

Design a WLAN Mini Access Point in the

Android Platform

By

Huaqiang He and Xiaowen Guo

Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree Master of Science in

Information and Communication Technology

Faculty of Engineering and Science

University of Agder

Grimstad

May 2010

 Design a WLAN Mini Access Point in the Android Platform

II

Abstract

Mobile as a computing platform is becoming more and more popular. The amount of such devices
shipped every year is growing rapidly, more than 1.2 billion in 2009. At the same time the WLAN is
being widely adapted at various locations like campuses, meeting rooms, stations, etc. Currently almost
all smart phones come with the support for the WLAN. However, most the mobile devices can only
behavior as a client in the WLAN. It would be a remarkable feature if the mobile device is able to
function as an Access Point (AP) and a modem which forwards data between the 3G network and the
WLAN. Android designed for handheld devices has become a popular and powerful platform in both
the industry and amateur developer community. Presently there is no WLAN AP mode supported in the
Android platform, therefore it’s an interesting task for us to implement such a function.

We start with studying the software AP hostapd . We set up a WLAN with hostapd running in a
Ubuntu Linux platform, instead of a hardware AP. By doing this we figure out the elements needed to
achieve the software AP functionality. Next we explore the Android building system, understand the
mechanism the building system works, and learn the way add new modules that we prepare to add into
the platform. With these basics we take all the elements needed into Android source code hierarchy and
build them into the final executables. Testing cases are given both in Ubuntu Linux platform and the
Android platform. To make the user experience better we design an application in the Android platform
for controlling the AP built from hostapd and other components.

Through the process we have done many experiments and have gained rich experience and knowledge
in the Linux operating system, Linux wireless implementation, wireless drivers, Android building
system, and Android application development. Some of them are enhancement to the existing
knowledge in various websites, and some are new to all the members in the development community.
These are all recorded in the thesis. For the final testing we succeed in both steps. First, the peripheral
stations can discover the AP in the Android platform and all stations are able to connect to it. There is
no difference between connection to the AP in the Android platform and connection to a normal
hardware AP device. Secondly, the data packets are successfully transmitted between stations, which
means there is no barrier in the AP in the Android platform for providing data service. From the view of
networking layering, we conclude that we succeed in both link layer and application layer.

 Design a WLAN Mini Access Point in the Android Platform

III

Preface

This thesis project concludes our two-year master study program in Information and Communication
Technology at University of Agder, Grimstad, Norway. The work is organized in the course of IKT 590,
with the credit of 30 ECTs. This project is proposed by ST-Ericsson Norway. It began on 1 January
2010, and ended on 25 May 2010.

First, we would like to thank our external supervisors Roger Frøysaa and Andreas Ludviksen in
ST-Ericsson, for providing us valuable technical advice and assistance. They constantly direct us the
focus of our ongoing work to keep our project on the right track. Also they give us extensive
suggestions on the solution of practical problems. Secondly, we would like to thank our project manager
Jonny Ervik in ST-Ericsson, for supporting us with comfortable office and required equipments.

Additionally, we would like to thank our internal supervisor Frank Li at University of Agder, for
promoting our work forward so as to guarantee our work completed on schedule. Also he gives us
valuable comments on thesis composing, which greatly improve our quality of writing.

All in all, we appreciate everyone’s positive attitudes and efforts, which make our work process well
and fulfilled.

Grimstad, 25 May 2010

Huaqiang He Xiaowen Guo

 Design a WLAN Mini Access Point in the Android Platform

IV

Table of Contents

1. Introduction ... 1

1.1. Background and motivation .. 1
1.2. Problem statement .. 1

1.3. Contribution to knowledge ... 2
1.4. Approach ... 2

1.5. Thesis structure .. 3

2. Hostapd in Linux ... 4

2.1. Software AP in Linux ... 4

2.2. System architecture .. 5

2.2.1. Hostapd .. 6

2.2.1.1. Drivers and WLAN card ... 6
2.2.1.2. Security mechanisms in hostapd .. 8
2.2.1.3. Compiling configuration file ... 9
2.2.1.4. Running configuration file .. 10

2.3. An example for hostapd building in Ubuntu 9.10 system .. 10
2.3.1. Compiling hostapd with a minimal configuration .. 11
2.3.2. Bridge utility .. 11
2.3.3. Bridge setup ... 12
2.3.4. Wireless utilities ... 12
2.3.5. Running hostapd in Ubuntu .. 13

2.3.5.1. Testing environment ... 13
2.3.5.2. Configuration file.. 13
2.3.5.3. Testing.. 14

3. Android building system ... 19

3.1. Android source code .. 19

3.1.1. Tools working on source code .. 19
3.1.2. Source code branches ... 19
3.1.3. Downloading the source code ... 19

3.2. Build environment on Ubuntu platform .. 21
3.2.1. Ubuntu Linux (32-bit x86) .. 22

3.3. Cross compiling ... 23

3.4. Cross compiling tool chains for Android in Ubuntu system .. 23
3.4.1. Cross compiling ABI .. 23
3.4.2. Cross linker .. 24

3.5. Build variables and build process ... 24
3.5.1. Build for a new product .. 24
3.5.2. Default settings and build process ... 25
3.5.3. Adding a new packages for building ... 25

3.5.3.1. Template makefiles in the building system .. 25

3.5.3.2. Adding a new module and writing the Android.mk .. 27

3.6. Out directory .. 28

3.7. Details about other directories like system and prebuilt... 28
3.7.1. external/ directory... 28
3.7.2. prebuilt/ directory ... 28
3.7.3. bootable/ directory .. 29

4. Hostapd in Android ... 30

 Design a WLAN Mini Access Point in the Android Platform

V

4.1. Configuration for building hostapd ... 30
4.2. Openssl in Android .. 31

4.3. Configuration for building libnl .. 32
4.4. Configuration for building bridge-utils ... 33
4.5. Wireless card and the driver ... 35
4.6. Launching hostapd with configuration file .. 37

5. Testing .. 39

5.1. Expected results ... 39

5.2. Testing environment... 39

5.3. Network topology .. 40

5.4. Setting up the network.. 40

5.4.1. Running hostapd and connecting the hosts .. 40
5.4.2. Configuration of hosts .. 42

5.5. Packets transmission .. 43

5.6. Result analysis ... 44

6. User interface ... 45

6.1. Android application framework .. 45
6.1.1. Four essential components .. 45
6.1.2. Intent and intent filter ... 46
6.1.3. Android User interface design .. 46
6.1.4. The AndroidManifest.xml... 47
6.1.5. Develop with Eclipse .. 48
6.1.6. Important APIs ... 52

6.2. GUI design through hostapd control interface ... 53
6.2.1. Hostapd GUI design overview .. 53
6.2.2. Functionality design diagram .. 54

6.2.2.1. Hostapd GUI screen design ... 54
6.2.2.2. Hostapd GUI use case design .. 56
6.2.2.3. Hostapd control interface .. 58
6.2.2.4. Hostapd GUI class design ... 61

6.2.3. Implementation approach ... 63
6.3. UI design through hostapd configuration file .. 66

6.3.1. The concept of design ... 66
6.3.2. Write an application to run hostapd ... 67
6.3.3. Write an application to edit hostapd configuration file .. 68
6.3.4. Comparison between two designs ... 70

7. Contributions ... 71

8. Discussions.. 72

8.1. How to run hostapd in the Linux system ... 72
8.2. How to understand the Android building system ... 72
8.3. How to port hostapd from Linux to the Android system .. 73
8.4. How to control hostapd from the application layer .. 73

9. Conclusions and future work ... 75

References .. 76

Appendix A .. 77

Appendix B Android.mk of hostapd ... 80

 Design a WLAN Mini Access Point in the Android Platform

VI

Index of Figures

Figure 1 WLAN with hardware AP .. 4

Figure 2 WLAN with software AP hostapd ... 5

Figure 3 Software AP system architecture .. 5

Figure 4 Hostapd implementation architecture ... 6

Figure 5 Linux wireless stack ... 8

Figure 6 Interfaces in up state ... 14

Figure 7 Addresses configuration of interfaces ... 16

Figure 8 Hostapd running with its configuration file ... 16

Figure 9 A station connect to hostapd .. 17

Figure 10 Hostapd discovered at vista host machine ... 17

Figure 11 Connection state of vista host machine.. 18

Figure 12 Address configuration of vista host machine ... 18

Figure 13 ping google.com from vista host machine .. 18

Figure 14 donut-x86 branch source code overview at the top .. 20

Figure 15 Hostapd source code overview at the top .. 31

Figure 16 successful running of hostapd in Android .. 31

Figure 17 Source code overview of libnl in the lib subdir ... 32

Figure 18 Source code overview of bridge utils at the top ... 34

Figure 19 successful running of bridge utils in Android .. 35

Figure 20 Modules currently running in Android .. 37

Figure 21 Hostapd launched with its configuration file in Android ... 38

Figure 22 Network topology in the testing case of hostapd in Android ... 40

Figure 23 Eee PC boots from the USB stick and Android is running ... 41

Figure 24 Hostapd is running and stations are connected .. 42

Figure 25 Available network interfaces in the Android ... 42

Figure 26 Network address configuration in Sony Ericson W715 mobile phone 43

Figure 27 ping Android host from Windows vista .. 43

Figure 28 ping Sony Erricson W715 from Windows vista .. 44

Figure 29 Android tree-structured UI [14] .. 47

Figure 30 A simple AndroidManifest.xml file .. 48

Figure 31 Create an Android project with Eclipse ... 49

Figure 32 Android project directory structure in Eclipse ... 49

 Design a WLAN Mini Access Point in the Android Platform

VII

Figure 33 A simple layout xml file with two elements .. 50

Figure 34 The screen result of Fig. 33 ... 50

Figure 35 An example of Android emulator .. 51

Figure 36 Running result shown in the Android emulator ... 51

Figure 37 Popup an external window using AlertDialog class .. 52

Figure 38 Hostapd GUI main window .. 54

Figure 39 Network setting window ... 55

Figure 40 Authentication window ... 55

Figure 41 Hostapd GUI adding window ... 56

Figure 42 List view of currently connecting with the AP .. 56

Figure 43 Use case diagram for the AP ... 57

Figure 44 Use case diagram for hostapd GUI .. 58

Figure 45 Sequence diagram for hostapd control interface ... 60

Figure 46 Class diagram for hostapd GUI .. 62

Figure 47 JNI call process .. 64

Figure 48 Steps of writing and running HelloWorld program [10] .. 65

Figure 49 Result of running a command ... 68

Figure 50 Running result for editing conf file ... 69

 Design a WLAN Mini Access Point in the Android Platform

VIII

Index of tables

Table 1 Wireless card supported by hostapd ... 7

Table 2 Elements and functions in setting window .. 62

Table 3 Elements and functions in adding window .. 63

Table 4 Elements and functions in main window ... 63

Table 5 Methods and method description in class Process ... 77

Table 6 Methods and method description in class Runtime ... 77

Table 7 Description of method getAssets() .. 77

Table 8 Methods and method description in class InputStream .. 78

Table 9 Description of method setHorizontallyScrolling() .. 78

Table 10 Description of method setOnClickListener() ... 78

Table 11 Description of method openFileOutput() ... 79

 Design a WLAN Mini Access Point in the Android Platform

1

1. Introduction

1.1. Background and motivation

Mobile as a computing platform is becoming more and more popular. The amount of such devices
shipped every year is growing rapidly, more than 1.2 billion in 2009. At the same time WLAN is being
widely adapted at various locations like campuses, meeting rooms, stations, etc. due to its features of
low cost, fast deployment, and high data transmission efficiency. For now almost all smart phones come
with the support for WLAN. However, most mobile devices can only behavior as a client in the WLAN.
This means that such devices can just ask for data service via the AP, but cannot provide data services
for other devices that have WLAN access capability built in.

It would be a remarkable feature if the mobile device is able to function as an AP and a modem which
forwards data between the 3G network and the WLAN. Then a lot of fantastic things would become
possible and easy. For example, a WLAN can be setup at any places where the 3G network is accessible
and a bunch of other devices with WLAN support can connect to the mobile device and enjoy the
Internet. Besides, if the WLAN is already available the mobile device can also connect to the AP and
access the Internet. For future applications, the feature of AP capability in the mobile device can be used
to set up P2P networks in which the device at a better position to provide the Internet service can take
over the task of being an AP in the network.

Android designed for handheld devices has become a popular and powerful platform in both the
industry and amateur developer community. Presently there is no WLAN AP mode supported in the
Android platform, therefore it’s an interesting task for us to implement such a function at the
challenging time when there is not much documentation we can refer to. This project was initially
proposed by Ericsson Company for commercial use in the smart phone based on the Android platform.
The success of this Master thesis project provides useful implementation information for developers of
the mobile product.

1.2. Problem statement

The main objective of this thesis project is to design and implement a function so that an ordinary
station can act as an AP in a wireless network and this design must be based on the Android platform.
The project includes four main aspects where our efforts should be put: AP, the Android platform, the
association between them and GUI for the AP. More specifically, the following problems need to be
solved:

How does an AP work in Linux circumstance?

In this project, we choose hostapd as our logical AP, which is not a physical device but a user space
daemon for AP. As an initial step towards the goal, our first concentration is put under Linux
circumstance. We need to figure out what pre-conditions is required by hostapd in order to work in
Linux circumstance, including both hardware and software requirements. And what functions those
dependencies of hostapd support. We also need to know how they work interdependently with
hostapd . In order to run hostapd in Linux system, we need to configure and compile it for the host
environment. To test hostapd AP functionality, we need to create a bridge which can transfer package
between wired and wireless network.

 Design a WLAN Mini Access Point in the Android Platform

2

How is the Android building system constructed?

Due to the fact that the C libraries in Android is different from that in Linux, all shared libraries and
utilities need to be recompiled for the support of hostapd when porting it to the Android system. Thus,
to understand and analyze how the Android building system is constructed and to be able to add new
blocks into the Android system is a crucial part of our work. This includes Android source code
structure, build variables, build process, etc. In the building process, we are going to build up both the
Android platform and various applications which make the process even more complicated. In addition,
we need to write our own makefiles for each application to be built up.

How does hostapd work in the Android environment?

After mastering how to add external packages for building, we need to put hostapd together with its
dependencies solved in the first problem into Android. This includes specific configuration, such as
target, compiler, linker, etc. And also we need to configure for Linux kernel. The most complex part in
this phase is that the interdependency between hostapd and those elements required for the support of
hostapd takes time to explore. We must also consider the conflict of two or more drivers resulting from
their existing driver supports in the Android system.

How to control and configure hostapd from the Android application layer?

In order to control the hostapd service, a starting point is wpa_supplicant whose interface exists in
Android. Hence it is possible that we can in a similar way access the control interface of hostapd from
Android. Then first it is necessary to find the vertical call chain of wpa_supplicant. We also need to
consider a bridge that can provide connection from java application to call a native C library. Thus, a
possible way is to create an Android GUI application to control the hostapd that uses the call chain
down to the hostapd process down in the Linux environment. The application to start/stop hostapd
service could be feasible, and later it can be extended with more specific functionalities.

Moreover, other activities such as testing of the implemented function will be also performed in our
project.

1.3. Contribution to knowledge

In this thesis, our task is to achieve the goal that an ordinary laptop based on the Android system can
function as an AP for wireless access. We have not only proven the feasibility of implementing hostapd
into the Android operating system but also introduced a completed process to realize this goal, including
build-up from the scratch and the controlled behavior from the top application. In addition, we have
presented extensive experience of the Android building system and putting hostapd in Android, which
can be shared by other developers in the Android community.

The task we face in this thesis work is challenging and our achievement is innovative due to two
reasons: the first one is that so far nobody else has implemented this function; and the other is there is
little previous work that can be referred since Android is developed very recently. Furthermore, this
work should also be possibly compatible with Android phones, if the hardware configuration
requirements are satisfied. Hence we hope our work can provide guidelines for Android developers and
in the future there will be Android phones available as an AP to facilitate the mobile users. All in all we
hope our efforts will lead to an increased number of R&D efforts on this topic.

1.4. Approach

To reach the project goal, we have adopted the following steps as our approach in this thesis work:

• To accomplish the objective of this thesis we first choose a WLAN card that supports AP
function and find the card driver that is supported by hostapd . Then we build up hostapd ,

 Design a WLAN Mini Access Point in the Android Platform

3

change the configuration file for it, and we can get hostapd running with this AP compatible
WLAN driver. We use a laptop installed hostapd as an AP to test, it providing the wireless
network service.

• Next we work on the Android building system as it is essential for the following steps. We learn
how the source codes are structured in Android directories, how to set up the build variables,
how the build process is organized, how to add external packages, etc.

• Based on the knowledge we have learned about Android building system, porting hostapd from
Linux system to Android circumstance is processed. In this phase, we configure the Linux
kernel for the support of hostapd , build hostapd and its dependencies in term of software into
the Android roots, set up configuration files for hostapd , etc. Besides, we solve the conflict
problem of two existing drivers, which arises when we add our own WLAN driver to Android.

• In order to control hostapd behavior from Android application layer, we finally provide two
alternatives to increase the user experience. One way is to design an Android GUI application to
control hostapd using its control interface. It provides other than the basic start-and-stop
service, and also some extended functionalities. The method we use is to refer to the existing
wpa_supplicant interface in Android, so that in a similar way we can access the control interface
of hostapd from Android. The second alternative is to create an Android application that can
run hostapd application as a whole instead of talking with its control interface.

1.5. Thesis structure

To have a clear statement of the whole work, we organize the Master thesis report into 9 chapters. The
focus of each chapter is given as follows in brief statement.

• Chapter 1 introduces the background, motivation, goal of the Master thesis, as well as the
approaches used in the thesis project.

• Chapter 2 shows the procedure of setting up a software AP in Ubuntu Linux platform. It gives
clear indication about what elements are needed to build up the AP, which is the reference for
the work in the Android platform

• Chapter 3 discusses the Android building system which we must first understand before diving
into the modification of the system. It explains the various aspects of the building system and
the building process.

• Chapter 4 demonstrates the work done in the Android platform to build up the software AP,
which is the central goal of the Master thesis.

• Chapter 5 shows the testing case which proves the functionality achievement of the software AP
in the Android platform.

• Chapter 6 is mainly about the design of application in the Android platform. The design is to
build up graphic user interfaces of software AP.

• Chapter 7 shows the contribution of this Master thesis.
• Chapter 8 states some of the main issues we encounter during the Master thesis together with

how we solve them and suggestions for other developers.
• Chapter 9 concludes the work of the Master thesis and suggests the future work.

 Design a WLAN Mini Access Point in the Android Platform

4

2. Hostapd in Linux
Hostapd is first developed under Linux system. It is guaranteed that hostapd can fully function under
Linux circumstance. The Android platform can be considered as a Linux kernel plus a virtual machine
on top which Java application is running. Therefore, first having a look at hostapd working in Linux is
a good reference for the following work. The binary hostapd in Linux should have small difference
from the binary hostapd in Android for the reason that the C libraries are different at some points. The
C library in Android is a simplified version of that in Linux. Since C library is fundamental to
applications, all shared libraries and utilities need to be recompiled for the support of hostapd in
Android. The recompiling will be given in chapter 4. But before that section 2.3 will give an example of
compiling under Ubuntu Linux. With the results shown, it proves that hostapd can properly working in
Linux circumstance.

2.1. Software AP in Linux

In a wireless network there are two types of devices, an AP and peripheral STAtions (STAs). The AP
provides access services for all STAs via shared wireless media. STAs sharing the same media compete
in each time slot for the right of data transferring. Recently wireless network access service has been
expanded for multiple sorts of devices, far more beyond laptops. In most cases the laptops, desktops,
and other computing devices with a WLAN card are only functioning as an STA, while the AP is a
separate device bought from some vender. However, with the open source movement there comes the
possibility that ordinary customs can build their own wireless network without buying such an AP
device.

Figure 1 WLAN with hardware AP

 Design a WLAN Mini Access Point in the Android Platform

5

Figure 2 WLAN with software AP hostapd

In the open source software community there is an application called hostapd . It can fully function just
like a separate AP device.

2.2. System architecture

The host machine running hostapd has no special hardware requirement provided it has a WLAN card
supported by hostapd . But some software utilities are necessary for hostapd to function in the Linux
operating system. These utilities include openssl , libnl , and the WLAN card driver.

Figure 3 Software AP system architecture

Wireless network has different security considerations from wired network. In wired network the
information carried over network media is encapsulated in the wire itself, therefore any device without
physical connection to the wire cannot eavesdrop the meaningful content. The user information is
secured by the physical connection itself. However in the wireless channel any device with the radio
receiver can sense the signal. Such characteristic of wireless channel requires the data transmitted to be
encrypted and only the two participants in communication should hold the key. Furthermore, the
claimed participant must be authenticated before the connection for data transmission is established.
Authentication and encryption are two fundamental security requirements in wireless communication.
The security services are provided by openssl in Figure 3. Openssl provides methods for hostapd
to negotiate security parameters with peripheral stations when they try to make a connection.

