AJM UNIVERSITY OF AGDER

Design a WLAN Mini Access Point in the
Android Platform

By
Huagiang He and Xiaowen Guo

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree Master of Science in
Information and Communication Technology

Faculty of Engineering and Science

University of Agder

Grimstad
May 2010



Design a WLAN Mini Access Point in the Android Platform :‘ ERICSSON

Abstract

Mobile as a computing platform is becoming more amate popular. The amount of such devices
shipped every year is growing rapidly, more thah Hillion in 2009. At the same time the WLAN is
being widely adapted at various locations like cas@s, meeting rooms, stations, etc. Currently @&imos
all smart phones come with the support for the WLAMwever, most the mobile devices can only
behavior as a client in the WLAN. It would be a erkable feature if the mobile device is able to
function as an Access Point (AP) and a modem wfidolkards data between the 3G network and the
WLAN. Android designed for handheld devices hasobee a popular and powerful platform in both
the industry and amateur developer community. Rthsthere is no WLAN AP mode supported in the
Android platform, therefore it's an interestingkder us to implement such a function.

We start with studying the software Afdstapd . We set up a WLAN witthostapd running in a
Ubuntu Linux platform, instead of a hardware AP. @®yjng this we figure out the elements needed to
achieve the software AP functionality. Next we explthe Android building system, understand the
mechanism the building system works, and learniting add new modules that we prepare to add into
the platform. With these basics we take all thenelets needed into Android source code hierarchy and
build them into the final executables. Testing saaee given both in Ubuntu Linux platform and the
Android platform. To make the user experience betie design an application in the Android platform
for controlling the AP built frommostapd and other components.

Through the process we have done many experimadtfi@ae gained rich experience and knowledge
in the Linux operating system, Linux wireless impéntation, wireless drivers, Android building
system, and Android application development. Sorhethem are enhancement to the existing
knowledge in various websites, and some are neall the members in the development community.
These are all recorded in the thesis. For the festing we succeed in both steps. First, the perg
stations can discover the AP in the Android plaitf@and all stations are able to connect to it. Tlere
no difference between connection to the AP in thedraid platform and connection to a normal
hardware AP device. Secondly, the data packetsugeessfully transmitted between stations, which
means there is no barrier in the AP in the Andpd&tform for providing data service. From the viefv
networking layering, we conclude that we succedabii link layer and application layer.



ﬁ e 9. ST
Design a WLAN Mini Access Point in the Android Platform -J. ERICSSON

Preface

This thesis project concludes our two-year magigtysprogram in Information and Communication

Technology at University of Agder, Grimstad, Norwaje work is organized in the course of IKT 590,

with the credit of 30 ECTs. This project is propd®y ST-Ericsson Norway. It began on 1 January
2010, and ended on 25 May 2010.

First, we would like to thank our external supeovis Roger Frgysaa and Andreas Ludviksen in
ST-Ericsson, for providing us valuable technicalieel and assistance. They constantly direct us the
focus of our ongoing work to keep our project o thight track. Also they give us extensive
suggestions on the solution of practical problegezondly, we would like to thank our project mamage
Jonny Ervik in ST-Ericsson, for supporting us wittmfortable office and required equipments.

Additionally, we would like to thank our internaligervisor Frank Li at University of Agder, for
promoting our work forward so as to guarantee oarkwcompleted on schedule. Also he gives us
valuable comments on thesis composing, which gréarove our quality of writing.

All in all, we appreciate everyone’s positive aities and efforts, which make our work process well
and fulfilled.

Grimstad, 25 May 2010

Huagiang He iadven Guo



Design a WLAN Mini Access Point in the Android Platform -J‘ ERICSSON

Table of Contents

SR 1 1 0o [T f o o SR 1
1.1.  Background and MOtIVALION...........ceuuuii e e e e e e e e s 1
O S (o] o =T 4 IR ] ¥ 1= 0 0 =T o SR 1
1.3.  Contribution t0 KNOWIEAQE ........cvuuniiiiie e e et ee e e e e e e ee e e eeaes 2
S 1Y o o] {0 - T o PR 2
1.5, TRESIS SHIUCTUI ...ttt e e e e et e e e et e bbb e e e e e e e e 3

P o o =T oo [ o T I T ) USRS TURU PP 4
2.1, SOFIWAIE AP M LINMUX..etttiiiiieieee ettt e e et e ettt e e e e e e e e e eeeeeabenean s 4
A Yo (=Y 4 T T o o1 (= Tod (1 (- 5

2 T o o) = T o To PSPPI 6
2.2.1.1.  Drivers @and WLAN Card ........coooeiiiiiiiiiiiiae et 6
2.2.1.2.  Security mechanisms in hostapd.............ccceeeeriiiiiiiii e eeeean 8
2.2.1.3. Compiling configuration file .............c.coiieriiii e 9
2.2.1.4.  Running configuration fil@ ..............coiitmmmmmeri e 10

2.3.  An example for hostapd building in Ubuntu 9.10 8FBt.........c.cvviiviiiiiiieiee e 10

2.3.1. Compiling hostapd with a minimal configuration.................ccccoiiiiiiiiiin e 11

P2 T = 1 T [ TN U 111 P 11

P2 T T = T [ TSI =1 (| o 12

2.34.  WIreleSS ULIITIES ...coeee e e e e e e ee e e e e e e e e aaeeeeees 12

2.3.5.  Running hostapd in UDUNTU ..........coiiiiiiiiccee e e e e 13
2.3.5.1. TeStiNg €NVIFONMENT .......uiiiiiiiii e e eecemmmm e eeeis e s e ee et eeeeete s e e e eesaas e e eennaeeeeenes 13
2.3.5.2. Configuration file...........coiiiiiiiii e 13
A T T T -1 1oV TR 14

3. ANdroid BUITAiNG SYSLEM .......oiiee et nre s 19

1 Y o To | {0 T =TT 0 o= oo Lo [ P 19
3.1.1. ToOIS WOrking ON SOUICE COOE .....cccuvun i ieeememeeeeiieeeeeeete e e e e ettt e e e e e et e e eenna e eeeneans 19
3.1.2.  Source code DranChes ..........oooi oot 19
3.1.3. Downloading the SOUICE COOE .........uuiiiiiceeme e ere e eaaans 19

3.2.  Build environment on Ubuntu platform ........ .o 21
3.2.1.  Ubuntu LiNUX (32-Dit X86) .......uiiiiiiieii s e e e et e e e e e e eeanes 22

G0 T O 0 X1 o 1 4 11T SR 23

3.4. Cross compiling tool chains for Android in UBUNBSEM ........cooooeiiiiiiiiiiiiiee e o 23
R 0 ot N O o 11 oto 1 ] o1 [T o AN = 23
3.4.2. CroSS INKEE ...t e 24

3.5. Build variables and build ProCeSS .........cooemmiiiii e 24
3.5.1. Build for a NEW ProdUCT .......ccoiiiiii e e eeran e e e 24
3.5.2. Default settings and bUild PrOCESS.........cemmmmreeiiiiieiiiiii e e v 25
3.5.3. Adding a new packages for building ..........ccccoeeiiiiiiiiii 25

3.5.3.1. Template makefiles in the building SYStemM ...ccccceeiviiiiiiiiiiiii e, 25
3.5.3.2.  Adding a new module and writing the Android. MK .......coovvieiiiiiiiiiiineniin, 27

L T © 10 | o 1= Tox (] Y2 28

3.7. Details about other directories like system anthpite..............cccooeiiiiiii i e 28
T 0 B =4 (=] 1 0= 1o L1 (=T oY/ SRR 28
T A o (=1 1N 11V LT =Y (o] VPPN 28
T A TR oTo o] r= 1 o] (=Y A [T =Yt (o] o V28PN 29

VAR S To S =T oo T 0 12N oo [ o1 o H ST SPRPSR 30



Design a WLAN Mini Access Point in the Android Platform -J‘ ERICSSON

4.1. Configuration for building hostapd............ccooieiiiii e 30
N O o 1T o 1] T AN g T [0 T 31
4.3. Configuration for building lIDN1............omm e 32
4.4, Configuration for building bridge-uUtilS .........ccoooiiiii i 33
4.5, Wireless card and the driVEL ..........ooo oo e e 35
4.6. Launching hostapd with configuration file..............cooiii i 37
TN I = | o TP P U T PRI 39
LN B b o T (=T N 1= 1S U PP 39
L =1 i To =T 1Y/ o .41 o | PSP 39
LIRS T L= 411V ] (o] 010 ] 0T |V PPN 40
5.4.  Setting UP the NEIWOIK.........uiiiiiiii e e e e e e re e s et eeeana e e e eeae 40
5.4.1. Running hostapd and connecting the hOStS ......cceviiiiiiiiiciiii e, 40
5.4.2.  Configuration 0f NOSES ......iiiiiiii e 42
5.5.  Packets tranSMISSION ........uuii i ceeee e ee e e et e e e e et e e e e e e e e e e aaa e e e e eata e aaeeaes 43
T o L= T U] L= T T= 1] PR 44
O U 1 = = ot SR 45
6.1. Android application frameWOrK .............i e 45
6.1.1. Four essential COMPONENTS ........ciuuuuiieeeeeeeeer e et e et e e e e e e e e e eaeaeeeees 45
6.1.2. Intent and iNtent filter .........uuni i e 46
6.1.3.  Android User interface deSigN ............iiiieiueeiiiiiiie e eeen e e e e 46
6.1.4. The AndroidManifeSt.Xml.........cociiiiiiiiii s cemmn e e e errn e e e 47
6.1.5. DeVelop With EClIPSE.......i i e e 48
6.1.6.  IMPOITANT APIS ...eeiii e e e e eaan 52
6.2. GUI design through hostapd control INtErfaCE. . vvvre i 53
6.2.1. Hostapd GUI deSign OVEIVIEW ........uuiiiiiiieieeeii i eee s e et e e et eeeereaeeaenan s 53
6.2.2.  Functionality design diagram ............oeeeceemmmeireiii e er e 54
6.2.2.1. Hostapd GUI SCreen deSIgN . .....icvveeiee i ieeeee e e ee et e e e e e e e eea s 54
6.2.2.2. Hostapd GUI USE CASE UESION .......ccuuu.n . e e eeeeetnneeeeeearinseeesesnnneesesnnnnns 56
6.2.2.3.  Hostapd control iNterface ..........oooeeiiiiceeeeen e e 58
6.2.2.4. Hostapd GUI Class deSIgN ........c.uuiiiiieiimmmmceeeeeeet e e e e et e e e e eeta e e e eereeaeeeaes 61
6.2.3. Implementation apPrOaCK ............uuuiiiiicceee e e 63
6.3. Ul design through hostapd configuration fil€ wee....cooooiiiiiii i, 66
SRC T I I o U= oo g Tod =T oo e [= 1] T | o 66
6.3.2.  Write an application to run hostapd.........cceeeeiiiiiiiin e 67
6.3.3.  Write an application to edit hostapd configuratid® ...............ccoooeveeiiiiiiiiee e 68
6.3.4. Comparison between tWO UESIONS ........iiveieemmmmmeeeieeeeeereeii e e ee et ereeei e e enaaeeeeees 70
7. CONIIDULIONS ...ttt 71
S T D 11 ol 1S o SR 72
8.1. How to run hostapd in the LINUX SYSIEM .. ..ccueeeiiiiiiciis e 72
8.2. How to understand the Android building SYStEMum ..o, 72
8.3. How to port hostapd from Linux to the Android SYBte..........ccoeevviiiiiiiiiiiin e 73
8.4. How to control hostapd from the application layer..........ccccoei i e, 73
9. ConclusionS and fULUr @ WOIK ........cueiueiiieieiiie et e e sree e s e e se e se e nre s 75
S = = 100 SO SSSSN 76
N ] 0= o [ SRR 77
Appendix B Android.mK of NOSEAPd ........ccoveiieiieiiece e 80



vee
[ M=
Design a WLAN Mini Access Point in the Android Platform -J‘ ERICSSON

Index of Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Figure 32

WLAN WIth DArdWAIre AP .......ee ittt e e e e eeeeenaaaes 4
WLAN With SOftWare APNOSIARd  .......vveiiriiiiieei e e eaaas 5
Software AP SYSteEmM arChitECIUIE ...........ccceeee e e e e e e e e 5
Hostapd implementation arChiteCture ............coovieeieiiiii e 6
LINUX WIFEIESS STACK ... .o 8
INtEIfACES IN UP SLALE.....cuii it ceeeeeee e e e e et e e e er e e e ert e e e e aaa s 14
Addresses configuration Of INEITACES ... e eeeeeiniieiei e e e 16
Hostapd running with its configuration file...........ccciiiii i 16
A Station CONNECT TO0SIAPA ....ciiveeiiiiieeiieee et e e e e e e e e e e e e e et e e et e eeeaaans 17
Hostapd discovered at vista host machinge..........cocueeeiiiiiiiiiii e, 17
Connection state of vista host machine.........cccccooiiiiiii e 18
Address configuration of vista hoSt MACINEG weeee o eevviiiiicecee e 18
ping google.com from vista host maching ... 18
donut-x86 branch source code overview at the 10P...........cccovviiiiiiiieiviee e, 20
Hostapd source code overview at the tOP ........uieeiceie i e 31
successful running dlostapd 1N ANAIOIA .........iiiiiiiii e 31
Source code overview ofnl  in the lib subdir ... 32
Source code overview of bridge utils at the t0P e ...vovve e, 34
successful running of bridge utils in ANAroid .cc....ooovvvviiiiiiii e, 35
Modules currently running in ANAroid .........ccccceviiiiin e 37
Hostapd launched with its configuration file in Android.............ccccoeviiviiii e 38
Network topology in the testing casehotapd in Android.............cccoeeiiiiiiiiiiiiiii 40
Eee PC boots from the USB stick and Android is fmN.............ooovvviiieeeieiiinineneannns 41
Hostapd iS running and stations are CONNECIEd ... cceeueeeiiiiiiin e 42
Available network interfaces in the ANdroid ... 42
Network address configuration in Sony Ericson Witldbile phone..........ccc.coovvviieees 43
ping Android host from WINAOWS VISta...........ooieiiiiniiiiii e 43
ping Sony Erricson W715 from WINdOWS ViSta ......cceeeceiiiiiiiiiiiiiiiii e 44.
Android tree-structured Ul [L4] ...... o iieiiceeee e e e e e e e e 47
A simple AndroidManifest.Xml file .........coooeemm i 48
Create an Android project With EClIPSE ......cceumeniiiiiiiiii e 49
Android project directory structure in ECliPS@ acccovvvvevvviiiiiiie e 49

Vi



00
ﬁ Design a WLAN Mini Access Point in the Android Platform -"’" ERICSSON
Figure 33 A simple layout xml file with two elements ... oeviiiiiiiiiiiiii e, 50
Figure 34  The screen result Of Fig. 33.. .o cccee e e e e e e e e 50
Figure 35  An example of Android €mMUIAtor............oicceeiii e e ee 51
Figure 36  Running result shown in the Android emulator ..............ccccoeeiiiiiiiie e, 51
Figure 37  Popup an external window usidédertDialog ClaSS ..o e 52
Figure 38  Hostapd GUI Main WINAOW .........ccoiiiiiiiiiiiiiiiimmmmm e e e eeai e eeeatasseeeeet e e eearsenaees 54
Figure 39  Network Setting WINAOW ............iiiiiiiiiiieei e e e e e e e eeeees 55
Figure 40  Authentication WINAOW.............cuuiiiiiiiceiee e eernn e e e raa s 55
Figure 41  Hostapd GUI adding WINAOW ............uiiiiiiiiiiiiie e e e e e e e 56
Figure 42  List view of currently connecting With the AP .o oeiieiii e, 56
Figure 43  Use case diagram for the AP .........coo oo 57
Figure 44  Use case diagram fapstapd GUI ........cooiiiiiiiiiiiiiiin s mmm et ee e 58
Figure 45  Sequence diagram fasstapd control interface.............ccccceeeveiviieeecein e, 60
Figure 46  Class diagram fafiostapd GUIL.........iiiiiiiiiiiiiiiiie e s smm e e e e e e e 62
FIgure 47 = JINI CAll PrOCESS .. ..oiiiii e eemmmm et e e e e e e e e e e e et s e e e e e e e e et e e e eeaneaes 64
Figure 48  Steps of writing and runninigelloWorld  program [10]..........ccccviiiiiriiiiiineeieeennnnn. 65
Figure 49  Result of running @ COMMANG ...............eummmmmmreeeriiireee e e e e ere e e eennns 68
Figure 50  Running result for editing conffile ...« eeeii i, 69

Vi



ﬁ e 0. ST
Design a WLAN Mini Access Point in the Android Platform ' -J. ERICSSON

Index of tables

Table 1 Wireless card suUppOrted BYstapd ...........ccoeeuuiiieireiiiiieieciinr e e e e e e eeeaen s 7
Table 2 Elements and functions in setting WindOW .....cccce.uuiiiiiiiiiini e 62
Table 3 Elements and functions in adding WINAOW .....cccccoeoivviiiiiiiiii e 63
Table 4 Elements and functions in Main WiNAOW.......cccoouiiiiiiiiiiiiiiiii e 63
Table 5 Methods and method description in CIBSECESS .......covvvviiiiiiiiieiii e 77
Table 6 Methods and method description in CIBEMtME ......cc.oooviiiiiiiiiiii e, 77
Table 7 Description of MethOdetASSEIS()  oovvvviiiii i e e e 77
Table 8 Methods and method description in clagsutStream  ........coceevieiieiiiee e, 78.
Table 9 Description of methodetHorizontallyScrolling() oo 78
Table 10 Description of methodetOnClickListener() .o e 78
Table 11 Description of methodpenFileOutput() .oooeeveiii i e 79

VIl






Design a WLAN Mini Access Point in the Android Platform -J‘ ERICSSON

1. Introduction

1.1. Background and motivation

Mobile as a computing platform is becoming more amate popular. The amount of such devices
shipped every year is growing rapidly, more theahHillion in 2009. At the same time WLAN is being
widely adapted at various locations like campuseseting rooms, stations, etc. due to its featufes o
low cost, fast deployment, and high data transmissfficiency. For now almost all smart phones come
with the support for WLAN. However, most mobile dms can only behavior as a client in the WLAN.
This means that such devices can just ask forstaiace via the AP, but cannot provide data sesvice
for other devices that have WLAN access capalilitijt in.

It would be a remarkable feature if the mobile devis able to function as an AP and a modem which
forwards data between the 3G network and the WLANeN a lot of fantastic things would become
possible and easy. For example, a WLAN can be sdtapy places where the 3G network is accessible
and a bunch of other devices with WLAN support cannect to the mobile device and enjoy the
Internet. Besides, if the WLAN is already availatie mobile device can also connect to the AP and
access the Internet. For future applications, ¢aéufe of AP capability in the mobile device carubed

to set up P2P networks in which the device at tebebsition to provide the Internet service cdteta
over the task of being an AP in the network.

Android designed for handheld devices has beconmpalar and powerful platform in both the

industry and amateur developer community. Presdhtye is no WLAN AP mode supported in the
Android platform, therefore it's an interesting kafor us to implement such a function at the
challenging time when there is not much documeortative can refer to. This project was initially

proposed by Ericsson Company for commercial ugadrsmart phone based on the Android platform.
The success of this Master thesis project provicsesul implementation information for developers of
the mobile product.

1.2. Problem statement

The main objective of this thesis project is to design and implement a function so that an ordinary
station can act as an AP in a wireless network and this design must be based on the Android platform.
The project includes four main aspects where diartsfshould be put: AP, the Android platform, the
association between them and GUI for the AP. M@ecHically, the following problems need to be
solved:

How does an AP work in Linux circumstance?

In this project, we choosestapd as our logical AP, which is not a physical devicg a user space
daemon for AP. As an initial step towards the gaalr first concentration is put under Linux
circumstance. We need to figure out what pre-camtis required byiostapd in order to work in
Linux circumstance, including both hardware andvsafe requirements. And what functions those
dependencies offiostapd support. We also need to know how they work irdpshdently with
hostapd . In order to rurhostapd in Linux system, we need to configure and comijtilfor the host
environment. To testostapd AP functionality, we need to create a bridge wideh transfer package
between wired and wireless network.



Design a WLAN Mini Access Point in the Android Platform -J‘ ERICSSON

How is the Android building system constructed?

Due to the fact that the C libraries in Androiddifferent from that in Linux, all shared librariesnd
utilities need to be recompiled for the support@afapd when porting it to the Android system. Thus,
to understand and analyze how the Android buildipgtem is constructed and to be able to add new
blocks into the Android system is a crucial partoafr work. This includes Android source code
structure, build variables, build process, etcthia building process, we are going to build up kbth
Android platform and various applications which mdke process even more complicated. In addition,
we need to write our own makefiles for each appiticato be built up.

How does hostapd work in the Android environment?

After mastering how to add external packages faldimg, we need to putostapd together with its
dependencies solved in the first problem into Adlrd@his includes specific configuration, such as
target, compiler, linker, etc. And also we needdafigure for Linux kernel. The most complex paut i
this phase is that the interdependency betwestapd and those elements required for the support of
hostapd takes time to explore. We must also consider tmdlict of two or more drivers resulting from
their existing driver supports in the Android syste

How to control and configure hostapd from the Android application layer?

In order to control thenostapd service, a starting point is wpa_supplicant whipgerface exists in
Android. Hence it is possible that we can in a Emivay access the control interfacehaftapd from
Android. Then first it is necessary to find theti@l call chain of wpa_supplicant. We also need to
consider a bridge that can provide connection fiava application to call a native C library. Thas,
possible way is to create an Android GUI applicatio control thenhostapd that uses the call chain
down to thehostapd process down in the Linux environment. The apfibcato start/stophostapd
service could be feasible, and later it can beneldd with more specific functionalities.

Moreover, other activities such as testing of ttmplemented function will be also performed in our
project.

1.3. Contribution to knowledge

In this thesis, our task is to achieve the goal #mordinary laptop based on the Android system ca
function as an AP for wireless access. We havenlgtproven the feasibility of implementimgstapd

into the Android operating system but also intrasthia completed process to realize this goal, inetud
build-up from the scratch and the controlled bebafiom the top application. In addition, we have
presented extensive experience of the Android imgjldystem and puttinigostapd in Android, which
can be shared by other developers in the Andraithzonity.

The task we face in this thesis work is challengimgl our achievement is innovative due to two
reasons: the first one is that so far nobody etseitmplemented this function; and the other iseher
little previous work that can be referred since fuid is developed very recently. Furthermore, this
work should also be possibly compatible with Andrgdhones, if the hardware configuration
requirements are satisfied. Hence we hope our wankprovide guidelines for Android developers and
in the future there will be Android phones avaitabhk an AP to facilitate the mobile users. All linage
hope our efforts will lead to an increased numbdr&D efforts on this topic.

1.4. Approach
To reach the project goal, we have adopted theviatig steps as our approach in this thesis work:

» To accomplish the objective of this thesis we fichbose a WLAN card that supports AP
function and find the card driver that is supportgdhostapd . Then we build upostapd |,



0o
[ M=
Design a WLAN Mini Access Point in the Android Platform :‘ ERICSSON

1.5.

change the configuration file for it, and we can ig&tapd running with this AP compatible
WLAN driver. We use a laptop installedstapd as an AP to test, it providing the wireless
network service.

Next we work on the Android building system assiessential for the following steps. We learn
how the source codes are structured in Androidctiirees, how to set up the build variables,
how the build process is organized, how to addreatgackages, etc.

Based on the knowledge we have learned about Atthglding system, portingostapd from
Linux system to Android circumstance is procesdadthis phase, we configure the Linux
kernel for the support afostapd , build hostapd and its dependencies in term of software into
the Android roots, set up configuration files fastapd , etc. Besides, we solve the conflict
problem of two existing drivers, which arises whesmadd our own WLAN driver to Android.

In order to controhostapd behavior from Android application layer, we finalprovide two
alternatives to increase the user experience. @ysasmo design an Android GUI application to
control hostapd using its control interface. It provides other rththe basic start-and-stop
service, and also some extended functionalitieg. Mithod we use is to refer to the existing
wpa_supplicant interface in Android, so that innailar way we can access the control interface
of hostapd from Android. The second alternative is to cremteAndroid application that can
runhostapd application as a whole instead of talking withdtsitrol interface.

Thesis structure

To have a clear statement of the whole work, wanizg the Master thesis report into 9 chapters. The
focus of each chapter is given as follows in bstetement.

Chapter 1 introduces the background, motivatiorgl g the Master thesis, as well as the
approaches used in the thesis project.

Chapter 2 shows the procedure of setting up a acétviP in Ubuntu Linux platform. It gives
clear indication about what elements are needdmlild up the AP, which is the reference for
the work in the Android platform

Chapter 3 discusses the Android building systenciviate must first understand before diving
into the modification of the system. It explaing tharious aspects of the building system and
the building process.

Chapter 4 demonstrates the work done in the Andptform to build up the software AP,
which is the central goal of the Master thesis.

Chapter 5 shows the testing case which provesuiibnality achievement of the software AP
in the Android platform.

Chapter 6 is mainly about the design of applicatiothe Android platform. The design is to
build up graphic user interfaces of software AP.

