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Abstract

Condition Based Maintenance (CBM)) is a concept that has become more and
more important as the cost, size, and complexity of mechanical components has
increased. As more sensor equipment has become available it has become pos-
sible to measure different kinds of status data, such as vibration, temperature,
or electric current, from different kinds of mechanical components. By using this
status data it should be possible to determine the health of mechanical compo-
nents, and determine when they need maintenance, and what parts needs to be
replaced.

Hidden Markov models (HMM) is a statistical model for modelling systems that
evolve through a finite number of states. By using HMMs it is possible to detect
and recognize different kinds of anomalies and errors present in the system. It is
also possible to estimate when the system is going to be in a state where it can
not be expected that the system is going to function properly (error state).

During this thesis I have examined several different ways of applying HMMs to
tasks related to condition based maintenance. HMMs have been tested in their
use in anomaly detection, current state detection, and future state prediction. All
these tasks have been performed with little available training data to demonstrate
how HMMs can still be used even if little prior knowledge about the system is
available.

Tests have been performed to evaluate how well HMMs can detect unknown data
(anomaly detection), determine the current health of the system (current state
detection), and predict the future health of the system (future state prediction).
During all the tests it has also been a focus on how limited training data and
expert knowledge about the system will influence the approach to the problem
and the results of the tests.

Out of all the test that were performed anomaly detection is the task that was least
influenced by the lack of training data or prior knowledge. Current state detection
accuracy was most influenced by the lack of prior knowledge and the quality of
the training data, while future state prediction could benefit from more training
data.

Based on the test it is possible to say that anomaly detection can be performed
with just a minimum of training data. However, prior knowledge about the sys-
tem becomes more important because anomalies needs to be classified. Current
state detection requires more training data than anomaly detection. Prior knowl-
edge about the system is also important when training HMMs to recognize error
states. Future state prediction requires a lot of varied training data to be able to
perform reasonably accurate predictions for new components, that may have a
longer life-cycle than previously seen components.



The results of these tests gives an indication about the requirements for training
data, and knowledge about the system where anomaly detection, current state
detection, and future state prediction is being performed.
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Chapter 1

Introduction

In the following sections we will briefly introduce condition based maintenance
(CBM), and previous work that relates to CBM, hidden Markov models and the
problems examined during this thesis. Further we will present the full problem
definition, details of all problems that will be examined, and how the problems are
related to previous work. At the end of this chapter there will be a brief outline
of the rest of this thesis, that will provide a short summary of the content of each
chapter.

1.1 Condition based maintenance and importance
of research

The traditional techniques for system maintenance are preventive maintenance
and corrective maintenance. Preventive maintenance takes the form of sched-
uled maintenance actions aimed at the prevention of breakdowns and failures.
The primary goal of preventive maintenance is to prevent the failure of equipment
before it actually occurs. It is designed to preserve and enhance equipment re-
liability by replacing worn components before they actually fail. [7]. Corrective
maintenance is a form of maintenance which is performed after a fault emerges
in a system, with the goal of restoring the system to a working condition. In
some cases, it can be impossible to predict or prevent a failure, making corrective
maintenance the only option. In other instances, a poorly maintained system can
require repairs as a result of insufficient preventive maintenance, and in some sit-
uations people may chose to focus on corrective, rather than preventive, repairs
as part of a maintenance strategy.[1].

However, both preventive and corrective maintenance have drawbacks that make
them unsuitable in certain situations. For example, the regular maintenance
scheduled with the preventive maintenance scheme does not take into account
that components does not necessarily need maintenance just because they have
been used for a long time. This may lead to scheduling maintenance and stop-
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ping the system even when it is not needed. Performing maintenance when it is
not necessary leads to an increase in costs for new components, and reduced
production time since the machinery can’t be used when maintenance is being
performed. In the case of corrective maintenance it might be possible to let cheap
and unimportant machinery run until it fails, however, this is not an option with ex-
pensive and/or important machinery.

The ability to predict or estimate when components in a mechanical system are
going to fail is important for affordable system operation. Condition based main-
tenance (CBM) means that maintenance is performed based on an assessment
or prediction of the health of the components in a system. If it is possible to pre-
dict degradation of a component, it will be possible to schedule maintenance and
order a replacement component before the component fails completely [3].

The idea of condition based maintenance (CBM) is to maintain equipment only
when it is necessary. CBM uses measured status data (including, but not lim-
ited to, vibration, temperature, oil debris, or electric current) from the equipment
to prioritize and decide on maintenance schedules. Such an approach may al-
low the system to be operational for longer periods of time, thereby increasing
production time and reducing downtime due to maintenance. By having a good
estimate about when the system is going to need maintenance it is possible to
order replacement parts in good time before the scheduled maintenance takes
place. This is especially useful when parts are too large, heavy, or expensive to
keep in regular storage close to the facilities where maintenance is performed [3].

A CBM system will monitor the health of a mechanical component through mea-
surements of different kinds of data that can say something about the health of
the component. The measured data will be analysed to determine the current
health of the component, and in some cases a prediction about the future health
can be made. When creating a CBM system, expert knowledge about the system
is necessary. Expert knowledge should come from someone who has extensive
experience on working on the system and can give an indication on different com-
ponent errors related to specific data measurements.

A hidden Markov model(HMM) is a statistical model that can be used to analyse
data gathered from, among other things, mechanical components. The system
that is modelled by a HMM is assumed to be a Markov process [16] with unob-
served states [4]. A HMM can be trained to recognize data measurements from
a mechanical component. This makes it possible to train a HMM to recognize
the different health states of a mechanical component. A fully trained HMM can
be seen as a state machine, where each state in the HMM represents a different
health-state of the mechanical component. Transition between states is proba-
bilistic, so if a component is observed to be in state 1 at time t it is possible to
predict which state the component is most likely to be in at time t+1 and so on.

The states in the system being represented by a hidden Markov model are hidden
to outside observers. It is only possible to know which state the system is in
by the feedback the hidden Markov model returns when given sensor data. In
Figure 1.1, Y1, Y2, Y3, and Y4 are vectors that represent data collected from
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different sensors, each vector may contain several different kinds of observations
(for example vibration, temperature, and vibration from a different sensor). X1
(good), X2 (stable), and X3 (failing) represents the possible states the system can
be in. The data recorded in Y1 might be taken when the component was freshly
installed and will have a greater probability of indication that the component is in
state X1. State X1 will indicate that the component is new, or as good as new,
and has not suffered any damage. State X2 indicates that the component has
suffered some wear and tear but will still continue to function properly. State X3
represents that the component has suffered significant damage, and will need to
be replaced as soon as possible. The transition between states is probabilistic
and represent how probable it is for a component to appear in a different state in
the future.

Figure 1.1: An example hidden Markov model where X = states, Y = input vectors,
a = probability of transition between states and b = output probabilities.

1.2 Previous work

In this section, we will give a brief overview of some of the previous work that has
been carried out in the field of condition based maintenance and hidden Markov
models.

A paper released in 2005 [17] details how CBM can be used to detect faults and
predict failures of bearings. This paper describes how hidden Markov models
(HMM) can be used to determine the current health and the expected remaining
life of a bearing. This is done by using vibration data collected from old bearings,
and using this data to adjust the hidden Markov model so that it can give a good
representation of a component life-cycle. Measurements of new bearings are
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then analyzed by the hidden Markov model, and in this manner the health of a
component can be estimated. To predict the remaining useful life a degradation
index is obtained from the HMM. This degradation index is then processed further
to estimate the remaining useful life of the component.

