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Abstract 

Meteorological and hydrological forecasts are very important to human’s life which concerns 

agriculture, industry, transport, etc. The Nordic hydropower industry use and develop 

hydrological forecasting models to make predictions of rivers steam flow. The quantity of 

incoming stream flow is important to the electricity production because excessive water in 

reservoir will cause flood and the loss of hydropower energy. Therefore the accurate 

prediction will help the managers decide the optimal production level in the reservoir at the 

current time. If for instance the predicted runoff exceeds the limit of water that the plant 

can process, then it is possible to increase production early so the water level does not get 

higher than the edge of the reservoir. 

In our project, we are studying the uncertainties which come from both meteorological and 

hydrological forecasting systems, and propose a new error correction methodology to 

reduce the uncertainties in the forecasted runoff. 

We study the uncertainties in the meteorological data, and then evaluate the accuracy of 

the meteorological data. Then we feed the meteorological data into a hydrological 

forecasting system, called the “OHBV model” with forecasted meteorological data. Later we 

run the model again with observed meteorological data. By running the model twice with 

different input we evaluate the performance of the OHBV model, and find the level of 

improvement expected when having a more accurate weather forecast. The OHBV model is 

also referred to as “OHBV” for short.  

At last we focus on error correction that are algorithms used to improve the runoff forecast 

based on statistics. We test the existing error correction method, called the “Powel 

algorithm”, and we identify how much of the error it could reduce. The error reduction is 

found by comparing the runoff forecast with the observation of stream flow runoff. 

Furthermore, we propose our own error correction method, referred to as “Yukun&Karl 

algorithm”, and finally evaluate the performance of the new method. 

Our results show that the main part of the error comes from the HBV model in the first 

forecast, while when using observation data as input into the model the output improves 

most for last days where the weather forecasts have higher uncertainty. Weather forecasts 

have errors, but have gone through much refinement the latest years, and until the HBV 

model performs better, this is not where the main focus should be. Since the OHBV model 

give high errors even in the prediction with the least of uncertainty (in the 1 day ahead in 

forecast), this should be investigated and improved.  

Error correction algorithms are applied after the model itself, and are used to give an overall 

improvement, though it sometimes can make the individual error larger. The best 

improvement by correction is in the “1 day ahead “runoff forecast, but after 4-5 days the 

Powel correction generally causes more errors than it can correct. The developed 

“Yukun&Karl algorithm” works up until the 8
th

 day. The error corrections algorithms counter 

some of the effects from the simplification of hydrological systems in the OHBV model, but 

error correction is only based on the statistics of the input forecast. Error correction is a 
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quick and relative simple way to improve the forecast, but as any “quick fix” it has its 

limitations, and can only improve forecasts some. The findings can result in further 

development of error correction and improve the prediction of runoff. Error correction can 

also be used in other fields, as long as the data used have statistical probabilities that can be 

exploited.  
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1 Introduction 

1.1 Background and motivation 

 

In the Nordic countries, there is a rich fresh water resource in mountains, which can be used 

for power production. The electricity power grid in the Nordic countries connects across 

borders and ties all the member countries together. Companies involved in electricity 

trading, can buy and sell power in the great public grid. The electricity price is basically 

decided by supply and demand, which means the price is always changing. The companies 

wish to sell the electricity for the highest price possible. For a hydroelectric power station, 

having enough capacity of water at that moment, to be able to produce power is very 

important. But the question is not as simple as just storing as much water as possible, 

because, the capacity of a reservoir is limited. If the reservoir is full, and at that moment, 

runoff is coming, then the company may lose production. The predicted power production 

can be sold in advance to ensure a stable supply of power.  

To solve these many issues, there have been developed hydrological forecasting systems to 

predict the stream flow that enter the reservoir. This is a difficult and error-prone task, 

partly because of the inaccuracies in the hydrological models themselves, but also because 

the models to a large degree are fed with input that is noisy, such as meteorological 

forecasts. A hydrological forecasting system requires good meteorological data to calculate 

the stream flow, so both hydrological and meteorological systems are necessary to complete 

the forecasting task. 
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1.2 Definition of the problems 

 

Daily hydrologic forecasts of river stream flow are of major importance in hydropower 

scheduling. Typically, the forecasts are produced by forcing weather data (precipitation and 

air temperature) into a hydrological model that calculates the stream flow response. The 

quality of the stream flow forecasts is dependent on errors in the weather predictions, 

model parameters, model structure and historical observations of precipitation, air 

temperature and stream flow. If we are to improve the forecasting quality it is important to 

understand and quantify the various sources of uncertainty in the forecasting methodology. 

 

The objective of this master thesis is to identify and quantify the sources of uncertainty in a 

hydro-meteorological forecasting system. Based on the findings from the analysis a method 

for reduction of uncertainty in the forecasts will be proposed.  

 

 

 

1.3 Previous work 

 

Numerous scientists around the world are constantly working on improving forecast 

methods within the meteorological and hydrological sciences. The stream flow forecast 

uncertainty is due to several sources: uncertainty in forecasted input data, for instance, 

calibrated precipitation and air temperature, uncertainties in internal states in the 

hydrological model, uncertainty in model parameters, observation measurement error and 

errors in the hydrological model structure. [1] To correct the prediction error, there are also 

many mathematic methods, e.g. Powel algorithm. [2] 
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1.4 Claims 
 

Our claims: 

1) The main cause of error in the runoff forecast lies in the hydrological model, 

secondly the error comes from the weather forecast.  

2) An improvement in the size on 2-7m^3 can come from improving the weather 

forecast, mainly when getting further ahead in the forecast.  

3) Our findings suggest that error correction cause general improvements and should 

be implemented especially in the first 5 days forecast.  

4) The existing Powel algorithm performs positively, but does not improve after day 5, 

so it should only be used to correct the first 5 days.  

5) The proposed algorithm called “Yukun&Karl” improves more than the Powel 

algorithm in the first days, and also extends the improvement period up until day 8. 

In the last two days (9 and 10), the uncertainty is quite big and it is very hard to 

correct it statistically. 

1.5 Research approach  

 

To quantify uncertainty in precipitation and air temperature forecasts, we look up the 

precipitation and air temperature information from the meteorological forecasting data. We 

take the temperature forecast and subtract the temperature observation and put the errors 

of the first (second, third: etc.) day together in one vector, and then study the distributions. 

Afterwards, we do the same thing with precipitation data. (“First day” from here means 1 

day ahead in the forecast, since we do not focus on single values, only assemblies of 

forecasts with same distance in time according to the last known observation at that time)  

To quantify uncertainty in inflow forecasts, we first run the OHBV model with observed 

meteorological data (feed the model with observed precipitation and air temperature), then 

rerun the model with forecasted meteorological data. Secondly, we subtract the observed 

runoff from the forecast to find the error values. Then we study the distribution of these 

error values. Afterwards, we define the term “improvement”, which is the absolute value of 

forecasting error minus the absolute value of observation error”. Eventually, we study the 

improvement of the error. How large the improvement is, show how much uncertainty could 

be reduced from weather forecasting system. 

To study and test the Powel algorithm, we compute the prediction by following the Powel 

calculation steps. Then we put the prediction together with observed runoff in Figure 32, to 

compare them. 
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After testing the Powel algorithm, we propose our own error correction algorithm. The 

corrected predictions are calculated and added to the Powel performance figure, to show 

the comparison of the result from the two methods in Figure 38.  

The individual steps: 

1. Give a short presentation of a hydrological forecasting system. 

2. Give a short presentation of the various types of short range (1-15 days) of meteorological 

forecasting system. 

3. Quantify uncertainty in precipitation and air temperature forecasts.  

a) Compare historical weather predictions against real observations of precipitation 

and air temperature. 

b) Study the statistical distributions of the error found in (a).  

4. Quantify uncertainty in inflow forecasts.  

a) Rerun historical stream flow forecasts with historical weather predictions. Quantify 

uncertainty by comparing forecasts and real stream flow observations. 

b) Rerun historical stream flow forecasts with real observations of precipitation and air 

temperature. Quantify uncertainty by comparing forecasts and real stream flow 

observations. 

c) Compare the statistical distributions of the uncertainty found in (a) and (b).  

5. Study and test the existing error correction, Powell algorithm. 

6. Propose a new error correction algorithm. 
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1.6 Contribution 

 

Our work is consisting of analyzing error in both meteorological and hydrological models by 

using the computational tools in Matlab. We have also tested the existing Powel error 

correction algorithm on the OHBV predictions. A new mathematic method has been 

proposed by us, and it is tested to be useful in terms of the error correction. It is improving 

further ahead in the forecasts and also better than the Powel, even when running Powel 

error correction several times with different parameter “a” and using the best of the values. 

Another contribution is clarifying the sources of uncertainty, and also quantifying the level of 

uncertainty in both meteorological and hydrological models. In addition testing the 

performance of the Powel method and developing our own correction method. The results 

could contribute to further research, as well as practical implementations in hydrological 

systems reducing the error, and clarifying the main sources of uncertainty.  
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1.7 Assumptions and limitations 

 

Comments according to the original objectives: Due to limitations in the dataset the 

objective concerning seasonal variations, had to be dropped. It was also originally intended 

to study assembly weather forecast, but together with Agder Energy AS it was decided to 

rather focus on the 10 days (short time) weather forecasts.) 

Originally we had had data for from 4
th

, May, 2009 until 31
st

, January, 2010. Unfortunately 

there where periods of data missing, so the weather forecast and HBV forecast is run on 

data in the period of June, July, August and September of 2009. In other words summer 

conditions, where results are not influenced by frost and snow accumulation. Snowmelt is 

considered relatively small, and has not been a main focus. The forecast and observation 

data are provided by Agder Energy A/S and the results apply to a possible practical 

implementation.  