Chapter 7 shows the contribution of this Mastesithe

Chapter 8 states some of the main issues we emgoduting the Master thesis together with
how we solve them and suggestions for other deeesop

Chapter 9 concludes the work of the Master thasilssaiggests the future work.



sos ST
%9 ERICSSON

ﬁ Design a WLAN Mini Access Point in the Android Platform

2. Hostapd in Linux

Hostapd is first developed under Linux system. It is gudead thatostapd can fully function under
Linux circumstance. The Android platform can begidared as a Linux kernel plus a virtual machine
on top which Java application is running. Therefdirst having a look atiostapd working in Linux is

a good reference for the following work. The binabgtapd in Linux should have small difference
from the binaryhostapd in Android for the reason that the C libraries different at some points. The
C library in Android is a simplified version of than Linux. Since C library is fundamental to
applications, all shared libraries and utilitiesetieto be recompiled for the support tafktapd in
Android. The recompiling will be given in chapterBut before that section 2.3 will give an exampie
compiling under Ubuntu Linux. With the results st proves thakostapd can properly working in
Linux circumstance.

2.1. Software AP in Linux

In a wireless network there are two types of deyjieen AP and peripheral STAtions (STAs). The AP
provides access services for all STAs via sharedlesis media. STAs sharing the same media compete
in each time slot for the right of data transfegriiRecently wireless network access service has bee
expanded for multiple sorts of devices, far morgolpel laptops. In most cases the laptops, desktops,
and other computing devices with a WLAN card arty danctioning as an STA, while the AP is a
separate device bought from some vender. Howe\#r, the open source movement there comes the
possibility that ordinary customs can build thewnowireless network without buying such an AP
device.

Access Point

Figure 1 WLAN with hardware AP



sos ST
%9 ERICSSON

ﬁ Design a WLAN Mini Access Point in the Android Platform

Peripheral station

Station with hostapd functioning

Figure 2 WLAN with software APnostapd

In the open source software community there ispmtiGation callechostapd . It can fully function just
like a separate AP device.

2.2. System architecture

The host machine runningstapd has no special hardware requirement providedsitsh&/LAN card
supported byiostapd . But some software utilities are necessaryhf@tapd to function in the Linux
operating system. These utilities inclugfgenssl| , libnl , and the WLAN card driver.

hostapd <—> openssl

libnl (driver wrapper)

Wi-Fi card drivers
Figure 3 Software AP system architecture

Wireless network has different security considerati from wired network. In wired network the
information carried over network media is encapsalan the wire itself, therefore any device withou
physical connection to the wire cannot eavesdrap rtteaningful content. The user information is
secured by the physical connection itself. Howeanethe wireless channel any device with the radio
receiver can sense the signal. Such charactevistiireless channel requires the data transmitidokt
encrypted and only the two participants in commatidn should hold the key. Furthermore, the
claimed participant must be authenticated befoeedbnnection for data transmission is established.
Authentication and encryption are two fundamenéausity requirements in wireless communication.
The security services are provideddpenssl in Figure 3.0penssl provides methods fatostapd

to negotiate security parameters with peripheedl®is when they try to make a connection.

Libnl is a wrapper of WLAN card driver. There are maiffecent kinds of WLAN cards can be used
when runninghostapd . WLAN cards from different venders often have @iént driversLibnl is built



ﬁ 6%, ST
Design a WLAN Mini Access Point in the Android Platform E -J‘ ERICSSON

to encapsulate the differences of implementatiothe$e drivers. Howevéibnl  only abstracts some

of the drivers supported bigstapd , thereforehostapd needs to implement wrappers for the rest drivers.
Both hostapd andopenssl can interact withibnl . Libnl then communicate with the WLAN card
driver to deliver the outgoing and incoming data.

A WLAN driver directly operates on the WLAN card.i$ the proxy for all upper layer operations and
provides atomic operations and functionalities tbah be organized into tasks. When the driver's
implementation doesn't suppolibnl it communicates directly witthostapd and openss| ,
otherwise it interacts wittibnl

2.2.1. Hostapd

Hostapd is a user space daemon for AP and authenticatesmers in WLAN. It implements
IEEE802.11 AP management, authentication and etiorypfunctionalities. The security portion
includes IEEE802.1X/WPA/WPA2/EAP Authenticators, BRINS client, EAP server, and RADIUS
authentication server. The current versionhaftapd can run in the Linux and FreeBSD operating
systems. Besidesgpstapd implements a group of programming interfaces fathkzonsole and graphic
applications. These interfaces can be exploredttgrgorogrammers to build applications with frigndl
user interfaces. Details of these interfaces aptheation of Figure 4 can be found can be foundJat

[2].

| hostapd_cli | GUI frontend |
v G

. ’
frontepd control intepface
N ;

hostapd oS RADIUS RADIUS

ctrl iff client accounting
WPA/WPAZ

state machine

configuration

EAPOL and FAPOL
— cvent if +
pre—auth  __J.___ 12_packet eton i
eihertypes loop state machine
from/to kernel EAP methods
IEEE 802.11 | EAP-TLS | EAP-MDS |
MLME EAP
CAP_PEAR TAP_TTT &
state machine | EAP-PEAF EAP-TTLS |

| BEAP-GTC || EAP-PAX |

Station

table — RADIUS | EAP-SIM | | EAP-AKA |
driver i/ SCrver
EAP-PSK
| | | | | | EAP-MSCHAPv2
| hostap madwifi | | prism54 | | bad | | wired lest |

- .-

kernel network device driver

Figure 4 Hostapd implementation architecture

2.2.1.1. Drivers and WLAN card
Hostapd supports certain number of drivers and WLAN calffie list is given below



Design a WLAN Mini Access Point in the Android Platform -J‘ ERICSSON

Drivers Car ds
Host AP driver (1**) Prism2/2.5/3
Madwifi driver(2**) Cards based on Atheros chip set
Prism54 driver (3**) Intersil/Conexant Prism GT/Duette/Indigo

mac80211-based drivers that support AP mode

(4*) Atheros (ath9k) and Broadcom (b43) chipsets

Table 1 Wireless card supported hystapd

1**http://hostap.epitest.fi/ Please note that statfirmware version needs to be 1.7.0 or
newer to work in WPA mode.

2**http://sourceforge.net/projects/madwifi/ Pleasse that you will need to add the correct
path for Madwifi driver root directory in .confics€e defconfig file for an example:
CFLAGS += -I<path>)

3** Prism54http://www.prism54.org/
4** with driver=nl80211 in the compiling configuiiah file

This list is not exhaustive. For more informatidagse visit the sites given in reference. The drarel
card must be compatible witiostapd . And before buildinghostapd the configuration for the driver
must be set in the “.config” file.

Madwifi project is participated by a group of votaar developers who are working on drivers for
Linux system. Madwifi project drivers support descbased on Atheros chipsets. Currently three
drivers are maintained by this project, namely Miidhath5k and ath9k. Madwifi is stable and open
source. But it depends on a proprietary Hardwarstibtion Layer (HAL) which is available only in
binary format. Besides the HAL, Madwifi has supdortthe Wireless Extension API which allows the
user to configure the driver with common tools lfldeonfig " distributed with the operation system.
Ath5k is relatively new and does not rely on thegpietary HAL. Ath9k is the newest driver for all
currently available IEEE 802.11n chipsets from Atise

MLME is the management entity. It is the place veh&hysical Layer MAC state machine resides.
MLME assists in reaching services like authentaratide-authentication, association, disassociation,
re-association, beacon and probing, and so on. MchliEbe implemented into the wireless card itself,
or it can be realized as software as part of theraifng system. The former type is called fullMAC
wireless card, and the latter type is called sof®Mireless card. In Linux kernel, MAC80211 provides
MLME management services with which drivers cardbeeloped to support softMAC wireless cards.
MACB80211 implements the cfg80211 callbacks for B&C devices, and then depends on cfg80211
for both configuration and registration to the natking subsystem. Cfg80211 is a set of interface
definitions for driver development. A driver supfiog cfg80211 must implement these interfaces.
Kernel communicates with the driver via interfackfined by cfg80211. With these interfaces the
Linux kernel can have the driver registered andvedela task to the driver. NL80211 is another det o
interface definitions that allow user space proegss communicate with the kernel. NL80211interface
are supported inherently in new Linux kernel anche@pplications are built based on such interfaces,
for examplenostapd and wireless configuration tools.

Before cfg80211 and nl80211 are defined, Wirelegsiision is the standard definition of the inteefac
for driver development and user space applicatibviseless extension interfaces are built on ioctl()



Design a WLAN Mini Access Point in the Android Platform -J‘ ERICSSON

which is considered as a unstructured system ath user space. Gradually open source developers
lost their favor in wireless extension interfad@sople started to develop new interface definitiansi
these are just the cfg80211 for driver developnagat nl80211 for communication between user space
and kernel space.

NI80211 is implemented aibnl  in Linux system. To use mac80211 based drivéddsl must be
present in the system so that the applicationsheewe the interfaces to talk with the driver. Fad ol
version of Linux system, the librampnl must be installed manually as it was not shippét the
system distribution. Users can directly check isspnce in the system library. Or users can disdts/e
absence when they try to compilestapd . If libnl  is not in the system library and the user try to
compile hostapd  with the mac80211 drivers supported, the compilék complain the absence of
libnl . The source dfbnl is needed for compiling dfostapd . And the binary library is needed for
runninghostapd . Figure 5 shows the Linux wireless stack.

kernel

wireless stack

wireless driver} [wireless driver]

cfg80211

one regulatory domain

A

nl80211
v

user space

CRDA daemon

Figure 5 Linux wireless stack

2.2.1.2. Security mechanisms in hostapd

Hostapd implements its own security policy with existingcsirity mechanisms. WPA and WPA2 are
the protocols implemented internally. WPA2 is &tatersion of WPA. Improvements in WPA2 include
stronger encryption algorithm and better perforneainchandoff.

e Authentication

o Both WPA (WLAN Protected Access) and WPA2 can eitlse a pre shared key (PSK) or
use an external authentication server together WEiftP (Extensible Authentication
Protocol).

» Encryption key generating

o Both WPA and WPA2 use a 4-way handshake and greyphandshake to generate and
exchange the encryption key between authenticatbsapplicant.

» Encryption algorithm



soe ST
99 ERICSSON

ﬁ Design a WLAN Mini Access Point in the Android Platform

o WPA uses TKIP (temporary key integrity protocol) iefh uses algorithm RC4 with
per-packet key.

0 WPA2 uses CCMP (Counter Mode with Cipher Block @ Message Authentication
Code Protocol) which uses algorithm AES in coumede with CBC-MAC.

Hostapd can be built with configuration with particularmbination of these settings in thenfig  file.
However, to makeostapd work properly the combination must be first satgarly. An example is
given in the original compiling configuration filiefconfig , and comment in this file gives explanation
about how to make the settings.

2.2.1.3. Compiling configuration file

As mentioned,hostapd is implemented to support multiple drivers, autitation and encryption
methods. With the fileconfig  user can choose which drivers and security mettmthe built for the
specific host system. In the source package tiseaefiledefconfig ~ which is a reference configuration
for specific building. Users can get detailed erplion for each entry of this file. Below is paftthe
defconfig  file. The file.config when present at compiling is included by the Mgef

# Example hostapd build time configuration

#

# This file lists the configuration options that ar

# hostapd binary. All lines starting with # are ignored. Con

e used when building the
figuration option

# lines must be commented out complete, if they are
# just setting VARIABLE=n is not disabling that var
#

# This file is included in Makefile, so variables |
# be modified from here. In most cass, these lines
# to override previous values of the variables.

# Driver interface for Host AP driver
CONFIG_DRIVER_HOSTAP=y

# Driver interface for wired authenticator
#CONFIG_DRIVER_WIRED=y

# Driver interface for madwifi driver
#CONFIG_DRIVER_MADWIFI=y
#CFLAGS += -I../../madwifi # change to the madwifi

# Driver interface for Prism54 driver
#CONFIG_DRIVER_PRISM54=y

# Driver interface for drivers using the nl80211 ke
#CONFIG_DRIVER_NL80211=y

# driver_nl80211.c requires a rather new libnl (ver

# shipped with your distribution yet. If that is th

# newer libnl version and point the hostapd
#LIBNL=/usr/src/libnl

#CFLAGS += -I$(LIBNL)/include

#LIBS += -L$(LIBNL)/lib

# Driver interface for FreeBSD net80211 layer (e.g.
#CONFIG_DRIVER_BSD=y

#CFLAGS += -l/usr/locallinclude

#LIBS += -L/usr/local/lib

# Driver interface for no driver (e.g., RADIUS serv

#CONFIG_DRIVER_NONE=y

not to be included, i.e.,
iable.

ike CFLAGS and LIBS can also
should use += in order not

source directory

rnel interface

sion 1.1) which may not be
e case, you need to build

build to use it.

, Atheros driver)

er only)



ﬁ éss, ST
Design a WLAN Mini Access Point in the Android Platform -J‘ ERICSSON

Before compiling, a user first copies the referefileedefconfig and renames it asonfig . In the
file .config a user comments and uncomments each entry. Astamted with # is ignored while
building. Some entries can be easily made mistakes) as the choosing of driwvero211. The path of
source code ofibnl  must be correctly set and the versionlibhl  must be 1.1 or later. Other
settings include security protocols and keys.

2.2.1.4. Running configuration file

The file “.config” is used for building th@ostapd for particular host environment, while the file
hostapd.conf  is used for running settings. After building thepability of hostapd on the particular
host is fixed. If the user wants service and fuoralities that the current building can't provitlee user
must rebuildhostapd with new settings. In case that the user downlthesd binaryhostapd from
distributors like Ubuntu, the user can only chartbe behavior ofhostapd with the running
configuration filehostapd.conf . The name of the running configuration file canaeame other than
hostapd.conf ~ and can be located in any place in the file sysRathostapd must be started with an
existing running configuration file.

A minimal configuration of this file should includke following entries
# AP netdevice name (without 'ap’ postfix, i.e., wi an0 uses wlanOap for

# management frames); athO for madwifi
interface=wlan0

# Driver interface type (hostap/wired/madwifi/prism 54/test/none/n180211/bsd);
# default: hostap). nI80211 is used with all Linux mac80211 drivers.
# Use driver=none if building hostapd as a standalo ne RADIUS server

# that does not control any wireless/wired driver.
driver=hostap

# SSID to be used in IEEE 802.11 management frames

ssid=test

# Operation mode (a = IEEE 802.11a, b = IEEE 802.11 b, g = IEEE 802.11q,
# Default: IEEE 802.11b

hw_mode=a

# Channel number (IEEE 802.11) (default: 0, i.e., n ot set)

# Please note that some drivers (e.g., madwifi) do not use this value

# from hostapd and the channel will need to be conf iguration separately
# with iwconfig.

channel=60

Settings in this example may not fit some particalase. One can follow the comment to modify the
specifics. The empty line and the line beginninthwiomment sign is ignored in running.

2.3. An example for hostapd building in Ubuntu 9.10 system

The example in this section is working properly @eintlinux circumstance. Simplified configuration
files are first given and some orderly compilingoes are also listed for the sake of troubleshgpiin
any readers are considering having their own erpri. In the end of this section a testing scenario
established to prove architecture which incluetesapd , openssl , libnl , Atheros wireless network,
athsk drivers,brctl

10



ﬁ doe ST
%9 ERICSSON

Design a WLAN Mini Access Point in the Android Platform

2.3.1. Compiling hostapd with a minimal configuration

The default compiling configuration @bstapd in Linux system is given in file namefdfconfig  in
the source code package raktapd . As hostapd in this project is intended to use mac80211 based
drivers, the entry in the compiling configuratiole fis enabled as

# Driver interface for drivers using the nl80211 ke rnel interface
CONFIG_DRIVER_NL80211=y

# driver_nlI80211.c requires a rather new libnl (ver
# shipped with your distribution yet. If that is th

# newer libnl version and point the hostapd build t
LIBNL=/usr/src/libnl

CFLAGS += -I$(LIBNL)/include

LIBS += -L$(LIBNL)/lib

sion 1.1) which may not be
e case, you need to build
0 use it.

The comment before the config entry should be resdoimportantlyLIBNL should point to the source
code directory oflibnl , CFLAGS points toinclude/  subdirectory and.iIBS points to thelib/
subdirectory. The source codelihl  is required by the fil@river_nig80211.c which is one of the
driver wrappers imostapd .  This will allow the use drivedthsk or athok . For more configuration of
compiling see the default compiling configuratide fiefconfig . We keep other entries the same as the
default settings.

2.3.2. Bridge utility

Bridges is a device that connects two or more sdparetworks together. It can be physical devica or
logical device as software. Computers in the sanoeim forming a network usually share security
polices and therefore simplify the network in coctin and other protection facilities. Computers
outside the network can access such security dowiia bridge. This allows the bridge function as a
firewall in many cases. Besides security benefijge also functions as a switch or router to dgliv
packets over the edge of the network. In the chgesapd , the bridge is primarily running as a packet
switch, transferring packets from a wired netwarlatwireless network.

In Linux system bridges is implemented as the wsgltoolrctt  which is included in many Linux
distributions, otherwise the users can instaltatrf a binary package or build and install it froouice

code. Commonrctl

commands are listed below

Runbrectl  without any parameter, it gives these commands
addbr <bridge> add bridge
addif <bridge> <device> add i nterface to bridge
delbr <bridge> del ete bridge
delif <bridge> <device>  delet e interface from bridge
show s how a list of bridges
showbr  <bridge> sho w bridge info
showmacs <bridge> sho w a list of MAC addrs
setageing <bridge> <time> seta geing time
setbridgeprio <bridge> <prio> set br idge priority
setfd <bridge> <time> set bridge forward delay
setgcint  <bridge> <time> set garbage collection interval
sethello  <bridge> <time> set hello time
setmaxage <bridge> <time> set max message age
setpathcost <bridge> <port> <cost> set pa th cost
setportprio <bridge> <port> <prio> set po rt priority

stp <bridge> <state> {di

s,en}able stp

11



Design a WLAN Mini Access Point in the Android Platform :‘ ERICSSON

Commands used in the experiment are

bretl addbr <bridge name>

O create a bridge, one can create multiple bridgéisarsame system

bretl addif <interface name>

0 ainterface can be a wireless interface like wianBthernet interfacetho

bretl show

O show all the bridges that are currently runningldpeis

bretl delbr <bridge name>

O delete a bridge

brctl delif <bridge name> <interface name>

O delete an interface from a bridge

2.3.3. Bridge setup

It takes a few steps to build up the bridge andiat#nifaces into the bridge. In the context of thigject,
there are two interfaces added into this bridgsirad Ethernet interface and a wireless interfdE&E
80211). The wired interface is the entrance toidetsmietwork, for example Internet. The wireless
interface is port where other wireless stationstérgonnect and data transmission happen within the
wireless network. In a Linux station, mostly thestfiwired interface is callegtho and the first wireless
interface is calledlano . A bridge is created and namagbro. And thenetho andwlan0 are added into
this bridge.

0 Step 1 create a bridge

bretl addbr mybr0

0 Step 2 add interfaces

brctl addif mybr0 ethO
brctl addif mybr0 wlan0

Usedhcpclient  command to get the IP addresses (which one iadyirexists, which one needs this
command, three IP addresses are needed, two oesréad the bridge itself).

2.3.4. Wireless utilities
ifconfig

Ifconfig IS used to configure the kernel-resident netwotkrfaces. It is used at boot time to set up
interfaces as necessary. After that, it is usuatlly needed when debugging or when system tuning is
needed.

If no arguments are giveiigonfig  displays the status of the currently active irateet. If a single
interface argument is given, it displays the statuthe given interface only; if a single -a argumis
given, it displays the status of all interfaceserevthose that are down. Otherwise, it configures an
interface.

12



ﬁ ; 9. ST
Design a WLAN Mini Access Point in the Android Platform -J‘ ERICSSON

iwconfig

Iwconfig  like ifconfig is a wireless interface configuration utility innux. It is used to set the
parameters of the network interface which are $igetti the wireless operatiorwconfig  may also be
used to display the parameters and the wireledistats. Iwconfig  extracts the information from
Iprocinet/  wireless file.

2.3.5. Running hostapd in Ubuntu

In this chapter, we consider an example whichtiaies how the network components fit together and
the configuration in each of the components.

2.3.5.1. Testing environment
Below we give some of our testing configuratiomath hardware and software.
Hardware

CPU — Pentium Il (Coppermine) 647.154 MHz cacdkze 256KB
Wireless card D-Link DWA-556 PCI
Ethernet card Intel 82557 Ethernet Pro 100

Software

Linux ubuntu 2.6.31-17-generic

driver for Wireless card D-Link DWA-556 PCI — ath5k
driver for Ethernet card Intel 82557 Ethernet Fp6 + €100
hostapd Vv0.6.9

libnl  v1.1

2.3.5.2. Configuration file

Before hostapd can be launched and set up a local wireless nkiwbere must be a properly
configured running config file forostapd to read. The settings in the running configurafite must
be within the capability of the compilation. Witkgard to the compiling configuration used in this
project, the entries below are chosen as a singtlieg of the running configuration.

interface=wlan0

bridge=mybr0

driver=ni80211

logger_syslog=-1
logger_syslog_level=2
logger_stdout=-1
logger_stdout_level=2

debug=4

dump_file=/tmp/ hostapd .dump
ctrl_interface=/var/run/ hostapd
ctrl_interface_group=0
hw_mode=g

ssid=mytest

auth_algs=3

eapol_key index_workaround=0
eap_server=0

channel=6

13



Design a WLAN Mini Access Point in the Android Platform . ERICSSON

The entry interface is set as the first wirelessrface wlanO. Bridge is set agbro which is the one
created while bridge setting up in last subsecti®ince the compilation can support mac80211 based
drivers, it chooses nI80211 as the wireless driwben hostapd initiated. The default running
configuration file in the source package givesftieversion of running configuration ofbstapd with
detailed explanation about how to make settingsshibws all possible settings in the running
configuration file.

2.3.5.3. Testing

The testing is taken step by step, and in eachwéepiill give configuration information about each
host. Before diving into the procedure, we empleasimt the order is important, even though not
necessarily exactly the same.

Before run these commands first turn to root userl@ge.

Step 1 launch the computer, and run commanachfig  to check the networking interfaces in the
system.

root@ubun -# 1fconfig
ethe encap:Ethernet Hwaddr 00:50:8b:94:49:80
inet addr:192.1
inet6 addr: fe8@::25€ :fe94:49
uP BRDADCA:T RUNNING HULTICA:T HTU
: 5:0 dropped:@ o
@ dropped:@ overruns:@ carrier:@

collisions:@ :
RX bytes:215 (215.1 KB) TX bytes:29418 (29.4 KB)

Llnk encap:Local Loopback
; addl 12T U O 1 Ha=’:'rw 0.0.0

Metric:1

E E Hl dIDppP o
collisions:@ euele
RX bytes:240 (240.8 B) TX bytes:240 (240.8 B)

Link encap:Ethernet Hwaddr €0:
inet addr:172.2
inet6 addr: fe8 1 Te
UP BROADCAST RU \ HULTICA:T
: :@ dropped:0
dIDpde ]

imaster® Link encap:UNSPEC Hwaddr 0@-1E-58-4A-C9-C1-34-61-00-00-0Q-00-00-00-00-00
UP RUNNING MTU:® Metric:1
RX packets:® errors:0 dropped:® overruns:@ frame:©
TX packe errors:® dropped:® overruns:@ carrier:®
collisions euelen: 1660
R¥ bytes:@ (0.8 B) TX bytes:0 (8.0 B)

Figure 6 Interfaces in up state

There are four interfaces, all in active stateerafioot up. The Ethernet interfae®o and wireless
interfacewlan0 are the two used in this experiment. The interfacas the loopback device. And
wmaster0  is brought up together with wlan automatically.

Step 2 Run the command to configure and bringetp interface

ifconfig eth0 0.0.0.0 up

14



ﬁ e 9. ST
Design a WLAN Mini Access Point in the Android Platform -J. ERICSSON

Configure clear IP configuration at interfae®o . Doing this is necessary before associate it w&ith
bridge.

Step 3 Run the command to configure and bringugmo interface

ifconfig eth0 0.0.0.0 up

Configure clear IP configuration at interfagno . Doing this is necessary before associate it with
bridge.

Step 4 Run the command to add a bridge in the system

bretl addbr mybrO

This is to create a bridge in the system. The namero) of bridge created should be the same as the
bridge name used in the configuration file @bstapd running configuration file (default
hostapd.conf, my_hostapd.conf  in this example).

Step 5 Associate the interfaces with the bridge.

brctl addif mybr0 ethO
bretl addif mybrO wlanO

This is to associate these two interfaces withbitdge, so that the bridge can deliver packets éetw
them.

Step 6 Bring up the bridge

ifconfig mybr0 up

The bridge should be brought up before runnimgent to configure these interfaces.

