
Empirical Evaluation of the
Bayesian Learning Automaton

Family

By
Terje Br̊adland and Thomas Norheim

Thesis submitted in Partial Fulfillment of the
Requirements for the Degree Master of Technology in

Information and Communication Technology

Faculty of Engineering and Science
University of Agder

Grimstad
May 2009

Abstract

The two-armed bandit problem is a classical optimization problem where a player sequentially
selects and pulls one of two arms attached to a gambling machine, and each arm pull results in
either a reward or penalty to the player. Each arm is associated with a certain reward probability
which is unknown to the player, and the player needs to sequentially select and play an arm
and receive a reward or a penalty in order to discover its true reward probability. The overall
goal for the player is reward maximization, and the player needs to balance between exploiting
existing knowledge or obtaining new knowledge by trying different arms. In the long run it
may be beneficial to risk short term loss to gain greater certainty about the reward probability
associated with each arm.

The problem as described above is the simplest case of the more general k-armed bandit prob-
lem and is concerned with the exploration vs. exploitation dilemma. A wide range of schemes
has been proposed to solve the problem, and in this thesis we focus our attention on a series
of schemes collectively referred to as the Bayesian Learning Automaton family, originally intro-
duced by O-C. Granmo with the Bayesian Learning Automaton deigned for Bernoulli distributed
reward.

The Bayesian Learning Automata rely upon Bayesian statistics and the use of conjugate prior
distributions with sets of updating rules of hyperparameters associated with these conjugate
prior distributions. These updating rules make it possible to apply Bayesian statistics in an
automaton in a simple and highly computationally efficient manner.

In this thesis we extend the Bayesian Learning Automaton family with three new members
designed for Poisson and normally distributed reward.

We empirically evaluate both the Bayesian Learning Automaton family and competing schemes
in the general k-armed bandit problem with Bernoulli, Poisson and normally distributed reward.
We also empirically evaluate these players in the Goore game, iterative prisoners’ dilemma and
two-player zero-sum game from game theory.

Through extensive experiments we show that the Bayesian Learning Automaton family overall
outperforms all other comparable learning schemes in the k-armed bandit problem, and the
Bayesian Learning Automata are among the top performers in all the the games they are intro-
duced to in this thesis. Thus, we believe that the Bayesian Learning Automaton family is an
important addition to the field of bandit playing algorithms and is an important area for further
research.

Preface

This thesis is submitted in partial fulfillment of the requirements for the degree master of
technology in Information and Communication Technology at the University of Agder, Faculty
of Engineering and Science, under the supervision of associate professor Ole-Christoffer Granmo.

We wish to thank Ole-Christoffer Granmo for great support during our work with this master
thesis. Granmo has been a great inspiration to us during this period, and his knowledge in the
field of learning automata has been invaluable.

Grimstad, May 2009

Terje Br̊adland Thomas Norheim

i

Contents

1 Introduction 1

1.1 Importance of research . 1

1.2 Thesis definition . 3

1.3 Research questions . 3

1.4 Contributions . 4

1.5 Target audience . 5

1.6 Report outline . 5

2 Reinforcement learning and automata theory 6

2.1 Learning . 7

2.1.1 Concepts of learning . 7

2.1.2 Reinforcement learning . 8

2.2 Bandit player . 9

2.3 Formal model of a bandit player and its environment 9

2.3.1 Definition of Player . 10

2.3.2 Definition of Environment . 10

2.4 Learning automata . 11

2.4.1 Definition of finite state-output automaton 11

2.4.2 Deterministic automaton . 13

2.4.3 Stochastic automaton . 13

2.4.4 Variable structure stochastic automaton 14

2.5 Selected concepts from game theory . 15

ii

CONTENTS

2.5.1 Rationality . 15

2.5.2 Dominance . 15

2.5.3 Pure strategy . 16

2.5.4 Mixed strategy . 16

2.6 Selected learning problems . 16

2.6.1 K -armed bandit problem . 17

2.6.2 Goore game . 18

2.6.3 Prisoners’ dilemma . 20

2.6.4 Two-player zero-sum game . 22

3 Bayesian inference 23

3.1 Random variables . 24

3.1.1 Distribution of a discrete random variable 24

3.1.2 Distribution of a continuous random variable 25

3.1.3 Random numbers and random sampling 25

3.2 Statistical inference . 26

3.2.1 Approaches to statistical inference . 26

3.3 Bayes’ theorem and parameter estimation . 27

3.4 The role of prior distributions in Bayesian statistics 28

3.4.1 Non-informative prior distribution . 28

3.4.2 Informative prior distribution . 29

3.4.3 Conjugate priors . 29

3.5 Estimation of the parameters of the likelihood function with a conjugate prior
distribution . 32

4 Non-Bayesian bandit players 34

4.1 Fixed structure deterministic learning automata 34

4.1.1 Tsetlin L2N,2 . 34

4.2 Variable structure stochastic learning automata 35

4.2.1 Linear Reward-Penalty (LR−P) . 36

4.2.2 Linear Reward-Inaction (LR−I) . 38

iii

CONTENTS

4.2.3 Pursuit . 38

4.3 Confidence interval based schemes . 40

4.3.1 ucb1 . 40

4.3.2 ucb1−tuned . 41

4.3.3 ucb1-normal . 41

4.3.4 IntEstim . 42

4.4 Exponential weight schemes . 44

4.4.1 Exp3 . 44

4.5 Pricing schemes . 45

4.5.1 Poker . 45

4.6 Greedy schemes . 47

4.6.1 εn-greedy . 47

5 Bayesian bandit players - The Bayesian Learning Automaton family 48

5.1 Bayesian inference in the general k-armed bandit problem 48

5.1.1 Bayesian inference about the unknown parameters θ 48

5.1.2 Action selection in the Bayesian Learning Automaton 50

5.2 BLA Bernoulli . 52

5.2.1 Theoretical background . 52

5.2.2 Algorithm description . 54

5.3 BLA Poisson . 55

5.3.1 Theoretical background . 55

5.3.2 Algorithm description . 57

5.4 BLA Normal known σ2 . 58

5.4.1 Theoretical background . 58

5.4.2 Algorithm description . 60

5.5 BLA Normal unknown σ2 . 61

5.5.1 Theoretical background . 61

5.5.2 Algorithm description . 63

iv

CONTENTS

6 Experiments and results 64

6.1 Initial values of hyperparameters . 64

6.1.1 Initial values of hyperparameters in BLA Bernoulli 64

6.1.2 Initial values of hyperparameters in BLA Poisson 65

6.1.3 Initial values of hyperparameters in BLA Normal known σ2 65

6.1.4 Initial values of hyperparameters in BLA Normal unknown σ2 66

6.2 K-armed bandit experiment configurations . 66

6.3 K-armed bandit problem with Bernoulli distributed feedback 67

6.3.1 Results of experiment configuration 5 . 69

6.3.2 Results of experiment configuration 6 . 71

6.4 K-armed bandit problem with Poisson distributed feedback 72

6.5 K-armed bandit problem with normally distributed feedback 74

6.6 Goore game . 77

6.6.1 Results of experiment configuration 1 . 77

6.6.2 Results of experiment configuration 3 . 79

6.7 Iterative prisoners’ dilemma . 80

6.8 Two-player zero-sum game . 82

6.8.1 Experiment description . 82

6.8.2 Pure strategy game results . 83

6.8.3 Mixed strategy game results . 84

7 Discussion and summary of results 87

7.1 Performance of BLA Bernoulli . 87

7.2 Performance of BLA Poisson . 88

7.3 Performance of BLA Normal . 88

7.4 Prior beliefs . 89

7.5 Bayesian Learning Automata and the LA field 90

7.6 Non-stationary environments . 90

7.7 Applicability of BLA in cooperative and decentralized systems 91

v

CONTENTS

8 Conclusion and further work 92

8.1 Conclusion . 92

8.2 Further work . 93

A Unabridged experiments and results 96

A.1 K-armed bandit problem with Bernoulli distributed feedback 96

A.1.1 Bernoulli distributed feedback and the 2-armed bandit problem 98

A.1.2 Bernoulli distributed feedback and the 10-armed bandit problem 103

A.2 K-armed bandit problem with Poisson distributed feedback 108

A.2.1 Poisson distributed feedback and the 2-armed bandit problem 108

A.2.2 Poisson distributed feedback and the 10-armed bandit problem 109

A.3 K-armed bandit problem with normally distributed feedback 111

A.3.1 Normally distributed feedback and the 2-armed bandit problem 111

A.3.2 Normally distributed feedback and the 10-armed bandit problem 113

A.4 Goore game . 115

A.4.1 Results of experiment configuration 1 . 115

A.4.2 Results of experiment configuration 2 . 117

A.4.3 Results of experiment configuration 3 . 119

A.5 Iterative prisoners’ dilemma . 122

A.6 Two-player zero-sum game . 123

A.6.1 Pure strategy . 123

A.6.2 Mixed strategy . 124

B Paper submitted to European Conference on Machine Learning PKDD 09 127

vi

List of Figures

2.1 Interaction between a Player and an Environment 9

2.2 Unimodal reward function f(θ) in the Goore game 19

2.3 Game matrix in prisoners’ dilemma . 20

2.4 Game matrix in a two-player zero-sum game . 22

5.1 Bayesian inference about Bernoulli parameter p 49

5.2 Bayesian inference and action selection with Bernoulli distributed feedback . . . 51

6.1 Regret in the 10-armed bandit problem with Bernoulli distributed feedback with
optimal arm p = 0.9 and 0.8 on the inferior arms 70

6.2 Regret in the 10-armed bandit problem with Bernoulli distributed feedback with
optimal arm p = 0.55 and 0.45 on the inferior arms 72

6.3 Regret in the 10-armed bandit problem with Poisson distributed feedback 73

6.4 Regret in the 2-armed bandit problem with Poisson distributed feedback 74

6.5 Regret in the 2-armed bandit problem with normally distributed feedback 76

6.6 Regret in the 10-armed bandit problem with normally distributed feedback . . . 76

6.7 Development of the number of yes votes with 10 players and 3 as the optimal
number of yes votes . 78

6.8 Development of the number of yes votes with 100 players and 35 as the optimal
number of yes votes . 80

6.9 Inverted normalized game matrix in prisoners’ dilemma 80

6.10 Game matrix D1 . 82

6.11 Game matrix D2 . 82

6.12 Game matrix D3 . 82

vii

LIST OF FIGURES

A.1 Optimal action selection probability in the 2-armed bandit problem with Bernoulli
distributed feedback, with optimal arm p = 0.9 and 0.6 on the inferior arm . . . 99

A.2 Regret in the 2-armed bandit problem with Bernoulli distributed feedback with
optimal arm p = 0.9 and 0.6 on the inferior arm 99

A.3 Optimal action selection probability in the 2-armed bandit problem with Bernoulli
distributed feedback, with optimal arm p = 0.9 and 0.8 on inferior arm 100

A.4 Regret in the 2-armed bandit problem with Bernoulli distributed feedback with
optimal arm p = 0.9 and 0.8 on the inferior arm 101

A.5 Optimal action selection probability in the 2-armed bandit problem with Bernoulli
distributed feedback, with optimal arm p = 0.55 and 0.45 on inferior arm 102

A.6 Regret in the 2-armed bandit problem with Bernoulli distributed feedback with
optimal arm p = 0.55 and 0.45 on the inferior arm 102

A.7 Optimal action selection probability in the 10-armed bandit problem with Bernoulli
distributed feedback, with optimal arm p = 0.9 and 0.6 on inferior arms 104

A.8 Regret in the 10-armed bandit problem with Bernoulli distributed feedback with
optimal arm p = 0.9 and 0.6 on the inferior arms 104

A.9 Optimal action selection probability in the 10-armed bandit problem with Bernoulli
distributed feedback, with optimal arm p = 0.9 and 0.8 on the inferior arms . . . 105

A.10 Regret in the 10-armed bandit problem with Bernoulli distributed feedback with
optimal arm p = 0.9 and 0.8 on the inferior arms 106

A.11 Optimal action selection probability in the 10-armed bandit problem with Bernoulli
distributed feedback, with optimal arm p = 0.55 and 0.45 on the inferior arms . . 107

A.12 Regret in the 10-armed bandit problem with Bernoulli distributed feedback with
optimal arm p = 0.55 and 0.45 on the inferior arms 107

A.13 Optimal action selection probability in the 2-armed bandit problem with Poisson
distributed feedback . 108

A.14 Regret in the 2-armed bandit problem with Poisson distributed feedback 109

A.15 Optimal action selection probability in the 10-armed bandit problem with Poisson
distributed feedback . 110

A.16 Regret in the 10-armed bandit problem with Poisson distributed feedback 110

A.17 Optimal action selection probability in the 2-armed bandit problem with normally
distributed feedback . 112

A.18 Regret in the 2-armed bandit problem with normally distributed feedback 112

A.19 Optimal action selection probability in the 10-armed bandit problem with nor-
mally distributed feedback . 113

viii

LIST OF FIGURES

A.20 Regret in the 10-armed bandit problem with normally distributed feedback . . . 114

A.21 Development of the distance from the optimal number of yes votes 3, with 10
players . 116

A.22 Development of the number of yes votes with 10 players and 3 as the optimal
number of yes votes . 117

A.23 Development of the distance from the optimal number of yes votes 20, with 50
players . 118

A.24 Development of the number of yes votes with 50 players and 20 as the optimal
number of yes votes . 119

A.25 Development of the distance from the optimal number of yes votes 35, with 100
players . 120

A.26 Development of the number of yes votes with 100 players and 35 as the optimal
number of yes votes . 121

A.27 Inverted normalized game matrix in prisoners’ dilemma 122

A.28 Game matrix D1 . 123

A.29 Game matrix D2 . 123

A.30 Game matrix D3 . 124

ix

List of Tables

3.1 Likelihood and conjugate priors encountered in this thesis 32

3.2 Mean values of the conjugate prior distributions encountered in this thesis 33

6.1 Experiment configurations for the k-armed bandit problem with Bernoulli dis-
tributed feedback . 67

6.2 Results of the 2-armed and 10-armed bandit problem with Bernoulli distributed
feedback . 68

6.3 Detailed overview of the 10-armed bandit problem with Bernoulli distributed
feedback with optimal arm p = 0.9 and 0.8 on the inferior arms 69

6.4 Detailed overview of the 10-armed bandit problem with Bernoulli distributed
feedback with optimal arm p = 0.55 and 0.45 on the inferior arms 71

6.5 Results of the 10-armed bandit problem with Poisson distributed feedback 72

6.6 Results of the 10-armed bandit problem with normally distributed feedback . . . 75

6.7 Experiment configurations for the Goore game 77

6.8 Distance from the optimal number of yes votes, with 10 players and 3 desired yes
votes . 78

6.9 Distance from the optimal number of yes votes in the Goore game with 100
players, with 35 desired yes votes . 79

6.10 Tournament scores of the iterative prisoners’ dilemma 81

6.11 Optimal actions selection probability for player A and B in D2 (A,B) 83

6.12 Two-player zero-sum tournament score with matrix D3 84

6.13 Distance of cumulative reward from optimal game reward (0) 85

6.14 Development of action selection probability for player A 86

x

LIST OF TABLES

A.1 Experiment configurations for the k-armed bandit problem with Bernoulli dis-
tributed feedback . 96

A.2 Results of the 2-armed and 10-armed bandit problem with Bernoulli distributed
feedback . 97

A.3 Detailed overview of the 2-armed bandit problem with Bernoulli distributed feed-
back with optimal arm p = 0.9 and 0.6 on the inferior arm 98

A.4 Detailed overview of the 2-armed bandit problem with Bernoulli distributed feed-
back with optimal arm p = 0.9 and 0.8 on the inferior arm 100

A.5 Detailed overview of the 2-armed bandit problem with Bernoulli distributed feed-
back with optimal arm p = 0.55 and 0.45 on the inferior arm 101

A.6 Detailed overview of the 10-armed bandit problem with Bernoulli distributed
feedback with optimal arm p = 0.9 and 0.6 on the inferior arms 103

A.7 Detailed overview of the 10-armed bandit problem with Bernoulli distributed
feedback with optimal arm p = 0.9 and 0.8 on the inferior arms 105

A.8 Detailed overview of the 10-armed bandit problem with Bernoulli distributed
feedback with optimal arm p = 0.55 and 0.45 on the inferior arms 106

A.9 Experiment configuration for the k-armed bandit problem with Poisson distributed
feedback . 108

A.10 Results for the 2-armed bandit problem with Poisson distributed feedback 108

A.11 Results of the 10-armed bandit problem with Poisson distributed feedback 109

A.12 Experiment configuration for the k-armed bandit problem with normally dis-
tributed feedback . 111

A.13 Results of the 2-armed bandit problem with normally distributed feedback 111

A.14 Results of the 10-armed bandit problem with normally distributed feedback . . . 113

A.15 Experiment configurations for the Goore game 115

A.16 Distance from the optimal number of yes votes, with 10 players and 3 desired yes
votes . 115

A.17 Detailed overview of the Goore game with 10 players, where exactly 3 players
should vote yes . 116

A.18 Distance from the optimal number of yes votes, with 50 players and 20 desired
yes votes . 117

A.19 Number of yes votes with 50 players and 20 desired yes votes 118

A.20 Detailed overview of the Goore game with 50 players, where exactly 20 players
should vote yes . 118

xi

LIST OF TABLES

A.21 Distance from the optimal number of yes votes in the Goore game with 100
players, with 35 desired yes votes . 119

A.22 Detailed overview of the Goore game with 100 players, where exactly 35 players
should vote yes . 120

A.23 Tournament scores of the iterative prisoners’ dilemma 122

A.24 Optimal actions selection probability for player A and B in D1 (A,B) 123

A.25 Optimal actions selection probability for player A and B in D2 (A,B) 124

A.26 Two-player zero-sum mixed strategy tournament score with matrix D3 124

A.27 Two-player zero-sum mixed strategy average distance from optimal reward . . . 125

A.28 Two-player zero-sum mixed strategy action probability distribution A 125

A.29 Two-player zero-sum mixed strategy action probability distribution B 126

xii

List of Algorithms

1 Tsetlin L2N,2 . 35
2 Roulette wheel selection . 36
3 LR−P . 37
4 LR−I . 38
5 Pursuit . 39
6 ucb1 . 40
7 ucb1-tuned . 41
8 ucb1-normal . 42
9 IntEstim . 43
10 Exp3 . 44
11 Poker . 46
12 εn-greedy . 47
13 BLA Bernoulli . 54
14 BLA Poisson . 57
15 BLA Normal known σ2 . 60
16 BLA Normal unknown σ2 . 63

xiii

Chapter 1

Introduction

In the following chapter we will briefly introduce the k-armed bandit problem and its importance.
Furthermore, we present the area of focus in thesis and the contributions of this thesis to the
field of reinforcement learning.

We start by introducing the importance of research in Section 1.1, where we state the importance
of the problem and the importance of our contributions. Section 1.2 contains the full thesis
definition. In Section 1.3 we state our research questions and briefly comment their problems
and importance, and follow up with a presentation of our contributions in Section 1.4. We end
this chapter with a section with the intended target audience of this thesis in Section 1.5, and
present an overview of the thesis in Section 1.6.

1.1 Importance of research

In reinforcement learning one faces the exploration vs. exploitation dilemma. This dilemma
involves searching for a balance between discovering new information and exploiting existing
knowledge. The k -armed bandit problem is a well-known and highly researched example of this
problem.

The simplest case of the k -armed bandit problem is the two-armed Bernoulli bandit problem,
which may be described as follows. A player sequentially pulls one of two arms attached to a
gambling machine, and each arm pull results in either a reward or a penalty. The two arms are
associated with two distinct, and to the player unknown, reward probabilities. The overall goal
for the player is reward maximization, and the player then needs to balance between exploiting
existing knowledge or obtaining new knowledge by trying different arms. In the long run it may
be beneficial to risk a short term loss in order to build greater certainty about the unknown
reward probabilities.

The k-armed bandit problem is a highly applicable problem found in everyday life. For instance,
in computer-networks and routing there may exist several paths between nodes, and a path is
ordinary selected by using traditional routing algorithms which may take delay, bandwidth, cost

1

CHAPTER 1. INTRODUCTION

and other parameters into consideration in the selection process. In [1] learning schemes are
applied to routing in MPLS networks with a new proposed learning routing algorithm. The
performance of this algorithm was experimentally shown to be better than the most important
routing algorithms in the literature. In relation to the bandit problem, each path may be
regarded as an arm with initially unknown reward probability.

Several solutions to the bandit problem have been proposed, among them several confidence
interval and learning automata schemes, which have proven to be effective with regards to
machine learning in several important areas [2, 3, 1, 4].

In this master thesis we investigate the performance of a new Bayesian approach to the k -
armed bandit problem, the Bayesian Learning Automaton (BLA). In [5] Granmo shows through
experiments that the two-armed version of the BLA has some advantages over confidence interval
based algorithms and traditional learning automata.

The BLA as proposed by Granmo is the main starting point for this thesis. The experiments
performed in [5] seem promising, but extensive experiments are only performed with the 2-armed
bandit problem with Bernoulli distributed reward. These experiments need to be extended in
order to get a more complete picture of the performance and properties of the BLA.

We also propose new members to the Bayesian Learning Automaton family suitable for use in
environments with Poisson distributed reward, as well as normally distributed reward with both
known and unknown variance. These distributions are widely used within statistics, and the
normal distribution especially has a general applicability, making it suitable in a wide range of
applications.

The results of our experiments provide insight into advantages, disadvantages and properties
of the new proposed Bayesian Learning Automata family. Such knowledge is a contribution to
the field of reinforcement learning, and is valuable knowledge regardless of the performance of
the BLA. This may result in additional research on the BLA, and possibly lead to improved
performance in a wide range of real world applications.

2

CHAPTER 1. INTRODUCTION

1.2 Thesis definition

The thesis definition is as follows:

The k-armed bandit problem is a well studied example of the exploration vs. exploita-
tion dilemma. This dilemma involves the balance between exploring new information
to identify profitable actions and exploiting existing knowledge, while the overall goal
is reward maximization. In the long run it may be beneficial to sacrifice short term
reward to gain greater certainty about the environment. In the paper The Bayesian

Learning Automaton - Empirical Evaluation with Two-Armed Bernoulli

Bandit Problems Granmo proposes a new Bayesian approach, the Bayesian Learn-
ing Automata (BLA). Preliminary results presented in Granmo‘s paper seem very
promising, but extensive experiments have only been conducted with the Two-Armed
Bernoulli Bandit. The purpose of this master thesis is to investigate whether the
performance benefits offered by the Bayesian Learning Automaton scheme extend
beyond the simple Two-Armed Bernoulli Bandit Problem. As an option, we also in-
tend to extend the Bayesian Learning Automaton family with new mechanisms where
appropriate.

1.3 Research questions

In this thesis we will answer the following research questions:

• How does the BLA proposed by Granmo in [5] perform compared to other
learning schemes in the k-armed bandit problems

The k-armed bandit problem involves finding the optimal balance between exploration
and exploitation in an unknown environment, and captures the essence of a problem often
encountered in optimization problems. We extend on the experiments already performed
by Granmo in [5], and perform extensive empirical evaluation of the BLA in the k-armed
bandit problem. In this thesis we introduce three new members to the BLA family, which
also are empirically evaluated in the k-armed bandit problem with appropriate reward
distributions. We also introduce several “state-of-the-art” players along with other tradi-
tional and well-known players as points of reference in the evaluation of the performance
of the BLA family.

• Is a BLA able to solve a multiplayer cooperative game in an efficient manner?
How does it perform compared to other players? We want to investigate how a
BLA performs in multiplayer cooperation games, where several players need to cooperate
to achieve a common goal without any communication between the players. Studies on
such problems have led to improved performance in several real life problems, such as QoS
control in sensor networks [6].

Due to its distributed and cooperative nature, the Goore game is suitable to investigate
the performance of the BLA compared to other players in these types of problems.

3

CHAPTER 1. INTRODUCTION

• Is a BLA able to find a good solution in a mixed strategy game? If so, does it
find a mixed strategy solution or does it converge to a single strategy?

In a mixed strategy game it is suboptimal to play a single strategy, and the optimal
strategy consists of randomly select among several different single strategies according to
a probability distribution.

For instance, consider the simple and well-known game Rock-paper-scissors. In this game
it is easy to beat a player that always selects rock, as it is beaten by paper every time.
Therefore, by simply adding some unpredictability in a player’s choices, it becomes a lot
harder to beat an opponent.

Mixed strategy is relevant in many important areas in real life as for instance economics,
biology, warfare and games [7]. We therefore want to investigate if a BLA is able to identify
and play a mixed strategy in a mixed strategy game.

• How do two BLA players play the iterative prisoner’s dilemma? Furthermore,
how will the BLA play against other players in this game?

The prisoners’ dilemma is a game where two opposing players individual pursuit of the
optimal reward results in a suboptimal outcome for both players. For instance, in the
classical description of the prisoners’ dilemma this involves whether or not a prisoner
should confess to a crime to receive a reduced sentence at the expense of an accomplice.
However, in this dilemma they will both be worse off if they both decide to confess than
if both decide not to confess.

This is a game that has been extensive studied in social science, and the same dilemma is
encountered in many situations in social life [7]. In this thesis we will investigate how the
BLA players are able to cope with this dilemma compared to other competing learning
schemes.

• Do there exist other potential BLA players than the one already proposed by
Granmo?

The beta distribution is the conjugate prior for the Bernoulli distribution and is an impor-
tant part of the BLA designed for Bernoulli distributed reward as presented in [5]. There
may exist other convenient conjugate prior distributions for use in BLA players designed
for other reward distributions. We therefore investigate the background of the proposed
BLA and use the same principles to derive three new members to the BLA family.

1.4 Contributions

In this thesis we extend the Bayesian Learning Automaton (BLA) family originally introduced
by Granmo in [5], and introduce three new automata applicable in bandit problems with Poisson
and normally distributed reward.

We derive the algorithms of the Bayesian Learning Automata from Bayesian statistics, both for
the original automaton proposed by Granmo and the three automata proposed in this thesis.

4

CHAPTER 1. INTRODUCTION

We perform an extensive empirical evaluation of the BLA family and compare the performance
of the BLA family with “state-of-the-art” and other well-known bandit players in the k-armed
bandit problem. We also introduce the BLA in selected games from game theory, such as
the Goore game, iterative prisoners’ dilemma and two-player zero-sum game, and perform an
extensive empirical evaluation of the BLA in these games.

We present the importance and strength of a carefully selected initial state of a Bayesian Learning
Automaton, and demonstrate the strength of such a carefully selected state through our empirical
evaluation of the BLA family.

Finally, we propose areas for further research with regards to the Bayesian Learning Automaton
family in order to be able to extend it with new solutions applicable in new domains. We
propose further work both to ease the use and simplify the initialization phase of the BLA, and
also propose further work with more complex systems of Bayesian Learning Automata.

1.5 Target audience

The target audience of this thesis is anyone interested in reinforcement learning and the learning
automata field. The thesis requires that the reader is familiar with basic concepts from statistics
and game theory, but the thesis is written such that is should be possible for any interested reader
to follow. A brief introduction to the most important concepts and theory is given, but especially
with regards to statistics and probability distributions we assume some background knowledge.

1.6 Report outline

We start Chapter 2 by introducing some general information about reinforcement learning,
learning automata, players and environments. In Chapter 3 we introduce selected topics from
Bayesian statistics that are crucial to a good understanding of the BLA family. We briefly
present some competing learning schemes in Chapter 4, where we provide a brief description of
the theoretical background and give an algorithmic description of each scheme.

In Chapter 5 the Bayesian Learning Automaton family is introduced, and we explain how
Bayesian statistics is used in the automata to govern action selection. We present the orig-
inal BLA player designed for Bernoulli distributed reward, and extend the BLA family with
three new players designed for Poisson and normally distributed reward.

Important results from the experiments are listed and commented in Chapter 6, with additional
data from the experiments available in the appendix. We then provide a discussion and summary
of the results in Chapter 7, and end the thesis with a conclusion and suggestions for further
work in Chapter 8.

5

Chapter 2

Reinforcement learning and
automata theory

Chapter 1 briefly introduced the k-armed bandit problem and briefly mentioned that the reward
from the gambling machine either is Bernoulli, Poisson or normally distributed. In this chapter
we therefore present a more general description of the k-armed bandit problem and introduce
the term feedback instead of reward, as a more general term which is less dependent on the
characteristics of the arm distributions.

In Section 2.1 we introduce the essence of the k-armed bandit problem, namely that this problem
explores the trade-off between exploration and exploitation found in reinforcement learning.
In this context we also give a definition of learning and introduce machine learning, which
reinforcement learning is a sub-area of.