Libnl is a wrapper of WLAN card driver. There are many different kinds of WLAN cards can be used
when running hostapd . WLAN cards from different venders often have different drivers. Libnl is built

 Design a WLAN Mini Access Point in the Android Platform

6

to encapsulate the differences of implementation of these drivers. However libnl only abstracts some
of the drivers supported by hostapd , therefore hostapd needs to implement wrappers for the rest drivers.
Both hostapd and openssl can interact with libnl . Libnl then communicate with the WLAN card
driver to deliver the outgoing and incoming data.

A WLAN driver directly operates on the WLAN card. It is the proxy for all upper layer operations and
provides atomic operations and functionalities that can be organized into tasks. When the driver’s
implementation doesn't support libnl it communicates directly with hostapd and openssl ,
otherwise it interacts with libnl .

2.2.1. Hostapd

Hostapd is a user space daemon for AP and authentication servers in WLAN. It implements
IEEE802.11 AP management, authentication and encryption functionalities. The security portion
includes IEEE802.1X/WPA/WPA2/EAP Authenticators, RADIUS client, EAP server, and RADIUS
authentication server. The current version of hostapd can run in the Linux and FreeBSD operating
systems. Besides, hostapd implements a group of programming interfaces for both console and graphic
applications. These interfaces can be explored by other programmers to build applications with friendly
user interfaces. Details of these interfaces and explanation of Figure 4 can be found can be found at [1]
[2].

Figure 4 Hostapd implementation architecture

2.2.1.1. Drivers and WLAN card

Hostapd supports certain number of drivers and WLAN card. The list is given below

 Design a WLAN Mini Access Point in the Android Platform

7

Drivers Cards

Host AP driver (1**) Prism2/2.5/3

Madwifi driver(2**) Cards based on Atheros chip set

Prism54 driver (3**) Intersil/Conexant Prism GT/Duette/Indigo

mac80211-based drivers that support AP mode
(4**)

Atheros (ath9k) and Broadcom (b43) chipsets

Table 1 Wireless card supported by hostapd

1**http://hostap.epitest.fi/ Please note that station firmware version needs to be 1.7.0 or
newer to work in WPA mode.

2**http://sourceforge.net/projects/madwifi/ Please note that you will need to add the correct
path for Madwifi driver root directory in .config (see defconfig file for an example:
CFLAGS += -I<path>)

3** Prism54 http://www.prism54.org/

4** with driver=nl80211 in the compiling configuration file

This list is not exhaustive. For more information please visit the sites given in reference. The driver and
card must be compatible with hostapd . And before building hostapd the configuration for the driver
must be set in the “.config” file.

Madwifi project is participated by a group of volunteer developers who are working on drivers for
Linux system. Madwifi project drivers support devices based on Atheros chipsets. Currently three
drivers are maintained by this project, namely Madwifi, ath5k and ath9k. Madwifi is stable and open
source. But it depends on a proprietary Hardware Abstraction Layer (HAL) which is available only in
binary format. Besides the HAL, Madwifi has support for the Wireless Extension API which allows the
user to configure the driver with common tools like “ ifconfig ” distributed with the operation system.
Ath5k is relatively new and does not rely on the proprietary HAL. Ath9k is the newest driver for all
currently available IEEE 802.11n chipsets from Atheros.

MLME is the management entity. It is the place where Physical Layer MAC state machine resides.
MLME assists in reaching services like authentication, de-authentication, association, disassociation,
re-association, beacon and probing, and so on. MLME can be implemented into the wireless card itself,
or it can be realized as software as part of the operating system. The former type is called fullMAC
wireless card, and the latter type is called softMAC wireless card. In Linux kernel, MAC80211 provides
MLME management services with which drivers can be developed to support softMAC wireless cards.
MAC80211 implements the cfg80211 callbacks for SoftMAC devices, and then depends on cfg80211
for both configuration and registration to the networking subsystem. Cfg80211 is a set of interface
definitions for driver development. A driver supporting cfg80211 must implement these interfaces.
Kernel communicates with the driver via interfaces defined by cfg80211. With these interfaces the
Linux kernel can have the driver registered and deliver a task to the driver. NL80211 is another set of
interface definitions that allow user space processes to communicate with the kernel. NL80211interfaces
are supported inherently in new Linux kernel and some applications are built based on such interfaces,
for example hostapd and wireless configuration tools.

Before cfg80211 and nl80211 are defined, Wireless Extension is the standard definition of the interfaces
for driver development and user space applications. Wireless extension interfaces are built on ioctl()

 Design a WLAN Mini Access Point in the Android Platform

8

which is considered as a unstructured system call from user space. Gradually open source developers
lost their favor in wireless extension interfaces. People started to develop new interface definitions, and
these are just the cfg80211 for driver development and nl80211 for communication between user space
and kernel space.

Nl80211 is implemented as libnl in Linux system. To use mac80211 based drivers, libnl must be
present in the system so that the applications can have the interfaces to talk with the driver. For old
version of Linux system, the library libnl must be installed manually as it was not shipped with the
system distribution. Users can directly check its presence in the system library. Or users can discover its
absence when they try to compile hostapd . If libnl is not in the system library and the user try to
compile hostapd with the mac80211 drivers supported, the compiler will complain the absence of
libnl . The source of libnl is needed for compiling of hostapd . And the binary library is needed for
running hostapd . Figure 5 shows the Linux wireless stack.

Figure 5 Linux wireless stack

2.2.1.2. Security mechanisms in hostapd

Hostapd implements its own security policy with existing security mechanisms. WPA and WPA2 are
the protocols implemented internally. WPA2 is a later version of WPA. Improvements in WPA2 include
stronger encryption algorithm and better performance in handoff.

• Authentication

o Both WPA (WLAN Protected Access) and WPA2 can either use a pre shared key (PSK) or
use an external authentication server together with EAP (Extensible Authentication
Protocol).

• Encryption key generating

o Both WPA and WPA2 use a 4-way handshake and group key handshake to generate and
exchange the encryption key between authenticator and supplicant.

• Encryption algorithm

 Design a WLAN Mini Access Point in the Android Platform

9

o WPA uses TKIP (temporary key integrity protocol) which uses algorithm RC4 with
per-packet key.

o WPA2 uses CCMP (Counter Mode with Cipher Block Chaining Message Authentication
Code Protocol) which uses algorithm AES in counter mode with CBC-MAC.

Hostapd can be built with configuration with particular combination of these settings in the .config file.
However, to make hostapd work properly the combination must be first set properly. An example is
given in the original compiling configuration file defconfig , and comment in this file gives explanation
about how to make the settings.

2.2.1.3. Compiling configuration file

As mentioned, hostapd is implemented to support multiple drivers, authentication and encryption
methods. With the file .config user can choose which drivers and security methods to be built for the
specific host system. In the source package there is a file defconfig which is a reference configuration
for specific building. Users can get detailed explanation for each entry of this file. Below is part of the
defconfig file. The file .config when present at compiling is included by the Makefile.

Example hostapd build time configuration

This file lists the configuration options that ar e used when building the
hostapd binary. All lines starting with # are ignored. Con figuration option
lines must be commented out complete, if they are not to be included, i.e.,
just setting VARIABLE=n is not disabling that var iable.

This file is included in Makefile, so variables l ike CFLAGS and LIBS can also
be modified from here. In most cass, these lines should use += in order not
to override previous values of the variables.

Driver interface for Host AP driver
CONFIG_DRIVER_HOSTAP=y

Driver interface for wired authenticator
#CONFIG_DRIVER_WIRED=y

Driver interface for madwifi driver
#CONFIG_DRIVER_MADWIFI=y
#CFLAGS += -I../../madwifi # change to the madwifi source directory

Driver interface for Prism54 driver
#CONFIG_DRIVER_PRISM54=y

Driver interface for drivers using the nl80211 ke rnel interface
#CONFIG_DRIVER_NL80211=y
driver_nl80211.c requires a rather new libnl (ver sion 1.1) which may not be
shipped with your distribution yet. If that is th e case, you need to build
newer libnl version and point the hostapd build to use it.
#LIBNL=/usr/src/libnl
#CFLAGS += -I$(LIBNL)/include
#LIBS += -L$(LIBNL)/lib

Driver interface for FreeBSD net80211 layer (e.g. , Atheros driver)
#CONFIG_DRIVER_BSD=y
#CFLAGS += -I/usr/local/include
#LIBS += -L/usr/local/lib

Driver interface for no driver (e.g., RADIUS serv er only)

#CONFIG_DRIVER_NONE=y

...........

 Design a WLAN Mini Access Point in the Android Platform

10

Before compiling, a user first copies the reference file defconfig and renames it as .config . In the
file .config a user comments and uncomments each entry. A line started with # is ignored while
building. Some entries can be easily made mistakes, such as the choosing of driver NL80211 . The path of
source code of libnl must be correctly set and the version of libnl must be 1.1 or later. Other
settings include security protocols and keys.

2.2.1.4. Running configuration file

The file “.config” is used for building the hostapd for particular host environment, while the file
hostapd.conf is used for running settings. After building the capability of hostapd on the particular
host is fixed. If the user wants service and functionalities that the current building can’t provide, the user
must rebuild hostapd with new settings. In case that the user download the binary hostapd from
distributors like Ubuntu, the user can only change the behavior of hostapd with the running
configuration file hostapd.conf . The name of the running configuration file can be a name other than
hostapd.conf and can be located in any place in the file system. But hostapd must be started with an
existing running configuration file.

A minimal configuration of this file should include the following entries

AP netdevice name (without 'ap' postfix, i.e., wl an0 uses wlan0ap for
management frames); ath0 for madwifi
interface=wlan0

Driver interface type (hostap/wired/madwifi/prism 54/test/none/nl80211/bsd);
default: hostap). nl80211 is used with all Linux mac80211 drivers.
Use driver=none if building hostapd as a standalo ne RADIUS server
that does not control any wireless/wired driver.
driver=hostap

SSID to be used in IEEE 802.11 management frames
ssid=test

Operation mode (a = IEEE 802.11a, b = IEEE 802.11 b, g = IEEE 802.11g,
Default: IEEE 802.11b
hw_mode=a
Channel number (IEEE 802.11) (default: 0, i.e., n ot set)
Please note that some drivers (e.g., madwifi) do not use this value
from hostapd and the channel will need to be conf iguration separately
with iwconfig.
channel=60

Settings in this example may not fit some particular case. One can follow the comment to modify the
specifics. The empty line and the line beginning with comment sign is ignored in running.

2.3. An example for hostapd building in Ubuntu 9.10 system

The example in this section is working properly under Linux circumstance. Simplified configuration
files are first given and some orderly compiling errors are also listed for the sake of troubleshooting if
any readers are considering having their own experiment. In the end of this section a testing scenario is
established to prove architecture which includes hostapd , openssl , libnl , Atheros wireless network,
ath5k drivers, brctl .

 Design a WLAN Mini Access Point in the Android Platform

11

2.3.1. Compiling hostapd with a minimal configuration

The default compiling configuration of hostapd in Linux system is given in file named defconfig in
the source code package of hostapd . As hostapd in this project is intended to use mac80211 based
drivers, the entry in the compiling configuration file is enabled as

Driver interface for drivers using the nl80211 ke rnel interface
CONFIG_DRIVER_NL80211=y
driver_nl80211.c requires a rather new libnl (ver sion 1.1) which may not be
shipped with your distribution yet. If that is th e case, you need to build
newer libnl version and point the hostapd build t o use it.
LIBNL=/usr/src/libnl
CFLAGS += -I$(LIBNL)/include
LIBS += -L$(LIBNL)/lib

The comment before the config entry should be removed. Importantly, LIBNL should point to the source
code directory of libnl , CFLAGS points to include/ subdirectory and LIBS points to the lib/
subdirectory. The source code of libnl is required by the file driver_nl80211.c which is one of the
driver wrappers in hostapd . This will allow the use driver ath5k or ath9k . For more configuration of
compiling see the default compiling configuration file defconfig . We keep other entries the same as the
default settings.

2.3.2. Bridge utility

Bridges is a device that connects two or more separate networks together. It can be physical device or a
logical device as software. Computers in the same group forming a network usually share security
polices and therefore simplify the network in connection and other protection facilities. Computers
outside the network can access such security domain via a bridge. This allows the bridge function as a
firewall in many cases. Besides security benefit, bridge also functions as a switch or router to deliver
packets over the edge of the network. In the case of hostapd , the bridge is primarily running as a packet
switch, transferring packets from a wired network to a wireless network.

In Linux system bridges is implemented as the wireless tool brctl which is included in many Linux
distributions, otherwise the users can install it from a binary package or build and install it from source
code. Common brctl commands are listed below

Run brctl without any parameter, it gives these commands

 addbr <bridge> add bridge
 addif <bridge> <device> add i nterface to bridge
 delbr <bridge> del ete bridge
 delif <bridge> <device> delet e interface from bridge
 show s how a list of bridges
 showbr <bridge> sho w bridge info
 showmacs <bridge> sho w a list of MAC addrs
 setageing <bridge> <time> set a geing time
 setbridgeprio <bridge> <prio> set br idge priority
 setfd <bridge> <time> set bridge forward delay
 setgcint <bridge> <time> set garbage collection interval
 sethello <bridge> <time> set hello time
 setmaxage <bridge> <time> set max message age
 setpathcost <bridge> <port> <cost> set pa th cost
 setportprio <bridge> <port> <prio> set po rt priority
 stp <bridge> <state> {di s,en}able stp

 Design a WLAN Mini Access Point in the Android Platform

12

Commands used in the experiment are

brctl addbr <bridge name>

 create a bridge, one can create multiple bridges in the same system

brctl addif <interface name>

 a interface can be a wireless interface like wlan0 or Ethernet interface eth0

brctl show

 show all the bridges that are currently running bridges

brctl delbr <bridge name>

 delete a bridge

brctl delif <bridge name> <interface name>

 delete an interface from a bridge

2.3.3. Bridge setup

It takes a few steps to build up the bridge and add interfaces into the bridge. In the context of this project,
there are two interfaces added into this bridge, a wired Ethernet interface and a wireless interface (IEEE
80211). The wired interface is the entrance to outside network, for example Internet. The wireless
interface is port where other wireless stations try to connect and data transmission happen within the
wireless network. In a Linux station, mostly the first wired interface is called eth0 and the first wireless
interface is called wlan0 . A bridge is created and named mybr0 . And then eth0 and wlan0 are added into
this bridge.

 Step 1 create a bridge

brctl addbr mybr0

 Step 2 add interfaces

brctl addif mybr0 eth0

brctl addif mybr0 wlan0

Use dhcpclient command to get the IP addresses (which one is already exists, which one needs this
command, three IP addresses are needed, two interfaces and the bridge itself).

2.3.4. Wireless utilities

ifconfig

Ifconfig is used to configure the kernel-resident network interfaces. It is used at boot time to set up
interfaces as necessary. After that, it is usually only needed when debugging or when system tuning is
needed.

If no arguments are given, ifconfig displays the status of the currently active interfaces. If a single
interface argument is given, it displays the status of the given interface only; if a single -a argument is
given, it displays the status of all interfaces, even those that are down. Otherwise, it configures an
interface.

 Design a WLAN Mini Access Point in the Android Platform

13

iwconfig

Iwconfig like ifconfig is a wireless interface configuration utility in Linux. It is used to set the
parameters of the network interface which are specific to the wireless operation. Iwconfig may also be
used to display the parameters and the wireless statistics. Iwconfig extracts the information from
/proc/net/ wireless file.

2.3.5. Running hostapd in Ubuntu

In this chapter, we consider an example which illustrates how the network components fit together and
the configuration in each of the components.

2.3.5.1. Testing environment

Below we give some of our testing configuration in both hardware and software.

Hardware

CPU – Pentium III (Coppermine) 647.154 MHz cache size 256KB
Wireless card D-Link DWA-556 PCI
Ethernet card Intel 82557 Ethernet Pro 100

Software

Linux ubuntu 2.6.31-17-generic
driver for Wireless card D-Link DWA-556 PCI – ath5k
driver for Ethernet card Intel 82557 Ethernet Pro 100 – e100
hostapd v0.6.9
libnl v1.1

2.3.5.2. Configuration file

Before hostapd can be launched and set up a local wireless network, there must be a properly
configured running config file for hostapd to read. The settings in the running configuration file must
be within the capability of the compilation. With regard to the compiling configuration used in this
project, the entries below are chosen as a simple setting of the running configuration.

interface=wlan0
bridge=mybr0
driver=nl80211
logger_syslog=-1
logger_syslog_level=2
logger_stdout=-1
logger_stdout_level=2
debug=4
dump_file=/tmp/ hostapd .dump
ctrl_interface=/var/run/ hostapd
ctrl_interface_group=0
hw_mode=g
ssid=mytest
auth_algs=3
eapol_key_index_workaround=0
eap_server=0
channel=6

 Design a WLAN Mini Access Point in the Android Platform

14

The entry interface is set as the first wireless interface wlan0. Bridge is set as mybr0 which is the one
created while bridge setting up in last subsection. Since the compilation can support mac80211 based
drivers, it chooses nl80211 as the wireless driver when hostapd initiated. The default running
configuration file in the source package gives the full version of running configuration of hostapd with
detailed explanation about how to make settings. It shows all possible settings in the running
configuration file.

2.3.5.3. Testing

The testing is taken step by step, and in each step we will give configuration information about each
host. Before diving into the procedure, we emphasize that the order is important, even though not
necessarily exactly the same.

Before run these commands first turn to root user privilege.

Step 1 launch the computer, and run command ifconfig to check the networking interfaces in the
system.

Figure 6 Interfaces in up state

There are four interfaces, all in active state, after boot up. The Ethernet interface eth0 and wireless
interface wlan0 are the two used in this experiment. The interface lo is the loopback device. And
wmaster0 is brought up together with wlan automatically.

Step 2 Run the command to configure and bring up eth0 interface

ifconfig eth0 0.0.0.0 up

 Design a WLAN Mini Access Point in the Android Platform

15

Configure clear IP configuration at interface eth0 . Doing this is necessary before associate it with a
bridge.

Step 3 Run the command to configure and bring up wlan0 interface

ifconfig eth0 0.0.0.0 up

Configure clear IP configuration at interface wlan0 . Doing this is necessary before associate it with a
bridge.

Step 4 Run the command to add a bridge in the system

brctl addbr mybr0

This is to create a bridge in the system. The name (mybr0) of bridge created should be the same as the
bridge name used in the configuration file of hostapd running configuration file (default
hostapd.conf, my_hostapd.conf in this example).

Step 5 Associate the interfaces with the bridge.

brctl addif mybr0 eth0

brctl addif mybr0 wlan0

This is to associate these two interfaces with the bridge, so that the bridge can deliver packets between
them.

Step 6 Bring up the bridge

ifconfig mybr0 up

The bridge should be brought up before running dhclient to configure these interfaces.

Step 7 Run the command to configure these interfaces, including mybr0

dhclient

ifconfig

This command will use DHCP protocol to configure the interfaces. See Figure 7 below

 Design a WLAN Mini Access Point in the Android Platform

16

Figure 7 Addresses configuration of interfaces

After run dhclient , interface eth0 gets an IP address 192.168.1.159, broadcast address 192.168.1.255,
and netmask 255.255.255.0. And interface mybr0 (the bridge) gets an IP address 192.168.1.162,
broadcast address 192.168.1.255, and netmask 255.255.255.0. However, the interface wlan0 gets an IP
address 172.25.4.192, broadcast address 172.25.4.255, and netmask 255.255.255.0. Interfaces eth0 and
wlan0 are configured with IP addresses in different network, because physical these two interfaces are
located in two different network, separating by the bridge mybr0 .

Step 8 Launch hostapd with the configuration file

hostapd /etc/hostapd/my_hostapd.conf

Figure 8 Hostapd running with its configuration file

Launch hostapd with its configuration file. The ssid of the network is LinuxHostapd which is set in
the configuration file. Hostapd is running over the interface wlan0 whose hardware address is
00:1e:58:4a:c9:c1.

Step 9 Connect to the AP

 Design a WLAN Mini Access Point in the Android Platform

17

Figure 9 A station connect to hostapd

This is the response given by hostapd after a connection made from a peripheral station. When a station
is trying to connect to the assess point hostapd does the procedure. It first authenticates the station, next
accepts the connection, and then starts a session with a number, 4BE3F1ED-00000000 .

Then the figure below is from station side. The Vista machine is connecting to the AP named
“LinuxHostapd ” which is just the one launched in Ubuntu machine. The signal strength is excellent
since these two machines are just beside each other. To show the Vista machine is able to reach the
Internet, we give two more figures cut from the command line window. The IP address 192.168.1.219
and netmast 255.255.255.0 belong to the same network as the Ethernet interface eth0 and the bridge
mybr0 . We do ping command as ping www.google.com and we get the response from Google server.