An article released in 2009[11] uses hidden Markov model and analyses sensor
readings on electromechanical actuators. An actuator is a mechanical device for
moving or controlling a mechanism or system. An actuator typically is a mechan-
ical device that takes energy, in this case electricity, and converts that into motion
of some form (pushing, pulling, rotation). In this case a hidden Markov model
is used simultaneously with other fault detection equipment. The hidden Markov
model has been used to monitor and detect faults in the electric system that the
other fault detection equipment was not able to detect.

Bunks, McCarthy and Al-Ani[6] goes into detail on how data and expert knowl-
edge about a mechanical system can be used to train HMMs to detect faults and
different kinds of defects in a system. Although future state prediction (fault devel-
opment) is not performed, they indicate how the future state prediction might be
performed by using a hidden Markov model and having expert knowledge about
the system.

Baruah and Chinnam[5] describes how several hidden Markov models where cre-
ated to detect the current state of a drilling system. The paper also describes a
method which can be used to predict the future states of the system by estimating
the points (in time) when the system will go from one state to another.

1.3 Problem definition

“Condition Based Maintenance mainly uses measured status data (in-
cluding, but not limited to, vibration, temperature, oil debris, or electric
current) to determine the health of a mechanical system. When a
large amount of data has been collected, it is also possible to use this
data to predict the future health of the system. The purpose of this
master thesis is to use Hidden Markov Models to attempt to classify
the current condition (diagnosis) and make a prediction (prognosis)
for the future condition of the mechanical system by using current and
historical data.”

During this project hidden Markov models will be used to accomplish three differ-
ent tasks related to system diagnostics and prognostics. The tasks are anomaly
detection, system state recognition, and future state prediction. The goal is to ac-
complish these three tasks by using the knowledge that can be distilled by using
hidden Markov models.

Anomaly detection is going to examine how a hidden Markov model can be used
to detect unknown measurements. System state recognition involves determining
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which health-state the system is currently in. Future state prediction involves
estimating when the system is going to change states.

Another challenge faced in this thesis is the amount of available training data.
Usually massive amounts of training data are not available when CBM systems
are created, and the system has to be created with this limitation in mind. This
is also true for expert knowledge about the data. Because of this, a part of the
problem is to determine how much data and expert knowledge is required to
perform the different tasks.

1.4 Contribution

CBM is a technique that has not yet been implemented on a large scale in indus-
try. Many companies have installed various sensors on their equipment and used
this gathered information to determine the current health of the system. However,
this gathered information has seldom been used to determine the future health of
the system.

During this project hidden Markov models will be used to detect unknown data
(anomaly detection), determine the current state of the system, and estimate
future state transitions.

If the hidden Markov model approach to CBM health analysis is successful then
this project will help to show a viable method to CBM health analysis. However, if
the hidden Markov model approach is unsuccessful then this project will hopefully
be able to pinpoint the reason for failure, and suggest what steps must be taken
to make sure that hidden Markov model can be used for health diagnosis and
prognosis in CBM systems.

During this thesis it will be shown how anomaly detection, current state detection,
and future state prediction is affected when only a small amount of data is used
to train the different HMMs. This will hopefully help to underline the importance
of having a large dataset when creating HMM based CBM systems.

1.5 Assumptions and limitations

During work on this thesis several hidden Markov models(HMM) was created.
The HMMs was trained from data obtained from Origo Mobikom. The obtained
data was temperature measurements from two electric motors. To the best of our
knowledge the data measurements had been performed in real life situations (i.e.
the electric motors were in regular use when the data was collected).

The nature of the electric motor data placed several constraints on it usage. The
data measurements contained huge random leaps between measurements. All
recorded temperature values were measured in 1 minute intervals. However,
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there were large sections of data missing, often gaps covering several days,
months, or sometimes an entire year. Because of this it is not possible to get
an overview of how the data changes when the motor gradually wears down over
time. Having a good overview of an entire life-cycle is necessary for future state
prediction, since this prediction needs information about all possible health-states
the motor can go through.

There was also a lack of expert knowledge about the data. Without this knowl-
edge we had no way of knowing about the states the data might describe. Instead
we made a decision to classify the data into 2 possible health states. Expert
knowledge might have changed this decision.

Even though there are some shortcomings in the electric motor data, it can still
be used to perform anomaly detection and current state detection.

For demonstrating future state prediction, some generated data will be used. The
amount of generated data is the minimum amount required to be able to perform
a future state prediction. The reason for generating a minimum amount of data is
that it represents a real life situation were someone wishing to construct a CBM
system while using HMM might not be able to gather enough data be able to
properly train the required HMMs or the state prediction system.

The limitation and assumptions are summarized as follows:

• Electric motor temperature data not suitable for performing future state pre-
diction. This is countered by generated data.

• Lack of expert knowledge means that the defined states of the electric mo-
tor data is not as good as it could have been if expert knowledge had been
available, and some of the results may suffer because of this. We will how-
ever try to offer other solutions that might improve the test results.

• Small amounts of training data for prediction. Although more varied data
could be generated, the generated data can be used to show how prediction
becomes affected when little training data is available.

1.6 Report outline

Chapter 2 contains a short introduction to hidden Markov models and the asso-
ciated algorithms. This chapter also gives a short introduction to the types of
hidden Markov models we will use in the rest of this thesis

Chapter 3 is about the approach that we took when we solved the problems. This
chapter will detail the hidden Markov models that were created and how they can
be used to solve the presented problem.

In chapter 4 we will present the results of the tests performed to evaluate whether
the created hidden Markov models managed to perform anomaly detection, esti-
mate current health, and predict the future health development of the system.
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Chapter 5 is a summary of all the work, tests and results, as well as the conclusion
of our work.
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Chapter 2

Introduction to hidden Markov
models

In this chapter we will give a brief introduction to hidden Markov Models. The
introduction will include the two basic types of hidden Markov Models, as well as
the three most important problems. At the end of this chapter we will inform about
the type of hidden Markov model we used while working on this thesis.

2.1 Introduction to hidden Markov models

This section contains a short introduction to hidden Markov models. For more de-
tailed information about hidden Markov models and the associated algorithms we
suggest reading “A tutorial on hidden Markov models and selected applications
in speech recognition” by Lawrence R. Rabiner [12].

2.1.1 HMM general

A hidden Markov model (HMM)) is a statistical model [4] for modelling systems
that evolve through a finite number of states [5]. The states for the system that
is being modelled is hidden to the observer. However, by letting a HMM analyze
observations made from the system, it is possible to determine which state the
system is most likely currently in.

A HMM will consist of several states (N), an initial probability value(π) for each
state indicating how likely it is for a new input sequence to start in a given state, a
transition probability matrix (A) indicating the likelihood of transitioning from one
state to another, and an output probability distribution (B) that indicates how likely
it is for a certain measure value to come from a given state. The sum of all start
probabilities must be equal to 1, and the sum of all all elements in a row in the
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transition probability matrix must also be equal to 1. The simple notation for a
HMM is λ = (A, B, π) [12].

There are two main types of hidden Markov models, discrete and continuous. The
main difference between them lies in the input which the HMM is able to accept,
and the way which the input is processed.

2.1.2 Discrete hidden Markov model

The first version is the discrete HMM. For this version there exists a limited num-
ber of observations which can be made. An example of a discrete HMM is shown
in Figure 2.1. The HMM described in Figure 2.1 is supposed to estimate the
weather, based on the actions of a fictional person. From the figure it is possible
to see that there is a limited number of observations that the model is able to
accept: walk, shop, and clean. Based on the observations the HMM receives it
is able to give an estimate of what the weather is currently like where the fictional
person is. Since the output probability distribution (B) is represented by a matrix,
the sum of all elements in a row from this matrix must be equal to 1. Figure 2.1 is
created after the HMM example that can be found in [4].