With a fundamental understanding of learning in mind, we give a more precise description of a
player in the k-armed bandit problem in Sections 2.2 and 2.3, and also introduce environment
as a more general term instead of the more specific term gambling machine.

In Section 2.4 we present a branch of the machine learning field, called Learning Automata (LA),
which the Bayesian Learning Automata are based upon. Game theory regards an environment
as a game, and in Section 2.5 we introduce selected concepts from game theory, which provide
a powerful framework to analyze outcomes of learning problems.

We end this chapter with a more detailed description of the k-armed bandit problem and intro-
duce games that bare resemblance to this problem.

6

CHAPTER 2. REINFORCEMENT LEARNING AND AUTOMATA THEORY

2.1 Learning

The idea of creating intelligent machines has been around for a long time, and gone from just
being a distant dream to becoming a reality in the last decades. There has been a substantial
amount of development in the field of machine learning [8], but still machines are far from being
as intelligent as human beings.

2.1.1 Concepts of learning

Learning has long been considered an important aspect of intelligent behavior and has been
studied extensively by psychologists during the last decades. One avenue of research involving
psychologists and biologists have conducted learning experiments where subjects are placed in
controlled environments, which are manipulated in order to observe possible changes in the
behavior of the subjects. By conducting such experiments psychologists and biologists try to
create models of learning.

From an engineering perspective, the principles of learning are used to create intelligent ma-
chines. Intelligent machines are able to improve their performance by the means of a learning
process, and the basic features of the learning process in psychology are applied in this domain.
In this context, learning is defined as follows [9]:

A machine or system is said to learn if it improves its performance through experience
gained over a period of time without complete information about the environment in
which it operates.

A machine, also referred to as a learner in this context, is improving its performance by the
means of a learning process. The learning process is a result of interactions between a learner
and an external teacher, often called the environment. The learner selects one appropriate action
out of several available actions, which is evaluated by the teacher in the form of a feedback to
the learner. The learner then, based upon the feedback, updates its knowledge about the
environment, which affects its future action selection procedure. This is repeated until some
condition is met, for instance until a satisfactory result is achieved.

The way the environment evaluates the action performed by the learner, that is the type of
feedback a learner receives, is used to distinguish three sub-areas within machine learning;
supervised, unsupervised and reinforcement learning. In this thesis we focus on reinforcement
learning, which is the most general of these three in that the learner is not told what to do, but
must learn from the feedback it receives [10]. The interested reader is referred to [10] and [8] for
more information about machine learning and supervised and unsupervised learning.

7

CHAPTER 2. REINFORCEMENT LEARNING AND AUTOMATA THEORY

2.1.2 Reinforcement learning

In reinforcement learning the learner is not told what the optimal action is, but only receives a
scalar feedback to the selected action and must therefore learn from the feedback, also referred
to as reinforcement, obtained from the environment. Thus, in this way the learner is learning
how the environment works [10].

High feedback values are more desirable, and the goal of the learner is to maximize its received
feedback, thus it is important that it is able to learn and identify the optimal action by perform-
ing a sequence of trials. The learner must, therefore, try several different actions in order to
identify the optimal action. In addition, the response from the environment may be a stochastic
variable yielding a stochastic environment, which means that all actions must be tried a num-
ber of times in order to evaluate the mean feedback associated with each action such that it
is able to identify the optimal action. In a stochastic environment the feedback will typically
be distributed in accordance to a probability distribution, where the parameters of the proba-
bility distribution are unknown to the learner. To obtain knowledge about these parameters,
the learner performs a sequence of trials, and throughout the learning process the learner will
perceive a view of the probability distribution of the feedback and its parameters. The learner
will then be able to exploit the obtained knowledge by choosing actions that on average yield
high feedback values, and thus it is able to improve its performance.

A common problem in reinforcement learning is the trade-off between exploration, where the
learner tries different actions to gain knowledge about them, and exploitation, where the learner
selects actions which it believes give favorable feedback. The trade-off between exploration and
exploitation is crucial, as a suboptimal trade-off will affect the results, and hence the learning
process. Neither pure exploration or pure exploitation is desirable. Pure exploration will not be
beneficial as the obtained knowledge is not used and hence not exploited, while pure exploitation
will typically result in getting stuck on a suboptimal action [10]. Furthermore, focusing too much
on exploitation could lead to premature conclusions concerning the perceived optimal action,
which in turn could lead to a loss in favorable future feedback. Too much exploration on the
other hand is just as bad, as a lot of action selections and possible favorable feedback may be
wasted even though the true optimal action has been discovered. The difficulty of reinforcement
learning is typically concerned with this trade-off.

In relation to the exploration vs. exploitation dilemma an optimal exploration policy is desirable.
Optimal exploration policies have been extensively studied in statistical decision theory in the so
called k -armed bandit problem, which later also have been fundamental in the field of artificial
intelligence [10]. Finding an optimal exploration scheme is difficult, but it is possible to find a
reasonable scheme that eventually leads to an optimal behavior of the learner [10]. We discuss
this further in Section 2.6.1.

8

CHAPTER 2. REINFORCEMENT LEARNING AND AUTOMATA THEORY

Figure 2.1: Interaction between a Player and an Environment

Environment

Player

Action Feedback / Response

2.2 Bandit player

In the above we used the term learner to denote a machine which is able to learn by experience.
This definition is quite general and therefore applies to a lot of different techniques and areas
within machine learning, and in the following we introduce a term that is more suitable in the
context of this thesis.

In this thesis the focus is on evaluation of learning algorithms that are applicable in the k-
armed bandit problem. Hence the term bandit playing algorithms is suitable for such algorithms.
Labeling the algorithm does not necessarily cause any problems, but in relation to learning, the
algorithm itself is only one part of what we refer to as a learner. In the literature commonly used
terms for a learning machine are agent as used in [10] and learning automaton as described in [11].
Although these and others terms capture the essence of learning, they are still not completely
compatible with each other mostly due to historical reasons. In this thesis we therefore use
the more general term bandit player, or player for short, to denote a learning machine that is
applicable in the k-armed bandit problem.

2.3 Formal model of a bandit player and its environment

In the following section we make a formal model of a bandit player and the environment it
operates in. We refer the reader to Section 2.6.1 for a concrete example of a player and an
environment.

We start by considering a player that is put in an environment and must learn how to successfully
operate in the environment. From the point of view of the player the environment is unknown
and player has no prior knowledge of the environment. In order to gain knowledge about the
environment the player interacts with the environment as shown in Figure 2.1.

We observe from the model depicted in Figure 2.1 that the player applies actions on the envi-
ronment, and the environment responds with feedback to the player. Note that this is the only
possible interaction between a player and an environment.

This simple model is used throughout the thesis, where the player is represented by many
different learning algorithms, and different applications of the k-armed bandit problem represent

9

CHAPTER 2. REINFORCEMENT LEARNING AND AUTOMATA THEORY

the environment. In the following subsections we make a more formal definition of both the
player and the environment, inspired by the definitions of environment and learning automata
from [11].

2.3.1 Definition of Player

A Player is defined by the quintuple {Φ, α, β, A, B}, where Φ, α and β denote sets, and A and
B denote functions.

Φ = {φ1, φ2, . . . , φr} represents the set of internal states of a Player. The set can either be finite
or infinite. The state of the Player at instant n is denoted φ(n), where φ(n) ∈ Φ.

α = {α1, α2, . . . , αs} is the set of possible actions a Player may apply on the Environment, and
in this thesis the number of possible actions will always be finite, hence s < ∞. The action at
instant n is denoted by α(n), where α(n) ∈ α.

β = {β1, β2, . . . , βt} is the set possible feedback from the Environment and might be finite or
infinite depending on the distribution of the Environment. Using the same notation as above,
β(n) denotes the feedback at instant n, where β(n) ∈ β.

A is a function that brings the Player from one state to the next and is defined as:

φ(n + 1) = A[φ(n), β(n)] (2.1)

Finally, B is a function that determines the output from the Player, defined as

α(n) = B[φ(n)] (2.2)

2.3.2 Definition of Environment

We define an Environment by the triple {α, F, β}, where α and β denote sets, and F is a function.

α = {α1, α2, . . . , αs} is a finite input set, which represents possible actions a Player may apply
on the Environment.

β = {β1, β2, . . . , βt} is an output set of possible feedback from the Environment, and may either
be finite or infinite depending on the learning problem.

Finally, F is a function that given input produces an output at instant n and may be described
as:

β(n) = F [α(n)] (2.3)

However, in some learning problems several players may be operating simultaneously in the
Environment, where the combination of the actions from all players may influence the output
to the players, such that the Environment may be described as:

{β1(n), β2(n), . . . , βp(n)} = F [α1(n), α2(n), . . . , αp(n)] (2.4)

10

CHAPTER 2. REINFORCEMENT LEARNING AND AUTOMATA THEORY

where p denotes the number of players operating in the Environment.

From a Player’s point of view the Environment still may be perceived as β(n) = F [α(n)], as the
Player independently applies actions on the Environment and receives feedback, and is therefore
oblivious about the presence of any opposing players. The Player only assumes that there is
some relation between the actions it performs and the feedback it receives.

Note that the sets α and β are the same in both the definition of Player and Environment.

Stationary vs. non-stationary Environment

When the distribution of the feedback is fixed, we refer to the Environment as a stationary
Environment. However, if the distribution of the feedback is able to change, we refer to the
Environment as a non-stationary Environment.

For instance, if the feedback from the Environment is given in accordance to a probability
distribution we refer to it as a stationary Environment if the parameters of the distribution are
kept constant. On the other hand, if the parameters of the probability distribution are able to
change we refer to it as as non-stationary Environment.

2.4 Learning automata

The term learning automata (LA) was popularized in a survey paper by Thathachar and Sastry
[12], and is a branch of the machine learning field which is based upon automata models of
learning systems. Initially this field was built upon simple fixed structure state machines such
as the Tsetlin automaton, but has later been extended in numerous directions [13].

In this thesis we have included several players from the LA field, which the Bayesian Learning
Automaton family shares some principles with. We therefore include a brief overview of learning
automata theory, and for a more detailed description of the LA field we refer the reader to [11]
and [9].

As mentioned, the definitions of Player and Environment in Sections 2.3.1 and 2.3.2 are inspired
by the definition of environment and learning automata as given in [11], and are therefore similar
to the definitions given in the following sections.

2.4.1 Definition of finite state-output automaton

A learning automaton is defined by the quintuple {Φ, α, β,F(·, ·),H(·, ·)}, where Φ, α and β are
sets, while F(·, ·) and H(·, ·) denote functions.

Φ = {φ1, φ2, . . . , φs} is a finite set of the internal states of the automaton. The state of the
automaton at instant n, where n is a discrete time step, is denoted φ(n), which is an element in
the set Φ.

11

CHAPTER 2. REINFORCEMENT LEARNING AND AUTOMATA THEORY

β = {β1, β2, . . . , βm} denotes the set of possible inputs, also called feedback, the automaton may
receive from the environment. The input at instant n is denoted β(n), where β(n) ∈ β. This
set can either be finite or infinite and depends on the environment.

α = {α1, α2, . . . , αr} is a finite set of outputs, also called actions, that the automaton may
perform on the environment. The action performed by the automaton at instant n, is denoted
α(n), where α(n) ∈ α.

F(·, ·) is a transition function that maps from the current state and feedback received from the
environment into the next state and can be deterministic or stochastic. The transition function
is defined mathematically as [11]:

F(·, ·) : Φ× β → Φ (2.5)

That is, the function determines the state at instant n + 1, based upon the state and input at
instant n [11]:

φ(n + 1) = F [φ(n), β(n)] (2.6)

H(·, ·) denotes either a deterministic or stochastic output function that maps from the current
state and response into the output of the automaton. That is, the output of the automaton
depends on the current state it resides in together with the feedback it received from the envi-
ronment. The function H(·, ·) is defined as [11]:

H(·, ·) : Φ× β → α (2.7)

When the action selection only depends on the state the automaton resides in, the automaton
is referred to as a state-output automaton. The output function H(·, ·) is then replaced by the
function G(·), which is defined as [11]:

G(·) : Φ→ α (2.8)

The action selected by the automaton at instant n is determined in following way [11]:

α(n) = G[φ(n)] (2.9)

The automaton is then defined as the quintuple {Φ, α, β,F(·, ·),G(·)}, and in the following we
make use of this definition.

12

CHAPTER 2. REINFORCEMENT LEARNING AND AUTOMATA THEORY

2.4.2 Deterministic automaton

A learning automaton is deterministic if both the functions F and G are deterministic, which
means that the functions uniquely specify a state and an action given the current state and
input.

The transition function F may be represented by m matrices F (βm) of size s × s, where m is
the number of feedback elements in the set β and s denotes the number of states in the set Φ.

An entry fβ
ij is defined as [11]:

fβ
ij =

{

1 if φi → φj for input β
0 otherwise

(2.10)

In a similar way the output function G may be defined in terms of a matrix G of size s × r,
where s denotes the number of states and r the number of actions. An entry gij in the matrix
G is defined as [11]:

gij =

{

1 if G(φi) = αj

0 otherwise
(2.11)

As we see from the definition of the entries above, each entry in the matrices is either 0 or 1,
which is in accordance with the definition of a deterministic automaton. These entries may be
regarded as probabilities, and in the case of the state transition function an entry denotes the
probability of moving from state φi to φj given input β. In the case of the output function an
entry denotes the probability that state φi corresponds to action αj .

2.4.3 Stochastic automaton

An automaton is stochastic if the state transition function F or the output function G is stochas-
tic, which means that the functions do not uniquely specify a state and an action given the
current state and input, but instead several states and actions are possible.

If the transition function F is stochastic, the function gives the probability of reaching the
different states. Like a deterministic automaton, a stochastic automaton can be represented by
m matrices F (βm) of size s× s, where m is the number of feedback elements in β and s denotes
the number of states. However, in contrast with the deterministic matrices, where an entry is
either 1 or 0, an entry in this case is a value in the interval [0,1], representing the probability of
moving from state φi to φj given input β is defined as [11]:

fβ
ij = Pr{φ(n + 1) = φj |φ(n) = φi, β(n) = β} (2.12)

If the output function G is stochastic, it can be represented by a probability matrix of size s× r,
where s denotes the number of states and r the number of actions. Similar as above, an entry

13

CHAPTER 2. REINFORCEMENT LEARNING AND AUTOMATA THEORY

is a value in the interval [0,1], representing the probability that state φi corresponds to action
αj [11]:

gij = Pr{α(n) = αj |φ(n) = φi} (2.13)

The stochastic automaton may be further categorized, depending on the characteristics of the
the transition probabilities fβ

ij and the output probabilities gij . If fβ
ij and gij are assumed

to be constant, that is independent of n and the input, the stochastic automaton is called
fixed structure stochastic automaton. When the transition probabilities change and are updated
at each instant n based on the input, the automaton is called a variable structure stochastic
automaton. The variable structure stochastic automaton is explained further in the following
section.

2.4.4 Variable structure stochastic automaton

Later it was proposed to use more general stochastic automaton where action and transition
probabilities are updated, instead of a more fixed structure state automaton with fixed transition
probabilities. A general stochastic automaton is described by the quintuple {φ, α, β, A, G} [11].
Similarly, as in the definition of a Player in Section 2.3.1, φ, α and β denote sets, and A and G
denote functions.

The definition above may be simplified by just considering the action probabilities, and an
automaton is then described by the triple {α, β, A} with r = s <∞ and G as an identity mapping
between φ and α [11]. The terms states and actions may therefore be used interchangeably, and
the set α contains the state or action probabilities and constitutes a state or an action probability
vector. A more detailed description of this simplification is available in [11].

LR−P , LR−I and Pursuit are examples of variable structure stochastic automata and are de-
scribed in more detail in Chapter 4. The Bayesian Learning Automaton family, presented in
Chapter 5, may also be perceived as a variable structure stochastic automaton by replacing the
state probabilities α with probability distributions and their associated parameters, where the
state selection probabilities are dependent on the relative differences between these distributions.
This is further explained and discussed in Sections 5.1.2 and 7.5.

14

CHAPTER 2. REINFORCEMENT LEARNING AND AUTOMATA THEORY

2.5 Selected concepts from game theory

Game theory is a branch of economics where an environment with multiple players is regarded
as a game [10]. In relation to reinforcement learning such games typically include turn based
games, where two players alternate in applying actions on the environment.

In the following we give a short introduction of some concepts from game theory, which are used
to describe important characteristics of some learning problems we investigate in this thesis. For
a more thorough overview of these concepts and game theory in general we refer the reader to
[7] and [14].

2.5.1 Rationality

A player may base his strategy on expectations of what the opponent is most likely to do. For
instance, when humans play games, we often assume that the opponent is acting rationally,
thus we have a clear view of what we might expect from our opponents. In game theory such
assumptions are referred to as common knowledge of rationality (CKR) [7].

Different orders of CKR exist, from the more specific zero-order CKR and first-order CKR to
the more general nth-order CKR. Zero-order CKR denotes the situation where the players act
rational, but do not know anything about the rationality of its opponents. First order CKR
means that the players act rationally and assume that their opponents act rationally as well. A
more general definition of CKR is the nth-order CKR, where n denotes the level of rationality
a player assumes in its reasoning. Consider the following example with two players A and B.
With a nth-order CKR, we have the following rationality reasoning: A believes that B believes
that A believes that B believes Thus, one way to regard nth-order CKR is the number of
times believes is used in the rationality reasoning.

2.5.2 Dominance

A player might be able to depict the actions of a rational opponent by identifying dominant
strategies in the game. In this context a strategy may be defined as a dominant- or dominated
strategy. These are defined as following in [7]:

A strategy is dominated if it is not a best response strategy whatever the strategy
choice of the opposition. Conversely, a strategy is dominant if it is a best strategy
(i.e. it maximises a player’s utility pay-off) regardless of the opposition’s choice of
strategy.

Assuming a two-player game, a rational player will always choose a dominant strategy, regardless
of what the player believes that the opponent will do. Thus, from the CKR definition above, this
constitutes zero-order CKR. However, in the absence of a dominant strategy a rational player
will typically choose an action based upon what he believes the other player will choose, thus
using first-order CKR.

15

CHAPTER 2. REINFORCEMENT LEARNING AND AUTOMATA THEORY

2.5.3 Pure strategy

A pure strategy is a single strategy in a set of several possible (pure) strategies. In relation to
the definition of Player and Environment in Section 2.3, a pure strategy denotes a single action
in the set α. A solution to a game is often said to be in pure strategies when there exists a single
best strategy for all players taken into account all opposing players’ strategies.

Consider the game Rock-paper-scissors, where rock, paper and scissor constitute the set of
strategies α. For instance, if a player always, no matter what, applies the action rock, we refer
to the strategy rock as a pure strategy.

2.5.4 Mixed strategy

In a mixed strategy game it is suboptimal to play a single strategy, and the optimal strategy
consists of randomly select among several different single strategies according to a probability
distribution.

For instance, consider the simple and well-known game Rock-paper-scissors. In this game it is
easy to beat a player if it plays a pure strategy by for instance always selecting rock, as it would
be beaten by paper every time. Therefore, by simply adding some unpredictability by randomly
select one of the three possibilities it becomes a lot harder to beat by an opponent.

More formally we describe mixed strategy as follows. For each player k, there is a probability

distribution p(k) = {p(k)
1 , . . . , p

(k)
Nk
} over the action set α, and a single pure strategy α(n)(k) is

randomly selected from the set of strategies according to the distribution p(k) [14].

2.6 Selected learning problems

It is often useful to construct models of complex problems which incorporate the essential features
of the problems. In the following sections we present selected problems of interest in this thesis.

In Section 2.6.1 we provide a more extensive introduction to the general k-armed bandit problem
and the feedback distributions used in this thesis.

We then present selected games from game theory which from the players’ point of view may be
treated as a bandit problem, as each player sequentially selects one of several available actions
while the overall goal is to maximize the received feedback. These games consist of the Goore
game presented in Section 2.6.2, prisoners’ dilemma presented in Section 2.6.3 and the two-player
zero-sum game presented in Section 2.6.4.

16

CHAPTER 2. REINFORCEMENT LEARNING AND AUTOMATA THEORY

2.6.1 K -armed bandit problem

The k-armed bandit problem, is a well known problem in reinforcement learning and was de-
scribed by Robbins in [15]. The problem is a formal model of the exploration vs. exploitation
problem found in many areas [10].

In the literature the problem is often modelled as one machine with several levers, but may
equivalent be modelled as several distinct machines, where each machine represents a lever.

The bandit problem can be described in the following way. Consider a room with k slot machines,
where each slot machine is assigned a certain fixed, but to the player, unknown probability
distribution. By playing a machine the player receives feedback that is determined by the
probability distribution associated with the machine.

The probability distributions differ from machine to machine, and hence the feedback generated
by the machines differ, which means that playing different machines may result in a different
average feedback. Therefore, the selection strategy of the player is of great interest. A player
should sequentially select and play the machines and collect feedback, where the overall goal
is to maximize cumulative feedback. As noted above, the player has no prior knowledge about
the probability distributions associated with these machines and will only gain knowledge of a
machine by playing it and collecting feedback. There is no gain in knowledge about the machines
that are not played.

A player needs to exploit the best slot machine as much as possible, but identifying a suboptimal
slot machine as the optimal machine can be costly in the long run. Hence, a player needs to
exploit the best machine as much as possible, but at the same time make sure that the perceived
optimal slot machine is in fact the optimal machine. In the long run it may be beneficial to risk
a short term loss by exploring new machines which might identify a better machine.

As noted above, each machine represents an arm on a slot machine, hence the name k-armed
bandit problem. In this thesis we model the problem as one machine with several arms. In
relation to the definition of Player and Environment in Section 2.3, arm is equivalent with
action.

A wide range of solutions to the problem has been proposed, among them statistics and confi-
dence interval, genetic algorithms and many others [16, 10]. In this thesis we investigate a very
promising approach based on Bayesian statistics proposed by Granmo in [5].

We present several selection strategies in Chapter 4 and 5.

Feedback distributions

In this thesis we consider the k-armed bandit with several different fixed feedback distributions,
where the feedback is either Bernoulli distributed, Poisson distributed, normally distributed or
a set of discrete values.

We first consider the k-armed bandit problem with Bernoulli distributed feedback. In this case
the environment gives a favorable response, or reward, with probability p and an unfavorable

17

CHAPTER 2. REINFORCEMENT LEARNING AND AUTOMATA THEORY

response, or penalty, with probability 1 − p. Typically 1 and 0 are used to denote a reward
and penalty, respectively. Thus, when the feedback is Bernoulli distributed the feedback set is
defined as follows: β = {0, 1}.

When the feedback is Poisson distributed, the feedback set constitutes a finite set β, where
the elements are integer values in the interval [0,∞). Thus, we can define the feedback set as:
β = {β1, β2, . . . , βm}, where m <∞ and each element is an integer in the interval [0,∞).

With normally distributed feedback, the feedback set constitutes an infinite set, where the
elements are any value in the interval (−∞,∞). Thus, we can define the feedback set as
β = {. . . , βm−1, βm, βm+1, . . .}, where each element in the set is a real number in the interval
(−∞,∞).

The feedback set may also be a set of discrete values, where each element is any value in the
interval [0,1]. Thus, we can define the feedback set as β = {β1, β2, . . . , βm}, where m <∞ and
each element is a real number in the interval [0, 1].

From the above we see that the term feedback is the most general term, however in the case
of Bernoulli distributed feedback, it is also applicable to use the terms reward and penalty.
Therefore, when dealing with Bernoulli distributed feedback, we consequently use reward and
penalty in this thesis.

2.6.2 Goore game

The Goore game, also referred to as the Gur Game, was introduced by M.L Tsetlin in [17]. The
key concept of the game is the ability of players to reach a common goal without communicating
with each other. Thus, the game exhibits decentralized decision making, where the players
cooperate to reach a common goal that is of every player’s best interest.

The Goore game can be illustrated in the following way [11]. Consider a room with N cubicles
and a raised platform. One player sits in each cubicle, while a referee stands on the platform.
During the game the referee issues several voting iterations. In each voting iteration, each player
votes, independently of each other and simultaneously, either yes or no. The casted votes are
collected by the referee, which counts the number of players that voted yes, denoted θ. The
referee has a unimodal reward function, f , which has a maximum value when the number of
yes votes is exactly θ∗. The voting iteration ends with the referee either giving a reward with
probability f(θ) or penalty with probability 1-f(θ) to each player independently, regardless of
its actual vote. After the feedback, the voting procedure starts all over again.

As an example of a unimodal reward function f(θ) we consider the function used in [6]:

f(θ) = 0.2 + 0.8 ∗ e(−0.002(θ−35)2) (2.14)

The function above gives values in the interval [0,1], and when θ = 35 the function yields 1,
which is the highest value in the specified interval. We refer to 35 as the optimal number of yes
votes, denoted θ∗ above. When the number of yes votes is 35, the function gives a reward with

18

CHAPTER 2. REINFORCEMENT LEARNING AND AUTOMATA THEORY

probability 1, and as the number of yes votes gets closer to the optimal value 35, the function
yields higher probability for getting a reward.

The reward function is depicted in Figure 2.2, where the dashed line denotes the optimal number
of yes votes. Note that the optimal number 35 in Equation 2.14 may be replaced by any desired
number of yes votes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

pr
ob

ab
ili

ty

number of yes votes

Figure 2.2: Unimodal reward function f(θ) in the Goore game

The Goore game may be regarded as a bandit problem in the sense that each player has to
choose between yes or no, which represent two distinct arms or actions in the bandit problem.
Furthermore, from the above we see that the feedback from the referee is Bernoulli distributed.
From the definition of non-stationary environments in Section 2.3.2 we see that the Goore
game constitutes a non-stationary environment, as the probability of getting a reward change
in accordance with the number of players that votes yes.

The goal of each player is to maximize its own reward. However, despite each player acting in
a rather selfish way, some bandit players are able, without communicating with each other, to
cooperate to reach a common goal. For instance, it has been proved that with a team of Tsetlin
automata it is possible to get exactly θ∗ to vote yes with sufficient voting iterations [11].

The principle of the Goore Game has found its uses in several areas. In [18] the paradigm of the
Goore game is used to achieve distributed control in distributed systems, and in [6] it is applied
to sensor networks to achieve QoS (Quality of Service) control.

19

CHAPTER 2. REINFORCEMENT LEARNING AND AUTOMATA THEORY

2.6.3 Prisoners’ dilemma

The prisoners’ dilemma is a game where two rational players, selfishly and individually, attempt
to maximize their feedback which paradoxically results in a suboptimal outcome for both players.

The game can be described as follows [7]. Two criminals are picked up by the police for a crime
they both played an equal part in. The criminals are placed in their own cells, and both criminals
are given the same offer: If one of the criminals confesses and the other does not, the confessing
criminal will go free while the other is given a sentence of five years. If they both confess they
will get a small reduction for their cooperation, and they will both be given a sentence of three
years. However, if they both cooperate by not confessing, they will both receive a sentence of
one year because of limited proofs. Each prisoner has to decide to confess or not on their own
without information about the decision of the other prisoner.

Even if the prisoners somehow would be able to communicate with each other, it does not really
change the dilemma, as each prisoner instead has to decide if the other prisoner can be trusted,
or if the prisoner itself should break an agreement for a reduced sentence [7].

The game can be described by a game matrix as shown in Figure 2.3, where player A and player
B in the matrix denote the two criminals. Player A selects a row, while player B selects a
column. The numbers in each entry represent the sentence in years the players will receive,
where the value to the left of the comma represents the sentence player A will receive, while the
value to the right represents the sentence player B will receive.

Player B

Player A
Not confess Confess

Not confess 1,1 5,0

Confess 0,5 3,3

Figure 2.3: Game matrix in prisoners’ dilemma

From the matrix in Figure 2.3, we see that the best outcome for each player is to confess to the
crime under the assumption the other player does not confess, since the player that confesses
goes free (0), while the other player receives a sentence of 5 years. If both players pursuit this
strategy this yields a paradox result by making each player worse off than if they had both
decided to cooperate by both not confessing to the crime.

For a more thorough history and description of prisoners’ dilemma we refer the reader to [7].

Iterative prisoners’ dilemma

In the iterative prisoners’ dilemma the game, as described above, is repeated several times. A
player is then able to use information about the outcome of previous iterations during decision
making, where the overall goal of the players is to minimize their cumulative sentence.

20

CHAPTER 2. REINFORCEMENT LEARNING AND AUTOMATA THEORY

There exist two types of the iterative prisoners’ dilemma, and these are distinguished from
each other based upon whether or not the players know the number of iterations in the game
in advance, which may affect the strategy of the players. If the players know the number of
iterations in game, the players may try to use this information to find some strategic points
towards the end to confess. This could for instance be to always confess in the last iteration.