Step 7 Run the command to configure these interfacefjdimg mybro

dhclient

ifconfig

This command will use DHCP protocol to configure thterfaces. See Figure 7 below

15



Design a WLAN Mini Access Point in the Android Platform . ERICSSON

oonubunTu ~# ifconfia
ethe

ULTICA:T
rors:@ dlopped.o
8 dropped:®@ 0uer|un=.0 carr
len: 1000
TX 5 (59.7 KB)

Llnk encap:Local Laopback
addr:127.0.0

inet6 addr:

UP LDDPBA

mybre

ors:0 dropped:0 overruns:@
ors:® dropped:® overruns:@
'L P

RX bytes:128954 (128.9 FB1 TX bytes:26451 (26.4

MULTICAST
ors:0 dropped:8 overruns:@
ors:® dropped:® overruns:0
uelen: 1600

. ( bytes:26371 (26.

wmaster® Link encap:UNSPEC Hwaddr ©0-1E-58-4A-C9-C1-34-61-00-00-00-00-00-00-00-00
UP RUNNING MTU:0 Metric:1

Figure 7 Addresses configuration of interfaces

After rundhclient , interface ethO gets an IP address 192.168.1H68dcast address 192.168.1.255,
and netmask 255.255.255.0. And interfasgro (the bridge) gets an IP address 192.168.1.162,
broadcast address 192.168.1.255, and netmask B586550. However, the interfagéano gets an IP
address 172.25.4.192, broadcast address 172.2%,.42nhetmask 255.255.255.0. Interfacesho and
wlan0 are configured with IP addresses in different oekwbecause physical these two interfaces are
located in two different network, separating by tiglgemybro .

Step 8 Launchhostapd with the configuration file

hostapd /etc/hostapd/my_hostapd.conf

root@ubuntu:~# hostapd /etc/hostapd/my hostapd.conf
Configuration file: /etc/hostapd/my hostapd.conf

Using interface wlan® with hwaddr 00:1e:58:4a:c9:cl and ssid 'LinuxHostapd®

Figure 8 Hostapd running with its configuration file

Launchhostapd with its configuration file. Thesid of the network iginuxHostapd ~which is set in
the configuration file.Hostapd is running over the interfac@lan0 whose hardware address is
00:1e:58:4a:c9:cl.

Step 9 Connect to the AP

16



ﬁ éss, ST
Design a WLAN Mini Access Point in the Android Platform o ERICSSON

hostapd.conf

:58:4a:c9:cl and ssid 'LinuxHostapd’
: authenticated
associated (aid 1)

Figure 9 A station connect thostapd

This is the response given bystapd after a connection made from a peripheral statidimen a station
is trying to connect to the assess paitapd does the procedure. It first authenticates thiostanext
accepts the connection, and then starts a sesgtoa wumber4BE3F1ED-00000000 .

Then the figure below is from station side. The t¥isnachine is connecting to the AP named
“LinuxHostapd " which is just the one launched in Ubuntu machifiee signal strength is excellent
since these two machines are just beside each. atbeshow the Vista machine is able to reach the
Internet, we give two more figures cut from the caamd line window. The IP address 192.168.1.219
andnetmast 255.255.255.0 belong to the same network as therkgt interfacetho and the bridge
mybr0 . We do ping command atg www.google.com  and we get the response from Google server.

Disconnect or connect to another network

Show |All - & ]
'_ Wireless Network Connection & o |
R
- LinuxHostapd Connected ’jjﬂ : |
L" Live ADSL 4thFloor_ 2 Security-enabled network 1 i |
- L L |
L_i Live_ADSL_4thFloor  Security-enabled network 1 | | |
-~ 83l
“ " ity
& Unnamed Network Security-enabled network 'ﬂjj_l
Setup a connection or network
Open Network and Sharing Center
|_ Disconnect | | Cancel |

Figure 10Hostapd discovered at vista host machine

17



ﬁ e .. ST
L
Design a WLAN Mini Access Point in the Android Platform -® ERICSSON
o Wireless Network Connection Status ﬁ
_General |
Connection
IPv4 Connectivity: Internet
IPvE Connectivity: Local
Media State: Enabled
S5ID: LinuxHostapd
M Duration: 8 days 09:41:29
Speed: 54.0 Mbps
Signal Quality: gjﬂn
Details...
Activity
Sent - L! : Received
=l
Bytes: 31,837 22,619
| ¢ Proper‘ties‘ I i Disable | | Diagnose |
Figure 11Connection state of vista host machine
C:\Users\bmgw>ipconfig
Hindows IP Configuration
Ethernet adapter Bluetooth Metwork Connection:
Media State . . . . . . . . . . . : Media disconnected
Connection-specific DNS Suffix :
Hireless LAN adapter Wireless Network Connection:
Connection-specific DNS Suffix . : $5865-Serial
Link-local TPu6 Address . . . . . : fe80::289a:85b1:c471:d296%11
TR Hddpesah: o v von we e e e 0 AP GE S 2D
Subnet Mask = © © & = & 5 & & & = 2 2552002550
Default Gateway . . . . . . . . . : 192.168.1.1

Figure 12Address configuration of vista host machine

C:\Users\bmgw>ping www.google.com

Pinging www.l.google.com [66.102.13.99] with 32 bytes of data:
Reply from 66.102.13.99: bytes=32 time=48ms [T1L=52
Reply from 66.102.13.99: bytes=32 time=48ms TTL=52
Reply from 66.102.13.99: bytes=32 time=&ims TTL=52
Reply from 66.102.13.99: bytes=32 time=49ms TTL=52

Ping statistics for 66.102.13.99:

Packets: Sent = 4, Received = &, Lost = 0 (0% loss),
Approximate round trlp times in milli-seconds:

Hinimum = &47ms, Maximum = 49ms, Average = 48ms

Figure 13ping google.com from vista host machine

18



Design a WLAN Mini Access Point in the Android Platform -J‘ ERICSSON

3. Android building system

This chapter introduces the Android building systé&irst we explain how Android source is organized.
Next we describe the building environment in Ubulituux, and the concept of cross compiling. Then
we explore the directories in the hierarchy whesme of the Android system source code and the
Android building system reside in, including bujldiendor/, out/, prebuilt/ and external/. We give
directions about where building changes are madeuimproject and can be made in other projects.
Similar statement about the Android building systeam be found on various websites. However we
still have such a chapter because understandiniguitding system is fundamental to made progress in
the project, and along with the exploration inside source code we gain some experience that may
help colleges who are working on the same issues.

3.1. Android source code

We'll start from pulling the Android source codewdoto local machine, followed by overview on the
source code, and then more detailed explanatiomtaibgportant directories for particular building
configuration.

3.1.1. Tools working on source code

To better manage the source code for downloadirh ugrtfoading, the Android development group
organizes the source codegin repository which was initially for Linux kernel delopment. To make
it even easier, Google has done some work to wrappe abovegit . Therefore mostly when we do
uploading or downloading we use tlego tool.

3.1.2. Source code branches

Over the past years a lot of branches have beer foakarious reasons, like porting to differemp&t
machines. Before down the source code one mustele about which branch is needed. Generally,
most people will follow the procedure at [3]. Bliigt is just for building some emulators for ARM
architecture. It is not proper for porting code¢al x86 machines. Even for projects working ortipgr

to x86 machines there are different working grougalled Android-x86  and Androidx86
Android-x86  is the one mainly focus on Eee PC which is thehimgcused in this project. But again,
different branches are made in this project. BraBakaster , eclair-x86, donut-x86 are the three
commonly seen. These branches have their own m®gmed maintained during different period in the
community. And one more to mention is that theeetaio sites to get source code for the same branch

Main site git://git.Android-x86.org/platform/manifest.gi t
Mirror site git://Android-x86.git.sf.net/gitroot/Android-x86/ma nifest.git

Source code at these two sites can be asynchronwmieecommend downloading the latest source code
at the main site.

3.1.3. Downloading the source code

In this project we work on the source porting te B which is x86 architecture based machine. And
we choose to use the dnout-x86 branch source codethe main site.

When run the commandpo init

$ mkdir mydroid
$ cd mydroid
$ repo init -u git://git. Android-x86.org/platform/m anifest.git -b donut-x86

19



ﬁ e 0. ST
Design a WLAN Mini Access Point in the Android Platform ' -J. ERICSSON

$ repo sync

This will pull down the source code. The processy ritake one hour and more, depending on the
network situation.

After it finished, the following fold structure cde seen in the root

J/root/Documents/donut-x86 4] @ 100% @ iconView
® . J _
1 1 1
bionic bootable build dalvik development
external frameworks hardware kernel out
#2210
packages prebuilt system vendor Makefile

Figure 14donut-x86 branch source code overview at the top

From now on all explanation about the source cedmithe Android-x86. Here is a simple description
about each directory in Figure x, more detaileccidision on some of them are given in following
sections of this chapter.
bionic
O The source code of C libraries, includiig (c library),libom (math library),libstdc++

(c++ library), libthread  (thread library),liodl  (dynamic linking interface library), and
linker (the program linker).

bootable
O Contains the source code for building a boot loaaer disk installer.
build

O The Android building system. It contains definitsoof the building system, like macros and
functions, as well the crossing compiling compildirtkers, assemblers. Besides, it detects
the building system environment, set up the oufipridirectories, and make up the images
after a successful compilation. More details wdldiven in the following section.

dalvik

O The source code for building a virtual machinehia Android platform. It's called dalvik
virtual machine optimized by Google cooperationrwbile device for interpret Java byte
code.

development

O Source code for building development tools for Amelroid platform. These tools include
SDK (only the property files are here, the sourt&DK is in a separate directory called
sdk), NDK, and emulator. User help documentatiagrdfevelopment is also included in this
directory.

20



0o
[ M=
Design a WLAN Mini Access Point in the Android Platform :‘ ERICSSON

external

O This directory includes third part packages whi@dm de system tools (for example
networking tools) or applications.

frameworks

0 Contains the source code for building the corealiles for applications, as well as policy
definition for system configuration.

hardware

0 Libraries for hardware abstraction.
kernel

0 The source code of Linux kernel.
out

0 The directory for containing all output files, inding compiling intermediate files and the
final produced image files and binary Linux kernel.

packages
O Source code for various applications, for examplisio) browser and so on.
prebuilt

0 Contains binaries for supporting Windows and MachDiding. The most important things
are these ABIs (Application Binary Interface) capending to various architectures.

sdk
0O The source code for build the SDK.
system

0 Contains system components like system bootingemvient setting, Bluetooth tools, and
WLAN drivers and tools. These tools can be binargaurce, depending on the vendors’
policy to their source code. This is actually pafrt.inux system. However, in the Android
source code architecture there is only Linux kediedctory. Any other system level code
touching hardware or system environment settingoeaplaced in this directory.

vendor

0 This is the directory for customizing building pess. New product profile can be defined
to build feature specified Android platform. Thesusan either choose to build everything
from source or make some parts to be prebuilt aldhe building system to incorporate
these prebuilt packages into the final built images

At the top level of the directory hierarchy, théseone Makefile which is the only makefile named
Makefile in the whole building system. It is themrof the whole building process.

3.2.

Build environment on Ubuntu platform

It is recommended that the Android source codedimgl process taking place in Ubuntu platform. In
this subsection we show the additional elementsleddéo make the platform sufficient to build the
Android source code.

21



Design a WLAN Mini Access Point in the Android Platform -J‘ ERICSSON

3.2.1. Ubuntu Linux (32-bit x86)
To set up your Linux development environment, msike you have the following:

Required Packages:

0 Git1.54  or newer and the GNU Privacy Guagi is a version control tool. It can be used to
pull down source from or upload source to remygite repository. It also helps to manage local
source project, with a full track on the modificetiand the ability to get back to previous version
after any committed changes.

0 JDK5.0.JDK is the development toolkit for Java programmingglaage. Applications on
Android need these for compiling.

0 Flex , a text scanner used to tokenize the input togrized descriptions. A script language
interpreter need some a scanner for analyzing inpet either from the standard input or from
text file.

O Bison , the actual interpreter transforming the knownetokto be a piece of ¢ program. Bison
does its interpretation afteéex generates the tokens. And afteon translates the tokens to be
pieces of ¢ program the user input can be execatgdt the expected resuliex andbison are
both part of a script like language interpreter.

O cperf , a perfect hash function which can produce a wnigutput for each given unigue input.
Gperf is used by C and C++ compilers to recognize thguage reserved words.

O Libsdl-dev , the library for Simple DirectMedia Layer developmt. It is a library which allows
programs portable low level access to a video ftarfier, audio output, mouse, and keyboard.
The library is needed by a compiler and a link wtienprogram is using SDL.

0 Libesdo-dev , the library for Enlightened Sound Daemon develepinit can be used to mix
several audio streams to be played in a singledsdewice. When a program uses this library the
compiler and linker will need it for compiling amdnning that program.

0 Libwxgtk2.6-dev  (optional), wxWidgets Cross-platform C++ GUI tobl{GTK+ development).
It is a C++ class library for developing wxWidgabgrams. A bunch of GUI components are
provided in this library. And it's a cross platforlibrary which can be used most popular
platforms as well as some unpopular platforms.

0 Build-essential , a package for building Debian packages. Thise&ded during compiling for
building some packages in Debian compatible format.

O 2zip, a utility for building .zip archive files. This ineeded for building the final archives during
building the Android platform.

O curl, a utility for getting files from a HTTP, HTTPSy & TP server as well as some other
application level protocol based servers. Thissisded for pulling down Android source from the
Git repository.

All libraries and tool mentioned above can be daaded and installed with the following command

$sudo apt-get install git-core gnupg sun-Java5-jdk flex bison gperf
libsdl-dev  libesd0-dev libwxgtk2.6-dev  build-essent ial zip curl
libncurses5-dev zliblg-dev

One more tools can be installed to help workinchwitemory leakage examinatiomjgrind can be
installed with

22



ﬁ ; 9. ST
Design a WLAN Mini Access Point in the Android Platform -J‘ ERICSSON

$sudo apt-get install valgrind

Ubuntu Intrepid (8.10) users may need a newer aersf lioreadline  , which is an assistant for
working with command line so that various prograan share a uniformed command line interface. It
can be installed with

$sudo apt-get install lib32readline5-dev

3.3. Cross compiling

The compiling process is to build the executabteaftiost system on a building system. Here the host
system is the platform on which the executableoisi@ to run. Building system is the platform from
which the executable is produced. When the exelaiista compiler, there is one more system involved
which is named target system. The target systaheiplatform for which the compiler is going to reak
executables.

Cross compiling is a type of compiling which hasstheystem different from building system. For
example, in this project the building system isuxmwhile the host system is Android. This is beeaus
the building process is taking place on Linux amaléxecutables are going to run on Android.

To achieve cross compiling there must be cross dimgpool chain which contains a cross compiler, a
cross assembler, and a cross linker. The procdbssiproject is more complicated for the reasat th

is going to build up both the Android platform awdrious applications. The Android platform is a

combination of Linux kernel and dalvik virtual mawd for running Java code. The applications are
built with Java programming language. This meaias$ there must be multiple cross compilers, cross
assemblers and cross linkers for building the Amdsource.

Going further in the compiling, all libraries in thoC and Java must be available for building the
platform and applications. Particularly, for C pragp compiling the headers and C libraries musttexis
and for Java program compiling the Java librariestexist. For Android the C libraries are buitirfr

C source in the directory “bionic”, and the neceg$eader files can be in “bionic”, “kernel” or @hC
code directories. For code which is not open squtee libraries are provided by vendors in binary
format. Similarly, these Java libraries can be egithuilt from Java source code or providedain
packages.

3.4. Cross compiling tool chains for Android in Ubuntu system

Android itself is an operation system. However,opefit can be properly functioning as a platform fo
various applications it must be built from sourcele. The building process can be taken place awa f
existing platforms including Linux (Ubuntu is recomanded), Mac OS, and virtual machine. In last
section it gives the needed configuration in UbuB&i bit platform. For other platforms detail
information can be found at [4].

3.4.1. Cross compiling ABI

Such a configuration is the general environmenbuwfding for all supported architectures. When it
comes to configuration for specific architecturee tABI (Application Binary Interface) must be
considered. ABI is a concept different from API. IAB specific to the underlying processor, whilelAP
is specific to the operating system. Programs ewittvith regard to particular ABIs can only run on
platforms that are sitting on top of the correspoggrocessor. Currently the Android platform can b
built to be running on ARM or X-86 architecture.rfoparticular building, the ABI must be set to be
the proper one. The setting of ABI is controlled hy building environment variable called

23



ﬁ ; 9. ST
Design a WLAN Mini Access Point in the Android Platform -J‘ ERICSSON

TARGET_CPU_ABI If the building target is a simulator, it doesmited a CPU ABI. So the
TARGET_CPU_ABIS set as none.

TARGET_CPU_ABI :=x86 #if you build for x86 architecture
TARGET_CPU_ABI := armeabi #if you build for arm architecture
TARGET_CPU_ABI :=none #if you build a simula tor

TARGET_CPU_ABIis set in the file of Boardconfig.mk which is oakessential configuration files for a
particular building. The actual files of various AB located at the directogyebuily ~ as following

$(combo_target) TOOLS_PREFIX :=prebuilt/$(HOST_PREBU ILT_TAG)/toolchain/i686
-unknown-linux-gnu-4.2.1/bin/

HOST_PREBUILT_TAds the build TAG which can b@ux-86 , orlinux-x86_64 and a lot more. In this
project it is set a#hux-x86  for the reason that the built Android system igngdo be running on a
32-bit x-86 platform$(combo_targetyTOOLS_PREFIX  as a whole determines the name of the path of
the ABI in the file system. This setting will utiately determine the actual compilers for compilihg
and C++ source files.

3.4.2. Cross linker

The Android platform uses its own program linkeriathis different from the one in a regular Linux
system, therefore the linker issue must be consitiehen building Android applications and toolseTh
programs must be linked with the linker that isltbfiom source in Android. The source code of
Android linker is under the directory bibnic/linker/. And again the linker is specific to a particular
architecture on which the building target is gdiogun. The supported architectures are ARM and x86

3.5. Build variables and build process

3.5.1. Build for a new product

In Android building system there are lots of enmiment variables which control the build properties.
The building system defines most of these variabked internally, as well as some variables to be
interfaces for users to set some of the buildingc@ss properties. However, as long as the users
understand these build variables they can charege thariables to be the value they want. And fer th
sake of convenience to modify the interface vaéapthe building system creates several sepatase fi
to hold them under the directory @fndor/company_name/. company_name is chosen by users. And
then under this directory user creates the requitesl suffixed with.mk. Specifically, to build for a
new product the user needs to have a product $rémlawing:

. <company_name>

0 <board_name>
= Android.mk
. product_config.mk
Ll system.prop

0 products
= AndroidProducts.mk
= <first_product_name>.mk
] <second_product_name>.mk

Undercompany name/ there are two subdirectorig®ard_name/ andproducts/.Product_config.mk
and Android.mk and are necessary in subdirecttard_name/ , while system.prop is optional.

24



Design a WLAN Mini Access Point in the Android Platform -J‘ ERICSSON

Product_config.mk is used to define Product specific compile timéniions which are going to
override the default values in the filBsardConfig.mk  andconfigmk that are both in the directory
build/ . System.prop IS needed in theoard_name subdirectory only when the user wants to override
default settings imuild/  directory. In the product subdirectory there mustan AndroidProducts.mk
file which points to the actual product definitifikes. In this example, there are two product déén
files first_product_name.mk and second_product_naukeThe product definition file override default
settings in generic.mk which is under one of suidmaries obuild/ . In the product definition file user
can redefine PRODUCT_PACKAGES$0 include the packages in the final product. @thdike
PRODUCT_BRAND, PRODUCT_DEVICEBNdPRODUCT_NAMEanN be override to be the specific names for the
particular product.

3.5.2. Default settings and build process

As mentioned, there are always default settingslldbuild variables in theuild/  directory. Even if
without any user defined files, the build procest still precede successfully according to theaddf
settings. Before run the make command, the useddliost run the filebuild/envsetup.sh which is

a script file defining some useful functions thah@ase the building system. After receiving th&ema
command from the user, the building system firsikfoat the file named Makefile at the top of the
source code hierarchy. There is only one simplgyentthe top Makefile. It tells the building systeto
look for more information at the fileuild/core/main.mk .Main.mk is the actual entrance of the
Android building system. It calls other files namadh .mk suffix to set up the default values for all
building variables. The most notable settings ideltthe build type efg, user, userdebug, or
development),  final included packets, host architecture, hosttfptm, target architecture, target
platform, and output directory.

3.5.3. Adding a new packages for building

Expect for change settings for specific device dyuihe user can just add external packages to be
compiled together with the original source codeisTallows users to extend the capability of the
Android platform with their own intention. Such amternal package can be C/C++ source or Java
source coded.

3.5.3.1. Template makefiles in the building system

There is a template file for building each kindtleése packages. The template is available for ibgild
applications, shared libraries and static libraridse list below gives these template files witkiraple
description.

0 binary.mk

Define PRIVATE_ variables used by multiple modulpds, like the file suffixes, compiling
flags, install header files, add default sharedhliles (bc, libm  , and etc.), collects all the
built libraries. It also defines compiling flagschlibrary dependencies.

0 host_executable.mk

Define common rules for building executables. Itscoebinary.mk  file. The content of this
file is quite simple, as following

LOCAL_IS_HOST_MODULE := true

ifeq ($(strip $(LOCAL_MODULE_CLASS)),)
LOCAL_MODULE_CLASS := EXECUTABLES

endif

ifeq ($(strip $(LOCAL_MODULE_SUFFIX)),)
LOCAL_MODULE_SUFFIX := $(HOST_EXECUTABLE_SUFFIX)

25



PGe
[ M=
Design a WLAN Mini Access Point in the Android Platform -J‘ ERICSSON

endif

include $(BUILD_SYSTEM)/binary.mk

$(LOCAL_BUILT_MODULE): $(all_objects) $(all_librari es)
$(transform-host-o-to-executable)
$(PRIVATE_POST_PROCESS_COMMAND)

host_Java_library.mk

This is the template for building a Java libratyddesn't calbinary.mk . It sets the value for
these local variables needed to build a Java {ibrar

LOCAL_MODULE_CLASS := JAVA_LIBRARIES
LOCAL_MODULE_SUFFIX := $(COMMON_JAVA_ PACKAGE_SUFRIX
LOCAL_IS_HOST _MODULE := true

LOCAL_BUILT_MODULE_STEM := Javalib.jar

host_shared_library.mk

This is the template for building a shared librdtycalls binary.mk because a shared library
is just one kind of binaries built from C/C++ code.

include $(BUILD_SYSTEM)/binary.mk

$(LOCAL_BUILT_MODULE): $(all_objects) $(all_librari es)

$(LOCAL_ADDITIONAL_DEPENDENCIES)
$(transform-host-o-to-shared-lib)

host_static_library.mk

This is the template for building a static libralycalls binary.mk because a static library is
just one kind of binaries built from C/C++ code.

include $(BUILD_SYSTEM)/binary.mk
$(LOCAL_BUILT_MODULE): $(all_objects)
$(transform-host-o-to-static-lib)

Java.mk

This makefile defines common variables and sehegenvironment for building Java code. It
is called by other makefiles when they need todbiglva sources.

Java_library.mk

This is the template for building a Java libraryiethcan be either a shared library or a static
library. It is called by the makefik@atic_Java_library.mk

raw_executable.mk

This is the template for building an executablecdlls the makefile binary.mk for it is just
one type of binary. This specific type of executadbépends on the source code and the target
platform. Raw_executable.mk  calls the linker to link the objective files to ba executable.
Again the specific tools used depend on the sotwde and the target platform.

$(LOCAL_BUILT_MODULE): $(all_objects) $(all_librari es)
@$(mkdir -p $(dir $@)
@echo "target Linking: $(PRIVATE_MODULE)"
$(hide) $(TARGET_LD) \
$(addprefix --script ,$(PRIVATE_LINK_SCRIPT)) \
$(PRIVATE_RAW_EXECUTABLE_LDFLAGS)\
-0 $(PRIVATE_ELF_FILE) \

26



Design a WLAN Mini Access Point in the Android Platform -J‘ ERICSSON

$(PRIVATE_ALL_OBJECTS) \

--start-group $(PRIVATE_ALL_STATIC_LIBRARIES) --e nd-group \
$(PRIVATE_LIBS)
$(hide) $(TARGET_OBJCOPY) -O binary $(PRIVATE_ELF _ FILE) $@

00 raw_static_library.mk

This is just a wrapper for building static libraryt does nothing butinclude
$(BUILD_STATIC_LIBRARY).

3.5.3.2. Adding a new module and writing the Android.mk

For each application there must be a makefile nadwedroid.mk for the building system to
discover it and building the source according ® tiser’s indication. A makefile typically include
all the following elements:

0 LocAL_moDULHefines the build name for the particular package.

LOCAL_MODULE := <build_name>

0 CLEAR_VARSclears all local variables. The Android platforrefides a group of local
variables for controlling the building of each pewtar package. They need to be cleared each
time when the building system enters a new paci@gancel the influence of settings of last
package

include $(CLEAR_VARS)

O LOCAL_SRC_FILESindicates all source files that eventually compibeefinal target.

LOCAL_SRC_FILES := <all sources>

0 LOCAL_MODULE_TAG#Hdicates the build tags for this package. Budd tells the building
system when to build the package with regard tchdaald flavor (can beeng, user,
userdebug,  Of development ).