There are only 52 days with more than 1mm precipitation in the 4 months period, and 

therefore some of the figures are affected by noise. 

Due to poor performance of the HBV model in middle of the period (precisely from the 6
th

 of 

July 2009 to 21
st

 of August), we have decided to run the error correction analyze without this 

part. 
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1.8 Geographic study area 

 

The study area in our project is described as a Catchment where the HBV model is applied. It 

is located up Mandal River in the southern part of Norway. The name of the catchment is 

“Skjerka”. 

 

Figure 1. Catchment illustration 

Figure 1. Illustrates a catchment (in our case Skjerka). A catchment is a closed area, and the 

area is then divided into 10 elevation bands. The climate stations are in and around the 

catchment at different height in terrain (within a corresponding band), and provide the 

observation data to compare with the weather forecasts. The stream flow (water runoff) 

may take different paths (and depths in the ground), before it generally pour into the rivers 

and end up in the reservoir. Then the power plant uses the runoff to produce electricity. 
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Figure 2. Weighted height bands 

The 10 bands are weighted in percentage of the total area, and are involved in the runoff 

calculation in OHBV model. Each band will have the same number of height meters from top 

to bottom, but will therefore have a different sized area (weight in % compared to the total 

area). One reason for this is the temperature decrease when moving higher in the 

mountains. The elevation of Skjerka catchment area is from 600 M to 800 M.  

 

1.8 Target audience 
The target audience of this thesis is mainly teachers and students in academia, as well as 

engineers working in the hydro power industry.  
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1.9 Report outline 
 

The first chapter covers the introduction, while in chapter 2. “Introduction of meteorological 

and hydrological forecasting system”, it is first given a presentation of two meteorological 

forecasting system, European Center (EC), and Global Forecasting System in USA (GFS). Then 

the hydrological model which is applied for the Nordic countries, called the “HBV model” is 

introduced. We also mention the actual implementation called “OHBV model” used by Ager 

Energi A/S (and which is therefore also the model used in our thesis.) In chapter 3, 

“Uncertainties study in meteorological forecasting system”, the objective is to quantify the 

uncertainty of using meteorological data which comes from the meteorological forecasting 

system “European Center”. The uncertainty study will focus on two aspects: the air 

temperature and precipitation.  

 

In chapter 4, “Uncertainty study of inflow forecasting”, we use observed and forecasted 

meteorological data separately as input into the OHBV model, and then comparing the two 

outputs to quantify the uncertainty. In addition, we give a conclusion to the OHBV model 

performance. In chapter 5, “Error corrections of the HBV predictions”, we first test the 

existing error correction method called “Powell algorithm”. It is interesting to identify how 

much improvement it can make, and use that as a benchmark to compare our developed 

method with. Then we will present the new error correction method called “Yukun&Karl” 

algorithm, and compare the new algorithm to the existing one. We need to identify the 

advantages and disadvantages of these two algorithms, and finally give a conclusion to our 

overall findings. 
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2 Meteorological and hydrological forecasting system 

 

2.1 Introduction to hydrological forecasting (HBV model) 

2.1.1 Brief concept of hydrological forecasting 

 

Hydrology is the study of the movement, distribution, and quality of water throughout Earth, 

and thus addresses both the hydrologic cycle and water resources. [3] The water cycle, also 

known as the hydrologic cycle, describes the continuous movement of water on, above and 

below the surface of the Earth. [4] Water resources are described as the resources of water 

that can potentially be used by humans.  

  

 

Figure 3. The water cycle 

In the Figure 3, the sun, it provides almost all the energy to the Earth, drives the movement 

of water. The water is heated by the sun, and then evaporates as water vapor into the air. 

The water can also be transpired by plants, which is called Evapotranspiration (ET). Snow 

and ice can sublimate into the air even in low temperatures. The water vapor is rising into 

the atmosphere, and then cooled down and condensed into clouds. The water contained in 

the clouds then move, and finally falls down from the sky as precipitation. Precipitation can 

fall as snow, rain, hail, etc, part of the precipitation falls back into the oceans. Snow can be 

accumulated as ice caps, glaciers and snow packs. Ice caps and glaciers can store ice for 

thousands of years. Snow packs will start to melt when the average air temperature is above 
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zero degrees. When the water flows over the ground as surface runoff, a portion of the 

runoff enters rivers, which move water towards lakes or oceans. Ground water can come up 

in springs if there is sufficient fall in the terrain. Together with the runoff the spring water is 

stored as fresh water in lakes, which could be used for electricity production. But not all the 

runoff goes into the rivers, some water infiltrates deep into the ground and stays there for 

long time or discharges into the oceans. In an enclosed mountain catchment though, most of 

the water will at one time enter the stream. 

Hydrologic forecasting is used to forecast the hydrologic status in the future based on the 

observations in the past combined with weather forecasts, by using analysis and 

mathematical statistic methods. Usually, the forecasting in two weeks is called mid-term; 

while prediction above fifteen days is called long-term forecasting. The content of hydrologic 

forecasting includes the volume of runoff, water stage, ice condition, trends of flood or 

draught, etc. In our project, we are interested in the volume of runoff, which decides the 

water level in the reservoirs. This is because stream flow runoff is most the critical factor 

influencing the electricity production.  

Many forecasting systems are established in the world today by using different models. They 

have different complexity and accuracy, but together they complete the tasks of hydrologic 

forecasting. Basically, the hydrological forecasting system is created to find out how much 

water is coming at each moment in time. Hydrological measurements are the methods to 

measure the precipitation (rain fall and snow fall, etc), evaporation, soil moisture, river flow, 

groundwater, water quality, and so on. The hydrological analysis consists of precipitation 

analysis, evaporation calculations, river flow analysis, rainfall-runoff relationships, etc. And 

the engineering applications cover the usage of hydrological forecasting systems, for 

instance, flood routing and water resources management. 

Usually, the mountain regions are the main distributions to the water cycle as well as of 

complex meteorological patterns. In terms of their role as “water towers", mountain regions 

form an important supply of fresh water to the lowlands. [5]  

Many hydro-geological surveys are provided by hydropower development in Norway 

(Håland and Faugli among others). [6] In Nordic countries, snow is a decisive factor affecting 

hydrologic forecasting system and it plays a vital role in the water resources in many parts of 

the world. Snow cover is a major component of water storage, and changes in its extent, 

depth, and snow-water equivalent will have an impact on the runoff in mountain areas.  

Another important factor affecting snow accumulation is wind. Strong winds in winter affect 

both snow depth and distribution which affect the snow-water equivalent. The snow packs 

in shadow will last longer than those directly affected by the suns radiation. The melting 

water can stay in surface soil. The surface soil moisture and the exchange of heat and 

moisture between the land surface and the atmosphere are of very importance in 

Hydrological forecasting system.  

The evaporation process consists of two main consecutive stages. In the first stage, when 

the soil is wet and conductive enough to supply water at a rate to evaporation, the 
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evaporation is limited by external meteorological conditions. During the second stage, the 

evaporation rate is limited by the rate of moisture delivery from the soil toward the 

evaporation zone. [7] In the reverse direction, the water can infiltrate down deep into the 

ground where the water may stay for a long time.  
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2.1.2 HBV model 

The HBV model was developed in Scandinavia to analyze river discharge. This was the first 

major application of HBV, and it has since gone through much refinement. “It comprises the 

following routines: Snow routine, Soil moisture routine, Response function, Routing 

routine.”[8]  

 

Figure 4. HBV model structure 

In the Figure 4, the definition of a catchment is a closed area of mountains. At the edge of 

the catchment, all the water will go to different streams due to the elevation, but for those 

streams inside the border all the water will generally go to one main stream or reservoir. In 

the HBV model, many factors in mass balance are involved as a simplification of the water 

cycle, for example, ET, rainfall, runoff, and so on. The HBV model catchment definition 

describes the catchment, and it can describe the size, height and properties like delay etc. 

Daily input data is air temperature and precipitation which come from weather forecasting 

centers. There are several states and parameters used to compute the discharge. If a good 

performance is expected, then the parameters and states are supposed to be optimized. 
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The HBV model is a precipitation runoff model, which includes several important 

parameters. The general water balance in HBV model can be described as:  

 

HBV prediction calculation formula 

[9] 

Where:  

P = precipitation  

E = evapotranspiration  

Q = runoff  

SP = snow pack  

SM = soil moisture  

UZ = upper groundwater zone  

LZ =lower groundwater zone  

lakes = lake volume  

Usually, several elevation bands are used together in the HBV model. Each catchment is 

divided into zones according to altitude, lake area and vegetation and so on. The model is 

normally run on daily values of rainfall and air temperature, and daily or monthly estimates 

of potential evaporation. Input data are precipitation, air temperature and estimates of 

potential evapotranspiration. 

As mentioned there are close links between meteorology and hydrology, because the HBV 

model needs predictions of temperature and precipitation for simulations. Furthermore, at 

the regional scale, the exchange of moisture and heat between the land surface and the 

atmosphere determines the low level atmospheric humidity and temperature fields, which 

in turn has an impact on regional weather and climate. [10]  
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2.2 Meteorological forecasting systems (EC, GFS) 

2.2.1 European Center 

European Centre is an international organization supported by 31 countries in Europe. The 

principal objectives of the Centre are: first off, the development of numerical methods for 

medium range weather forecasting; second off, the preparation, on a regular basis, of 

medium range weather forecasts for distribution to the meteorological services of the 

member states; third off, scientific and technical research directed at the improvement of 

these forecasts; eventually, collect and store appropriate meteorological data.  