The iterative prisoners’ dilemma may, from the players point of view, be regarded as a bandit
problem with two arms, representing not confess and confess respectively. The feedback set of
the Environment is in this case a set of discrete values, and since the feedback to each player
is dependent on the action of the other player the iterative prisoners’ dilemma constitutes a
non-stationary environment.

Tit-for-Tat and Axelrod’s tournament

Robert Axelrod invited several professional game theorists to submit players for playing in a
tournament version of the iterative prisoners’ dilemma. Each player was matched against each
competitor once, and the whole tournament was repeated several times to get reliable results.
Axelrod got responses from 14 different people [7].

Quite surprisingly, the player Tit-for-Tat submitted by Anatol Rapoport won the tournament.
This player simply starts by cooperation, and from then on simply repeats what the other player
did last turn. It was one of the simplest submissions and proved superior to several more complex
and advanced algorithms.

A second tournament was arranged with some slightly modified rules, and this time 62 submis-
sions was received. Also this time Tit-for-Tat was the winner [7].

It seems like Tit-for-Tat ’s willingness to cooperate and fast response on the other player’s deci-
sion is a very efficient strategy. It is however, not a perfect player. To be able to get the best
response a player needs to know the other player’s strategy in advance, and then exploit its
weaknesses. For instance, Tit-for-Tat will always be beaten by a player that always confesses.
The confessing strategy would then win the first round, and from then on they would both
confess until the end. This, however, is clearly a suboptimal strategy if the overall goal is to
minimize the sentence.

In contrast to the other players we present in Chapters 4 and 5, Tit-for-Tat is not a reinforcement
scheme, as it is not able to improve its performance through experience, but merely repeats the
opposing player’s “moves”. However, as it is a very good player in prisoners’ dilemma we have
chosen to include it as a reference point for the bandit players in this dilemma.

21

CHAPTER 2. REINFORCEMENT LEARNING AND AUTOMATA THEORY

2.6.4 Two-player zero-sum game

The two-player zero-sum game is an extensively studied game in game theory [14]. The game
consists of two opposing players who both attempt to maximize their own reward. The Envi-
ronment evaluates the actions applied by the players and responds with zero-sum feedback, such
that if a player receives feedback x, the opposing player receives feedback −x. Thus, a player
can only gain at the expense of the other player, a key feature of a zero-sum game.

The two-player zero-sum game encountered in this thesis can be described as follows. The two
players both try to maximize their reward by playing the game through a series of iterations,
and the players are able to use information from previous iterations in the decision making in the
current iteration. In each iteration both players choose an action independently of each other
and without information about the choice of the opposing player. Each player has a certain
probability to win based on their combined chosen actions, and the probability of winning (or
losing) is determined by a game matrix as shown in Figure 2.4.

[

0.6 0.8
0.35 0.65

]

Figure 2.4: Game matrix in a two-player zero-sum game

In the matrix in Figure 2.4 we consider two players A and B, where player A selects a row and
player B selects a column. Each entry in the matrix denotes the probability for a victory for
player A, and the probabilities for a victory for player B are then easily calculated by 1−mij ,
where mij denotes an entry in the matrix. Alternatively, we may describe each entry in terms
of the probability that player B looses, where the probabilities that player A looses are then
calculated with the same formula as above.

For instance, if player A selects the first row and player B selects the second column, then the
probability for a victory for player A is 0.8 and 1 - 0.8 = 0.2 for player B. Alternatively, the
probability that player B looses is 0.8 and 1 - 0.8 = 0.2 for player A.

From a player’s point of view a two-player zero-sum game may be considered as a bandit problem,
where the number of possible choices of a player, i.e the number rows or columns in the game
matrix, represents the arms. Also, the feedback given to the players is either a reward or a
penalty, which means that the feedback is Bernoulli distributed. Furthermore, as the feedback to
both players is dependent on the other player’s action, the two-player zero-sum game constitutes
a non-stationary environment.

The optimal solution to a two-player zero-sum game can both be in pure and mixed strategies
and is determined by the combination of the values in the game matrix.

22

Chapter 3

Bayesian inference

The Bayesian Learning Automaton family presented in Chapter 5 relies heavily on Bayesian
statistics, and we therefore devote this chapter to present selected concepts from Bayesian statis-
tics.

We start this chapter by defining a random variable in Section 3.1, and in the context of a
random variable we give a more precise definition of distribution as we have already encountered
in Chapter 2 in terms of the feedback distribution of the environment.

We then introduce statistical inference and the main approaches to statistical inference, the
frequentist and Bayesian approach in Section 3.2.

After a brief introduction to Bayesian inference we present the key to Bayesian inference, namely
Bayes’ theorem in Section 3.3. By applying Bayes’ theorem we may update our beliefs about
parameters of a probability distribution we want to infer about as new evidence is obtained.
Section 3.4 explores important characteristics of the prior distributions, which represent a prior
belief in the parameters associated with a probability distribution.

Then in Section 3.4.3 we present an important property of prior distributions that belong to a
class of probability distributions called the exponential family, namely conjugacy. Conjugacy is
an important property in Bayesian statistics as it makes it possible to avoid complex mathemat-
ical calculations in Bayes’ theorem, and instead rely on simple updating rules of the parameters
of conjugate prior distributions in the light of new evidence. As briefly mentioned in Chapter 1,
these rules play an essential part of the Bayesian Learning Automaton family, and we therefore
explore this property in detail in Section 3.4.3.

23

CHAPTER 3. BAYESIAN INFERENCE

3.1 Random variables

A random variable describes the outcome of an experiment [19], where the values of the variable
occur according to a probability distribution. We distinguish between discrete random variables,
where the outcomes are distinct values separated from each other, and continuous random
variables, where there are uncountable numbers of values.

In the following we present the definitions of discrete and continuous distribution of random
variables, and refer the reader to [19] and [20] for a more thorough overview.

3.1.1 Distribution of a discrete random variable

We let Y be a discrete random variable that only takes on countable values from a set of possible
values. The set either consists of a finite number of elements such that {y1, y2, . . . , yk}, or a
countable infinite number of elements, yielding {y1, y2, . . .} [19].

A discrete random variable Y takes on the values yi, where i ∈ {1, 2, . . .}, with probability pi.
Furthermore, Y takes on the values defined by the set with probability 1, and values not defined
by set with probability 0. Therefore we have the following [21]:

k
∑

i=1

pi = 1 for a finite number of values yi

or

∞
∑

i=1

pi = 1 for a infinite number of values yi

The probability that Y takes on the value yi is defined as [20]

p(Y = yi) = pi i ∈ {1, 2, . . .} (3.1)

where pi ≥ 0.

pi from Equation 3.1 is called the discrete probability distribution for the discrete random variable
Y , and p(Y = yi) is called the probability mass function.

In Section 2.6.1 we briefly presented the Bernoulli distribution which is a discrete probability
distribution.

24

CHAPTER 3. BAYESIAN INFERENCE

3.1.2 Distribution of a continuous random variable

We let Y be a continuous random variable that takes on values in the interval (-∞,∞). Due to
the uncountable number of real numbers in this interval the probability of observing a particular
value is zero.

For continuous random variables we have a probability density function, which measures the
density of probability at each point in the interval [19]. The probability that the random
variable lies in the interval (a, b) is given by integrating the probability density function p(y) as
defined by [19]

p(a < Y < b) =

∫ b

a

p(y) dy (3.2)

with the following conditions met [20]:

p(y) ≥ 0

and

∫ ∞

−∞

p(y) dy = 1

p(y) is also referred to as the continuous probability distribution for the random variable Y .

In Section 2.6.1 we encountered the normal distribution which is a continuous probability dis-
tribution.

3.1.3 Random numbers and random sampling

Random numbers are values of a random variable that are distributed in accordance to a specified
distribution, where a large set of these values reconstructs the underlying distribution.

When applied in statistical experiments we often use the term random sampling when we ran-
domly select values or samples from a probability distribution or population. Random sampling
is useful when it is not practical to examine all possible cases in an experiment, but instead
make use of a set of samples from a population to reach conclusions about the population as a
whole. We will return to this in Section 3.2.

In this thesis random numbers are applied in the feedback from an environment to a bandit
player, presented in Section 2.6.1, where the feedback is generated by chance according to the
probability distribution of the environment. Furthermore, the Bayesian Learning Automaton
family makes use of random sampling of values as a part of the action selection procedure, which
we present in Section 5.1.2.

25

CHAPTER 3. BAYESIAN INFERENCE

3.2 Statistical inference

Statistical inference involves making inferences about unknown parameters of a population based
upon statistics calculated from data obtained by random sampling from the population. More-
over, we seek, with the aid of statistical inference, the distribution of the population, and the
unknown parameters associated with the distribution. The probability distribution governs
the observations encountered in experiments, and it is therefore crucial in statistical inference
that the observations are representative of the population as a whole, such that the inferred
distribution of the samples is indeed similar to the distribution of the population.

The data from the sampling is modelled as observed values of random variables, and we denote
the observations as y = (y1, y2, y3, . . . yn), where y is a vector of data sampled from the popu-
lation. Based on these samples we want to infer about the distribution of the population as a
whole, and the unknown parameters of the probability distribution of the population constitute
a vector θ = (θ1, θ2, . . . , θn). Thus, on the basis of the observed data y we assess some aspect of
the unobservable θ.

The notation introduced in this chapter will be used throughout the thesis, where θ constitutes
a vector of parameters, and y constitutes a vector of samples from a population.

3.2.1 Approaches to statistical inference

There are two broad main approaches to statistical inference, the Bayesian and the frequentist
approach. The differences between these approaches relate to the interpretation of probability,
together with the objectives of statistical inference [22]. Below we point out some important
differences between these two approaches, and for a more detailed description of these approaches
the reader is referred to [19] and [22].

The key concept of the Bayesian approach is that the unknown parameters θ should be treated
like random variables. Therefore, in the Bayesian view, a prior probability distribution on θ
is specified [22]. The specification of a prior can either be done in an objective or subjective
manner. A subjective prior includes the statisticians’ own prior belief, which has been a common
criticism with subjective priors [22]. In the context of the Bayesian view, inference is related
to how the prior distribution changes to the posterior distribution as new evidence in the form
of the data y is obtained. This is achieved through the use of Bayes’ theorem as described in
Section 3.3. Hence, in Bayesian inference probabilities are regarded as degree of belief about a
parameter θi.

The frequentist approach interprets probability as the relative frequency an event occurs as the
number of trials tends to infinity. In contrast to the Bayesian view, the unknown parameters are
considered to be unknown fixed constants, hence they are not treated as random variables with
a probability distribution. Essential to the frequentist approach is that inferences on the data y
should be based on an infinite number of hypothetical repetitions of an experiment. Hence, the
frequentist statistical inference is based upon all possible occurring data for the fixed parameters
θ, not only on the occurring data as in Bayesian inference. Therefore, given the actual data,
there is no random characteristics of the parameters θ left, and therefore in accordance with the

26

CHAPTER 3. BAYESIAN INFERENCE

frequentist way, one can only make confidence statements about the parameters θ, based on all
possible observations [19].

3.3 Bayes’ theorem and parameter estimation

Bayes’ theorem is the key to Bayesian inference. With the aid of Bayes’ theorem the prior
distribution of the unknown parameters θ is updated, by observing the data y. This yields a
posterior distribution which is conditional on only the occurred data, not all possible occurring
data as in the frequentist view.

Bayesian inference seeks to make inferences about the parameters θ given the observed data y.
As noted in Section 3.2.1, in Bayesian inference both θ and y are regarded as random variables,
where the joint probability distribution p(θ, y) is defined as the product of the prior distribution,
denoted p(θ), and the sampling distribution, also referred to as the likelihood function, p(y|θ)
[23]:

p(θ, y) = p(θ)p(y|θ) (3.3)

The posterior distribution of θ given the value of the data y, p(θ|y), is defined according to the
definition of the conditional probability [19]:

p(θ|y) =
p(θ, y)

p(y)
(3.4)

Combining Equation 3.3 with Equation 3.4 yields Bayes’ theorem [23]:

p(θ|y) =
p(θ)p(y|θ)

p(y)
(3.5)

where

p(y) =
∑

θ

p(θ)p(y|θ) for discrete values of θ (3.6)

or

p(y) =

∫

p(θ)p(y|θ) dθ for continuous values of θ (3.7)

where p(y) is the probability of y over all possible values of θ. In Equation 3.5 p(y) acts as a
normalization constant, and as we see is not dependent on θ. Thus, this term is often omitted
from Equation 3.5, and this yields the un-normalized posterior distribution in Equation 3.8 [23]:

27

CHAPTER 3. BAYESIAN INFERENCE

p(θ|y) ∝ p(θ)p(y|θ) (3.8)

where ∝ denotes proportionality.

Equation 3.8 is often written in words as [19]:

posterior ∝ prior × likelihood (3.9)

3.4 The role of prior distributions in Bayesian statistics

The prior distribution can be any probability distribution, but the general idea is that it should
reflect ones knowledge and belief about the parameters of interest that are to be estimated.
As noted, θ is a vector with the unknown parameters of the population, and depending on the
distribution the vector may consist of one or several elements. The use and choice of priors has
long been subject for debates, and a thorough overview of prior distributions is given in [24].

However, a distinction about prior distributions can be made, whether they are so called infor-
mative or non-informative.

3.4.1 Non-informative prior distribution

The definition of a non-informative prior distribution is based on the so-called insufficient rea-
soning principle, also known as the Bayes-Laplace postulate. This principle states that in the
absence of prior knowledge of the parameter θi, each possible value of the parameter, constitut-
ing the parameter space Θ, should be equally weighted [25]. This justifies the use of uniform
prior distributions, since there is no reason to believe that one value of parameter θi is more
likely than any other value. This is often referred to as letting the data speak for themselves, as
such a prior has minimal affect on the posterior distribution.

Consider an unknown parameter θi, that can only take a finite number n values. The parameter
space Θ is then a finite set with n elements, where each element is given a probability of 1

n
. A

non-informative prior would in this case be a discrete uniform distribution defined as [23]:

p(θi) =

{

1

n

(1)

,
1

n

(2)

, . . . ,
1

n

(n)
}

(3.10)

Continuous uniform distributions may also be used, however these often results in improper
priors, because they can not be normalized, i.e the integral of p(θi) is infinity. However, the
posterior distribution obtained from improper prior distributions may still be proper. In general,
a great deal of care should be taken when interpreting a posterior distribution obtained from an
improper prior distribution [23].

The motivation for using non-informative priors is to achieve objectivity, i.e no prior belief about
the parameters θ exists.

28

CHAPTER 3. BAYESIAN INFERENCE

3.4.2 Informative prior distribution

Often some prior knowledge or belief about the parameters θ exists which can be expressed
through an informative prior distribution. The prior distribution should represent an initial
belief about the population, and should include all plausible values of θi. However, these values
do not need to be realistically centered around the true values, as the observed data in most
cases far outweigh the initial belief.

By using an informative prior distribution a certain degree of subjectivity is introduced. The
introduction of subjectivity in priors is, as mentioned in Section 3.2.1, heavily debated, but
may prove to be invaluable information in some domains [23]. For instance, in clinical trials
of treatments where trials on a large population of subjects are both impossible and unethical,
initial belief may provide crucial information and added precision. Clinical trials typically include
control groups, and since a single subject can only be part of one group, there will always be
some difference between the groups. Because of this difference all reasonable prior information
may be important in order to be able to distinguish groups from each other, and therefore be
able to evaluate the results of such trials [23].

The main argument for using informative priors is that if some reasonable correct initial belief
exists, it would be wasteful not to include it. In most complex real world problems a lot of
unknowns quantities will be present, which most likely will affect the results in some way. For
instance, in clinical trials, there are a lot of unknowns which affect the outcome of each subject.
Such unknowns are for instance each subject’s initial health, which may be impossible to evaluate
completely objective. The presence of unknowns makes results more difficult to interpret, which
argues for that all reasonable prior information should be included to ease the interpretation of
the results [23].

3.4.3 Conjugate priors

Conjugacy is a property of a prior distribution over θ that leads to a posterior distribution of
the same parametric form as the prior itself. The same parametric form means that the two
distributions are defined by the same parameters.

The conjugacy is an important property, because by using conjugate priors there is no need to
perform numerical integrations in order to to find the normalization constant p(y), which often
requires complex and tedious calculations [22].

Conjugate prior distributions are the heart of the Bayesian Learning Automata, thus the founda-
tion presented in this section is essential to the derivation of the various BLA variants presented
in Chapter 5.

29

CHAPTER 3. BAYESIAN INFERENCE

A definition of conjugate prior distributions is given in [23]:

If F is a class of sampling distributions p(y|θ), and P a class of prior distributions
for θ, then the class P is said to be a conjugate for F if

p(θ|y) ∈ P for all p(·|θ) ∈ F and p(·) ∈ P (3.11)

As noted in [23] such a definition is vague, which when the class P is composed of all distribu-
tions, leads to P always being conjugate despite the class of sampling distributions. However,
by limiting the class P to only consist of distributions with the same functional form as the
likelihood, we get the so called natural conjugate prior families.

Every probability distribution that belongs to the exponential family has a natural conjugate
prior distribution. Using the notation from above, class F is an exponential family if all the
distributions have the following form [23]:

p(yi|θ) = f(yi)g(θ)e(φ(θ)T u(yi)) (3.12)

where yi and parameters θ are vectors and g(θ) and u(yi) are vectors with the same dimension
as θ. Furthermore, φ(θ) is called natural parameters of the family F .

Let y = {y1, y2, . . . yn} be a set of identically distributed data, where the likelihood function of
y belongs to the exponential family and is defined as [23]:

p(y|θ) =

[

n
∏

i=1

f(yi)

]

g(θ)ne(φ(θ)T
Pn

i=1 u(yi)) (3.13)

As a function of the parameters θ, the likelihood, for all n and y, will have the fixed form

p(y|θ) ∝ g(θ)ne(φ(θ)T t(y)) (3.14)

where

t(y) =
n
∑

i=1

u(yi)

since

[

n
∏

i=1

f(yi)

]

does not affect the form of the function [23].

30

CHAPTER 3. BAYESIAN INFERENCE

As we see from Equation 3.14, the likelihood function is only dependent on the actual data
y through t(y) =

∑n
i=1 u(yi), which is referred to as sufficient statistics for θ [23]. Sufficient

statistics contain all necessary information that is needed to infer on the parameters θ, and
by simply updating t(y) with new sample data y we obtain the sufficient statistics for θ. This
property is convenient in mathematical manipulations of the posterior distribution and the
likelihood function. Thus, we consider a prior with the same functional form, and let the prior
distribution be specified as [23]

p(θ) ∝ g(θ)ηe(φ(θ)T ν) (3.15)

where ν and η are called hyperparameters. The parameters of the prior are called hyperparam-
eters in order to distinguish them from the parameters of the likelihood function. According to
Bayes’ theorem, the posterior distribution is obtained by multiplying the prior distribution with
the likelihood function, yielding:

p(θ|y) ∝ p(θ)p(y|θ)
∝ g(θ)ηe(φ(θ)T ν)g(θ)ne(φ(θ)T t(y))

∝ g(θ)η+ne(φ(θ)T (ν+t(y))) (3.16)

Comparing the posterior distribution in Equation 3.12 with the exponential form of the prior
distribution in Equation 3.15, we see that they have indeed the same parametric form. Thus,
the conjugacy has been confirmed.

It has been shown that, except for some special cases, the members of the exponential family
are the only class of distributions that have natural conjugate prior distributions, due to that
these distributions are the only ones with a fixed number of sufficient statistics [23].

By starting with a prior distribution we end up with a posterior distribution with the same
parametric form, where the hyperparameters are updated by the sample information:

ηn = ηn−1 + n

νn = νn−1 + t(y)

When using a conjugate prior the statistical inference procedure is simplified since we only
need to update the hyperparameters of the prior distribution in order to obtain the posterior
distribution. Furthermore, by examining Equation 3.16 and considering the update rules above,
we see that if an experiment involves several number of trials, the posterior distribution from
trial i becomes the prior distribution at trial i + 1.

31

CHAPTER 3. BAYESIAN INFERENCE

Table 3.1: Likelihood and conjugate priors encountered in this thesis

Likelihood function p(y|θ) Conjugate prior p(θ)

Bernoulli Beta
Poisson Gamma
Normal unknown µ and known σ2 Normal
Normal unknown µ and σ2 Normal-Scaled inverse-χ2

The conjugate priors and the corresponding likelihoods that are used in this thesis are shown in
Table 3.1. We will investigate the updating procedure of the hyperparameters of the individual
prior distributions in more detail in Chapter 5, which are at the heart of the Bayesian Learning
Automaton family.

The unknown parameters θ of a population depend on the probability distribution of a popula-
tion. For instance, if the population is normally distributed, we might want to infer about the
unknown mean µ and the variance σ2 of the population, which means that θ = (θ1, θ2), where
θ1 = µ and θ2 = σ2. Alternatively, we might want to only infer about one of these parameters.

Furthermore, when the population is Poisson distributed, we want to infer about the rate pa-
rameter λ, thus θ = (θ1), where θ1 = λ. With a Bernoulli distributed population we want to
infer about the probability p of the population that governs the number of successes and failures
in a sequence of trials. Thus, θ = (θ1), where θ1 = p.

The reader is referred to [25], [23] and [24] for a more detailed introduction of conjugate priors
and likelihood functions.

As noted in the introduction to this section, conjugate prior distributions are essential to the
BLA family, and especially Equation 3.15 and 3.16 are used extensively in Chapter 5.

3.5 Estimation of the parameters of the likelihood function with
a conjugate prior distribution

In Section 3.4.3 we identified the conjugate priors for the Bernoulli, Poisson and normal distri-
bution. In this section we make a clearer connection between the unknown parameters we make
inferences about and the conjugate priors.

Due to the exponential properties explored in Section 3.4.3, the mean value of the posterior
distribution will approach the real value of the parameter we infer about as the number of trials
tends to ∞. This feature is crucial to the understanding of parameter estimation with the use
of conjugate priors.

The mean of the beta, gamma and normal distribution are shown in Table 3.2. Note that we
use m to denote the mean of the normal prior distribution in order to distinguish it from the
mean µ of the likelihood function.

32

CHAPTER 3. BAYESIAN INFERENCE

Table 3.2: Mean values of the conjugate prior distributions encountered in this thesis

Conjugate prior p(θ) Mean

Beta α
α+β

Gamma α
β

Normal m
Normal-Scaled inverse-χ2 m

For instance, when we infer about the parameter p of the Bernoulli distribution, and use the beta
distribution as the conjugate prior for the Bernoulli distribution, the objective with the inference
is to get the mean of the beta distribution to approach the true value of parameter p as the
number of trials tends to ∞. Furthermore, by using the gamma distribution as the conjugate
prior for the Poisson distribution, the mean of the gamma distribution should approach the
true value of the parameter λ of the Poisson distribution. Likewise, the mean m of the normal
distribution should approach the true value of µ of the normal likelihood function.

Thus, from the above, we get the following

α

α + β
= p

α

β
= λ

m = µ

when the number of trials tends to ∞.

In Section 5.1.1 we show an example of inference about the parameter p of the Bernoulli dis-
tribution, where the mean value of the beta distribution approaches the true value of p as the
number of trials increases.

33

Chapter 4

Non-Bayesian bandit players

In Chapter 2 we presented a formal and precise description of a Player in relation to the k-armed
bandit problem. In this chapter and in the following chapter we introduce several bandit players
and create two broad categories called non-Bayesian bandit players and Bayesian bandit players.

In this chapter we present the non-Bayesian bandit players. We further distinguish these players
based upon principles and techniques used in the selection strategy and define several subcate-
gories. For each non-Bayesian player we present the background and an algorithmic description.

For the sake of brevity we have omitted some details in the algorithmic descriptions that are in
common to several algorithms described in this chapter, such as calculation of mean, variance
and other trivial updating procedures.

4.1 Fixed structure deterministic learning automata

4.1.1 Tsetlin L2N,2

The Tsetlin L2N,2 was proposed by M.L Tsetlin in [26] and is an extension of the more simple
L2,2 automaton. The L2N,2 is a fixed structure deterministic automaton with two available
actions that operates in environments where the feedback is Bernoulli distributed.

N is called the memory that is associated with each action, and the total memory of the au-
tomaton is 2N . The memory is represented with states, and these states are used to keep track
of the automaton’s previous behaviour and received feedback. The value of N determines the
learning speed of the automaton [11].

The 2N states in the automaton are denoted φ1, φ2, . . . , φ2N , and the two actions α1 and α2. For
each action selection the automaton selects an action based upon the state it resides in. If the
automaton is in the states φ1, φ2, . . . , φN it selects action α1, while if it is in states φN+1, . . . , φ2N

it selects action α2.

Whenever the automaton receives a reward from the environment it moves deeper into the

34

CHAPTER 4. NON-BAYESIAN BANDIT PLAYERS

memory of the current selected action, and conversely, upon a receipt of a penalty, it moves
outwards of the memory of the current selected action. For instance, if the automaton is in
state φN it selects action α1. If it receives a reward it moves to state φN−1, and if it receives a
penalty it moves to state φN+1.

The algorithm for the Tsetlin automaton is listed in Algorithm 1.

Algorithm 1 Tsetlin L2N,2

Require: Select current state φc from the interval [N, N + 1]
1: loop
2: if φc <= N then
3: i← 1
4: else
5: i← 2
6: end if
7: Play action i and receive either reward or penalty
8: if reward then
9: if φc <= N and φc > 1 then

10: φc ← φc − 1
11: else if φc > N and φc < 2N then
12: φc ← φc + 1
13: end if
14: else
15: if φc <= N then
16: φc ← φc + 1
17: else if φc > N then
18: φc ← φc − 1
19: end if
20: end if
21: end loop

4.2 Variable structure stochastic learning automata

Variable structure learning automata have been proved to be simple and effective learning
schemes in several areas. These schemes have been researched extensively, and a detailed
overview of this work can be found in [11].

In a variable structure learning automaton, each action is assigned a selection probability, and
all of these selection probabilities constitute an action probability vector p that sums to unity.
Initially, with no prior information about the actions, each of the actions is assigned an equal
probability, where each probability is simply set to 1

K
, where K denotes the total number of

actions.

35

CHAPTER 4. NON-BAYESIAN BANDIT PLAYERS

The action selection procedure of the algorithms presented in the following sections may be
compared to a roulette wheel, where each action is assigned a slice of the wheel in proportion
to the probability of selecting the action. Hence, an action with a large associated probability
will have a greater chance of being selected. However, due to the trade-off between exploration
and exploitation, it is important that other actions besides the current perceived optimal action
are explored as well. A balance between exploration and exploitation is achieved by performing
a roulette wheel selection. A threshold value is randomly chosen from the interval [0,1], and all
the actions’ probability values are summed until this threshold is reached. When the threshold
is reached, the action that corresponds to the latest added probability is chosen.

The roulette wheel selection is described in Algorithm 2 and is used in all the learning schemes
presented in this section to select an action in accordance to the probability vector.

Algorithm 2 Roulette wheel selection

i← 1
sum← p1

rnd← Random R ∈ [0, 1]
while rnd > sum do

i← i + 1
sum← sum + pi

end while
Select action i

4.2.1 Linear Reward-Penalty (LR−P)

The linear reward-penalty scheme is one of the earliest schemes considered in mathematical
psychology (1958) and was studied further in the 1960s and 1970s [11].

The LR−P updates its action probabilities upon both reward and penalty from the environment.
If the automaton receives a reward from the environment, the corresponding probability of the
selected action is increased, while the other action probabilities are decreased. Upon a penalty
from the environment the automaton decreases the selection probability of the corresponding
action and increases the action probabilities of the other actions.

The algorithm of the LR−P scheme is shown in Algorithm 3.

36

CHAPTER 4. NON-BAYESIAN BANDIT PLAYERS

Algorithm 3 LR−P

1: Parameters: Real α, β ∈ (0, 1)
2: Initialization: pj ← 1

K
for j ← 1 to K

3: loop
4: Draw randomly an action i according to probabilities p0, . . . , pK

5: Receive either reward or penalty
6: if reward then
7: for j ← 1 to K do
8: if j <> i then
9: pj ← (1− α)pj

10: else
11: pi ← pi + α(1− pi)
12: end if
13: end for
14: else
15: for j ← 1 to K do
16: if j <> i then
17: pj ← β

K−1 + (1− β)pj

18: else
19: pi ← (1− β)pi

20: end if
21: end for
22: end if
23: end loop

The scheme makes use of two parameters, α and β, which governs the learning speed, and
are referred to as learning parameters. The α parameter is used during updating of the action
selection probabilities upon a reward from the environment, while the β parameter is used during
the updating of the action probabilities in the case of a penalty.