LOCAL_MODULE_TAGS := user development

0 LOCAL_SHARED_LIBRARYtells the building system which shared libraridds t package
depends on. Packages generally always rely onnraftéibraries to achieve a successful
building. C/C++ packages can utilize either shdilg@ries or static libraries. Java source is
built with some .jar class libraries.

LOCAL_SHARED_LIBRARY := libc libcutils

0 BUILD_EXECUTABLEtell the building system to build this packageato executable. Both
C/C++ and Java sources can be built to be exe@stabhared libraries, or static library.
There is a template file in the build/ directory fauilding a target in each of these types
respectively. Refer to the template files mentioimetthis subsection earlier for detalils.

include $BUILD_EXECUTABLE)

Here is a simple example of Android.mk

LOCAL_PATH := $(my-dir)

27



ﬁ ; 9. ST
Design a WLAN Mini Access Point in the Android Platform -J‘ ERICSSON

include $(CLEAR_VARS)

LOCAL_MODULE := hostapd
LOCAL_SRC_FILES := hostapd.c
LOCAL_MODULE_TAGS := eng development
LOCAL_SHARED_LIBRARIES := libc libm libcutils
include $(BUILD_EXECUTABLE)

3.6. Outdirectory

Theout directory is initially empty. It is the directomwhere the all output files are located during the
build process, including intermediate object filéigal executables, and the images. The building
system creates a subdirectory named after the wllieRGET_PRODUCT he user can either define the
variable in theProductConfig.mk  file or at the typing of make command. In thisjpot, the intention

is on the Linux kernel and three image filesitd.img  , ramdisk.img , andsystem.img . Linux kernel
provides all actual system resource managemen€C/&i+ coded programs communicate directly with
Linux kernel. Initrd.img contains the init script which sets up the systeamming environment and
launches daemons and kernel modukesdisk.img  is a temporary root file system which provides all
the tools for setting up system environment andmting the actual root file systersystem.img holds
the file system. Therefore all application packageshoused in this image. There might be othegéma
files created. The user can fetch the files to amsem properly functioning the Android platform.

The user should be careful about the disk spaadirtgptheout/ directory. The reason is that there are
many intermediate files are going to be generatethé building process and huge space is needed.
Many intermediate files have been removed befoeeptiocess terminates. This might lead the user to
think of having less disk space for the procesmidimal of 6G free space is necessary.

3.7. Details about other directories like system and prebuilt

These directories can be important in some casexding to specific build requirement. Below is
some description about them.

3.7.1. external/ directory

If the user thinks of adding new packages intohteearchy the directorgxternall  is generally the
place. External/  holds all third party packages. The packages canJdva program or C/C++
applications that are built as background servidé®re are four packages directly evolved in this
project, hostapd , libnl , opeenssl , and bridge-utils . They are all placed iaxternal/  directory.
There is no requirement of the building systemusers where to place their packages, however éor th
sake of clearance of source code managementa/  is the proper directory.

3.7.2. prebuilt/ directory

Android building system needs a lot of tools foritbe functioning in variable building settingsebe
tools are mostly located iebuily  directory. When do crossing compiling the avaiafdols in this
directory are fundamental. There are tools fording the Android platform running on ARM and x86
architecture. Android currently only support twedg of building. The user can create the tools for
Android building system individually so that moreclitecture can be supported in particular user’'s
need. Except for these tools, some libraries ae placed here. These libraries are then usedéy th
building system to create applications that areiipgo the Android platform.

28



ﬁ e 0. ST
Design a WLAN Mini Access Point in the Android Platform ' -J. ERICSSON

3.7.3. bootable/ directory

This directory includes sources for building theothmader and disk installer as well as the system
initialization image. After the kernel is loaded first do kernel initialization like setting the
segmentation and paging table, configuration enwivent for process management, and enabling
interrupt in both hardware and software form. Ahdrt it turns to do initialization for running user
space services, like loading some modules to stipaaticular operation, launching and configuration
some programs running as services depending omsireconfiguration in the init scripts. The lagidy

of initialization is performed by program built frosource in thigootable/  directory.

29



Design a WLAN Mini Access Point in the Android Platform -J‘ ERICSSON

4.Hostapd in Android

The Android platform comes with its own buildingssgm. Any new external package must rewrite its
makefile to be recognized and compiled in the lggrocess. This chapter gives detailed explanatio
about the makefiles of these components in the diddwilding system.

4.1. Configuration for building hostapd

Hostapd is the starting point for the need to introdudeotther componentsiostapd in Android, just
like in Linux, requires a driver to do the physis&jnal processing. We grab Linux kernel 2.6.29 Hb
the kernel of our Android platform. This kernel ghiwith the ath9k driver for Atheros chipset cards.
Tracing ath9k to the ongoing Madwifi driver projedt gives us the information that ath9k is a
mac80211 based driver. Mac80211 is a new wirelégsksin Linux to replace the old wireless
extension standard. As mentioned in chapter 2 (gvheac80211 is mentioned), all daemons and
applications running in user space talk with Limixeless driver via the nl80211 interfaces which ar
implemented as thisnl  in source code. One can download and coniipile to have Linux support
the mac80211 based drivers. Therefore as we dewidehoose ath9k driver, we should set
“CONFIG_DRIVER_NL80211" with yes, and tell the directory dfnl  to the compiler by settingFLAGS
andLOCAL_SHARED_LIBRARIESCompiling flags.

The driver option is the only special setting ie tompiling configuration file ofostapd . We keep all
other security settings unchanged as they areeirdéifiault configuration file. Android building sgsh

has many local variables which tightly control thelding in each part of the whole source packdtge.
can be very tricky sometimes when the source ceodanizing changes. To be conservative we don't
use subdirectory makefiles fapstapd in the Android source code hierarchy, and whereasr be
tricky we use absolute directory instead of relatilirectory. We recommend this because the default
settings of these source directories result in meamgrs in the compiling. The other reason for tkis
that the building in this project is a cross commgil therefore many header files and librarieslecated

in the indicated directories of the source codednany instead of the standard directories as @ativ
compiling. However the compiler will go to thesefaldt places to find the headers and libraries if
there’s no explicit indication telling the compilethere to look at these files. The absolute dimbeso
will avoid errors resulting from these settings @hisometimes are unclear to third part engineers.
When the engineer doesn’t know the profound detdithe building system, it's better to use absolut
directories in both the configuration files and tieader files in the source file. This will get dimost

of the compiling errors. Since we have only one efitk for one package we put the makefile at thpe to
of each package.

The latest version dfostapd is labeled as 0.7.2 as this project is finisheae Tatest version can be
unstable in some important aspects. We chooseetoersion 0.6.9. There is a reported bug of version
0.6.10 when the underlying wireless driveatisk . One should be careful about the version issues so
that unnecessary work can be avoided. We placsainee code dfostapd underexternal/  directory

and rewrite the makefile with respect to the Andrbuilding system. The new makefile is always
named ag\ndroid.mk . It then is put on the top directory iedstapd . As recommended we change the
directories of header files to be absolute diréesorThe structure of source code keeps the same as
downloaded.

30



ﬁ ; 9. ST
Design a WLAN Mini Access Point in the Android Platform -J‘ ERICSSON

hostapd - File Browser

Go Bookmarks Tabs Help

Forward v 4 ; [ Ir-l -, Q
root/Documents/eclairx86/external/hostapd 3‘ Q 100% @ |IconView v
LOCAL & wpa_s
_p‘l | _J ifnea Coow Convr
hostapd patches src Android.mk COPYING README

Figure 15Hostapd source code overview at the top

Hostapd source package is relatively large compared withh  and bridge-utils . We'll give the
Android.mk  files for these two packages in the following BBt and leaveandroid.mk file in
Appendix B .

#t hostapd

hostapd v0.6.9

User space daemon for IEEE 802.11 AP management,

IEEE 802.1X-UPA/WPAZ-EAP-RADIUS Authenticator

Copyright (c) 2002-2009, Jouni Malinen <{jewl.fi> and contributors

usage: hostapd [-hdBKtul [-P <PID file>] <configuration file(s)>

shou this usage

show more debug messages (-dd for even more)
run daemon in the background

PID file

include key data in debug messages

include timestamps in some debug messages
show hostapd version

Figure 16successful running eiostapd in Android

4.2. Opensslin Android

Openssl implements bottssL and TLS which are both basis for secure web communicatiohas
been already placed in the Android source code ureker theexternal/l  directory. Hostapd needs
openssl to work with protected wireless access. The ohigg needed to do is to tell the directory of
the openssl  source to the building system when it comes ih®hbstapd subdirectory. With this
setting ofCFLAGSIn Android.mk file of hostapd the building system will be able to find the heade
needed by security implementatiorhisstapd . Openssl  will be compiled with the Android source code.
Therefore telling the name of libraries resultingni openssl is sufficient for the linker to find them.
There are two libraries built frompenssl source codeibssl  andlibcrypto . They both should be
added in the local variablesOAL_SHARED_LIBRARIESN theAndroid.mk  Of hostapd .

31



ﬁ e 9. ST
Design a WLAN Mini Access Point in the Android Platform -J. ERICSSON

4.3. Configuration for building libnl

Libnl is needed fohostapd to communicate with wireless driver. There is parse code or binary
library in the Android source codgt repository. When it is necessary in any particblaitding, the
source code afbnl  must be downloaded and placed in the some diretikarexternal/  in Android.
And again there must be an Android style makefilethe building system to find such a third party
package.Hostapd Vv0.6.9 requires a newer version lwhl , at least v1.0. We choose v1.1 in this
project.

The downloaded source code package includes theefoothuilding the library as well as code for athe
use. Since we only need the library we just writeddid.mk for the library code which is together
located in the subdirectofy/ . The compiler also needs the header files in titelisectoryinclude/

There is only onendroid.mk file for thelibnl  source code package. Therefore, the easiest way is
put the Android.mk file at the top o/ subdirectory. And when the file and its included header
files are not in the same directory we use absalirgetory to tell the compiler where the headkr if.
The structure of source code is given as Figureadd the shadow text shows the content of our
Android.mk file for libnl

lib - File Browser — =
Go Bookmarks Tabs Help
sl
& C o =|Q
/froot/Documents/eclair-x86/external/libniflib g | @ 100% @ | lconView v
Voo LOCAL:
1 1 1 1 o incly
[— J— [r—| J— T LocaL
fib_lookup genl netfilter route addr.c Android.mk
£ i i ek o 1%
:11 :11 :11 :11 :11 MU
*Thi *Thi *Thi *Thi *Thi i* De
attr.c cache.c cache_mngr.c cache_mngt.c data.c defs.h
HAFE F id it # 'S
* 5 * 15 * # 1lib .19
1 0e . . . H .
#unde. *Thi *Thi *Thi # Thi *Thi
defs.h.in doc.c family.c handlers.c Makefile msg.c
it 2 [ o)
AL »EE bt ¢ b £
*Thi *Thi *Thi *Thi
nl.c object.c socket.c utils.c

Figure 17Source code overview tfnl  in the lib subdir

B H R R R R R R B Android
.mk file for libnl

B H R R H R R R R HHHHHH TR
LOCAL_PATH:= $(call my-dir)

include $(CLEAR_VARS)

LOCAL_SRC_FILES:= addr.c attr.c cache.c cache_mngr. ¢ cache_mngt.c data.c
doc.c family.c handlers.c msg.c nl.c object.c socke t.c utils.c genl/genl.c
genl/ctrl.c genl/mngt.c genl/family.c

LOCAL_C_INCLUDES +=\
bionic/libc/include \
bionic/libc/arch-x86/include \
bionic/libc/kernel/common \
bionic/libc/kernel/arch-x86 \
bionic/libm/include \
external/openssl \
external/openssl/include \
external/openssl/crypto \
external/libnl/include

32



ﬁ ; 9. ST
Design a WLAN Mini Access Point in the Android Platform -J‘ ERICSSON

LOCAL_SHARED_LIBRARIES := libc libcutils libcrypto libssl
LOCAL_MODULE:= libnl

include $(BUILD_SHARED_LIBRARY)

In the Android.mk file, the line starting with # mark is ignored Ilye compiler. The first thing
Android.mk does is to tell the building system that now épst into a new package which is tie
subdirectory ofibnl  in theexternal/  directory. It does this byOCAL_PATH:= $(call my-dir) . Next

it clears the local variables that the buildingteys used for the previous package witbude
$(CLEAR_VARS). The order here is strict for the first two callingghe Android.mk file. After these two
steps, the other five callings can be made in adgro.OCAL_SRC_FILESindicates the source code used
to build the ultimate libraries. There is no needdll the dependencies between theséiles, instead
just a whole source package is sufficient. The Aitrbuilding system will figure out these
dependencies and make the right call at the rigig.tThe source code included in this variableist |
these under th&/  subdirectoryLOCAL_C_INCLUDESIs actually not needed here because all header
files out of thelib/  subdirectory are indicated with their absoluteediories. The compiler can find
them with the absolute directory. This is not q@tegant since it can be vary tedious when thecgour
package is large and lots of header files are deduor when lots of external packages are needed to
added into the building system. We leave this Wdgichere to tell the reader that the better way to
indicate the location of header files is to te# fath of them in this variableOCAL_SHARED_LIBRARIES
then holds on all necessary libraries for buildthg lionl  library. We successfully build thiénl
library with these libraries. But we have not yesttwhich libraries are necessary. It can be taiesof
them have no influence for buildinignl . After indicating the necessary components fotding the
library we give the library a nam@&®CAL_MODULE:=libnl . In the end it's time to call the compiler and
linker to do their job by callinghclude $(BUILD_SHARED_LIBRARY) . This is to build a shared library.

4.4. Configuration for building bridge-utils

Bridge-utils is not the necessary part for buildimgtapd . However to letostapd really function as

an AP to provide Internet service we first needike the Internet available to AP. This is achidved
adding a bridge between the AP and another interfsloich is connected to the Internet. In real
situation of mobile case, it's most likely that th@obile can access the Internet via the telephone
network. And then a bridge is running to move datan telephone radio interface to the WLAN
interface whichhostapd is taking care of. Bridge forwards data from anwek to the other. The bridge
functionality added to the Android platform for nasvto test our Android AP design, and for the long
run is implemented as a solution to connect the Wlakd telephone network. In this project, we are
working on a demo system which is running on an l&@op instead of a mobile phone. The bridge is
to transfer data between the Ethernet interfacette@VLAN interface back and forth.

Bridge itself is part of the Linux kernel. Whenist necessary in a system it must be enabled in the
kernel compiling configuration file and built intbe operating system. This is donesbyhetworking

->802.1d Ethernet Bridging to bey orm. After enabling the bridge support there mustlbe some
utilities in the system for controlling and confiqng the bridge such as creating or removing adaid
adding or removing interfaces into a bridge, andsoThe bridge utilities are not part of the Linux
kernel. The source code of such utilities is irnakage calledridge-utils which can be downloaded
from [5]. It's in agit repository. One should first instajt tools in its system and then run tfie
command with its URL parameters given in referandbe console.

33



ﬁ e 0. ST
Design a WLAN Mini Access Point in the Android Platform ' -J. ERICSSON

bridge-utils - File Browser =S e
Go Bookmarks Tabs Help
ar C am Q
root/Documents/eclair-x86/external/bridge-utils 4 | @, 100% @ | Icon View v
_ LOCAL
| | 1 1
BRCTL
— — [— [ |
bretl doc libbridge tests aclocal.m4 Android.mk
Steph Mame; Hame 2045 This
Lenne Versi Versi runni
Relea Relea * Rel
Coovr Coovr * Fix It wa
AUTHORS bridge-utils.spec bridge-utils.spec.in Changelog config.log config.status
dnl B &
AC IN DESTD DESTD
AC KERNE KERNE
AN IN Caoy =
configure configure.in COPYING install-sh Makefile Makefile.in
This Thank main
it ws n=EaT.
F. Ni Bdd n
Lars we ha
README THANKS TODO

Figure 18Source code overview of bridge utils at the top

Download the source code of bridge-utils and exiitdnto a directorybridge-tuils . The source code
structure ofbridge-utils looks like Figure 18ln the source code package makiile can be found
directly. Files namedclocal.m4, configure.in , configure  are present as well as some other files
which together are necessary for a GNU compilingcess. The Makefile is the reference we use to
write Android style makefile. So the first stepwork on the source code is to generate the Makéfile

is as simple as running the configure script in dindge-utils/ directory. After running configure
script a file named Makefile shows up. With it watesour Android.mk file. Again the Android.mk file

is the only makefile for this package in Androidusme hierarchy. Therefore the Android.mk file is
placed at the top obridge-utils/ directory and the packageidge-utils is placed under the
directoryexternal/.

Bridge-utils is a very small package. The main source codendem subdirectoriesrctt and
libbridge . The code undeltbbridge/ subdirectory is used to build a bridge utilityrby. And the
code inbrctl/  subdirectory is for building the utilities. Theoe¢ in theandrois.mk file there are two
building tasks, first to build the library and sadao use the library together with the sourceréa/

to build the utilities. Some private defined vatesbare used in thisndroid.mk file. They are helpful in
assisting management of the source cedeTL_BUILD is used to control when compiling this package.
We choose to build a static library instead of aretl library because this allows us to use thegbrid
utilities independently with the libraries. To llié static library we need to do the routingude
$(BUILD_STATIC_LIBRARY) and callinclude $(BUILD_EXECUTABLE)  to build an executable which is
our bridge utilities.

The Android.mk fomridge-utils is given as below
LOCAL_PATH := $(call my-dir)
BRCTL_BUILD := true

ifndef L_CFLAGS
L_CFLAGS := -02 -Wall -g

endif

INCLUDES_BRCTL :=

-l/root/Documents/eclair-x86/external/bridge-utils/ libbridge
INCLUDES_LIBBRIDGE :=

-l/root/Documents/eclair-x86/external/bridge-utils/ libbridge

34



Design a WLAN Mini Access Point in the Android Platform

poe ST
99 ERICSSON

COMMON_SOURCES := brctl/bretl_cmd.c bretl/bretl_dis
SOURCE_BRCTL := brctl/brctl.c $(COMMON_SOURCES)

LIBBRIDGE_SOURCES :=\
libbridge/libbridge_devif.c \
libbridge/libbridge_if.c \
libbridge/libbridge_init.c \
libbridge/libbridge_misc.c

ifeq ($(BRCTL_BUILD),true)

include $(CLEAR_VARS)

LOCAL_MODULE := libbridge

LOCAL_SRC_FILES := $(LIBBRIDGE_SOURCES)
LOCAL_CFLAGS := $(L_CFLAGS)
LOCAL_C_INCLUDES := $(INCLUDES_LIBBRIDGE)
LOCAL_MODULE_TAGS := user eng development
LOCAL_SHARED_LIBRARIES := libc libcutils
include $(BUILD_STATIC_LIBRARY)

include $(CLEAR_VARS)

LOCAL_MODULE := brctl
LOCAL_SHARED_LIBRARIES := libc libcutils
LOCAL_STATIC_LIBRARIES := libbridge
LOCAL_CFLAGS := $(L_CFLAGS)
LOCAL_SRC_FILES := $(SOURCE_BRCTL)
LOCAL_C_INCLUDES := $(INCLUDES_LIBBRIDGE)
LOCAL_MODULE_TAGS := user eng development
include $(BUILD_EXECUTABLE)

endif

addbr <bridge> add bridge

p.c

delbr <bridge> delete bridge

addif <bridge> <device> add interface to bridge

delif <bridge> <device> delete interface from bridge
setageing <bridge> <time> set ageing time

setbridgeprio <bridge> <prio> set bridge priority

setfd <bridge> <time> set bridge forward delay
sethello <bridge> <time> set hello time
setmaxage <bridge> <time> set max message age
setpathcost <bridge> <port> <cost> set path cost
setportprio <bridge> <port> <prio> set port priority

shou show a list of bridges

shoumacs <bridge>
shoustp <bridge>

stp <bridge> {onloff} turn stp onsoff

Figure 19successful running of bridge utils in Android

4.5. Wireless card and the driver

Wireless card and its driver take care of the dctignal processing. Currently not many wireless
drivers support AP functionalities in their implentation. Even some drivers with clear declaration f

shou a list of mac addrs
show bridge stp info

supporting AP may still have some problems whenkimgrin different combinations ofostapd and

wireless driver. These issues limit our choicestiiis project. As the demonstration proceeding we w

give the story in which we encounter some exotig. bu

35



Design a WLAN Mini Access Point in the Android Platform -J‘ ERICSSON

Hostapd implements its own driver wrapper for collaborgtinith different drivers that are claimed to
support AP operation mode, including Madwifi driiesstapd driver, Prism54 driver, mac80211 based
drivers (likeathsk andathok ), and FreeBSD net80211 based driver. Theoreticalllifhese drivers can
work properly withhostapd . As we did in section 2.3 we adehl  in Android building system. This
allows us to use the mac80211 based drisedk or athok . In this project we usethok driver. It
comes together with Linux kernel since v2.6.27.sTHriver works for all Atheros IEEE 802.11n
PCI/PCI-Express and AHB WLAN based chipsets. Thevrdoaded Android-x86 source code is
packaged with Linux kernel v2.6.29.

To compile the driveathok , we set the configuration in the kernel compilaanfiguration to support
the driver.

Device Drivers --->
[*] Network device support --->
Wireless LAN --->

<M> Atheros 802.11n wireless cards supp ort

As athok is a mac80211 based drivers, we also need toettakupport for mac80211 in the kernel.

Networking --->
Wireless --->
<M> Improved wireless configuration API
<M> Generic IEEE 802.11 Networking Stack (mac80 211)

The configuration here is exactly the same whatipusly was done in Linux system. The reason for
this is that the operating system kernel of Andisiflist a Linux kernel.

After enabling these configurations the ath9k witn be compiled as a module in the final builtuxn
kernel. Anytime when the kernel is being built #théso modules are being built. The build time foz t
Linux kernel may vary from several minutes to hodepending on the configuration of the building
and the machine that the building is taking plad#en Android boots up, it detects the hardware
configuration in the system. If it detects a wissl@levice that uses ath9k module as its drivelkeheel

will automatically load this module into the rungikernel memory. However there are some cases in
which the user needs to add the driver manualllf e@immandnsmod oOr modprobe . Android mostly is
built with only insmod available.insmod needs the specific path where the module is ldcatbe
Android platform implements a terminal simulator Wwhich users can type any command that is
currently available in the system to interact witie system. One can use commandad to check all
currently running modules in the memory. If the miadithok is successfully loaded one should be
able to see it in the list produced Ibyiod . Mac80211 should also be present in the list. FiguresBOws

all current running modules in our experiment.

36



Design a WLAN Mini Access Point in the Android Platform . ERICSSON

H
wucvideo 48684 0 - Live 0xf8221000

videodev 34092 1 wucvideo, Live OxfB0OfZ000

snd_hda_intel 22736 3 - Live Oxf806d000

ath9k 263708 0 - Live Oxf8Bc2000

atlic 256804 0 - Live 0xf8064000

i915 129412 4 - Live 0xfB83c1000

drm 132940 4 i915, Live 0xf8370000

i2c_algo_bit 5012 1 i915, Live 0xf8340000

btusb 10316 0 - Live 0xf8334000

sco 8928 0 - Live OxfB8325000

rfcomm 29848 0 - Live 0xf8311000

bnep 10968 0 - Live OxfB2fbOO0O

12cap 19400 4 rfcomm,bnep, Live O0xf82ea060

bluetooth 47776 S btusb,sco,rfcomn,bnep, 12cap, Live 6xf82cfo00
bsd_comp 4616 0 - Live 0xf82b5000

ppp_deflate 4040 0 - Live 0xfB82abooo
zlib_deflate 17748 1 ppp_deflate, Live 0x{f82a0000
ppp_async 7324 0 - Live 0xfB8292000

crc_ccitt 1824 1 ppp_async, Live 0xf8289000
pppoe 8988 0 - Live 0xf827e000

pppox 2396 1 pppoe, Live 0xf82716000
ppp_generic 19952 5 bsd_comp,ppp_deflate, ppp_async,pppoe,pppox, Live 8xfB8263000
slhc 5084 1 ppp_generic, Live OxfB8255000

ption 186824 0 - Live 0xf8247000

sbhserial 26204 1 option, Live 0xf8230000

cdc_acm 13460 0 - Live 0xf821b000

eeepc_laptop 13868 0 - Live OxfB820a000
efkill 9772 5 ath9k,bluetooth,eeepc_laptop, Live @xf81fd06e
snd_hda_codec_realtek 174804 1 - Live 6xf81d406000
snd_hda_codec 57412 2 snd_hda_intel,snd_hda_codec_realtek, Live 0xf8182000
snd_hwdep 6212 1 snd_hda_codec, Live Oxf86d86066

End _pcm 61420 3 snd_hda_intel,snd_hda_codec, Live 0xf86c2000
nd_timer 17624 1 snd_pcm, Live 0xf805d4000

snd_page_alloc 8012 2 snd_hda_intel,snd_pcm, Live 0xf864d000

Figure 20Modules currently running in Android

4.6. Launching hostapd with configuration file

To check whether any component is missing one @aplyg run hostapd from the console. If all
components mentioned above have been succesdsfalllyifto the Android platformhostapd should
be able to be launched with its running configuarafile.