Figure 10 Hostapd discovered at vista host machine

 Design a WLAN Mini Access Point in the Android Platform

18

Figure 11 Connection state of vista host machine

Figure 12 Address configuration of vista host machine

Figure 13 ping google.com from vista host machine

 Design a WLAN Mini Access Point in the Android Platform

19

3. Android building system
This chapter introduces the Android building system. First we explain how Android source is organized.
Next we describe the building environment in Ubuntu Linux, and the concept of cross compiling. Then
we explore the directories in the hierarchy where some of the Android system source code and the
Android building system reside in, including build/, vendor/, out/, prebuilt/ and external/. We give
directions about where building changes are made in our project and can be made in other projects.
Similar statement about the Android building system can be found on various websites. However we
still have such a chapter because understanding the building system is fundamental to made progress in
the project, and along with the exploration inside the source code we gain some experience that may
help colleges who are working on the same issues.

3.1. Android source code

We’ll start from pulling the Android source code down to local machine, followed by overview on the
source code, and then more detailed explanation about important directories for particular building
configuration.

3.1.1. Tools working on source code

To better manage the source code for downloading and uploading, the Android development group
organizes the source code in git repository which was initially for Linux kernel development. To make
it even easier, Google has done some work to wrapper repo above git . Therefore mostly when we do
uploading or downloading we use the repo tool.

3.1.2. Source code branches

Over the past years a lot of branches have been make for various reasons, like porting to different target
machines. Before down the source code one must be clear about which branch is needed. Generally,
most people will follow the procedure at [3]. But this is just for building some emulators for ARM
architecture. It is not proper for porting code to real x86 machines. Even for projects working on porting
to x86 machines there are different working groups called Android-x86 and Androidx86 .
Android-x86 is the one mainly focus on Eee PC which is the machine used in this project. But again,
different branches are made in this project. Branches master , eclair-x86, donut-x86 are the three
commonly seen. These branches have their own progress and maintained during different period in the
community. And one more to mention is that there are two sites to get source code for the same branch

Main site git://git.Android-x86.org/platform/manifest.gi t

Mirror site git://Android-x86.git.sf.net/gitroot/Android-x86/ma nifest.git

Source code at these two sites can be asynchronous. We recommend downloading the latest source code
at the main site.

3.1.3. Downloading the source code

In this project we work on the source porting to Eee PC which is x86 architecture based machine. And
we choose to use the dnout-x86 branch source code from the main site.

When run the command repo init ,

$ mkdir mydroid
$ cd mydroid
$ repo init -u git://git.Android-x86.org/platform/m anifest.git -b donut-x86

 Design a WLAN Mini Access Point in the Android Platform

20

$ repo sync

This will pull down the source code. The process may take one hour and more, depending on the
network situation.

After it finished, the following fold structure can be seen in the root

Figure 14 donut-x86 branch source code overview at the top

From now on all explanation about the source code is on the Android-x86. Here is a simple description
about each directory in Figure x, more detailed discussion on some of them are given in following
sections of this chapter.

bionic

 The source code of C libraries, including libc (c library), libm (math library), libstdc++
(c++ library), libthread (thread library), libdl (dynamic linking interface library), and
linker (the program linker).

bootable

 Contains the source code for building a boot loader and disk installer.

build

 The Android building system. It contains definitions of the building system, like macros and
functions, as well the crossing compiling compilers, linkers, assemblers. Besides, it detects
the building system environment, set up the output file directories, and make up the images
after a successful compilation. More details will be given in the following section.

dalvik

 The source code for building a virtual machine in the Android platform. It’s called dalvik
virtual machine optimized by Google cooperation for mobile device for interpret Java byte
code.

development

 Source code for building development tools for the Android platform. These tools include
SDK (only the property files are here, the source of SDK is in a separate directory called
sdk), NDK, and emulator. User help documentation for development is also included in this
directory.

 Design a WLAN Mini Access Point in the Android Platform

21

external

 This directory includes third part packages which can be system tools (for example
networking tools) or applications.

frameworks

 Contains the source code for building the core libraries for applications, as well as policy
definition for system configuration.

hardware

 Libraries for hardware abstraction.

kernel

 The source code of Linux kernel.

out

 The directory for containing all output files, including compiling intermediate files and the
final produced image files and binary Linux kernel.

packages

 Source code for various applications, for example music, browser and so on.

prebuilt

 Contains binaries for supporting Windows and Mac OS building. The most important things
are these ABIs (Application Binary Interface) corresponding to various architectures.

sdk

 The source code for build the SDK.

system

 Contains system components like system booting environment setting, Bluetooth tools, and
WLAN drivers and tools. These tools can be binary or source, depending on the vendors’
policy to their source code. This is actually part of Linux system. However, in the Android
source code architecture there is only Linux kernel directory. Any other system level code
touching hardware or system environment setting can be placed in this directory.

vendor

 This is the directory for customizing building process. New product profile can be defined
to build feature specified Android platform. The user can either choose to build everything
from source or make some parts to be prebuilt and tell the building system to incorporate
these prebuilt packages into the final built images.

At the top level of the directory hierarchy, there is one Makefile which is the only makefile named
Makefile in the whole building system. It is the entry of the whole building process.

3.2. Build environment on Ubuntu platform

It is recommended that the Android source code building process taking place in Ubuntu platform. In
this subsection we show the additional elements needed to make the platform sufficient to build the
Android source code.

 Design a WLAN Mini Access Point in the Android Platform

22

3.2.1. Ubuntu Linux (32-bit x86)

To set up your Linux development environment, make sure you have the following:

Required Packages:

 Git 1.5.4 or newer and the GNU Privacy Guard. Git is a version control tool. It can be used to
pull down source from or upload source to remote git repository. It also helps to manage local
source project, with a full track on the modification and the ability to get back to previous version
after any committed changes.

 JDK 5.0. JDK is the development toolkit for Java programming language. Applications on
Android need these for compiling.

 Flex , a text scanner used to tokenize the input to recognized descriptions. A script language
interpreter need some a scanner for analyzing user input either from the standard input or from
text file.

 Bison , the actual interpreter transforming the known tokens to be a piece of c program. Bison
does its interpretation after flex generates the tokens. And after bison translates the tokens to be
pieces of c program the user input can be executed to get the expected results. Flex and bison are
both part of a script like language interpreter.

 Gperf , a perfect hash function which can produce a unique output for each given unique input.
Gperf is used by C and C++ compilers to recognize the language reserved words.

 Libsdl-dev , the library for Simple DirectMedia Layer development. It is a library which allows
programs portable low level access to a video framebuffer, audio output, mouse, and keyboard.
The library is needed by a compiler and a link when the program is using SDL.

 Libesd0-dev , the library for Enlightened Sound Daemon development. It can be used to mix
several audio streams to be played in a single sound device. When a program uses this library the
compiler and linker will need it for compiling and running that program.

 Libwxgtk2.6-dev (optional), wxWidgets Cross-platform C++ GUI toolkit (GTK+ development).
It is a C++ class library for developing wxWidget programs. A bunch of GUI components are
provided in this library. And it’s a cross platform library which can be used most popular
platforms as well as some unpopular platforms.

 Build-essential , a package for building Debian packages. This is needed during compiling for
building some packages in Debian compatible format.

 Zip , a utility for building .zip archive files. This is needed for building the final archives during
building the Android platform.

 Curl , a utility for getting files from a HTTP, HTTPS, or FTP server as well as some other
application level protocol based servers. This is needed for pulling down Android source from the
Git repository.

All libraries and tool mentioned above can be downloaded and installed with the following command

$sudo apt-get install git-core gnupg sun-Java5-jdk flex bison gperf
libsdl-dev libesd0-dev libwxgtk2.6-dev build-essent ial zip curl
libncurses5-dev zlib1g-dev

One more tools can be installed to help working with memory leakage examination, valgrind can be
installed with

 Design a WLAN Mini Access Point in the Android Platform

23

$sudo apt-get install valgrind

Ubuntu Intrepid (8.10) users may need a newer version of libreadline , which is an assistant for
working with command line so that various program can share a uniformed command line interface. It
can be installed with

$sudo apt-get install lib32readline5-dev

3.3. Cross compiling

The compiling process is to build the executable for a host system on a building system. Here the host
system is the platform on which the executable is going to run. Building system is the platform from
which the executable is produced. When the executable is a compiler, there is one more system involved
which is named target system. The target system is the platform for which the compiler is going to make
executables.

Cross compiling is a type of compiling which has host system different from building system. For
example, in this project the building system is Linux while the host system is Android. This is because
the building process is taking place on Linux and the executables are going to run on Android.

To achieve cross compiling there must be cross compiling tool chain which contains a cross compiler, a
cross assembler, and a cross linker. The process in this project is more complicated for the reason that it
is going to build up both the Android platform and various applications. The Android platform is a
combination of Linux kernel and dalvik virtual machine for running Java code. The applications are
built with Java programming language. This means that there must be multiple cross compilers, cross
assemblers and cross linkers for building the Android source.

Going further in the compiling, all libraries in both C and Java must be available for building the
platform and applications. Particularly, for C program compiling the headers and C libraries must exist,
and for Java program compiling the Java libraries must exist. For Android the C libraries are built from
C source in the directory “bionic”, and the necessary header files can be in “bionic”, “kernel” or other C
code directories. For code which is not open source, the libraries are provided by vendors in binary
format. Similarly, these Java libraries can be either built from Java source code or provided in jar
packages.

3.4. Cross compiling tool chains for Android in Ubuntu system

Android itself is an operation system. However, before it can be properly functioning as a platform for
various applications it must be built from source code. The building process can be taken place in a few
existing platforms including Linux (Ubuntu is recommended), Mac OS, and virtual machine. In last
section it gives the needed configuration in Ubuntu 32 bit platform. For other platforms detail
information can be found at [4].

3.4.1. Cross compiling ABI

Such a configuration is the general environment of building for all supported architectures. When it
comes to configuration for specific architecture, the ABI (Application Binary Interface) must be
considered. ABI is a concept different from API. ABI is specific to the underlying processor, while API
is specific to the operating system. Programs written with regard to particular ABIs can only run on
platforms that are sitting on top of the corresponding processor. Currently the Android platform can be
built to be running on ARM or X-86 architecture. For a particular building, the ABI must be set to be
the proper one. The setting of ABI is controlled by a building environment variable called

 Design a WLAN Mini Access Point in the Android Platform

24

TARGET_CPU_ABI. If the building target is a simulator, it doesn't need a CPU ABI. So the
TARGET_CPU_ABI is set as none.

TARGET_CPU_ABI := x86 #if you build for x86 architecture
TARGET_CPU_ABI := armeabi #if you build for arm architecture
TARGET_CPU_ABI := none #if you build a simula tor

TARGET_CPU_ABI is set in the file of Boardconfig.mk which is one of essential configuration files for a
particular building. The actual files of various ABI is located at the directory prebuilt/ as following

$(combo_target)TOOLS_PREFIX :=prebuilt/$(HOST_PREBU ILT_TAG)/toolchain/i686
-unknown-linux-gnu-4.2.1/bin/

HOST_PREBUILT_TAG is the build TAG which can be linux-86 , or linux-x86_64 and a lot more. In this
project it is set as linux-x86 for the reason that the built Android system is going to be running on a
32-bit x-86 platform. $(combo_target)TOOLS_PREFIX as a whole determines the name of the path of
the ABI in the file system. This setting will ultimately determine the actual compilers for compiling C
and C++ source files.

3.4.2. Cross linker

The Android platform uses its own program linker which is different from the one in a regular Linux
system, therefore the linker issue must be considered when building Android applications and tools. The
programs must be linked with the linker that is built from source in Android. The source code of
Android linker is under the directory of bionic/linker/. And again the linker is specific to a particular
architecture on which the building target is going to run. The supported architectures are ARM and x86.

3.5. Build variables and build process

3.5.1. Build for a new product

In Android building system there are lots of environment variables which control the build properties.
The building system defines most of these variables used internally, as well as some variables to be
interfaces for users to set some of the building process properties. However, as long as the users
understand these build variables they can change these variables to be the value they want. And for the
sake of convenience to modify the interface variables, the building system creates several separate files
to hold them under the directory of vendor/company_name/. company_name is chosen by users. And
then under this directory user creates the required files suffixed with .mk . Specifically, to build for a
new product the user needs to have a product tree as following:

• <company_name>
o <board_name>

� Android.mk
� product_config.mk
� system.prop

o products
� AndroidProducts.mk
� <first_product_name>.mk
� <second_product_name>.mk

Under company_name/ there are two subdirectories, board_name/ and products/. Product_config.mk
and Android.mk and are necessary in subdirectory board_name/ , while system.prop is optional.

 Design a WLAN Mini Access Point in the Android Platform

25

Product_config.mk is used to define Product specific compile time definitions which are going to
override the default values in the files BoardConfig.mk and config.mk that are both in the directory
build/ . System.prop is needed in the board_name subdirectory only when the user wants to override
default settings in build/ directory. In the product subdirectory there must be an AndroidProducts.mk
file which points to the actual product definition files. In this example, there are two product definition
files first_product_name.mk and second_product_name.mk. The product definition file override default
settings in generic.mk which is under one of subdirectories of build/ . In the product definition file user
can redefine PRODUCT_PACKAGES to include the packages in the final product. Others like
PRODUCT_BRAND, PRODUCT_DEVICE, and PRODUCT_NAME can be override to be the specific names for the
particular product.

3.5.2. Default settings and build process

As mentioned, there are always default settings of all build variables in the build/ directory. Even if
without any user defined files, the build process will still precede successfully according to the default
settings. Before run the make command, the user should first run the file build/envsetup.sh which is
a script file defining some useful functions that can ease the building system. After receiving the make
command from the user, the building system first looks at the file named Makefile at the top of the
source code hierarchy. There is only one simple entry in the top Makefile. It tells the building system to
look for more information at the file build/core/main.mk . Main.mk is the actual entrance of the
Android building system. It calls other files named with .mk suffix to set up the default values for all
building variables. The most notable settings include the build type (eng, user, userdebug, or
development), final included packets, host architecture, host platform, target architecture, target
platform, and output directory.

3.5.3. Adding a new packages for building

Expect for change settings for specific device build, the user can just add external packages to be
compiled together with the original source code. This allows users to extend the capability of the
Android platform with their own intention. Such an external package can be C/C++ source or Java
source coded.

3.5.3.1. Template makefiles in the building system

There is a template file for building each kind of these packages. The template is available for building
applications, shared libraries and static libraries. The list below gives these template files with a simple
description.

 binary.mk

Define PRIVATE_ variables used by multiple module types, like the file suffixes, compiling
flags, install header files, add default shared libraries (libc, libm , and etc.), collects all the
built libraries. It also defines compiling flags and library dependencies.

 host_executable.mk

Define common rules for building executables. It calls the binary.mk file. The content of this
file is quite simple, as following

LOCAL_IS_HOST_MODULE := true
ifeq ($(strip $(LOCAL_MODULE_CLASS)),)
LOCAL_MODULE_CLASS := EXECUTABLES
endif
ifeq ($(strip $(LOCAL_MODULE_SUFFIX)),)
LOCAL_MODULE_SUFFIX := $(HOST_EXECUTABLE_SUFFIX)

 Design a WLAN Mini Access Point in the Android Platform

26

endif

include $(BUILD_SYSTEM)/binary.mk
$(LOCAL_BUILT_MODULE): $(all_objects) $(all_librari es)
 $(transform-host-o-to-executable)
 $(PRIVATE_POST_PROCESS_COMMAND)

 host_Java_library.mk

This is the template for building a Java library. It doesn't call binary.mk . It sets the value for
these local variables needed to build a Java library.

LOCAL_MODULE_CLASS := JAVA_LIBRARIES
LOCAL_MODULE_SUFFIX := $(COMMON_JAVA_PACKAGE_SUFFIX)
LOCAL_IS_HOST_MODULE := true
LOCAL_BUILT_MODULE_STEM := Javalib.jar

 host_shared_library.mk

This is the template for building a shared library. It calls binary.mk because a shared library
is just one kind of binaries built from C/C++ code.

include $(BUILD_SYSTEM)/binary.mk
$(LOCAL_BUILT_MODULE): $(all_objects) $(all_librari es)
$(LOCAL_ADDITIONAL_DEPENDENCIES)
 $(transform-host-o-to-shared-lib)

 host_static_library.mk

This is the template for building a static library. It calls binary.mk because a static library is
just one kind of binaries built from C/C++ code.

include $(BUILD_SYSTEM)/binary.mk
$(LOCAL_BUILT_MODULE): $(all_objects)
$(transform-host-o-to-static-lib)

 Java.mk

This makefile defines common variables and set up the environment for building Java code. It
is called by other makefiles when they need to build Java sources.

 Java_library.mk

This is the template for building a Java library which can be either a shared library or a static
library. It is called by the makefile static_Java_library.mk .

 raw_executable.mk

This is the template for building an executable. It calls the makefile binary.mk for it is just
one type of binary. This specific type of executable depends on the source code and the target
platform. Raw_executable.mk calls the linker to link the objective files to be an executable.
Again the specific tools used depend on the source code and the target platform.

$(LOCAL_BUILT_MODULE): $(all_objects) $(all_librari es)
 @$(mkdir -p $(dir $@)
 @echo "target Linking: $(PRIVATE_MODULE)"
 $(hide) $(TARGET_LD) \
 $(addprefix --script ,$(PRIVATE_LINK_SCRIPT)) \
 $(PRIVATE_RAW_EXECUTABLE_LDFLAGS) \
 -o $(PRIVATE_ELF_FILE) \

 Design a WLAN Mini Access Point in the Android Platform

27

 $(PRIVATE_ALL_OBJECTS) \
 --start-group $(PRIVATE_ALL_STATIC_LIBRARIES) --e nd-group \
 $(PRIVATE_LIBS)
 $(hide) $(TARGET_OBJCOPY) -O binary $(PRIVATE_ELF_ FILE) $@

 raw_static_library.mk

This is just a wrapper for building static library. It does nothing but include
$(BUILD_STATIC_LIBRARY).

3.5.3.2. Adding a new module and writing the Android.mk

For each application there must be a makefile named Android.mk for the building system to
discover it and building the source according to the user’s indication. A makefile typically include
all the following elements:

 LOCAL_MODULE defines the build name for the particular package.

LOCAL_MODULE := <build_name>

 CLEAR_VARS clears all local variables. The Android platform defines a group of local
variables for controlling the building of each particular package. They need to be cleared each
time when the building system enters a new package to cancel the influence of settings of last
package

include $(CLEAR_VARS)

 LOCAL_SRC_FILES indicates all source files that eventually compose the final target.

LOCAL_SRC_FILES := <all sources>

 LOCAL_MODULE_TAGS indicates the build tags for this package. Build tag tells the building
system when to build the package with regard to each build flavor (can be eng, user,

userdebug, or development).

LOCAL_MODULE_TAGS := user development

 LOCAL_SHARED_LIBRARY tells the building system which shared libraries this package
depends on. Packages generally always rely on external libraries to achieve a successful
building. C/C++ packages can utilize either shared libraries or static libraries. Java source is
built with some .jar class libraries.

LOCAL_SHARED_LIBRARY := libc libcutils

 BUILD_EXECUTABLE tell the building system to build this package to an executable. Both
C/C++ and Java sources can be built to be executables, shared libraries, or static library.
There is a template file in the build/ directory for building a target in each of these types
respectively. Refer to the template files mentioned in this subsection earlier for details.

include $(BUILD_EXECUTABLE)

Here is a simple example of Android.mk

LOCAL_PATH := $(my-dir)

 Design a WLAN Mini Access Point in the Android Platform

28

include $(CLEAR_VARS)
LOCAL_MODULE := hostapd
LOCAL_SRC_FILES := hostapd.c
LOCAL_MODULE_TAGS := eng development
LOCAL_SHARED_LIBRARIES := libc libm libcutils
include $(BUILD_EXECUTABLE)

3.6. Out directory

The out/ directory is initially empty. It is the directory where the all output files are located during the
build process, including intermediate object files, final executables, and the images. The building
system creates a subdirectory named after the value of TARGET_PRODUCT. The user can either define the
variable in the ProductConfig.mk file or at the typing of make command. In this project, the intention
is on the Linux kernel and three image files, initrd.img , ramdisk.img , and system.img . Linux kernel
provides all actual system resource management. All C/C++ coded programs communicate directly with
Linux kernel. Initrd.img contains the init script which sets up the system running environment and
launches daemons and kernel modules. Ramdisk.img is a temporary root file system which provides all
the tools for setting up system environment and mounting the actual root file system. System.img holds
the file system. Therefore all application packages are housed in this image. There might be other image
files created. The user can fetch the files to compose a properly functioning the Android platform.

The user should be careful about the disk space holding the out/ directory. The reason is that there are
many intermediate files are going to be generated in the building process and huge space is needed.
Many intermediate files have been removed before the process terminates. This might lead the user to
think of having less disk space for the process. A minimal of 6G free space is necessary.