The purpose of the learning parameters is to control the learning speed of the automaton, and
by setting these values sufficiently small the automaton will converge in distribution, and not
to a single action [11].

In LR−P , the parameters have equal values, that is α = β, but it is also possible to use different
values, where β = ǫα. The scheme is then referred to as LR−ǫP , and its properties are in between
LR−P , and LR−I [11]. LR−I is described in Section 4.2.2.

This LR−P is the most general automaton of a group of reinforcements schemes called linear
updating schemes, which in addition to LR−P consists of LR−I and LI−P . From the LR−P au-
tomaton we can obtain the other schemes, where the Linear Reward-Inaction, LR−I , is obtained
by setting β = 0, and Linear Inaction-Penalty, LI−P , not described in this thesis, is obtained
by setting α = 0.

37

CHAPTER 4. NON-BAYESIAN BANDIT PLAYERS

4.2.2 Linear Reward-Inaction (LR−I)

The Linear Reward-Inaction, LR−I , is obtained from the LR−P scheme by setting β = 0. As
the name implies the action probabilities are only updated upon the receipt of a reward from
the environment. Upon the receipt of a penalty the automaton keeps the action probabilities
unchanged, hence the term inaction since upon receipt of a penalty no updating is performed.
Updating of the action probability vector upon the receipt of a reward is performed in a similar
way as in the LR−P scheme.

An important property of the LR−I is that the automaton converges against the optimal action
with a probability as close to unity as desired in a stationary environment, when the learning
parameter α is sufficiently small and the number of trials tends to infinity [11].

The LR−I scheme is also applicable in environments where the feedback is defined in the interval
[0, 1]. This requires a slightly change of the updating procedure as presented in the LR−P scheme,
where α is multiplied with the feedback value r. With Bernoulli distributed feedback r is either
1 or 0.

The algorithm of the LR−I scheme is shown in Algorithm 4.

Algorithm 4 LR−I

1: Parameters: Real α ∈ (0, 1)
2: Initialization:pj ← 1

K
for j ← 1 to K

3: loop
4: Draw randomly an action i according to probabilities p0, . . . , pK

5: Receive feedback r
6: for j ← 1 to K do
7: if j <> i then
8: pj ← (1− αr)pj

9: else
10: pi ← pi + αr(1− pi)
11: end if
12: end for
13: end loop

4.2.3 Pursuit

The Pursuit scheme computes estimated average feedback of the actions by using the history of
previous selected actions and the corresponding received feedback. As with the previous variable
structure automata presented in this section, the pursuit scheme uses a learning parameter α
that is used to govern learning speed. The algorithm of the Pursuit scheme is shown in Algorithm
5.

Upon a feedback from the environment the pursuit scheme updates a mean estimate for the
selected action. The scheme identifies the action which has received the highest average feed-
back from the environment, and increases the respective action’s selection probability. Hence,

38

CHAPTER 4. NON-BAYESIAN BANDIT PLAYERS

the selection probability of the action that lead to the feedback from the environment is not
necessarily increased. An important consequence of this is that if a non-optimal action should
give a favorable feedback to the automaton, this would not affect the automaton in the same
matter as it would in the LR−I scheme.

The name of the Pursuit scheme is due to the reason that the vector of action probabilities
pursuits the estimated optimal vector, i.e it pursuits the vector which leads to that the optimal
action is chosen with probability 1.

The Pursuit scheme is shown to be faster than the LR−I in terms of the convergence rate, and as
the LR−I scheme it also converges towards the optimal action in a stationary environment when
the parameter α is set to a sufficiently small value and the number of trials tends to infinity [9].

As shown in Algorithm 5, the feedback from the environment, do not need to be constrained
to the interval [0, 1], since the actual updating of the probability vector is independent of the
actual response, thus, making the Pursuit scheme suitable for a wide range of applications.

Algorithm 5 Pursuit

1: Parameters: Real α ∈ (0, 1)
2: Initialization: pj ← 1

K
for j ← 1 to K

3: loop
4: Draw randomly an action i according to probabilities p0, . . . , pK

5: ni ← ni + 1
6: Play action i and receive feedback
7: ri ← ri + feedback
8: i∗ = argmax

rj

nj
, where j ∈ {1, . . . , K}

9: for j ← 1 to K do
10: pj ← (1− α)pj

11: end for
12: pi∗ ← pi∗ + α
13: end loop

39

CHAPTER 4. NON-BAYESIAN BANDIT PLAYERS

4.3 Confidence interval based schemes

In Section 3.2.1 we briefly presented the frequentist approach to inference and introduced confi-
dence statements. Confidence interval based schemes follow the frequentist approach and assign
an optimistic mean estimate within a confidence interval to each action. The confidence interval
is then used to greedily select the action with the highest optimistic estimate. The optimistic
part of the mean estimate is used to achieve exploration of actions, and is gradually decreased
and approaches the true value when the number of action selections is sufficiently large.

In the following we present four confidence interval based schemes, ucb1, ucb1−tuned, ucb1−
normal and IntEstim.

4.3.1 ucb1

The ucb-1 scheme is based on an index-based policy by Agrawal (1995) [16], and is applicable
in environments where the feedback is Bernoulli distributed. In this scheme each action is
assigned an upper confidence index based upon the past reward history of the action. The
upper confidence index is based on the average reward received, and the size of the one-sided
confidence interval of the average reward. A reward expectation for each action is estimated
from the index, and the action with the highest mean estimate is then selected [16].

The scheme must keep track of the total number of plays, denoted n, the average reward received
for each action, denoted mj , and the number of selections of an action, denoted nj . A brief
overview of the action selection procedure is shown in Algorithm 6.

Algorithm 6 ucb1

1: Initialization: Play each action once.
2: loop

3: Play action i that maximizes mj +
√

2 ln n
nj

for each j ∈ {1, . . . , K}
4: Update mi, ni and n
5: end loop

We refer the reader to [16] for a more detailed description of the algorithm.

40

CHAPTER 4. NON-BAYESIAN BANDIT PLAYERS

4.3.2 ucb1−tuned

Auer et al. proved in [16] that the ucb1 can be more finely tuned, and proposed a new variant
of the ucb1 scheme called ucb1-tuned which offers improved performance compared to the
ucb1 scheme.

The ucb1-tuned is similar to the ucb1, but the
√

2 ln n
nj

term from Algorithm 6 is replaced with
√

ln n
nj

min(1/4, Vj(nj)), where Vj(nj) is defined as in Equation 4.1 [16]:

Vj(nj)
def
=

(

1

nj

nj
∑

τ=1

X2
j , τ

)

− X̄2
j,nj

+

√

2 lnn

nj
(4.1)

A brief overview of the algorithm is shown in Algorithm 7.

Algorithm 7 ucb1-tuned

1: Initialization: Play each action once.
2: loop

3: Play action i that maximizes mj +
√

ln n
nj

min(1/4, Vj(nj)) for each j ∈ {1, . . . , K}
4: Update parameters mi, ni and n
5: end loop

We again refer the reader to [16] for a more detailed description of the algorithm.

4.3.3 ucb1-normal

The ucb1-normal scheme, proposed in by Auer et al. in [16], is suitable for environments with
normally distributed feedback, where the true feedback mean and variance are unknown.

Like the previous presented confidence interval schemes, the ucb1-normal scheme uses the
one-sided confidence interval for the average feedback received from the environment. However,
in this case the feedback are known to be normally distributed, and the sample variance is used
as an estimate for the unknown variance.

The algorithm of ucb1-normal is listed in Algorithm 8, where the total number of action
selections are denoted n, and the average feedback obtained for action j is denoted mj . The
total number of selections of an action is denoted nj , while qj denotes the sum of squares.

41

CHAPTER 4. NON-BAYESIAN BANDIT PLAYERS

Algorithm 8 ucb1-normal

1: Initialization: n← 1
2: loop
3: for j ← 1 to K do
4: if nj < 8 log n then
5: i← j
6: break
7: else

8: xj ← m̄j +

√

16 · qj−njm̄2
j

nj−1 · ln(n−1)
nj

9: if xmax < xj then
10: xmax ← xj

11: i← j
12: end if
13: end if
14: end for
15: Select action i
16: Update mi, qi, ni

17: end loop

A more detailed description of the algorithm is available in [16].

4.3.4 IntEstim

IntEstim, short for Interval Estimation, also uses an optimistic mean estimate for each action
to achieve exploration, and the best action is greedily selected at each round. Many variants of
IntEstim scheme have been proposed, but the variant described here is the same as used by
Vogel et al. in [27].

In the variant described in [27], the feedback, like in the ucb1-normal scheme, is normally
distributed, and the upper bound is estimated based on this assumption. The choice of dis-
tribution may seem arbitrarily, however as argued in [27], this may be considered reasonable,
when no other knowledge of the reward distributions is present. The assumption may further be
supported by the so-called central limit theorem, which states that the sum of a large number
of independent variables is approximately normal distributed [19].

The algorithm of IntEstim is shown in Algorithm 9. Each action is assigned a reward mean
upper bound 100 · (1−α), where α is a tuning parameter in the interval (0, 1). The α parameter
defines the exploration rate, where a small α-value leads to more exploration and a high value
to less exploration.

For each action, denoted j, the scheme needs to keep track of the reward mean, mj , the variance,
sj , and the number of selections of that specific action, nj .

In Algorithm 9 the function C(mj , sj , nj) utilizes the inverse cumulative normal distribution
function and is defined as:

42

CHAPTER 4. NON-BAYESIAN BANDIT PLAYERS

C(mj , sj , nj)
def
= Inv-normal-cdf

(

1− α, mj ,
sj√
nj

)

(4.2)

From Equation 4.2 we can recognize (1− α) from above which determines the upper bound on
the reward mean, while mj and sj are the sample mean and variance for the normal distribution
associated with action j in the algorithm.

Algorithm 9 IntEstim

1: Parameters: Real α ∈ (0, 1)
2: Initialization: Select a random action at least twice and update corresponding mj , sj and

nj

3: loop
4: for j ← 1 to K do
5: if nj > 0 then
6: if nj > 1 then
7: price← C(mj , sj , nj)
8: else
9: price← C

(

mj ,
sj

number of actions played twice , 1
)

10: end if
11: if price > pricemax then
12: pricemax ← price
13: i← j
14: end if
15: end if
16: end for
17: if actions selected < K then

18: uPrice← C
(

PK
i=1 mi

number of actions played ,
PK

i=1 si

number of actions played twice , 1
)

19: if uPrice > Price then
20: pricemax ← uPrice
21: index← random Z ∈ [0, K - observed actions - 1]
22: for j ← 1 to K do
23: if nj = 0 then
24: if uCount = index then
25: i← j
26: else
27: uCount← uCount + 1
28: end if
29: end if
30: end for
31: end if
32: end if
33: Select action i
34: Update mi, si and ni for action i with the received feedback
35: end loop

43

CHAPTER 4. NON-BAYESIAN BANDIT PLAYERS

4.4 Exponential weight schemes

4.4.1 Exp3

Exp3, short for Exponential-weight algorithm for Exploration and Exploitation, is a variant of
an algorithm called Hedge [28]. The Exp3 scheme was originally proposed by Auer et al. in
[28], along with several other related schemes with varying bounds on the achieved regret. The
scheme assumes that the feedback is in the range [0, 1].

The algorithmic description of the Exp3 scheme is shown in Algorithm 10. The probability of
selecting an action j at time instant t is defined by [28]:

pj(t) = (1− α)
wj(t)

∑K
i=1 wi(t)

+
α

K
(4.3)

The total number of actions is denoted K, α is a tuning parameter defined in the interval (0, 1]
and wj is a weight value associated with each action.

The probability distribution in Equation 4.3, is a mixture of the probability mass exponential
in the estimated cumulative feedback of an action and the uniform distribution, and is used to
ensure that all actions are played [28].

Algorithm 10 Exp3

1: Parameters: Real α ∈ (0, 1]
2: Initialization: wj ← 1 for j ← 1 to K
3: loop
4: for j ← 1 to K do
5: pj ← (1− α)

wj
PK

x=1 wx
+ α

K

6: end for
7: Draw randomly an action i according to probabilities p0, . . . , pK

8: Select action i, and receive feedback xi

9: for j ← 1 to K do
10: if j = i then
11: x̂j ← xi

pj

12: else
13: x̂j ← 0
14: end if
15: wj ← wj exp

(

αx̂j

K

)

16: end for
17: end loop

44

CHAPTER 4. NON-BAYESIAN BANDIT PLAYERS

4.5 Pricing schemes

4.5.1 Poker

Poker, which is an abbreviation for Price of Knowledge and Estimated Reward, was proposed
by Vogel et al. in [27]. Poker is based upon the assumption that the received feedback is
normally distributed. The scheme relies on three principles: pricing of knowledge, estimation of
unselected actions and utilizing of the horizon in the selection procedure, i.e utilize the number
of trials left.

A price is assigned to the knowledge gained by selecting a particular action. This is used to focus
exploitation on actions, where the potentially most valuable information may be gained. For
instance, to focus exploitation on actions with few selections, or on actions that seem to be very
close to the currently perceived optimal action. In this way a balance between the exploration
vs. exploitation is achieved.

Unselected actions could potentially, to some extent, be estimated from the gained information
from actions that have already been selected. As argued in [27] this is useful when there are
fewer trials than there are number of actions. However, in this thesis this is not an important
feature, as the number of trials is large compared to the number of actions.

Utilizing of the horizon in the selection procedure is feasible when there are few trials left in
order to focus on exploiting the already obtained knowledge, as new information has less value
at this point [27].

The algorithm of the Poker scheme is listed in Algorithm 11 [27]. The total feedback received
from the environment for an action j is denoted rj , the sum of the squared feedback is denoted
r2
j , while the number of selections of each action is denoted nj .

The term Êk,n[k]>0[µ[k]] denotes the empirical feedback mean over the selected actions, while

Êk,n[k]>0[σ[k]] denotes the empirical variance over selected actions.

45

CHAPTER 4. NON-BAYESIAN BANDIT PLAYERS

Algorithm 11 Poker

1: Initializing: nj ← rj ← r2
j ← 0 for j ← 1 to K

2: Initializing: Select two random actions at least twice, and update the corresponding rj , r
2
j

and nj

3: for t← 1 to T do
4: q ← |{i, ri > 0}|
5: i0 ← argmax(ui)
6: i1 ← j such that |i, ui > uj | =

√
q

7: δµ ← (µi0 − µi1)/
√

q
8: µ∗ ←argmax(µi)
9: pmax ← −∞

10: i← Undefined

11: for j ← 1 to K do
12: if nj > 0 then µ← uj else µ← Êk,n[k]>0[µ[k]] endif

13: if nj > 1 then σ ← σj else σ ← Êk,n[k]>0[σ[k]] endif

14: p← µ + δµ(T − t)
∫∞

µ∗+δµ
N
(

x, uj ,
σj
√

nj

)

dx

15: if p > pmax then pmax ← p, i← j endif
16: end for
17: Select action imax and receive reward xi

18: ri ← rimax + xi

19: r2
i ← r2

imax
+ x2

i

20: ni ← ni + 1
21: end for

We refer the reader to [27] for a more detailed description of the algorithm.

46

CHAPTER 4. NON-BAYESIAN BANDIT PLAYERS

4.6 Greedy schemes

The classical ε-greedy rule is a simple and well-known strategy for the k-armed bandit problem,
first described by Watkins in [29]. In the ε-greedy strategy the action with the highest feedback
probability is selected with probability 1− ε, and a random arm is selected with probability ε.

There are two weaknesses with this scheme when applied in stationary environments. The first
is that all actions are explored with the same probability, which is not optimal when a certain
amount of knowledge has been obtained from each action. It would probably make more sense
to focus the exploration on the actions which seem to be close to the perceived optimal action
with regards to the distributions associated with the actions.

The second weakness is that the exploration is made with an constant effort ε, which in a
stationary environment is not optimal when a certain level of knowledge has been obtained
about the available actions. The obvious solution to this problem would be to slowly decrease
the exploration rate as more confidence in the optimal action is built.

Several variants of the ε-greedy rule exist, but in the following we present the εn-greedy as
proposed by Auer et al. in [16].

4.6.1 εn-greedy

Auer et al. in [16] proposed the εn-greedy scheme where the exploration rate is decreasing as
the number of trials is increasing, and the rate of exploration is calculated as follows [16]:

εn(n)
def
= min

(

1,
cK

d2n

)

(4.4)

This function requires the parameters d, which denotes the difference between the best and the
second best arm, and c which is used for tuning the learning rate of the algorithm.

The algorithm of εn-greedy is shown in Algorithm 12. In each action selection the best action
is selected with probability 1−εn and a random action with probability εn. For each action j the
algorithm needs to keep track of the sum of received feedback rj , and the number of selections
nj , in addition to the total number of selections across all actions, denoted n.

Algorithm 12 εn-greedy

1: Initialization: rj ← 0, nj ← 0 for j ← 1 to K
2: loop
3: Let k be the action with the highest feedback mean
4: Select action k with probability 1− εn, and a random action with probability εn

5: Update rj and nj with received feedback for selected action
6: end loop

47

Chapter 5

Bayesian bandit players - The
Bayesian Learning Automaton family

In this chapter we introduce the Bayesian bandit players from the Bayesian Learning Automa-
ton family, originally proposed by Granmo in the paper The Bayesian Learning Automaton -
Empirical Evaluation with Two-Armed Bernoulli Bandit Problems [5], where the first member
of the family was introduced. We both present the BLA proposed by Granmo and extend the
BLA family with three new members designed for Poisson and normally distributed feedback.

In Section 5.1 we illustrate by an example how a conjugate prior distribution is used in a Bayesian
Learning Automaton to infer on the unknown parameters θ, and how the posterior distribution
is applied in a Bayesian Learning Automaton during the action selection procedure.

The concepts introduced in Sections 3.3 and 3.4 are used extensively in this chapter, and in
Sections 5.2 through 5.5 we use these concepts to derive the algorithms of the members of the
Bayesian Learning Automaton family.

5.1 Bayesian inference in the general k-armed bandit problem

In the following sections we describe how the conjugate prior distributions are applied in the
Bayesian Learning Automata. We illustrate this by examples, where we assume Bernoulli dis-
tributed feedback from the environment. In Section 5.1.1 we investigate the development of a
simplified inference process of the parameter p of the Bernoulli distribution. We then in Section
5.1.2 see how the posterior beta distribution is applied in the action selection procedure.

5.1.1 Bayesian inference about the unknown parameters θ

A Bayesian Learning Automaton associates a conjugate prior distribution to each action it may
apply on the environment. More specifically, this means that each action is associated with the
hyperparameters of the conjugate prior distribution.

48

CHAPTER 5. BAYESIAN BANDIT PLAYERS - THE BAYESIAN LEARNING
AUTOMATON FAMILY

In accordance to the terminology presented in Section 3.2, the distribution of the environment
constitutes the likelihood function, also referred to as the sampling function of the feedback,
and the prior distribution infer on the unknown parameter θ of the likelihood function. From
Table 3.1 we see that the beta distribution is the conjugate prior for the Bernoulli distribution.

As noted earlier, with Bernoulli distributed feedback, the environment will respond with a
reward with probability p and a penalty with probability 1− p. Upon receipt of a response the
automaton updates its beliefs about the action that led to the response, and hence the beta
distribution associated with that action. We defer the details of how the updating of the prior
distribution is performed to Section 5.2.

In the following we investigate the development of a simplified inference process with Bernoulli
distributed feedback, which is depicted in Figure 5.1, where the reward probability p is set to
0.7.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

n = 0 α = 1, β = 1
n = 10 α = 7, β = 5
n = 25 α = 17, β = 10
n = 50 α = 38, β = 14
n = 100 α = 69, β = 33
n = 250 α = 176, β = 76
n = 500 α = 348, β = 154

Figure 5.1: Bayesian inference about Bernoulli parameter p

In Figure 5.1 we see how the shape of a beta distribution changes as the number of trials increases
and new evidence is obtained. The objective of the inference process is to identify the value of
parameter p of the likelihood function. As mentioned in Section 3.5 the expected mean value of
a beta distribution will approach the true value of the p parameter of the Bernoulli distribution
as the number of trials increases.

At the start of the experiment, n = 0, there does not exist any prior belief about the parameter
p, and a uniform non-informative beta prior distribution is chosen with parameters α = 1 and
β = 1. Such a prior weights every possible value of the parameter p equally, which means that
according to the prior distribution at n = 0, any value in the range [0,1] is equally likely for the
parameter p.

49

CHAPTER 5. BAYESIAN BANDIT PLAYERS - THE BAYESIAN LEARNING
AUTOMATON FAMILY

As the number of trails increases we observe how the belief about the unknown parameter p is
concentrated to a specific range, and slowly is focused to a specific value as the number of trials
n increases. We can also observe how the expected mean value, (α

α+β
), initially shifts back and

forth, but gradually is focused towards the true unknown value of the Bernoulli parameter p,
namely 0.7.

The principles illustrated in the simplified inference process showed in this section apply to all
the automata in the Bayesian Learning Automaton family. Also note, that in relation with the
k-armed bandit problem we typically have several actions, where the environment associates a
Bernoulli distribution with each action. Hence, the automata perform inferences about several
p parameters, and the inference process of a parameter of a given action is performed when the
action is applied and a feedback is received. We explore the action selection procedure in the
following section.

5.1.2 Action selection in the Bayesian Learning Automaton

The conjugate prior distribution serves two purposes in the BLA. It describes the belief of the
unknown parameters θ, and it is used during action selection in the automaton. Action selection
is performed by sampling a value x from the distribution associated with each action, and the
action that returns the highest sample value is selected.

In the following example we again consider an environment with Bernoulli distributed feedback
and two available actions. A uniform non-informative prior beta distribution with initial pa-
rameters α = β = 1 is associated with each action. This means that no prior belief about the
value of parameter p exists, or equivalent that the initial belief is that p can take any value in
the interval [0, 1]. The overall goal is to identify the action that on average returns the highest
feedback, i.e we want to identify the action with the highest associated p value.

The beta distributions associated with the two actions a1 and a2 are used to make inference
about the parameters p1 and p2, respectively. Figure 5.2 shows the development of the inferred
beta distributions on the parameters p1 = 0.7 and p2 = 0.5, plotted after n = 50 and n = 200
trials on action a1 and a2, respectively.

At n = 50 we can observe how the probability distribution for p1 and p2 overlap, and even if the
distribution associated with a1 will return the highest random samples in most cases, there is still
a certain probability of selecting action a2, which at this point most likely is inferior. Because
of this, actions which yield higher expected values from their associated beta distributions are
selected more than those that yield lower expected values. Also, an inferior action is still selected
with a certain probability as long as there is a certain probability that this action actually is
the optimal action.

From Figure 5.2 we observe that at n = 100 the overlap is significantly smaller than it was at
n = 50, which means that at this point more certainty about the true values of the parameters
has been achieved, and less effort is put on exploring the perceived inferior action. This pattern
develops further as action selections are performed and feedback from the environment is re-
ceived. Furthermore, at a certain point there will have been gathered enough samples such that
these distributions no longer overlap, and at this point only the optimal action will be selected.

50

CHAPTER 5. BAYESIAN BANDIT PLAYERS - THE BAYESIAN LEARNING
AUTOMATON FAMILY

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

a1: n = 50 α = 38, β = 14
a1: n = 200 α = 146, β = 56
a2: n = 50 α = 31, β = 21
a2: n = 200 α = 115, β = 87

Figure 5.2: Bayesian inference and action selection with Bernoulli distributed feedback

As demonstrated with the example above, by sampling from the inferred probability distribution
over each action’s true parameter p the Bayesian Learning Automaton is able to balance its
exploration vs. exploitation effort.

Note that Figure 5.2 does not show a realistic development of the inferred distributions on p1

and p2, but merely serves the purpose as an example of how arm selection is performed in a
BLA. The reason for this is that since actions with higher expected values are selected more
than those with lower, the distributions associated with actions that on average yields higher
feedback develop faster. Therefore, typically an action that yields lower average feedback would
develop a distribution that is lower and wider than an action that on average yields a higher
feedback.

The principles of the action selection procedure presented in this section are common to all the
members of the Bayesian Learning Automaton family.

51

CHAPTER 5. BAYESIAN BANDIT PLAYERS - THE BAYESIAN LEARNING
AUTOMATON FAMILY

5.2 BLA Bernoulli

The Bayesian Learning Automaton (BLA) for Bernoulli distributed feedback was presented by
Granmo in [5] and marked the beginning of a new family of learning automata. In this thesis we
refer to this automaton as BLA Bernoulli in order to distinguish the members of the Bayesian
Learning Automaton family from each other.

As reported in Table 3.1, the beta distribution is the conjugate prior for the Bernoulli distribu-
tion. In this section we identify the beta distribution as the conjugate prior for the Bernoulli
distribution by using the theory from Section 3.4.3 and derive the updating rules of the hyper-
parameters of the beta distribution. These rules are an essential part of the algorithm of BLA
Bernoulli which we present in Section 5.2.2.

5.2.1 Theoretical background

The Bernoulli distribution is a discrete probability distribution and is defined as [25]:

p(y|θ) = θy(1− θ)1−y (5.1)

y = {0, 1}
θ ∈ [0, 1]

From the definition in Equation 5.1 it implies that y obtains the value 1 with probability θ and
0 with probability 1− θ.

The Bernoulli distribution is part of the exponential family, and therefore we can express the
Bernoulli distribution in exponential form. Thus, relating Equation 5.1 to Equation 3.14, we
obtain the following equalities [25]:

f(y) = 1

g(θ) = 1− θ

u(y) = y

φ(θ) = log
θ

1− θ

Using this, we express the Bernoulli distribution in exponential family form as [25]:

p(y|θ) ∝ (1− θ)ey log θ
1−θ (5.2)

52

CHAPTER 5. BAYESIAN BANDIT PLAYERS - THE BAYESIAN LEARNING
AUTOMATON FAMILY

The general exponential form of a prior distribution was shown in Equation 3.15. The conjugate
prior of the Bernoulli distribution can thus be expressed in exponential family form as [19]:

p(θ) ∝ g(θ)ηe(φ(θ)T ν)

∝ (1− θ)ηeν log θ
1−θ (5.3)

Having identified the natural conjugate prior of the Bernoulli distribution, expressed in expo-
nential family form, we can re-write the prior from Equation 5.3 into the functional form of the
Bernoulli distribution. The natural conjugate prior of the Bernoulli distribution is defined as:

p(θ) ∝ θν(1− θ)η−ν (5.4)

By examining the conjugate prior in Equation 5.4 we see that it has the same functional form
(shape) as the beta distribution [19]:

Beta(θ|α, β) = c θα−1(1− θ)β−1 (5.5)

where,

c =
Γ(α + β)

Γ(α)Γ(β)

α > 0

β > 0

By comparing the beta distribution defined in Equation 5.5 to the conjugate prior defined in
Equation 5.4 we get the following connections:

ν = α− 1

η − ν = β − 1

We can therefore use the beta distribution as conjugate prior for the Bernoulli distribution, and
state the following:

p(θ) = Beta(θ|α, β) (5.6)

Multiplying the conjugate prior with the likelihood function yields the posterior distribution,
according to Bayes’ theorem [19]:

p(θ|y) ∝ p(θ)× p(y|θ)
∝ θα−1(1− θ)β−1θy(1− θ)1−y

∝ θα−1+y(1− θ)β−1+1−y (5.7)

53

CHAPTER 5. BAYESIAN BANDIT PLAYERS - THE BAYESIAN LEARNING
AUTOMATON FAMILY

Thus, as seen from Equation 5.7, the posterior distribution has the same parametric form as
the prior. From Equation 5.7 we see that the hyperparameters of the posterior distribution are
updated in the following way [19]:

αn = αn−1 + y

βn = βn−1 + 1− y (5.8)

From the updating rules above we see that when y = 1, the α parameter is incremented by one,
while the β parameter stays the same. When y = 0, we observe the opposite, the α parameter
stays the same, while β is incremented by one.

5.2.2 Algorithm description

The algorithm of BLA Bernoulli is listed in Algorithm 13. The parameters αj and βj are
associated with each action j ∈ {1, . . . , K} and by choosing a non-informative Beta distribution
these are initialized αj = βj = 1.