States = Rainy, Sunny

Observation = Walk, Shop, Clean

Start probability = Rainy:0.6, Sunny: 0.4

Transition probability =
Rainy Sunny

Rainy 0.7 0.3
Sunny 0.4 0.6

Output probability =
Walk Shop Clean

Rainy 0.1 0.4 0.5
Sunny 0.6 0.3 0.1

Figure 2.1: An example of the components in a discrete HMM. Values taken from
Wikipedia [4]

In the case of discrete HMM the input symbols for which the HMM can accept
is limited by the input alphabet. However, the input alphabet can be designed
to include all kinds of input like letters, numbers, of other symbols. The input
alphabet must be defined when the HMM is created. If the input alphabet is
changed all elements of the discrete HMM must be updated to accommodate the
changes in the input alphabet.
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2.1.3 Continuous hidden Markov model

The second version is called a continuous HMM. This version of HMMs is able
to handle input that is not part of a predefined input-codebook, but rather input
may be any real number. The output probability distribution will be significantly
different from a discrete HMM since the input is handled in a different manner.

In a discrete HMM the correct output probability can be found in an output prob-
ability matrix, however, in a continuous HMM the output probability must be cal-
culated as the sum from a set of weighted probability distributions, most typically
Gaussian distributions, however, other types of probability distributions can be
used [15]. Figure 2.2 shows the necessary components of a continuous HMM
with three states. In the continuous HMM that Figure 2.2 shows the start proba-
bility and transition probability is defined in the same way that it would have been
for a discrete HMM. However, when input is received the output probability is cal-
culated as a sum of all the weighted probability distributions, normal distributions
in the case of Figure 2.2. For this task, all states will have its own set of weights,
mean vectors, and covariance matrices that are used when output probability is
calculated.
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Number of states = 3

Observations = all real numbers

Start probability = State1 State2 State3
0.6 0.3 0.1

Transition probability =

State1 State2 State3
State1 0.5 0.2 0.3
State2 0.2 0.7 0.1
State3 0.1 0.3 0.6

Observation probability = bj(Ot) =
∑M

k=1 cjmN(µjm,
∑

jm, Ot)

cjm = weighting coefficients
cjm ≥ 0 1 ≤ j ≤ N 1 ≤ m ≤M∑M

m=1 cjm = 1 1 ≤ j ≤ N

µjm = mean vectors∑
jm = covariance matrices

Ot = observation at time t

N = total number of states
M = total number of weighted probability distributions

Figure 2.2: The components of a continuous HMM with 3 states.

2.1.4 Three basic HMM inference problems

With HMMs there are basic problems that must be solved if HMM is going to be
useful for solving real world problems. These three problems are the following:

• Given an observation sequence O and a HMM λ, how do we find P(O|λ),
the probability of the observation sequence, given the HMM?

• Given the observation sequence O, and the HMM λ, how do we find the
state sequence Q which best “explains” the observations?

• How do we adjust the model parameters λ = (A,B,π) to maximize the prob-
ability of a given observation sequence O (i.e. maximize P(O|λ))?
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Solution to problem 1

The answer to the first problem is the forward-backward procedure [12]. From this
procedure we can find the forward variable αt(i) and it is defined as αt(i) = P(O1

O2 . . .Ot , qt = Si |λ). This is the probability of the partial observation sequence,
O1 O2 . . .Ot ,(until time t) and state Si at time t given the model λ.

The forward-backward procedure also provides us with a backward variable βt(j) =
P(Ot+1 Ot+2 . . .Ot|qt = Si, λ) which gives the probability of the partial observation
sequence from t+1 to the end, given state Si at time t and the model λ. Even
though the backward variable is not needed for the first problem it becomes useful
when solving problem 3[12].

Solution to problem 2

Problem number 2 is a matter of finding the best state sequence that best fits
with the observation. The Viterbi algorithm manages this and finds the single
best state sequence , Q = (q1 q2 . . . qt), for the given observation O = (O1 O2

. . .Ot) [13] [12].

Solution to problem 3

The third problem is to adjust the HMM parameters to maximize the probability
of the observation sequence. If given an finite observation sequence there is
no optimal way of estimating the models parameters. However, it is possible
to chose λ = (A,B,π) such that it is locally maximized for P(O|λ) by using the
Baum-Welch algorithm [12]. The Baum-Welch algorithm works by assigning initial
probabilities to all the parameters. Then, until the training converges, it adjusts
the probabilities of the parameters so as to increase the probability the model
assigns to the training set[14].

The Baum-Welch algorithm (or Baum-Welch expectation maximization algorithm)
makes use of both the forward variable αt(i) and the backward variable βt(j) when
it determines updated parameters for the HMM. Because of this the Baum-Welch
algorithm is also known as the Forward-Backward algorithm.

To properly estimate the local maximum for P(O|λ) the Baum-Welch algorithm
needs several iterations. The algorithm will either be repeated a predetermined
number of times, or until the local maximum is found. The local maximum is found
when the difference between P(O|λnew) and P(O|λold) reaches a certain value[12].
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2.2 Hidden Markov models in this thesis

While working on this thesis we have made use of several HMMs. To classify
error states in a mechanical system several HMMs have been used. To represent
the different health states of a mechanical system, one HMM has been created
for each individual health state.

All HMMs have been of the type continuous HMM. The type continuous has been
used since the observations used for training the HMMs has been represented by
numbers. Converting the observation into discrete symbols could lead to loss of
information from the observations[12].

The Baum-Welch algorithm has been used to train the HMMs,and the forward
variable from the forward-backward algorithm has been used to perform health
state detection. The Viterbi algorithm has not been used during this project. If
only one HMM had been created for each system the Viterbi algorithm would
have been used to perform state detection (where the internal states of the HMM
represents the health states of the system). Since one HMM is created for each
possible health state the forward variable can be used to determine the health of
a system. The HMM (λ) which gives the greatest P(O|λ) for a given observation
sequence (O) is declared to represent the health the system is currently in.
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Chapter 3

Approach

In this chapter, we will present the data used during this project, and how it is
possible to perform anomaly detection, system state detection, and make fu-
ture health predictions of a mechanical component by using hidden Markov mod-
els(HMM).

3.1 Data

During this project, we have worked with two different datasets. The first dataset
was obtained from Origo Mobikom and contained temperature measurements
from an electric motor. The second dataset was generated by us and was created
to show how HMMs can be used to predict future states, and to show how multiple
states would affect the prediction of future states.

3.1.1 Electric motor temperature data

The first dataset contained temperature measurements taken from four different
sensors located in an electric motor.

The data was measured in intervals of 1 minute over a period of several weeks.
The temperature measurements had been performed on two identical motors run-
ning at the same time in the same system. Both motors had four temperature
sensors mounted in them. One of temperature sets was selected to be used as
training data, while the other was used to perform anomaly detection and current
state detection. Both temperature sets contained 82356 measurements.

Figure 3.1 shows the temperature measurements which will be used to train
HMMs, and Figure 3.2 shows the temperature measurements which will be used
to test the trained HMMs in anomaly detection and current state detection.
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Figure 3.1: Temperature values used for training.
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Figure 3.2: Temperature values used for anomaly detection and state recognition.

Because of the lack of expert knowledge it was not possible to say what kind of
damage that had occurred. Due to the lack of expert knowledge, and based on
the behaviour of the data to-wards the end of the measurements we will assume
that values larger than 400 indicates that something is wrong, and would mean
that the system is in need of maintenance. This means that the created HMMs
will represent two states, good-state and bad-state.