3.7. Details about other directories like system and prebuilt

These directories can be important in some cases according to specific build requirement. Below is
some description about them.

3.7.1. external/ directory

If the user thinks of adding new packages into the hierarchy the directory external/ is generally the
place. External/ holds all third party packages. The packages can be Java program or C/C++
applications that are built as background services. There are four packages directly evolved in this
project, hostapd , libnl , opeenssl , and bridge-utils . They are all placed in external/ directory.
There is no requirement of the building system for users where to place their packages, however for the
sake of clearance of source code management external/ is the proper directory.

3.7.2. prebuilt/ directory

Android building system needs a lot of tools for it to be functioning in variable building settings. These
tools are mostly located in prebuilt/ directory. When do crossing compiling the available tools in this
directory are fundamental. There are tools for building the Android platform running on ARM and x86
architecture. Android currently only support two types of building. The user can create the tools for
Android building system individually so that more architecture can be supported in particular user’s
need. Except for these tools, some libraries are also placed here. These libraries are then used by the
building system to create applications that are specific to the Android platform.

 Design a WLAN Mini Access Point in the Android Platform

29

3.7.3. bootable/ directory

This directory includes sources for building the bootloader and disk installer as well as the system
initialization image. After the kernel is loaded it first do kernel initialization like setting the
segmentation and paging table, configuration environment for process management, and enabling
interrupt in both hardware and software form. And then it turns to do initialization for running user
space services, like loading some modules to support particular operation, launching and configuration
some programs running as services depending on the user configuration in the init scripts. The last type
of initialization is performed by program built from source in this bootable/ directory.

 Design a WLAN Mini Access Point in the Android Platform

30

4. Hostapd in Android
The Android platform comes with its own building system. Any new external package must rewrite its
makefile to be recognized and compiled in the building process. This chapter gives detailed explanation
about the makefiles of these components in the Android building system.

4.1. Configuration for building hostapd

Hostapd is the starting point for the need to introduce all other components. Hostapd in Android, just
like in Linux, requires a driver to do the physical signal processing. We grab Linux kernel 2.6.29 [15] as
the kernel of our Android platform. This kernel ships with the ath9k driver for Atheros chipset cards.
Tracing ath9k to the ongoing Madwifi driver project, it gives us the information that ath9k is a
mac80211 based driver. Mac80211 is a new wireless stack in Linux to replace the old wireless
extension standard. As mentioned in chapter 2 (where mac80211 is mentioned), all daemons and
applications running in user space talk with Linux wireless driver via the nl80211 interfaces which are
implemented as the libnl in source code. One can download and compile libnl to have Linux support
the mac80211 based drivers. Therefore as we decide to choose ath9k driver, we should set
“CONFIG_DRIVER_NL80211” with yes, and tell the directory of libnl to the compiler by setting CFLAGS
and LOCAL_SHARED_LIBRARIES compiling flags.

The driver option is the only special setting in the compiling configuration file of hostapd . We keep all
other security settings unchanged as they are in the default configuration file. Android building system
has many local variables which tightly control the building in each part of the whole source package. It
can be very tricky sometimes when the source code organizing changes. To be conservative we don't
use subdirectory makefiles for hostapd in the Android source code hierarchy, and wherever can be
tricky we use absolute directory instead of relative directory. We recommend this because the default
settings of these source directories result in many errors in the compiling. The other reason for this is
that the building in this project is a cross compiling, therefore many header files and libraries are located
in the indicated directories of the source code hierarchy instead of the standard directories as native
compiling. However the compiler will go to these default places to find the headers and libraries if
there’s no explicit indication telling the compiler where to look at these files. The absolute directories
will avoid errors resulting from these settings which sometimes are unclear to third part engineers.
When the engineer doesn’t know the profound details of the building system, it’s better to use absolute
directories in both the configuration files and the header files in the source file. This will get rid of most
of the compiling errors. Since we have only one makefile for one package we put the makefile at the top
of each package.

The latest version of hostapd is labeled as 0.7.2 as this project is finished. The latest version can be
unstable in some important aspects. We choose to use version 0.6.9. There is a reported bug of version
0.6.10 when the underlying wireless driver is ath9k . One should be careful about the version issues so
that unnecessary work can be avoided. We place the source code of hostapd under external/ directory
and rewrite the makefile with respect to the Android building system. The new makefile is always
named as Android.mk . It then is put on the top directory of hostapd . As recommended we change the
directories of header files to be absolute directories. The structure of source code keeps the same as
downloaded.

 Design a WLAN Mini Access Point in the Android Platform

31

Figure 15 Hostapd source code overview at the top

Hostapd source package is relatively large compared with libnl and bridge-utils . We’ll give the
Android.mk files for these two packages in the following sections and leave Android.mk file in
Appendix B .

Figure 16 successful running of hostapd in Android

4.2. Openssl in Android

Openssl implements both SSL and TLS which are both basis for secure web communication. It has
been already placed in the Android source code tree under the external/ directory. Hostapd needs
openssl to work with protected wireless access. The only thing needed to do is to tell the directory of
the openssl source to the building system when it comes into the hostapd subdirectory. With this
setting of CFLAGS in Android.mk file of hostapd the building system will be able to find the headers
needed by security implementation in hostapd . Openssl will be compiled with the Android source code.
Therefore telling the name of libraries resulting from openssl is sufficient for the linker to find them.
There are two libraries built from openssl source code, libssl and libcrypto . They both should be
added in the local variables LCOAL_SHARED_LIBRARIES in the Android.mk of hostapd .

 Design a WLAN Mini Access Point in the Android Platform

32

4.3. Configuration for building libnl

Libnl is needed for hostapd to communicate with wireless driver. There is no source code or binary
library in the Android source code git repository. When it is necessary in any particular building, the
source code of libnl must be downloaded and placed in the some directory like external/ in Android.
And again there must be an Android style makefile for the building system to find such a third party
package. Hostapd v0.6.9 requires a newer version of libnl , at least v1.0. We choose v1.1 in this
project.

The downloaded source code package includes the code for building the library as well as code for other
use. Since we only need the library we just write Android.mk for the library code which is together
located in the subdirectory lib/ . The compiler also needs the header files in the subdirectory include/ .
There is only one Android.mk file for the libnl source code package. Therefore, the easiest way is to
put the Android.mk file at the top of lib/ subdirectory. And when the .c file and its included header
files are not in the same directory we use absolute directory to tell the compiler where the header file is.
The structure of source code is given as Figure 17 and the shadow text shows the content of our
Android.mk file for libnl .

Figure 17 Source code overview of libnl in the lib subdir

###############Android
.mk file for libnl

LOCAL_PATH:= $(call my-dir)
include $(CLEAR_VARS)

LOCAL_SRC_FILES:= addr.c attr.c cache.c cache_mngr. c cache_mngt.c data.c
doc.c family.c handlers.c msg.c nl.c object.c socke t.c utils.c genl/genl.c
genl/ctrl.c genl/mngt.c genl/family.c

LOCAL_C_INCLUDES += \
 bionic/libc/include \
 bionic/libc/arch-x86/include \
 bionic/libc/kernel/common \
 bionic/libc/kernel/arch-x86 \
 bionic/libm/include \
 external/openssl \
 external/openssl/include \
 external/openssl/crypto \
 external/libnl/include

 Design a WLAN Mini Access Point in the Android Platform

33

LOCAL_SHARED_LIBRARIES := libc libcutils libcrypto libssl

LOCAL_MODULE:= libnl

include $(BUILD_SHARED_LIBRARY)

In the Android.mk file, the line starting with # mark is ignored by the compiler. The first thing
Android.mk does is to tell the building system that now it steps into a new package which is the lib/
subdirectory of libnl in the external/ directory. It does this by LOCAL_PATH:= $(call my-dir) . Next
it clears the local variables that the building system used for the previous package with include

$(CLEAR_VARS). The order here is strict for the first two callings in the Android.mk file. After these two
steps, the other five callings can be made in any order. LOCAL_SRC_FILES indicates the source code used
to build the ultimate libraries. There is no need to tell the dependencies between these .c files, instead
just a whole source package is sufficient. The Android building system will figure out these
dependencies and make the right call at the right time. The source code included in this variable is just
these under the lib/ subdirectory. LOCAL_C_INCLUDES is actually not needed here because all header
files out of the lib/ subdirectory are indicated with their absolute directories. The compiler can find
them with the absolute directory. This is not quite elegant since it can be vary tedious when the source
package is large and lots of header files are included or when lots of external packages are needed to be
added into the building system. We leave this variable here to tell the reader that the better way to
indicate the location of header files is to tell the path of them in this variable. LOCAL_SHARED_LIBRARIES
then holds on all necessary libraries for building the libnl library. We successfully build the libnl
library with these libraries. But we have not yet test which libraries are necessary. It can be that some of
them have no influence for building libnl . After indicating the necessary components for building the
library we give the library a name LOCAL_MODULE:= libnl . In the end it’s time to call the compiler and
linker to do their job by calling include $(BUILD_SHARED_LIBRARY) . This is to build a shared library.

4.4. Configuration for building bridge-utils

Bridge-utils is not the necessary part for building hostapd . However to let hostapd really function as
an AP to provide Internet service we first need to make the Internet available to AP. This is achieved by
adding a bridge between the AP and another interface which is connected to the Internet. In real
situation of mobile case, it’s most likely that the mobile can access the Internet via the telephone
network. And then a bridge is running to move data from telephone radio interface to the WLAN
interface which hostapd is taking care of. Bridge forwards data from a network to the other. The bridge
functionality added to the Android platform for now is to test our Android AP design, and for the long
run is implemented as a solution to connect the WLAN and telephone network. In this project, we are
working on a demo system which is running on an x86 laptop instead of a mobile phone. The bridge is
to transfer data between the Ethernet interface and the WLAN interface back and forth.

Bridge itself is part of the Linux kernel. When it is necessary in a system it must be enabled in the
kernel compiling configuration file and built into the operating system. This is done by set networking

-> 802.1d Ethernet Bridging to be y or m. After enabling the bridge support there must be also some
utilities in the system for controlling and configuring the bridge such as creating or removing a bridge,
adding or removing interfaces into a bridge, and so on. The bridge utilities are not part of the Linux
kernel. The source code of such utilities is in a package called bridge-utils which can be downloaded
from [5]. It’s in a git repository. One should first install git tools in its system and then run the git
command with its URL parameters given in reference in the console.

 Design a WLAN Mini Access Point in the Android Platform

34

Figure 18 Source code overview of bridge utils at the top

Download the source code of bridge-utils and extract it into a directory bridge-tuils . The source code
structure of bridge-utils looks like Figure 18. In the source code package no Makfile can be found
directly. Files named aclocal.m4, configure.in , configure are present as well as some other files
which together are necessary for a GNU compiling process. The Makefile is the reference we use to
write Android style makefile. So the first step to work on the source code is to generate the Makefile. It
is as simple as running the configure script in the bridge-utils/ directory. After running configure
script a file named Makefile shows up. With it we write our Android.mk file. Again the Android.mk file
is the only makefile for this package in Android source hierarchy. Therefore the Android.mk file is
placed at the top of bridge-utils/ directory and the package bridge-utils is placed under the
directory external/.

Bridge-utils is a very small package. The main source code is under subdirectories brctl and
libbridge . The code under libbridge/ subdirectory is used to build a bridge utility library. And the
code in brctl/ subdirectory is for building the utilities. Therefore in the Androis.mk file there are two
building tasks, first to build the library and second to use the library together with the source in brctl/
to build the utilities. Some private defined variables are used in this Android.mk file. They are helpful in
assisting management of the source code. BRCTL_BUILD is used to control when compiling this package.
We choose to build a static library instead of a shared library because this allows us to use the bridge
utilities independently with the libraries. To build a static library we need to do the routine include

$(BUILD_STATIC_LIBRARY) and call include $(BUILD_EXECUTABLE) to build an executable which is
our bridge utilities.

The Android.mk for bridge-utils is given as below

LOCAL_PATH := $(call my-dir)

BRCTL_BUILD := true

ifndef L_CFLAGS
L_CFLAGS := -O2 -Wall -g
endif

INCLUDES_BRCTL :=
-I/root/Documents/eclair-x86/external/bridge-utils/ libbridge
INCLUDES_LIBBRIDGE :=
-I/root/Documents/eclair-x86/external/bridge-utils/ libbridge

 Design a WLAN Mini Access Point in the Android Platform

35

COMMON_SOURCES := brctl/brctl_cmd.c brctl/brctl_dis p.c
SOURCE_BRCTL := brctl/brctl.c $(COMMON_SOURCES)

LIBBRIDGE_SOURCES := \
 libbridge/libbridge_devif.c \
 libbridge/libbridge_if.c \
 libbridge/libbridge_init.c \
 libbridge/libbridge_misc.c

ifeq ($(BRCTL_BUILD),true)

include $(CLEAR_VARS)
LOCAL_MODULE := libbridge
LOCAL_SRC_FILES := $(LIBBRIDGE_SOURCES)
LOCAL_CFLAGS := $(L_CFLAGS)
LOCAL_C_INCLUDES := $(INCLUDES_LIBBRIDGE)
LOCAL_MODULE_TAGS := user eng development
LOCAL_SHARED_LIBRARIES := libc libcutils
include $(BUILD_STATIC_LIBRARY)

include $(CLEAR_VARS)
LOCAL_MODULE := brctl
LOCAL_SHARED_LIBRARIES := libc libcutils
LOCAL_STATIC_LIBRARIES := libbridge
LOCAL_CFLAGS := $(L_CFLAGS)
LOCAL_SRC_FILES := $(SOURCE_BRCTL)
LOCAL_C_INCLUDES := $(INCLUDES_LIBBRIDGE)
LOCAL_MODULE_TAGS := user eng development
include $(BUILD_EXECUTABLE)

endif

Figure 19 successful running of bridge utils in Android

4.5. Wireless card and the driver

Wireless card and its driver take care of the actual signal processing. Currently not many wireless
drivers support AP functionalities in their implementation. Even some drivers with clear declaration for
supporting AP may still have some problems when working in different combinations of hostapd and
wireless driver. These issues limit our choices for this project. As the demonstration proceeding we will
give the story in which we encounter some exotic bug.

 Design a WLAN Mini Access Point in the Android Platform

36

Hostapd implements its own driver wrapper for collaborating with different drivers that are claimed to
support AP operation mode, including Madwifi driver, hostapd driver, Prism54 driver, mac80211 based
drivers (like ath5k and ath9k), and FreeBSD net80211 based driver. Theoretically, all these drivers can
work properly with hostapd . As we did in section 2.3 we add libnl in Android building system. This
allows us to use the mac80211 based driver ath5k or ath9k . In this project we use ath9k driver. It
comes together with Linux kernel since v2.6.27. This driver works for all Atheros IEEE 802.11n
PCI/PCI-Express and AHB WLAN based chipsets. The downloaded Android-x86 source code is
packaged with Linux kernel v2.6.29.

To compile the driver ath9k , we set the configuration in the kernel compiling configuration to support
the driver.

Device Drivers --->

 [*] Network device support --->

 Wireless LAN --->

 <M> Atheros 802.11n wireless cards supp ort

As ath9k is a mac80211 based drivers, we also need to enable the support for mac80211 in the kernel.

Networking --->

 Wireless --->

 <M> Improved wireless configuration API

 <M> Generic IEEE 802.11 Networking Stack (mac80 211)

The configuration here is exactly the same what previously was done in Linux system. The reason for
this is that the operating system kernel of Android is just a Linux kernel.

After enabling these configurations the ath9k will then be compiled as a module in the final built Linux
kernel. Anytime when the kernel is being built these two modules are being built. The build time for the
Linux kernel may vary from several minutes to hours depending on the configuration of the building
and the machine that the building is taking place. When Android boots up, it detects the hardware
configuration in the system. If it detects a wireless device that uses ath9k module as its driver, the kernel
will automatically load this module into the running kernel memory. However there are some cases in
which the user needs to add the driver manually with command insmod or modprobe . Android mostly is
built with only insmod available. Insmod needs the specific path where the module is located. The
Android platform implements a terminal simulator in which users can type any command that is
currently available in the system to interact with the system. One can use command lsmod to check all
currently running modules in the memory. If the module ath9k is successfully loaded one should be
able to see it in the list produced by lsmod . Mac80211 should also be present in the list. Figure 20 shows
all current running modules in our experiment.

 Design a WLAN Mini Access Point in the Android Platform

37

Figure 20 Modules currently running in Android

4.6. Launching hostapd with configuration file

To check whether any component is missing one can simply run hostapd from the console. If all
components mentioned above have been successfully feed into the Android platform, hostapd should
be able to be launched with its running configuration file.

This is a simple running configuration file of hostapd , named Android-hostapad.conf

interface=wlan0
driver=nl80211
logger_syslog=-1
logger_syslog_level=2
logger_stdout=-1
logger_stdout_level=2
debug=4
ctrl_interface_group=0
hw_mode=g
ssid=ESSID_Genar
auth_algs=3
eapol_key_index_workaround=0
eap_server=0
channel=6

 Design a WLAN Mini Access Point in the Android Platform

38

No bridge settings in this configuration file, therefore after running hostapd the attached stations cannot
get access to the Internet via this AP in the Android platform. This is going to be accomplished in next
section about testing. The important entries include interface and driver . The first entry
interface=wlan0 tells hostapd to run on the wireless interface labeled wlan0 . The second entry
driver=nl80211 tells hostapd to use the mac801211 based driver which is ath9k in case of this project.
There is no authentication needed in this configuration. Any user device with WLAN support can
connect to the AP. Figure 21 shows hostapd is running with its configuration file.

Figure 21 Hostapd launched with its configuration file in Android

 Design a WLAN Mini Access Point in the Android Platform

39

5. Testing
In this chapter we run the test case to show the AP is functioning in the Android platform. To
demonstrate the process we begin with the expected results of the testing. Next we give the testing
configuration in both hardware and software. With that we set up the testing network. And then we
demonstrate the details of the testing process and outcomes from each station.

5.1. Expected results

After the local network is set up, it will do simple packet transmission to show the local network is
properly functioning. The Android platform running the AP currently cannot support Ethernet and
WLAN at the same time. So to test the AP functionality in the Android platform, we just test the packet
transmission within the local network, rather than using a bridge to forward the packet to the Internet.

When the AP (hostapd) is running at the Android platform, any device with WLAN support should be
able to connect to it and all hosts connected should be able to ping each other. In the result part of the
testing procedure we will prove the success of ping with pictures.

5.2. Testing environment

There are three machines involved in this testing, one for running Android and hostapd , and the other
two for running as WLAN peripheral stations. We choose an ASUS machine with Windows vista
system and a Sony Ericsson phone with proprietary system as the peripheral stations. Such a choice is to
show that there is no restrict on the category of host machine provided it has WLAN compatible
network support (IEEE802.11b/g). This is important as the goal of this project is to make the AP
capable for providing WLAN service without device bias.

Below is the configuration of each of these host machines

 Eee PC

Operating system Android with Linux kernel v2.6.29

Processor Intel Atom

Wireless card Atheros ar8132 PCI-e fast Ethernet controller

Wireless driver ath9k

Hostapd hostapd v0.6.9

Libnl libnl v1.1

 ASUS X50Z series

Operating system Windows Vista

Processor AMD Turion(tm) X2 Dual-Core Mobile RM-70

Wireless card Atheros AR5007EG Wireless Network Adapter

Wireless driver AR5007EG 7.4.2.57 for Windows Vista

 Sony Ericsson W715

 Design a WLAN Mini Access Point in the Android Platform

40

Operating system Sony Ericsson proprietary operating system

Processor Intel StrongARM

Wireless card Marvell 88W8686 chipset based card

Wireless driver libertas

5.3. Network topology

The AP operates in infrastructure mode in which all peripheral stations connect to the AP. The Android
platform was designed for handheld device which has the pervasive telephone network access capability.
The nice feature for such device is that it can function as modem for other types of devices that have
WLAN supported. Therefore we are intended to add this modem capability for the Android platform. In
this testing case we let the Android platform machine run as AP while other hosts run as peripheral
stations that expect to connect to the AP for service. The network topology is given as Figure 22 below.

Figure 22 Network topology in the testing case of hostapd in Android

5.4. Setting up the network

The process of setting up the network consists of two steps. The first step is to launch hostapd with its
running configuration file and connect the peripheral stations to the AP. The second step is to do the
network configuration for all the hosts.

5.4.1. Running hostapd and connecting the hosts

The Android platform provides both desktop environment and console operation environment for
interactions with the user. In this test we use the console for currently we have not implemented a
graphic interface for our AP. The graphic interface of hostapd is designed in the next chapter. We place

 Design a WLAN Mini Access Point in the Android Platform

41

the Android system in a USB stick so that we can run the test on any x86 based machine. With the USB
stick we first plug it into the USB interface of the Eee PC and then choose to boot up from USB so that
Android can be launched into the memory of the Eee PC machine as Figure 23.