Algorithm 13 BLA Bernoulli

1: Initialization: αj ← 1, βj ← 1, for each j ∈ {1, . . . , K}
2: loop
3: Sample xj from Beta(αj , βj), for each j ∈ {1, . . . , K}
4: i = argmax xj , where j ∈ {1, . . . , K}
5: Select action i
6: Receive reward or penalty
7: if reward then
8: αi ← αi + 1
9: end if

10: if penalty then
11: βi ← βi + 1
12: end if
13: end loop

Action selection is performed at lines 3-5, and consists of sampling xj from the beta distribution
for each action j, and selecting action i which returns the highest sample value.

When an action i has been selected, and either a reward or a penalty has been received, the
hyperparameters are updated at lines 7-12. This consists of incrementing αi by 1 in the case of
a reward and incrementing βi in the case of a penalty.

54

CHAPTER 5. BAYESIAN BANDIT PLAYERS - THE BAYESIAN LEARNING
AUTOMATON FAMILY

5.3 BLA Poisson

BLA Poisson is designed for environments where the feedback is Poisson distributed. As shown
in Table 3.1, the gamma distribution is the conjugate prior for the Poisson distribution. Below
we identify the gamma distribution as the conjugate prior for the Poisson distribution by using
the theory presented in Section 3.4.3 and derive the updating rules of the hyperparameters.
These rules are an essential part of the algorithm presented in Section 5.3.2.

5.3.1 Theoretical background

The Poisson distribution is a discrete probability distribution, which is used to model the number
of events that occurs within a time-interval when the event occurs with a certain average rate,
and each event is independent of the previous event. If a single datapoint y is Poisson distributed
with rate λ, then the probability of observing y is [23]:

p(y|λ) =
λye−λ

y!

p(y|λ) ∝ λye−λ (5.9)

λ ∈ R
+

The Poisson distribution belongs to the exponential family and relating the likelihood from
Equation 5.9 to the exponential family form given in Equation 3.14, gives the following equalities
[25]:

f(y) =
1

y!

g(λ) = e−λ

u(y) = y

φ(λ) = log λ

Using this, we can rewrite the Poisson likelihood in exponential family form as [23]:

p(y|λ) ∝ e−λey log λ (5.10)

From Equation 3.15 we can define the natural conjugate prior distribution for the Poisson
distribution. Using the equalities from above, the conjugate prior for the Poisson distribution
can be expressed in exponential family form as [23]:

p(λ) ∝ g(λ)ηe(φ(λ)T ν)

∝ e(−λ)ηeν log λ (5.11)

55

CHAPTER 5. BAYESIAN BANDIT PLAYERS - THE BAYESIAN LEARNING
AUTOMATON FAMILY

We can re-write the conjugate prior in Equation 5.11 into the functional form of the Poisson
distribution given in Equation 5.9, which yields [19]:

p(λ) ∝ λνe−ηλ (5.12)

By examining the conjugate prior in Equation 5.12 closer, we see that it has the same functional
form (shape) as the gamma distribution, which is defined as [23]:

Gamma(λ|α, β) = cλα−1e−βλ (5.13)

where,

c =
βα

Γ(α)

α > 0

β > 0

The α parameter is called the shape parameter, and the β parameter is referred to as the inverse
scale parameter. Sometimes the scale parameter, denoted θ here for clarity, is used instead of the
inverse scale parameter in the definition of the gamma distribution. The inverse scale parameter
is then naturally defined as β = 1

θ
[24].

Comparing Equation 5.12 and Equation 5.13, we find the following:

ν = α− 1

η = β

Thus, we can then state the following:

p(λ) = Gamma(λ|α, β) (5.14)

By multiplying the conjugate prior with the likelihood function we obtain the posterior distri-
bution, according to Bayes’ theorem [19]:

p(λ|y) ∝ p(λ)× p(y|λ)

∝ λα−1e−βλλye−λ

∝ λα−1+ye−λ(β+1) (5.15)

Comparing the posterior distribution in Equation 5.15 to the prior distribution in Equation 5.13,
we see that the posterior distribution has the same parametric form as the the prior distribution,
where the hyperparameters of the posterior distribution are updated from the prior distribution
in the following way [19]:

56

CHAPTER 5. BAYESIAN BANDIT PLAYERS - THE BAYESIAN LEARNING
AUTOMATON FAMILY

αn = αn−1 + y

βn = βn−1 + 1

By examining the equations, we see that the α parameter denotes the sum of all random samples
sampled from the Poisson distribution, while the β parameter denotes the number of observa-
tions.

5.3.2 Algorithm description

The algorithm of BLA Poisson is shown in Algorithm 14. Each action j is associated with the
hyperparameters, αj and βj , of the gamma distribution.

Algorithm 14 BLA Poisson

1: Initialization: Set αj and βj according to prior belief about λj

2: loop
3: Sample xj from Gamma(αj , βj), for each j ∈ {1, . . . , K}
4: i = argmax xj where j ∈ {1, . . . , K}
5: Select action i and receive feedback r
6: αi ← αi + r
7: βi ← βi + 1
8: end loop

The initialization phase consists of initializing the hyperparameters αj and βj associated with
each action in accordance with the prior belief about the unknown rate parameter λ.

Similarly as in the case with BLA Bernoulli, action selection is performed by sampling xj from
the inferred distribution about the parameter λ for each action j, and the action with the highest
sample value is selected.

Finally, the hyperparameters αi and βi are updated in accordance with the received feedback r
at the lines 6-7.

57

CHAPTER 5. BAYESIAN BANDIT PLAYERS - THE BAYESIAN LEARNING
AUTOMATON FAMILY

5.4 BLA Normal known σ
2

BLA Normal with unknown µ and known σ2 is designed for environments with normally dis-
tributed feedback. From Table 3.1 we see that the conjugate prior for a normal distribution,
where µ is unknown, but σ2 is known, is the normal distribution itself. Below we only make a
rough identification of the conjugate prior and derivation of the updating rules of the hyperpa-
rameters. The algorithmic description of BLA Normal is presented in Section 5.4.2.

5.4.1 Theoretical background

We again consider a single datapoint y that is normal distributed with mean µ and variance σ2.
The parameter we are interested in estimating in this case is the mean µ, where the variance σ2

is assumed known. The likelihood function is defined as [19]:

p(y|µ) =
1√
2πσ

e−
1

2σ2 (y−µ)2 (5.16)

Since 1√
2πσ

does not influence the shape of p(y|µ) it may be regarded as a constant, and we

therefore rewrite Equation 5.16 as [19]:

p(y|µ) ∝ e−
1

2σ2 (y−µ)2 (5.17)

The Normal distribution is part of the exponential family, and for any member of the exponential
family we have already defined in Equation 3.15 the form of a conjugate prior. Thus, we seek
a prior distribution that is a conjugate prior for the normal distribution. We omit a detailed
derivation for identifying the conjugate prior, and only state that the conjugate prior is the
normal distribution with mean m and variance s2 [19]:

p(µ) ∝ e−
1

2s2
(µ−m)2 (5.18)

58

CHAPTER 5. BAYESIAN BANDIT PLAYERS - THE BAYESIAN LEARNING
AUTOMATON FAMILY

By multiplying the conjugate prior with the likelihood function, we obtain the posterior distri-
bution, according to Bayes’ theorem [19]:

p(µ|y) ∝ p(µ)× p(y|µ)

∝ e−
1

2s2
(µ−m)2 × e−

1
2σ2 (y−µ)2

∝ e
− 1

2

»

(µ−m)2

s2
+

(y−µ)2

σ2

–

∝ e
− 1

2

»

σ2(µ2
−2µm+m2)+s2(y2

−2yµ+µ2)

σ2s2

–

∝ e
− 1

2

»

(σ2+s2)µ2
−2(σ2m+s2y)µ+m2σ2+y2s2

σ2s2

–

∝ e
− 1

2σ2s2

σ2+s2

"

µ2−2
(σ2m+s2y)

σ2+s2
µ+

„

(σ2m+s2y)

σ2+s2

«2
#

∝ e
− 1

2 σ2s2

σ2+s2

»

µ−σ2m+s2y

σ2+s2

–2

(5.19)

Comparing the posterior distribution in Equation 5.19 with the prior distribution in Equation
5.18 we see that the posterior distribution has the same parametric form as the prior distribution,
where the hyperparameters of the posterior distribution are updated from the prior distribution
in the following way [19]:

mn =
(σ2mn−1 + s2

n−1y)

σ2 + sn−1
2

(sn)2 =
σ2s2

n−1

(σ2 + s2
n−1)

59

CHAPTER 5. BAYESIAN BANDIT PLAYERS - THE BAYESIAN LEARNING
AUTOMATON FAMILY

5.4.2 Algorithm description

A description of the Bayesian Learning Automaton designed for normally distributed feedback
with known variance is listed in Algorithm 15.

Algorithm 15 BLA Normal known σ2

1: Initialization: Set mj and s2
j according to prior belief of µj

2: loop
3: Sample xj from N(mj , s

2
j), for each j ∈ {1, . . . , K}

4: i = argmax xj , where j ∈ {1, . . . , K}
5: Select action i and receive feedback r
6: mi ← (σ2mi + s2

i r)/(σ2 + s2
i)

7: si
2 ← (σ2s2

i)/(σ2 + s2
i)

8: end loop

For each action j ∈ {1, . . . , K} the automaton needs to keep track of the hyperparameters mj and
s2
j , which represent the mean and variance, respectively. Initialization of the hyperparameters

mj and s2
j for each action j ∈ {1, . . . , K} is done according to the prior belief about the unknown

parameter mj .

A value xj is randomly drawn according from a normal distribution N(mj , s
2
j) associated with

j for each action j ∈ {1, . . . , K}, and the action associated with the highest drawn xj value is
selected.

Finally, the hyperparameters are updated with the received feedback r as listed at lines 6-7, and
the procedure with sampling and updating of hyperparameters is repeated.

60

CHAPTER 5. BAYESIAN BANDIT PLAYERS - THE BAYESIAN LEARNING
AUTOMATON FAMILY

5.5 BLA Normal unknown σ
2

BLA Normal with unknown µ and σ2 is designed for environments with normally distributed
feedback, but in contrast to the BLA presented in Section 5.4 the σ2 parameter of the feedback
distribution is unknown. From Table 3.1 we see that the conjugate prior is in this case the
normal-scaled-inverse-χ2. The algorithmic description of BLA Normal with unknown µ and σ2

is shown in Section 5.5.2.

5.5.1 Theoretical background

In this case we have two unknown parameters, the mean µ and the variance σ2, in contrast
to the other scenarios presented earlier where there is only one unknown parameter. Despite
having two unknown parameters we only want to draw conclusions based upon the mean µ. The
unknown parameter σ2 still plays a part in our estimate, but we are not interested in its actual
value, thus is referred to as a nuisance parameter.

The likelihood of observing a sample y is defined as [23]:

p(y|µ, σ2) ∝ σ−1e−
1

2σ2 (y−µ)2 (5.20)

= (σ2)−
1
2 e−

1
2σ2 (y−µ)2

By examining the likelihood in Equation 5.20 we see that the conjugate prior distribution must
have the form p(µ, σ2), which is the product of the marginal probability of p(σ2) and the con-
ditional probability of µ given σ2, p(µ|σ2). Thus, we are here seeking a joint prior distribution
of the form:

p(µ, σ2) ∝ p(σ2)p(µ|σ2) (5.21)

The marginal distribution of σ2 is the scaled inverse-χ2 distribution[23]:

p(σ2) = Inv − χ2(σ2|ν0, σ
2
0) =

(ν0
2)

ν0
2

Γ(ν0
2)

sν
0σ

−ν0
2

+1e
−ν0σ2

0
2σ2

∝ σ
−ν0

2
+1e

−ν0σ2
0

2σ2 (5.22)

where σ2
0 is the scale parameter and ν0 is the degrees of freedom.

The scaled inverse-χ2 distribution is a special case of the inverted-gamma distribution, when
α = ν0

2 and β = ν0
2 σ2

0.

The conditional distribution of µ given σ2 is normally distributed and defined as [23]:

p(µ|σ2) = N(µ0,
σ2

κ0
) ∝ σ−1e−

1
2σ2 κ0(µ−µ0)2 (5.23)

61

CHAPTER 5. BAYESIAN BANDIT PLAYERS - THE BAYESIAN LEARNING
AUTOMATON FAMILY

Using these definitions we obtain the joint prior distribution according to Equation 5.21:

p(µ, σ2) ∝ p(σ2)p(µ|σ2)

∝ σ−
ν0
2

+1e
−ν0σ2

0
2σ2 σ−1e−

1
2σ2 κ0(µ−µ0)2

∝ σ−1(σ2)−(
ν0
2

+1)e−
1

2σ2 [ν0σ2
0+κ0(µ−µ0)2] (5.24)

In order to obtain the joint posterior distribution we must multiply the likelihood from Equation
5.20 with the join prior distribution from Equation 5.24 [23]:

p(µ, σ2|y) ∝ p(µ, σ2)p(y|µ, σ2)

∝ σ−1(σ2)−(
ν0
2

+1)e−
1

2σ2 [ν0+σ2
0+κ0(µ−µ0)2]σ−1e−

1
2σ2 (y−µ)2

∝ σ−1(σ2)−(
(ν0+1)

2
+1)e

2

4

ν0σ2
0+

κ0(y−µ0)2

1+κ0
+(1+κ0)(µ−

µ0κ0+y
1+κ0

)2

2σ2

3

5

(5.25)

We let κ0 denote the number of observations prior to the current update, i.e in relation to current
observation κn we let κ0 be denoted κn−1. Furthermore we let ν0, σ2

0 and µ0 denote the prior
values, thus we rewrite them as νn−1, σ2

n−1 and µn−1. Using this and comparing the joint prior
distribution from Equation 5.24 to the joint posterior distribution in Equation 5.25 we see that
the hyperparameters are updated in the following way [23]:

κn = κn−1 + 1

νn = νn−1 + 1

µn =
κn−1

κn−1 + 1
µn−1 +

y

κn−1 + 1

νnσ2
n = νn−1σ

2
n−1 +

κn−1

κn−1 + 1
(y − µn−1)

2

Despite having two unknown parameters, we are only interesting in reaching a conclusion about
the unknown mean parameter µ of the population distribution. In order to do this we need a
marginal posterior distribution of the parameters that are of interest, in this case the mean µ.

We are then able to sample from the joint posterior distribution by first sampling σ2 from the
marginal posterior distribution [23]:

p(σ2|y) = Inv − χ2(σ2|νn, σ2
n) (5.26)

and then µ from the conditional posterior distribution using σ2 [23]:

p(µ|σ2, y) = N(µ|µn,
σ2

κn
) (5.27)

62

CHAPTER 5. BAYESIAN BANDIT PLAYERS - THE BAYESIAN LEARNING
AUTOMATON FAMILY

5.5.2 Algorithm description

The algorithm of BLA Normal with unknown µ and unknown σ2 is shown in Algorithm 16. For
each action j ∈ {1, . . . , K} the automaton needs to keep track of the following hyperparameters:
The number of selections of an action denoted as κj , sample mean denoted as µj , number of
degrees of freedom denoted as νj , and νjσ

2
j which contains the sample variance σ2

j and is used
during variance sampling [23].

Algorithm 16 BLA Normal unknown σ2

1: Initialization: Set hyperparameters µj , νj , νjσ
2
j and κj for each action j in accordance to

the prior belief about the true mean µj

2: loop
3: Draw xj from N(µj , S

2/κj), where S2 is drawn from scaled-inverse−χ2(νj , νjσ
2
j /νj)

4: i = argmax xj , where j ∈ {1, . . . , K}
5: Select action i and receive feedback r
6: νiσ

2
i ← νiσ

2
i + (κi/(κi + 1))(r − µi)

2

7: µi ← (κi/(κi + 1))µi + r/(κi + 1)
8: νi ← νi + 1
9: κi ← κi + 1

10: end loop

The initialization of the hyperparameters, omitted in the algorithm, is dependent on potential
prior belief about the parameter µ.

The sampling procedure is performed by first sample the variance S2
j from the scaled-inverse-χ2

distribution, and then use the sample variance in order to sample the mean xj from N

(

µj ,
S2

j

κj

)

.

The action with the highest mean xj is selected, and a feedback r is received from the environ-
ment. The feedback r is then used to update the hyperparameters associated with the action
at lines 6-9, in accordance with the updating rules presented above.

63

Chapter 6

Experiments and results

In this chapter we compare the performance of the Bayesian Learning Automaton family against
other well-known bandit players in the general k-armed bandit problem, and in games that from
the players’ point of view may be treated like a k-armed bandit problem.

As noted in Chapters 4 and 5 the bandit players are designed for various feedback distributions,
which determine applicable domains for the players. In the experiments encountered in this
thesis we apply bandit players in applicable environments, and refer the reader to Chapters 4
and 5 for details about the players and their applicable feedback.

In the following we present the most interesting results of the experiments, with additional
results available in the appendix.

6.1 Initial values of hyperparameters

Some of the members of the BLA family are introduced in several of the experiments described in
this chapter, especially BLA Bernoulli and BLA Normal unknown σ2. We therefore present the
initial values of the hyperparameters of the conjugate prior distributions used in the experiments
in this thesis.

6.1.1 Initial values of hyperparameters in BLA Bernoulli

The beta distribution is easy with regards to initial values of the hyperparameters, as the initial
values

α = 1

β = 1

yield a uniform non-informative proper prior distribution over the unknown Bernoulli parameter
p. We use these initialization values in all experiments involving BLA Bernoulli.

64

CHAPTER 6. EXPERIMENTS AND RESULTS

6.1.2 Initial values of hyperparameters in BLA Poisson

With BLA Poisson the choice of initial hyperparameters of the conjugate prior distribution may
be difficult as Poisson distributed feedback is defined in the interval [0,∞). It is therefore impor-
tant that the true values of the λ parameters are not excluded when choosing the initial values
of the hyperparameters of the gamma distribution. Hence, initial values of the hyperparameters
are highly dependent on the range of the λ parameter.

In the experiments involving BLA Poisson the parameter λ is set to be a real number in the
interval [0,10], and with this in mind, we use the following initial values of the hyperparameters
of the gamma distribution in the k-armed bandit problem with Poisson distributed feedback:

α = 10

β = 1

6.1.3 Initial values of hyperparameters in BLA Normal known σ
2

In the experiments involving with BLA Normal known σ2 we introduced an initialization phase
to the algorithm to find initial values of the hyperparameters mj and sj . This initialization
phase consists of selecting each action once, and then use the received feedback as the initial
value for the mean hyperparameter mj .

For convenience we choose to use the variance of the action with the highest variance as the
known variance for each action j ∈ {1, . . . , K} in the automaton. This means that the vari-
ance of the action with the highest variance is both used as the initial value of the variance
hyperparameter sj and during the updating procedure in the automaton.

The initialization phase in combination with the use of the highest true variance should ensure
that the initial values of the hyperparameters mj and sj do not exclude any true value of
parameter µj .

This results in the following hyperparameters after one trial on each action:

s2
j = variance of the action with the highest variance

mj = value of feedback from first attempt on action j

65

CHAPTER 6. EXPERIMENTS AND RESULTS

6.1.4 Initial values of hyperparameters in BLA Normal unknown σ
2

With BLA Normal unknown σ2 the choice of initial values of the hyperparameters may be
problematic. The reason for this is that normally distributed feedback is defined in the interval
(−∞,∞).

In most practical cases there exists some information about the environment that we may use
to construct a reasonable prior distribution on the unknown mean µ. To demonstrate the
flexibility of this automaton we have chosen an extremely wide and vague prior distribution
with the following initial hyperparameters:

µ = 0

κ = 0.01

ν = 0.1

νσ2 = 0.1

With these hyperparameters the initial mean samples from the automaton are typically in the
range −1× 1021 to 1× 1021, which is very wide considering the true value of the mean µ in the
experiments is always within the range [0, 1].

6.2 K-armed bandit experiment configurations

In the experiments conducted in the general k-armed bandit problem, all configurations have
been replicated 1000 times, where each replication consists of 100 000 iterations.

To get a picture of how the optimal arm selection probability develops as the number of iterations
increases, we present the probability of selecting the optimal arm both as tables and figures.
The tables present the overall probability of selecting the optimal arm in the entire interval 0
to 10, 100, 1000, 10 000 and 100 000, while in the figures we show the probability of selecting
the optimal arm at each instant.

We also consider the regret of the bandit players, which expresses the expected loss a player
experience since it does not always select the optimal arm [16]. As the number of iterations in-
creases long term performance is emphasized and low learning pace is penalized. By considering
the regret of the players we avoid too much emphasize on selecting the optimal arm, when in fact
selecting a non-optimal arm with a distribution close to the optimal arm may not significantly
affect the overall cumulative feedback.

66

CHAPTER 6. EXPERIMENTS AND RESULTS

6.3 K-armed bandit problem with Bernoulli distributed feed-
back

The experiments performed in the k-armed Bernoulli bandit problem are based on the experi-
ments performed by Auer et al. in [16]. The experiment configurations for the k-armed bandit
problem with Bernoulli distributed feedback are shown in Table 6.1, where we define three
configurations for the 2-armed bandit problem and three configurations for the 10-armed ban-
dit problem. Each entry in the table represents the p parameter of the Bernoulli distribution
associated with each arm, and we have included configurations with different degree of difficulty.

Table 6.1: Experiment configurations for the k-armed bandit problem with Bernoulli distributed feedback

Configuration / Arm 1 2 3 4 5 6 7 8 9 10

1 0.90 0.60 - - - - - - - -
2 0.90 0.80 - - - - - - - -
3 0.55 0.45 - - - - - - - -
4 0.90 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60
5 0.90 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
6 0.55 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45

The overall results of the configurations presented in Table 6.1 are shown in Table 6.2, where
the probability of selecting the optimal action in the entire interval 0 to 100 000 is presented.
Each row represents a player and each column represents a configuration as given in Table 6.1,
and each entry in the table represents the overall probability for selecting the optimal action.
Each configuration is replicated 1000 times, and in each replication the optimal arm is selected
at random to avoid bias caused by possible patterns during arm selection in the algorithms.

67

CHAPTER 6. EXPERIMENTS AND RESULTS

Table 6.2: Results of the 2-armed and 10-armed bandit problem with Bernoulli distributed feedback

Player / Configuration 1 2 3 4 5 6

BLA Bernoulli 1.000 0.999 0.997 0.998 0.988 0.975
BLA Normal unknown σ2 1.000 0.998 0.992 0.996 0.982 0.968

εn-greedy c =0.05 1 0.981 0.992 0.965 0.996 0.961 0.893
εn-greedy c =0.15 1 1.000 0.999 0.991 0.990 0.988 0.957
εn-greedy c =0.30 1 1.000 0.997 0.997 0.982 0.981 0.977

LR−I 0.05 0.999 0.918 0.985 0.832 0.378 0.526
LR−I 0.01 0.998 0.993 0.993 0.992 0.885 0.958
LR−I 0.005 0.995 0.986 0.986 0.984 0.940 0.951

Pursuit 0.05 1.000 0.970 0.932 0.912 0.699 0.608
Pursuit 0.01 0.999 0.998 0.998 0.998 0.875 0.848
Pursuit 0.005 0.999 0.999 0.998 0.997 0.960 0.924

ucb1 0.999 0.983 0.982 0.979 0.848 0.848
ucb1-tuned 1.000 0.997 0.997 0.997 0.977 0.978
ucb1-normal 0.995 0.977 0.969 0.959 0.797 0.737

Exp3 0.01 0.990 0.978 0.980 0.913 0.736 0.749

Poker 0.995 0.991 0.876 0.982 0.916 0.812

IntEstim0.01 0.961 0.949 0.796 0.920 0.905 0.577

1 Parameter d is set to be the difference between the best arm and the next best arm

We observe from Table 6.2 that the difference in performance between the bandit players becomes
more evident as the degree of difficulty increases. The BLA players seem to offer very impressive
and stable results across the board, and seem to handle these configurations very well. Note
that even BLA Normal unknown σ2 is able to offer impressive performance in this problem, even
though it is not especially designed for this problem and may take feedback in any range. Also
note that ucb1-tuned is the only player that seems to offer similar performance across all the
configurations, and seems to be slightly ahead in configuration 3 and 6, which is more evident
in the detailed overview of these experiment configurations.

As seen in Table 6.2 we have included several bandit players of the same type in order to inves-
tigate the impact of the learning parameters on the performance. We observe that the impact
increases as the number of arms increases along with the difficulty of the arm distributions. Note
that the εn-greedy players provide a relative stable performance throughout the configurations,
despite different values of the c parameter. However, as noted in the table, these players are
given the difference of the best arm and second best arm, which may be regarded as an unfair
advantage.

It is worth noting that some of the players presented in Table 6.2 are not tailored to Bernoulli
distributed feedback, but as these bandit players are capable of receiving feedback in a wider
range than defined by the Bernoulli distribution, these are also applicable in environments with
Bernoulli distributed feedback.

68

CHAPTER 6. EXPERIMENTS AND RESULTS

Configuration 5 and 6 in Table 6.1 are considered to be the most difficult configurations for the
10-armed bandit problem. We therefore present a more detailed overview of the development
of these configurations below. The results from all of the configurations for the k-armed bandit
problem with Bernoulli distributed feedback are available in Appendix A.1.

6.3.1 Results of experiment configuration 5

In this section we take a closer look at the results from experiment configuration 5 as defined in
Table 6.1. Table 6.3 reports the average probability of selecting the optimal arm in the entire
interval from 0 to 10, 100, 1000, 10 000 and 100 000 iterations.

Table 6.3: Detailed overview of the 10-armed bandit problem with Bernoulli distributed feedback with optimal
arm p = 0.9 and 0.8 on the inferior arms

Player / Iteration 10 100 1000 10 000 100 000

BLA Bernoulli 0.112 0.197 0.549 0.916 0.988
BLA Normal unknown σ2 0.107 0.131 0.433 0.881 0.982

εn-greedy c =0.05 d =0.1 0.101 0.124 0.630 0.898 0.961
εn-greedy c =0.15 d =0.1 0.105 0.100 0.511 0.911 0.988
εn-greedy c =0.30 d =0.1 0.099 0.099 0.359 0.872 0.981

LR−I 0.05 0.103 0.119 0.273 0.368 0.378
LR−I 0.01 0.104 0.105 0.156 0.672 0.885
LR−I 0.005 0.102 0.102 0.126 0.518 0.940

Pursuit 0.05 0.100 0.157 0.567 0.682 0.699
Pursuit 0.01 0.098 0.116 0.550 0.840 0.875
Pursuit 0.005 0.101 0.108 0.488 0.910 0.960

ucb1 0.100 0.119 0.166 0.406 0.848
ucb1-tuned 0.100 0.164 0.425 0.841 0.977
ucb1-normal 0.088 0.099 0.089 0.267 0.797

Exp3 0.01 0.097 0.099 0.104 0.156 0.736

Poker 0.105 0.180 0.444 0.751 0.916

IntEstim 0.01 0.126 0.194 0.519 0.857 0.905

From the results reported in Table 6.3 we observe that BLA Bernoulli is among the top per-
formers in every interval. Furthermore, it is the top performer when compared to other learning
schemes which do not rely on external tuning parameters. We also see that BLA Normal un-
known σ2 offers very good performance, but is initially slow in the lower intervals compared to
BLA Bernoulli. However, it seems to offer very good performance when the number of iterations
is sufficiently large, such that some confidence about the variance σ2 has been achieved.

We see that in contrast to LR−I and Pursuit schemes the εn-greedy schemes seem to be less
affected by the tuning parameters in the long run, and εn-greedy with c = 15 achieves similar
performance as BLA Bernoulli after 100 000 iterations.

69

CHAPTER 6. EXPERIMENTS AND RESULTS

As shown in Figure 6.1 the Bayesian players achieve among the lowest regret when the number
of iterations is sufficiently large. Once again only a highly tuned εn-greedy is able to offer
similar performance to BLA Bernoulli.

 0.1

 1

 10

 100

 1000

 10 100 1000 10000 100000

re
gr

et

iterations

BLA Bernoulli
BLA Normal unknown σ2

εn c=0.15 d=0.1
LR-I 0.005

Pursuit 0.005
UCB1-TUNED

Exp3 0.01
POKER

INTESTIM 0.01

Figure 6.1: Regret in the 10-armed bandit problem with Bernoulli distributed feedback with optimal arm p = 0.9
and 0.8 on the inferior arms

70

CHAPTER 6. EXPERIMENTS AND RESULTS

6.3.2 Results of experiment configuration 6

The detailed overview of the results from experiment configuration 6 is shown in Table 6.4,
which shows the average probability of selecting the optimal in the entire interval from 0 to 10,
100, 1000, 10 000 and 100 000 iterations.

