N

Fig 26 41 Partial process graphic of building check
Fig 27 43 Expression of F_num
Fig 28 44 Expression of RS_force
Fig 29 46 V (type, target) and update method.
Fig 30 47 Relationship of expressions
Fig 31 47 Example of advanced point system

Fig 32 48 Runtime error in client
Fig 33 51 System overview
Fig 34 52 Mapping simulation system in three -layer architecture
Fig 35 62 Probability of win

Rush attack AI in ORTS

70

Fig 36 62 The end cycle of game

Fig 37 62 V value curve of tank

Fig 38 63 V value curve of bike

Fig 39 63 V value curve of marine

Fig 40 64 V value table for tank(deferent opponent set up)
Fig 41 65 Features of decision making in our design
Fig 42 66 Features of decision making in learning automaton

Table search

ID Page description

Tab 1 9 Feature of tank in Starcraft

Tab 2 11 ORTS characteristics
Tab 3 15 Sextuple of stochastic automaton
Tab 4 29 Comparison of marine, bike and tank
Tab 5 36 Definition of tank bike and marine
Tab 6 39 Scores table
Tab 7 40 Scores comparison (Starcraft and standard game).
Tab 8 42 Pseudo code of building check
Tab 9 43 Trick in build more buildings
Tab 10 53 Variables in A_object

Tab 11 54 Partial code of A_object constructor
Tab 12 55 Variables in B_object

Tab 13 55 Variables in GUI class

Tab 14 56 Variables in AIcore

Tab 15 57 Functions relevant to building process
Tab 16 59 Game initialization value
Tab 17 61 Single game process details

A2 CODE RESOURCE

A2.1 error page and codes

GameStateModule &gsm2 = *(state.gsm);

Watcher::WatcherModule wm(gsm2)

 Movement::Module::ptr mm(Movement::MakeModule(gsm2, 110));

 mm->addPathfinder("Default", Movement::MakeTriangulationPathfinder());

 mm->addPathExecutor("Default", Movement::MakeMultiFollowExecutor());

 ModuleSet ms2;

 ms2.set_game_state(&gsm2);

 ms2.set_watcher(&wm);

Rush attack AI in ORTS

71

ms2.set_movement(mm);

 FORALL (objs, it) {

 GameObj * gob = (*it)->get_GameObj();

if (gob && gob->sod.in_game && *gob->sod.x >= 0 && !gob->is_dead()) {

string objtyp= gob->bp_name();

 PlayerInfo& pi = game.get_cplayer_i nfo();

 uint4 objId = pi.get_id(gob);

if (objtyp=="worker"){

if (control==0){ // control is used that only work is seted with this job.

 sint4 x = *gob->sod.x -4 ;

 sint4 y = *gob->sod.y -4 ;

 cout<<"building"<<endl;

PlayerCommander PA(ms2);

PA.build(gob,"controlCenter", x,y);

control = 1;

}

else

break;

}

Error : no option found.

A2.2 build()

//building task

public void build(String bname){

int i;

Aicore ai=null;

ai=ai.getInstance();

if (bname=="barracks"){

if (ai.money>150){

for (i=0;ai.building[i]!=null;i++);

ai.building[i]=new B_object("barracks",i);

this.time=80;

ai.money=ai.money-150;

}

}

if (bname=="academy"){

if (ai.money>150){

for (i=0;ai.building[i]!=null;i++);

ai.building[i]=new B_object("academy",i);

this.time=80;

ai.money=ai.money-150;

}

Rush attack AI in ORTS

72

}

if (bname=="factory"){

if (ai.money>300){

for (i=0;ai.building[i]!=null;i++);

ai.building[i]=new B_object("factory",i);

this.time=80;

ai.money=ai.money-300;

}

}

if (bname=="attachment"){

int n=0;

i=0;

if(ai.money>100){

 for (;ai.building[i]!=null;i++){

if(ai.building[i].name=="factory"&&ai. building[i].attachment==0&&ai.building[i].b_

time==0){

ai.building[i].attachment=1;

ai.building[i].b_time=-40;

ai.money=ai.money-100;

// System.out.println("attachment craft");

break;

}

}

}

}

A2.3 attack();

public void attack(int n,int m){

ai=ai.getInstance();

int dmg=0,hp=0;

if (this.target<0){

this.target=n;