Figure 23 Eee PC boots from the USB stick and Android is running

Next we launch hostapd with its configuration file. The content of the configuration file is given below
in the gray frame. Figure 24 shows hostapd is running.

interface=wlan0
bridge=mybr0
driver=nl80211
logger_syslog=-1
logger_syslog_level=2
logger_stdout=-1
logger_stdout_level=2
debug=4
ctrl_interface_group=0
hw_mode=g
ssid=MyAndroid
auth_algs=3
eapol_key_index_workaround=0
eap_server=0
channel=6

After hostapd is running at the Eee PC, other host machines can connect to the AP with their WLAN
interfaces. Since both the ASUS and the Sony Ericsson machines have graphic user interfaces installed,
the connection can be performed from corresponding graphic network manager. Figure 24 shows
hostapd is launched with its configuration file and hostapd is running with SSID of MyAndroid . Two
hosts with MAC addresses 00:22:43:2f:71:bc and 00:24:ef:2e:36:cc are authenticated and
connected. The accounting is started for each of the connected hosts.

 Design a WLAN Mini Access Point in the Android Platform

42

Figure 24 Hostapd is running and stations are connected

5.4.2. Configuration of hosts

After the Android boots up, we run command netcfg to see the available interfaces in the system. As
seen in Figure 25 there are four interfaces, two of which are up and the other two are shut down. lo is
the loopback device. Eth0 is the Ethernet interface. Wlan0 is the wireless interface. Wmaster0 is the
internal master device used by mac80211. Since we need to use the wireless interface wlan0 , we need to
run the command netcfg wlan0 up to bring up the wireless interface.

Figure 25 Available network interfaces in the Android

To make the hosts recognize each other in the same network, we need to configure the address in the
same network. We need to do the configuration manually because there is no DHCP server is listening
in the local network. We choose the addresses from 192.168.1.2 to 192.168.1.4, with 255.255.255.0 as
network mask.

 For the Eee PC machine run commands

ifconfig wlan0 192.168.1.2 netmask 255.255.255.0

 For the ASUS PC machine run commands

ifconfig wlan0 192.168.1.3 netmask 255.255.255.0

 For the Sony Ericson W715 machine do configuration as

wlan0 192.168.1.4 netmask 255.255.255.0

Figure 26 is an example of Sony Ericson W715 phone networking information after configuration.

 Design a WLAN Mini Access Point in the Android Platform

43

Figure 26 Network address configuration in Sony Ericson W715 mobile phone

5.5. Packets transmission

With the network setup we can do simple packet transmission within the local network. This is achieved
by doing the ping command from the text console of these hosts. Below are two examples of ping other
two hosts from the Windows vista host.

Figure 27 ping Android host from Windows vista

 Design a WLAN Mini Access Point in the Android Platform

44

Figure 28 ping Sony Erricson W715 from Windows vista

In Figure 27, when ping the Android host 4 packets, 32 bytes of each, are sent. And 4 packets are sent
back from the Android host, with the same size of each responding packet. The same are achieved when
ping the Sony Ericson W715 mobile phone, which is shown in Figure 28.

5.6. Result analysis

The experiment succeeds in both steps as mentioned in subsection 5.4. First the peripheral stations can
discover the AP in the Android platform and all stations are able to connect to it. There is no difference
between connection to the AP in the Android platform and connection to a normal hardware AP device.
Secondly, the data are successfully transmitted between stations, which means that there is no barrier in
the AP in the Android platform for providing data service. From the view of networking layering, we
conclude that we succeed in both link layer and application layer.

 Design a WLAN Mini Access Point in the Android Platform

45

6. User interface
In this chapter, the focus of our work is transferred from hardware layer to application layer. Our goal is
to create a user interface for underlying hostapd , which provides the possibility for user to control
hostapd ’s AP functionality from Android application layer, e.g. start/stop hostapd , etc. First, we
present the overview of Android application framework which provides the basis for our application.
Then, we propose two alternatives to implement the user interface for hostapd . They are discussed in
subsection 6.2 and 6.3 respectively.

6.1. Android application framework

6.1.1. Four essential components

One of the main features of Android is that one application can utilize other applications’ elements, if it
gets the permission. This feature greatly improves the efficiency of code reuse. Instead of incorporating
or linking to a piece of code of another application, the application starts up that piece of code if needed.
Therefore, applications in Android differently from in other systems don’t have a single entry point for
everything in the application, i.e. there is no main() function in Android application. Rather, Android
specially provides four essential components which can be instantiated and run by the system. There are
four building blocks to an Android application: activities, services, broadcast receivers, and content
providers.

 Activity provides visual user interface for Android application. An application may consist of one
or more activities. Each one activity is implemented as a subclass that extends the Activity base
class. And also each activity is usually a single screen in the application. When the application is
launched, one of the activities is marked as the first screen that will be presented to the user.
Moving from one screen to another one is accomplished by starting a new activity in the current
one. This is usually done by adding a button in the activity to trigger an event. The user interface
is displayed through the content of customized screen, which is provided by a hierarchy of views.
They are various objects derived from the View base class such as TextView , EditText , Button ,
etc. The layout of views is written as a specific file in the format of xml.

 A service is code that runs in the background for a long period of time, and without a visual user
interface. A good example to explain this is a media player. A service is required in the case
where the background music can be kept playing as the user navigates to other activities. Another
case is that a service can fetch data from the network and calculate and return the result to the
activities that need it [6].

 Broadcast receiver is used to receive and react to an external event. Some broadcasts are initiated
by system code informing that the battery is low or the picture has been deleted for instance. And
also applications can send broadcast to others to announce that some data over the network is
available now. Broadcast receivers do not display a user interface. However, they may display
notifications to alert the user if something important has happened. Typically, there will be a
special icon shown in the status bar, and users can open to get the message [6].

 Content provider makes it possible for the application to share its data with others. Applications
store the data in the file system, in a SQLite database, or in any other ways. The content provider
extending the ContentProvider base class implements a standard set of methods to let other
applications retrieve and store the type of data handled by that content provider [6].

All the four components above are listed in a special xml file called AndroidManifest.xml. Not every
application needs to contain all four components, but each application is a combination of those.
AndroidManifest.xml declares the components needed by the application and their capabilities.

 Design a WLAN Mini Access Point in the Android Platform

46

6.1.2. Intent and intent filter

Additionally, there is an activating component called intent in Android. As mentioned above, of four
components only content providers are not activated by asynchronous messages, i.e. intents, rather by a
request from ContentResolver . Intent is an object of class Intent carrying the message that is
transferred among components. It tells the component what kind of action to be taken or what kind of
data to be processed. Typical values for action are MAIN, i.e. the entry point of the application, VIEW,
PICK, EDIT, etc. The data is defined as a Uniform Resource Indicator (URI). Each type of component
is activated by different methods, which are described in [11] as follows.

 An activity is launched by passing an Intent object to the method of Context.startActivity().
If a result are expected when the sub-activity exits Activity.startActivityForResult()
should be used to start a sub-activity.

 A service is started by passing an Intent object to Context.startService() . To establish an
connection between the calling component and a target service, an Intent object is passed to
Context.bindService() .

 A broadcast is delivered by passing an Intent object to Context.sendBroadcast() ,
Context.sendOrderedBroadcast() , or Context.sendStickyBroadcast() .

In each case above, the Android system can find and instantiate the appropriate component (among
activity, service and a set of broadcast receivers) in response to the intent, according to the declarations
in the AndroidManifest.xml file. But in the case that intents do not explicitly name a target component,
intent filters mechanism is used to test the intent object in order to find the best component and activate
it. A component can have one or more intent filters, which describe what kind of intents the component
is capable to handle. Each filter presents a capability of the component. They are defined in
AndroidManifest.xml file as <intent-filter> elements. When the implicit intent is tested against an
intent filter, three fields of an intent filter are consulted: action, data and category. If the implicit intent
mismatches any of the fields, it cannot be delivered to the component with that filter.

The most important role of intent is used to switch among applications, activities and services. It
functions as an information bridge, which can start a new activity or pass data from one activity to
another. Android provides the intent mechanism to navigate from screen to screen. There are two kinds
of intent: explicit and implicit. Explicit intent means that the intent receiver is assigned when the Intent
object is created. However, implicit intent does not care who will be the intent receiver. For example, an
activity calls startActivity(myIntent), and the Android system will check the intent filters for all
activities and pick the activity whose intent filters best match myIntent to launch it.

6.1.3. Android User interface design

There are two ways in Android to build User interfaces (UI). One way is to write Java code and
construct application’s UI directly in source code. The other way is non-programmatic, i.e. to define
XML-based code file. The second way is highly recommended due to the reason that it is easy to
modify without changing the whole source code.

The basic units of user interface in Android application are view and viewgroup , which are descendants
of View class. The View object serves as a base class for all widgets, which are the elements appearing
on the screen (e.g. TextView , Button , etc). Viewgroup serves as a base class for all laypouts , which are
the layout architecture to order the various widgets. Examples of viewgroup are LinearLayout ,
TableLayout, RelativeLayout , etc.

In Android application, a customized UI is built using a tree-structured of view and viewgroup nodes,
as shown in Figure 29.

 Design a WLAN Mini Access Point in the Android Platform

47

Figure 29 Android tree-structured UI [14]

In order to present the view hierarchy defined in xml file to the screen, the activity calls its
setContentView() method and pass a reference to the root code of the tree. The Android system parses
the elements from the top of the tree. Each viewgroup is responsible for its child views, i.e. it requests
its child views to draw themselves. Hence, the whole layout is built in order.

Writing an xml file is as easy as creating a HTML file, using a series of nested elements. The advantage
of declaring UI in the xml file is to separate the presentation of the application from the behavior of the
code. As mentioned above, the setContentView method is called when compiling the application. It
aims at loading the xml resources from the Java source code. Each view object is assigned an ID by the
Android system, which is an attribute defined in xml file and used to uniquely identify the view in the
Java code. When an xml file is created in Android project’s res/layout/ directory, the Android system
automatically generates an ID in R.Java file for each view object. The method findViewById() is used
to get the reference from the xml file and assign it to the local variable within the Java code.

6.1.4. The AndroidManifest.xml

The AndroidManifest.xml is required for every Android application and stored in Android project’s root
directory. If developing Android application with Eclipse (discussed in the subsection 6.1.5), the
AndroidManifest.xml file is automatically generated instead of writing ourselves. It describes essential
information about an Android application, including the four core components mentioned in subsection
6.1.1, their capabilities (e.g. what kind of intent message they are able to handle) and how they can be
launched. Additionally, the manifest declares the permissions for both ways. On one hand, an
application needs permission to access the protected area of other applications’ APIs. On the other hand,
the permissions are also declared when other applications want to communicate with the application’s
components. The permissions are defined in the <permission> tag.

The diagram Figure 30 below shows a simple AndroidManifest.xml file:

 Design a WLAN Mini Access Point in the Android Platform

48

Figure 30 A simple AndroidManifest.xml file

It includes a namespace declaration (xmlns:Android="http://schemas.Android.com/apk/res/Android").
The role of this is to include a variety of standard Android attributes and provide the data for the
elements in the file [7]. Each manifest has only one <application> element, which contains the
components used in the application and their capabilities defined in the <intent-filter> tag.

6.1.5. Develop with Eclipse

For development Google provides the Android Development Tools (ADT) for eclipse to develop
Android applications. It adds powerful functionality to the Eclipse integrated development environment,
which provides the convenience for creating and debugging the Android application. In addition, it
helps to write Android manifest and layout files in the format of xml, and also it can export the Android
project into an executable program in the format of apk .

The diagram Figure 31 below shows how to create an Android project in Eclipse. After creating a new
Android project, the file directory structure is shown in Figure 32.

 Design a WLAN Mini Access Point in the Android Platform

49

Figure 31 Create an Android project with Eclipse

Figure 32 Android project directory structure in Eclipse

 Design a WLAN Mini Access Point in the Android Platform

50

R.Java is an automatically generated class file, which contains all the UI elements. The res/drawable
directory stores image resources. The res/layout directory stores customized layout files, which contains
various view objects and will be present on the screens. The files describing application’s variables are
located in the res/values directory. All the files under res directory are called resources for Android,
which are independent from code file (i.e. Java file). However, the users want to include and reference
them in their code behaviors. The main role of R.Java file is to setup a connection between resources
and Java codes. The Android application can access the resources using their IDs defined in the R.Java.

The general steps to develop an Android application are the following:

• Step 1: Design one or more layout files, and add UI elements in each layout files according to the
requirements. The Figure 33 shows how a layout xml file looks like. This file contains two UI
widgets: TextView and Button . It uses the LinearLayout way to vertically order the two view
objects. Both UI elements have text attributes, which will be present in the screen result.
Moreover, the button element is attached with id attribute, which can be used in the Java code to
interact with other code behaviors. Beside the xml-file edit window is a layout window, presenting
the result of xml editing, e.g. shown in Figure 34.

Figure 33 A simple layout xml file with two elements

Figure 34 The screen result of Fig. 33

• Step 2: Write Java code for Android application to describe the application behaviors. The four

 Design a WLAN Mini Access Point in the Android Platform

51

essential components can be used according to the development requirements. For example, write
two class files (MainActivity and SubActivity) both extending from Activity class; and use
intent message implementing the switch between two activities. The Java code can access the
resources by referencing resource ID defined in the XML-layout file. For example, a Button object
can be created in the Java code in response to an external event through setOnClickListener()
method.

• Step 3: Write the AndroidManifest.xml file to describe all the components used in the
application. The manifest has its own writing rules and it is required by the Android system to run
the application.

• Step 4: Run the Android project that has been created. There will be at least one Android emulator
included in the Eclipse development environment. Various versions of Android emulators can be
installed by Android SDK and AVD Manager . Figure 35 is one example of Android emulator. Figure
36 shows the running result, which is the same as the one designed in the XML-layout shown in
Figure 34.

Figure 35 An example of Android emulator

Figure 36 Running result shown in the Android emulator

 Design a WLAN Mini Access Point in the Android Platform

52

6.1.6. Important APIs

Android provides a variety of APIs for developers to develop Android application. Those APIs can be
used to interact with the underlying Android system. The Android API consists of a core set of packages
and classes, and their main definition in [10] are as follows.

 Android.app package are high-level classes encapsulating the overall Android application model.
The central class is Activity.

AlertDialog extends Dialog that is a class of Android.app package. It can be used to display a
title, a text message, one or more buttons, etc. And it functions as an external window shown on
the application screen. The Figure 37 displays when clicking the button Msg, the application pops
up an external window.

Figure 37 Popup an external window using AlertDialog class

 Android.os package provides basic operating system services, message passing, and
inter-process communication on the device.

Bundle is a class implementing a mapping from String values to various data/message types. It
is used together with Intent message when passing the data from one activity to the other. It can
extract the content of message in String type using its own methods.

 Android.view package provides classes that expose basic user interface classes that handle
screen layout and interaction with the user.

View class is the most useful in this package. It represents the basic building block for user
interface components.

 Android.content package contains classes for accessing and publishing data on the device.

BroadcastReceiver is a base class for code that will receive intents sent by sendBroadcast().

ContentProvider is one of the primary building blocks of Android applications, providing
content to applications.

Intent is an abstract description of an operation to be performed.

IntentFilter class is a structured description of Intent values to be matched.

 Design a WLAN Mini Access Point in the Android Platform

53

 Android.widget package contains mostly visual UI elements to use on the application screen.

 Android.util package provides common utility methods such as data/time manipulation,
base64 encoders and decoders, string and number conversion methods, and XML utilities.

Log class is the API for sending log output.

6.2. GUI design through hostapd control interface

6.2.1. Hostapd GUI design overview

After compiling hostapd in the Android system, hostapd can be run and used through its initialized
configuration file. But the disadvantage is that all the operation is done by command line interface. To
increase the user-interaction and manipulate hostapd from upper layer, we supply a friendly Graphical
user interface (GUI) design to allow users to control hostapd from Android application layer (e.g.
start/stop hostapd).

GUI for hostapd provides an interface for sending network information in the form of broadcast, which
is visible for the wireless devices (e.g. laptop, PDA, mobile phone, etc.) to connect with. It is also
necessary to implement an authentication with the wireless devices that have the connection requests. It
will ask them to provide additional security information (e.g. username and password) to authenticate.
The most important role of an AP is to distribute the data among devices.

Hostapd GUI should support all of the interactive status and configuration features of the command line
client. The way to develop an Android application that is capable of talking to hostapd is to directly
talk with hostapd control interface. Hostapd provides a control interface that can be called by external
programs to control the hostapd . In the source code structure, there includes a small library in the form
of C file, i.e. wpa_ctrl.c , that provides the link for external programs. All the library functions are
documented in wpa_ctrl.h , and hostapd_cli. c is an example program that uses the library.

There is an obstacle for designing such a hostapd GUI. As mentioned above, hostapd control interface
is written in C programming language. However, an Android application is developed using Java
language. To solve this problem, we use Android NDK or JNI development tools, which are able to use
the helper functions in C language that hostapd provides.

Specifically, hostapd GUI have the following main features:

- It starts hostapd to send network information (i.e. beacon frame) to other wireless devices.
- It asks for user credentials to authenticate with the requesting device and allow it to connect
- It limits the number of connecting wireless devices
- It adds a wireless device and sets its permission
- It remembers the authenticated devices that are frequently communicated with in order to enable

automatic reconnection in the future
- It shows the currently connecting devices with their IDs (e.g. MAC address)
- It shows the hostapd configuration file and allows users to edit it
- It displays important connection information, such as SSID, network interface, STA MAC

address
- It displays an event history log of messages generated by hostapd
- It displays current status, such as authenticated, associated information, etc.
- It distribute/rely the data among wireless devices
- It stops hostapd

More details are presented in the following subsections.

 Design a WLAN Mini Access Point in the Android Platform

54

6.2.2. Functionality design diagram

In this subsection, first we provide the functionality of hostapd GUI presenting with the hostapd GUI
screen. Then we use the thinking of software engineering to transform the functionalities into design
classes. Various UML diagrams are used to create design model and visualize the architecture of GUI
development.

6.2.2.1. Hostapd GUI screen design

Hostapd GUI divides the functionalities into three important windows: one main window, one setting
window and one adding window. Figure 38 shows our hostapd GUI main window that is composed of
some buttons and text views. It is used for displaying key information of the last connection request,
including connection status, network parameters, connecting device’s parameters and security
information. It can start and stop hostapd (i.e. the functionality of AP) through two control buttons. The
other buttons are used to trigger the events, e.g. to open other windows (i.e. edit conf. button,
setting button and add button) or show the information of currently connecting devices in list views
(i.e. connecting devices button). The log button gives the whole review of the history log of
connections.

Figure 38 Hostapd GUI main window

Figure 39 shows how to set the network for an AP. The user can select a network name (SSID), and
setup a network interface for other wireless devices to connect through. Hostapd GUI also provides
some network security features, e.g. using WPA-PSK (WLAN Protected Access-Pre Shared key) for
authentication and WEP (Wired Equivalent Privacy)/CCMP (IEEE802.11i encryption protocol) for
encryption. The WEP key is customized to authenticate with wireless devices that have connection
requests. The authentication window is shown in Figure 40, asking for the username and password for
the connection. There are three options for the IEEE802.11 mode (IEEE802.11b/g) setting. There is a
checkbox element in the screen that is used to enable auto channel scan, or the user can select the
specified channel for transmitting data (e.g. channel 11). Transmission rate can be set to best by default.
The user can limit the number of wireless devices simultaneously accessing the AP network. The last

 Design a WLAN Mini Access Point in the Android Platform

55

setting uses two radio-buttons to choose the AP network visible for other devices. The bottom line is a
save button that can store all the above settings.

Figure 39 Network setting window

Figure 40 Authentication window

Hostapd GUI adding window is used to add or reserve a new wireless device to connect to the AP
network, as shown in Figure 41 below. It consists of two parts, adding and reservation list. If the
wireless device has the problem with searching for the AP network, the user can manually add this
device by filling the computer name, IP address, and MAC address in the field and mark it enabled. The
click of save button makes this newly-added device shown in the reservation list. The user can freely
edit and delete the wireless devices in the list.

 Design a WLAN Mini Access Point in the Android Platform

56

Figure 41 Hostapd GUI adding window

Figure 42 is a list view showing the number and information of wireless devices currently connecting to
the AP network. The expiration column shows the remaining time for each device when it can be
connected. The list provides the possibility for the user to revoke and reserve the devices easily.

Figure 42 List view of currently connecting with the AP

The functionality of editing hostapd configuration file is present in the subsection 6.3.