Table 6.4: Detailed overview of the 10-armed bandit problem with Bernoulli distributed feedback with optimal
arm p = 0.55 and 0.45 on the inferior arms

Player / Iteration 10 100 1000 10 000 100 000

BLA Bernoulli 0.109 0.150 0.340 0.834 0.975
BLA Normal unknown σ2 0.101 0.144 0.353 0.828 0.968

εn-greedy c =0.05 d =0.1 0.102 0.120 0.480 0.787 0.893
εn-greedy c =0.15 d =0.1 0.103 0.101 0.401 0.835 0.957
εn-greedy c =0.30 d =0.1 0.097 0.098 0.289 0.847 0.977

LR−I 0.05 0.105 0.123 0.329 0.507 0.526
LR−I 0.01 0.102 0.103 0.158 0.728 0.958
LR−I 0.005 0.101 0.102 0.123 0.526 0.951

Pursuit 0.05 0.102 0.139 0.449 0.589 0.608
Pursuit 0.01 0.098 0.112 0.396 0.793 0.848
Pursuit 0.005 0.104 0.105 0.309 0.838 0.924

ucb1 0.100 0.120 0.165 0.404 0.848
ucb1-tuned 0.100 0.166 0.401 0.855 0.978
ucb1-normal 0.100 0.099 0.146 0.283 0.737

Exp3 0.01 0.102 0.102 0.105 0.158 0.749

Poker 0.101 0.184 0.378 0.607 0.812

IntEstim 0.01 0.100 0.174 0.379 0.549 0.577

In this configuration ucb1-tuned offers slightly better performance than both of the Bayesian
players, but when the number of iterations is sufficiently large their performance starts to even
out. The good performance by ucb1-tuned in this configuration seems to be in accordance with
the results as reported by Auer et al. in [16]. We also observe that εn-greedy with c = 0.30
offers very good performance.

The regret of the players in experiment configuration 6 is shown in Figure 6.2. We observe that
ucb1-tuned achieves lower regret than both Bayesian players, especially when the number of
iterations is quite low. εn-greedy with c = 0.30 is among the best players and offers slightly
lower regret than both Bayesian players after 100 000 iterations.

71

CHAPTER 6. EXPERIMENTS AND RESULTS

 0.1

 1

 10

 100

 1000

 10 100 1000 10000 100000

re
gr

et

iterations

BLA Bernoulli
BLA Normal unknown σ2

εn-GREEDY c=0.30 d=0.1
LR-I 0.01

Pursuit 0.005
UCB1-TUNED

Exp3 0.01
POKER

INTESTIM 0.01

Figure 6.2: Regret in the 10-armed bandit problem with Bernoulli distributed feedback with optimal arm p =
0.55 and 0.45 on the inferior arms

6.4 K-armed bandit problem with Poisson distributed feedback

The experiments performed in the k-armed bandit problem with Poisson distributed feedback
consist two experiment configurations, the 2-armed bandit problem as well as the 10-armed
bandit problem, where the parameter λ is a real number uniformly drawn from the interval
[0,10]. The results from both the configurations for the k-armed bandit problem with Poisson
distributed feedback are available in Appendix A.2.

Table 6.5: Results of the 10-armed bandit problem with Poisson distributed feedback

Player / Iteration 10 100 1000 10 000 100 000

BLA Poisson 0.113 0.466 0.781 0.927 0.980
BLA Normal unknown σ2 0.122 0.473 0.769 0.919 0.972

εn-greedy c = 0.05 d = 0.1 0.102 0.182 0.656 0.821 0.865
εn-greedy c = 0.15 d = 0.1 0.102 0.101 0.517 0.829 0.909
εn-greedy c = 0.30 d = 0.1 0.100 0.101 0.355 0.810 0.928

Pursuit 0.050 0.123 0.423 0.633 0.662 0.666
Pursuit 0.010 0.103 0.242 0.716 0.835 0.849
Pursuit 0.005 0.102 0.181 0.656 0.869 0.893

ucb1-normal 0.108 0.099 0.503 0.772 0.910

Poker 0.109 0.518 0.766 0.859 0.874

The results of the 10-armed bandit problem are shown in Table 6.5. The table reports the average
probability of selecting the optimal arm over 10, 100, 1000, 10 000 and 100 000 iterations. Note

72

CHAPTER 6. EXPERIMENTS AND RESULTS

that the d parameter of εn-greedy is not set to be the difference between the best arm and
second best arm, as this difference may be out of the range of the excepted value of d, and we
therefore set d = 0.1.

Overall the BLA players seem to be among the top performers in every interval, and are the
top performers when the number of iterations is sufficiently large. Poker is initially ahead, but
offers limited improvement in performance as the number of iterations increases and starts to
fall behind.

Table 6.5 also shows the impact the tuning parameters have on the performance of the εn-
greedy and Pursuit players. We see that the εn-greedy with parameters c = 0.30 and d = 0.1,
offers best performance of the εn-greedy schemes over 100 000 iterations, but we notice that
both the other εn-greedy variants offer better or similar performance over 10, 100, 1000 and
10 000 iterations.

The regret of the bandit players is shown in Figure 6.3. We observe that Poker initially
performs very well and achieves the lowest regret, but falls behind in terms of regret towards
the end. We observe the same tendencies in Figure 6.4, which shows the regret in the 2-armed
bandit problem. Furthermore, we observe from Figures 6.3 and 6.4 that both the BLA players
achieve by far the lowest regret in both the 2-armed and 10-armed bandit problem.

 0.1

 1

 10

 100

 1000

 10000

 10 100 1000 10000 100000

re
gr

et

iterations

BLA Poisson
BLA Normal unknown σ2

εn-GREEDY c=0.3 d=0.1
Pursuit 0.005

UCB1-NORMAL
POKER

Figure 6.3: Regret in the 10-armed bandit problem with Poisson distributed feedback

73

CHAPTER 6. EXPERIMENTS AND RESULTS

 1

 10

 100

 1000

 10000

 10 100 1000 10000 100000

re
gr

et

iterations

BLA Poisson
BLA Normal unknown σ2

εn-GREEDY c=0.3 d=0.1
Pursuit 0.005

UCB1-NORMAL
POKER

Figure 6.4: Regret in the 2-armed bandit problem with Poisson distributed feedback

These results clearly show that BLA Poisson and BLA Normal unknown σ2 are superior to the
other bandit players in the k-armed bandit problem with Poisson distributed feedback when the
number of iterations is sufficiently large.

6.5 K-armed bandit problem with normally distributed feed-
back

In the experiments performed in the k-armed bandit problem with normally distributed feedback
we define two experiment configurations, the 2-armed bandit problem and the 10-armed bandit
problem, where both the mean µ and variance σ2 are drawn uniformly from the interval [0,1]. The
results from both the configurations for the k-armed bandit problem with normally distributed
feedback are available in Appendix A.3.

74

CHAPTER 6. EXPERIMENTS AND RESULTS

Table 6.6: Results of the 10-armed bandit problem with normally distributed feedback

Player / Iteration 10 100 1000 10 000 100 000

BLA Normal known σ2 0.100 0.235 0.521 0.804 0.928
BLA Normal known σ2 = 1 0.100 0.214 0.490 0.788 0.925
BLA Normal unknown σ2 0.105 0.300 0.633 0.858 0.955

εn-greedy c =0.05 1 0.103 0.194 0.465 0.692 0.820
εn-greedy c =0.15 1 0.100 0.142 0.378 0.671 0.858
εn-greedy c =0.30 1 0.097 0.118 0.309 0.620 0.833

Pursuit 0.05 0.116 0.347 0.566 0.600 0.605
Pursuit 0.01 0.097 0.191 0.618 0.758 0.775
Pursuit 0.005 0.097 0.152 0.576 0.813 0.842

ucb1-normal 0.113 0.102 0.253 0.553 0.810

Poker 0.106 0.338 0.603 0.800 0.849

1 Parameter d is set to be the difference between the best arm and the next best arm

The results of the 10-armed bandit problem are shown in Table 6.6. As seen in the table we apply
three Bayesian players in this experiment. As mentioned previously, BLA Normal known σ2 is
given the variance of the action with the highest variance. In this configuration we also apply
BLA Normal known σ2 and use the upper limit of the interval as the variance. Knowing the
variance might be regarded as an unfair advantage over the other players, however as reported
in Table 6.6, the BLA players which are given the variance do not seem to be able to gain any
advantage over BLA Normal unknown σ2, and in fact seem to perform worse than BLA Normal
unknown σ2.

The BLA Normal unknown σ2 clearly offers best performance over 100 000 iterations, closely
followed by the other two BLA players. We observe that Poker achieves very good performance
over the first 10 000 iterations, but starts to fall behind when the number of iterations is
sufficiently large.

The regret in the 2-armed bandit problem and the 10-armed bandit problem is shown in Fig-
ures 6.5 and 6.6. In terms if regret we observe the same performance pattern of Poker as
described above. Poker is initially very strong, but falls behind when the number of iterations
is sufficiently large. In both configurations the BLA players are superior with regards to regret
with a sufficient number of iterations, and especially BLA normal unknown σ2 offers impressive
performance.

75

CHAPTER 6. EXPERIMENTS AND RESULTS

 0.1

 1

 10

 100

 1000

 10 100 1000 10000 100000

re
gr

et

iterations

BLA Normal known σ2

BLA Normal known σ2 = 1
BLA Normal unknown σ2

εn-GREEDY c=0.30
Pursuit 0.005

UCB1-NORMAL
POKER

Figure 6.5: Regret in the 2-armed bandit problem with normally distributed feedback

 0.01

 0.1

 1

 10

 100

 1000

 10 100 1000 10000 100000

re
gr

et

iterations

BLA Normal known σ2

BLA Normal known σ2 = 1
BLA Normal unknown σ2

εn-GREEDY c=0.15
Pursuit 0.005

UCB1-NORMAL
POKER

Figure 6.6: Regret in the 10-armed bandit problem with normally distributed feedback

Overall, the experiments show that the BLA players seem to offer excellent performance, and
are the top performers when the number of iterations is sufficiently large.

76

CHAPTER 6. EXPERIMENTS AND RESULTS

6.6 Goore game

We define three experiment configurations for the Goore game, where the number of players and
the optimal number of yes votes vary. The configurations are shown in Table 6.7.

Table 6.7: Experiment configurations for the Goore game

Configuration Number of players Optimal number of yes votes

1 10 3
2 50 20
3 100 35

All configurations have been replicated 100 times, where each configuration consists of 100 000
iterations, i.e 100 000 voting iterations.

As the reward function in the Goore game we consider the unimodal function from Section 2.6.2
and generalize the function such that we can adjust the optimal number of yes votes to fit with
the experiment configurations in Table 6.7. This yields the following function:

f(θ) = 0.2 + 0.8 ∗ e(−0.002(θ−n)2) (6.1)

where n denotes the optimal number of yes votes and θ denotes the number of players in the
game. In the conducted experiments we define teams of bandit players, where every team only
consists of players of the same type.

In the following we present the results of configuration 1 and configuration 3. The results of all
three configurations are available in Appendix A.4.

6.6.1 Results of experiment configuration 1

The results of experiment configuration 1 with 10 players, where the optimal number of yes
votes is 3, are shown in Table 6.8. The first column denotes the type of bandit players, and the
remaining columns denote the average distance from the optimal number of yes votes after 10,
100, 1000, 10 000 and 100 000 iterations.

Table 6.8 reports that only the team of Tsetlin automata and the team of BLA Bernoulli players
are able to solve the Goore game in this configuration, since exactly 3 of 10 players in each team
voted yes. However, we observe that the team of Tsetlin automata reaches a consensus a lot
faster than the team of BLA Bernoulli players. The performance of the Tsetlin automata seems
to be in accordance with the results from [11], where a team of Tsetlin automata is proved to
solve the game.

In Figure 6.7 we observe how the number of yes votes in each team of bandit players develops
as the number of iterations increases, where the straight line denotes the optimal number of yes
votes. We again observe how the fast the team of Tsetlin automata is. Furthermore, we see that

77

CHAPTER 6. EXPERIMENTS AND RESULTS

Table 6.8: Distance from the optimal number of yes votes, with 10 players and 3 desired yes votes

Player / Iteration 10 100 1000 10 000 100 000

Tsetlin L2N,2 N = 1 2.01 0.95 0.00 0.00 0.00

BLA Bernoulli 2.03 1.58 0.82 0.36 0.00
BLA Normal unknown σ2 2.37 1.67 1.18 0.75 0.04

εn-greedy c =0.05 d =0.10 2.06 0.80 0.50 0.28 0.24
εn-greedy c =0.15 d =0.10 2.09 1.09 0.62 0.24 0.21
εn-greedy c =0.30 d =0.10 2.16 1.24 0.62 0.38 0.35

LR−I 0.01 1.74 2.26 2.09 1.57 1.22
LR−I 0.005 2.13 2.06 2.25 1.77 0.67

Pursuit 0.01 2.05 1.08 0.51 0.24 0.24
Pursuit 0.005 2.09 1.28 0.82 0.24 0.24

ucb1-tuned 5.03 1.93 1.61 1.00 0.21

ucb1-normal 3.00 2.01 1.91 1.64 0.85
Poker 2.23 2.79 1.09 0.92 0.18

despite having a slow start the team of ucb1-tuned players gets close to the optimal number
of yes votes after 100 000 iterations.

 0

 2

 4

 6

 8

 10

 10 100 1000 10000 100000

nu
m

be
r

of
 y

es
 v

ot
es

iterations

Tsetlin L2N,2 N=1
BLA Bernoulli

BLA Normal unknown σ2

εn-GREEDY c=0.15 d=0.1
LR-I 0.005

Pursuit 0.01
UCB1-TUNED

POKER

Figure 6.7: Development of the number of yes votes with 10 players and 3 as the optimal number of yes votes

78

CHAPTER 6. EXPERIMENTS AND RESULTS

6.6.2 Results of experiment configuration 3

The results of experiment configuration 3 with 100 players, where the optimal number of yes
votes is 35, are shown in Table 6.9. From the table we observe that only the Tsetlin L2N,2 team
is is able to identify the optimal number of yes votes and has identified the optimal number of
yes votes already after 1000 iterations.

We observe from Table 6.9 that the team of BLA Normal unknown σ2 players performs well, but
are never able to truly identify the optimal number of yes votes with the number of iterations
available.

Table 6.9 reports that both the team of ucb1-normal players and the team of Poker players
perform well in this experiment configuration. Furthermore, we observe that despite a slow start
the team of ucb1-normal is able to get close to the optimal number of yes votes.

Figure 6.8 shows how the number of yes votes develops through 100 000 iterations, where the
straight line denotes the optimal number of yes votes. Again we observe how fast the team of
Tsetlin automata is to identify the optimal number of yes votes. Furthermore, we see that the
team of Pursuit players with learning rate 0.01 follow the Tsetlin team closely at 1000 iterations,
but then falls behind.

Table 6.9: Distance from the optimal number of yes votes in the Goore game with 100 players, with 35 desired
yes votes

Player / Iteration 10 100 1000 10 000 100 000

Tsetlin L2N,2 N = 1 10.43 6.08 0.00 0.00 0.00

BLA Bernoulli 12.88 6.04 1.81 1.20 0.90
BLA Normal unknown σ2 12.31 6.40 1.83 0.90 0.25

εn-greedy c =0.05 d =0.10 15.20 6.93 5.22 5.08 4.94
εn-greedy c =0.15 d =0.10 14.29 7.71 3.95 3.58 3.51
εn-greedy c =0.30 d =0.10 14.58 10.03 3.57 3.27 3.10

LR−I 0.01 14.66 14.22 8.33 2.56 0.78
LR−I 0.005 15.08 14.52 12.12 3.92 1.39

Pursuit 0.01 14.55 8.91 2.75 2.74 2.74
Pursuit 0.005 14.60 11.75 3.42 3.25 3.25

ucb1-tuned 4.42 8.57 5.07 1.84 1.51
ucb1-normal 35.00 34.33 15.34 1.35 0.64

Poker 12.74 9.25 2.87 1.97 0.65

79

CHAPTER 6. EXPERIMENTS AND RESULTS

 30

 35

 40

 45

 50

 10 100 1000 10000 100000

nu
m

be
r

of
 y

es
 v

ot
es

iterations

Tsetlin L2N,2 N=1
BLA Bernoulli

BLA Normal unknown σ2

εn-GREEDY c=0.30 d=0.1
LR-I 0.05

Pursuit 0.01
UCB1-NORMAL

POKER

Figure 6.8: Development of the number of yes votes with 100 players and 35 as the optimal number of yes votes

Overall, the teams of BLA players perform well in the Goore game and are among the top
performers in the experiment configurations, but are not able to beat the Tsetlin L2N,2 team.

6.7 Iterative prisoners’ dilemma

The iterative prisoners’ dilemma experiment consists of a tournament style game, where each
player plays against all other players in addition to a copy of itself. Since many of the learning
schemes used in this thesis expect feedback in the interval [0,1], we construct a normalized
inverted version of the matrix listed in the initial description of the game in Section 2.6.3. This
ensures that the feedback is within the range of the supported feedback of the algorithms, and
that a higher feedback value represents a lower sentence. The game matrix is shown in Figure
6.9.

Player B

Player A
Not confess Confess

Not confess 0.8,0.8 0.0,1.0

Confess 1.0,0.0 0.4,0.4

Figure 6.9: Inverted normalized game matrix in prisoners’ dilemma

The results from this tournament are shown in Table 6.10 as the average reward achieved over
10, 100, 1000, 10 000 and 100 000 iterations. Note that most of the players included in this
tournament are not really designed for this game, but are still included as points of reference to
the Bayesian players. Tit-For-Tat is also included as a reference in this tournament since it is

80

CHAPTER 6. EXPERIMENTS AND RESULTS

Table 6.10: Tournament scores of the iterative prisoners’ dilemma

Player / Iteration 10 100 1000 10 000 100 000

Tit-For-Tat 0.635 0.548 0.491 0.469 0.466

BLA Normal known σ2 = 1 0.663 0.542 0.459 0.424 0.420
BLA Normal unknown σ2 0.585 0.606 0.507 0.463 0.458

εn-greedy c =0.05 d =0.1 0.624 0.549 0.463 0.421 0.416
εn-greedy c =0.15 d =0.1 0.626 0.502 0.451 0.418 0.414
εn-greedy c =0.30 d =0.1 0.624 0.468 0.440 0.417 0.415

LR−I 0.05 0.630 0.505 0.459 0.420 0.414
LR−I 0.01 0.627 0.466 0.419 0.418 0.416
LR−I 0.005 0.629 0.460 0.382 0.411 0.414

Pursuit 0.01 0.630 0.502 0.458 0.421 0.416
Pursuit 0.005 0.629 0.483 0.445 0.420 0.416

ucb1-normal 0.564 0.515 0.459 0.434 0.431

Poker 0.639 0.499 0.376 0.320 0.311

Exp3 0.628 0.459 0.381 0.409 0.413

regarded as a top performer in iterative prisoners’ dilemma. However, Tit-for-tat is not really
comparable to the bandit players since it is not able to learn by experience, but just replicates
the last move of the opponent.

The results from Table 6.10 seem to indicate that most games in the tournament end in the
confessing state for both players, as the scores close to 0.4 might indicate. This is not very
surprising, as players that are regarded as rational often end in the confessing state in prisoners’
dilemma [7].

Note that BLA Normal unknown σ2 beats Tit-For-Tat in the intervals 0 to 100 and 0 to 1000,
but is beaten by Tit-For-Tat when the interval is extended further. All non-Bayesian players
seem to be beaten by Tit-For-Tat in every interval listed in the table.

81

CHAPTER 6. EXPERIMENTS AND RESULTS

6.8 Two-player zero-sum game

6.8.1 Experiment description

In the two-player zero-sum game we have defined three experiment configurations, where the
first two configurations are pure strategy games and the third is a mixed strategy game.

The pure strategy games use the matrices D1 and D2, shown in Figure 6.10 and 6.11, where D2
is considered more difficult than D1. In each of these configurations the objective is to observe
how fast the players are able to identify the optimal pure strategy.

D1 =

[

0.6 0.8
0.35 0.65

]

Figure 6.10: Game matrix D1

D2 =

[

0.55 0.525
0.45 0.475

]

Figure 6.11: Game matrix D2

The matrix D3, shown in Figure 6.12, is used in the mixed strategy game, where the optimal
solution for player A is to play the arms with probability (0.25, 0.75) and for player B to play
the arms with probability (0.5, 0.5). In this experiment configuration we want to observe how
fast the players are able to identify and exploit the mixed strategy, if at all.

D3 =

[

0.8 0.2
0.4 0.6

]

Figure 6.12: Game matrix D3

The mixed strategy configuration is further divided into two experiments. We play each player
against itself, i.e same type of player with the same tuning parameters, and look at action
selection probability and distance from the optimal reward. In addition we create a tournament
style game, where each player plays against all other players.

This time we also have included the player LR−ǫP which is known to be able to find the optimal
solution in mixed strategy games [11]. The tuning parameters α = 0.002 and β = 0.00001 of
LR−ǫP and the game matrix D3 are the same as used in [11].

Below we present the results of the pure strategy game with the D2 matrix together with the
results of the mixed strategy game. The results of all the experiment configurations are listed
in Appendix A.6.

82

CHAPTER 6. EXPERIMENTS AND RESULTS

6.8.2 Pure strategy game results

In Table 6.11 we observe how the probability of selecting the optimal action for both players
develops as the number of iterations increases when playing game matrix D2. As with the
previous experiments, the experiment is replicated 1000 times, where each replication consists
of 100 000 iterations.

Table 6.11: Optimal actions selection probability for player A and B in D2 (A,B)

Player / Iteration 10 100 1000 10 000 100 000

BLA Bernoulli 0.56, 0.49 0.70, 0.55 0.91, 0.63 0.99, 0.92 1.00, 0.99
BLA Normal unknown σ2 0.61, 0.55 0.81, 0.66 0.96, 0.79 0.99, 0.93 1.00, 0.99

εn-greedyc =0.05 d =0.10 0.51, 0.54 0.72, 0.54 0.85, 0.60 0.89, 0.63 0.92, 0.67
εn-greedy c =0.15 d =0.10 0.50, 0.52 0.70, 0.50 0.91, 0.57 0.97, 0.69 0.98, 0.76
εn-greedy c =0.30 d =0.10 0.50, 0.49 0.61, 0.46 0.93, 0.60 0.99, 0.77 1.00, 0.85

LR−ǫP α = 0.002, β = 0.00001 0.51, 0.50 0.51, 0.53 0.53, 0.50 0.83, 0.55 0.96, 0.90

LR−I 0.05 0.50, 0.50 0.59, 0.53 0.89, 0.58 0.94, 0.66 0.94, 0.66
LR−I 0.01 0.54, 0.52 0.52, 0.49 0.67, 0.49 0.99, 0.83 1.00, 0.98
LR−I 0.005 0.50, 0.49 0.51, 0.50 0.57, 0.51 0.97, 0.68 1.00, 1.00

Pursuit 0.01 0.52, 0.51 0.59, 0.53 0.95, 0.64 0.99, 0.81 0.99, 0.83
Pursuit 0.005 0.50, 0.51 0.54, 0.50 0.91, 0.58 1.00, 0.88 1.00, 0.92

ucb1-tuned 0.57, 0.48 0.72, 0.54 0.93, 0.65 0.98, 0.92 1.00, 0.99

Poker 0.60, 0.47 0.65, 0.53 0.79, 0.55 0.85, 0.66 0.85, 0.69

The first column denotes the bandit players, while the remaining columns denote the average
probability of selecting the optimal action for player A and player B after 10, 100, 1000, 10 000
and 100 000 iterations. Each entry consists of two probabilities, where the leftmost value is the
probability of selecting the optimal action for player A, and the rightmost value the probability
of selecting the optimal action for player B.

As we observe from Table 6.11 BLA Bernoulli, BLA Normal unknown σ2 and ucb1-tuned are
able to achieve very good performance throughout the experiment. They all seem to offer almost
identical performance, but ucb1-tuned might be slightly ahead in this configuration.

Note that the εn-greedy schemes and LR−I schemes are heavily dependent on the tuning
parameter, and their performance in a specific environment may require extensive tuning.

83

CHAPTER 6. EXPERIMENTS AND RESULTS

6.8.3 Mixed strategy game results

In the mixed strategy game experiment configuration we perform two experiments in order to
evaluate the performance of the bandit players. The first experiment consists of a tournament
style game, and the second experiment consists of evaluating the players’ performance when
playing against themselves.

Experiment 1

This is a tournament style experiment where all players play against each other, and also against
a copy of itself, and each players play both as player A and player B against each opponent. The
experiment has been replicated 100 times, and each replication consists of 100 000 iterations.

The results of the tournament experiment are shown in Table 6.12, where as usual the first
column denotes the players, while the remaining columns denote the average scores over 10,
100, 1000, 10 000 and 100 000 iterations.

As reported in Table 6.12, ucb1-tuned is ahead of the other bandit players until the number of
iterations is sufficiently large where the BLA players seem to catch up and pass ucb1-tuned.
However, overall ucb1-tuned seems to be the top performer in this tournament experiment,
with the BLA players following closely.

Ranking of the remaining players is not as easy, as their performance is highly dependent on
their tuning parameters. We also observe how the LR−εP is able to improve its performance
as the number of iterations increases, which seems to fit well with the results in [11], where
LR−εP is shown to oscillate around the optimal distribution, and eventually converges to the
true optimal distribution.

Table 6.12: Two-player zero-sum tournament score with matrix D3

Player / Iteration 10 100 1000 10 000 100 000

BLA Bernoulli 0.42 4.71 54.1 864 11782
BLA Normal unknown σ2 0.00 0.65 38.6 841 11523

εn-greedy c =0.05 d =0.10 -0.07 3.82 6.3 321 7436
εn-greedy c =0.15 d =0.10 -0.12 2.04 14.5 478 9204
εn-greedy c =0.30 d =0.10 -0.02 -0.47 24.4 543 9746

LR−ǫP α = 0.002, β = 0.00001 -0.12 -2.49 -26.9 568 10449

LR−I 0.05 0.05 2.04 16.4 -1449 -18068
LR−I 0.01 -0.08 -1.08 32.6 246 -11482
LR−I 0.005 -0.10 -2.17 8.3 579 -3582

Pursuit 0.01 -0.03 -0.24 13.8 -345 -1693
Pursuit 0.005 -0.03 -1.11 16.8 -166 -1355

ucb1-tuned 0.34 6.05 73.2 978 11751

Poker -0.21 -11.74 -272.2 -3457 -35712

84

CHAPTER 6. EXPERIMENTS AND RESULTS

Experiment 2

In this experiment we let each player play against itself, i.e the same type of player with the
same tuning parameters. The experiment has been replicated 1000 times, and each replication
consists of 100 000 iterations.

In this experiment we take a closer look at the average distance from the optimal cumulative
reward (0), and also at the action selection probability for the players as we want the players to
find the optimal mixed strategy. We investigate each of these in the following.

Table 6.13 shows the average cumulative distance from the optimal cumulative reward when each
player plays against itself. In this case the LR−εP is unbeatable, with BLA Normal unknown σ2

on second, followed by BLA Bernoulli, one of the εn-greedy schemes and then ucb1-tuned.

Table 6.13: Distance of cumulative reward from optimal game reward (0)

Player / Iteration 10 100 1000 10 000 100 000

BLA Bernoulli 2.79 9.6 37 151 714
BLA Normal unknown σ2 3.65 19.7 52 145 420

εn-greedy c =0.05 d =0.10 2.69 11.2 99 964 9881
εn-greedy c =0.15 d =0.10 2.71 8.9 68 594 5887
εn-greedy c =0.30 d =0.10 2.73 10.0 56 482 4693

LR−ǫP α = 0.002, β = 0.00001 2.71 7.9 30 90 267

LR−I 0.05 2.80 9.4 82 2127 22849
LR−I 0.01 2.71 8.3 34 476 19870
LR−I 0.005 2.69 8.2 40 129 12632

Pursuit 0.01 2.72 8.7 62 1475 17658
Pursuit 0.005 2.69 8.0 41 1276 17080

ucb1-tuned 3.13 15.4 67 524 4806

Poker 2.99 8.7 143 1535 15670

In Table 6.14 the development of the action probability distribution for player A is listed for each
player. As mentioned earlier, the optimal action distribution in this game is (0.25, 0.75) if the
opponent player plays the optimal strategy of (0.5, 0.5). The development of action probability
distribution for each player as player B is not included here, but is available in the appendix.