EC provides operational medium range and extended range forecasts. In addition, the EC 

makes available a proportion of its computing facilities to its member states for their 

research; and assists in implementing the programs of the World Meteorological 

Organization; provides advanced training to the scientific staff of the Member States in the 

field of numerical weather prediction; makes the data in its extensive archives available to 

outside bodies. [11] 

EC’s forecast products include medium range forecast, ocean wave forecast, monthly 

forecast, seasonal forecast, ocean analysis, monitoring of the observing system. The 

member countries can order real-time data and predicted data from the EC. Besides, the 

center also provides weather forecast for normal customers such as daily weather 

prediction. In the medium range forecast, EC operates a deterministic forecasting system 

providing weather predictions for 10 days. “It comprises a 4-dimensional variation data 

assimilation system (4D-Var), the high resolution global model and the 51 member Ensemble 

Prediction System (EPS) at 40 km resolution.” [12] EC’s forecasts are used in this thesis. 

 

2.2.2 Global Forecasting System 

The Global Forecast System (GFS) is a global numerical weather prediction computer model 

run by NOAA with worldwide probability of precipitation forecast and climate. [13] This 

mathematical model is run four times a day and produces forecasts for up to 15 days in 

advance, but with decreasing accuracy over time. Hence, in hydrological forecast, it is widely 

accepted that prediction beyond one week is not very exact. The first 7 days are run in more 

detail, while the 8-15 days forecast is more accurate. [14]  

This is the only global model for which all output is available, for free use over the internet 

(as a result of U.S. law), and therefore is the basis for smaller private weather companies. 

The predictions are ensemble data based on the probability of precipitation. The GFS is not 

used in this thesis, and is only mentioned as a reference of another forecasting system. 
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3 Uncertainties study in meteorological forecasting system 

3.1 Introduction of OHBV model in Skjerka 

3.1.1 The weather stations near and inside the catchment 

In the Skjerka catchment the weather forecast is compared with the 6 meteorological 

measuring stations. They are named after the closest place or lake. There is Juvann, 

Langevann, Navann, Orevann, Sjavasskn and Storevatn. 

 

One important thing to remember, is that the weather forecasting positions in Skjerka is not 

necessarily identical with the weather measuring positions or representative as an average 

for the area. We have chosen to compare with the weather forecast for each station based 

on geographic coordinates, but there could be local variations in height above sea level etc. 

Therefore some calibration is needed, and the meteorological data which is used as input 

into OHBV model is not exactly as the local conditions even with a good forecast for that 

position. Due to this situation, some extra uncertainty is added to the meteorological 

forecasting data. 

 

3.1.2 Selecting and comparing data from the OHBV model 

Comparing forecast data with observation: To avoid using a day with high runoff and high 

error only in some of the forecast, we decided to compare the data a little differently than 

what was the original plan. Now we use the forecasts for the first 10 days as input only, but 

do not compare with the observation values of those days, even though they exist. (In the 

beginning of the period these values come from the last 10 days of the previous month)  

This way it is also easier to plot the curves under each other since all the observation dates 

used in the comparison have 10 corresponding forecast errors. 
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3.2 Uncertainties in precipitation and air temperature forecasts 

 

3.2.1 Uncertainties in precipitation 

 

Figure 5. Average precipitation error with days at Juvann weather station. 

There are only 52 wet days in the period and the precipitation error for wet days is over 1 

mm in average, but the period is relatively short. It is simple to calculate the “standard 

error” which is a measure of how accurate the results are. You divide the standard deviation 

with the square root of “n” number of independent samples. Our 52 wet days are not 

entirely independent, since there is a higher possibility to get the same conditions at one day 

in time as the previous (say it starts to rain in the evening continuing into next day, or raining 

several days after each other). So we will have a somewhat higher actual “standard error” 

than we calculate. The average standard deviation is about 11, but we use 12 since want to 

find the worst case. 12mm/square root (52 days) = 1,67mm. This explains the errors in the 

top curve which is very much affected by noise. The lowest curve showing wet days include 

more values and is therefore less affected by noise, since the standard error calculation 

include the number of samples under the divider. Worst case standard error then is: 

8mm/square root (122 days) = 0.72. Similar noise is not so present in the HBV model output, 

except for a slightly lower error in day 10 than in day 9(namely 7.32 m^3/s and 7.26 m^3/s).  

 

Figure 5. Shows error in precipitation forecasts averaged over the 4 measure positions in the 

catchment. The highest curve marks the days with more than 1 mm precipitation, while the 
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lowest includes all the days in the period. Since we have a relative small area, both forecasts 

and observations are correlated (similar values in all 4 places), so even averaging over 4 

positions we get a noisy curve that is close to the ones for the individual places. As 

mentioned the days with zero precipitation will sometimes give zero error in the forecast, 

which makes the forecast have a lower average error. The highest curve shows that there is 

an average of over 10 mm in precipitation error, at days when there is more than 1 mm 

precipitation. Looking at the lowest curve though it looks more like the error/uncertainty in 

the forecast is rising with number of days ahead in forecast, which is what we naturally 

expect to find given the fact that it is harder to predict further into the future. 

Since we had some limitations in the data, giving us a short period and we got some noise in 

the figures, we decided to just include the figures for the Juvann weather station. There are 

three other locations also which have measurement of precipitation, and we have also 

calculated and used those data later to make error distributions, like in chapter 3.2.3 when 

we investigate the wet days using the data from all the 4 weather stations. (As mentioned 

the different weather stations are close together they have similar data, and figures.)  

 

Figure 6. Juvann precipitation 

Figure 6.a) shows the calibrated precipitation forecast for Juvann which is a sub basin of 

Skjerka. Each day have one value of precipitation in mm. In Figure 6.b) we have plotted the 

corresponding observed precipitation measured in a weather station at the Juvann location. 

6.c) shows the error after subtracting observation from forecast. A positive value of error 

mean that there was an overestimation in the weather forecast that day, and a negative 
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value then shows underestima

5mm for 1 day forecast and slowly increasing. This value is affected by the number of days 

with precipitation compared 

in accordance with the size of the runoff.

Figure 7.a)-j) Illustrates the precipitation error distribution for Juvann. The standard 

deviation increases with the number of days ahead in the forecast.

with little precipitation gives a 

value then shows underestimation. 6.d) Illustrates the average error which is starting at 

5mm for 1 day forecast and slowly increasing. This value is affected by the number of days 

with precipitation compared to the days with no precipitation, as the size of the error grows 

ance with the size of the runoff.  

Figure 7. Precipitation distribution 

the precipitation error distribution for Juvann. The standard 

deviation increases with the number of days ahead in the forecast. (Again the 

gives a small error resulting in the peaks at zero.

the average error which is starting at 

5mm for 1 day forecast and slowly increasing. This value is affected by the number of days 

, as the size of the error grows 

 

the precipitation error distribution for Juvann. The standard 

Again the days 

s at zero.) 
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Figure 8

Figure 8.shows the common distribution of Figure 

distribution. The errors are decreasing moving from 0 towards 30mm

impression of overall the error size

8. Precipitation error 1-10 day common distribution 

shows the common distribution of Figure 7.a)-j) together with the n

distribution. The errors are decreasing moving from 0 towards 30mm. We can get an

the error size.  

 

j) together with the normal 

. We can get an 
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Figure 9. Precipitation error curve 

In Figure 9, the precipitation error curves are shown for some of the ten different 

forecast lengths (1, 2, 3, 5 and 10 days forecast) at Juvann. The forecast error vary 

some as time goes by from 1 day ahead to 10 days ahead, getting larger. Figure 9.a) 

with curve of 1 day ahead should in theory have an absolute mean error closest to 

zero, compared with the other days, finally 10.e) show all the curves together giving 

an impression of how much the forecast error vary in time. 

 

 

 



 

31 

 

 

Figure 10. Juvann precipitation error and the standard deviation of error. 

Figure 10.a) Illustrates the average absolute precipitation error with days ahead in the 

forecast, the result show a slow increase in error when further ahead in the forecasts. 

We also tested the error in uncalibrated forecasts and got similar results with a little 

bigger error, showing that the calibration is improving the forecast. The measurement 

error (inaccuracy in measuring precipitation) will have similar influence on the error 

making the errors larger over all 1-10 day forecasts. Figure 10.b) show the standard 

deviation that have little change as forecast length increases.    
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3.2.2 Distribution of uncertainties in air temperature 

 

Figure 11. Temperature curves at Juvann. 

The temperature forecast in Figure 11.a) show the forecasted temperature in Juvann for 

each day in the period 06-2009 to 09-2009 represented by one average value per day. The 

observed temperature in the same period is plotted under in figure 11.b). The error is found 

by subtracting the observed temperature from the forecast. A positive value of error in the 

curve in Figure 11.c) shows overestimation in the forecast, while a negative show 

underestimation. Figure 11.d) illustrate an average error of ca 2 degrees Celsius for the 1-10 

days ahead. 
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Figure 

Figure 12. shows the distributions from the curve

temperature can get negative, thus

same peaks in the distributions as we did from 

distributions change little, but as 

gure 12. Temperature error distributions at Juvann. 

the distributions from the curves in Figure 11.c), and b

get negative, thus the value is always varying. We therefore

istributions as we did from the precipitation distributions.

little, but as expected the spread is going up as time increases

 

, and because the 

therefore do not get the 

the precipitation distributions. The 

expected the spread is going up as time increases 
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Figure 13

Figure 13.shows the common distribution of figure 1

temperature forecast is smaller than 2.5 degrees.

distribution is close to the normal distribution

us that the temperature forecast is correctly calibrated. 