6.2.2.2. Hostapd GUI use case design

The diagrams above show the functionalities of hostapd AP in the form of GUI. The aim of hostapd
GUI is to increase the user experience, allowing users to control hostapd functionalities from
application layer. From the perspective of designers and developers, the requirements of users are the
starting point in software engineering. We use various UML diagrams to create our visual models. UML
diagrams represent two different views of a system model: structural and behavioral views. Use case
diagram is used to show the functionality provided by a system in terms of three main elements: actors,
use cases, and relationships among those use cases. Figure 43 shows the primary functions of an AP [9]:
(Distribution system (DS) consisting of a set of basic service sets and integrated local area networks.)

a) Provide DS access for the WDs.

 Design a WLAN Mini Access Point in the Android Platform

57

- Includes WD authentication and extends to notifying the DS.

- Includes relaying data between the WDs and the DS.

• Uses a special data relay function called data filtering.

b) Configure the AP

Figure 43 Use case diagram for the AP

In use case diagram (Figure 44), hostapd GUI instead of AP is viewed as a whole system. The diagram
presents the functionalities of hostapd GUI in terms of actors, new use cases, and the relationship
between them. The wireless network user through hostapd GUI system can start/stop hostapd , which
extends to sending network information to the WDs. The wireless network user can enter adding
window to do the operation for the WDs, including adding and deleting a WD. The user can open a
setting window to set the information for the AP. Specifically the user can limit the number of
simultaneously connecting WDs. The user can edit (view, edit and save) hostapd configuration file
through editing window. In addition, the GUI system has three display functions (e.g. showing AP
information).

 Design a WLAN Mini Access Point in the Android Platform

58

Figure 44 Use case diagram for hostapd GUI

To emphasize the dynamic behavior of the system, we also create a sequence diagram shown in Figure
45. The sequence diagram shows how the objects interact with each other in by transferring a sequence
of messages. And also it indicates the lifespan of each object. Figure 45 describes how external events
communicate with hostapd through hostapd control interface and how GUI reflects those actions to the
wireless network user.

6.2.2.3. Hostapd control interface

In our project we focus on how to control hostapd from external program, thus the control interface of
hostapd is our concerning part. The hostapd provides a control interface that external program can
utilize by rewriting those functions to control the behaviors of hostapd . It is also used to get status
information and external event notifications. Wpa_ctrl.c file is written in C language, which is a small
library providing helper functions to facilitate the use of hostapd control interface. Instead of caring
about the inter-process communication (IPC), the functions defined in wpa_ctrl.h can be used to shield
the details of IPC from external programs. External program can use the library functions to
communicate with hostapd .

Hostapd control interface is used to processes two kind of messages: commands and unsolicited event
messages. Commands mean the request from external program and the response from hostapd .
Unsolicited event messages are sent by hostapd to the control interface without knowing that which
external program will receive the message. The main helper functions defined in wpa_ctrl.c as follows
[8]:

- wpa_ctrl_open(): open a control interface to hostapd .

 Design a WLAN Mini Access Point in the Android Platform

59

- wpa_ctrl_request(): send a command to hostapd .

- wpa_ctrl_attach(): register the control interface connection as a monitor for hostapd events in
order to receive the unsolicited messages.

- wpa_ctrl_pending(): check whether there are pending event messages available to be received
by wpa_ctrl_recv(). It is only used for event messages, i.e. wpa_ctrl_attach() has been used.

- wpa_ctrl_recv(): receive a pending event message from control interface. It is only used for
event messages, i.e. wpa_ctrl_attach() has been used.

- wpa_ctrl_detach(): unregister the control interface connection as a monitor for hostapd
events.

- wpa_ctrl_close(): close a control interface to hostapd .

Usually the external program can open two control interface connections to hostapd by method
wpa_ctrl_open(). One is reserved for sending commands to hostapd , and the other one is for
receiving unsolicited messages from control interface. In other words, wpa_ctrl_attach() method is
only used when the control interface connection registered is used for receiving event messages.

In Figure 45, wireless network user startup the hostapd GUI window and click the start button in the
main window to start hostapd . A hostapd control interface instance is created. Then hostapd sends the
network information (i.e. beacon frame) to the wireless devices. If the device has a request for
interacting with hostapd , it opens a control interface to hostapd using wpa_ctrl_open(). This
message in the figure is marked with a star, which means it can be sent more than once. If the device
wishes to receive the unsolicited messages, it is required to attach to the control interface by calling
wpa_ctrl_attach(). Now it registers as an event monitor for the control interface. Then the device
sends the command to hostapd by wpa_ctrl_request(). Wpa_ctrl_recv() is only used for receiving
the event messages. After a period of transmit time, wpa_ctrl_pending() is used to check whether
there are pending event messages to be received. By far, a completed communication between hostapd
and external events through hostapd control interface is finished. The user can terminate the hostapd
by clicking the stop button. After the external program receives the beacon information, it unregisters
the control interface to hostapd by calling wpa_ctrl_detach(). Then it uses wpa_ctrl_close() to
close the control interface to hostapd .

 Design a WLAN Mini Access Point in the Android Platform

60

Wireless
network user

Hostapd GUI
screen

Hostapd

Hostapd control
interface

External
events

1:Startup
2:Start 3:Create

4:Send beacon

5*:Wpa_ctrl_open()

6:Wpa_ctrl_attach()

7:Wpa_ctrl_request()
7.1:Send request

8:Send response
8.1:Wpa_ctrl_recv()

9:Wpa_ctrl_pending()

10:Terminate
11:Stop 12:Send beacon

13:Wpa_ctrl_detach()

14:Wpa_ctrl_close()
14.1:Inform

14.2:Show status

Figure 45 Sequence diagram for hostapd control interface

In addition, hostapd also defines some commands that can be used together with wpa_ctrl_request()
function sent to hostapd . For example:

- PING: This command can be used to test whether hostapd is replying to the control interface
commands. The expected reply is PING if the connection is open and hostapd is processing
commands.

- MIB: Request a list of MIB variables (dot1x, dot11). The output is a text block with each line in
variable=value format. For example

dot11RSNAEnabled=FALSE

dot11RSNAPreauthenticationEnabled=FALSE

dot11RSNAConfigVersion=1

- STA<addr>: get MIB variables for one station.

- NEW_STA<addr>: add a new station.

- SA_QUERY: send SA Query request.

- WPS_PIN: configure WPS negotiation to act as an integrated WPS Registrar and provision
credentials for WPS Enrollees.

 Design a WLAN Mini Access Point in the Android Platform

61

- WPS_PBC: configure WPS negotiation to act as an integrated WPS Registrar and provision
credentials for WPS Enrollees.

- ALL_STA: get MIB variables for all stations.

- HELP: show this usage help.

- LICENSE: show full hostapd_cli license.

- QUIT: exit hostapd_cli .

- LEVEL: Change debug level.

- INTERFACE: List configured interfaces or select interface, wlan0 , eth0 , etc.

The hostapd control interface (i.e. library functions defined in wpa_ctrl.c) together with its commands
provide the basis for implementing the functionalities in the application layer.

6.2.2.4. Hostapd GUI class design

In software engineering, class diagram plays an important role in describing the architecture of a system
in terms of classes, attributes and the relationship between the classes. All the functionalities analyzed
require to be implemented in the various classes. The class diagram is used both for general conceptual
modeling of the functionalities, and for detailed modeling that can be later translated into programming
code.

In Android, each application is composed of any combination of the four essential components:
activities, services, broadcast receivers, and content providers. More specifically, each class should be
implemented extending those components. However, differently each Java application is directly
constructed of various functional classes. The basic unit of an Android application is an activity. In
Android user interface (UI) design, an activity creates a window to place UI, which contains various
widgets such as buttons, text boxes, etc. Figure 46 shows a class diagram for hostapd GUI from the
perspective of Android UI application.

 Design a WLAN Mini Access Point in the Android Platform

62

Figure 46 Class diagram for hostapd GUI

There are four windows: main window includes the other three ones. Each of them is an activity used to
present UI elements. All the elements are extending from the base class view, which is building block
for UI elements. Setting window and adding window have some common elements, e.g. checkbox ,
textView , and editText . Additionally, both windows’ elements are ordered in the tableLayout . And
different buttons are used to operate their respective windows. Main window itself is structured of
textView and button, which are placed in absoluteLayout . It also incorporates two display functions,
which are descending from ListView class. The following tables (Table 2-4) show the UI elements and
their functions implemented in each window.

Setting window as Table 2

Element Function

TableLayout Show the content of setting window in the format of table

TableRow Define a row, used together with TableLayout

TextView Show the title and required setting parameters of the window

EditText Show the text box in which the user can edit those parameters

CheckBox Enable or disable the auto channel scan

RadioButton Set the AP network visible or invisible

SettingSaveButton Save all the settings

Table 2 Elements and functions in setting window

 Design a WLAN Mini Access Point in the Android Platform

63

Adding window as Table 3

Element Function

TableLayout Show the content of adding window in the format of table

TableRow Define a row, used together with TableLayout

TextView Show the title and the parameters required to add a new device

EditText Show the text box in which the user can edit those parameters

CheckBox Enable or disable the newly added device

EditButton Save or clear the adding action of a new device

Table 3 Elements and functions in adding window

Main window as Table 4

Element Function

AbsoluteLayout Show the elements of main window in any position

TextView Show the title and display info about the last association

CtrlButton Start or stop hostapd

ConnectingWDList Show the list of WDs currently connecting with AP network

LogList Show the history log list of connections

EditConfWindow View, edit and save the configuration file of hostapd

AddingWindow Add or delete a new wireless device associated with hostapd and add it into
reservation lists

SettingWindow Set the parameters for the connection, both AP network and WD

Table 4 Elements and functions in main window

6.2.3. Implementation approach

To implement the Android application (i.e. hostapd GUI), the underlying functions of hostapd control
interface written in C language are required. The user takes advantage of GUI screen to talk to hostapd
located in the Android system through hostapd control interface. In other words, the implementation
requires a bridge providing a transformation between Java language and C language. According to the
knowledge so far, Android NDK and JNI are feasible solutions for this.

Android NDK

Google releases Android Native Development Kit (NDK) after Android SDK. Developers rely on
Android SDK that is based on Java language to develop their applications. However, Android NDK
allows them to build their applications in native code language, such as C/C++. This makes it possible
to reuse some existing code without rewriting all the code in Java during application development.
Android NDK provides a set of tools, by which C/C++ native libraries are generated. Besides, it allows
embedding the generated C/C++ libraries into Android application package files (.apk) that can be

 Design a WLAN Mini Access Point in the Android Platform

64

deployed on Android devices. And also there integrates a cross compiler in Android NDK, which
eliminates the dependency among various platforms. The developer can achieve the cross compiling by
modifying the build files included in the Android system. However, there also exists the disadvantage of
Android NDK. First, Android NDK is designed for use only in conjunction with Android SDK, because
Android application runs in the dalvik virtual machine [12]. Second, it can increase the complexity of an
application. Third, it relies on the release version of the platform, that is, the native system libraries that
are to be used are not stable and they may change in the future platform version [12].

JNI

The Java Native Interface (JNI) is a Sun-developed interactive technology that is designed to integrate
Java code with the code written in other languages, e.g. C/C++. It allows Java program running in a
JVM to call the native applications and libraries that are specific to an operating system platform, in
order to utilize the system functionality. In the same way, JNI also implements the Java objects to be
called by the native method, so that the advantage of Java platform can be maintained.

JNI is a benefit to handle the situation when the standard Java class library does not support the
platform-dependent features required by the user-written application. And also it is adapted to the case
when there is an existing application or library written in other languages, and the user wish to make it
accessible to Java applications.

However, the drawback of using JNI should not be ignored. When an application uses the JNI, it also
risks losing two benefits of the Java platform. First, the Java application depending on JNI can no longer
be easily deployed to multiple host environments. Even through the part of the application written in
Java language is portable to multiple host environments. The reason for that is the part of the application
written in native language requires being recompiled [10]. Second, the Java language is type-safe and
secure, while native languages such as C/C++ are not. Consequently, extra care must be paid when
using JNI to develop an application. Therefore, the developer should construct the application in order
that native methods are called in classes as few as possible [10].

JNI developers have provided a set of specific rules to establish the connection between Java code and
native methods. From the perspective of developers, a JNI program written in C/C++ is needed to
directly manipulate the target native method, and Java application through JVM loading and calling JNI
program indirectly calls that native method. Figure 47 shows the call process. When the JVM invokes
the native function, it passes a JNI interface pointer (JNIEnv). JNIEnv is passed as argument for each
native function mapped to Java method, which allows Java to interact with the native function through
JNI environment.

Figure 47 JNI call process

The writing steps of using JNI shown in Figure 48 are as follows (take HelloWorld for an example):

1) Create a Java class that declares the native method (HelloWorld.Java)

 Design a WLAN Mini Access Point in the Android Platform

65

public class HelloWorld {
 private native void print();
 public static void main(String[] args) {
 new HelloWorld().print();
 }
 static {
 System.loadLibrary("HelloWorld");
 }
}

2) Use Javac to compile the source file, resulting in the class file (HelloWorld.class)

3) Use Javah to generate a C header file (HelloWorld.h)

4) Write the C implementation of the native method (HelloWorld.c)

#include <jni.h>
#include <stdio.h>
#include "HelloWorld.h"
JNIEXPORT void JNICALL Java_HelloWorld_print(JNIEnv *env, jobject obj)
{

printf("Hello World!\n");
return;

}

5) Compile C code and generate native library (HelloWorld.dll or libHelloWorld.so)

6) Run the HelloWorld program using the Java runtime interpreter. Both the class files
(HelloWorld.class) and the native library (HelloWorld.dll or libHelloWorld.so) are loaded at
runtime.

Figure 48 Steps of writing and running HelloWorld program [10]

 Design a WLAN Mini Access Point in the Android Platform

66

The Android implementation follows the general rules specified in JNI, but there exists some difference:
the C implementation of the native method requires an Android makefile (i.e. Android.mk) to be built as
a shared library (.so file). This file will be called by a Java class with a declaration of the native method
through loading the library. And also the Java class file needs another Android.mk to build as an
Android package (i.e. .apk) file to be installed in the Android emulator. (.apk file is Android executable
program)

As mentioned above, there are two options to implement such an Android application, which requires
calling the native methods written in C language. But both of them have the disadvantages which
increase the complexity of application development and decrease the benefits of Java platform. Hence,
the developer should architect the application before utilizing Android NDK or JNI in order to keep the
maximum purity of Java/Android application.

6.3. UI design through hostapd configuration file

This part presents the second alternative to implement user interface for hostapd . We first state the
concept of design, and then provide the process of implementation in subsection 6.3.2 and 6.3.3. At last,
we compare the advantages and disadvantages between two alternatives.

6.3.1. The concept of design

Subsection 6.2 provides an alternative to implement user interface for hostapd . We design an Android
application called hostapd GUI, which encapsulates the functions provided in hostpad control interface
into various UI elements (text box, button, label , etc) and present the friendly UI to the user. In this
subsection, we propose a second approach to achieve the task of user interface for hostapd .

For the sake of simplicity, we consider to run hostapd as a whole instead of directly talking to hostapd
control interface. In our previous work, we compile and run hostapd as an executable application in the
Android system. Hence it is possible to develop an Android application with the functionality that it can
run another application program. Due to that the Android application program can be run using the
hostapd command. Therefore, our efforts focus on writing an Android application with the capability of
running a command.

In order to increase the communication between user and hostapd , i.e. allowing the user to select
various functionalities of hostapd , we consider that it is a feasible strategy to let the user edit hostapd
configuration file. Meanwhile, this configuration file is required and will be read when starting the
hostapd . This file describes the functionalities that need to be loaded together with hostapd and it is
written in the form of text. Hence the basic idea of our approach is to write an application through which
the user can customize the configuration file and save it for running hostapd .

In summary, the Android application to be created should achieve two goals:

- The capability to run a command in order to run an application program (i.e. hostapd).
- The capabilities to edit a text file so as to customize the configuration file, including view, edit

and save basic functions.

We assume that every time the user changes the content of configuration file, which results in restarting
the hostapd to implement the new functions. The path of configuration file stored will be included in
the part that runs hostapd .

The basis of our implementation is the Application Program Interfaces (APIs) provided in Android.
More specifically, two classes (Java.lang.Runtime and .Process) can be used for running hostapd
command and communicating with it. In addition, the operations of reading and writing files in Android
will be addressed in details in subsection 6.3.3.

 Design a WLAN Mini Access Point in the Android Platform

67

6.3.2. Write an application to run hostapd

According to the APIs provided by the Android system, packet Java.lang provides core classes of the
Android environment. It includes two classes that can be used to realize the function of running
application: Process and Runtime classes. It has an InterruptedException which is thrown when a
waiting thread is activated before the condition it was waiting for has been satisfied [13].

Class Process represents an external process. It enables writing to, reading from, destroying, and waiting
for the external process, as well as querying its exit value [13].

It provides some public methods that are included in our implementation shown in Table 5. (Note: Table
5-11 are listed in Appendix A, which are cited from Android APIs)

Class Runtime allows Java applications to interface with the environment in which they are
running. Applications cannot create an instance of this class, but they can get a singleton instance by
invoking getRuntime() [13].

It provides some public methods that are included in our implementation shown in Table 6.

In addition, we also utilize some classes defined in package Java.io which provide direct access to the
file system. They are InputStream, InputStreamReader and BufferedReader . The definitions of them
in [13] are the following:

- Class InputStream is the base class for all the input streams. An input stream is a way of reading
data from a source in a byte-wise manner.

- Class InputStreamReader is a class for converting a byte stream into a character stream.
- Class BufferedReader wraps an class Reader and increase the function of buffering the input.

The following presents the critical part of our application of running a command:

public void execCommand(String command) throws IOEx ception {

 Runtime runtime = Runtime.getRuntime();

 Process proc = runtime.exec(command);

 InputStream inputstream = proc.getInputStream();

 InputStreamReader inputstreamreader = new InputStr eamReader(inputstream);

 BufferedReader bufferedreader = new BufferedReader (inputstreamreader);

 …

}

The class Java.lang.Runtime holds a static method getRuntime(), which is the only way to retrieve a
reference to the object Runtime. Then the external program can be run by invoking the exec() method
of Runtime class. By far, we have already started the command we pass as the argument of our
self-defined method execCommand(). Actually, we start a separate child process (i.e. external program)
without the control of parent process. As a result, the output of this child process is not visible. Hence,
an input stream (the output of external program is viewed as the input for Java application) is required to
obtain the output of the child process after it is run by the command.

Another part of our application shows below the importance of using method waitFor(). To see the
value that the external process returns, we use the exitValue() method of the Process class. But the
problem arises when the external process has not yet completed. The exitValue() method will throw
an IllegalThreadStateException . The reason is that the exitValue() method is non-blocking.

 Design a WLAN Mini Access Point in the Android Platform

68

Hence, the waitFor() method is required, which will block waiting until the external process
completes. To avoid only using waitFor() method to wait an external process that may never complete,
we use a if-condition to determine whether the current process should wait or not.

try {
 if (proc.waitFor() != 0) {
 System.err.println("exit value = " + proc.exitVal ue());
 }
} catch (InterruptedException e) {
 System.err.println(e);
}

In our application, we use execCommand("/system/bin/ps"); to test the running result. Figure 49
shows the result for running a command in the emulator. Therefore, this can be applied to the general
scenario that we can use this application to execute the hostapd command to run hostapd application.

Figure 49 Result of running a command

6.3.3. Write an application to edit hostapd configuration file

Due to the security-model of Android, we are not able to use the standard Java file-access method. For
example, FileWriter f = new FileWriter("impossible.txt") ; Each *.apk file installed on the
emulator or device gets its own user-id from the Android system, which is the key to the sandbox of the
application. This sandbox is used to protect the application and its files from other applications that may
manipulate the files in a bad manner. Hence, every file that is created is also signed with the user-id of
the application. In addition, the developer can set flags (MODE_WORLD_READABLE or
MODE_WORLD_WRITEABLE) to make the file accessible (read or write) for other applications with other
user-ids. And the file is written to the following folder on the emulator:
data/data/project_package_name/files/*.txt . However, the standard Java file-access method can
still be applied to the case when a file is written to the SD-card. For example, FileWriter f = new

FileWriter("/sdcard/download/possible.txt") ; Android APIs provide various file-access methods
that can be applied to our application. The details of feasible methods are presented in the following.

The design steps of our application are as follows:

1. Read the entire asset (i.e. where the file is included) into a local byte buffer.

 Design a WLAN Mini Access Point in the Android Platform

69

2. Convert the byte buffer into a string type.
3. Load the string into the EditText view.
4. Set a button to capture the event.
5. Edit the file in the EditText view.
6. After modification get text to string.
7. Write a file to the disk.
8. Write the string to the file.
9. Ensure that everything is really written out and close.

Referring to the Android APIs, we use getAssets().open(file.txt) to retrieve the file that is put or
stored in assets/ directory. With respect to this method, see the description in Table 6.

Class InputStream provides some public methods to accomplish step one shown in Table 8.