85

CHAPTER 6. EXPERIMENTS AND RESULTS

Table 6.14: Development of action selection probability for player A

Player / Iteration 10 100 1000 10 000 100 000

BLA Bernoulli 0.42, 0.58 0.20, 0.80 0.26, 0.74 0.26, 0.74 0.27, 0.73
BLA Normal unknown σ2 0.55, 0.45 0.48, 0.52 0.26, 0.74 0.25, 0.75 0.24, 0.76

εn-greedyc =0.05 d =0.10 0.48, 0.52 0.25, 0.85 0.17, 0.83 0.19, 0.81 0.17, 0.83
εn-greedy c =0.15 d =0.10 0.51, 0.49 0.27, 0.73 0.21, 0.79 0.23, 0.77 0.20, 0.80
εn-greedy c =0.30 d =0.10 0.49, 0.51 0.44, 0.56 0.15, 0.85 0.24, 0.76 0.22, 0.78

LR−ǫP α = 0.002, β = 0.00001 0.50, 0.50 0.48, 0.52 0.48, 0.52 0.11, 0.89 0.27, 0.73

LR−I 0.05 0.49, 0.51 0.38, 0.62 0.09, 0.91 0.07, 0.93 0.07, 0.93
LR−I 0.01 0.48, 0.52 0.48, 0.52 0.21, 0.79 0.15, 0.85 0.06, 0.94
LR−I 0.005 0.50, 0.50 0.49, 0.51 0.40, 0.60 0.31, 0.69 0.04, 0.96

Pursuit 0.01 0.49, 0.51 0.44, 0.56 0.04, 0.96 0.03, 0.97 0.01, 0.99
Pursuit 0.005 0.48, 0.52 0.49, 0.51 0.09, 0.91 0.06, 0.94 0.02, 0.98

ucb1-tuned 0.42, 0.58 0.23, 0.77 0.22, 0.78 0.21, 0.79 0.25, 0.75

Poker 0.48, 0.52 0.18, 0.82 0.11, 0.89 0.12, 0.88 0.08, 0.92

We observe that the BLA players seem to be very close to the optimal probability distribution
already after about 1000 iterations, and have at this point already achieved the distribution of
(0.26, 0.74). LR−ǫP , which achieves best score with regards to the average reward distance, is
not performing very well in this case, but the results seem to fit very well with the results in
[11].

86

Chapter 7

Discussion and summary of results

As seen in the previous chapter the members of the Bayesian Learning Automaton family seem
to offer impressive performance, and its members are among the top performers in every experi-
ment. In the following sections we will go into more details about each BLA player and indicate
issues with some members of the family with regards to the conjugate prior distribution. We also
point out other application areas of the BLA family and propose areas of interest for further
work. In addition we will outline some similarities between the traditional LA field and the
Bayesian Learning Automata.

7.1 Performance of BLA Bernoulli

In the experiments with the general k-armed bandit problem with Bernoulli distributed feed-
back, BLA Bernoulli is the overall top performer, only beaten by ucb1-tuned and Pursuit in
experiment configuration 3, and by ucb1-tuned and εn-greedy in experiment configuration 6.

In the various configurations of the two-player zero-sum game BLA Bernoulli and ucb1-tuned

offer very similar performance, and overall it is difficult to distinguish them. However, in the
mixed strategy experiment where each player plays against itself, BLA Bernoulli seems to be the
top performer of the two with regards to average distance from the optimal cumulative reward.
In terms of average action selection probability distribution on the other hand, it could seem like
ucb1-tuned was the top performer of the two. However, average action selection probability
distribution might be misleading, since if a distribution is always off by the value ±x from the
optimal distribution, the average distribution might still be spot on.

BLA Bernoulli also performs well in the Goore game and was among the top performers in every
experiment configuration. The results of the experiments indicate that a team of BLA Bernoulli
offers best performance when the number of players is low, but offers good performance with a
relative high number of players as well. Still, it was not able to keep up with the team of Tsetlin
L2N,2 automata, which offers superior performance in every configuration.

87

CHAPTER 7. DISCUSSION AND SUMMARY OF RESULTS

The beta prior distribution as used in BLA Bernoulli offers a great advantage compared to
other conjugate priors introduced in this thesis, as a uniform non-informative prior may easily
be constructed by setting α = 1 and β = 1. This highly desirable property along with its
superior performance makes BLA Bernoulli a very highly applicable and easy to use automaton.

7.2 Performance of BLA Poisson

BLA Poisson is among the top performers in both the 2-armed and 10-armed bandit problem
with Poisson distributed feedback. In the 2-armed bandit problem BLA Poisson is only beaten
by BLA Normal unknown σ2 when considering the overall performance. The 10-armed bandit
problem may be considered difficult as the expected rate parameter of the inferior arms may be
very close to the expected rate parameter of the optimal arm, but BLA Poisson still achieves
very good performance.

Bayesian statistics and prior distributions introduce potential problems concerning the prior
beliefs that may be incorporated into the conjugate prior. In contrast to BLA Bernoulli, it is
not possible to construct a uniform conjugate prior which we are able to sample from in relation
to action selection. We discuss this further in Section 7.4.

7.3 Performance of BLA Normal

In Sections 5.4 and 5.5 we introduce BLA players designed for normally distributed feedback
from the environment, both with known and unknown variance. Both of the BLA Normal
players are able to handle any value of both mean µ and variance σ2, which potentially make
them very applicable. BLA Normal unknown σ2 is introduced in all the experiments in this
thesis and offers surprisingly good performance in every experiment.

A potential problem with BLA Normal is the choice of initial hyperparameters of the conjugate
prior distribution, which we discuss in detail in Section 7.4. However, for the BLA Normal
unknown σ2 we were able to construct a single weak and wide prior distribution that offered
very good performance throughout all of our experiments. The prior distribution was in fact
very wide, and sampled values from the initial distribution could easily be in the interval (−1×
1021, 1×1021), but the automaton was still able to offer impressive performance even though the
value of the true mean µ always was within the interval [0,1]. We think this clearly demonstrates
the strength of this automaton.

The normal distribution is a well-known and widely used probability distribution that is appli-
cable to a wide variety of applications. Thus, it is clear that the improved performance offered
by BLA Normal can have a significant impact in many such important areas.

88

CHAPTER 7. DISCUSSION AND SUMMARY OF RESULTS

7.4 Prior beliefs

The conjugate prior distribution as used in the BLA players is ideally initially chosen to be non-
informative, which is achieved by carefully selecting the initial values of the hyperparameters.

The conjugate prior for the Bernoulli distribution, the beta distribution, is convenient since a
uniform non-informative prior distribution is easily constructed by setting α = β = 1. The
resulting prior distribution makes it possible to weight every possible value of the parameter p
of the Bernoulli distribution equally, where p ∈ [0, 1].

The conjugate priors for the Poisson and normal distribution are more complicated with regards
to the initial beliefs about the unknown parameters. The reason is that the rate parameter λ
of the Poisson distribution can take any value in the interval [0,∞), and the normal mean µ
of the normal distribution may take any value in the interval (−∞,∞). These intervals make
it impossible to make a completely non-informative prior as in the case with the beta prior, as
the integrals tend to infinity. This means, that as used in this thesis, we are not able to weight
every possible value of λ or µ equally, hence we create a skewed prior where all values are not
equally weighted.

It is crucial to the performance of the BLA that we avoid a prior that has a too large impact on
the posterior distribution. If a prior is too skewed from the true value of an unknown parameter,
and also has a large impact on the posterior, it may take a considerable number of iterations
before the unknown parameter is realistically covered by the distribution.

On the other hand, if there exists a prior belief about the true value of an unknown parameter,
we might use this information to create an initial prior that weight some values higher. Thus,
if we do have a certain belief about an unknown parameter, we may use this information to
construct a more specific prior that may greatly improve the performance of the BLA.

In practical usage it is often possible to get a vague idea about the characteristics of an envi-
ronment and use this information to create a well-functioning initial prior. Indeed, as we have
demonstrated with BLA Normal unknown σ2, we were able to create a well-performing player
by creating a weak and wide initial prior distribution.

Alternatively, instead of creating an initial prior before starting an experiment, it is possible to
introduce an initialization phase similar as used in ucb1-normal, where each action initially
is selected a predetermined number of times. With BLA Normal known σ2 we introduced such
a phase, by initially select each action once and use the received feedback as the initial mean.
This could be extended further with several attempts and more complex calculations in order
to obtain initial values of the hyperparameters.

89

CHAPTER 7. DISCUSSION AND SUMMARY OF RESULTS

7.5 Bayesian Learning Automata and the LA field

In Section 2.4 we gave a brief introduction to the field of Learning Automata. LA started as
simple state machines with either deterministic or stochastic state transitions, and later extended
to the variable structure automata where transition or action probabilities were able to change.

We argue that the Bayesian Learning Automata may be modeled as an extension of the variable
structure automata as presented in Section 2.4.4, where each state represents an action. The
BLA do not directly maintain an action probability vector as traditional variable structure
automata do, and given the hyperparameters of a single action, it is still not possible to determine
the probability of selecting that particular action. As described in Section 5.1.2, the probability
of selecting a particular action is determined by each action’s associated probability distribution
on the parameter θ, and it is the distributions’ relative differences that determine the action
selection probabilities. By abstracting this a level and considering a series of known probability
distributions and parameters associated with each action, there still exists a certain probability
of selecting every single action. With this abstraction a BLA may be modeled as a kind of
variable structure automaton, in the sense it does not keep track of a probability vector directly,
but given an internal state of the automaton it is still a certain probability of selecting each
action.

This is in contrast to for instance learning schemes such as ucb1-tuned, where all randomness
is introduced by the environment, and given an internal state of the learning scheme it is
predetermined which action that is to be selected.

7.6 Non-stationary environments

All BLA players evaluated and introduced in this thesis are designed for stationary environments,
but we have introduced them to non-stationary environments in form of some classical games
from game theory. The reason for this is to observe the behavior of the BLA players compared
to other bandit players in these games, and to observe if they are able to identify the optimal
solutions in these games.

The updating rules of the hyperparameters presented in Chapter 5 indicate that previous received
feedback has a large impact on the performance of the automata. Therefore, the BLA are not
able to simply ”forget” previous received feedback. This causes the BLA to be slower to adapt to
possible changes as the number of iterations and corresponding feedback from the environment
increase.

An interesting and potential useful extension of the BLA players is to modify the players to
tackle non-stationary environments. In a non-stationary environment, i.e where an optimal
action either suddenly or gradually changes feedback probability such that it no longer is the
optimal action, the BLA players should detect possible changes and focus the attention on
identifying the new optimal action.

90

CHAPTER 7. DISCUSSION AND SUMMARY OF RESULTS

A potential solution to this could be to introduce some mechanism to make the automata
“forget” earlier received feedback, or in some other way detect and adapt in a non-stationary
environment.

7.7 Applicability of BLA in cooperative and decentralized sys-
tems

In this thesis we have evaluated BLA Bernoulli and BLA Normal unknown σ2 in the Goore
game, due to its decentralized and cooperative nature. These characteristics make the Goore
game to a simplified model of more complex cooperative and decentralized learning systems,
where automata may be organized in more complex structures.

Such systems typically include a large number of participants, and it may therefore not be
possible nor practical to run a simulation until every participant has identified the action that
is in the best interest for the system as a whole. Instead, it might be sufficient to stop the
simulation at a certain point, and then use the current belief of each automaton to make a
global decisions for the entire system.

We think the BLA might be very useful in such systems and consider this to be an area of
interest for further work. For instance, we could easily extract mean feedback of every explored
action of each automaton in the system, and then use this information in the global decision
making. The ability to extract mean feedback for each action is not a unique feature with
the BLA, but the highly effective balance between exploration and exploitation could in some
situations possibly lead to greatly improved performance of such systems.

91

Chapter 8

Conclusion and further work

8.1 Conclusion

In this thesis we have have performed an extensive empirical evaluation of the Bayesian Learning
Automaton family, and we have extended the BLA family by introducing the three new members
BLA Poisson, BLA Normal known σ2 and BLA Normal unknown σ2.

In the empirical evaluation of the general k-armed bandit problem the BLA players are among the
top performers within their intended feedback distribution. In addition, BLA Normal unknown
σ2 offers good performance in most experiments it is applied in, and seems to be applicable in
a wide range of problems.

By using conjugate prior distributions and applying simple updating rules on a set of hyper-
parameters associated with each action in the BLA, it is possible to utilize Bayesian statistics
in a learning automaton in a computationally efficient manner. Bayesian statistics introduces
some highly desirable properties, such as the lack of external tuning and accuracy control, which
schemes such as εn-greedy, Pursuit and LR−I are heavily dependent on.

However, the Bayesian Learning Automata are dependent on initial conjugate prior distribu-
tions that realistically contain the true values of the unknown parameters θ. If the unknown
parameters are unlikely given the prior distribution, the performance might be heavily impacted.

Choice of initial hyperparameters of the conjugate prior may be an issue in some cases, but
as we have demonstrated it is possible to construct a reasonable prior which offers excellent
performance.

Issues with the choice of initial prior distribution may be avoided by using an initialization
phase similar to the one used by ucb1-normal. We may then use the information obtained in
the initialization phase to construct a prior distribution that is used throughout the rest of the
experiment.

We have also demonstrated that the BLA players are able to offer very good performance in
the Goore game, prisoners’ dilemma and two-player zero-sum game. However, dynamic changes

92

CHAPTER 8. CONCLUSION AND FURTHER WORK

in feedback distributions as a result of the other players changing action selection preferences
seem to hold the automata somewhat back from reaching the optimal outcome in some of these
games, especially in the Goore Game. This is however not very surprising in non-stationary
environments, as the BLA are designed for use in stationary environments, and are slow to
adapt to changes in the feedback distributions.

The experiments with the Goore game indicate that the BLA players are able to handle decen-
tralized and cooperative systems. The teams of BLA players were among the top performers
in every experiment configuration. However, the BLA players seem to struggle more when the
number of participants increases.

In the iterative prisoners’ dilemma the BLA players seem to behave as most rational players do
in this game, which is to confess. The experiment indicates that BLA Normal unknown σ2 is
the overall top performer with the exception of Tit-For-Tat in the iterative prisoners’ dilemma.

Quite surprisingly, the BLA also seem to be able to solve both pure and mixed strategy two-
player zero-sum games in a very efficient manner, and are among the fastest players to identify
the optimal mixed strategy when playing against themselves.

Thus, we believe that the family of Bayesian Learning Automata is an important addition to
the field of bandit playing algorithms, and provides an interesting avenue for further research.
Our experiments indicate that the automata seem to be robust and highly adaptable to different
environments, and we believe the BLA could possible lead to improved performance in a wide
range of important fields.

8.2 Further work

As mentioned, the choice of initial values of the hyperparameters of the conjugate prior distribu-
tion is a potential problem in BLA Poisson and BLA Normal with both known and unknown σ2.
This is an area which has to be solved for easy and widespread use of the new players introduced
in this thesis. A possible solution could be to introduce an initialization phase which consists
of a predetermined number of trials of each action, and then use the results from these trials to
compute initial values of the hyperparameters.

In this thesis we evaluate the BLA players in non-stationary environments, although they are
not explicitly designed for such environments. Therefore, an interesting and possibly impor-
tant extension of the players introduced in this thesis, would be support for non-stationary
environments.

It is also of great interest to observe how structures of several BLA players could be used to
solve more complex cooperation problems. We believe the Bayesian approach could be of great
usage in such systems, where it might be beneficial to be able to stop a simulation at any time
and extract the current belief. For instance, the mean feedback received by each automaton in
the structure could be extracted and used to make global decisions.

It could also be of great interest to utilize the various members of the BLA family in some real
life problems in order to investigate their applicability to such problems.

93

Bibliography

[1] B. J. Oommen, S. Misra, and O.-C. Granmo, “Routing bandwidth-guaranteed paths in
mpls traffic engineering: A multiple race track learning approach,” IEEE Transactions on
Computers, vol. 56, pp. 959–976, 2007.

[2] O.-C. Granmo, B. J. Oommen, S. Myrer, and M. Olsen, “Determining optimal polling
frequency using a learning automata-based solution to the fractional knapsack problem,”
IEEE Cybernetics and Intelligent Systems, vol. 7-9, pp. 1–7, 2006.

[3] O.-C. Granmo, B. J. Oommen, S. Myrer, and M. Olsen, “Learning automata-based solu-
tions to the nonlinear fractional knapsack problem with applications to optimal resource
allocation,” IEEE Transactions on systems, man, and cybernetics, vol. 37, pp. 166–175,
2007.

[4] B. J. Ommen, O.-C. Granmo, and A. Pedersen, “Using stochastic al techniques to achieve
unbounded resolution in finite player goore games and its applications,” IEEE Symposium
on Computational Intelligence and Games, pp. 161–167, 2007.

[5] O.-C. Granmo, “The bayesian learning automaton - empirical evaluation with two-armed
bernoulli bandit problems,” ICMLA Machine Learning and Applications, pp. 23–30, 2008.

[6] R. Iyer and L. Kleinrock, “Qos control for sensor networks,” Communications, 2003. ICC
’03. IEEE International Conference on, pp. 517– 521 vol.1, 2003.

[7] S. P. H. Heap and Y. Varoufakis, Game Theory: A Critical Introduction. Routledge, 1995.

[8] T. M. Mitchell, Machine Learning. McGraw Hill, 1997.

[9] M. A. L. Thathachar and P. Sastry, Networks of Learning automata. Kluwer Academic
Publishers, 2003.

[10] S. J. Russel and P. Norvig, Artificial Intelligence A Modern Approach, Second Edition.
Prentice Hall, 2003.

[11] K. S. Narendra and M. A. L. Thathachar, Learning Automata: An Introduction. Prentice
Hall, 1989.

[12] K. S. Narendra and M. Thathachar, “Learning automata: A survey,” IEEE transactions
on systems, man, and cybernetics, vol. SMC-14, pp. 323–334, 1974.

94

BIBLIOGRAPHY

[13] M. Thathachar and P. Sastry, “Varieties of learning automata: An overview,” IEEE trans-
actions on systems, man, and cybernetics, vol. 32, pp. 711–722, 2002.

[14] N. Cesa-Bianchi and G. Lugosi, Prediction, Learning, and Games. Cambridge Univerity
Press, 2006.

[15] H. Robbins, “Some aspects of the sequential design of experiments,” Bulletin of the Amer-
ican Mathematical Society, vol. 58, no. 5, pp. 527–535, 1952.

[16] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the multiarmed bandit
problem,” Machine learning, vol. 47, pp. 235–256, 2002.

[17] M. Tsetlin, Automaton Theory and Modeling of Biological Systems. Academic Press, 1973.

[18] B. Tung and L. Kleinrock, “Distributed control methods,” High Performance Distributed
Computing, 1993., Proceedings the 2nd International Symposium on, pp. 206–215, 1993.

[19] W. M. Bolstad, Introduction to Bayesian Statistics. John Wiley & Sons Inc, 2007.

[20] K.-R. Koch, Introduction to Bayesian Statistics, Second Edition. Springer Verlag, 2007.

[21] M. Fisz, Probability Theory and Mathematical Statistics. John Wiley & Sons Inc, 1967.

[22] G. Young and R. L. Smith, Essentials of Statistical Inference. Cambridge University Press,
2005.

[23] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin, Bayesian Data Analysis. Chapmen
& Hall/CRC, 2003.

[24] J. O. Berger, Statiscal Decision Theory and Bayesian Data Analysis, Second Edition.
Springer Verlag, 1985.

[25] A. F. M. S. JosÃ¨ M. Bernardo, Bayesian Theory. John Wiley & Sons Inc, 2000.

[26] M. Tsetlin, “On the behaviour of finite automata in random media,” Automation and
Remote Control, vol. 22, pp. 1210–19, 1962.

[27] J. Vermorel and M. Mohri, “Multi-armed bandit algorithms and empirical evaluation,”
ECML, pp. 437–448, 2005.

[28] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire, “The non-stochastic multi-armed
bandit problem,” 2001.

[29] C. J. C. H. Watkins, “Learning from delayed rewards,” 1989.

95

Appendix A

Unabridged experiments and results

In this chapter we present unabridged experiments and results from the empirical evaluation of
the Bayesian Learning Automaton family.

In Sections A.1.2, A.2 and A.3 we present the experiments and results of the 2-armed and 10-
armed bandit problem with Bernoulli, Poisson and normally distributed feedback, respectively.
We then present the experiments and results of the Goore game, iterative prisoner’s dilemma
and two-player zero-sum game through Sections A.4 - A.6.

A.1 K-armed bandit problem with Bernoulli distributed feed-
back

Table A.1: Experiment configurations for the k-armed bandit problem with Bernoulli distributed feedback

Configuration / Arm 1 2 3 4 5 6 7 8 9 10

1 0.90 0.60 - - - - - - - -
2 0.90 0.80 - - - - - - - -
3 0.55 0.45 - - - - - - - -
4 0.90 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60
5 0.90 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
6 0.55 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45

96

APPENDIX A. UNABRIDGED EXPERIMENTS AND RESULTS

Table A.2: Results of the 2-armed and 10-armed bandit problem with Bernoulli distributed feedback

Player / Configuration 1 2 3 4 5 6

BLA Bernoulli 1.000 0.999 0.997 0.998 0.988 0.975
BLA Normal unknown σ2 1.000 0.998 0.992 0.996 0.982 0.968

εn-greedy c =0.05 1 0.981 0.992 0.965 0.996 0.961 0.893
εn-greedy c =0.15 1 1.000 0.999 0.991 0.990 0.988 0.957
εn-greedy c =0.30 1 1.000 0.997 0.997 0.982 0.981 0.977

LR−I 0.05 0.999 0.918 0.985 0.832 0.378 0.526
LR−I 0.01 0.998 0.993 0.993 0.992 0.885 0.958
LR−I 0.005 0.995 0.986 0.986 0.984 0.940 0.951

Pursuit 0.05 1.000 0.970 0.932 0.912 0.699 0.608
Pursuit 0.01 0.999 0.998 0.998 0.998 0.875 0.848
Pursuit 0.005 0.999 0.999 0.998 0.997 0.960 0.924

ucb1 0.999 0.983 0.982 0.979 0.848 0.848
ucb1-tuned 1.000 0.997 0.997 0.997 0.977 0.978
ucb1-normal 0.995 0.977 0.969 0.959 0.797 0.737

Exp3 0.01 0.990 0.978 0.980 0.913 0.736 0.749

Poker 0.995 0.991 0.876 0.982 0.916 0.812

IntEstim0.01 0.961 0.949 0.796 0.920 0.905 0.577

1 Parameter d is set to be the difference between the best arm and the next best arm

97

APPENDIX A. UNABRIDGED EXPERIMENTS AND RESULTS

A.1.1 Bernoulli distributed feedback and the 2-armed bandit problem

Results of experiment configuration 1

Table A.3: Detailed overview of the 2-armed bandit problem with Bernoulli distributed feedback with optimal
arm p = 0.9 and 0.6 on the inferior arm

Player / Iteration 10 100 1000 10 000 100 000

BLA Bernoulli 0.666 0.910 0.987 0.998 1.000
BLA Normal unknown σ2 0.639 0.880 0.977 0.996 1.000

εn-greedy c =0.05 d =0.3 0.625 0.859 0.944 0.970 0.981
εn-greedy c =0.15 d =0.3 0.586 0.896 0.984 0.998 1.000
εn-greedy c =0.30 d =0.3 0.518 0.858 0.978 0.997 1.000

LR−I 0.05 0.516 0.673 0.950 0.995 0.999
LR−I 0.01 0.500 0.538 0.786 0.977 0.998
LR−I 0.005 0.496 0.519 0.670 0.953 0.995

Pursuit 0.05 0.528 0.837 0.983 0.998 1.000
Pursuit 0.01 0.505 0.630 0.935 0.993 0.999
Pursuit 0.005 0.502 0.571 0.876 0.987 0.999

ucb1 0.617 0.774 0.921 0.984 0.999
ucb1-tuned 0.707 0.912 0.984 0.998 1.000
ucb1-normal 0.519 0.489 0.841 0.969 0.995

Exp3 0.01 0.501 0.519 0.671 0.947 0.990

Poker 0.571 0.856 0.980 0.993 0.995

IntEstim 0.01 0.624 0.879 0.950 0.960 0.961

98

APPENDIX A. UNABRIDGED EXPERIMENTS AND RESULTS

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000 10000 100000

pr
ob

ab
ili

ty
 o

f s
el

ec
tin

g
op

tim
al

 a
rm

iterations

BLA Bernoulli
BLA Normal unknown σ2

εn-GREEDY c=0.15 d=0.3
LR-I 0.01

Pursuit 0.05
UCB1-TUNED

Exp3 0.01
POKER

INTESTIM 0.01

Figure A.1: Optimal action selection probability in the 2-armed bandit problem with Bernoulli distributed feed-
back, with optimal arm p = 0.9 and 0.6 on the inferior arm

 0.1

 1

 10

 100

 1000

 10 100 1000 10000 100000

re
gr

et

iterations

BLA Bernoulli
BLA Normal unknown σ2

εn-GREEDY c=0.15 d=0.1
LR-I 0.05

Pursuit 0.05
UCB1-TUNED

Exp3 0.01
POKER

INTESTIM 0.01

Figure A.2: Regret in the 2-armed bandit problem with Bernoulli distributed feedback with optimal arm p = 0.9
and 0.6 on the inferior arm

99

APPENDIX A. UNABRIDGED EXPERIMENTS AND RESULTS

Results of experiment configuration 2

Table A.4: Detailed overview of the 2-armed bandit problem with Bernoulli distributed feedback with optimal
arm p = 0.9 and 0.8 on the inferior arm

Player / Iteration 10 100 1000 10 000 100 000

BLA Bernoulli 0.550 0.727 0.932 0.990 0.999
BLA Normal unknown σ2 0.551 0.716 0.920 0.986 0.998

εn-greedy c =0.05 d =0.1 0.500 0.727 0.925 0.974 0.992
εn-greedy c =0.15 d =0.1 0.496 0.628 0.921 0.989 0.999
εn-greedy c =0.30 d =0.1 0.495 0.538 0.880 0.981 0.997

LR−I 0.05 0.504 0.556 0.794 0.906 0.918
LR−I 0.01 0.498 0.513 0.616 0.926 0.993
LR−I 0.005 0.502 0.505 0.560 0.858 0.986

Pursuit 0.05 0.505 0.725 0.931 0.965 0.970
Pursuit 0.01 0.508 0.585 0.914 0.990 0.998
Pursuit 0.005 0.502 0.549 0.862 0.986 0.999

ucb1 0.540 0.611 0.750 0.913 0.983
ucb1-tuned 0.568 0.730 0.910 0.981 0.997
ucb1-normal 0.492 0.423 0.643 0.878 0.977

Exp3 0.01 0.507 0.506 0.560 0.843 0.978

Poker 0.521 0.673 0.905 0.983 0.991

IntEstim 0.01 0.547 0.724 0.896 0.943 0.949

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000 10000 100000

pr
ob

ab
ili

ty
 o

f s
el

ec
tin

g
op

tim
al

 a
rm

iterations

BLA Bernoulli
BLA Normal unknown σ2

εn-GREEDY c=0.30 d=0.1
LR-I 0.01

Pursuit 0.05
UCB1-TUNED

Exp3 0.01
POKER

INTESTIM 0.01

Figure A.3: Optimal action selection probability in the 2-armed bandit problem with Bernoulli distributed feed-
back, with optimal arm p = 0.9 and 0.8 on inferior arm

100

APPENDIX A. UNABRIDGED EXPERIMENTS AND RESULTS

 0.01

 0.1

 1

 10

 100

 1000

 10 100 1000 10000 100000

re
gr

et

iterations

BLA Bernoulli
BLA Normal unknown σ2

εn-GREEDY c=0.15 d=0.1
LR-I 0.01

Pursuit 0.005
UCB1-TUNED

Exp3 0.01
POKER

INTESTIM 0.01

Figure A.4: Regret in the 2-armed bandit problem with Bernoulli distributed feedback with optimal arm p = 0.9
and 0.8 on the inferior arm

Results of experiment configuration 3

Table A.5: Detailed overview of the 2-armed bandit problem with Bernoulli distributed feedback with optimal
arm p = 0.55 and 0.45 on the inferior arm

Player / Iteration 10 100 1000 10 000 100 000

BLA Bernoulli 0.558 0.670 0.884 0.981 0.997
BLA Normal unknown σ2 0.544 0.658 0.864 0.969 0.992

εn-greedy c =0.05 d =0.1 0.505 0.671 0.873 0.943 0.965
εn-greedy c =0.15 d =0.1 0.497 0.597 0.881 0.972 0.991
εn-greedy c =0.30 d =0.1 0.505 0.529 0.857 0.978 0.997