 

13. Combined temperature error distribution Juvann 

hows the common distribution of figure 12, and the main part of the error in the 

smaller than 2.5 degrees. It is possible to see that the 

distribution is close to the normal distribution with the mean values close to ze

us that the temperature forecast is correctly calibrated.  

 

, and the main part of the error in the 

It is possible to see that the error 

with the mean values close to zero which tell 
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Figure 14. Temperature error curves at Juvann. 

Figure 14.a)-e) shows the temperature error curves according to the length in the forecast., 

while Figure14.f) show the combination of the curves for day 1-10 and the size of the errors 

increase  little. Interestingly one observation is that the temperature forecast varies a lot all 

the time, more than the precipitation variation changes in time in Figure 9.  
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Figure 15. Average absolute error, mean error, and standard deviation of temperature error at Juvann. 

In Figure 15.a) the average error in the temperature forecast is rising slightly with days, but 

stops at ca. 2 degrees Celsius. 15.b) shows the mean of the error which can tell us if there is 

a general over or underestimation. Except for day 1, the mean error is close to zero. As 

expected the standard deviation increases with the number of days ahead in the forecast, 

seen in Figure 15.c).      
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3.2.3 Precipitation error 

Wet days = more than 1 mm precipitation, Dry days = more than 1 mm precipitation

We chose to study the precipitation further since it is the most important factor deciding the 

runoff. (Temperature distributions shown 

Figure 16.a)-d) shows the precipitations error for

> 1mm) in the four positions in the Skjerka catchment

Langevann. In the “one day 

in the distribution for the 4 positions combined

error(“underestimation of rain in summer”) 

that increase the forecasts slightly.

 

 

 

 

Precipitation error of days with > 1mm observed. 

Wet days = more than 1 mm precipitation, Dry days = more than 1 mm precipitation

We chose to study the precipitation further since it is the most important factor deciding the 

(Temperature distributions shown earlier are also very close to normal distribution)

Figure 16. 1 Day ahead precipitation error. 

d) shows the precipitations error for the “wet days” (observed precipitation 

the four positions in the Skjerka catchment, Storevatn, Juvann, Orevann and 

In the “one day ahead forecast” we find that there is a negative shift or bias 

distribution for the 4 positions combined in Figure 16.e)

restimation of rain in summer”) could be reduced by using better calibration 

that increase the forecasts slightly. 

Wet days = more than 1 mm precipitation, Dry days = more than 1 mm precipitation 

We chose to study the precipitation further since it is the most important factor deciding the 

are also very close to normal distribution) 

 

the “wet days” (observed precipitation 

, Juvann, Orevann and 

forecast” we find that there is a negative shift or bias 

.e) This negative 

could be reduced by using better calibration 
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In the 5 day forecast in Figure 1

precipitation forecast. Compared to 1

 

 

 

Figure 17. 5 Days ahead precipitation error  

in Figure 17.e) we do not find the same unde

Compared to 16.e) we see a lower bar at zero and a higher spread.

underestimation in 

.e) we see a lower bar at zero and a higher spread. 
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In Figure 18.e) in the 10 day forecast there is again a clear underestimation,

the forecast show clear average underestimation of precipitation, this will probably

the runoff forecast giving an underestimation there also.

 

3.3 Conclusions of weather forecasting uncertainties in 

 

In the summer period the temp e

we consider it to contribute in little runoff error.

high uncertainty, but the underestimation seen in

be countered with better calibration of weather forecast data. Since the weather forecast 

always will have error caused by simplification and estimation,

there are limitations to the level of improvement

observation data it is clear that even then the HBV model 

Therefore it is more important to focus on improving the HBV model and th

correction.   

 

 

Figure 18. 10 days precipitation 

the 10 day forecast there is again a clear underestimation,

the forecast show clear average underestimation of precipitation, this will probably

the runoff forecast giving an underestimation there also.  

3.3 Conclusions of weather forecasting uncertainties in Skjerka

In the summer period the temp error is between zero and 5 degrees, and small enough that 

we consider it to contribute in little runoff error. The precipitation error for wet days has

but the underestimation seen in Figure 18. (the 10th day forecast

d with better calibration of weather forecast data. Since the weather forecast 

have error caused by simplification and estimation, and already is very complex

there are limitations to the level of improvement. When running the HBV 

servation data it is clear that even then the HBV model still have a high average error.

Therefore it is more important to focus on improving the HBV model and th

 

 

the 10 day forecast there is again a clear underestimation, since several of 

the forecast show clear average underestimation of precipitation, this will probably affect 

Skjerka 

rror is between zero and 5 degrees, and small enough that 

error for wet days has a 

day forecast) might 

d with better calibration of weather forecast data. Since the weather forecast 

and already is very complex 

HBV model with 

still have a high average error. 

Therefore it is more important to focus on improving the HBV model and the using error 
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4 Uncertainty study of inflow forecasting

 

After quantifying the uncertainty from the meteorol

data into the OHBV model, and compare the difference of predictions with forecasting 

meteorological data and observed one. 

 

4.1 Study of OHBV model predictions

 

The OHBV model records the hydrological state of the 

are very important to the runoffs calculation, because, if the state file has 

OHBV model will give higher errors in

historical observed weather

After we have obtained these two different runoff forecast

how much improvement is gained by removing the error in the weather forecasts 

completely. We have not recalibrated the model parameters, which may have an effect on 

the performance after changing the quality of the input, since this

thesis. 

4.1.1 Error distribution of the predictions ran with forecasting meteorol

data 

Figure 19. Error in OHBV predictions, run with forecasted weather data

study of inflow forecasting 

e uncertainty from the meteorological forecasting system, we f

HBV model, and compare the difference of predictions with forecasting 

meteorological data and observed one.  

HBV model predictions 

the hydrological state of the Skjerka in “state values” 

runoffs calculation, because, if the state file has inaccuracies

give higher errors in the predictions after. We run the O

weather data, and also with the 10 days forecasting data from the EC.

After we have obtained these two different runoff forecast, we can compare them to see 

how much improvement is gained by removing the error in the weather forecasts 

pletely. We have not recalibrated the model parameters, which may have an effect on 

the performance after changing the quality of the input, since this is not covered by this 

istribution of the predictions ran with forecasting meteorol

Error in OHBV predictions, run with forecasted weather data 

ogical forecasting system, we feed these 

HBV model, and compare the difference of predictions with forecasting 

in “state values” These values 

inaccuracies, the 

run the OHBV model with 

10 days forecasting data from the EC. 

, we can compare them to see 

how much improvement is gained by removing the error in the weather forecasts 

pletely. We have not recalibrated the model parameters, which may have an effect on 

is not covered by this 

istribution of the predictions ran with forecasting meteorological 
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As expected due to the findings in the precipitation forecast there is a visible negative shift 

in the runoff forecast generated by the HBV model 

input. 

 

The average mean error of the HBV prediction

from 15 to 18. But since this

if the error correction part goes well.

Table 1. Average mean and standard deviation of OHBV forecast error.

4.1.2 Error distribution of the predictions r

 

Figure 20. Error in OHBV predictions

As expected due to the findings in the precipitation forecast there is a visible negative shift 

in the runoff forecast generated by the HBV model when using the weather forecast as 

of the HBV prediction when run with forecast meteorological data 

this is before any correction is applied, so it may come closer 

art goes well. 

 

Average mean and standard deviation of OHBV forecast error. 

stribution of the predictions run with observed meteorological data

Error in OHBV predictions, run with observation weather data

As expected due to the findings in the precipitation forecast there is a visible negative shift 

when using the weather forecast as 

meteorological data is 

come closer to zero 

 

 

n with observed meteorological data 

 

, run with observation weather data 
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Running the HBV model again with observations of temp and precipitation we would expect 

that the negative shift would be smaller than when running with forecast data, this is 

actually not the case, which may indicate that the relative small error in precipitation 

forecast does not have such a big impact on the final HBV forecast as we had expected. 

Instead of ten distributions we get one since runoff observation is fixed for a certain date, as 

well are observation of precipitation and temperature. The mean error from HBV forecast 

run with observation data is around 13m^3 while the standard deviation of the error is 19, in 

other words close to the one day forecast (the improvement is shown in Figure 25). 

Substituting weather forecast with observation data before running the HBV model gave 

little change in the terms of improving the forecast. 

 

 

Table 2. OHBV errors and by using forecast and observation data as input, respectively. 

The forecast has a negative shift seen in Figure 20, even when the model is run with weather 

observation (“perfect forecast”) this proves that that the underestimation is coming from 

the OHBV model and not the forecast. When using observation data as input in the HBV 

model, we expect to be closest to the 1 day “mean_hbv_forecast” results, since that is the 

most accurate runoff forecast, and the weather forecast used as input is also closest to the 

weather observation.  
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4.2 Improvements study 

 

4.2.1 Definition of improvement 

The first problem is the definition of the improvement. That is how we can state that 

there is an improvement or not when changing the OHBV prediction. The OHBV 

prediction only has three situations which is the prediction is over observed runoff; 

the prediction is under observed runoff; and finally the prediction is equal to the 

runoff. The third situation is the perfect prediction, because it gives us the results we 

want that there is no error. But the first and the second situation have different 

meanings in reality. The first situation occurs when the incoming stream flow is the 

expectation, the second one occurs when the water amount is beyond the 

estimation. Both two situations are uncertainties in the predictions. We generally do 

not distinct the two, but are only interested in the size of the error.  

 
Figure 21. Improvement def: Distance weighted value 

In Figure 21., the two predictions have the same uncertainty. That is they have the 

equal absolute value. (They have the same distance to the observed value.)  