When loading the string into the EditText view, we add a scroller function to view the whole content of
the file. Method setHorizontallyScrolling() serves as a solution. See the description in Table 9.

We add a button to trigger the event when it is clicked. See the description in Table 10.

At step 7 with respect to the way of opening a file, we use the openFileOutput() method that the class
Context provides, to protect the file from other applications due to the security reason. See the
description in Table 11. We choose MODE_WORLD_READABLE flag allowing others to read the file,
i.e.FileOutputStream fOut = openFileOutput("hostapd_con f.txt", MODE_WORLD_READABLE) .
Additionally, we use another two classes provided in the package Java.io FileOutputStream and
OutputStreamWriter .

- FileOutputStream , A specialized OutputStream that writes to a file in the file system. All write
requests made by calling methods in this class are directly forwarded to the equivalent function of
the underlying operating system [13].

- OutputStreamWriter , A class for turning a character stream into a byte stream. Data written to
the target input stream is converted into bytes by either a default or a provided character converter
[13]. Some methods are available for us, such as write() , close() , and flush() (i.e. used to
ensure everything is really written out).

In our application, the user is able to view, edit and save the changed hostapd configuration file. Figure
50 shows the running result on the emulator. The user can easily select the customized functions
provided in configuration file by commenting or uncommenting operations.

Figure 50 Running result for editing conf file

 Design a WLAN Mini Access Point in the Android Platform

70

We use the pull and push functions embedded in the DDMS-Perspective in Eclipse to verify the
feasibility of our application. After modification of the configuration file, we pull the file from the
device and get the customized file.

6.3.4. Comparison between two designs

In chapter 6, we introduce two different designs of user interface for hostapd . One is to encapsulate the
functions provided in hostapd control interface into functional UI elements, and use Android UI design
methods to design a hostapd GUI for the user. The other way is to view the hostapd as an executable
application, and write an Android application to run it. The user experience is accomplished by allowing
them to edit the hostapd configuration file. Both solutions have advantages and disadvantages.
Compared with the second option, the first one has a better expansibility. Due to its realizing some
hostapd control interface commands in the method wpa_ctrl_request() , it can be extended to provide
more functionalities of controlling hostapd . However, it is not possible in the latter solution. Generally,
there is a balance between complexity and functionality. The first alternative supplies more
functionality, which increases the complexity of implementation. On the contrary, the second one is
easy to actualize but with less functionality.

 Design a WLAN Mini Access Point in the Android Platform

71

7. Contributions
The main contributions of this thesis work are three-fold:

Firstly, we have implemented the AP functionality in the Android platform. This function greatly
increases the flexibility of network connectivity in real life specifically in the following two aspects:
providing access to the Internet and facilitating local WLAN connection. In the first case, an AP mobile
phone can act as the Internet gateway for other devices, as long as it is within the coverage of a cellular
network. For example in areas with poor wireless network availability or where lack of wired network,
the wireless devices connecting with the AP mobile phone can access to the Internet through cellular
network, e.g. GPRS, 3G, LTE etc. In the second case, the AP can interconnect with other WLAN
supported devices within the same local area, so that they can exchange data between each other and
enjoy local services. A good example can be that a laptop uses a printer nearby through the mobile
phone AP.

Secondly, our thesis provides a systematic user manual on the Android development documentation,
which is valuable for both individual developers and also the Android community as a whole. In this
thesis, we well document the process of the whole development, which can give others good guidelines
and advice. At the same time, our work will be freely available to Ericsson, which we hope will benefit
them as well.

Thirdly, the results achieved from this thesis work may trigger potential business opportunities, since
they provide the benefit of reducing the cost on purchasing and deploying extra APs and may generate
additional revenues for operators when more devices are connected to the Internet.

In addition to the above major contributions, there are also a few minor contributions. Through this
work, we are willing to share our experience on how to develop an Android application program, which
is different from java applications, with other developers. Furthermore, we discovered a bug in hostapd
v0.6.10, which is the incompatibility between hostapd v0610 and the ath9k driver. We suggest using
the hostapd version 0.6.9 as we have succeeded in having it work together with the ath9k driver.

 Design a WLAN Mini Access Point in the Android Platform

72

8. Discussions
In this chapter, we provide discussions on lessons learnt through this thesis work, corresponding to the
four particular problems mentioned in subsection 1.2. The purpose of including this chapter is to share
our experience with other developers who may work in this direction.

8.1. How to run hostapd in the Linux system

This part provides the basis and functions as a starting point for our following work on Android. The
crucial work in this part is to make all the elements match with each other, including the WLAN
chip/driver, hostapd and its software dependencies. There is some relevant information of this part
available on the Internet. However, due to the variety of drivers and the requirements of software
versions, we have struggled many times to get the finally satisfied results.

Initially we selected the Madwifi driver to work together with hostapd in AP mode. But when we tried
to compile hostapd , we discovered the absence of libnl that is one of the necessary software utilities.
Later on, we found the other software element required by hostapd is openssl . Other than building and
installing the openssl , we need to add its dynamic library files into the hostapd Makefile, otherwise
errors occur with the hostapd link process.

In order to test hostapd ’s AP function, we used wlanconfig wireless tool to configure the network
interfaces (by default the wired and wireless interfaces are ath0 and wifi0). We met the problem that
those two interfaces disappear in the interfaces list, instead of two new interfaces eth0 and wlan0 show
up. Thus we suspect there might exist another driver in the system that is also running. To verify our
suspicion, we uninstalled the Madwifi driver, while the wireless network was still available. As a result,
we need to solve the conflict problem resulting from two running drivers, in order to control the driver
we need. We found the other driver ath5k that affects our Madwifi, and attempted to disable it. Owing
to the fact that the driver is embedded in the Linux system kernel, it is not easy to remove it without
changing kernel configuration. We have to change the solution using ath5k instead because it also
supports AP mode.

The limited time does not allow us to redo everything from the scratch, including compiling libnl ,
openssl and hostapd . Thus we use the compiled packages of them and run hostapd working in our
expected way, i.e. the PC with hostapd installed can provide AP network. This part of work implicates
the possible phenomena later occurring in the Android system. The dependencies that hostapd requires
are portable to the Android platform. It also provides other developers who are aiming at the same goal
a good reference.

8.2. How to understand the Android building system

The main outcome of this part is to know the build discrepancy between Linux and Android. The
Android building system is a customized system. Every function such as hostapd , libnl , etc can be
viewed as an external package to the Android platform. Developers can assign which packages are to be
built and which are not. The goal of building is to generate the executable files of a program from the
program’s source files, in order to later install the program. In addition, each of external packages needs
a specific makefile to tell the building system how to build a particular application. We have to write
runnable makefiles ourselves for hostapd and libnl compiling. Recompiling can be carried out in two
ways: one is to stand at the top of Android directory and specify the package name that requires
compiling; the other is to compile in the directory where the package is located. There is no difference
in efficiency between them.

 Design a WLAN Mini Access Point in the Android Platform

73

8.3. How to port hostapd from Linux to the Android system

At the porting phase, according to the experiment in Linux we need to recompile hostapd and libnl .
Openssl is included in Android source code structure, so what we need is to inform the path of openssl
to hostapd . We choose ath5k driver that is provided in the Android system kernel. Thus we
downloaded the Android kernel and compiled it to incorporate ath5k driver.

It turned out to be a tricky part when we compiled hostapd . It showed strange errors that we referred to
some undefined variables. We have not found any better solution but to include the absolute path of
some header files in the error files. We ended up with compiling the Android system into an image file
suffix with .img. Additionally, we design to store this image Android system into a pluggable flash card,
so as to facilitate various tests on the system that is independent from the machine.

Initially, the WLAN card we use is a PCI card that is limited for desktop computer. To deploy the card
to laptop and carry out tests without place restriction, we have to change to a PCMCIA card. We were
stuck in the process of running hostapd , because we got errors showing that the hostapd could not find
the ath5k driver. We used hostapd command with option to pull out the error log, but without any
finding. There is almost no relevant information that can be referred by far.

The solution we retrieved is to consult to the previous experience in Linux circumstance. The reason
might be the presence of another driver affecting our driver’s behavior. We checked the installed
module lists and found the absence of ath5k driver, meanwhile we discovered a driver called iwlagn is
running. That is where the problem is located. We incorrectly assume the existence of ath5k because it
is included in Android kernel. To fix this two-driver problem, we need to disable one of them leaving
the other that is AP compatible. To avoid the complexity, instead of using the extra WLAN card, our
final solution is to use the card coming with the laptop itself and the ath9k driver that supports for the
card. Ath9k is newer than ath5k , but the driver requirements of hostapd should be enough provided in
ath5k . The reason for replacing ath5k with ath9k is not clear yet, which could be an open issue for the
further work.

Our results confirm that an ordinary client installed with the Android system is able to provide AP
function. We do not deploy hostapd on the real Android phone in our project. However, the
deployment on the platform does not affect the result of AP function we have achieved. There is
possibility to adjust the configuration for hardware to satisfy the mobile phone based on our experience.
It is important to note also that there can be a different solution to implement such a function. The
function is tested by using two different clients, a laptop and a WLAN supported mobile phone to
associate with the AP network.

8.4. How to control hostapd from the application layer

To enhance the user experience, we also include the user interface part in our thesis. There are two
options in front of us when interacting with hostapd . One alternative is to make use of the control
interface implemented in hostapd so as to control it. In this case, we consult to wpa_supplicant which
has the common control interface library as hostapd , but lacks support of working in a master mode.
We encapsulate the basic library functions to better provide the functionalities we design. We have
designed several use cases. They are designed based on what functionality an AP could support to do
currently, and combined with what special command the hostapd control interface could provide.

The other alternative is to view hostapd as an application program to run it instead of dealing with its
control interface to talk to it. Meanwhile, the implementation of functionality is done through selecting
different function entries in the hostapd configuration file. In this case, we have two hostapd
configuration files. One is for initially running hostapd , in which we set only the necessary information.
The other one is for building hostapd later, in which user can edit, choose the required functionality and

 Design a WLAN Mini Access Point in the Android Platform

74

generate his/her customized build file. This solution is smart, which breaks the routine of user interface
design. And it is also flexible, because user can decide the minimum or maximum functionality.

Those two options above are both the representative of user interface implementation. As common, they
are both Android applications and provide a kind of graphic user interface to some degree. Besides, they
are both based on the concept of Android view design and utilize the methods resided. Compared with
the latter one, the former has some advantages. First, the user interface has more interactive elements,
such as button, checkbox, etc. and various layouts with colorful text views. Second, the functionalities
are divided into several windows to present. It seems that it is possible to extend the functionalities that
are provided currently. However, it is limited by the commands that can be provided by the control
interface. This could be another open issue for the future.

As we considered the implementation complexity and the current need for controlling hostapd from the
graphic user interface, we chose to implement the user interface in the simpler way which was the
second solution. But we also gave the detailed design of the first solution, including the use case
diagram, class diagram and class description. With our implementation we provide all possibilities for
the user to control the AP (hostapd), just like what they can achieve on a normal Windows machine.

 Design a WLAN Mini Access Point in the Android Platform

75

9. Conclusions and future work
This thesis project is initiated based on the idea of whether an ordinary mobile phone can function as
AP, as an enhancement to the function of a station’s role in current WLANs. Our goal is to implement
that an ordinary station can function as an AP as a replacement of a separate AP device in a wireless
network. Meanwhile, it can provide networking services for other devices within the same group such as
desktop, laptop, mobile phone, PDA, or other facilities that support WLAN network. This objective
should be achieved under the Android system environment.

Given the fact that there are few relevant activities within this topic, the significance of our result is that
it provides an innovative contribution to the development of the Android system. Our work covers from
the underlying operating system up to the upper layer application, and the development task is
performed from the scratch. It requires the knowledge from both hardware design and software design.

We start from Linux circumstance to make hostapd run with a WLAN card that supports AP function.
This is a good starting point since Android is based on Linux, and combined Linux system kernel with
Android unique dalvik virtual machine. We stress the importance of deep understanding to the Android
building system, due to its vital role in porting problem. In our work, we disclose the difference between
Android and Linux building system in terms of the build process, how to add an external package, etc.
We succeed in porting hostapd to the Android system and implement the AP functionality in an
ordinary station role. In addition, we provide user interface for hostapd application so that user can
control hostapd service through the interface. All in all, the goal of this Master thesis project has been
fulfilled with the result that our Android laptop can be used as an AP.

Our results confirm that it is feasible to make an ordinary wireless-support device provide AP
functionality. It is important to note that this work can be extended to the deployment in Android phone.
Based on our experience, due to the difference in hardware requirements between phone and computer,
different configuration of processor and WLAN card for example are necessary. Furthermore, our result
constitutes a positive and encouraging step as part of the efforts in this direction for the Android
development team at Ericsson.

As possible future work, firstly we can implement what we have designed for the other alternative of
user interface in coding. Secondly, our AP functionality could be provided more tests through the bridge
between the wired and wireless network. Specifically, the user experience of other devices that connect
with the AP should be included. As we have mentioned earlier, it is possible to expand the functionality
of user interface of hostapd ; besides, how to migrate this AP functionality to Android phone will also a
further step towards commercial success. Furthermore, other than an AP hostapd is also an
authenticator, whose security functions included can be implemented as well. Last but not least, the
WLAN direct standard currently is becoming a hotspot, which generates a keen interest of WLAN
developers. It aims at providing wireless devices peer-to-peer connectivity. Therefore, future work in
the direction of WLAN P2P is worthwhile.

 Design a WLAN Mini Access Point in the Android Platform

76

References
[1] Hostapd reference, http://hostap.epitest.fi/wpa_supplicant/devel/

[2] Hostapd reference, http://hostap.epitest.fi/wpa_supplicant/devel/hostapd _ctrl_iface_page.html

[3] Android git repository, git://Android.git.kernel.org/platform/manifest.git

[4] Android source code, http://source.Android.com/download

[5] bridge-utils source code, git://git.kernel.org/pub/scm/linux/kernel/git/shemminger/bridge-utils

[6] Developer reference, http://developer.Android.com/intl/zh-CN/guide/topics/fundamentals.html

[7] Android book, available from http://andbook.anddev.org/

[8] Developers' documentation, http://hostap.epitest.fi/wpa_supplicant/devel/wpa__ctrl_8h.html

[9] IEEE 802.11 WP, “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications”, IEEE Standard for Information technology-Telecommunications and
information exchange between systems-Local and metropolitan area networks-Specific requirements,
Jun 2007

[10] The Java Native Interface-Programmer’s Guide and Specification, release 1999,
http://java.sun.com/docs/books/jni/

[11] Android intents, http://developer.Android.com/intl/zh-CN/guide/topics/intents/intents-filters.html

[12] Android NDK, http://developer.Android.com/intl/zh-CN/sdk/ndk/1.5_r1/index.html

[13] Android APIs, http://developer.Android.com/intl/zh-CN/reference/packages.html

[14] Android user interface, http://developer.Android.com/intl/zh-CN/guide/topics/ui/index.html

[15] Linux kernel, git://git.android-x86.org/kernel/common.git

 Design a WLAN Mini Access Point in the Android Platform

77

Appendix A

 Method

type

Method name Method description

abstract
InputStream getInputStream()

Returns an input stream that is connected to the
standard output stream (stdout) of the native
process represented by this object.

abstract int

exitValue ()

Returns the exit value of the native process
represented by this object. It is available only when
the native process has terminated.

abstract int waitFor()
Causes the calling thread to wait for the native
process associated with this object to finish
executing.

Table 5 Methods and method description in class Process

Method type Method name Method description

Process Exec(String prog)

Executes the specified program in a separate
native process. The new process inherits the
environment of the caller.
prog: the name of the program to execute

static Runtime getRuntime() Returns the single Runtime instance.

Table 6 Methods and method description in class Runtime

 Package Class Method

Name Android.content.res resources
final AssetManager
getAssets()

Description

Class for accessing an application's resources. This
sits on top of the asset manager of the application
(accessible through getAssets()) and provides a
higher-level API for getting typed data from the
assets.

Retrieve underlying
AssetManager
storage for these
resources.

Table 7 Description of method getAssets()

 Design a WLAN Mini Access Point in the Android Platform

78

Method

type
Method name Method description

int available()
Returns the number of bytes that are available before this stream will block.
This implementation always returns 0. Subclasses should override and
indicate the correct number of bytes available.

void close()
Closes this stream. Concrete implementations of this class should free any
resources during close.

int read(byte[]b)
Reads bytes from this stream and stores them in the byte array b.

b: the byte array in which to store the bytes read.

Table 8 Methods and method description in class InputStream

 Package Class Method Related XML attributes

Name Android.widget textview Void setHorizontallyScrolling(boolean whether) Android:scrollHorizontally

Description

 Sets whether the text should be allowed to be
wider than the View is. If false, it will be
wrapped to the width of the View.

Whether the text is allowed
to be wider than the view
(and therefore can be
scrolled horizontally). Must
be a boolean value, either
"true" or "false".

Table 9 Description of method setHorizontallyScrolling()

 Package Class Method

Name Android.view view void setOnClickListener (View.OnClickListener)

Description
 Register a callback to be invoked when this view is clicked. If

this view is not clickable, it becomes clickable.

Table 10 Description of method setOnClickListener()

 Design a WLAN Mini Access Point in the Android Platform

79

Name Description

Android.content (package)

Context
(class)

Parent class for Activity. It allows access to application-specific resources and
classes, as well as up-calls for application-level operations such as launching
activities, broadcasting and receiving intents, etc.

abstract FileOutputStream
openFileOutput(String
name, int mode)
(methods)

Open a private file associated with this Context's application package for
writing (openFileInput for reading). Creates the file if it doesn't already exist

notes
mode: Operating mode. Use 0 or MODE_PRIVATE for the default operation,
MODE_APPEND to append to an existing file, MODE_WORLD_READABLE
and MODE_WORLD_WRITEABLE to control permissions.