This is a simple running configuration file iefstapd , namedandroid-hostapad.conf

interface=wlan0
driver=ni80211
logger_syslog=-1
logger_syslog_level=2
logger_stdout=-1
logger_stdout_level=2
debug=4
ctrl_interface_group=0
hw_mode=g
ssid=ESSID_Genar
auth_algs=3
eapol_key_index_workaround=0
eap_server=0
channel=6

37



Design a WLAN Mini Access Point in the Android Platform -J‘ ERICSSON

No bridge settings in this configuration file, thfare after runningostapd the attached stations cannot
get access to the Internet via this AP in the Ambdpdatform. This is going to be accomplished inxine
section about testing. The important entries ineludterface and driver . The first entry
interface=wlan0 tells hostapd to run on the wireless interface labeledno . The second entry
driver=nig0211  tellshostapd to use the mac801211 based driver whichhigk in case of this project.
There is no authentication needed in this configoma Any user device with WLAN support can
connect to the AP. Figure Zhowshostapd is running with its configuration file.

#t hostapd ~etcs/hostapd-/hostapdAndroid.conf

Configuration file: setc/hostapd/hostapdAndroid.conf

Using interface wlan® with hwaddr 00:25:d3:e3:64:ff and ssid 'MyAndroid’
wlan0: STA 00:22:43:2f:?1:bc IEEE 802.11: authenticated

wlan@: STA 00:22:43:2f:71:bc IEEE 802.11: associated (aid 1)

wlanO@: STA 00:22:43:2f:71:bc RADIUS: starting accounting session 4BEDS546-00000000
wlan®: STA 00:24:ef:2e:36:cc IEEE 802.11: authenticated

wlanO: 24:ef:2e:36: IEEE 802 11: assucmted (aud 2)

wlan®: 124:ef:2e:36: j 4B 46-0000000

Figure 21 Hostapd launched with its conflguratlon file in Android

38



Design a WLAN Mini Access Point in the Android Platform :‘ ERICSSON

5. Testing

In this chapter we run the test case to show theisARinctioning in the Android platform. To
demonstrate the process we begin with the expeemdts of the testing. Next we give the testing
configuration in both hardware and software. Whhttwe set up the testing network. And then we
demonstrate the details of the testing proces®atabmes from each station.

5.1. Expected results

After the local network is set up, it will do singppacket transmission to show the local network is
properly functioning. The Android platform runnintbe AP currently cannot support Ethernet and
WLAN at the same time. So to test the AP functiiimah the Android platform, we just test the patke
transmission within the local network, rather thising a bridge to forward the packet to the Interne

When the AP Hostapd ) is running at the Android platform, any deviceWWWLAN support should be
able to connect to it and all hosts connected shbelable tgping each other. In the result part of the
testing procedure we will prove the succesgirgf with pictures.

5.2. Testing environment

There are three machines involved in this testimg, for running Android angbstapd , and the other
two for running as WLAN peripheral stations. We gbe an ASUS machine with Windows vista
system and a Sony Ericsson phone with proprietgstem as the peripheral stations. Such a choitee is
show that there is no restrict on the category ast hmachine provided it has WLAN compatible
network support (IEEE802.11b/g). This is importast the goal of this project is to make the AP
capable for providing WLAN service without devicas

Below is the configuration of each of these hostizes

0 EeePC
Operating system Android with Linux kern2.6.29
Processor Intel Atom
Wireless card Atheros ar8132 PCl-e fast Ethernet controller
Wireless driver ath9k
Hostapd hostapd Vv0.6.9
Libnl libnl  v1.1

O ASUS X50Z series

Operating system Windows Vista

Processor AMD Turion(tm) X2 Duabre Mobile RM-70
Wireless card Atheros AR5007EG Wssl Network Adapter
Wireless driver AR5007EG 7.4.2.57 for Windows Vista

0 Sony Ericsson W715

39



ﬁ e 9. ST
Design a WLAN Mini Access Point in the Android Platform -J. ERICSSON

Operating system Sony Ericsson pragnyeoperating system
Processor Intel StrongARM

Wireless card Marvell 88W8686 chipset based card
Wireless driver libertas

5.3. Network topology

The AP operates in infrastructure mode in whickpalipheral stations connect to the AP. The Android
platform was designed for handheld device whichthagervasive telephone network access capability.
The nice feature for such device is that it carcfimam as modem for other types of devices that have
WLAN supported. Therefore we are intended to adklrttodem capability for the Android platform. In
this testing case we let the Android platform maehiun as AP while other hosts run as peripheral
stations that expect to connect to the AP for servihe network topology is given as Figure 22 Wwelo

Access point
Eee PC Android

4 N :
Sony Ericson:
W715 ASUS
Sony Ericsson Windows Vista

proprietary
operating system:

o

Figure 22Network topology in the testing casehoftapd in Android

5.4. Setting up the network

The process of setting up the network consistsvofdteps. The first step is to launestapd with its
running configuration file and connect the perigthestations to the AP. The second step is to do the
network configuration for all the hosts.

5.4.1. Running hostapd and connecting the hosts

The Android platform provides both desktop envireminand console operation environment for
interactions with the user. In this test we use abasole for currently we have not implemented a
graphic interface for our AP. The graphic interfa¢@ostapd is designed in the next chapter. We place

40



ﬁ 6%, ST
Design a WLAN Mini Access Point in the Android Platform -' -J. ERICSSON

the Android system in a USB stick so that we canthe test on any x86 based machine. With the USB
stick we first plug it into the USB interface oftltee PC and then choose to boot up from USB $o tha
Android can be launched into the memory of the E€anachine as Figure 23.

Figure 23Eee PC boots from the USB stick and Android is iogin

Next we launchhostapd with its configuration file. The content of thenfiguration file is given below
in the gray frame. Figure 24 showstapd is running.

interface=wlan0
bridge=mybr0
driver=nl80211
logger_syslog=-1
logger_syslog_level=2
logger_stdout=-1
logger_stdout_level=2
debug=4
ctrl_interface_group=0
hw_mode=g
ssid=MyAndroid
auth_algs=3
eapol_key_index_workaround=0
eap_server=0
channel=6

After hostapd is running at the Eee PC, other host machinesoanect to the AP with their WLAN
interfaces. Since both the ASUS and the Sony Enicaesachines have graphic user interfaces installed,
the connection can be performed from correspondiraphic network manager. Figure 2#hows
hostapd is launched with its configuration file amdstapd is running with SSID ofyAndroid . Two
hosts with MAC addresses0:22:43:2f:71:bc and 00:24:ef:2e:36:cc are authenticated and
connected. The accounting is started for eacheo€timnected hosts.

41



Design a WLAN Mini Access Point in the Android Platform

o ST
%9 ERICSSON

# hostapd setc/hostapd/hostapdAndroid.conf
Configuration file: setc/hostapd/hostapdAndroid.conf
interface wlan® with huaddr 00:25:d3:e3:64:ff and ssid 'HyfAndroid’
: STA 00:22:43:2f:71:bc IEEE 80Z2.11: authenticated

: STA 00:22:43:2f:71:bc IEEE 802.11: associated (aid 1)

: STA 00:22:43:2f:71:bc RADIUS: starting accounting session 4BEDS546-00000000

: STA 00:24:ef:2e:36:cc IEEE 802.11: authenticated

: STA 00: 21 ef Ze 36 cc IEEE 802 11: assuc1ated (ald 2)

460000000

Flgure 24Hostapd is running and stations are connected

5.4.2. Configuration of hosts

After the Android boots up, we run commatkcfg

to see the available interfaces in the system. As

seen in Figure 2fhere are four interfaces, two of which are up #raother two are shut dowa. is

the loopback deviceetho is the Ethernet interfaceviano is the wireless interfacevmastero is the
internal master device used by mac80211. Sinceegd to use the wireless interfageno , we need to
run the commandetcfg wlanO up to bring up the wireless interface.

# netcfyg
lo ur

12
etho ur 0.
0.

umaster(® DOWN

wlan® DOWN 192 168 1.2

2
0.
0.

235. 255 235.0

) . 0x00000049

0x00001003
0x00001002
0x00001002

Figure 25Available network interfaces in the Android

To make the hosts recognize each other in the setveork, we need to configure the address in the
same network. We need to do the configuration minbacause there is no DHCP server is listening
in the local network. We choose the addresses fif®168.1.2 to 192.168.1.4, with 255.255.255.0 as

network mask.

O For the Eee PC machine run commands
ifconfig wlan0 192.168.1.2 netmask 255.255.255.0

O For the ASUS PC machine run commands

ifconfig wlan0 192.168.1.3 netmask 255.255.255.0

O For the Sony Ericson W715 machine do configurasisn

wlan0 192.168.1.4 netmask 255.255.255.0

Figure 26 is an example of Sony Ericson W715 phwterorking information after configuration.

42



ﬁ e 0. ST
Design a WLAN Mini Access Point in the Android Platform ' -J. ERICSSON

i €8 1
Connection

Connected to: MyAndro
Signal strength: High
Auto connect: Off
Security: Open

Type: Infrastructure

IP address: 192.168.1.4
Subnet mask:
255.255.255.0

Figure 26Network address configuration in Sony Ericson Wiidbile phone

5.5. Packets transmission

With the network setup we can do simple packefstrassion within the local network. This is achieved
by doing theping command from the text console of these hosts.vBale two examples @ing other
two hosts from the Windows vista host.

C:\Usersi\bmgw>ping 192.168.1.2

Pinging 192.168.1.2 with 32 bytes of data:

Reply from 192.168.1.2: bytes=32 time=Ims TTL=64
Reply from 192.168.1.2: bytes=32 time=éms TTL=64
Reply from 192.168.1.2: bytes=32 time<ims TTL=64

Reply from 192.168.1.2: bytes=32 timedlms TTL=64

Ping statistics for 192.168.1.2:

Packets: Sent = &, Received = &, Lost = 0 (8% loss],
Approximate round trip times in milli-seconds:

Minimum = Oms, Maximum = 7ms, Average = 2ms

Figure 27ping Android host from Windows vista

43



ﬁ 6oz, ST
Design a WLAN Mini Access Point in the Android Platform - ERICSSON

C:\Users\bmgw>ping 192.168.1.4

Pinging 192.168.1.4 with 32 bytes of data:

Reply from 192.168.1.4: bytes=32 time=47oms TTL=64
Reply from 192.168.1.4: bytes=32 time=86ms TTL=64
Reply from 192.168.1.4: bytes=32 time=109ms TTL=64

Reply from 192.168.1.4: bytes=32 time=130ms TTL=64

Ping statistics for 192.168.1.4;

Packets: Sent = 4, Received = &, Lost = 0 (0% loss)
Approximate round trip times in milli-seconds:

Hinimum = 86ms, Maximum = 475ms, Average = 200ms

Figure 28ping Sony Erricson W715 from Windows vista

In Figure 27, whemping the Android host 4 packets, 32 bytes of eachsant. And 4 packets are sent
back from the Android host, with the same sizeastheresponding packet. The same are achieved when
ping the Sony Ericson W715 mobile phone, which is showkigure 28.

5.6. Result analysis

The experiment succeeds in both steps as mentiarnatbsection 5.4. First the peripheral stations ca
discover the AP in the Android platform and alltistias are able to connect to it. There is no déffice
between connection to the AP in the Android platf@nd connection to a normal hardware AP device.
Secondly, the data are successfully transmittegdd®mt stations, which means that there is no barrier
the AP in the Android platform for providing datergice. From the view of networking layering, we
conclude that we succeed in both link layer andieguion layer.

44



Design a WLAN Mini Access Point in the Android Platform -J‘ ERICSSON

6. User interface

In this chapter, the focus of our work is trangdrfrom hardware layer to application layer. Oualgs

to create a user interface for underlyimgtapd , which provides the possibility for user to comtro
hostapd 's AP functionality from Android application layee.g. start/stophostapd , etc. First, we
present the overview of Android application framekvavhich provides the basis for our application.
Then, we propose two alternatives to implementuser interface fohostapd . They are discussed in
subsection 6.2 and 6.3 respectively.

6.1. Android application framework

6.1.1. Four essential components

One of the main features of Android is that oneliappion can utilize other applications’ elemeritst

gets the permission. This feature greatly imprdbesefficiency of code reuse. Instead of incorpogat

or linking to a piece of code of another applicatithe application starts up that piece of codeéded.
Therefore, applications in Android differently fram other systems don’t have a single entry paint f
everything in the application, i.e. there is no miafunction in Android application. Rather, Andioi
specially provides four essential components whaah be instantiated and run by the system. There ar
four building blocks to an Android application: iaities, services, broadcast receivers, and content
providers.

O Activity provides visual user interface for Andragbplication. An application may consist of one
or more activities. Each one activity is implemehss a subclass that extends the Activity base
class. And also each activity is usually a singiean in the application. When the application is
launched, one of the activities is marked as ths Screen that will be presented to the user.
Moving from one screen to another one is accomplidhy starting a new activity in the current
one. This is usually done by adding a button inabiivity to trigger an event. The user interface
is displayed through the content of customizedesgravhich is provided by a hierarchy of views.
They are various objects derived from the View baass such asextview , EditText , Button
etc. The layout of views is written as a specifie ih the format of xml.

O A service is code that runs in the background flamg period of time, and without a visual user
interface. A good example to explain this is a ragolayer. A service is required in the case
where the background music can be kept playintp@siser navigates to other activities. Another
case is that a service can fetch data from thearktand calculate and return the result to the
activities that need it [6].

0 Broadcast receiver is used to receive and reaa &xternal event. Some broadcasts are initiated
by system code informing that the battery is lovthar picture has been deleted for instance. And
also applications can send broadcast to othersowace that some data over the network is
available now. Broadcast receivers do not displasser interface. However, they may display
notifications to alert the user if something impoitt has happened. Typically, there will be a
special icon shown in the status bar, and usersjgan to get the message [6].

0 Content provider makes it possible for the applicato share its data with others. Applications
store the data in the file system, in a SQLite lbada, or in any other ways. The content provider
extending theContentProvider base class implements a standard set of methotit tiher
applications retrieve and store the type of datalleal by that content provider [6].

All the four components above are listed in a sgdedanl file called AndroidManifest.xml. Not every
application needs to contain all four components, éach application is a combination of those.
AndroidManifest.xml declares the components nedxjetthe application and their capabilities.

45



Design a WLAN Mini Access Point in the Android Platform -J‘ ERICSSON

6.1.2. Intent and intent filter

Additionally, there is an activating component edllintent in Android. As mentioned above, of four
components only content providers are not activhtedsynchronous messages, i.e. intents, rathar by
request fromcontentResolver . Intent is an object of class Intent carrying timessage that is
transferred among components. It tells the comptowbat kind of action to be taken or what kind of
data to be processed. Typical values for actionvikéN, i.e. the entry point of the application, WE,
PICK, EDIT, etc. The data is defined as a Unifores®urce Indicator (URI). Each type of component
is activated by different methods, which are désatiin [11] as follows.

O An activity is launched by passing an Intent objedhe method ofontext.startActivity().
If a result are expected when the sub-activity sexittivity.startActivityForResult()
should be used to start a sub-activity.

O A service is started by passing an Intent objectdaext.startService() . To establish an
connection between the calling component and eetasgrvice, an Intent object is passed to
Context.bindService()

O A broadcast is delivered by passing an Intent a@bjer Context.sendBroadcast()
Context.sendOrderedBroadcast() , Or Context.sendStickyBroadcast()

In each case above, the Android system can findiastdntiate the appropriate component (among
activity, service and a set of broadcast receiviars@sponse to the intent, according to the datitans

in the AndroidManifest.xml file. But in the case that intents do not expljcitame a target component,
intent filters mechanism is used to test the intdaj¢ct in order to find the best component antvats

it. A component can have one or more intent filtersich describe what kind of intents the component
is capable to handle. Each filter presents a clpalif the component. They are defined in
AndroidManifest.xml file as <intent-filter> elements. When the imgligitent is tested against an
intent filter, three fields of an intent filter acensulted: action, data and category. If the inipintent
mismatches any of the fields, it cannot be deligddoethe component with that filter.

The most important role of intent is used to switamong applications, activities and services. It
functions as an information bridge, which can stamew activity or pass data from one activity to
another. Android provides the intent mechanismazigate from screen to screen. There are two kinds
of intent: explicit and implicit. Explicit intent eans that the intent receiver is assigned wheinteat
object is created. However, implicit intent does cere who will be the intent receiver. For example
activity calls startActivity(mylIntent), and the Android system will check the intent fitdor all
activities and pick the activity whose intent fikedbest matchyintent to launch it.

6.1.3. Android User interface design

There are two ways in Android to build User inteda (Ul). One way is to write Java code and
construct application’s Ul directly in source codde other way is non-programmatic, i.e. to define
XML-based code file. The second way is highly renmended due to the reason that it is easy to
modify without changing the whole source code.

The basic units of user interface in Android apgiiian areview andviewgroup , which are descendants
of view class. Thesiew object serves as a base class for all widgets;hwduie the elements appearing
on the screen (e.gextView , Button , etc).Viewgroup serves as a base class fotagfouts , which are
the layout architecture to order the various widgdixamples ofviewgroup are LinearLayout
TableLayout, RelativeLayout , etc.

In Android application, a customized Ul is builting a tree-structured of view an@éwgroup nodes,
as shown in Figure 29.

46



ﬁ e 9. ST
Design a WLAN Mini Access Point in the Android Platform -J. ERICSSON

l |

[ ViewGroup ] View View

View View View

Figure 29Android tree-structured Ul [14]

In order to present the view hierarchy defined iml Xile to the screen, the activity calls its
setContentView() method and pass a reference to the root codeedf@b. The Android system parses
the elements from the top of the tree. Eaelgroup is responsible for its child views, i.e. it reqises
its child views to draw themselves. Hence, the whayout is built in order.

Writing an xml file is as easy as creating a HTNlk,fusing a series of nested elements. The adyanta
of declaring Ul in the xml file is to separate {hresentation of the application from the behaviathe
code. As mentioned above, tb&cContentview  method is called when compiling the applicatian. |
aims at loading the xml resources from the Javaceotode. Each view object is assigned an ID by the
Android system, which is an attribute defined inlite and used to uniquely identify the view ineth
Java code. When an xml file is created in Androimjext's res/layout/ directory, the Android system
automatically generates an ID in R.Java file farthedew object. The methathdviewByld() is used

to get the reference from the xml file and assiga the local variable within the Java code.

6.1.4. The AndroidManifest.xml

The AndroidManifest.xml is required for every Anidt@pplication and stored in Android project’s root
directory. If developing Android application withclipse (discussed in the subsection 6.1.5), the
AndroidManifest.xml file is automatically generated instead of writmgselves. It describes essential
information about an Android application, includitige four core components mentioned in subsection
6.1.1, their capabilities (e.g. what kind of inteméssage they are able to handle) and how thepe&an
launched. Additionally, the manifest declares therngssions for both ways. On one hand, an
application needs permission to access the protectsa of other applications’ APIs. On the otherdha
the permissions are also declared when other apiplics want to communicate with the application’s
components. The permissions are defined irkphenission> tag.

The diagram Figure 30 below shows a sinmpléroidManifest.xml file:

a7



sos ST
*99 ERICSSON

ﬁ Design a WLAN Mini Access Point in the Android Platform

<?wml wersion="i.0" encoding="utf-5"2x
<manifest xmlns:android="hitp: s/ schemas. android. com/apk/res/android™
package="com. example. openfile™
android:versionCode="1"
android:versionName="1. 0"
<application android:icon="Fdrawable/icon" android:label="@string/app name™:
<activity android:name=",openfile™
android: label="@string/appr name":
<intent-filter>
<action android:nsme="android. intent. action. MATH™ /=
<oategory android: name="android.intent. category. LADNCHER™ />
<fintent-filters>
<factivity>
<fapplications>
<uzes-=dk android:minidkVersion="a" />

</mwanifests>

Figure 30A simple AndroidManifest.xml file

It includes a namespace declaration (xmins:Andriitip://schemas.Android.com/apk/res/Android").
The role of this is to include a variety of stardl#&ndroid attributes and provide the data for the
elements in the file [7]. Each manifest has onlye eapplication> element, which contains the

components used in the application and their céipabidefined in theintent-filter> tag.

6.1.5. Develop with Eclipse

For development Google provides the Android Dewvalept Tools (ADT) for eclipse to develop
Android applications. It adds powerful functionglib the Eclipse integrated development environment
which provides the convenience for creating andudgimg the Android application. In addition, it
helps to write Android manifest and layout fileslie format of xml, and also it can export the Asdr

project into an executable program in the formatpkf

The diagram Figure 31 below shows how to creatAradroid project in Eclipse. After creating a new
Android project, the file directory structure isosmn in Figure 32.

48



Design a WLAN Mini Access Point in the Android Platform

L

X%
c00

ST
ER

|ICSSON

& New Android Project

New Android Project

Creates a new Android Project resource

Froject name: |HelloWorld

Contents
(#)Create new project in workspace
(O Create project from existing seurce

Use default location

O Create project from existing sample

Samples:

Build Target

Target Wame Vendor Flatform | AF

[] Andreid 1.5 Android Open Source Project 1.5 3

[] Goegle APIs Geoogle Inc. 1.5 3

[ Andreid 1.8 #ndroid Open Seurce Froject 1.8 4

[ Google APIs Google Inc. 1.8 4

Android 2.0 1 Android Open Source Project 2.0 B

[] Goegle APIs Geoogle Inc. 2.0, g

[ Andreoid 2.1 #ndroid Open Seurce Froject 2.1 T

[ Google APIs Google Inc. 2.1 T
Standard Android platform 2.0.1

Propertises
#pplication mame:  |[HelloWorld |
Package name: [com. example. HelloWorld |
[“lCreate hctivity: [HelloWorld |
Min SDK Version: [s |
@ [ < Back Il Hext > ] [ Fimish Easeas

Figure 31Create an Android project with Eclipse

com. example. HelloWorld
[J] HelloWorld. java

= (:"I'& gen [Generated Jawa Files]

=-f com. example. HelloWorld

[J] B java
= Android 2.0.1
G@ assets
=l G@ res
=== drawable—hdpi
t‘j icon. png
=)= drawable-1dpi
t‘j 1con. pLE
= drawable-mdpi
c‘j 1con. pLE
== layout
|X] main. xml
= walnes

|X] strings. xml
/) AndroidManifest. xml
default. properties

Figure 32Android project directory structure in Eclipse

49



ﬁ 6oz, ST
Design a WLAN Mini Access Point in the Android Platform - ERICSSON

R.Java is an automatically generated class filéclwhontains all the Ul elements. The res/drawable
directory stores image resources. The res/layoatudiry stores customized layout files, which corga
various view objects and will be present on theesas. The files describing application’s varialaes
located in the res/values directory. All the filesder res directory are called resources for Amkiroi
which are independent from code file (i.e. Java) fiHowever, the users want to include and referenc
them in their code behaviors. The main role of RaJe is to setup a connection between resources
and Java codes. The Android application can adchesesources using their IDs defined in the R.Java

The general steps to develop an Android applicaierthe following:

» Step 1: Design one or more layout files, and ade@l&inents in each layout files according to the
requirements. The Figure 33 shows how a layout fdmllooks like. This file contains two Ul
widgets: Textview and Button . It uses thelinearLayout ~ way to vertically order the two view
objects. Both Ul elements have text attributes, cwhiill be present in the screen result.
Moreover, the button element is attached with tdhatte, which can be used in the Java code to
interact with other code behaviors. Beside the fiimledit window is a layout window, presenting
the result of xml editing, e.g. shown in Figure 34.

<?xml wersion="1.0" encoding="utf-"7=
<LinearLayout Xmlns:android="kitp:/ schemas.android. coms/apk/res/android™
android:orientation="vertical"
android:layout_width="fil;_parent"
andrnid:layout_height="fill_parent">
«TextWiew
android:layout_width="fill_parent"
android: layout _height="wrap conbtent"”
android:text="You are in the first Screen"
i
<Button
android:id ="@+id btrclick™
android: layout _width="wrap content”
android: layout height="wrap content"”
android:text="0pen New Screen"
i
</ LinearLayout>

Figure 33A simple layout xml file with two elements

Y e in the

Open New Screen

Figure 34The screen result of Fig. 33

» Step 2: Write Java code for Android applicationd&scribe the application behaviors. The four

50



% ST
". ERICSSON

Design a WLAN Mini Access Point in the Android Platform

essential components can be used according toetrelappment requirements. For example, write
two class files NMainActivity and subActivity ) both extending from Activity class; and use
intent message implementing the switch between aetivities. The Java code can access the
resources by referencing resource ID defined irXiki¢-layout file. For example, a Button object
can be created in the Java code in response tgtamal event througketOnClickListener()

method.

Step 3: Write theAndroidManifest.xml file to describe all the components used in the
application. The manifest has its own writing rudesl it is required by the Android system to run
the application.

Step 4: Run the Android project that has been ededthere will be at least one Android emulator
included in the Eclipse development environmentides versions of Android emulators can be
installed byAandroidSDK andavDManager . Figure 35s one example of Android emulator. Figure
36 shows the running result, which is the saméahe designed in the XML-layout shown in
Figure 34.

B 5554 co

Android

1:05..