 

4.2.2 Formula of the Uncertainty on OHBV model 

 

This is how we could compute the numerical uncertainty. Since we have run the 

OHBV with forecasting meteorological data, and then rerun with observed 

meteorological data, we can separately compute uncertainties about each of the 

two predictions. As we expected, the prediction with observed meteorological data 

should be better than the prediction that use forecasting input, because we have 

removed the uncertainty in weather forecasting system. 
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Figure 

In Figure 22, we expect that HBV prediction with observed meteorological data

should be closer to the 

meteorological data. 

 

Hence, we have such formula that computes

• Uncertainty from the weather forecasting system = |HBV_fore 

Obs_runoff|- |HBV_obs 

This uncertainty is just the 

If using weather observation is improving the runoff forecast

should be above zero. If the uncertainty result is equal to zero, that means we get 

the same OHBV prediction with forecasting meteorological data and 

meteorological data. In other words, it means there is no 

uncertainty. Poor performance in the HBV mode

could cause such situations.

 

Table 3. Example of data file with OHBV calculated 

Figure 22. Improvement def: Ideal prediction 

 

, we expect that HBV prediction with observed meteorological data

 observed runoff (black line) than those with forecasting 

formula that computes the uncertainty: 

Uncertainty from the weather forecasting system = |HBV_fore 

|HBV_obs – Obs_runoff| 

This uncertainty is just the errors which come from the weather forecasting syst

using weather observation is improving the runoff forecast, then the uncertainty 

should be above zero. If the uncertainty result is equal to zero, that means we get 

prediction with forecasting meteorological data and 

gical data. In other words, it means there is no improvement in 

. Poor performance in the HBV model, or little error in weather forecast 

could cause such situations. 

 

Example of data file with OHBV calculated runoff and error values

 

, we expect that HBV prediction with observed meteorological data 

than those with forecasting 

Uncertainty from the weather forecasting system = |HBV_fore – 

from the weather forecasting system. 

, then the uncertainty 

should be above zero. If the uncertainty result is equal to zero, that means we get 

prediction with forecasting meteorological data and observed 

improvement in 

little error in weather forecast 

 

runoff and error values 
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In this Table 3, column B is OHBV prediction which is run with forecasting 

meteorological data. Column C is observation runoff, column D is OHBV prediction 

which ran with observed meteorological data. Column E = B – C which is difference 

value; column G = D- C. F and H are absolute value of E and G. Then we can get the 

uncertainty from the weather forecasting system which is column I. 

 

As we expected, the prediction with forecasting meteorological data should be 

worse than the prediction with observed data. But the opposite situation can also 

happen. 

 

From the whole table, we have several occasions as followed: 

 
Figure 23. Improvement def: Four realistic situations 

Figure 23a), the prediction with forecasting meteorological data is bigger than the 

observed data. The improvement from using observation data is positive. 

Figure 23.b), the prediction with forecasting data is above the observed runoff, at 

same distance as forecast with observation input. The improvement is zero. 

Figure 23.c), Compared to the OHBV(forecast), the OHBV(observation) is much closer 

to the observed runoff, so the improvement is also positive. 

Figure 23.d), the prediction with observed meteorological data is further from the 

observed runoff, so the improvement is negative. 

 

So we have it at last: 

Uncertainty (error) from the weather forecasting system 

 = |HBV_fore – Obs_runoff|- |HBV_obs – Obs_runoff| 
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4.2.3 Quantify the improvements

 

Figure 

The improvement in the HBV output from using observed 

forecast is small seen in the distribution, though clearly visible in Figure 

the improvement is shown in figure 25. The values can

Table 4. OHBV improvement from using weather observation data as input.

improvements from observed meteorological data

Figure 24. OHBV Improvement from observation input 

in the HBV output from using observed weather data instead of weather 

small seen in the distribution, though clearly visible in Figure 24.h)

shown in figure 25. The values can also be found in Table 4.

 

OHBV improvement from using weather observation data as input.

from observed meteorological data 

 

data instead of weather 

.h)-j) . The size of 

Table 4. 

OHBV improvement from using weather observation data as input. 
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Figure 25. Mean OHBV error improvement from using weather observation as input 

The mean improvement and the standard deviation of the improvement of error is rising 

with days ahead. Values are found in Table 4. 

4.2.4 Discussion 

If the weather forecasts improve the predictions, there will also be an improvement of the 

HBV predictions in the area of 2-8 m^3/s, as it is currently implemented. While the original 

error lies between 15-18 m^3/s therefore more that 10 m^3/s error comes from the model 

and is still there even when using very good weather forecasts. Both the model and the 

weather forecasts have room for improvement, but our result show that the error from the 

OHBV model simplification is the main contributor for the shortest forecast, and at day 10 

they will be more equally contributing. 
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5 Error corrections of the HBV predictions 

5.1 Error in original HBV model 

 

 

Figure 26. Historical OHBV forecast, stream flow runoff and error. 

It clear that the estimated stream flow will have errors, they come from simplification in the 

model compared to real life system, errors in weather forecasts both temperature and also 

HBV model parameters that can be calibrated to fit local conditions. In dry periods there is 

less error since runoff cannot be negative, both predicted and observed stream flow runoff 

goes towards zero. 

There are two things we wish to investigate after looking at the runoff figures. It is limited 

what we can do with this data for the whole period 2002-2009 since each day has only one 

value of prediction based on weather observations. (It’s basically what 1 day HBV forecast 

would produce if the weather forecast was 100% accurate) we cannot see how the forecast 

change from 10 days ahead to 9 days ahead as we do in our shorter period, but since we do 

have long dataset run with observation it is interesting to investigate some properties. Since 

the HBV model has states giving dependence in time, and the catchment also has 

delay(precipitation that come in one day might give runoff in 3 days), error in one forecast 

could influence the next, as well as there will be “trends” where runoff is going up and later 

down.  
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Figure 27. OHBV historical properties: Correct the error from the day before 

Using a correction of about 0.7 multiplied with yesterdays error gives an improvement of 

48% compared to the error in the original forecast. Strangely it seems that 0.68 is best when 

there was underestimation the day before, while 0.71 is best in case of overestimation.  

It could be that the model output has a little higher or lower average output than it should. 

Looking at the figure there is a clear underestimation in the forecast, since the error in red is 

generally below zero. Using correction also influenced from 2 days before did not improve 

the runoff forecast significantly (a factor of 0.04 could be used) 
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Figure 28. OHBV historical properties: Multiplying with a factor 

Using a multiplication/dividing factor based on if forecast was higher or lower than last 

(yesterdays) runoff observation to counter if the model works too slowly. That is we have an 

estimated “positive trend” which mean that the amount of water coming to the power 

station is rising. Seen as red in the figure the error after the change is very close, but it’s 

mostly lowering the error if it differs from the original error (the red is closer to zero in 

figure). The best level seems to be from 10 to 133 and the best correcting factor 0.89 %. 

Then the error (in present compared to observation) drops from 33.82% to 26.88%.  

 

After studying the hydrological forecast from the OHBV model, we found that many of the 

predictions are not close to the observation. Therefore an error correction mechanism 

should be added to reduce the uncertainties of the predictions. Instead of establishing such 

a mechanism inside the OHBV model, a new component called “error correction algorithm” 

is placed after. It is working independently and the only input is the OHBV model 

predictions. The advantage is to avoid influencing the complicated process of computing 

discharge inside the model, and focus on the error correction algorithm only. This “black 

box” design makes it easier to develop, compare and improve the algorithm.  

 

Chapter 5. gives the overview of an existing and a new developed method of error 

correction mechanism. First we look at Powel’s error correction and its performance, and 

then we will develop an alternative method and finally compare them. We will present the 

new error correction method as “weighted ATAN error correction”. 
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5.2 Powell Algorithm 
The Powell Algorithm employs an error correction algorithm which is working parallel of the 

model error. Using Powel was proposed by Agder Energi, based on its relative simple 

implementation. It is an empirical algorithm, but it is not fully tested according to “Powel 

doc”. Implementations of Powel funded by “Kraftvershydrologisk råd” came to the 

conclusion that the observations of model status are erroneous.”[15] 

 

5.2.1 Formula of Powell Algorithm 

 

Main calculation steps are: 
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(1) A trend factor �����	
 is calculated which is discharge this time step divided by 

discharge previous time step. 

(2) If �����	
 is greater than 1, which means an increasing of discharge, an attenuation 

factor ����	����������� 
 is calculated: 1/�����	
. Otherwise the attenuation factor is 

equal to �����	
. 

(3) If there is a discharge observation for the actual time step, the error factor, ������
 is 

calculated. ������
 is observed discharge divided by calculated discharge. If there is no 

discharge observation, ������
 = 1. 

Where a is the error prediction constant (calibration constant), a=<0.0, 1.0> 

(4) If the error prediction algorithm is active, the calculated discharge is multiplied 

by �!�"�
. 

Formula Powel algorithm from attachment 8.2 
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5.2.2 Data selection 

In the study of the OHBV predictions, we found a period of days with abnormally large errors 

in the predictions. And as mentioned, we can’t find the exact reasons why the performance 

in this period was so poor. For the study of error correction, we decided to remove this 

abnormal data, to avoid it influencing the results of the experiment. As we expect that when 

the prediction is very poor, it will influence the correction in a negative way. This may seem 

opposite of logic since with larger error there are more room for improvement. On the other 

hand Powel is based on the error between last observation and forecast, and thereafter 

using this to improve the future forecast. Then it is important that there is a strong positive 

correlation between the HBV forecast and the observation. It means that if observed runoff 

is increasing or decreasing, and then there should be a high probability the forecast does the 

same. Basically Powel will try to counter errors from under/over estimation, but will 

sometimes introduce errors also, especially if the HBV forecast is uncorrelated with 

observed stream flow. The experiment date is from 5
th

, May, 2009 until 30
th

, September, 

2009 without the abnormal period which is from 6
th

, July to 21
st

, August. The precipitation 

type within the 101 days is rain and the air temperature is always above zero. 
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5.2.3 Distributions of the uncertainties of the predictions after Powell algorithm

First, when parameter A is equal to 0.2, we input the meteorological data into

and run Powell error correction on these predictions. 

observation. Finally, we got the uncertainties of the predictions.