Unfortunately it is impossible to say whether the sudden temperature rise was
caused by a component malfunction or by some outside event. The difference
here is that component malfunction may be monitored and predicted. However, if
something gets caught in the intake valve for the pump which the electric motor
is running(or some other event) it would be impossible to predict. Since the data
was gathered at the same time in two different motors running in the same sys-
tem, we will assume that it was some kind of outside influence that caused the
temperature to rise. Based on this we decided to only use this data for anomaly
detection and current state detection.

3.1.2 Generated data

The generated dataset consists of four separate observation vectors. The three
first observation vectors consists of 3000 observations taken at random from a
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normal distribution with added noise. The three first observation vectors of the
generated data is show in Figure 3.3. Out of these three generated vectors, vector
1 and vector 3 will be used as training data, vector 2 will be used to perform future
state predictions. The generated data can not be said to represent data from a
specific mechanical component, or represent the change in measured data that
some components may have. However, it can be divided into several states which
is one of the most important features for data where future states is going to be
predicted.
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Figure 3.3: The generated observation vectors.

In addition to the generated data shown in Figure 3.3 a fourth observation vector
was also generated. This vector is shown in Figure 3.4. It was designed to be
much longer so that the state transition points would be vastly different from any
of the training data that is used to estimate the initial prediction parameters for
future state prediction. In this way it should be possible to show how prediction is
affected when it tries to predict transition points which has not been seen during
training.
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Figure 3.4: The fourth generated observations vector.

Even thought the generated data does not necessarily represents a real life sys-
tem, it still represents the kind of data which a HMM based prediction will be best
suited for. The kind of system most suited for HMM predictions is one which goes
through several different health states. The more health-states the system goes
through the more accurate the prediction has potential to be. As shown later in
this chapter the generated data will be divided into 4 different health states.

3.2 Hidden Markov Models

When creating HMMs during this project we used a HMM implementation for
Matlab called “Hidden Markov Model (HMM) Toolbox for Matlab”[9].

All HMMs created used during this project were of the same type, with the same
number of states, and with the same number of weighted Gaussian distributions.
The type of HMM had to be continuous since the observation data consisted of
a series of numbers, and loss of information might have occurred if the data was
discretized to make them usable by a discrete HMM[12].

One of the first choices was whether to represent the system as one HMM or
several HMMs. If one HMM is used, each state in the HMM will represent a
different health state for the mechanical system. If several HMMs are used, each
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HMM will be trained to represent a different health state for the system. Using only
one HMM might be optimal when a lot of data is present at the time of creation.
However, using several HMMs to represent system health states might be better if
little data is available. When more data becomes available and new health states
are identified, a new HMM can be trained and added to the system of existing
HMMs.

For this thesis the decision was made to represent the health states of each
system as a collection of several HMMs, even though the same results could have
been achieved by using only a single HMM for each system. The test for current
state detection, will be slightly different based on the multi HMM approach. The
difference in approach will be noted in the section for current state detection.

The first step in creating the HMMs was to determine how many health states
they where going to represent. To represent the possible health states of the
electric motor two HMMs have been trained. One HMM will represents the motor
when it is in good health, and the other HMM will represents the motor while
it is in bad health. These two HMMs will be referred to as HMM − 1good and
HMM − 1bad. If more detailed information had been present about what the data
actually represents it might have been possible to create more HMMs so that the
health-states of the system could be more accurately represented.

Figure 3.5 shows how the electric motor temperature data was divided between
the HMMs during training. One square shows the data used when trainingHMM−
1good, while the other square shows the data used for training HMM − 1bad.
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Figure 3.5: Shows how the data was divided when HMMs were being created for
the temperature data.

To determine the number of states and weighted gaussians a test was performed
to determine the number which was best with regards to learning accuracy. The
test was performed for 2 - 6 states and for 2 - 5 weighted gaussians. After training
each HMM was presented with a series of observation sequences taken from their
own training data to determine how well it would recognize the data. Normally
when training HMMs, testing of learning accuracy is performed on observation
data which was not used to train the system. However, due to the small amount
of available data the recognition accuracy was performed on the same data that
was used for training. This should be avoided when possible since the HMMs will
be better suited to recognize their own training data, while it is most interesting to
see how well new data is recognized.

26



Table 3.1: Training accuracy for different combinations of number of states and
gaussians.

States Gaussians accuracy good accuracy bad training time (sec)
2.000000 2.000000 -426.441766 -313.040668 318
2.000000 3.000000 -411.716676 -372.475489 394
2.000000 4.000000 -408.144722 -251.444811 451
2.000000 5.000000 -413.857508 -265.292718 581
3.000000 2.000000 -391.499151 -377.190206 405
3.000000 3.000000 -402.105029 -393.349187 403
3.000000 4.000000 -386.764117 -286.442257 441
3.000000 5.000000 -385.067205 -158.739353 550
4.000000 2.000000 -376.154570 -451.001756 508
4.000000 3.000000 -372.914253 -160.767891 701
4.000000 4.000000 -377.764539 -85.606621 895
4.000000 5.000000 -371.759200 -163.589055 836
5.000000 2.000000 -373.973499 -399.154423 459
5.000000 3.000000 -364.722211 -215.544102 1090
5.000000 4.000000 -359.473372 -191.456421 835
5.000000 5.000000 -352.054112 -200.105980 609
6.000000 2.000000 -360.779454 -264.582630 721
6.000000 3.000000 -360.448389 -273.858578 904
6.000000 4.000000 -343.358507 -150.069212 738
6.000000 5.000000 -346.892211 -121.916155 1120

Table 3.1 shows the result of this test and it is possible to see that a higher number
of states and gaussians provide a better recognition (a value closer to 0 indicate
better recognition). The recognition accuracy for HMM − 1good remains reason-
ably consistent for each state/Gaussian combination and shows only small im-
provements in recognition accuracy. However, HMM − 1bad had a huge increase
in recognition accuracy when it was trained for states ≥ 4 and gaussians ≥ 3.
Closer inspection revealed that HMM−1bad would produce positive log-likelihood
for some of its training data. However, all log-likelihood values should be less than
0 since any value greater than 0 would mean that the recognition accuracy was
over 100%. The cause of positive log-likelihood may be due to the variation of
values in the training data for HMM − 1bad[10] which ranges from 290 to 512
and prevents HMM − 1bad from being trained properly. HMM − 1good produced
negative log-likelihood values for all combinations of states and gaussians, and
it is possible that the number of states and Gaussians may be increased even
further to produce even better recognition. However, to keep the models equal
we decided to create the HMMs with 4 states and 2 weighted gaussians.

The total training time used to train both HMMs have also been included in Ta-
ble 3.1. This is to show that training time increases when the number of states
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and/or weighted Gaussians increase. However, training time should not be an
important factor when choosing the number of states/weighted-Gaussians since
the HMMs only need to be trained once.

When deciding on the number of states is it also important to consider that over-
fitting might occur. Over-fitting will happen when a HMM is given more states than
what is necessary to properly learn the data. An over-fitted HMM might adjust to
very specific random features of the training data[2].

A similar approach was taken when training HMMs on the generated data. How-
ever, for this dataset four different HMMs were created to represent four different
health states. Each HMM had 4 states and 3 weighted gaussians. Values less
than 30 were decided to represent the good state, values from 30 to 35 were
decided to represent the medium-good state, values from 35 to 40 represents
the medium-bad state, while values larger than 40 represents the bad state. The
training vectors as well as the different training areas are shown in Figure 3.6.
The four different HMMs trained for this dataset will be referred to asHMM−2good,
HMM − 2medium−good, HMM − 2medium−bad, and HMM − 2bad.
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Figure 3.6: Shows how the data was divided when HMMs were being created for
the generated data.