Table 11 Description of method openFileOutput()

 Design a WLAN Mini Access Point in the Android Platform

80

Appendix B Android.mk of hostapd

LOCAL_PATH := $(call my-dir)
######## defind BOARD_ HOSTAPD_DRIVER is defined
in ../eclair-x86/vendor/htc/dream-open/BoardConfig. mk do change this
HOSTAPD_BUILD := true
ifneq ($(TARGET_SIMULATOR),true)
 ifneq ($(BOARD_ HOSTAPD_DRIVER),)
 HOSTAPD_BUILD := true
 CONFIG_DRIVER_$(BOARD_ HOSTAPD_DRIVER) = y
 endif
endif

ifndef L_CFLAGS
L_CFLAGS = -MMD -O2 -Wall -g
endif

define HOSTAPD_DUMP_STATE to include SIGUSR1 handler for dumping state to
a file (undefine it, if you want to save in binar y size)
L_CFLAGS += -D HOSTAPD_DUMP_STATE

L_CFLAGS += -Isrc
L_CFLAGS += -Isrc/crypto
L_CFLAGS += -Isrc/utils
L_CFLAGS += -Isrc/common

Uncomment following line and set the path to your kernel tree include
directory if your C library does not include all header files.
CFLAGS += -DUSE_KERNEL_HEADERS -I/usr/src/linux/i nclude

include /root/Documents/eclair-x86/external/ hostapd / hostapd /.config

To force sizeof(enum) = 4
ifeq ($(TARGET_ARCH),arm)
L_CFLAGS += -mabi=aapcs-linux
endif

INCLUDES = /root/Documents/eclair-x86/external/ hostapd /src/utils
/root/Documents/eclair-x86/external/ hostapd /src/common
/root/Documents/eclair-x86/external/ hostapd /src/drivers
/root/Documents/eclair-x86/external/ hostapd /src/crypto
/root/Documents/eclair-x86/external/ hostapd /src/eap_common
/root/Documents/eclair-x86/external/ hostapd /src/eapol_supp
/root/Documents/eclair-x86/external/ hostapd /src/eap_peer
/root/Documents/eclair-x86/external/ hostapd /src/eap_server
/root/Documents/eclair-x86/external/ hostapd /src/hlr_auc_gw
/root/Documents/eclair-x86/external/openssl/include
/root/Documents/eclair-x86/frameworks/base/cmds/key store

ifdef CONFIG_DRIVER_NL80211
INCLUDES += /root/Documents/eclair-x86/external/lib nl/include
INCLUDES += /root/Documents/eclair-x86/external/lib nl/include/linux
INCLUDES += /root/Documents/eclair-x86/external/lib nl/include/linux/netfilter
INCLUDES += /root/Documents/eclair-x86/external/lib nl/include/netlink
INCLUDES += /root/Documents/eclair-x86/external/lib nl/include/netlink/fib_lookup
INCLUDES += /root/Documents/eclair-x86/external/lib nl/include/netlink/genl
INCLUDES += /root/Documents/eclair-x86/external/lib nl/include/netlink/netfilter
INCLUDES += /root/Documents/eclair-x86/external/lib nl/include/netlink/route
INCLUDES += /root/Documents/eclair-x86/external/lib nl/include/netlink/route/cls
INCLUDES += /root/Documents/eclair-x86/external/lib nl/include/netlink/route/link
INCLUDES += /root/Documents/eclair-x86/external/lib nl/include/netlink/route/sch

 Design a WLAN Mini Access Point in the Android Platform

81

LIBS += -L/root/Documents/eclair-x86/external/libnl /lib
endif

ifndef CONFIG_OS
ifdef CONFIG_NATIVE_WINDOWS
CONFIG_OS=win32
else
CONFIG_OS=unix
endif
endif

ifeq ($(CONFIG_OS), internal)
L_CFLAGS += -DOS_NO_C_LIB_DEFINES
endif

ifdef CONFIG_NATIVE_WINDOWS
L_CFLAGS += -DCONFIG_NATIVE_WINDOWS
LIBS += -lws2_32
endif

OBJS = hostapd / hostapd .c hostapd /ieee802_1x.c hostapd /eapol_sm.c \
 hostapd /ieee802_11.c hostapd /config.c hostapd /ieee802_11_auth.c
hostapd /accounting.c \
 hostapd /sta_info.c hostapd /wpa.c hostapd /ctrl_iface.c \
 hostapd /drivers.c hostapd /preauth.c hostapd /pmksa_cache.c hostapd /beacon.c \
 hostapd /hw_features.c hostapd /wme.c hostapd /ap_list.c \
 hostapd /mlme.c hostapd /vlan_init.c hostapd /wpa_auth_ie.c

OBJS += src/utils/eloop.c
OBJS += src/utils/common.c
OBJS += src/utils/wpa_debug.c
OBJS += src/utils/wpabuf.c
OBJS += src/utils/os_$(CONFIG_OS).c
OBJS += src/utils/ip_addr.c

OBJS += src/common/ieee802_11_common.c
OBJS += src/common/wpa_common.c

OBJS += src/radius/radius.c
OBJS += src/radius/radius_client.c

OBJS += src/crypto/md5.c
OBJS += src/crypto/rc4.c
OBJS += src/crypto/md4.c
OBJS += src/crypto/sha1.c
OBJS += src/crypto/des.c
OBJS += src/crypto/aes_wrap.c
OBJS += src/crypto/aes.c

HOBJS=src/hlr_auc_gw/hlr_auc_gw.c src/utils/common. c src/utils/wpa_debug.c
src/utils/os_$(CONFIG_OS).c src/hlr_auc_gw/milenage .c src/crypto/aes_wrap.c
src/crypto/aes.c

L_CFLAGS += -DCONFIG_CTRL_IFACE -DCONFIG_CTRL_IFACE _UNIX

ifdef CONFIG_IAPP
L_CFLAGS += -DCONFIG_IAPP
OBJS += hostapd /iapp.c
endif

ifdef CONFIG_RSN_PREAUTH
L_CFLAGS += -DCONFIG_RSN_PREAUTH
CONFIG_L2_PACKET=y
endif

ifdef CONFIG_PEERKEY
L_CFLAGS += -DCONFIG_PEERKEY
OBJS += hostapd /peerkey.c
endif

 Design a WLAN Mini Access Point in the Android Platform

82

ifdef CONFIG_IEEE 80211W
L_CFLAGS += -DCONFIG_IEEE 80211W
NEED_SHA256=y
endif

ifdef CONFIG_IEEE 80211R
L_CFLAGS += -DCONFIG_IEEE 80211R
OBJS += hostapd /wpa_ft.c
NEED_SHA256=y
endif

ifdef CONFIG_IEEE 80211N
L_CFLAGS += -DCONFIG_IEEE 80211N
endif

ifdef CONFIG_DRIVER_HOSTAP
L_CFLAGS += -DCONFIG_DRIVER_HOSTAP
OBJS += hostapd /driver_hostap.c
endif

ifdef CONFIG_DRIVER_WIRED
L_CFLAGS += -DCONFIG_DRIVER_WIRED
OBJS += hostapd /driver_wired.c
endif

ifdef CONFIG_DRIVER_MADWIFI
L_CFLAGS += -DCONFIG_DRIVER_MADWIFI
OBJS += hostapd /driver_madwifi.c
CONFIG_L2_PACKET=y
endif

ifdef CONFIG_DRIVER_ATHEROS
L_CFLAGS += -DCONFIG_DRIVER_ATHEROS
OBJS += hostapd /driver_atheros.c
CONFIG_L2_PACKET=y
endif

ifdef CONFIG_DRIVER_PRISM54
L_CFLAGS += -DCONFIG_DRIVER_PRISM54
OBJS += hostapd /driver_prism54.c
endif

ifdef CONFIG_DRIVER_NL80211
L_CFLAGS += -DCONFIG_DRIVER_NL80211
OBJS += hostapd /driver_nl80211.c hostapd /radiotap.c
LIBS += -llibnl
ifdef CONFIG_LIBNL20
LIBS += -llibnl-genl
L_CFLAGS += -DCONFIG_LIBNL20
endif
endif

ifdef CONFIG_DRIVER_BSD
L_CFLAGS += -DCONFIG_DRIVER_BSD
OBJS += hostapd /driver_bsd.c
CONFIG_L2_PACKET=y
CONFIG_DNET_PCAP=y
CONFIG_L2_FREEBSD=y
endif

ifdef CONFIG_DRIVER_TEST
L_CFLAGS += -DCONFIG_DRIVER_TEST
OBJS += hostapd /driver_test.c
endif

ifdef CONFIG_DRIVER_NONE
L_CFLAGS += -DCONFIG_DRIVER_NONE
OBJS += hostapd /driver_none.c
endif

 Design a WLAN Mini Access Point in the Android Platform

83

ifdef CONFIG_L2_PACKET
ifdef CONFIG_DNET_PCAP
ifdef CONFIG_L2_FREEBSD
LIBS += -lpcap
OBJS += src/l2_packet/l2_packet_freebsd.c
else
LIBS += -ldnet -lpcap
OBJS += src/l2_packet/l2_packet_pcap.c
endif
else
OBJS += src/l2_packet/l2_packet_linux.c
endif
else
OBJS += src/l2_packet/l2_packet_none.c
endif

ifdef CONFIG_EAP_MD5
L_CFLAGS += -DEAP_MD5
OBJS += src/eap_server/eap_md5.c
CHAP=y
endif

ifdef CONFIG_EAP_TLS
L_CFLAGS += -DEAP_TLS
OBJS += src/eap_server/eap_tls.c
TLS_FUNCS=y
endif

ifdef CONFIG_EAP_PEAP
L_CFLAGS += -DEAP_PEAP
OBJS += src/eap_server/eap_peap.c
OBJS += src/eap_common/eap_peap_common.c
TLS_FUNCS=y
CONFIG_EAP_MSCHAPV2=y
endif

ifdef CONFIG_EAP_TTLS
L_CFLAGS += -DEAP_TTLS
OBJS += src/eap_server/eap_ttls.c
TLS_FUNCS=y
CHAP=y
endif

ifdef CONFIG_EAP_MSCHAPV2
L_CFLAGS += -DEAP_MSCHAPv2
OBJS += src/eap_server/eap_mschapv2.c
MS_FUNCS=y
endif

ifdef CONFIG_EAP_GTC
L_CFLAGS += -DEAP_GTC
OBJS += src/eap_server/eap_gtc.c
endif

ifdef CONFIG_EAP_SIM
L_CFLAGS += -DEAP_SIM
OBJS += src/eap_server/eap_sim.c
CONFIG_EAP_SIM_COMMON=y
endif

ifdef CONFIG_EAP_AKA
L_CFLAGS += -DEAP_AKA
OBJS += src/eap_server/eap_aka.c
CONFIG_EAP_SIM_COMMON=y
endif

ifdef CONFIG_EAP_AKA_PRIME
L_CFLAGS += -DEAP_AKA_PRIME
endif

 Design a WLAN Mini Access Point in the Android Platform

84

ifdef CONFIG_EAP_SIM_COMMON
OBJS += src/eap_common/eap_sim_common.c
Example EAP-SIM/AKA interface for GSM/UMTS authen tication. This can be
replaced with another file implementating the int erface specified in
eap_sim_db.h.
OBJS += src/eap_server/eap_sim_db.c
NEED_FIPS186_2_PRF=y
endif

ifdef CONFIG_EAP_PAX
L_CFLAGS += -DEAP_PAX
OBJS += src/eap_server/eap_pax.c src/eap_common/eap _pax_common.c
endif

ifdef CONFIG_EAP_PSK
L_CFLAGS += -DEAP_PSK
OBJS += src/eap_server/eap_psk.c src/eap_common/eap _psk_common.c
endif

ifdef CONFIG_EAP_SAKE
L_CFLAGS += -DEAP_SAKE
OBJS += src/eap_server/eap_sake.c src/eap_common/ea p_sake_common.c
endif

ifdef CONFIG_EAP_GPSK
L_CFLAGS += -DEAP_GPSK
OBJS += src/eap_server/eap_gpsk.c src/eap_common/ea p_gpsk_common.c
ifdef CONFIG_EAP_GPSK_SHA256
L_CFLAGS += -DEAP_GPSK_SHA256
endif
NEED_SHA256=y
endif

ifdef CONFIG_EAP_VENDOR_TEST
L_CFLAGS += -DEAP_VENDOR_TEST
OBJS += src/eap_server/eap_vendor_test.c
endif

ifdef CONFIG_EAP_FAST
L_CFLAGS += -DEAP_FAST
OBJS += src/eap_server/eap_fast.c
OBJS += src/eap_common/eap_fast_common.c
TLS_FUNCS=y
NEED_T_PRF=y
endif

ifdef CONFIG_WPS
L_CFLAGS += -DCONFIG_WPS -DEAP_WSC
OBJS += src/utils/uuid.c
OBJS += wps_ hostapd .c
OBJS += src/eap_server/eap_wsc.c src/eap_common/eap _wsc_common.c
OBJS += src/wps/wps.c
OBJS += src/wps/wps_common.c
OBJS += src/wps/wps_attr_parse.c
OBJS += src/wps/wps_attr_build.c
OBJS += src/wps/wps_attr_process.c
OBJS += src/wps/wps_dev_attr.c
OBJS += src/wps/wps_enrollee.c
OBJS += src/wps/wps_registrar.c
NEED_DH_GROUPS=y
NEED_SHA256=y
NEED_CRYPTO=y
NEED_BASE64=y

ifdef CONFIG_WPS_UPNP
L_CFLAGS += -DCONFIG_WPS_UPNP
OBJS += src/wps/wps_upnp.c
OBJS += src/wps/wps_upnp_ssdp.c
OBJS += src/wps/wps_upnp_web.c
OBJS += src/wps/wps_upnp_event.c

 Design a WLAN Mini Access Point in the Android Platform

85

OBJS += src/wps/httpread.c
endif

endif

ifdef CONFIG_EAP_IKEV2
L_CFLAGS += -DEAP_IKEV2
OBJS += src/eap_server/eap_ikev2.c src/eap_server/i kev2.c
OBJS += src/eap_common/eap_ikev2_common.c src/eap_c ommon/ikev2_common.c
NEED_DH_GROUPS=y
endif

ifdef CONFIG_EAP_TNC
L_CFLAGS += -DEAP_TNC
OBJS += src/eap_server/eap_tnc.c
OBJS += src/eap_server/tncs.c
NEED_BASE64=y
ifndef CONFIG_DRIVER_BSD
LIBS += -ldl
endif
endif

Basic EAP functionality is needed for EAPOL
OBJS += src/eap_server/eap.c
OBJS += src/eap_common/eap_common.c
OBJS += src/eap_server/eap_methods.c
OBJS += src/eap_server/eap_identity.c

ifdef CONFIG_EAP
L_CFLAGS += -DEAP_SERVER
endif

ifndef CONFIG_TLS
CONFIG_TLS=openssl
endif

ifeq ($(CONFIG_TLS), internal)
ifndef CONFIG_CRYPTO
CONFIG_CRYPTO=internal
endif
endif
ifeq ($(CONFIG_CRYPTO), libtomcrypt)
L_CFLAGS += -DCONFIG_INTERNAL_X509
endif
ifeq ($(CONFIG_CRYPTO), internal)
L_CFLAGS += -DCONFIG_INTERNAL_X509
endif

ifdef TLS_FUNCS
Shared TLS functions (needed for EAP_TLS, EAP_PEA P, and EAP_TTLS)
L_CFLAGS += -DEAP_TLS_FUNCS
OBJS += src/eap_server/eap_tls_common.c
NEED_TLS_PRF=y
ifeq ($(CONFIG_TLS), openssl)
OBJS += src/crypto/tls_openssl.c
LIBS += -lssl -lcrypto
LIBS_p += -lcrypto
LIBS_h += -lcrypto
endif
ifeq ($(CONFIG_TLS), gnutls)
OBJS += src/crypto/tls_gnutls.c
LIBS += -lgnutls -lgcrypt -lgpg-error
LIBS_p += -lgcrypt
LIBS_h += -lgcrypt
endif
ifdef CONFIG_GNUTLS_EXTRA
L_CFLAGS += -DCONFIG_GNUTLS_EXTRA
LIBS += -lgnutls-extra
endif
ifeq ($(CONFIG_TLS), internal)

 Design a WLAN Mini Access Point in the Android Platform

86

OBJS += src/crypto/tls_internal.c
OBJS += src/tls/tlsv1_common.c src/tls/tlsv1_record .c
OBJS += src/tls/tlsv1_cred.c src/tls/tlsv1_server.c
OBJS += src/tls/tlsv1_server_write.c src/tls/tlsv1_ server_read.c
OBJS += src/tls/asn1.c src/tls/x509v3.c
OBJS_p += src/tls/asn1.c
OBJS_p += src/crypto/rc4.c src/crypto/aes_wrap.c sr c/crypto/aes.c
NEED_BASE64=y
L_CFLAGS += -DCONFIG_TLS_INTERNAL
L_CFLAGS += -DCONFIG_TLS_INTERNAL_SERVER
ifeq ($(CONFIG_CRYPTO), internal)
ifdef CONFIG_INTERNAL_LIBTOMMATH
L_CFLAGS += -DCONFIG_INTERNAL_LIBTOMMATH
else
LIBS += -ltommath
LIBS_p += -ltommath
endif
endif
ifeq ($(CONFIG_CRYPTO), libtomcrypt)
LIBS += -ltomcrypt -ltfm
LIBS_p += -ltomcrypt -ltfm
endif
endif
NEED_CRYPTO=y
else
OBJS += src/crypto/tls_none.c
endif

ifdef CONFIG_PKCS12
L_CFLAGS += -DPKCS12_FUNCS
endif

ifdef MS_FUNCS
OBJS += src/crypto/ms_funcs.c
NEED_CRYPTO=y
endif

ifdef CHAP
OBJS += src/eap_common/chap.c
endif

ifdef NEED_CRYPTO
ifndef TLS_FUNCS
ifeq ($(CONFIG_TLS), openssl)
LIBS += -lcrypto
LIBS_p += -lcrypto
LIBS_h += -lcrypto
endif
ifeq ($(CONFIG_TLS), gnutls)
LIBS += -lgcrypt
LIBS_p += -lgcrypt
LIBS_h += -lgcrypt
endif
ifeq ($(CONFIG_TLS), internal)
ifeq ($(CONFIG_CRYPTO), libtomcrypt)
LIBS += -ltomcrypt -ltfm
LIBS_p += -ltomcrypt -ltfm
endif
endif
endif
ifeq ($(CONFIG_TLS), openssl)
OBJS += src/crypto/crypto_openssl.c
OBJS_p += src/crypto/crypto_openssl.c
HOBJS += src/crypto/crypto_openssl.c
CONFIG_INTERNAL_SHA256=y
endif
ifeq ($(CONFIG_TLS), gnutls)
OBJS += src/crypto/crypto_gnutls.c
OBJS_p += src/crypto/crypto_gnutls.c
HOBJS += src/crypto/crypto_gnutls.c
CONFIG_INTERNAL_SHA256=y

 Design a WLAN Mini Access Point in the Android Platform

87

endif
ifeq ($(CONFIG_TLS), internal)
ifeq ($(CONFIG_CRYPTO), libtomcrypt)
OBJS += src/crypto/crypto_libtomcrypt.c
OBJS_p += src/crypto/crypto_libtomcrypt.c
CONFIG_INTERNAL_SHA256=y
endif
ifeq ($(CONFIG_CRYPTO), internal)
OBJS += src/crypto/crypto_internal.c src/tls/rsa.c src/tls/bignum.c
OBJS_p += src/crypto/crypto_internal.c src/tls/rsa. c src/tls/bignum.c
L_CFLAGS += -DCONFIG_CRYPTO_INTERNAL
CONFIG_INTERNAL_AES=y
CONFIG_INTERNAL_DES=y
CONFIG_INTERNAL_SHA1=y
CONFIG_INTERNAL_MD4=y
CONFIG_INTERNAL_MD5=y
CONFIG_INTERNAL_SHA256=y
endif
endif
else
CONFIG_INTERNAL_AES=y
CONFIG_INTERNAL_SHA1=y
CONFIG_INTERNAL_MD5=y
CONFIG_INTERNAL_SHA256=y
endif

ifdef CONFIG_INTERNAL_AES
L_CFLAGS += -DINTERNAL_AES
endif
ifdef CONFIG_INTERNAL_SHA1
L_CFLAGS += -DINTERNAL_SHA1
endif
ifdef CONFIG_INTERNAL_SHA256
L_CFLAGS += -DINTERNAL_SHA256
endif
ifdef CONFIG_INTERNAL_MD5
L_CFLAGS += -DINTERNAL_MD5
endif
ifdef CONFIG_INTERNAL_MD4
L_CFLAGS += -DINTERNAL_MD4
endif
ifdef CONFIG_INTERNAL_DES
L_CFLAGS += -DINTERNAL_DES
endif

ifdef NEED_SHA256
OBJS += src/crypto/sha256.c
endif

ifdef NEED_DH_GROUPS
OBJS += src/crypto/dh_groups.c
endif

ifndef NEED_FIPS186_2_PRF
L_CFLAGS += -DCONFIG_NO_FIPS186_2_PRF
endif

ifndef NEED_T_PRF
L_CFLAGS += -DCONFIG_NO_T_PRF
endif

ifndef NEED_TLS_PRF
L_CFLAGS += -DCONFIG_NO_TLS_PRF
endif

ifdef CONFIG_RADIUS_SERVER
L_CFLAGS += -DRADIUS_SERVER
OBJS += src/radius/radius_server.c
endif

ifdef CONFIG_IPV6

 Design a WLAN Mini Access Point in the Android Platform

88

L_CFLAGS += -DCONFIG_IPV6
endif

ifdef CONFIG_DRIVER_RADIUS_ACL
L_CFLAGS += -DCONFIG_DRIVER_RADIUS_ACL
endif

ifdef CONFIG_FULL_DYNAMIC_VLAN
define CONFIG_FULL_DYNAMIC_VLAN to have hostapd manipulate bridges
and vlan interfaces for the vlan feature.
L_CFLAGS += -DCONFIG_FULL_DYNAMIC_VLAN
endif

ifdef NEED_BASE64
OBJS += src/utils/base64.c
endif

ifdef CONFIG_NO_STDOUT_DEBUG
L_CFLAGS += -DCONFIG_NO_STDOUT_DEBUG
endif

ifdef CONFIG_NO_AES_EXTRAS
L_CFLAGS += -DCONFIG_NO_AES_UNWRAP
L_CFLAGS += -DCONFIG_NO_AES_CTR -DCONFIG_NO_AES_OMAC1
L_CFLAGS += -DCONFIG_NO_AES_EAX -DCONFIG_NO_AES_CBC
L_CFLAGS += -DCONFIG_NO_AES_DECRYPT
L_CFLAGS += -DCONFIG_NO_AES_ENCRYPT_BLOCK
endif

ifeq ($(HOSTAPD_BUILD),true)

include $(CLEAR_VARS)
LOCAL_MODULE := hostapd .conf
LOCAL_MODULE_TAGS := user eng development
LOCAL_SRC_FILES := hostapd / hostapd .conf
LOCAL_MODULE_CLASS := ETC
LOCAL_MODULE_PATH := $(TARGET_OUT)/etc/ hostapd
include $(BUILD_PREBUILT)

include $(CLEAR_VARS)
LOCAL_MODULE := hostapd
LOCAL_SHARED_LIBRARIES := libc libcutils libcrypto libssl libnl
LOCAL_CFLAGS := $(L_CFLAGS)
LOCAL_SRC_FILES := $(OBJS)
LOCAL_C_INCLUDES := $(INCLUDES)
LOCAL_MODULE_TAGS := user eng development
LOCAL_MODULE_PATH := /root/Documents/eclair-x86/out /target/product/eeepc/system/bin
include $(BUILD_EXECUTABLE)

endif