 

Here, we are going to study the distributions of these uncertainties. 

Figure 

Some values will occur outside the figure on the x axis, though they would hardly be visible. 

The most important thing in these error distributions is that the “spreading” increases. 

There is also a clear positive shift, which means P

5-10) See later figure with mean and st

the Powell level of performance.

 

From Fig 29, we can see that 

after day 5, some very big positive value

predictions are far away from the observation. 

error, other errors get very large. 

makes no sense to use. As mentioned when investigating error in the HBV model, it would 

be possible to only use correction at the “medium levels of runoff”, that is to avoid 

correcting when the runoff is at it peaks. At the high narrow peaks you get the possibility for 

the most extreme values, since if you underestimate at the peak Powel will add more at the 

next day, while in reality it was going steep down. The deciding level of how high the values 

Distributions of the uncertainties of the predictions after Powell algorithm

irst, when parameter A is equal to 0.2, we input the meteorological data into

and run Powell error correction on these predictions. Then use these numbers minus the 

inally, we got the uncertainties of the predictions. 

we are going to study the distributions of these uncertainties.  

Figure 29. OHBV Error after Powel with a=0.2 

Some values will occur outside the figure on the x axis, though they would hardly be visible. 

The most important thing in these error distributions is that the “spreading” increases. 

ive shift, which means Powel is overestimating(especially at day 

See later figure with mean and standard of error after Powell is applied to conclude 

l level of performance. 

, we can see that in the first few days, the distribution is quite good

after day 5, some very big positive values occur. It means that sometimes the corrected 

predictions are far away from the observation. Though the algorithm still corrects 

other errors get very large. In reality, if such situations happened, then the algorithm 

to use. As mentioned when investigating error in the HBV model, it would 

be possible to only use correction at the “medium levels of runoff”, that is to avoid 

is at it peaks. At the high narrow peaks you get the possibility for 

the most extreme values, since if you underestimate at the peak Powel will add more at the 

next day, while in reality it was going steep down. The deciding level of how high the values 

Distributions of the uncertainties of the predictions after Powell algorithm 

irst, when parameter A is equal to 0.2, we input the meteorological data into OHBV model, 

hen use these numbers minus the 

 

Some values will occur outside the figure on the x axis, though they would hardly be visible. 

The most important thing in these error distributions is that the “spreading” increases. 

owel is overestimating(especially at day 

is applied to conclude 

quite good (narrow), but 

sometimes the corrected 

hough the algorithm still corrects some 

eality, if such situations happened, then the algorithm 

to use. As mentioned when investigating error in the HBV model, it would 

be possible to only use correction at the “medium levels of runoff”, that is to avoid 

is at it peaks. At the high narrow peaks you get the possibility for 

the most extreme values, since if you underestimate at the peak Powel will add more at the 

next day, while in reality it was going steep down. The deciding level of how high the values 
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could be before Powel is not used could vary for days ahead (becoming smaller). It will vary 

from place to place, so the most efficient way to decide the levels would be to look at the 

historical HBV runoff curve together with observation of runoff. The lev

where the error is large, at high narrow peaks. At

with multiplying factor showed that the best limits where from 

start.  

Figure 

When A is equal to 0.5, we can see that in the first four days, the distribution sharps are 

almost the same. In next four days, the positive value 

some big uncertainties happened and the alg

days, almost the same situation as the 0.2 one. 

 

ould be before Powel is not used could vary for days ahead (becoming smaller). It will vary 

from place to place, so the most efficient way to decide the levels would be to look at the 

historical HBV runoff curve together with observation of runoff. The level should be decided 

where the error is large, at high narrow peaks. At the Skjerka catchment the HBV analysis 

with multiplying factor showed that the best limits where from 10 to 133 so that could be a 

Figure 30. OHBV Error after Powel with a=0.5 

 

hen A is equal to 0.5, we can see that in the first four days, the distribution sharps are 

n next four days, the positive value occurred far away from 

some big uncertainties happened and the algorithm doesn’t correct as much as the first four 

days, almost the same situation as the 0.2 one.  

ould be before Powel is not used could vary for days ahead (becoming smaller). It will vary 

from place to place, so the most efficient way to decide the levels would be to look at the 

el should be decided 

hment the HBV analysis 

10 to 133 so that could be a 

 

hen A is equal to 0.5, we can see that in the first four days, the distribution sharps are 

far away from zero, it means 

t correct as much as the first four 
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Figure 

Even though in the first day, the 

the steps where much larger it would be hard to distinct the different figures, so we kept it 

like this. Comparing Powel(a=

show that small “A” makes Powel perform best at day 1 and 2, 

day 3+. This is easier to see from the curves below.

 

 

Figure 31. OHBV Error after Powel with a=0.8 

ven though in the first day, the peak at zero is very high, but noise makes it look 

the steps where much larger it would be hard to distinct the different figures, so we kept it 

Powel(a=0.8) figure to Powel(a=0.5) and Powel(a=0.2

show that small “A” makes Powel perform best at day 1 and 2, while larger a works best for 

day 3+. This is easier to see from the curves below. 

 

 

noise makes it look strange. If 

the steps where much larger it would be hard to distinct the different figures, so we kept it 

0.2), we will later 

while larger a works best for 
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5.2.4 Improvements study of the predictions after Powell

Figure 

In Fig 32, it presents the gene

presented that the adjustment of the error correction is controlled by the parameter A, 

which is in the intern from 0 to 1. There is not a fixed value of parameter A to 

best results. To examine and decide the best proper value of parameter A, we tried 3 

different values when A is equal to 0.2, 0.5, 

After we calculated the corrected

to original OHBV predictions.

 

 

Improvements study of the predictions after Powell 

Figure 32. Error in OHBV and after Powel (0.2,0.5,0.8) 

In Fig 32, it presents the general correction performance of Powel algorithm. 

presented that the adjustment of the error correction is controlled by the parameter A, 

which is in the intern from 0 to 1. There is not a fixed value of parameter A to 

To examine and decide the best proper value of parameter A, we tried 3 

different values when A is equal to 0.2, 0.5, and 0.8 to observe the trends of improvements. 

orrected predictions, we compared the curve of Powell predictions

predictions. 

 

 

ral correction performance of Powel algorithm. In 4.1.1, it is 

presented that the adjustment of the error correction is controlled by the parameter A, 

which is in the intern from 0 to 1. There is not a fixed value of parameter A to predict the 

To examine and decide the best proper value of parameter A, we tried 3 

the trends of improvements. 

predictions, we compared the curve of Powell predictions 
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5.2.5 Error correction conclusions

From the figure 32, the curve of parameter A that is equal to 0.2 reduces the uncertainty 

value down to about 5m//s in the first day; 

improving less than the 0.2 one. The curve 0.5 is about 7

8.9m//s. In the second day, the curve 0.2 improves as same as the curve 0.5

0.8 is still worse than the other two. In the third day, the curve 0.8 improv

curve 0.5, but this time, the curve 0.2 is worse than the other two. 

curves 0.2 and 0.5 have been beyond the uncertainty of 

they contribute nothing to the error correction. Meanwhile, 

1.5m//s error. In the fifth day, the curve 0.8 has the same uncertainty as the OpenHBV 

model, and the other two curves, 0.2 and 0.5 have bigger uncertainties than the 

model. After the fifth day, the predictions afte

worse than the original OHBV

only employed in 5 days at the beginning. 

Figure 

To employ the best performance of Powell Algorithm, the methodology could set different 

parameter A values in different days, in our case, that is A is equal to 0.2 in the first and 

second day, set A to 0.8 in the third, fourth, and fifth day, and noth

 

onclusions 

the curve of parameter A that is equal to 0.2 reduces the uncertainty 

/s in the first day; The curve of 0.5 and 0.8 are significantly 

ng less than the 0.2 one. The curve 0.5 is about 7m//s and the curve is 0.8 about 

/s. In the second day, the curve 0.2 improves as same as the curve 0.5

0.8 is still worse than the other two. In the third day, the curve 0.8 improves as same as the 

curve 0.5, but this time, the curve 0.2 is worse than the other two. In the 

been beyond the uncertainty of OHBV model itself, which

they contribute nothing to the error correction. Meanwhile, the curve 0.8 still improves ca. 

/s error. In the fifth day, the curve 0.8 has the same uncertainty as the OpenHBV 

model, and the other two curves, 0.2 and 0.5 have bigger uncertainties than the 

model. After the fifth day, the predictions after Powell algorithm error correction are much 

OHBV model predictions. In other words, the Powell algorithm is 

only employed in 5 days at the beginning.  

Figure 33. Powel with the best of the parameter selected 

To employ the best performance of Powell Algorithm, the methodology could set different 

parameter A values in different days, in our case, that is A is equal to 0.2 in the first and 

second day, set A to 0.8 in the third, fourth, and fifth day, and nothing to correct after.  

 

the curve of parameter A that is equal to 0.2 reduces the uncertainty 

curve of 0.5 and 0.8 are significantly 

/s and the curve is 0.8 about 

/s. In the second day, the curve 0.2 improves as same as the curve 0.5, but the curve 

es as same as the 

n the fourth day, the 

itself, which means 

the curve 0.8 still improves ca. 