Thursday, April 8
€ Charging (50%)

M 5554 co

n

openscreel

Figure 36Running result shown in the Android emulator

51



-

ST

06
00
Design a WLAN Mini Access Point in the Android Platform = -® ERICSSON

6.1.6. Important APIs

Android provides a variety of APIs for developevsdevelop Android application. Those APIs can be
used to interact with the underlying Android systditne Android API consists of a core set of package
and classes, and their main definition in [10]asdollows.

0

Android.app  package are high-level classes encapsulatingvitralb Android application model.
The central class is Activity.

AlertDialog  extends Dialog that is a class of Android.app pgek It can be used to display a
title, a text message, one or more buttons, etd. iffunctions as an external window shown on
the application screen. The Figure 37 displays wdlieking the buttormsg, the application pops
up an external window.

I 5554:cc

C Gm e

E Leave a msg to me?

Thanks

Figure 37Popup an external window usiAagrtDialog  class

Android.os package provides basic operating system servicesssage passing, and
inter-process communication on the device.

Bundle is a class implementing a mapping from §tkialues to variousata/message  types. It
is used together with Intent message when paskigdta from one activity to the other. It can
extract the content of message in String type uisingwn methods.

Android.view  package provides classes that expose basic usefage classes that handle
screen layout and interaction with the user.

View class is the most useful in this package.efiresents the basic building block for user
interface components.

Android.content package contains classes for accessing and piniglidata on the device.
BroadcastReceiver is a base class for code that will receive inteet#t bysendBroadcast().

ContentProvider is one of the primary building blocks of Androighications, providing
content to applications.

Intent IS an abstract description of an operation todréopmed.

IntentFilter class is a structured description of Intent vabodse matched.

52



Design a WLAN Mini Access Point in the Android Platform -J‘ ERICSSON

O Android.widget  package contains mostly visual Ul elements toamsthe application screen.

Android.util package provides common utility methods suchdastime  manipulation,
base64 encoders and decoders, string and numbesrsimm methods, and XML utilities.

Log class is the API for sending log output.

6.2. GUI design through hostapd control interface

6.2.1. Hostapd GUI design overview

After compiling hostapd in the Android systemostapd can be run and used through its initialized
configuration file. But the disadvantage is thattlad operation is done by command line interfaae.
increase the user-interaction and maniputateapd from upper layer, we supply a friendly Graphical
user interface (GUI) design to allow users to auntistapd from Android application layer (e.g.
start/stop hostapd ).

GUI for hostapd provides an interface for sending network infoiimrain the form of broadcast, which

is visible for the wireless devices (e.g. lapto@AR mobile phone, etc.) to connect with. It is also
necessary to implement an authentication with thieless devices that have the connection requigsts.
will ask them to provide additional security infaation (e.g. username and password) to authenticate.
The most important role of an AP is to distribute tata among devices.

Hostapd GUI should support all of the interactive statnd aonfiguration features of the command line
client. The way to develop an Android applicatibattis capable of talking tistapd is to directly
talk with hostapd control interfaceHostapd provides a control interface that can be callegXigrnal
programs to control thieostapd . In the source code structure, there includesall diforary in the form

of C file, i.e.wpa_ctrl.c , that provides the link for external programs. e library functions are
documented imvpa_ctrl.h , andhostapd_cli. € is an example program that uses the library.

There is an obstacle for designing sudtevsaapd GUI. As mentioned abovépstapd control interface

is written in C programming language. However, andiid application is developed using Java
language. To solve this problem, we use Android NIPKINI development tools, which are able to use
the helper functions in C language thadtapd provides.

Specifically,hostapd GUI have the following main features:

- It startshostapd to send network information (i.e. beacon framejtter wireless devices.

- It asks for user credentials to authenticate withrequesting device and allow it to connect
- It limits the number of connecting wireless devices

- It adds a wireless device and sets its permission

- It remembers the authenticated devices that aqudrely communicated with in order to enable
automatic reconnection in the future

- It shows the currently connecting devices withrthies (e.g. MAC address)
- It shows thenostapd configuration file and allows users to edit it

- It displays important connection information, suab SSID, network interface, STA MAC
address

- It displays an event history log of messages géeeitayhostapd

- It displays current status, such as authenticatgzhciated information, etc.
- It distribute/rely the data among wireless devices

- It stopshostapd

More details are presented in the following subieast

53



sos ST
*99 ERICSSON

ﬁ Design a WLAN Mini Access Point in the Android Platform

6.2.2. Functionality design diagram

In this subsection, first we provide the functiotyabf hostapd GUI presenting with theostapd GUI
screen. Then we use the thinking of software emging to transform the functionalities into design
classes. Various UML diagrams are used to creagmenodel and visualize the architecture of GUI
development.

6.2.2.1. Hostapd GUI screen design

Hostapd GUI divides the functionalities into three impartavindows: one main window, one setting
window and one adding window. Figure 38 showstadtapd GUI main window that is composed of
some buttons and text views. It is used for dispakey information of the last connection request,
including connection status, network parameterspneoting device’'s parameters and security
information. It can start and stapstapd (i.e. the functionality of AP) through two contttmlittons. The

other buttons are used to trigger the events, te.gpen other windows (i.edit conf. button
setting  button andadd button) or show the information of currently contireg devices in list views
(i.e. connecting devices button). The log button gives the whole review tbé history log of
connections.

E d &) T30

Hostapd GUI main window
-icunf -ing - -Dg

Display informa zbout the fast e

5. authenticated

Figure 38Hostapd GUI main window

Figure 39 shows how to set the network for an ARe Tser can select a network name (SSID), and
setup a network interface for other wireless devitte connect throughdostapd GUI also provides
some network security features, e.g. using WPA-PSKAN Protected Access-Pre Shared key) for
authentication and WEP (Wired Equivalent Privac@WP (IEEE802.11i encryption protocol) for
encryption. The WEP key is customized to authetdicsith wireless devices that have connection
requests. The authentication window is shown irufegt0, asking for the username and password for
the connection. There are three options for theElf2.11 mode (IEEE802.11b/g) setting. There is a
checkbox element in the screen that is used tolermlio channel scan, or the user can select the
specified channel for transmitting data (e.g. clehid). Transmission rate can be set to best tguttef
The user can limit the number of wireless devidesubaneously accessing the AP network. The last

54



ﬁ e 0. ST
Design a WLAN Mini Access Point in the Android Platform ' -J. ERICSSON

setting uses two radio-buttons to choose the ARarétvisible for other devices. The bottom lineais
save button that can store all the above settings.

& el T2F10:21
Droidbxaw

Metwork setting window

Figure 40Authentication window

Hostapd GUI adding window is used to add or reserve a mésgless device to connect to the AP

network, as shown in Figure 41 below. It considtdven parts, adding and reservation list. If the

wireless device has the problem with searchingtlier AP network, the user can manually add this
device by filling the computer name, IP address, MMC address in the field and mark it enabled. The
click of save button makes this newly-added degltewn in the reservation list. The user can freely
edit and delete the wireless devices in the list.

55



ﬁ 6%, ST
Design a WLAN Mini Access Point in the Android Platform -' -J. ERICSSON

E a &) F4s:14

DroidDyaw

Hostapd GUI adding window

Add a new device

Computer Name: ||

IP address: i
MAc address: " |

ah a
wen 00 Del

Figure 41Hostapd GUI adding window

Figure 42 is a list view showing the number andimfation of wireless devices currently connectimg t
the AP network. The expiration column shows the aiging time for each device when it can be
connected. The list provides the possibility far tiser to revoke and reserve the devices easily.

Number of dynamic connecting wireless devices: 5

Hardware Address
1c:4b:d6:3e:b2:a5
00:1f;3bi6b:01:0d
00:0e:35:5d:9e:1e
00:14:35:0f:74:7e
00:08:7b:07:48:d4

Assigned IP Hostname Expires

10.10.1.239 1 Days 12 Hours 32 Minutes Revoke Reserve
10.10.1.240 xiaowenguo Newver
10.10.1.250 amilo Never
10.10.1.253 Basel-PC 2 Days 18 Hours 9 Minutes Revoke Reserve
10.10.1.254 2 Days 56 Minutes Revoke Reserve

Figure 42List view of currently connecting with the AP

The functionality of editingrostapd configuration file is present in the subsectiod 6.

6.2.2.2. Hostapd GUI use case design

The diagrams above show the functionalitie®afapd AP in the form of GUI. The aim dfostapd

GUI is to increase the user experience, allowingraisto controlhostapd functionalities from
application layer. From the perspective of desigrard developers, the requirements of users are the
starting point in software engineering. We useaswiUML diagrams to create our visual models. UML
diagrams represent two different views of a systeadel: structural and behavioral views. Use case
diagram is used to show the functionality provitlgda system in terms of three main elements: actors
use cases, and relationships among those use Egga® 43 shows the primary functions of an AP [9]
(Distribution system (DS) consisting of a set adibaservice sets and integrated local area networks

a) Provide DS access for the WDs.



Design a WLAN Mini Access Point in the Android Platform -J‘ ERICSSON

- Includes WD authentication and extends to notifytimg DS.
- Includes relaying data between the WDs and the DS.
» Uses a special data relay function called daterifilty.
b) Configure the AP

Autherticate
WD i
" cestandn T =
ki
5

\
Wireless ulnclude»
DevicelWD]
Provvide DS
ACCEsSE

oclnclude:o

Relay d=ata
Configure
hostapd
Filter dat= Networ k. administrator

Figure 43Use case diagram for the AP

In use case diagram (Figure 4dgstapd GUI instead of AP is viewed as a whole system. diagram
presents the functionalities a@bstapd GUI in terms of actors, new use cases, and traioakhip
between them. The wireless network user thraugtapd GUI system can start/stopstapd , which
extends to sending network information to the WDke wireless network user can enter adding
window to do the operation for the WDs, includirddang and deleting a WD. The user can open a
setting window to set the information for the APpeSifically the user can limit the number of
simultaneously connecting WDs. The user can ediw(vedit and savejostapd configuration file
through editing window. In addition, the GUI systdras three display functions (e.g. showing AP
information).

57



ﬁ ; 9. ST
Design a WLAN Mini Access Point in the Android Platform -J‘ ERICSSON

Start hostapd f——— == === ———

sextends
Di =plzy AF info =

4 -

= Tpestendn
Stop hostapd
Add = WD \
=
' c=aincluden

Wireless
Devices{whs]
s
sinclndes ﬁ
3 Delete = WD

Wireless natvigk.
user

Di splay currently
connecting Whs

Dizplay history
log

teve hostapdy = ™ Hostapd[AF]
conf file wincludes

wincludes
wincludes N
Edit hostapd
carf file EEve ey
corf file

Figure 44Use case diagram fapstapd GUI

To emphasize the dynamic behavior of the systemals® create a sequence diagram shown in Figure
45. The sequence diagram shows how the objectaatteith each other in by transferring a sequence
of messages. And also it indicates the lifespaeash object. Figure 45 describes how external svent
communicate withostapd throughhostapd control interface and how GUI reflects those adito the
wireless network user.

6.2.2.3. Hostapd control interface

In our project we focus on how to contrektapd from external program, thus the control interfate
hostapd iS our concerning part. Thestapd provides a control interface that external progran
utilize by rewriting those functions to control thehaviors ofhostapd . It is also used to get status
information and external event notificationga_ctrl.c  file is written in C language, which is a small
library providing helper functions to facilitateethuse ofhostapd control interface. Instead of caring
about the inter-process communication (IPC), tmetions defined invpa_ctr.h  can be used to shield
the details of IPC from external programs. Exterpabgram can use the library functions to
communicate withostapd .

Hostapd control interface is used to processes two kinthe$sages: commands and unsolicited event
messages. Commands mean the request from extemmgdam and the response fromastapd .
Unsolicited event messages are sentdayapd to the control interface without knowing that wihic
external program will receive the message. The thelper functions defined impa_ctr.c  as follows

[8]:

- wpa_ctrl_open(): open a control interface tostapd .

58



Design a WLAN Mini Access Point in the Android Platform -J‘ ERICSSON

- wpa_ctrl_request(): send a command t@stapd .
- wpa_ctrl_attach(): register the control interface connection as aitapfor hostapd events in
order to receive the unsolicited messages.
- wpa_ctrl_pending(): check whether there are pending event messagéaldedo be received
bywpa_ctrl_recv(). It is only used for event messages,viye_ctrl_attach() has been used.
- wpa_ctrl_recv(): receive a pending event message from controlfater It is only used for
event messages, ivgpa_ctrl_attach() has been used.
- wpa_ctrl_detach(): unregister the control interface connection as @nitar for hostapd
events.
- wpa_ctrl_close(): close a control interface tostapd .
Usually the external program can open two contrmérface connections tbostapd by method
wpa_ctrl_open(). One is reserved for sending commandshdstapd , and the other one is for
receiving unsolicited messages from control int&fdn other wordsypa_ctrl_attach() method is

only used when the control interface connectioristered is used for receiving event messages.

In Figure 45, wireless network user startup tihgapd GUI window and click the start button in the
main window to startostapd . A hostapd control interface instance is created. Thesiapd sends the
network information (i.e. beacon frame) to the Wiss devices. If the device has a request for
interacting with hostapd , it opens a control interface twstapd uSing wpa_ctrl_open(). This
message in the figure is marked with a star, wiiglans it can be sent more than once. If the device
wishes to receive the unsolicited messages, iedsired to attach to the control interface by oglli

wpa_ctrl_attach(). Now it registers as an event monitor for the amninterface. Then the device
sends the command tostapd by wpa_ctrl_request(). Wpa_ctrl_recv() is only used for receiving
the event messages. After a period of transmit,time_ctrl_pending() is used to check whether

there are pending event messages to be receivefdr By completed communication betweestapd

and external events throughstapd control interface is finished. The user can teateénthehostapd

by clicking the stop button. After the external gram receives the beacon information, it unregister
the control interface taostapd by calling wpa_ctrl_detach(). Then it usesvpa_ctrl_close() to
close the control interface bostapd .

59



sos ST
*99 ERICSSON

Design a WLAN Mini Access Point in the Android Platform

2:Start

Wireless Hostapd GUI Hostapd External
network user screen events
| 1:Startup | ‘ ‘

3:Create Hostapd control
interface

4'Send%93 con ‘

| 5*:Wpa_ctrl_open()
6:Wpa_ctrl_attach()
_7:Wpa_ctrl_request()

.« 7.1:Send request
8:Send response

8.1:Wpa_ctrl_recv()

%Q:Wpa ctrl_pending()

T 10:Terminate J

11:Stop 12:Send'beacon
‘ _13:Wpa_ctrl_detach()

_ 14.1inform _14:Wpa_ctrl_close()
14.2:Show status | [<
=
= 1
B T

Figure 45Sequence diagram fasstapd control interface

In addition,hostapd also defines some commands that can be used ¢ogeith wpa_ctrl_request()
function sent ttostapd . For example:

PING: This command can be used to test whethetapd is replying to the control interface
commands. The expected replyAmNG if the connection is open andstapd is processing
commands.

MIB: Request a list of MIB variables (dotlx, dotl1h€eToutput is a text block with each line in
variable=value format. For example

dotl1RSNAEnabled=FALSE
dot11RSNAPreauthenticationEnabled=FALSE
dotl1RSNAConfigVersion=1

STA<addr>: get MIB variables for one station.
NEW_STA<addr>: add a new station.
SA_QUERY:send SA Query request.

WPS_PIN: configure WPS negotiation to act as an integratédS Registrar and provision
credentials for WPS Enrollees.

60



vee
[ M=
Design a WLAN Mini Access Point in the Android Platform -J‘ ERICSSON

WPS_PBC: configure WPS negotiation to act as an integratédS Registrar and provision
credentials for WPS Enrollees.

ALL_STA: get MIB variables for all stations.
HELP: show this usage help.

LICENSE: show fullhostapd_cli  license.
QUIT: exit hostapd_cli

LEVEL: Change debug level.

INTERFACE List configured interfaces or select interfagno , etho , etc.

Thehostapd control interface (i.e. library functions definedwpa_ctrl.c ) together with its commands
provide the basis for implementing the functioneditin the application layer.

6.2.2.4. Hostapd GUI class design

In software engineering, class diagram plays aroitapt role in describing the architecture of aetys
in terms of classes, attributes and the relatignbbiween the classes. All the functionalities yared

require to be implemented in the various classks. dass diagram is used both for general conceptua

modeling of the functionalities, and for detaileddrling that can be later translated into programgmi

code.

In Android, each application is composed of any bi@tion of the four essential components:
activities, services, broadcast receivers, andetmiroviders. More specifically, each class shddd
implemented extending those components. Howevdfereintly each Java application is directly
constructed of various functional classes. Thecbarit of an Android application is an activity. In
Android user interface (Ul) design, an activity ates a window to place Ul, which contains various
widgets such as buttons, text boxes, etc. Figurehdbvs a class diagram fasstapd GUI from the
perspective of Android Ul application.

61



ﬁ éss, ST
Design a WLAN Mini Access Point in the Android Platform o ERICSSON

EditTe:xt
RadioButton
=]

Edit Corfwindonw

Q\\ SettingSawveButton CheckBox
SaweButbon
1
EditTesxt
Absolutelayout ]
4 Lz
% ’ Settinguindow: [ Tead e
Sl / S

Pdzrini ndonw

TestWiew é—-—-_._____l_

/f?
1
TableLayout
% 1
N
CirlButton 17 t ! Vil
1
1

TableRowr

AddingWindos

1

ConnectingWDList

Loglist

\ / Edit Button

Listview

Figure 46Class diagram fotiostapd GUI

There are four windows: main window includes theeothree ones. Each of them is an activity used to
present Ul elements. All the elements are extenftmy the base class view, which is building block
for Ul elements. Setting window and adding windoavér some common elements, eigeckbox |,
textView , andeditText . Additionally, both windows’ elements are ordeiedhetableLayout . And
different buttons are used to operate their reggestindows. Main window itself is structured of
textvView and button, which are placeddbsoluteLayout . It also incorporates two display functions,
which are descending fronitview class. The following tables (Table 2-4) show tHeeléments and
their functions implemented in each window.

Setting window as Table 2

Element Function

TableLayout Show the content of setting window in the formatatfle
TableRow Define a row, used together with TableLayout

TextView Show the title and required setting parameterb®ftindow
EditText Show the text box in which the user can edit thameters
CheckBox Enable or disable the auto channel scan

RadioButton Set the AP network visible or invisible

SettingSaveButton Save all the settings

Table 2 Elements and functions in setting window

62



Design a WLAN Mini Access Point in the Android Platform -J‘ ERICSSON

Adding window as Table 3

Element Function

TableLayout Show the content of adding window in the formatatifie

TableRow Define a row, used together with TableLayout

TextView Show the title and the parameters required to aueladevice
EditText Show the text box in which the user can edit timm@ameters
CheckBox Enable or disable the newly added device

EditButton Save or clear the adding action of a new device

Table 3 Elements and functions in adding window

Main window as Table 4

Element Function

AbsoluteLayout Show the elements of main window in any position
TextView Show the title and display info about the last a&gimn
CtrlButton Start or stophostapd

ConnectingWDList |  Show the list of WDs currently connecting with Aétwork

LoglList Show the history log list of connections

EditConfWindow View, edit and save the configuration filerafstapd

AddingWindow Add or delete a new wireless device associated hastapd and add it into
SettingWindow Set the parameters for the connection, both AP oré&tand WD

Table 4 Elements and functions in main window

6.2.3. Implementation approach

To implement the Android application (ifstapd GUI), the underlying functions tibstapd control
interface written in C language are required. Téer takes advantage of GUI screen to talkotmapd
located in the Android system througbstapd control interface. In other words, the implementat
requires a bridge providing a transformation betwéava language and C language. According to the
knowledge so far, Android NDK and JNI are feassaéutions for this.

Android NDK

Google releases Android Native Development Kit (NDdfter Android SDK. Developers rely on
Android SDK that is based on Java language to devtieir applications. However, Android NDK
allows them to build their applications in nativede language, such as C/C++. This makes it possible
to reuse some existing code without rewriting B# tode in Java during application development.
Android NDK provides a set of tools, by which C/Crative libraries are generated. Besides, it allows
embedding the generated C/C++ libraries into Ardi@pplication package filesapk) that can be

63



Design a WLAN Mini Access Point in the Android Platform :‘ ERICSSON

deployed on Android devices. And also there intesggaa cross compiler in Android NDK, which
eliminates the dependency among various platfofithe.developer can achieve the cross compiling by
modifying the build files included in the Androigissem. However, there also exists the disadvardbge
Android NDK. First, Android NDK is designed for usaly in conjunction with Android SDK, because
Android application runs in the dalvik virtual méoa [12]. Second, it can increase the complexitsrof
application. Third, it relies on the release vensid the platform, that is, the native system liles that
are to be used are not stable and they may chartbe future platform version [12].

JNI

The Java Native Interface (JNI) is a Sun-develdpegtactive technology that is designed to integrat
Java code with the code written in other languages, C/C++. It allows Java program running in a
JVM to call the native applications and libraribsittare specific to an operating system platform, i
order to utilize the system functionality. In themse way, JNI also implements the Java objects to be
called by the native method, so that the advantégava platform can be maintained.

JNI is a benefit to handle the situation when thendard Java class library does not support the
platform-dependent features required by the usétemrapplication. And also it is adapted to theeca
when there is an existing application or libranjtien in other languages, and the user wish to nitake
accessible to Java applications.

However, the drawback of using JNI should not beigd. When an application uses the JNI, it also
risks losing two benefits of the Java platformsEithe Java application depending on JNI can ngdp

be easily deployed to multiple host environmentgerEthrough the part of the application written in
Java language is portable to multiple host enviemisi The reason for that is the part of the agfiin
written in native language requires being recontpjlE)]. Second, the Java language is type-safe and
secure, while native languages such as C/C++ areGumsequently, extra care must be paid when
using JNI to develop an application. Therefore, daeeloper should construct the application in orde
that native methods are called in classes as fgwssble [10].

JNI developers have provided a set of specificsrtbeestablish the connection between Java code and
native methods. From the perspective of developerdNI program written in C/C++ is needed to
directly manipulate the target native method, aadhapplication through JVM loading and calling JNI
program indirectly calls that native method. Figdieshows the call process. When the JVM invokes
the native function, it passes a JNI interface f@oiQJNIEnv). JNIEnv is passed as argument for each
native function mapped to Java method, which allda to interact with the native function through
JNI environment.

Load stub Load .so Invoke

Call native
method

>

Figure 47JNI call process

Call stub
method

Java-class

Return values

Native

The writing steps of using JNI shown in Figure 48 as follows (takelelloworld  for an example):
1) Create a Java class that declares the native méthiatvorld.Java )

64



Design a WLAN Mini Access Point in the Android Platform

oo ST
*99 ERICSSON

public class HellowWorld {
private native void print()

public static void main(String[] args) {
new HelloWorld().print();
}

static {

System.loadLibrary("Helloworld")
}
}

2) UseJavac to compile the source file, resulting in the clfilgs(Helloworld.class

3) UseJavah to generate a C header filge{oworld.h

h )
4) Write the C implementation of the native methadigworld.c

#include <jni.h>
#include <stdio.h>
#include "HelloWorld.h"

JNIEXPORTvoiIdINICALLJava_HelloWorld_print(JNIEnv
{

printf("Hello World!\n");
return;

5) Compile C code and generate native libratsligworld.dll
6) Run the Helloworld

(Helloworld.class

) and the native libraryHglioworld.dll
runtime.

s
Create a class
\ that declares the |

W\'e meﬂy

HaTTloWorld.java

-
e

e

>
ﬂe javac /L;se}avahh
| to compile the

| generate header
\plogmzy/ \ﬁle /
. S HEHOWQHG h
HelloworTd.class I

|
|

‘ implementation | )
|
1

of the native /
')\melhod /
"‘ Helloworld. c
|

|

/
| (omplle (o)
|

\ | code and genentﬂ
\

\

\

native libra y
|
!
|

. HeHOWOHd dil
~ 6
Run the\/

plO“["'llTl usimg

the ]Ewa
mierplem | “Hallo World!"

Figure 48Steps of writing and runningelloworld

program using the Java runtime interpreter

=
\Kkme theR

|

\

)
)

*env,jobjectobyj)

or libHelloWorld.so

)

. Batle tlass files
OrlibHelloWorld.so

) are loaded at

program [10]

65



Design a WLAN Mini Access Point in the Android Platform -J‘ ERICSSON

The Android implementation follows the general sugpecified in NI, but there exists some diffeesnc
the C implementation of the native method requareg\ndroid makefile (i.eAndroid.mk ) to be built as

a shared library (.so file). This file will be oadl by a Java class with a declaration of the natigghod
through loading the library. And also the Java <lfie needs another Android.mk to build as an
Android package (i.e. .apk) file to be installedtie Android emulator. (.apk file is Android exegiie
program)

As mentioned above, there are two options to implansuch an Android application, which requires
calling the native methods written in C languaget Both of them have the disadvantages which
increase the complexity of application developrmeerd decrease the benefits of Java platform. Hence,
the developer should architect the application teetdilizing Android NDK or JNI in order to keepeh
maximum purity of Java/Android application.

6.3. Ul design through hostapd configuration file

This part presents the second alternative to impienuser interface fotiostapd . We first state the
concept of design, and then provide the proceampiementation in subsection 6.3.2 and 6.3.3. At,la
we compare the advantages and disadvantages betueaiternatives.