Only two of the four generated data vectors was used to train the HMMs for the
generated data. Two training vectors, where each training vector represents a
complete component life cycle, is the minimum amount of training data required
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to be able to perform future state prediction. If only one life cycle of observations
was present, the only prediction that could be made about future state transition
points is the same state transition points as the one in the available training data.
A minimum amount of data (two vectors)) has been used simply because it is
seldom possible to obtain a lot of data for creating CBM systems, and training
HMMs.

3.3 Anomaly detection, current state detection, and
future state prediction

When the HMMs had been trained it is possible to use them to perform anomaly
detection, detect which state the system is currently in, and estimate the remain-
ing useful life of the system by predicting future state transitions.

When performing anomaly detection and current state detection only the electric
motor temperature data will be used. The reason for this is that the temperature
data represents data from a real mechanical system and the method for perform-
ing anomaly detection and state recognition will be the same regardless of which
dataset is used.

For future state prediction the generated data will be used to show how prediction
can be performed. The reason for this is that future state prediction is best to
perform on measurements that show a more gradual approach toward system
failure, preferably through several different health states.

3.3.1 Anomaly detection

When analyzing data from a mechanical system, anomaly detection refers to dis-
covering data which no HMM has been trained to recognise. When a HMM is
presented with an observation vector, it is possible to determine the probability
that the observation vector “belongs” to the HMM by using the forward-algorithm.

To show this HMM − 1good will be used. This will represent that the only training
data available is the data that show when the system is in good health. HMM −
1good will be presented with observation vectors containing 60 observations. The
first observation vector will contain measurements 1 - 60, the next observation
vector will contain measurements 2 - 61, and so on. The observations are taken
from the temperature measurements that were not used to train the HMM.

Figure 3.7 shows the log-likelihood that the received status data belongs to
HMM −1good. In the beginning only good status data is received, this is shown in
the figure since the likelihood is closer to 0. In this case a value of 0 would mean
that it was a 100% chance that the received data belonged to HMM−1good. How-
ever, when HMM − 1good starts receiving data that would indicate that something
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is wrong the likelihood drops. Once the likelihood drops below a predefined value
it is possible to say that the system is not in good health any longer. However,
once the likelihood is below this predefined value it is not possible to say what
kind of state the system is in, it is only possible to say that it is no longer in the
good-health-state.
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Figure 3.7: The log-likelihood that the received status data belongs to HMM −
1good.

Anomaly detection is performed in the same way if a single HMM has been trained
to recognize data. The HMM is presented with a series of observation vectors
and once the HMM receives data which it has not been trained to recognize, the
log-likelihood will drop in the same way as in Figure 3.7.

3.3.2 State detection

It is possible to determine the state which the system is currently in once several
HMMs have been trained. To show how state detection is performedHMM−1good

and HMM − 1bad will be used.

In this case both HMMs will be presented with observation vectors containing
60 observations. The first observation vector will contain measurements 1 - 60,
the next observation vector will contain measurements 2 - 61, and so on. The
observations are taken from the data which was not used to train the HMMs.
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Since both HMMs are presented with the same observation vector it can be said
that they are competing against each other. The log-likelihood will be used to
determine which of the two HMMs is the winner. The HMM which produces the
best log-likelihood (i.e. closest to 0) is declared to be the winner, and the system
is declared to be in the state which the winning HMM represents. However, even
after the winner is declared it is not 100% certain that the system is in the state
which the winning HMM represents. The winner of the log-likelihood competition
only determines the most likely state which the system is in.

Figure 3.8 shows how the likelihood for each state changes over time. After a
certain timeHMM−1bad will produce a likelihood that is better thanHMM−1good.
Once HMM−1bad produces the best likelihood, it is declared that the system has
gone from state good to state bad. The state transition point is the point in Figure
3.8 where both likelihood trajectories intersect each other.
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Figure 3.8: The likelihood is used to determine when the system goes from good
to bad. Observations are taken from the electric motor data that was not used to
train the HMMs.

It is possible for the log-likelihood trajectories to intersect multiple times (due to
noisy measurements or other factors), especially in the area where the state tran-
sition takes place. For this test we have decided to record the first point where
the likelihood trajectories intersect, and from this point onward the system will be
declared to be in the bad-state.

If current state detection is being performed on a system were all health states

31



is being represented by a single HMM, then it is not possible to determine the
current state by holding a best log-likelihood competition. However, the Viterbi
algorithm is designed to take a series of observations, and determine the state
sequence that best fits with the given observations. By using the Viterbi algorithm
on the available observations, one will obtain the single best state sequence that
best describes the observations. In other words, the Viterbi algorithm will give a
sequential list of the health states that the observations represents.

For a single HMM trained on the same data as HMM−1good and HMM−2bad the
state sequence received from the Viterbi algorithm might not just consist of two
states. Since the single HMM will require several states and weighted gaussians
to be able to learn the system properly. Because of the possible requirement
of several states in the HMM then each health state is probably represented by
several states. This is something that has to be handled during creation of the
HMM.

When using several HMMs where each HMM represents a single health state, the
number of states in each HMM is not interesting. The only thing that is interesting
is how well the HMMs can recognize the data that corresponds with the health
state that it is supposed to represent.

3.3.3 Future state prediction

The aim of future state prediction is to estimate when the system is going to
change from one state to another. It is impossible to predict the exact moment
when a system is going to change states. However, it should be possible to give
a reasonable estimation about when the system can be expected to go from one
state to another[5]. It is also possible to estimate a probability that indicates the
chance that the system is going to change states in a certain amount of time.

Future state prediction is done by estimating the state transition point to the final
state. In this case we will assume that the final state transition is the one of in-
terest since the component will be in need of repair once the final state transition
point is detected. However, if the last state transition point is not the one of in-
terest the proposed method can be used to estimate all future state transitions.
A weakness of the proposed state prediction method is that the first state transi-
tion needs to be recorded before a prediction can be made. This is because the
prediction method needs some information from the system to determine the final
state transition point.

The future state prediction presented here is the same that is used in[5]. The
proposed prediction solution in[5] uses a method that can predict the final state
transition point, while using all previous transition points to adjust the prediction.
However, in this case a lot less training data is used, and we will show how this
will effect the prediction.

To estimate state transition points it is first necessary to find the state transition

32



points from the training data. These points are determined in the same way that
current state prediction is made. Figure 3.9 and Figure 3.10 show the log-
likelihood trajectories for the generated data that was used to train HMM − 2good,
HMM − 2medium−good, HMM − 2medium−bad, and HMM − 2bad. In these figures
the state transition points are marked with a black line. By using these transition
points it is possible to give an estimated point indicating where state transition is
likely to happen. The state transition points are summarized in Table 3.2.
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Figure 3.9: State transition points for the first training vector.
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Figure 3.10: State transition points for the second training vector.

Table 3.2: The state transition times for all states from good to bad for the different
training vectors.

Training vector good→ medium-good medium-good→ medium-bad medium-bad→ bad
1 187 1120 2464
2 459 1695 2760

The basic theory about future state prediction is as follows: Lets assume that ob-
servation sequences are available from R similar units for the purpose of devel-
oping state detection and state prediction models. This will result in R estimated
vectors of state transition points, T = [S1, S2,. . . ,SR]. The fundamental assump-
tion is that T contains the necessary information to provide future state prediction.
The procedure is as follows. Start with the assumption that T follows some multi-
variate distribution. Once the distribution is assessed, the conditional probability
distribution for a specific state transition tSi→Si+1

given the previous state tran-
sition points (S1 → S2,. . . ,Si−1 → Si) can be estimated. The process can be
iterated in a recursive manner to make predictions regarding several sequential
state transitions[5].