/s error. In the fifth day, the curve 0.8 has the same uncertainty as the OpenHBV 

model, and the other two curves, 0.2 and 0.5 have bigger uncertainties than the OHBV 

r Powell algorithm error correction are much 

model predictions. In other words, the Powell algorithm is 

 

To employ the best performance of Powell Algorithm, the methodology could set different 

parameter A values in different days, in our case, that is A is equal to 0.2 in the first and 

ing to correct after.   
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5.3 Yukun&Karl Algorithm 

This is a new algorithm developed by the authors of this paper. The Powel Algorithm is an 

empirical method, while Yukun&Karl Algorithm is focusing on mathematical improvements. 

 

The main idea behind our method is that from the observation and studies of distribution of 

the uncertainties in OHBV model predictions, that is from the first day until the tenth day, 

the mean values of the prediction of each day are lower than the observation discharge. This 

means we have a general underestimation. To solve this problem, it is needed to add some 

positive value to OHBV predictions within statistic methodology. The correction also needs 

to work in the case of overestimation, and then we need to add a negative value to the 

original forecast.  

 

Another important problem it that, after observing the prediction results, we found that in 

first few days, the discharges have some relevance with the observation of Day 0. “Day 0” 

can be described as the average observed runoff of “today” and “tomorrow” is the first day 

of 10 days forecast. However, in the middle and last part of the 10 days forecasting, we 

don’t have any relation with observations, and need to rely more on the OHBV model. At 

last, the mean value of error in the last few days are significantly increasing and the standard 

deviation values are also much bigger than the previous days.  

 

Also a very important factor in correcting the OHBV forecasts successfully is the trend of 

how the discharge is changing, which is a relative “stable” curve of increasing or decreasing 

the runoff in most situations. In a catchment with delay, there are rarely flat or rapid 

changes in the runoff. The exceptions are some high peaks that possibly could be excluded 

from correction, by setting a maximum value. Yukun&Karl Algorithm has exploited all these 

points mentioned above. 
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5.3.2 Formula of Yukun&Karl algorithm

The main steps of Yukun&Karl Algorithm are:

1. Y1= ATAN (
23456789(:)�2345678

2345678_

2. Z1= |Y1| ∗ Y1 ( i=1,2,3,4,5,6,7,8,9,10 )

3. Error_Correction1 = (1 G
( i=1,2,3,4,5,6,7,8,9,10 ) 

4. Prediction1 = a1 ∗ Error_
) 

5. 
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(1) 
23456789(:)�23456789(:c

2345678_d(1��)

decrease this day, NB: if OpenHBV
that day. 

Then the percent number will go through ATAN function, which is:

This function has a special feature 

for the safety of the predictions; 

accuracy of the final result, since the y axis growth slows down when x gets larger.

 

.2 Formula of Yukun&Karl algorithm 

The main steps of Yukun&Karl Algorithm are: 

23456789(:cj)
_d(1��) ) ( i= 1,2,3,4,5,6,7,8,9,10 ) 

( i=1,2,3,4,5,6,7,8,9,10 ) 

G Z1) ∗ Error_Correction1��,when t=1 Error_Correction

_Correction1 G b1 ∗ OpenHBV_Forecast 1 ( i=1,2,3,4,5,6,7,8,9,10 

W
X
X
X
X
X
X
X
X
Y

 

Formula Yukun&Karl algorithm 

( cj)
 is how much percent the discharge would increase or 

OpenHBV_F(i m 1) is equal to zero, then no error correction for 

Then the percent number will go through ATAN function, which is: 

 

Figure 34. ATAN function 

feature at each asymptote at value  n o
N , the idea behind thi

for the safety of the predictions; an extreme big value will not be allowed to 

, since the y axis growth slows down when x gets larger.

 

Correction V=OBS 

( i=1,2,3,4,5,6,7,8,9,10 

the discharge would increase or 

then no error correction for 

the idea behind this is 

not be allowed to influence the 

, since the y axis growth slows down when x gets larger. 
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(2) After computing the internal parameter Y, it is calculated in next 

reform the value. The function 

Then we got the error correction parameter Z

(3) Next step, it is to compute 

day, we involve Observation runoff for calculation.

(4) Compute the final prediction for each day.

(5) The parameter matrix of a, b is not fully tested. It means there could be a better matrix 

which could reduce much more error than the present one.

 

 

the internal parameter Y, it is calculated in next function in order to 

reform the value. The function is: Z1= |Y1| ∗ Y1  (plotted as y=(+,-)x^2)  

 

Figure 35. Amplifying function 

hen we got the error correction parameter Z(in percent). 

(3) Next step, it is to compute Error_Correction1 for each day. At the beginning of the first 

nvolve Observation runoff for calculation. 

(4) Compute the final prediction for each day. 

(5) The parameter matrix of a, b is not fully tested. It means there could be a better matrix 

which could reduce much more error than the present one. 

 

function in order to 

for each day. At the beginning of the first 

(5) The parameter matrix of a, b is not fully tested. It means there could be a better matrix 
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5.3.3 Improvements study of the predictions after Yukun&Karl algorithm

As the definition of improvement

day after Yukun&Karl Algorithm correcting to the original 

distribution of improvement in each day.

                           Figure 

The positive bars show improvements;

error correction algorithm 

Algorithm is focusing on statistic improvements, it 

time, but only an average positive

positive value of the improve

(big improvements are further from zero in the distribution). 

number of improvements in the interval.

 

From Figure 36, we can see that in the first day, the algorithm 

the second day, it made some predictions

the third day, there are more errors produced

In day 4 it the improvement is better

small that day 5-8 day forecasts

would be better not to use any

ements study of the predictions after Yukun&Karl algorithm

improvement in chapter 3, we compared the predictions error of each 

day after Yukun&Karl Algorithm correcting to the original OHBV runoff. Then here is the 

ovement in each day. 

Figure 36. Yukun&Karl Algorithm Improvement distributions

improvements; however, the negative bars show the dates when

error correction algorithm actually makes the prediction worse. Because Yukun&Karl 

Algorithm is focusing on statistic improvements, it cannot guarantee an improvement every 

but only an average positive improvement. Furthermore, the bigger the 

improvement, the larger was the improvement on that specific 

(big improvements are further from zero in the distribution). The heights of bars show the 

number of improvements in the interval. 

, we can see that in the first day, the algorithm corrected significant errors. 

the second day, it made some predictions worse, but only a few and the error was small

re are more errors produced, but the average improvement is still positive.

the improvement is better, and then the factor in the matrix makes the change so 

day forecasts are very close to the original HBV forecast. At day 9 and 10 it 

any correction.   

ements study of the predictions after Yukun&Karl algorithm 

in chapter 3, we compared the predictions error of each 

runoff. Then here is the 

 
Yukun&Karl Algorithm Improvement distributions  

the dates when the 

makes the prediction worse. Because Yukun&Karl 

an improvement every 

. Furthermore, the bigger the size of the 

larger was the improvement on that specific error 

The heights of bars show the 

corrected significant errors. In 

but only a few and the error was small. In 

but the average improvement is still positive. 

the factor in the matrix makes the change so 

are very close to the original HBV forecast. At day 9 and 10 it 
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Figure 37. Yukun&Karl versus original OHBV forecast. 

From Figure 37, we can see that the blue improvement curve is going down with time. The 

error correction algorithm reduces most errors at the beginning, but is then corrected less 

and less in the middle of days and almost flats out. For the last 2 days the improvement is 

negative. 

 

5.4 Comparisons of Powell algorithm and Yukun&Karl algorithm 

 

After the studies of Powell algorithm and Yukun&Karl algorithm, we can make a comparison 

to find out advantages and disadvantages of each algorithm, and get a final conclusion. 

 

There are two necessary aspects to compare; the first is the error correction effect, and the 

second thing is complication of the operation. The first thing is how much error it could 

reduce, and the second thing is how much time and effort is needed to calibrate and 

calculate the error. 

 

In figure 38. The Powell algorithm, Yukun&Karl algorithm, and OHBV prediction error results 

are plotted together.  



 

63 

 

 

Figure 38. Comparison of OHBV error corrections 

From Figure 38, we can see that, within the first four days at the beginning, Yukun&Karl 

algorithm is a working little bit better than Powell algorithm. In period of day 5 until day 8, 

Powell algorithm has very significant errors, and is making the forecast worse than the OHBV 

model itself, but Yukun&Karl algorithm still makes some improvement. At the end of day 9 

and day 10, nothing is better than original OHBV model.  

 

To have a clear vision of corrections, we are going to study the correction curve in the first 

and fifth day. The first day is the day when most of error is corrected. The fifth day is special 

when investigating the data in Figure 38, because in that day Powell algorithm contributes 

almost nothing, while Yukun&Karl algorithm is still correcting errors. 

 

In Figure 39. we compared the OHBV forecasting runoff, observed runoff, Yukun&Karl 

algorithm, and the Powell algorithm with a=0.8 together within 101 days of 5 days ahead 

HBV forecast. 
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Figure 39. 1 Day OHBV runoff with error correction 

In Figure 39.a), Yukun&Karl algorithm is doing almost as good as the Powel algorithm(with 

a=0.2) when the runoff is under 30m//s. The only difference is how the two algorithms work 

when flash flood is coming which is usually over 40 m//s. In picture a, around the 70
th

 

forecast, there are significant enhancements of the error correction, comparing Yukun&Karl 

curve to the Powel 0.2 curve. 