6.3.1. The concept of design

Subsection 6.2 provides an alternative to implenuset interface foostapd . We design an Android
application callechostapd GUI, which encapsulates the functions providebbiad control interface
into various Ul elementsekt box, button, label , etc) and present the friendly Ul to the usethia
subsection, we propose a second approach to achievask of user interface fosstapd .

For the sake of simplicity, we consider to nestapd as a whole instead of directly talkingHgstapd
control interface. In our previous work, we comgiled runhostapd as an executable application in the
Android system. Hence it is possible to develog\adroid application with the functionality thatdan
run another application program. Due to that tha&raid application program can be run using the
hostapd command. Therefore, our efforts focus on writingfadroid application with the capability of
running a command.

In order to increase the communication between asérhostapd , i.e. allowing the user to select
various functionalities ofiostapd , we consider that it is a feasible strategy tadHetuser editostapd
configuration file. Meanwhile, this configuratioiief is required and will be read when starting the
hostapd . This file describes the functionalities that neéede loaded together wittostapd and it is
written in the form of text. Hence the basic idéawr approach is to write an application throudtick
the user can customize the configuration file amgest for runninghostapd .

In summary, the Android application to be createnl$d achieve two goals:

- The capability to run a command in order to rurapplication program (i.ewstapd ).
- The capabilities to edit a text file so as to cose the configuration file, including view, edit
and save basic functions.

We assume that every time the user changes thentaftconfiguration file, which results in restagt
the hostapd to implement the new functions. The path of camfigion file stored will be included in
the part that runisostapd .

The basis of our implementation is the Applicatl®rogram Interfaces (APIs) provided in Android.
More specifically, two classeSafa.lang.Runtime and.Process ) can be used for runningstapd
command and communicating with it. In addition, tipeerations of reading and writing files in Android
will be addressed in details in subsection 6.3.3.

66



ﬁ ; 9. ST
Design a WLAN Mini Access Point in the Android Platform -J‘ ERICSSON

6.3.2. Write an application to run hostapd

According to the APIs provided by the Android systegacketiava.lang provides core classes of the
Android environment. It includes two classes thah de used to realize the function of running
application: Process and Runtime classes. It hastaruptedException which is thrown when a
waiting thread is activated before the conditiowdss waiting for has been satisfied [13].

Class Process represents an external processbliesnwriting to, reading from, destroying, andtingi
for the external process, as well as queryingxiisvalue [13].

It provides some public methods that are inclugeolir implementation shown in Table 5. (Note: Table
5-11 are listed in Appendix A, which are cited frémdroid APISs)

Class Runtime allows Java applications to interfagéh the environment in which they are
running. Applications cannot create an instanc¢hisf class, but they can get a singleton instaryce b
invoking getRuntime()  [13].

It provides some public methods that are includeolr implementation shown in Table 6.

In addition, we also utilize some classes defime@dackage Java.io which provide direct accesseo th

file system. They armputStream,InputStreamReader anBufferedReader . The definitions of them
in [13] are the following:

- ClassinputStream is the base class for all the input streams. Awtistream is a way of reading
data from a source in a byte-wise manner.

- ClassinputStreamReader IS a class for converting a byte stream into aaztar stream.
- ClassBufferedreader  wraps an class Reader and increase the functibaff#ring the input.

The following presents the critical part of our Bggtion of running a command:

public void execCommand(String command) throws IOEx ception {
Runtime runtime = Runtime.getRuntime();

Process proc = runtime.exec(command);

InputStream inputstream = proc.getlnputStream();
InputStreamReaderinputstreamreader=newlnputStr eamReader(inputstream);

BufferedReader bufferedreader = new BufferedReader (inputstreamreader);

The clasSava.lang.Runtime holds a static methagtruntime(),  which is the only way to retrieve a
reference to the object Runtime. Then the extgrajram can be run by invoking theec() method

of Runtime class. By far, we have already starteel tommand we pass as the argument of our
self-defined methodxecCommand(). Actually, we start a separate child process (xteraal program)
without the control of parent process. As a resh#, output of this child process is not visibleride,

an input stream (the output of external prograrids/ed as the input for Java application) is resglito
obtain the output of the child process after iuis by the command.

Another part of our application shows below the ami@nce of using methogkitFor(). To see the
value that the external process returns, we usexttvalue() method of the Process class. But the
problem arises when the external process has matoyepleted. Thexitvalue() method will throw
an lllegalThreadStateException . The reason is that thexitvalue() method is non-blocking.

67



o9
Design a WLAN Mini Access Point in the Android Platform -® ERICSSON

Hence, thewaitFor() method is required, which will block waiting untihe external process
completes. To avoid only usingitFor() method to wait an external process that may neweplete,
we use a if-condition to determine whether theentrprocess should wait or not.

7l .
if (proc.waitFor() != 0) {
System.err.printin(“exit value = " + proc.exitVal ue());

} catch (InterruptedException e) {
System.err.printin(e);

In our application, we usexecCommand(*/system/bin/ps"); to test the running result. Figure 49
shows the result for running a command in the etould herefore, this can be applied to the general
scenario that we can use this application to exetthghostapd command to runostapd application.

B 5554: cc

7Hasllpri7
ID PP

Figure 49 Result of running a command

6.3.3. Write an application to edit hostapd configuration file

Due to the security-model of Android, we are ndedb use the standard Java file-access method. For
example, FileWriter f = new FileWriter("impossible.txt") ; Each *.apk file installed on the
emulator or device gets its own user-id from thelwid system, which is the key to the sandbox ef th
application. This sandbox is used to protect th@iegtion and its files from other applicationstthaay
manipulate the files in a bad manner. Hence, efileryhat is created is also signed with the useofi

the application. In addition, the developer can s#ags (MODE_WORLD_READABLEOY
MODE_WORLD_WRITEABL® make the file accessible (read or write) ftlien applications with other
user-ids. And the file is written to the followingfolder on the emulator:

data/data/project_package_name/files/*.txt . However, the standard Java file-access method can
still be applied to the case when a file is writterthe SD-card. For examplejeWwriter f = new
FileWriter("/sdcard/download/possible. txt") ; Android APIs provide various file-access methods

that can be applied to our application. The detdileasible methods are presented in the following
The design steps of our application are as follows:
1. Read the entire asset (i.e. where the file is oedi) into a local byte buffer.

68



Ll
Design a WLAN Mini Access Point in the Android Platform -® ERICSSON

. Convert the byte buffer into a string type.

. Load the string into theditText ~ view.

. Set a button to capture the event.

. Edit the file in theeditText  view.

. After modification get text to string.

. Write a file to the disk.

. Write the string to the file.

. Ensure that everything is really written out anakel.

OCoO~NOOUOTAWN

Referring to the Android APIs, we ugetAssets().open(file.txt) to retrieve the file that is put or
stored inassets/  directory. With respect to this method, see theedption in Table 6.

Classinputstream  provides some public methods to accomplish stepstwwwn in Table 8.

When loading the string into thelitText  view, we add a scroller function to view the whotatent of
the file. MethodsetHorizontallyScrolling() serves as a solution. See the description in Table

We add a button to trigger the event when it iskeld. See the description in Table 10.

At step 7 with respect to the way of opening a file use thepenFileOutput() method that the class
Context provides, to protect the file from othemlégations due to the security reason. See the
description in Table 11. Wehoose MODE_WORLD_READABLHlag allowing others to read the file,
i.e FileOutputStream fOut = openFileOutput("hostapd_con f.txt", MODE_WORLD_READABLE) .
Additionally, we use another two classes providedthie package Java.@leOutputStream and
OutputStreamWriter

- FileOutputStream , A specializedutputStream  that writes to a file in the file system. All weit
requests made by calling methods in this clasgliaeetly forwarded to the equivalent function of
the underlying operating system [13].

- OutputStreamWriter , A class for turning a character stream into a kstteam. Data written to
the target input stream is converted into bytegither a default or a provided character converter
[13]. Some methods are available for us, suchwras) ,close() , andflush() (i.e. used to
ensure everything is really written out).

In our application, the user is able to view, editl save the changecstapd configuration file. Figure
50 shows the running result on the emulator. Ther ean easily select the customized functions
provided in configuration file by commenting or @nementing operations.

B @ 7:25pm |

openfile

# Driver interface for madwifi driver
#CONFIG_DRIVER_MADWIFI=yD
#CFLAGS +=-L../../madwifi # change
0

# Driver interface for Prism54 driver
#CONFIG_DRIVER_PRISM54=y[0l

0

# Driver interface for drivers using tt
#CONFIG_DRIVER_NL80211=y0

# driver_nl80211.c requires a rather
# shipped with your distribution yet.
# newer libnl version and point the |
#LIBNL=/usr/src/libnl0

#CFLAGS += -I$(LIBNL)/includel
#LIBS += -L$(LIBNL)/IibO

0

Figure 50Running result for editing conf file

69



sos ST
99 ERICSSON

ﬁ Design a WLAN Mini Access Point in the Android Platform

We use the pull and push functions embedded inDB®1S-Perspective in Eclipse to verify the
feasibility of our application. After modificationf the configuration file, we pull the file from ah
device and get the customized file.

6.3.4. Comparison between two designs

In chapter 6, we introduce two different designsisér interface foiostapd . One is to encapsulate the
functions provided imostapd control interface into functional Ul elements, arsg Android Ul design
methods to designtastapd GUI for the user. The other way is to view twetapd as an executable
application, and write an Android application tmiitt The user experience is accomplished by atigwi
them to edit thehostapd configuration file. Both solutions have advantagasl disadvantages.
Compared with the second option, the first one ddmetter expansibility. Due to its realizing some
hostapd control interface commands in the meth@d_ctrl_request() , it can be extended to provide
more functionalities of controllingostapd . However, it is not possible in the latter solatiGenerally,
there is a balance between complexity and funditynaThe first alternative supplies more
functionality, which increases the complexity ofplementation. On the contrary, the second one is
easy to actualize but with less functionality.

70



Design a WLAN Mini Access Point in the Android Platform :‘ ERICSSON

7. Contributions

The main contributions of this thesis work are ¢ifeld:

Firstly, we have implemented the AP functionality the Android platform. This function greatly
increases the flexibility of network connectivity feal life specifically in the following two asgsc
providing access to the Internet and facilitatiogal WLAN connection. In the first case, an AP n@bi
phone can act as the Internet gateway for othdcégvas long as it is within the coverage of dutsl
network. For example in areas with poor wirelessvaek availability or where lack of wired network,
the wireless devices connecting with the AP mophene can access to the Internet through cellular
network, e.g. GPRS, 3G, LTE etc. In the second,ctme AP can interconnect with other WLAN
supported devices within the same local area, abthey can exchange data between each other and
enjoy local services. A good example can be thipsop uses a printer nearby through the mobile
phone AP.

Secondly, our thesis provides a systematic usematasn the Android development documentation,
which is valuable for both individual developerdaaso the Android community as a whole. In this
thesis, we well document the process of the whel@ldpment, which can give others good guidelines
and advice. At the same time, our work will be lfiyesvailable to Ericsson, which we hope will benefi
them as well.

Thirdly, the results achieved from this thesis warky trigger potential business opportunities, einc
they provide the benefit of reducing the cost orcpasing and deploying extra APs and may generate
additional revenues for operators when more dexdoegonnected to the Internet.

In addition to the above major contributions, thare also a few minor contributions. Through this
work, we are willing to share our experience on howlevelop an Android application program, which
is different from java applications, with other éépers. Furthermore, we discovered a bugpémpd
v0.6.10, which is the incompatibility betweesstapd v0610 and thethok driver. We suggest using
thehostapd version 0.6.9 as we have succeeded in havingrk tegether with thethok driver.

71



Design a WLAN Mini Access Point in the Android Platform -J‘ ERICSSON

8. Discussions

In this chapter, we provide discussions on lesseast through this thesis work, correspondinghio t
four particular problems mentioned in subsectich The purpose of including this chapter is to ehar
our experience with other developers who may wortis direction.

8.1. How to run hostapd in the Linux system

This part provides the basis and functions as rirgjapoint for our following work on Android. The
crucial work in this part is to make all the eletsematch with each other, including the WLAN
chip/driver, hostapd and its software dependencies. There is someamianformation of this part
available on the Internet. However, due to theetgriof drivers and the requirements of software
versions, we have struggled many times to getittadly satisfied results.

Initially we selected the Madwifi driver to workgether withhostapd in AP mode. But when we tried
to compilehostapd , we discovered the absenceiiefl  that is one of the necessary software utilities.
Later on, we found the other software element reglubyhostapd is openssl . Other than building and
installing theopenssl , we need to add its dynamic library files into tletapd Makefile, otherwise
errors occur with theostapd link process.

In order to teshostapd 's AP function, we usedilanconfig ~ wireless tool to configure the network
interfaces (by default the wired and wireless fiaiggs aretho andwifio ). We met the problem that
those two interfaces disappear in the interfacsitistead of two new interfacea0 andwlano show
up. Thus we suspect there might exist another diivéhe system that is also running. To verify our
suspicion, we uninstalled the Madwifi driver, while wireless network was still available. As aufes
we need to solve the conflict problem resultingrfrtwo running drivers, in order to control the @fiv
we need. We found the other drivaiisk that affects our Madwifi, and attempted to disabl®wing

to the fact that the driver is embedded in the kisystem kernel, it is not easy to remove it withou
changing kernel configuration. We have to change gblution usingathsk instead because it also
supports AP mode.

The limited time does not allow us to redo evemnghirom the scratch, including compilingnl
openssl andhostapd . Thus we use the compiled packages of them andaatsipd working in our
expected way, i.e. the PC withstapd installed can provide AP network. This part of lwanplicates

the possible phenomena later occurring in the Aiddsgstem. The dependencies thattapd requires

are portable to the Android platform. It also pd®s other developers who are aiming at the samle goa
a good reference.

8.2. How to understand the Android building system

The main outcome of this part is to know the budidcrepancy between Linux and Android. The
Android building system is a customized system.rigfanction such asostapd , libnl , etc can be
viewed as an external package to the Android platf®evelopers can assign which packages are to be
built and which are not. The goal of building isgenerate the executable files of a program froen th
program’s source files, in order to later insta# program. In addition, each of external packagesls

a specific makefile to tell the building system htwbuild a particular application. We have to werit
runnable makefiles ourselves farstapd andlibnl  compiling. Recompiling can be carried out in two
ways: one is to stand at the top of Android dirgctand specify the package name that requires
compiling; the other is to compile in the directaviiere the package is located. There is no diffaren

in efficiency between them.

72



Design a WLAN Mini Access Point in the Android Platform -J‘ ERICSSON

8.3. How to port hostapd from Linux to the Android system

At the porting phase, according to the experimentinux we need to recompil@stapd andlibnl
Openss! is included in Android source code structure, $@atwe need is to inform the pathapknssl
to hostapd . We chooseathsk driver that is provided in the Android system larnThus we
downloaded the Android kernel and compiled it tooiporateathsk  driver.

It turned out to be a tricky part when we compitestapd . It showed strange errors that we referred to
some undefined variables. We have not found anteibeblution but to include the absolute path of
some header files in the error files. We ended iip eompiling the Android system into an image file
suffix with .img. Additionally, we design to stotieis image Android system into a pluggable flashica
so as to facilitate various tests on the systemishiadependent from the machine.

Initially, the WLAN card we use is a PCI card tietimited for desktop computer. To deploy the card
to laptop and carry out tests without place retstric we have to change to a PCMCIA card. We were
stuck in the process of runningstapd , because we got errors showing thattdsapd could not find
the athsk driver. We usedhostapd command with option to pull out the error log, mithout any
finding. There is almost no relevant informatioatthan be referred by far.

The solution we retrieved is to consult to the pres experience in Linux circumstance. The reason
might be the presence of another driver affecting driver's behavior. We checked the installed
module lists and found the absence$k driver, meanwhile we discovered a driver callgdgn is
running. That is where the problem is located. Wimirectly assume the existenceabk because it

is included in Android kernel. To fix this two-dew problem, we need to disable one of them leaving
the other that is AP compatible. To avoid the caxrpy, instead of using the extra WLAN card, our
final solution is to use the card coming with taptbp itself and thethok driver that supports for the
card.Athok is newer thamthsk , but the driver requirements dstapd should be enough provided in
athsk . The reason for replacirghsk with athok is not clear yet, which could be an open issuetfer
further work.

Our results confirm that an ordinary client instdllwith the Android system is able to provide AP
function. We do not deployostapd on the real Android phone in our project. Howevtre
deployment on the platform does not affect the Itesi AP function we have achieved. There is
possibility to adjust the configuration for hardedo satisfy the mobile phone based on our expegien
It is important to note also that there can be feemint solution to implement such a function. The
function is tested by using two different cliensslaptop and a WLAN supported mobile phone to
associate with the AP network.

8.4. How to control hostapd from the application layer

To enhance the user experience, we also includeigbe interface part in our thesis. There are two
options in front of us when interacting witlastapd . One alternative is to make use of the control
interface implemented imostapd SO as to control it. In this case, we consultge_supplicant ~ which
has the common control interface libraryhastapd , but lacks support of working in a master mode.
We encapsulate the basic library functions to bgitevide the functionalities we design. We have
designed several use cases. They are designed draselgat functionality an AP could support to do
currently, and combined with what special commdmghéstapd control interface could provide.

The other alternative is to viensstapd as an application program to run it instead ofidgawith its
control interface to talk to it. Meanwhile, the ilamentation of functionality is done through selegt
different function entries in théostapd configuration file. In this case, we have twestapd
configuration files. One is for initially runningstapd , in which we set only the necessary information.
The other one is for buildingstapd later, in which user can edit, choose the requiuedtionality and

73



Design a WLAN Mini Access Point in the Android Platform -J‘ ERICSSON

generate his/her customized build file. This solutis smart, which breaks the routine of user fater
design. And it is also flexible, because user aaridi the minimum or maximum functionality.

Those two options above are both the representatiuser interface implementation. As common, they
are both Android applications and provide a kindj@phic user interface to some degree. Besideyg, th
are both based on the concept of Android view daeaigd utilize the methods resided. Compared with
the latter one, the former has some advantages, Fie user interface has more interactive elesnent
such as button, checkbox, etc. and various laywitts colorful text views. Second, the functionagi
are divided into several windows to present. Iinse¢hat it is possible to extend the functionaitileat
are provided currently. However, it is limited Hyetcommands that can be provided by the control
interface. This could be another open issue fofuhge.

As we considered the implementation complexity tmedcurrent need for controllingstapd from the
graphic user interface, we chose to implement wer interface in the simpler way which was the
second solution. But we also gave the detailedgdesf the first solution, including the use case
diagram, class diagram and class description. Withimplementation we provide all possibilities for
the user to control the ARdstapd ), just like what they can achieve on a normal Wdimgl machine.

74



Design a WLAN Mini Access Point in the Android Platform -J‘ ERICSSON

9, Conclusions and future work

This thesis project is initiated based on the ideavhether an ordinary mobile phone can function as
AP, as an enhancement to the function of a statiosie in current WLANSs. Our goal is to implement
that an ordinary station can function as an AP asptacement of a separate AP device in a wireless
network. Meanwhile, it can provide networking seed for other devices within the same group such as
desktop, laptop, mobile phone, PDA, or other faesi that support WLAN network. This objective
should be achieved under the Android system enwigont.

Given the fact that there are few relevant acasitivithin this topic, the significance of our reésslthat

it provides an innovative contribution to the deghent of the Android system. Our work covers from
the underlying operating system up to the uppeerlagpplication, and the development task is
performed from the scratch. It requires the knogéetftom both hardware design and software design.

We start from Linux circumstance to make&tapd run with a WLAN card that supports AP function.
This is a good starting point since Android is lshea Linux, and combined Linux system kernel with
Android unique dalvik virtual machine. We stress tmportance of deep understanding to the Android
building system, due to its vital role in portingpplem. In our work, we disclose the differencenssin
Android and Linux building system in terms of thailtd process, how to add an external package, etc.
We succeed in portingostapd to the Android system and implement the AP funwliy in an
ordinary station role. In addition, we provide ussterface forhostapd application so that user can
controlhostapd  service through the interface. All in all, the bofthis Master thesis project has been
fulfilled with the result that our Android laptojaue be used as an AP.

Our results confirm that it is feasible to make amlinary wireless-support device provide AP
functionality. It is important to note that this vkacan be extended to the deployment in Androidngho
Based on our experience, due to the differenceaidvare requirements between phone and computer,
different configuration of processor and WLAN céod example are necessary. Furthermore, our result
constitutes a positive and encouraging step as gdathe efforts in this direction for the Android
development team at Ericsson.

As possible future work, firstly we can implemerthat we have designed for the other alternative of
user interface in coding. Secondly, our AP fundaiidyg could be provided more tests through thedwid
between the wired and wireless network. Specificaie user experience of other devices that cdnnec
with the AP should be included. As we have mentioearlier, it is possible to expand the functiayali

of user interface dfostapd ; besides, how to migrate this AP functionalityfiedroid phone will also a
further step towards commercial success. Furthemother than an APhostapd is also an
authenticator, whose security functions included ba implemented as well. Last but not least, the
WLAN direct standard currently is becoming a hotspehich generates a keen interest of WLAN
developers. It aims at providing wireless devicesrgo-peer connectivity. Therefore, future work in
the direction of WLAN P2P is worthwhile.

75



Design a WLAN Mini Access Point in the Android Platform -J‘ ERICSSON

References

[1] Hostapd reference, http://hostap.epitest.fi/lwpa_supplickvel/

[2] Hostapd reference, http://hostap.epitest.filwpa_supplicavelhostapd _ctrl_iface_page.html

[3] Android git repository, git://Android.git.kerherg/platform/manifest.git

[4] Android source code, http://source.Android.cdawnload

[5] bridge-utils source code, git://git.kernel.gggb/scm/linux/kernel/git/shemminger/bridge-utils
[6] Developer reference, http://developer.Andradadintl/zh-CN/guide/topics/fundamentals.html
[7] Android book, available from http://andbook.aled.org/

[8] Developers' documentation, http://hostap.epfiéspa_supplicant/devel/wpa__ctrl_8h.html

[9] IEEE 802.11 WP, “Part 11: Wireless LAN Mediuncdess Control (MAC) and Physical Layer
(PHY) Specifications”, |IEEE Standard for Informatiotechnology-Telecommunications and
information exchange between systems-Local andapelitan area networks-Specific requirements,
Jun 2007

[10] The Java Native Interface-Programmer's Guidend a Specification, release 1999,
http://java.sun.com/docs/books/jni/

[11] Android intents, http://developer.Android.cantl/zh-CN/guide/topics/intents/intents-filters.Htm
[12] Android NDK, http://developer.Android.com/ifeth-CN/sdk/ndk/1.5_r1/index.html

[13] Android APIs, http://developer.Android.comiizh-CN/reference/packages.html

[14] Android user interface, http://developer.Anidroom/intl/zh-CN/guide/topics/ui/index.html

[15] Linux kernel, git://git.android-x86.org/kerfiebmmon.git

76



Design a WLAN Mini Access Point in the Android Platform :‘ ERICSSON

Appendix A

Method Method name Method description
type
Returns an input stream that is connected to the
abstract

getlnputStream() standard output streamstdout ) of the native

InputStream process represented by this object.

abstractint | exitValue () Returns the exit value of the native process
represented by this object. It is available onlyewh
the native process has terminated.
Causes the calling thread to wait for the native

abstract int waitFor() process associated with this object to finish

executing.

Table 5 Methods and method description in clagsess

Method type Method name Method description

Executes the specified program in a separate
native process. The new process inherits the
environment of the caller.

prog: the name of the program to execute

static Runtime getRuntime() Returns the single Ruminstance.

Process Exec(String prog)

Table 6 Methods and method description in classtime

Package Class Method

final AssetManager

Name Android.content.resesources
getAssets()

Class for accessing an application's resources. TEie

. . trieve underlyin
sits on top of the asset manager of the apphcatlog\s ying

Description (accessible through getAssets()) and provides a setManager
i : storage for these
higher-level API for getting typed data from the
assets resources.

Table 7 Description of methodetAssets()

77



Design a WLAN Mini Access Point in the Android Platform -J‘ ERICSSON

Method

Method name Method description
type
Returns the number of bytes that are availablerbdfos stream will block.
int available() This implementation always returns 0. Subclassealdioverride and
indicate the correct number of bytes available.

Closes this stream. Concrete implementations sfdlaiss should free any

void close() .
resources during close.

Reads bytes from this stream and stores them ibytteearray b.
int read(byte[]b)
b: the byte array in which to store the bytes read.

Table 8 Methods and method description in clagstStream

Package Class Method Related XML attributes
Name Android.widget | textview, Void setHorizontallyScrolling(boolean whethel)  Aodt:scrollHorizontally

Sets whether the text should be allowed to Mhether the text is allows

wider than the View is. If false, it will beto be wider than the view

wrapped to the width of the View. (and therefore can
scrolled horizontally)Must
be a boolean value, eitt
"true" or "false".

Description

Table 9 Description of methodetHorizontallyScrolling()

Package Class | Method
Name Android.view | view | void setOnClickListener (View.Oh€kListener)

Register a callback to be invoked when this viewlicked. If

escription this view is not clickable, it becomes clickable.