Once the state transition points of the training data has been established it is
possible to model the joint distributions and conditional distributions that can be
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used to perform future state prediction. Since there are four different states, a
total of 3 state transition points are recorded for each training vector, namely
[tgood→medium−good, tmedium−good→medium−bad, tmedium−bad→bad]. With small datasets it
is best to treat them as normally distributed since the probability distribution can
not be determined easily, for large datasets the probability distribution may be
properly determined by extensive investigation. For determining the multivariate
distribution of our datasets state transition points, we will for the purpose of this
master thesis assume that they follow a Gaussian distribution, even though they
could potentially follow any kind of probability distribution.

After the distribution of the state transition points are determined, it is possible to
determine the joint distributions which are necessary for the estimation of param-
eters for the conditional distributions that can be used for future state prediction.
The joint distributions which are necessary are the following:

• [tgood→medium−good, tmedium−bad→bad]. This joint distribution allows the final state
transition point to be estimated once the first state transition point is de-
tected. As such this joint distribution allows us to estimate the parameters
for the following conditional distribution f(tmedium−bad→bad | tgood→medium−good).

• [tgood→medium−good, tmedium−good→medium−bad, tmedium−bad→bad]. From this joint
probability distribution it is possible to determine the parameters of the con-
ditional probability f(tmedium−bad→bad | tgood→medium−good, tmedium−good→medium−bad)
once tgood→medium−good and tmedium−good→medium−bad become known.

According to [5] one of the basic properties of the Gaussian distribution is as
follows: If X = [X1:X22] is distributed as N(µ,Σ) with µ = [µ1:µ2], Σ =

[
Σ11 Σ12
Σ21 Σ22

]
and | Σ22 | ≥ 0, then the conditional distribution of X2 given X1 = x1 is also a
Gaussian with a mean vector of µ2 + Σ21 ∗Σ−1

11 ∗ (x1−µ1) and a covariance matrix
of Σ22 + Σ21 ∗ Σ−1

11 ∗ Σ12.

The above property can be used to find all conditional distributions of interest.
For this thesis the most interesting conditional distributions are f(tmedium−bad→bad |
tgood→medium−good) and f(tmedium−bad→bad | tgood→medium−good, tmedium−good→medium−bad),
however, all state transitions can be determined in this way. Only two conditional
distributions will be considered since they will attempt to predict the last state tran-
sition. The last state transition is of most interest since it can be used to determine
when the system need maintenance (i.e bad-state = useless component)[5].

Figure 3.11 shows the necessary parameters which must be determined before
the conditional distributions can be estimated. For details on how to determine
the parameters in Figure 3.11 from the state transition points estimated from train-
ing data see[8]. In Figure 3.11 X1, X2 and X3 are the gathered state transition
points from the available training data, while m1-m3 and std1 - std3 contain the
mean values and standard deviation for X1 - X3. U1 - u3 are the mean vectors
containing the expected values for X1 - X3. The covariance matrix in Figure 3.11
contain all covariance matrices for the state transition points X1 - X3. Together
all the values in Figure 3.11 contain all the necessary information to estimate
all the necessary conditional distributions that are necessary for predicting future
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state transition points. X1 - X3 contain all the information needed to estimate all
parameters in Figure 3.11.

X1 = [187,459] = state transition points for tgood→medium−good
X2 = [1120,1695] = state transition points for tmedium−good→medium−bad

X3 = [2464,2760] = state transition points for tmedium−bad→bad

m1 = 323, m2 = 1407.5, m3 = 2612
std1 = 136, std2 = 287,5, std3 = 148

u1 = [29.6685 , 386.1772]
u2 = [809.9 , 1426.6]
u3 = [390.9 , 2322.1]

Covariance matrix for X1, X2, and X3 =

Σ11 Σ12 Σ13

Σ21 Σ22 Σ23

Σ31 Σ32 Σ33

 =
3930 1530 5600 5640 8210 9200
1530 04460 13740 13840 20150 22570
5600 13740 69530 50650 73750 82610
5640 13840 50650 60630 74300 83220
8210 20150 73750 74300 681840 121170
9200 22570 82610 83220 121170 161320


Each Σxy in the Covariance matrix is in this case a 2x2 matrix, and each u is a
2x1 vector. The sizes of these would grow if more state transition points were

available.

Figure 3.11: Necessary parameters for estimating the parameters for conditional
distributions which can be used for future state prediction.

Based on the information shown in Figure 3.11 the necessary conditional distribu-
tions are created. The conditional distribution f(tmedium−bad→bad | tgood→medium−good)
will have a mean vector ofu3 + Σ31 ∗ Σ−1

11 ∗ (T1 − u1) and a covariance matrix
of Σ33 + Σ31 ∗ Σ−1

11 ∗ Σ13 were T1 is the first state transition point from a new
vector of observations. The second conditional distribution, f(tmedium−bad→bad |
tgood→medium−good, tmedium−good→medium−bad), will have a mean vector u3 + Σ32∗Σ−1

X1|X2∗
(T2−M2) and a covariance matrix Σ33 +Σ32 ∗Σ−1

X1|X2 ∗Σ23 were M2 and ΣX1|X2 is
the mean vector and covariance matrix for the conditional distribution f(tmedium−good→medium−bad |
tgood→medium−good) and T2 is the second state transition point from a new vector of
observations. The mean vector and covariance matrices for both conditional dis-
tributions is shown in Figure 3.12.
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f(tmedium−bad→bad | tgood→medium−good)

estimated mean vector = [390.9 , 2322.1] +
[
0.3828 4.3853
0.4287 4.9121

]
* (T1 - [29.6685 ,

386.1772])

estimated covariance matrix =
[
773360 223680
223680 276150

]
f(tmedium−bad→bad | tgood→medium−good, tmedium−good→medium−bad)

estimated mean vector = [809.9 , 1426.6] +
[
0.24510.4950
0.27450.5545

]
* (T2 - ([390.9 ,

2322.1] + Σ31 ∗ Σ−1
11 *(T1 - [29.6685 , 386.1772]))

estimated covariance matrix =
[
112060 93500
93500 103800

]
Figure 3.12: Estimated parameters for the conditional distributions that will be
used to predict the final state transition.

It should be possible to see that the parameters in Figure 3.12 takes into ac-
count the transition points that are observed from new observations when making
prediction, and that f(tmedium−bad→bad | tgood→medium−good, tmedium−good→medium−bad)
takes into account both T1 and T2 to adjust the prediction. It can also be seen
that only the mean vectors of the different conditional distributions are dependent
on new observations. The covariance matrices can be calculated entirely from
the training data.

When performing future state transition point prediction more states will lead to
a more accurate prediction, since more information will be used from the com-
ponent under investigation[5]. The prediction will give a result as X-number of
observations until the final state change. Because of this it is necessary to know
how often observations are made (i.e. every second, minute or hour).
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Chapter 4

Results and analysis

In this chapter the results of the tests that were performed with regards to anomaly
detection, current state detection, and future state prediction will be presented.

4.1 Anomaly detection

The first test was using a trained hidden Markov model (HMM) to perform anomaly
detection. HMM − 1good was presented with observations and the log-likelihood
was recorded as new observations were presented. Figure 4.1 shows the recorded
log-likelihoods as well as the areas where it can be said that anomalies were de-
tected. The first two anomalies was consistent with drops in temperature from
the measured data. Someone with expert knowledge about the system might
have been able to say if the two first anomalies was something that should have
been investigated more closely as possible errors or indicators about future er-
rors. However, without such knowledge we will assume that these anomalies are
part of normal operating conditions.
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Figure 4.1: The results of anomaly detection performed on HMM − 1good.