 

Please notice that, around the 70th forecast, the observed runoff show a flash flood, but the 

OHBV model under predicts. This big error could influence the error correction as well. 

 

From the Figure 39.b), the OHBV model sometimes produce large errors, approximate 

50m//s. Such big amount error should not be acceptable in the final estimation. The largest 

errors occurs when the runoff is changing rapidly and over 30m//s. Most of the errors are 

corrected somehow, only no more than 10% forecasts are corrected even worse. 

 

In days runoff below 10m//s, the average error is under 2m//s. Actually, the prediction after 

Yukun&Karl algorithm is always over 2~3m//s, which means, if the observed runoff is very 

low, and no precipitation is forecasted in the few days, it is not better to employ error 

correction algorithm, to avoid that small error introduced by the error correction algorithm. 

 

The first day is corrected successfully, because we can use observation to help correcting 

error. The 2
nd

, 3rd and 4
th

 days are not corrected as much as the first day. In fact, the 
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prediction after 2 or 3 days at the beginning is not relative to the observation any more. So, 

we have to rely on the OHBV model and error correction from day 5 until day 8. 

 

 

Figure 40. 5 Day OHBV runoff with correction 

From the Figure 40.a), we can see that both the algorithms size of error follow the trend of 

OHBV model stream flow level. Proving that larger runoff gives larger error.  

 

In Figure 40.b), around the 75
th

 forecast, the OHBV prediction have a large error similar to 

the 1 day error study in Figure 39. 

 

Besides, one import thing we have to highlight is that both algorithms are controlled by 

parameters, and that these parameters are not fully tested, which means the parameters in 

our curves and figures are not optimal values. In the other words, there could be a further 

study on finding the optimal parameters to ensure the best error correction performance. 

 

The level of improvement in the 6th to 8th days is under 0.5 m^3/s, which means the 

selection of parameters is very important. Not just for the level of improvement, but to 

avoid negative effects on the original error (“negative improvement”). If the parameters 

chosen do not fit with the properties of the data, the algorithm may make no sense to use. 
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                     Figure 41. Yukun&Karl algorithm with poorly chosen parameters 

Figure 41. Shows the result after correction if the parameters are not chosen carefully. From 

the fifth day, the correction algorithm do not contribute to lowering the error, but in 

average introduce more errors. 
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5.5 Conclusions on error correction 

 

Yukun&Karl algorithm works as well as the Powel algorithm in the first four days. It is then 

needed to compute the Powel error correction several times each day and sort out the best 

values to compete with the performance of the Yukun&Karl algorithm. For our chosen 

values of parameter a, the best Powel performance where when using: A=0.2 for day 1 and 2 

and A=0.8 for day 3 to day 5.   

  

The biggest advantage of Yukun&Karl algorithm compared to Powel is the improvements in 

the middle days, which from the fifth day until the eighth day. In this period, Powel 

algorithm makes no sense at all. Though Yukun&Karl algorithm does not improve much of 

the error, but this could be a possible method to improve and then it could work even better 

in the future.  

 

At day 9 and 10 in the forecasting, the growing uncertainty seems to make error correction 

problematic, so none of the two error correction mechanism does seem suitable to solve the 

error correction problems in those days. 

 

In our result apply to general application; we can conclude that Yukun&Karl algorithm is 

working a little bit better than Powel algorithm.  

 

Though it is possible to use Yukun&Karl algorithm instead of Powel algorithm, the only 

disadvantage is that there are more parameters to set in Yukun&Karl algorithm than Powel 

algorithm. In Powel algorithm, there are only 5 parameters to set, however, in Yukun&Karl 

algorithm, it needs 2 parameters for each day, and total 8 pairs parameters to be set, and 

they are independent from each pair. 

 

Both of the algorithms works after the OHBV prediction further work could be developing a 

methodology which to find the optimal parameters of the algorithm. 
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6 Overall conclusions and further work  

At last, we present several overall conclusions and the suggestions of further work. 

In the summer period when the precipitation generally falls as rain, the air temperature 

error is between zero and 5 degrees, and contributes little to the runoff error. Precipitation 

error for wet days have a high uncertainty, but the underestimation seen in the 9
th

 and 10
th

  

day forecast might be countered with better calibration of weather forecast data and a 

longer data period. The weather forecast improvement is limited, since it will always have 

error caused by simplification and estimation. 

After running the HBV model with observed and forecasting meteorological data separately, 

we found that the improvement within meteorological data is not as significant as we 

expected. The weather forecasting uncertainty contribute to between 2 and 7m^3/s 

according to number of days ahead in the forecast. The rest of the error then comes from 

the OHBV model. 

The Powell algorithm improves significantly in the first four days, but it is needed to find the 

best parameters “a” first. In our thesis we compute the Powel error correction with three 

different parameters “a”, and sort out the best values per day, e.g. A=0.2 for day 1 and 2 and 

A=0.8 for day 3 to day 5. Since we use historical predictions to confirm the optimal 

parameters, after a while, when we have new historical prediction, the optimal parameter 

may be obsolete and to be updated.  

 

The Yukun&Karl algorithm is somehow similar to the Powel algorithm, but it needs two 

parameters for each day in the forecast, which is more than the one in Powel. The 

parameters for each day should be updated after a period of prediction, in case of changes 

in the input data properties (example is when OHBV parameters are changed). In the data 

we have studied, the results show that Yukun&Karl algorithm works a little bit better than 

Powel algorithm in lowering the error.  

 

The biggest advantage of Yukun&Karl algorithm compared to Powel is the improvements in 

the middle days, which are from the fifth day until the eighth day. In this period, Powel 

algorithm makes no sense to use. Though Yukun&Karl algorithm does not improve much of 

the error in this period, it could be a possible method to improve and then it could work 

even better in the future. At day 9 and 10 in the forecasts, the growing uncertainty seems to 

make error correction problematic. So error correction mechanism does not seem suitable 

to solve the error problems in those two days. 

 

A suggestion to further work is to develop an agile method to optimize the parameters for 

error correction. As for the OHBV model itself, it still needs enhancement in performance. 
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7: Sources/links 
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[8] Bergström, S. 1995. The HBV model. In: Singh, V.P. (Ed.) Computer Models of Watershed 

Hydrology. Water Resources Publications, Highlands Ranch, CO., pp. 443-476. 
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[10] Climate and Hydrology in Mountain Areas, Carmen de Jong David Collins Roberto Ranzi, 

page 221, ISBN-13 978-0-470-85814-1 
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[15] See 8.2 Powel error Prediction (Document from Agder Energy A/S). 

[16] See 8.2 Powel error Prediction (Document from Agder Energy A/S). 
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8: Appendix  

8.1: DIV ABREVIATIONS in report and files 

 

Abs = absolute value 

EC = European center weather forecast 

GFS = Global Forecasting System in USA  

Mean = average value 

OHBV = Open HBV (hydrological model) 

Prec = precipitation 

Runoff = stream flow runoff (amount of water coming) 

Std = standard deviation 

Temp = temperature 

Var = variance 
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8.2 Powel error Prediction (Document from Agder Energy A/S) 

 

The kalman filtering technique was tested and evaluated in the early versions of HBV, 

funded by “Kraftverkshydrologisk råd”. However, the method has been dropped when there 

is no unique way to update the hydrological condition based on observed discharge. 

There are several methods available in order to correct the deviation between observed and 

simulated discharge, for instance by adjusting the water level in lower and upper zone, soil 

moisture content and snow reservoir. The snow reservoir may be corrected several ways, for 

distribution and the water content of the snow pack. However, the snow reservoir is 

excluded as spring seasons. During the snow free season, we may modify the water level 

lower and upper when there is one linear tank in model. In this situation there is a unique 

link between the water level in the tank and the output from the linear tank.  

When the model contains both linear as well as nonlinear tanks, there is no longer a unique 

way to make corrections of the model status based on the deviation between the observed 

and calculated discharge. Available methods are several subjective combinations of 

analytical methods as well as some “Kraftvershydrologisk råd”. This is the reason why the 

latest model implementations have left the Kalman filtering technique, and rather 

implemented an error prediction algorithm. 

The Powel Inflow model (Powel implementation of the HBV model) does not employ the 

Kalman filtering technique but an error prediction algorithm. 

There is no feedback from the discharge deviation into the model status, but a parallel 

correction of the model error. The main reason behind this decision are experiences from 

the early implementations funded by “Kraftvershydrologisk råd” where the conclusion was 

that the observations of model status was erroneous, especially in the winter season. 

The error prediction algorithm is an empirical technique, and it has not been fully tested. 

The method is logarithmic, in the way that it deals with “relative error” and not the absolute 

error. 
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Main calculation steps are: 

1. A trend factor is calculated qTrend& endash; discharge this time step divided by the 

discharge previous time step. 

2. If qTrend is greater than 1, which means an increasing of discharge, an attenuation 

factor trendAtt is calculated: 1/qTrend. Otherwise the attenuation factor is equal to 

qTrend. The reason behind this is that error correction is more safe and accurate when 

discharge is decreasing. The uncertainty of the error correction is greater and it is 

proportional to the increase of discharge. 

3. If there exists a discharge observation for the actual time step, the error factor, aRatio, is 

calculates. qRatio is observed discharge divided by calculated discharge. If there is no 

discharge observation, qRatio=1. 

4. The error correction factor q-cfact(t) is calculated as follow: 

q_cfact(t)=(�_"q�"�(� m 1) ∗ (������(�� ))) √
%&'( 

&') 
*+' 

Where a is the error prediction constant (calibration constant), a=<0.0, 1.0> 

If the error prediction algorithm is active, the calculated discharge is multiplied by 

q_cfact(t). 

 

 

 

 

 