Table 1Mescription of methodetOnClickListener()

78



ﬁ e 0. ST
Design a WLAN Mini Access Point in the Android Platform ' -J. ERICSSON

Name Description

Android.content (package)

Context

(class) Parent class for Activity. It allows access to amtlon-specific resources and

classes, as well as up-calls for application-l@gsrations such as launching
activities, broadcasting and receiving intents, etc

abstract  FileOutputStream

openFileOutput(String Open a private file associated with this Contesgplication package for
name, int mode) writing (openFilelnput for reading). Creates tHe ff it doesn't already exist
(methods)

mode: Operating mode. Use 0 or MODE_PRIVATE fordeéult operation,
MODE_APPEND to append to an existing file, MODE_W{R READABLE
and MODE_WORLD_WRITEABLE to control permissions.

notes

Table 11 Description of methodpenFileOutput()

79



Design a WLAN Mini Access Point in the Android Platform

o ST
%9 ERICSSON

Appendix B Android.mk of hostapd

LOCAL_PATH := $(call my-dir)

i defind BOARD_

in ../eclair-x86/vendor/htc/dream-open/BoardConfig.

HOSTAPDBUILD := true

ifneq ($(TARGET_SIMULATOR),true)

ifneq ($(BOARD_  HOSTAPDDRIVER),)
HOSTAPDBUILD := true

HOSTAPDDRIVER is defined

CONFIG_DRIVER_$(BOARD_ HOSTAPDDRIVER) =y

endif
endif

ifndef L_CFLAGS
L_CFLAGS = -MMD -02 -Wall -g
endif

# define
# a file (undefine it, if you want to save in binar
L_CFLAGS +=-D HOSTAPDDUMP_STATE

L_CFLAGS += -Isrc
L_CFLAGS += -Isrc/crypto
L_CFLAGS += -Isrc/utils
L_CFLAGS += -Isrc/common

# Uncomment following line and set the path to your
# directory if your C library does not include all

HOSTAPDDUMP_STATE to include SIGUSR1 handler for dumping

# CFLAGS += -DUSE_KERNEL_HEADERS -l/usr/src/linux/i

include /root/Documents/eclair-x86/external/

# To force sizeof(enum) =4

ifeq ($(TARGET_ARCH),arm)
L_CFLAGS += -mabi=aapcs-linux
endif

INCLUDES = /root/Documents/eclair-x86/external/

[root/Documents/eclair-x86/external/ hostapd
[root/Documents/eclair-x86/external/ hostapd
[root/Documents/eclair-x86/external/ hostapd
[root/Documents/eclair-x86/external/ hostapd

/root/Documents/eclair-x86/external/
/root/Documents/eclair-x86/external/
[/root/Documents/eclair-x86/external/ hostapd
[root/Documents/eclair-x86/external/ hostapd
/root/Documents/eclair-x86/external/openssl/include
/root/Documents/eclair-x86/frameworks/base/cmds/key

hostapd
hostapd

ifdef CONFIG_DRIVER_NL80211

INCLUDES += /root/Documents/eclair-x86/external/lib
INCLUDES += /root/Documents/eclair-x86/external/lib
INCLUDES += /root/Documents/eclair-x86/external/lib
INCLUDES += /root/Documents/eclair-x86/external/lib
INCLUDES += /root/Documents/eclair-x86/external/lib
INCLUDES += /root/Documents/eclair-x86/external/lib
INCLUDES += /root/Documents/eclair-x86/external/lib
INCLUDES += /root/Documents/eclair-x86/external/lib
INCLUDES += /root/Documents/eclair-x86/external/lib
INCLUDES += /root/Documents/eclair-x86/external/lib
INCLUDES += /root/Documents/eclair-x86/external/lib

mk do change this

y size)

kernel tree include
header files.
nclude

hostapd / hostapd /.config

hostapd /src/utils

/src/common
[src/drivers
Isrclcrypto
/src/leap_common
/src/eapol_supp
Isrcleap_peer
[srcleap_server
[src/hlr_auc_gw

80

store

nl/include

nl/include/linux
nl/include/linux/netfilter
nl/include/netlink
nl/include/netlink/fib_lookup
nl/include/netlink/genl
nl/include/netlink/netffilter
nl/include/netlink/route
nl/include/netlink/route/cls
nl/include/netlink/route/link
nl/include/netlink/route/sch

state to



ﬁ éss, ST
Design a WLAN Mini Access Point in the Android Platform o ERICSSON

LIBS += -L/root/Documents/eclair-x86/external/libnl /lib
endif

ifndef CONFIG_OS

ifdef CONFIG_NATIVE_WINDOWS
CONFIG_0OS=win32

else

CONFIG_OS=unix

endif

endif

ifeq ($(CONFIG_OS), internal)
L_CFLAGS +=-DOS_NO_C_LIB_DEFINES
endif

ifdef CONFIG_NATIVE_WINDOWS

L_CFLAGS += -DCONFIG_NATIVE_WINDOWS
LIBS +=-lws2_32

endif

OBJS = hostapd /hostapd .c hostapd /ieee802_1x.c hostapd /eapol_sm.c\
hostapd /ieee802_11.c hostapd /config.c hostapd /ieee802_11_auth.c
hostapd /accounting.c \
hostapd /sta_info.c hostapd /wpa.c hostapd /ctrl_iface.c \
hostapd /drivers.c hostapd /preauth.c hostapd /pmksa_cache.c  hostapd /beacon.c\
hostapd /hw_features.c hostapd /wme.c hostapd /ap_list.c\
hostapd /mime.c hostapd /vlan_init.c hostapd /wpa_auth_ie.c

OBJS += src/utils/eloop.c

OBJS += src/utils/common.c

OBJS += src/utils/wpa_debug.c

OBJS += src/utils/wpabuf.c

OBJS += src/utils/os_$(CONFIG_OS).c
OBJS += src/utils/ip_addr.c

OBJS += src/common/ieee802_11_common.c
OBJS += src/common/wpa_common.c

OBJS += src/radius/radius.c
OBJS += src/radius/radius_client.c

OBJS += src/crypto/md5.c
OBJS += src/crypto/rc4.c

OBJS += src/crypto/md4.c
OBJS += src/crypto/shal.c
OBJS += src/crypto/des.c
OBJS += src/crypto/aes_wrap.c
OBJS += src/crypto/aes.c

HOBJS=src/hlr_auc_gwr/hir_auc_gw.c src/utils/common. ¢ src/utils/wpa_debug.c
src/utils/os_$(CONFIG_OS).c src/hilr_auc_gw/milenage .c src/crypto/aes_wrap.c
src/crypto/aes.c

L_CFLAGS += -DCONFIG_CTRL_IFACE -DCONFIG_CTRL_IFACE _UNIX

ifdef CONFIG_IAPP

L_CFLAGS += -DCONFIG_IAPP
OBJS += hostapd /iapp.c
endif

ifdef CONFIG_RSN_PREAUTH

L_CFLAGS += -DCONFIG_RSN_PREAUTH
CONFIG_L2_PACKET=y

endif

ifdef CONFIG_PEERKEY

L_CFLAGS += -DCONFIG_PEERKEY
OBJS += hostapd /peerkey.c

endif

81



ﬁ éss, ST
Design a WLAN Mini Access Point in the Android Platform o ERICSSON

ifdef CONFIG_IEEE 80211W

L_CFLAGS += -DCONFIG_IEEE 80211W
NEED_SHA256=y

endif

ifdef CONFIG_IEEE 80211R

L_CFLAGS += -DCONFIG_IEEE 80211R
OBJS += hostapd /wpa_ft.c
NEED_SHA256=y

endif

ifdef CONFIG_IEEE 80211N
L_CFLAGS +=-DCONFIG_IEEE 80211N
endif

ifdef CONFIG_DRIVER_HOSTAP

L_CFLAGS += -DCONFIG_DRIVER_HOSTAP
OBJS += hostapd /driver_hostap.c

endif

ifdef CONFIG_DRIVER_WIRED

L_CFLAGS += -DCONFIG_DRIVER_WIRED
OBJS += hostapd /driver_wired.c

endif

ifdef CONFIG_DRIVER_MADWIFI

L_CFLAGS += -DCONFIG_DRIVER_MADWIFI
OBJS += hostapd /driver_madwifi.c
CONFIG_L2_PACKET=y

endif

ifdef CONFIG_DRIVER_ATHEROS

L_CFLAGS += -DCONFIG_DRIVER_ATHEROS
OBJS += hostapd /driver_atheros.c
CONFIG_L2_PACKET=y

endif

ifdef CONFIG_DRIVER_PRISM54

L_CFLAGS += -DCONFIG_DRIVER_PRISM54
OBJS += hostapd /driver_prism54.c

endif

ifdef CONFIG_DRIVER_NL80211

L_CFLAGS += -DCONFIG_DRIVER_NL80211

OBJS += hostapd /driver_ni80211.c hostapd /radiotap.c
LIBS += -llibnl

ifdef CONFIG_LIBNL20

LIBS += -llibnl-genl

L_CFLAGS += -DCONFIG_LIBNL20

endif

endif

ifdef CONFIG_DRIVER_BSD

L_CFLAGS += -DCONFIG_DRIVER_BSD
OBJS += hostapd /driver_bsd.c
CONFIG_L2_PACKET=y
CONFIG_DNET_PCAP=y
CONFIG_L2_FREEBSD=y

endif

ifdef CONFIG_DRIVER_TEST

L_CFLAGS += -DCONFIG_DRIVER_TEST
OBJS += hostapd /driver_test.c

endif

ifdef CONFIG_DRIVER_NONE
L_CFLAGS += -DCONFIG_DRIVER_NONE

OBJS += hostapd /driver_none.c
endif

82



ﬁ éss, ST
Design a WLAN Mini Access Point in the Android Platform -J‘ ERICSSON

ifdef CONFIG_L2_PACKET
ifdef CONFIG_DNET_PCAP
ifdef CONFIG_L2_FREEBSD

LIBS += -Ipcap
OBJS += src/l2_packet/I2_packet_freebsd.c
else

LIBS += -ldnet -Ipcap

OBJS += src/l2_packet/I2_packet_pcap.c
endif

else

OBJS += src/l2_packet/I2_packet_linux.c
endif

else

OBJS += src/l2_packet/I2_packet_none.c
endif

ifdef CONFIG_EAP_MD5

L _CFLAGS +=-DEAP_MD5

OBJS += src/eap_server/eap_md5.c
CHAP=y

endif

ifdef CONFIG_EAP_TLS
L_CFLAGS +=-DEAP_TLS

OBJS += src/eap_server/eap_tls.c
TLS_FUNCS=y

endif

ifdef CONFIG_EAP_PEAP

L_CFLAGS += -DEAP_PEAP

OBJS += src/eap_server/eap_peap.c

OBJS += src/eap_common/eap_peap_common.c
TLS_FUNCS=y

CONFIG_EAP_MSCHAPV2=y

endif

ifdef CONFIG_EAP_TTLS

L _CFLAGS +=-DEAP_TTLS
OBJS += src/eap_server/eap_ttls.c
TLS_FUNCS=y

CHAP=y

endif

ifdef CONFIG_EAP_MSCHAPV2
L_CFLAGS += -DEAP_MSCHAPvV2

OBJS += src/eap_server/eap_mschapv2.c
MS_FUNCS=y

endif

ifdef CONFIG_EAP_GTC

L _CFLAGS +=-DEAP_GTC

OBJS += src/eap_server/eap_gtc.c
endif

ifdef CONFIG_EAP_SIM

L _CFLAGS +=-DEAP_SIM

OBJS += src/eap_server/eap_sim.c
CONFIG_EAP_SIM_COMMON-=y
endif

ifdef CONFIG_EAP_AKA
L_CFLAGS += -DEAP_AKA

OBJS += src/eap_server/eap_aka.c
CONFIG_EAP_SIM_COMMON=y
endif

ifdef CONFIG_EAP_AKA_PRIME

L_CFLAGS +=-DEAP_AKA PRIME
endif

83



Design a WLAN Mini Access Point in the Android Platform

o ST
%9 ERICSSON

ifdef CONFIG_EAP_SIM_COMMON

OBJS += src/eap_common/eap_sim_common.c

# Example EAP-SIM/AKA interface for GSM/UMTS authen
# replaced with another file implementating the int

# eap_sim_db.h.

OBJS += src/eap_server/eap_sim_db.c
NEED_FIPS186_2_PRF=y

endif

ifdef CONFIG_EAP_PAX

L _CFLAGS +=-DEAP_PAX

OBJS += src/eap_server/eap_pax.c src/eap_common/eap
endif

ifdef CONFIG_EAP_PSK

L_CFLAGS += -DEAP_PSK

OBJS += src/eap_server/eap_psk.c src/eap_common/eap
endif

ifdef CONFIG_EAP_SAKE

L_CFLAGS += -DEAP_SAKE

OBJS += src/eap_server/eap_sake.c src/eap_common/ea
endif

ifdef CONFIG_EAP_GPSK

L_CFLAGS += -DEAP_GPSK

OBJS += src/eap_server/eap_gpsk.c src/eap_common/ea
ifdef CONFIG_EAP_GPSK_SHA256

L_CFLAGS += -DEAP_GPSK_SHA256

endif

NEED_SHA256=y

endif

ifdef CONFIG_EAP_VENDOR_TEST
L_CFLAGS += -DEAP_VENDOR_TEST
OBJS += src/eap_server/eap_vendor_test.c
endif

ifdef CONFIG_EAP_FAST

L _CFLAGS +=-DEAP_FAST

OBJS += src/eap_server/eap_fast.c

OBJS += src/eap_common/eap_fast_common.c
TLS_FUNCS=y

NEED_T_PRF=y

endif

ifdef CONFIG_WPS

L_CFLAGS += -DCONFIG_WPS -DEAP_WSC
OBJS += src/utils/uuid.c

OBJS +=wps_ hostapd .c

OBJS += src/eap_server/eap_wsc.c src/eap_common/eap
OBJS += src/wps/wps.c

OBJS += src/wps/wps_common.c

OBJS += src/wps/wps_attr_parse.c

OBJS += src/wps/wps_attr_build.c

OBJS += src/wps/wps_attr_process.c

OBJS += src/wps/wps_dev_attr.c

OBJS += src/wps/wps_enrollee.c

OBJS += src/wps/wps_registrar.c
NEED_DH_GROUPS=y

NEED_SHA256=y

NEED_CRYPTO=y

NEED_BASE64=y

ifdef CONFIG_WPS_UPNP

L_CFLAGS += -DCONFIG_WPS_UPNP
OBJS += src/wps/wps_upnp.c

OBJS += src/wps/wps_upnp_ssdp.c
OBJS += src/wps/wps_upnp_web.c
OBJS += src/wps/wps_upnp_event.c

84

tication. This can be
erface specified in

_pax_common.c

_psk_common.c

p_sake_common.c

p_gpsk_common.c

_wsc_common.c



ﬁ éss, ST
Design a WLAN Mini Access Point in the Android Platform o ERICSSON

OBJS += src/wps/httpread.c
endif

endif

ifdef CONFIG_EAP_IKEV2
L_CFLAGS += -DEAP_IKEV2

OBJS += src/eap_server/eap_ikev2.c src/eap_serverli kev2.c

OBJS += src/eap_common/eap_ikev2_common.c src/eap_c ommon/ikev2_common.c
NEED_DH_GROUPS=y

endif

ifdef CONFIG_EAP_TNC
L_CFLAGS += -DEAP_TNC

OBJS += src/eap_server/eap_tnc.c
OBJS += src/eap_server/tncs.c
NEED_BASE64=y

ifndef CONFIG_DRIVER_BSD
LIBS +=-ldI

endif

endif

# Basic EAP functionality is needed for EAPOL
OBJS += src/eap_server/eap.c

OBJS += src/eap_common/eap_common.c
OBJS += src/eap_server/eap_methods.c
OBJS += src/eap_server/eap_identity.c

ifdef CONFIG_EAP
L_CFLAGS += -DEAP_SERVER
endif

ifndef CONFIG_TLS
CONFIG_TLS=openssl
endif

ifeq ($(CONFIG_TLS), internal)

ifndef CONFIG_CRYPTO
CONFIG_CRYPTO-=internal

endif

endif

ifeq ($(CONFIG_CRYPTO), libtomcrypt)
L_CFLAGS += -DCONFIG_INTERNAL_X509
endif

ifeq ($(CONFIG_CRYPTO), internal)
L_CFLAGS += -DCONFIG_INTERNAL_X509
endif

ifdef TLS_FUNCS

# Shared TLS functions (needed for EAP_TLS, EAP_PEA P, and EAP_TTLS)
L_CFLAGS += -DEAP_TLS_FUNCS

OBJS += src/eap_server/eap_tls_common.c
NEED_TLS_PRF=y

ifeq ($(CONFIG_TLS), openssl)

OBJS += src/crypto/tls_openssl.c

LIBS += -Issl -lcrypto

LIBS_p += -lcrypto

LIBS_h += -lcrypto

endif

ifeq ($(CONFIG_TLS), gnutls)

OBJS += src/crypto/tls_gnutls.c

LIBS += -Ignutls -Igcrypt -lgpg-error

LIBS_p += -lgcrypt

LIBS_h += -Igcrypt

endif

ifdef CONFIG_GNUTLS_EXTRA
L_CFLAGS += -DCONFIG_GNUTLS_EXTRA
LIBS += -Ignutls-extra

endif

ifeq ($(CONFIG_TLS), internal)

85



Design a WLAN Mini Access Point in the Android Platform

o ST
%9 ERICSSON

OBJS += src/crypto/tls_internal.c

OBJS += srcftls/tisvl_common.c src/tls/tisvl_record
OBJS += srcltls/tlsvl_cred.c src/tls/tlsvl_server.c
OBJS += srcltls/tlsvl_server_write.c src/tls/tlsvl_
OBJS += srcltls/asnl.c src/tls/x509v3.c

OBJS_p += srcltls/fasnl.c

OBJS_p += src/crypto/rc4.c src/crypto/aes_wrap.c sr
NEED_BASE64=y

L_CFLAGS +=-DCONFIG_TLS_INTERNAL
L_CFLAGS += -DCONFIG_TLS_INTERNAL_SERVER
ifeq ($(CONFIG_CRYPTO), internal)

ifdef CONFIG_INTERNAL_LIBTOMMATH
L_CFLAGS += -DCONFIG_INTERNAL_LIBTOMMATH
else

LIBS += -ltommath

LIBS_p += -ltommath

endif

endif

ifeq ($(CONFIG_CRYPTO), libtomcrypt)

LIBS += -ltomcrypt -Itfm

LIBS_p += -ltomcrypt -ltfm

endif

endif

NEED_CRYPTO=y

else

OBJS += src/crypto/tls_none.c

endif

ifdef CONFIG_PKCS12
L_CFLAGS += -DPKCS12_FUNCS
endif

ifdef MS_FUNCS

OBJS += src/crypto/ms_funcs.c
NEED_CRYPTO=y

endif

ifdef CHAP
OBJS += src/eap_common/chap.c
endif

ifdef NEED_CRYPTO

ifndef TLS_FUNCS

ifeq ($(CONFIG_TLS), openssl)

LIBS += -lcrypto

LIBS_p += -lcrypto

LIBS_h += -lcrypto

endif

ifeq ($(CONFIG_TLS), gnutls)

LIBS += -Igcrypt

LIBS_p += -lgcrypt

LIBS_h += -Igcrypt

endif

ifeq ($(CONFIG_TLS), internal)

ifeq ($(CONFIG_CRYPTO), libtomcrypt)
LIBS += -ltomcrypt -Itfm

LIBS_p += -ltomcrypt -Itfm

endif

endif

endif

ifeq ($(CONFIG_TLS), openssl)

OBJS += src/crypto/crypto_openssl.c
OBJS_p += src/crypto/crypto_openssl.c
HOBJS += src/crypto/crypto_openssl.c
CONFIG_INTERNAL_SHA256=y
endif

ifeq ($(CONFIG_TLS), gnutls)

OBJS += src/crypto/crypto_gnutls.c
OBJS_p += src/crypto/crypto_gnutls.c
HOBJS += src/crypto/crypto_gnutls.c
CONFIG_INTERNAL_SHA256=y

86

.C

server_read.c

c/crypto/aes.c



ﬁ éss, ST
Design a WLAN Mini Access Point in the Android Platform o ERICSSON

endif

ifeq ($(CONFIG_TLS), internal)

ifeq ($(CONFIG_CRYPTO), libtomcrypt)
OBJS += src/crypto/crypto_libtomcrypt.c
OBJS_p += src/crypto/crypto_libtomcrypt.c
CONFIG_INTERNAL_SHA256=y

endif

ifeq ($(CONFIG_CRYPTO), internal)

OBJS += src/crypto/crypto_internal.c src/tls/rsa.c src/tls/bignum.c
OBJS_p += src/crypto/crypto_internal.c src/tls/rsa. ¢ src/tls/bignum.c

L_CFLAGS +=-DCONFIG_CRYPTO_INTERNAL
CONFIG_INTERNAL_AES=y
CONFIG_INTERNAL_DES=y
CONFIG_INTERNAL_SHA1=y
CONFIG_INTERNAL_MD4=y
CONFIG_INTERNAL_MD5=y
CONFIG_INTERNAL_SHA256=y
endif

endif

else
CONFIG_INTERNAL_AES=y
CONFIG_INTERNAL_SHA1=y
CONFIG_INTERNAL_MD5=y
CONFIG_INTERNAL_SHA256=y
endif

ifdef CONFIG_INTERNAL_AES
L_CFLAGS +=-DINTERNAL_AES
endif

ifdef CONFIG_INTERNAL_SHA1
L_CFLAGS += -DINTERNAL_SHA1
endif

ifdef CONFIG_INTERNAL_SHA256
L_CFLAGS += -DINTERNAL_SHA256
endif

ifdef CONFIG_INTERNAL_MD5
L_CFLAGS += -DINTERNAL_MD5
endif

ifdef CONFIG_INTERNAL_MD4
L_CFLAGS += -DINTERNAL_MD4
endif

ifdef CONFIG_INTERNAL_DES
L_CFLAGS += -DINTERNAL_DES
endif

ifdef NEED_SHA256
OBJS += src/crypto/sha256.c
endif

ifdef NEED_DH_GROUPS
OBJS += src/crypto/dh_groups.c
endif

ifndef NEED_FIPS186_2 PRF
L_CFLAGS += -DCONFIG_NO_FIPS186_2_ PRF
endif

ifndef NEED_T_PRF
L_CFLAGS +=-DCONFIG_NO_T_PRF
endif

ifndef NEED_TLS_PRF
L_CFLAGS += -DCONFIG_NO_TLS_PRF
endif

ifdef CONFIG_RADIUS_SERVER
L_CFLAGS += -DRADIUS_SERVER
OBJS += src/radius/radius_server.c
endif

ifdef CONFIG_IPV6

87



Design a WLAN Mini Access Point in the Android Platform -J‘ ERICSSON

L_CFLAGS +=-DCONFIG_IPV6
endif

ifdef CONFIG_DRIVER_RADIUS_ACL
L_CFLAGS += -DCONFIG_DRIVER_RADIUS_ACL
endif

ifdef CONFIG_FULL_DYNAMIC_VLAN

# define CONFIG_FULL_DYNAMIC_VLAN to have hostapd manipulate bridges
# and vlan interfaces for the vlan feature.

L_CFLAGS +=-DCONFIG_FULL_DYNAMIC_VLAN

endif

ifdef NEED_BASE64
OBJS += src/utils/base64.c
endif

ifdef CONFIG_NO_STDOUT_DEBUG
L_CFLAGS +=-DCONFIG_NO_STDOUT_DEBUG
endif

ifdef CONFIG_NO_AES_EXTRAS

L_CFLAGS +=-DCONFIG_NO_AES_UNWRAP

L_CFLAGS +=-DCONFIG_NO_AES_CTR -DCONFIG_NO_AES_OMA
L_CFLAGS +=-DCONFIG_NO_AES_EAX -DCONFIG_NO_AES_CBC
L_CFLAGS +=-DCONFIG_NO_AES_DECRYPT

L_CFLAGS +=-DCONFIG_NO_AES_ENCRYPT_BLOCK

endif

ifeq (3( HOSTAPDBUILD),true)

include $(CLEAR_VARS)

LOCAL_MODULE := hostapd .conf
LOCAL_MODULE_TAGS := user eng development
LOCAL_SRC_FILES := hostapd / hostapd .conf
LOCAL_MODULE_CLASS :=ETC

LOCAL_MODULE_PATH := $(TARGET_OUT)/etc/ hostapd
include $(BUILD_PREBUILT)

include $(CLEAR_VARS)

LOCAL_MODULE := hostapd

LOCAL_SHARED_LIBRARIES := libc libcutils libcrypto libssl libnl

LOCAL_CFLAGS = $(L_CFLAGS)

LOCAL_SRC_FILES := $(OBJS)

LOCAL_C_INCLUDES := $(INCLUDES)

LOCAL_MODULE_TAGS := user eng development

LOCAL_MODULE_PATH := /root/Documents/eclair-x86/out Itarget/product/eeepc/system/bin
include $(BUILD_EXECUTABLE)

endif

88