}

if (m==1){

if (ai.op_troop[n].cur_hp>0&&ai.op_troop[this.target].cur_hp<=0){

this.target=n;

}

if(ai.op_troop[this.target].cur_hp>0){

 if (this.cd_time==0){

 this.cd_time=cd;

 dmg= this.ap-ai.op_troop[this.target].armor;

if (ai.op_troop[this.target].cur_hp>dmg){

Rush attack AI in ORTS

73

hp=dmg;

ai.op_troop[this.target].cur_hp -=dmg;

}

else {

hp=ai.op_troop[this.target].cur_hp;

ai.op_troop[this.target].cur_hp=0;

}

ai.update(this.id,this.target,dmg,hp);

 }

}

}

else {

if (ai.troop[n].cur_hp>0&&ai.troop[this.target].cur_hp<=0){

this.target=n;

}

if(ai.troop[this.target].cur_hp>0){

if (this.cd_time==0){

ai.troop[this.target].cur_hp=

ai.troop[this.target].cur_hp-this.ap+ai.troop[this.target].armor;

this.cd_time=cd;

if (ai.troop[this.target].cur_hp<0){

ai.troop[this.target].cur_hp=0;

}

}

}

}

}

A2.4 main loop : runing()
public void running(){

int n=0;

set_op(nmarine,nbike,ntank);

while (!ai.check_AT()/*this.cyc<650*/){

this.n_loop(); //normal loop function

updaten(); // normal update

cyc+=1;

// System.out.println("cycle: "+ cyc+" money == "+ai.money);

}

System.out.println(cyc);

while (ai.check_result()==2){

this.b_loop(); // battle loop

updateb(); // battle update.

 }

Rush attack AI in ORTS

74

n=ai.check_result(); //n=2 the conflict is still runing. n=1 my troop win, n=0

if (n==1){ //opponent win

System.out.println("my troop win");

// update_n();

win++;

}

if (n==0){

System.out.println("opponent troop win");

}

//System.out.println(ai.biked2+" "+ai.bikel2);

update_n();

cyc=0;

}

A2.5 data definition for adjust value N and relevant variable.
double tank_n=0.6; //initial value of N, if it doesn’t set N .

double bike_n=0.9;

double marine_n=0.9;

double tankp=30*150/5; // the unchanged part in force calculate.

double bikep=20*80/4;

double marinep=5*40/2;

double tankd1=0,tankd2=0,tankd3=0; //1 to marine 2 to bike 3 to tank.

double biked1=0,biked2=0,biked3=0;

double marined1=0,marined2=0,marined3=0;

double tankl1=0,tankl2=0,tankl3=0; //1 to marine 2 to bike 3 to tank.

double bikel1=0,bikel2=0,bikel3=0;

double marinel1=0,marinel2=0,marinel3=0;

A2.6 singleton definition in AIcore
//define Aicore as a singleton pattern

private static Aicore INSTANCE= null;

private Aicore(){

……….

 }

 public static Aicore getInstance() {

 if (INSTANCE==null){

 INSTANCE= new Aicore();

 }

 return INSTANCE;

 }

 public static void del(){

 INSTANCE=null;

 }

A2.7 craft_check()

Rush attack AI in ORTS

75

public void craft_check(){

int i=0;

double tmp,tmp1=1;

for (;this.building[i]!=null;i++);

i=i-1;

for (;i>=0;i--){

if (this.building[i].name=="factory"&&this.building[i].b_time==0){

if (this.money>250){

this.building[i].craft("tank");

//System.out.println("tank craft");

}

else {

if (this.money>70){

tmp=(250-this.money)/this.emoney;

tmp1=tankp*tank_n/(50+tmp);

tmp=bikep*bike_n/30;

if (tmp>tmp1){

this.building[i].craft("bike");

}

}

}

}

if (this.building[i].name=="barracks"&&this.building[i].b_time==0){

if (this.build_state==1){

tmp1=-this.building[1].b_time+80+40+50;

}

if (this.build_state==2){

tmp1=-this.building[2].b_time+40+50;

 }

 if (this.build_state==3){

tmp1=-this.building[2].b_time+50;

 }

 if (this.build_state>=4){

tmp1=50;

}

tmp=tank_n*tankp/tmp1;

tmp1=marinep*marine_n/24;

if (tmp1>tmp){

this.building[i].craft("marine");

//System.out.println("marine is crafting");

}

}

}

}