The third (and last) anomaly in Figure 4.1 comes from the data that was desig-
nated as bad. The log-likelihood goes through a short and slow decent and then
plummets down. Based on the result presented in Figure 4.1 we will draw the
conclusion that using HMMs as a way of performing anomaly detection is a viable
option for CBM systems. Even when there is limited training data it should still be
possible to perform anomaly detection in a satisfactory manner. However, without
expert knowledge several anomalies might might be classified as part of normal
working conditions, rather than possible errors or future error indicators.

For training a HMM to perform anomaly detection little training data is required.
However, there should still be some knowledge about what kind of health-state(s)
the delivered data represents. Since there are limited amounts of training data
available for anomaly detection systems there should be better access to expert
knowledge to better determine the cause of the anomalies that are detected.

4.2 Current state detection

When detecting the current state of the electric motor both HMM − 1good and
HMM − 1bad was used. This test attempted to determine whether the two HMMs
manages to accurately determine the current state of the system. Both HMMs
were presented with the same observations and based on the log-likelihood that
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each HMM produced it should be possible to determine the current state of the
system. In this case the current state also determines the current health, were
HMM − 1good indicates good health and HMM − 1bad indicates bad health.

The log-likelihood trajectories in Figure 4.2 shows how the log-likelihood of each
HMM changes as new observations comes in. It is evident from this figure that
the log-likelihood of HMM − 1good is much more stable than the log likelihood of
HMM−1bad. The reason for this is that the training data for HMM−1bad includes
several measurements in the range of 300-350 which is exactly the same as most
of the training data for HMM − 1good.
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Figure 4.2: The log-likelihood is used to determine when the system goes from
good to bad. Observations were taken from the vector that was not used to train
the HMMs.

Based on the log-likelihood intersection in Figure 4.2 the electric motor went from
state-good to state-bad at observation 77866. However, when taking a closer
look on the actual observations, the actual state transition should have happened
around the 77029th observation. This means that the state transition was delayed
by about 800 observations. Since the observations were taken at 1 minute inter-
vals this means that the state transition was reported about 13 hours late. This is
most likely caused by the division of training data. If HMM − 1bad had been given
more concentrated training data the result would probably have been better.

Based on the results presented in Figure 4.2 we can say that HMMs are defi-
nitely suited to perform current state prediction, however, the training data will
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have to be divided better between the HMMs which will perform state detection.
The amount of training data must then also be sufficient to allow all HMMs to be
properly trained to recognize data belonging to them.

A test was conducted to see if 3 HMMs could be trained on the same training data
to see if this would improve the current state detection. HMM −1good was trained
on the same data as before. However, HMM − 1bad received a smaller amount
of training data than before, while a third HMM (HMM − 1medium) was trained on
the remaining data. HMM − 1bad was restricted to only receiving training data
with values larger than 400, while HMM − 1medium was only given training data
with values smaller than 300. Prior to this test there was not performed any test to
determine the learning accuracy based on combinations of states and Gaussians.
Instead all 3 HMMs were created with 4 states and 2 weighted Gaussians, exactly
as when the first state detection test was performed.

The log-likelihood for the 3 HMMsHMM−1good, HMM−1medium andHMM−1bad

is shown in Figure 4.3. According to this test HMM − 1good performed exactly as
in the first test (as it should since it had the same training data). HMM − 1bad

also performed much better this time. The detected state transition point to the
bad state was recorded at point 80205 which is exactly the place where the first
recorded values over 400 took place. However, HMM−1medium performed poorly.
The first point were HMM − 1medium had the highest log-likelihood was at the
77727th observation. However, the first recorded value which was less than 300
was at the 77029th observation.
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Figure 4.3: Log-likelihood values when 3 HMMs were trained to perform state
detection. Reported log-likelihood values of -Infinity has been substituted with
-35000 to reduce cluttering in the graph.

From the results of the second state detection test it seems as though more
care has to be made when dividing training data between HMMs. Even though
HMM − 1bad managed to detect the exact point where values over 400 were first
recorded, the error that HMM − 1bad had from the first prediction test seems to
have been shifted to HMM − 1medium. Perhaps introducing even more HMMs to
represent even more health states might help to reduce the state detection error.

The reason that HMM − 1bad performed so much better in the second test is the
reduced variation in training data. During the first test HMM − 1bad had to be
able to recognize values ranging from 290 to 512. However, in the second test
HMM − 1bad only had to recognize values higher than 400.

As a last test to see if the state detection would become better if the variation in
data values was reduced, we standardized the data to reduce the variance be-
tween values. However, this only reduced overall state detection accuracy since
the data became too similar.

For this particular dataset, it might also be the case that current state detection on
such datasets with huge variations in measured values, as the electric motor data,
might be performed better with just a single HMM which have been trained on the
entire dataset. However, this option has not been tested due to time constraints.
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4.3 Future state prediction

When the future state prediction was tested, only the generated data was used.
The prediction method presented in[5] was tested for two different observation
vectors. One vector was similar to the training data, while the other vector was
designed to be longer and have more time between state transition points. The
test for the future state prediction is how well it manages to estimate the final
transition point.

The state transition points for the first test vector is shown in Figure 4.4 and was
obtained by using the current state detection method. The state transition points
of the first test vector was as follows:

• First state transition point tgood→medium−good = 289.

• Second state transition point tmedium−good→medium−bad = 1367.

• Third (and final) state transition point tmedium−bad→bad = 2607.
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Figure 4.4: State transition points for the first vector used for future state predic-
tion.

Once the first state transition point was recorded it was possible to make a pre-
diction about the final state transition point. The first possible state transition
prediction is shown in Figure 4.5. The figure shows the first recorded transition
point as well as the predicted final state transition point (tmedium−bad→bad). The
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prediction will be the most inaccurate of the two predictions as it only takes one
previous state transition into account. The first prediction estimated that the final
state transition point would be at observation number 2022, while the actual state
transition occurred at observation number 2607.

It is not expected for any of the final state transition predictions to be able to
exactly estimate the correct state transition points. However, the early predic-
tion gives a rough estimate as to when the final state transition will occur, and it
should only be interpreted as an rough estimate of the remaining useful life of the
component
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Figure 4.5: The estimated state transition interval when the first state transition is
detected.

After the second state transition point has been detected it is possible to make a
more accurate prediction about the final state transition point of the component.
Figure 4.6 shows the final state transition estimate when both tgood→medium−good
and tmedium−good→medium−bad have been recorded. In this case the prediction is
more accurate and it is clear that more information about previous state transition
points will increase the prediction accuracy.
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Figure 4.6: The estimated state transition interval when the second state transi-
tion is detected.

Figure 4.7 shows both prediction graphs and their estimated transition points. It
can be seen that the second prediction graph is more focused(i.e. the prediction
interval is narrower). However, the bell curve of each graph is still to wide to offer
much meaningful information about the final state transition point. With access
to more training data the prediction intervals, represented by the bell curves in
Figure 4.7, may change to be narrower and thus offer meaningful information
about the final state prediction. For example if it could be tested and proved that
most observations would fall within one standard deviation of the estimated mean
it would be possible to narrow down the expected state transition point even more.
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Figure 4.7: Comparison of the two different state transition distributions.

The second test vector was designed to spend more time between each state
transition. This was done to test the prediction method against an observation
which was radically different from the data used to estimate the initial state pre-
diction parameters. The state transition points are shown in Figure 4.8. The state
transition points are also shown in the following list:

• First state transition point tgood→medium−good = 620.

• Second state transition point tmedium−good→medium−bad = 2808.

• Third (and final) state transition point tmedium−bad→bad = 5243.
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Figure 4.8: State transition points for the long future state prediction vector.

When performing final state prediction on second test vector, the state transition
estimation procedure did not even come close to predicting the final state transi-
tion point. It is clear that the final state transition estimation relies heavily on the
state transition points offered by the training data.

The prediction which only relied on the first transition point tgood→medium−good is
shown in the top half of Figure 4.9. In this case the predicted final state transition
point was 3429, not even close to the actual value of transition point of 5243.

The prediction which relied on both tgood→medium−good and tmedium−good→medium−bad
did not make a more accurate prediction in this case. The estimated state transi-
tion point and corresponding bell curve is shown in the bottom half of Figure 4.9.
The predicted final state transition point in this case was 3392, which is far from
the actual state transition point of 5243.
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Figure 4.9: Comparison of the different prediction distributions for the long future
state prediction vector.

Based on the two different prediction tests it is possible to say that the chosen
method of estimating state transition points require a lot of varied training data, to
be able to produce somewhat accurate results for observation vectors of different
length.
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Chapter 5

Summary, conclusion and
contribution

In this chapter we will present a short summary of all the work that has been
performed, review the results of our tests, and draw the final conclusion of our
work. We will also write about the contribution this work can bring to the field of
Condition Based Maintenance and hidden Markov Model.

5.1 Work summary

During this the work on this thesis several hidden Markov models (HMM)) have
been trained and tested in performing different tasks related to Condition Based
Maintenance (CBM). All tests that have been performed have made use of a
minimum of training data and expert knowledge about the system which the data
represents.

The first test tested how well a HMM could detect anomalies in system measure-
ments. The second test was determining how well two HMMs could detect the
current health state of an electric motor. The third and final test tried to determine
how well HMMs could estimate when a system was going to fail.

5.2 Results

In this section we will take a brief look at the results from all tests that were
performed.
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5.2.1 Anomaly detection

A single HMM was presented with temperature measurements which were taken
from an electric motor. The HMM would respond to the presented observations by
giving a log-likelihood estimate of how well the measurements were recognized by
the HMM. Based on the log-likelihood values it was possible to detect anomalies
that occurred in the data.

As long as it is possible to determine a certain log-likelihood value that would
mean that an observation does not belong to a given HMM, it is entirely reason-
able to say that HMMs are able to analyse data and detect anomalies that may
occur. By combining the anomaly detection with expert knowledge about the sys-
tem it is possible to define errors that have occurred. When errors are found and
the reason behind the error is established it is possible to train new HMMs that
can detect these errors in future measurements.

Anomaly detection will usually require less training data since so few states have
to be identified. However, even though less training data is required there is a
greater demand for access to expert knowledge about anomalies that are de-
tected.

5.2.2 Current state detection

During this thesis two HMMs were trained to detect two different health states
in the electric motor. If expert knowledge had been available then it might have
been possible to define more error states and train more HMMs to better classify
the current health-state of the system.

By dividing the system into only two health states one of the HMMs was given
data that would make it able to determine the good-health-state (HMM − 1good)
with good accuracy. However, the HMM that was going to recognize data that
would indicate that the system was in the bad-health-state (HMM − 1bad) did not
manage to recognize the data in a good manner. The reason for this is that the
huge variation in values in the training data made it difficult for HMM − 1bad to be
properly trained to recognize the data. By reducing the amount of training data
to only include measurements which had similar values it was possible to make
HMM − 1bad detect errors more accurately.

When the training data was reduced for HMM−1bad, a completely new HMM had
to be trained to attempt to recognize the data which was removed from HMM −
1bads training set. The result of this was that the low detection accuracy which
had previously existed in HMM − 1bad was now moved over to the new HMM
(HMM − 1medium).

It is possible that the low classification accuracy could be eliminated completely
by training more and more HMMs. However, by training many HMMs one would
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end up with many HMM which may not be able to tell something useful about the
health-state of the system.

The form of the data used for this test could indicate that it would have been better
to only train a single HMM on all the available training data. However, since the
single HMM approach has not been tested, it is impossible for us to say wether
this would have worked properly or not. It is possible that it would have been
difficult to properly train a single HMM to recognize the different health states in
an accurate manner. However, without performing any tests no conclusion can
be drawn on the current state recognition of a single HMM.

The approach of using several HMMs to recognize different health states in the
electric motor data seems to be unsuccessful. Using multiple HMMs to detect
health states seem to work best when the data shows a more gradual approach
to-wards system failure.

5.2.3 Future state prediction

The future state prediction presented in this thesis attempts to predict the state
transition points of a component. The HMMs and probability distributions which
were necessary for state transition prediction were created from only two training
vectors worth of observations. When creating this system for state transition point
prediction two different training vectors is the minimum that can be used.

The prediction was tested on two different observation vectors containing a dif-
ferent number of observations. The first prediction test vector contained 3000
observation (the training vectors also had 3000 observations each), while the
second prediction test vector contained 5000 observations.

The prediction on the first test vector was shown to be reasonably accurate. The
final state transition point could be estimated to be within 200 observations of the
actual state transition point.

The prediction on the second test vector could not even come reasonably close
to an accurate prediction. The best prediction was that the final state transition
would occur at observation number 3429 while the actual final state transition
point was at observation number 5243.

The ability to predict state transition points seems to be heavily restricted by the
amount of available training data, and the variation of state transition points con-
tained in the training data. If each component can be expected to last for about
the same amount of time then this prediction method might work well. However,
if a new component has an extremely long lifetime then the prediction system will
have difficulties handling this.

If the generated data had been partitioned to include more health-states, then
the prediction might also have worked for the second test vector. This is due to
the fact that the state transition prediction becomes more accurate when more
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information is used from the component being analyzed (i.e. more state transition
points are used as part of the prediction).

If the observations are made at irregular intervals, then the state transition point
estimation may also become more inaccurate. This is due to the fact that the
estimated transition point is represented as an observation number were the state
transition is likely to take place. If the time from current-observation to estimated
transition point can not be accurately estimated, then the estimated transition
point will become even more inaccurate.

5.3 Conclusion

During work on this master thesis we have created several HMMs and tested
them in their ability to perform several tasks related to CBM. These tasks included
anomaly detection, current state detection and future state prediction.

Using HMMs for anomaly detection has been shown to work well. Together with
expert knowledge about a mechanical system it should be possible to identify
anomalies in measured data, and classify new errors which the system might be
able to detect at a later time.

The proposed approach to current state detection has been shown to have some
weaknesses when used on data that has sudden, large changes in value. A single
HMM approach might be more suitable for use on this kind of data. Alternatively,
if more training data could be gathered to better train the HMMs to recognize
the different health-states represented in the data, then the multi HMM approach
might also be successful.

The examined method of future state prediction has been shown to not perform
so well when little training data exists. However, if a lot of training data is present,
and the data can be divided into many different health-states then the examined
prediction method might also be viable. In the context of this thesis, were one of
the objectives was to use little training data, we would say that the examined pre-
diction method is not viable if the lifetime of different components can be expected
to vary a lot.

5.4 Contribution

We have demonstrated a way of using HMMs in the context of different CBM
problems. While working on this thesis we have tested the HMMs ability to detect
measurements that differ from the previously seen values (anomaly detection),
classify different measurements (in the form of health states), and predict future
development of a system. All this has been tested with a minimum of available
training data.
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We have shown that HMMs can be used to analyze sensor data, classify wether
the data is known or unknown, and predict further development based on previ-
ously observed data. Hopefully this work can contribute to further research into
the possible uses of hidden Markov models and their uses and limitations for
analysing different kinds of data.
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