LR−I 0.05 0.499 0.562 0.834 0.971 0.985
LR−I 0.01 0.508 0.513 0.618 0.927 0.993
LR−I 0.005 0.503 0.507 0.560 0.859 0.986

Pursuit 0.05 0.510 0.638 0.876 0.926 0.932
Pursuit 0.01 0.504 0.547 0.854 0.984 0.998
Pursuit 0.005 0.500 0.523 0.774 0.975 0.998

ucb1 0.548 0.606 0.752 0.913 0.982
ucb1-tuned 0.580 0.706 0.896 0.982 0.997
ucb1-normal 0.500 0.580 0.693 0.867 0.969

Exp3 0.01 0.495 0.503 0.560 0.851 0.980

Poker 0.546 0.662 0.797 0.867 0.876

IntEstim 0.01 0.565 0.646 0.752 0.790 0.796

101

APPENDIX A. UNABRIDGED EXPERIMENTS AND RESULTS

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000 10000 100000

pr
ob

ab
ili

ty
 o

f s
el

ec
tin

g
op

tim
al

 a
rm

rounds

BLA Bernoulli
BLA Normal unknown σ2

εn-GREEDY c=0.30 d=0.1
LR-I 0.01

Pursuit 0.05
UCB1-TUNED

Exp3 0.01
POKER

INTESTIM 0.01

Figure A.5: Optimal action selection probability in the 2-armed bandit problem with Bernoulli distributed feed-
back, with optimal arm p = 0.55 and 0.45 on inferior arm

 0.01

 0.1

 1

 10

 100

 1000

 10000

 10 100 1000 10000 100000

re
gr

et

iterations

BLA Bernoulli
BLA Normal unknown σ2

εn-GREEDY c=0.30 d=0.1
LR-I 0.01

Pursuit 0.01
UCB1-TUNED

Exp3 0.01
POKER

INTESTIM 0.01

Figure A.6: Regret in the 2-armed bandit problem with Bernoulli distributed feedback with optimal arm p = 0.55
and 0.45 on the inferior arm

102

APPENDIX A. UNABRIDGED EXPERIMENTS AND RESULTS

A.1.2 Bernoulli distributed feedback and the 10-armed bandit problem

Results of experiment configuration 4

Table A.6: Detailed overview of the 10-armed bandit problem with Bernoulli distributed feedback with optimal
arm p = 0.9 and 0.6 on the inferior arms

Player / Iteration 10 100 1000 10 000 100 000

BLA Bernoulli 0.131 0.434 0.888 0.984 0.998
BLA Normal unknown σ2 0.105 0.281 0.808 0.969 0.996

εn-greedy c =0.05 d =0.3 0.098 0.194 0.810 0.971 0.996
εn-greedy c =0.15 d =0.3 0.100 0.102 0.607 0.930 0.990
εn-greedy c =0.30 d =0.3 0.101 0.099 0.405 0.878 0.982

LR−I 0.05 0.105 0.186 0.687 0.818 0.832
LR−I 0.01 0.099 0.111 0.335 0.917 0.992
LR−I 0.005 0.106 0.109 0.197 0.842 0.984

Pursuit 0.05 0.104 0.312 0.834 0.904 0.912
Pursuit 0.01 0.104 0.166 0.810 0.981 0.998
Pursuit 0.005 0.107 0.133 0.697 0.969 0.997

ucb-1 0.100 0.175 0.446 0.862 0.979
ucb1-tuned 0.100 0.442 0.869 0.979 0.997
ucb1-normal 0.112 0.102 0.161 0.728 0.959

Exp3 0.01 0.105 0.101 0.114 0.351 0.913

Poker 0.121 0.315 0.705 0.946 0.982

IntEstim 0.01 0.133 0.459 0.839 0.912 0.920

103

APPENDIX A. UNABRIDGED EXPERIMENTS AND RESULTS

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000 100000

pr
ob

ab
ili

ty
 o

f s
el

ec
tin

g
op

tim
al

 a
rm

iterations

BLA Bernoulli
BLA Normal unknown σ2

εn-GREEDY c=0.05 d=0.3
LR-I 0.01

Pursuit 0.05
UCB1-TUNED

Exp3 0.01
POKER

INTESTIM 0.01

Figure A.7: Optimal action selection probability in the 10-armed bandit problem with Bernoulli distributed
feedback, with optimal arm p = 0.9 and 0.6 on inferior arms

 0.1

 1

 10

 100

 1000

 10000

 10 100 1000 10000 100000

re
gr

et

iterations

BLA Bernoulli
BLA Normal unknown σ2

εn-GREEDY c=0.05 d=0.3
LR-I 0.01

Pursuit 0.01
UCB1-TUNED

Exp3 0.01
POKER

INTESTIM 0.01

Figure A.8: Regret in the 10-armed bandit problem with Bernoulli distributed feedback with optimal arm p =
0.9 and 0.6 on the inferior arms

104

APPENDIX A. UNABRIDGED EXPERIMENTS AND RESULTS

Results of experiment configuration 5

Table A.7: Detailed overview of the 10-armed bandit problem with Bernoulli distributed feedback with optimal
arm p = 0.9 and 0.8 on the inferior arms

Player / Iteration 10 100 1000 10 000 100 000

BLA Bernoulli 0.112 0.197 0.549 0.916 0.988
BLA Normal unknown σ2 0.107 0.131 0.433 0.881 0.982

εn-greedy c =0.05 d =0.1 0.101 0.124 0.630 0.898 0.961
εn-greedy c =0.15 d =0.1 0.105 0.100 0.511 0.911 0.988
εn-greedy c =0.30 d =0.1 0.099 0.099 0.359 0.872 0.981

LR−I 0.05 0.103 0.119 0.273 0.368 0.378
LR−I 0.01 0.104 0.105 0.156 0.672 0.885
LR−I 0.005 0.102 0.102 0.126 0.518 0.940

Pursuit 0.05 0.100 0.157 0.567 0.682 0.699
Pursuit 0.01 0.098 0.116 0.550 0.840 0.875
Pursuit 0.005 0.101 0.108 0.488 0.910 0.960

ucb1 0.100 0.119 0.166 0.406 0.848
ucb1-tuned 0.100 0.164 0.425 0.841 0.977
ucb1-normal 0.088 0.099 0.089 0.267 0.797

Exp3 0.01 0.097 0.099 0.104 0.156 0.736

Poker 0.105 0.180 0.444 0.751 0.916

IntEstim 0.01 0.126 0.194 0.519 0.857 0.905

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000 100000

pr
ob

ab
ili

ty
 o

f s
el

ec
tin

g
op

tim
al

 a
rm

iterations

BLA Bernoulli
BLA Normal unknown σ2

εn-GREEDY c=0.15 d=0.3
LR-I 0.01

Pursuit 0.05
UCB1-TUNED

Exp3 0.01
POKER

INTESTIM 0.01

Figure A.9: Optimal action selection probability in the 10-armed bandit problem with Bernoulli distributed
feedback, with optimal arm p = 0.9 and 0.8 on the inferior arms

105

APPENDIX A. UNABRIDGED EXPERIMENTS AND RESULTS

 0.1

 1

 10

 100

 1000

 10 100 1000 10000 100000

re
gr

et

iterations

BLA Bernoulli
BLA Normal unknown σ2

εn c=0.15 d=0.1
LR-I 0.005

Pursuit 0.005
UCB1-TUNED

Exp3 0.01
POKER

INTESTIM 0.01

Figure A.10: Regret in the 10-armed bandit problem with Bernoulli distributed feedback with optimal arm p =
0.9 and 0.8 on the inferior arms

Results of experiment configuration 6

Table A.8: Detailed overview of the 10-armed bandit problem with Bernoulli distributed feedback with optimal
arm p = 0.55 and 0.45 on the inferior arms

Player / Iteration 10 100 1000 10 000 100 000

BLA Bernoulli 0.109 0.150 0.340 0.834 0.975
BLA Normal unknown σ2 0.101 0.144 0.353 0.828 0.968

εn-greedy c =0.05 d =0.1 0.102 0.120 0.480 0.787 0.893
εn-greedy c =0.15 d =0.1 0.103 0.101 0.401 0.835 0.957
εn-greedy c =0.30 d =0.1 0.097 0.098 0.289 0.847 0.977

LR−I 0.05 0.105 0.123 0.329 0.507 0.526
LR−I 0.01 0.102 0.103 0.158 0.728 0.958
LR−I 0.005 0.101 0.102 0.123 0.526 0.951

Pursuit 0.05 0.102 0.139 0.449 0.589 0.608
Pursuit 0.01 0.098 0.112 0.396 0.793 0.848
Pursuit 0.005 0.104 0.105 0.309 0.838 0.924

ucb1 0.100 0.120 0.165 0.404 0.848
ucb1-tuned 0.100 0.166 0.401 0.855 0.978
ucb1-normal 0.100 0.099 0.146 0.283 0.737

Exp3 0.01 0.102 0.102 0.105 0.158 0.749

Poker 0.101 0.184 0.378 0.607 0.812

IntEstim 0.01 0.100 0.174 0.379 0.549 0.577

106

APPENDIX A. UNABRIDGED EXPERIMENTS AND RESULTS

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000 100000

pr
ob

ab
ili

ty
 o

f s
el

ec
tin

g
op

tim
al

 a
rm

iterations

BLA Bernoulli
BLA Normal unknown σ2

εn-GREEDY c=0.30 d=0.1
LR-I 0.01

Pursuit 0.05
UCB1-TUNED

Exp3 0.01
POKER

INTESTIM 0.01

Figure A.11: Optimal action selection probability in the 10-armed bandit problem with Bernoulli distributed
feedback, with optimal arm p = 0.55 and 0.45 on the inferior arms

 0.1

 1

 10

 100

 1000

 10 100 1000 10000 100000

re
gr

et

iterations

BLA Bernoulli
BLA Normal unknown σ2

εn-GREEDY c=0.30 d=0.1
LR-I 0.01

Pursuit 0.005
UCB1-TUNED

Exp3 0.01
POKER

INTESTIM 0.01

Figure A.12: Regret in the 10-armed bandit problem with Bernoulli distributed feedback with optimal arm p =
0.55 and 0.45 on the inferior arms

107

APPENDIX A. UNABRIDGED EXPERIMENTS AND RESULTS

A.2 K-armed bandit problem with Poisson distributed feedback

Configuration Number of arms Range of λ

1 2 R ∈ [0, 10]
2 10 R ∈ [0, 10]

Table A.9: Experiment configuration for the k-armed bandit problem with Poisson distributed feedback

A.2.1 Poisson distributed feedback and the 2-armed bandit problem

Table A.10: Results for the 2-armed bandit problem with Poisson distributed feedback

Player / Iteration 10 100 1000 10 000 100 000

BLA Poisson 0.687 0.871 0.956 0.984 0.995
BLA Normal unknown σ2 0.719 0.885 0.955 0.984 0.995

εn-greedy c = 0.05 d = 0.1 0.505 0.798 0.941 0.968 0.972
εn-greedy c = 0.15 d = 0.1 0.506 0.652 0.914 0.979 0.990
εn-greedy c = 0.30 d = 0.1 0.498 0.540 0.872 0.974 0.993

Pursuit 0.050 0.539 0.842 0.954 0.966 0.968
Pursuit 0.010 0.514 0.656 0.927 0.980 0.986
Pursuit 0.005 0.514 0.588 0.880 0.976 0.987

ucb1-normal 0.486 0.774 0.912 0.962 0.985

Poker 0.711 0.898 0.953 0.968 0.974

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000 10000 100000

pr
ob

ab
ili

ty
 o

f s
el

ec
tin

g
op

tim
al

 a
rm

iterations

BLA Poisson
BLA Normal unknown σ2

εn-GREEDY c=0.3 d=0.1
Pursuit 0.005

UCB1-NORMAL
POKER

Figure A.13: Optimal action selection probability in the 2-armed bandit problem with Poisson distributed feed-
back

108

APPENDIX A. UNABRIDGED EXPERIMENTS AND RESULTS

 1

 10

 100

 1000

 10000

 10 100 1000 10000 100000

re
gr

et

iterations

BLA Poisson
BLA Normal unknown σ2

εn-GREEDY c=0.3 d=0.1
Pursuit 0.005

UCB1-NORMAL
POKER

Figure A.14: Regret in the 2-armed bandit problem with Poisson distributed feedback

A.2.2 Poisson distributed feedback and the 10-armed bandit problem

Table A.11: Results of the 10-armed bandit problem with Poisson distributed feedback

Player / Iteration 10 100 1000 10 000 100 000

BLA Poisson 0.113 0.466 0.781 0.927 0.980
BLA Normal unknown σ2 0.122 0.473 0.769 0.919 0.972

εn-greedy c = 0.05 d = 0.1 0.102 0.182 0.656 0.821 0.865
εn-greedy c = 0.15 d = 0.1 0.102 0.101 0.517 0.829 0.909
εn-greedy c = 0.30 d = 0.1 0.100 0.101 0.355 0.810 0.928

Pursuit 0.050 0.123 0.423 0.633 0.662 0.666
Pursuit 0.010 0.103 0.242 0.716 0.835 0.849
Pursuit 0.005 0.102 0.181 0.656 0.869 0.893

ucb1-normal 0.108 0.099 0.503 0.772 0.910

Poker 0.109 0.518 0.766 0.859 0.874

109

APPENDIX A. UNABRIDGED EXPERIMENTS AND RESULTS

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000 100000

pr
ob

ab
ili

ty
 o

f s
el

ec
tin

g
op

tim
al

 a
rm

iterations

BLA Poisson
BLA Normal unknown σ2

εn-GREEDY c=0.3 d=0.1
Pursuit 0.005

UCB1-NORMAL
POKER

Figure A.15: Optimal action selection probability in the 10-armed bandit problem with Poisson distributed
feedback

 0.1

 1

 10

 100

 1000

 10000

 10 100 1000 10000 100000

re
gr

et

iterations

BLA Poisson
BLA Normal unknown σ2

εn-GREEDY c=0.3 d=0.1
Pursuit 0.005

UCB1-NORMAL
POKER

Figure A.16: Regret in the 10-armed bandit problem with Poisson distributed feedback

110

APPENDIX A. UNABRIDGED EXPERIMENTS AND RESULTS

A.3 K-armed bandit problem with normally distributed feed-
back

Table A.12: Experiment configuration for the k-armed bandit problem with normally distributed feedback

Configuration Number of arms Range of µ and σ2

1 2 R ∈ [0, 1]
2 10 R ∈ [0, 1]

A.3.1 Normally distributed feedback and the 2-armed bandit problem

Table A.13: Results of the 2-armed bandit problem with normally distributed feedback

Player / Iteration 10 100 1000 10 000 100 000

BLA Normal known σ2 0.625 0.802 0.912 0.969 0.990
BLA Normal known σ2 = 1 0.594 0.755 0.891 0.960 0.987
BLA Normal unknown σ2 0.628 0.812 0.923 0.973 0.990

εn-greedy c =0.05 0.562 0.716 0.811 0.872 0.903
εn-greedy c =0.15 0.580 0.760 0.894 0.952 0.976
εn-greedy c =0.30 0.523 0.784 0.903 0.966 0.987

Pursuit 0.05 0.537 0.784 0.907 0.923 0.925
Pursuit 0.01 0.512 0.632 0.898 0.953 0.956
Pursuit 0.005 0.508 0.575 0.859 0.961 0.973

ucb1-normal 0.510 0.631 0.791 0.904 0.964

Poker 0.647 0.806 0.895 0.932 0.945

Parameter d is set to be the difference between the best arm and the next best arm

111

APPENDIX A. UNABRIDGED EXPERIMENTS AND RESULTS

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000 10000 100000

pr
ob

ab
ili

ty
 o

f s
el

ec
tin

g
op

tim
al

 a
rm

iterations

BLA Normal known σ2

BLA Normal known σ2 = 1
BLA Normal unknown σ2

εn-GREEDY c=0.30
Pursuit 0.005

UCB1-NORMAL
POKER

Figure A.17: Optimal action selection probability in the 2-armed bandit problem with normally distributed
feedback

 0.1

 1

 10

 100

 1000

 10 100 1000 10000 100000

re
gr

et

iterations

BLA Normal known σ2

BLA Normal known σ2 = 1
BLA Normal unknown σ2

εn-GREEDY c=0.30
Pursuit 0.005

UCB1-NORMAL
POKER

Figure A.18: Regret in the 2-armed bandit problem with normally distributed feedback

112

APPENDIX A. UNABRIDGED EXPERIMENTS AND RESULTS

A.3.2 Normally distributed feedback and the 10-armed bandit problem

Table A.14: Results of the 10-armed bandit problem with normally distributed feedback

Player / Iteration 10 100 1000 10 000 100 000

BLA Normal known σ2 0.100 0.235 0.521 0.804 0.928
BLA Normal known σ2 = 1 0.100 0.214 0.490 0.788 0.925
BLA Normal unknown σ2 0.105 0.300 0.633 0.858 0.955

εn-greedy c =0.05 0.103 0.194 0.465 0.692 0.820
εn-greedy c =0.15 0.100 0.142 0.378 0.671 0.858
εn-greedy c =0.30 0.097 0.118 0.309 0.620 0.833

Pursuit 0.05 0.116 0.347 0.566 0.600 0.605
Pursuit 0.01 0.097 0.191 0.618 0.758 0.775
Pursuit 0.005 0.097 0.152 0.576 0.813 0.842

ucb1-normal 0.113 0.102 0.253 0.553 0.810

Poker 0.106 0.338 0.603 0.800 0.849

Parameter d is set to be the difference between the best arm and the next best arm

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000 100000

pr
ob

ab
ili

ty
 o

f s
el

ec
tin

g
op

tim
al

 a
rm

iterations

BLA Normal known σ2

BLA Normal known σ2 = 1
BLA Normal unknown σ2

εn-GREEDY c=0.15
Pursuit 0.005

UCB1-NORMAL
POKER

Figure A.19: Optimal action selection probability in the 10-armed bandit problem with normally distributed
feedback

113

APPENDIX A. UNABRIDGED EXPERIMENTS AND RESULTS

 0.01

 0.1

 1

 10

 100

 1000

 10 100 1000 10000 100000

re
gr

et

iterations

BLA Normal known σ2

BLA Normal known σ2 = 1
BLA Normal unknown σ2

εn-GREEDY c=0.15
Pursuit 0.005

UCB1-NORMAL
POKER

Figure A.20: Regret in the 10-armed bandit problem with normally distributed feedback

114

APPENDIX A. UNABRIDGED EXPERIMENTS AND RESULTS

A.4 Goore game

Table A.15: Experiment configurations for the Goore game

Configuration Number of players Optimal number of yes votes

1 10 3
2 50 20
3 100 35

A.4.1 Results of experiment configuration 1

Table A.16: Distance from the optimal number of yes votes, with 10 players and 3 desired yes votes

Player / Iteration 10 100 1000 10 000 100 000

Tsetlin L2N,2 N = 1 2.01 0.95 0.00 0.00 0.00

BLA Bernoulli 2.03 1.58 0.82 0.36 0.00
BLA Normal unknown σ2 2.37 1.67 1.18 0.75 0.04

εn-greedy c =0.05 d =0.10 2.06 0.80 0.50 0.28 0.24
εn-greedy c =0.15 d =0.10 2.09 1.09 0.62 0.24 0.21
εn-greedy c =0.30 d =0.10 2.16 1.24 0.62 0.38 0.35

LR−I 0.01 1.74 2.26 2.09 1.57 1.22
LR−I 0.005 2.13 2.06 2.25 1.77 0.67

Pursuit 0.01 2.05 1.08 0.51 0.24 0.24
Pursuit 0.005 2.09 1.28 0.82 0.24 0.24

ucb1-tuned 5.03 1.93 1.61 1.00 0.21

ucb1-normal 3.00 2.01 1.91 1.64 0.85
Poker 2.23 2.79 1.09 0.92 0.18

115

APPENDIX A. UNABRIDGED EXPERIMENTS AND RESULTS

Table A.17: Detailed overview of the Goore game with 10 players, where exactly 3 players should vote yes

Player / Iteration 10 100 1000 10 000 100 000

Tsetlin L2N,2 N = 1 4.79 3.93 3.00 3.00 3.00

BLA Bernoulli 4.85 4.46 3.20 3.00 3.00
BLA Normal unknown σ2 5.15 4.25 3.32 2.99 3.00

εn-greedy c =0.05 d =0.10 4.98 2.64 3.50 3.28 3.24
εn-greedy c =0.15 d =0.10 4.85 2.79 3.54 3.24 3.21
εn-greedy c =0.30 d =0.10 5.06 3.76 3.32 3.30 3.27

LR−I 0.01 4.58 5.14 4.85 4.39 4.04
LR−I 0.005 4.95 4.98 5.07 4.49 3.27

Pursuit 0.01 4.97 2.58 3.47 3.18 3.18
Pursuit 0.005 4.99 3.82 3.64 3.10 3.1

ucb1-tuned 8.03 4.85 4.35 3.58 3.21
ucb1-normal 0.0 4.89 4.75 4.50 3.65

Poker 5.13 5.77 3.63 2.96 2.82

 0

 1

 2

 3

 4

 5

 6

 7

 8

 10 100 1000 10000 100000

nu
m

be
r

of
 y

es
 v

ot
es

iterations

Tsetlin L2N,2 N=1
BLA Bernoulli

BLA Normal unknown σ2

εn-GREEDY c=0.15 d=0.1
LR-I 0.005

Pursuit 0.01
UCB1-TUNED

POKER

Figure A.21: Development of the distance from the optimal number of yes votes 3, with 10 players

116

APPENDIX A. UNABRIDGED EXPERIMENTS AND RESULTS

 0

 2

 4

 6

 8

 10

 10 100 1000 10000 100000

nu
m

be
r

of
 y

es
 v

ot
es

iterations

Tsetlin L2N,2 N=1
BLA Bernoulli

BLA Normal unknown σ2

εn-GREEDY c=0.15 d=0.1
LR-I 0.005

Pursuit 0.01
UCB1-TUNED

POKER

Figure A.22: Development of the number of yes votes with 10 players and 3 as the optimal number of yes votes

A.4.2 Results of experiment configuration 2

Table A.18: Distance from the optimal number of yes votes, with 50 players and 20 desired yes votes

Player / Iteration 10 100 1000 10 000 100 000

Tsetlin L2N,2 N = 1 3.25 0.54 0.00 0.00 0.00

BLA Bernoulli 4.61 2.61 1.12 1.02 0.15
BLA Normal unknown σ2 4.87 2.72 2.01 1.43 0.29

εn-greedy c =0.05 d =0.10 4.50 2.51 1.37 1.07 1.06
εn-greedy c =0.15 d =0.10 5.20 2.56 1.29 1.0 0.90
εn-greedy c =0.30 d =0.10 4.64 3.27 1.46 1.32 1.19

LR−I 0.01 5.77 4.83 5.11 2.06 0.96
LR−I 0.005 5.14 5.36 4.92 2.64 0.96

Pursuit 0.01 4.21 2.77 0.89 0.75 0.75
Pursuit 0.005 4.90 3.12 1.11 0.86 0.85

ucb1-tuned 2.40 6.19 3.69 1.11 0.17
ucb1-normal 20.0 10.52 3.41 2.37 0.19

Poker 5.67 4.55 2.06 1.93 0.47

117

APPENDIX A. UNABRIDGED EXPERIMENTS AND RESULTS

Table A.19: Number of yes votes with 50 players and 20 desired yes votes

Player / Iteration 10 100 1000 10 000 100 000

Tsetlin L2N,2 N = 1 23.07 20.54 20.00 20.00 20.00

BLA Bernoulli 24.33 21.27 20.20 20.20 20.05
BLA Normal unknown σ2 24.67 21.46 20.25 19.93 20.17

εn-greedy c =0.05 d =0.10 24.18 21.89 21.35 21.07 21.06
εn-greedy c =0.15 d =0.10 25.02 20.96 19.77 19.88 19.92
εn-greedy c =0.30 d =0.10 24.34 21.87 19.44 19.06 19.09

LR−I 0.01 25.59 24.65 24.65 20.92 19.96
LR−I 0.005 24.90 25.24 24.38 20.82 20.10

Pursuit 0.01 23.57 20.09 20.01 20.03 20.03
Pursuit 0.005 24.50 21.76 19.71 19.68 19.69

ucb1-tuned 19.22 26.13 23.45 20.97 20.15
ucb1-normal 0.00 30.52 22.65 21.55 20.15

Poker 25.67 24.35 19.90 19.75 19.73

Table A.20: Detailed overview of the Goore game with 50 players, where exactly 20 players should vote yes

 0

 5

 10

 15

 20

 25

 30

 10 100 1000 10000 100000

nu
m

be
r

of
 y

es
 v

ot
es

iterations

Tsetlin L2N,2 N=1
BLA Bernoulli

BLA Normal unknown σ2

εn-GREEDY c=0.15 d=0.1
LR-I 0.01

Pursuit 0.01
UCB1-TUNED

POKER

Figure A.23: Development of the distance from the optimal number of yes votes 20, with 50 players

118

APPENDIX A. UNABRIDGED EXPERIMENTS AND RESULTS

 0

 10

 20

 30

 40

 50

 10 100 1000 10000 100000

nu
m

be
r

of
 y

es
 v

ot
es

iterations

BLA Bernoulli
BLA Normal unknown σ2

Tsetlin L2,2
εn-GREEDY c=0.15 d=0.1

UCB1-TUNED
POKER

LR-I 0.01
Pursuit 0.01

Figure A.24: Development of the number of yes votes with 50 players and 20 as the optimal number of yes votes

A.4.3 Results of experiment configuration 3

Table A.21: Distance from the optimal number of yes votes in the Goore game with 100 players, with 35 desired
yes votes

Player / Iteration 10 100 1000 10 000 100 000

Tsetlin L2N,2 N = 1 10.43 6.08 0.00 0.00 0.00

BLA Bernoulli 12.88 6.04 1.81 1.20 0.90
BLA Normal unknown σ2 12.31 6.40 1.83 0.90 0.25

εn-greedy c =0.05 d =0.10 15.20 6.93 5.22 5.08 4.94
εn-greedy c =0.15 d =0.10 14.29 7.71 3.95 3.58 3.51
εn-greedy c =0.30 d =0.10 14.58 10.03 3.57 3.27 3.10

LR−I 0.01 14.66 14.22 8.33 2.56 0.78
LR−I 0.005 15.08 14.52 12.12 3.92 1.39

Pursuit 0.01 14.55 8.91 2.75 2.74 2.74
Pursuit 0.005 14.60 11.75 3.42 3.25 3.25

ucb1-tuned 4.42 8.57 5.07 1.84 1.51
ucb1-normal 35.00 34.33 15.34 1.35 0.64

Poker 12.74 9.25 2.87 1.97 0.65

119

APPENDIX A. UNABRIDGED EXPERIMENTS AND RESULTS

Table A.22: Detailed overview of the Goore game with 100 players, where exactly 35 players should vote yes

Players 10 100 1000 10 000 100 000

Tsetlin L2N,2 N = 1 45.43 41.08 35.0 35.00 35.00

BLA Bernoulli 47.88 40.92 35.99 35.72 35.74
BLA Normal unknown σ2 47.29 40.82 35.31 35.48 35.09

εn-greedy c =0.05 d =0.10 50.2 41.57 39.9 39.8 39.68
εn-greedy c =0.15 d =0.10 49.29 42.43 38.39 37.88 37.87
εn-greedy c =0.30 d =0.10 49.58 45.01 36.63 35.73 35.62

LR−I 0.01 49.66 49.22 43.25 35.34 34.78
LR−I 0.005 50.08 49.48 47.06 36.02 35.03

Pursuit 0.01 49.55 43.71 35.31 35.3 35.3
Pursuit 0.005 49.58 46.65 32.18 32.15 32.15

ucb1-tuned 39.12 43.47 40.05 36.76 36.51
ucb1-normal 0.00 69.33 50.34 36.33 35.62

Poker 47.74 44.23 36.67 35.07 34.45

 0

 5

 10

 15

 20

 25

 30

 35

 40

 10 100 1000 10000 100000

nu
m

be
r

of
 y

es
 v

ot
es

iterations

Tsetlin L2N,2 N=1
BLA Bernoulli

BLA Normal unknown σ2

LR-I 0.01
Pursuit 0.01

εn-GREEDY c=0.30 d=0.1
UCB1-NORMAL

POKER

Figure A.25: Development of the distance from the optimal number of yes votes 35, with 100 players

120

APPENDIX A. UNABRIDGED EXPERIMENTS AND RESULTS

 30

 35

 40

 45

 50

 10 100 1000 10000 100000

nu
m

be
r

of
 y

es
 v

ot
es

iterations

Tsetlin L2N,2 N=1
BLA Bernoulli

BLA Normal unknown σ2

εn-GREEDY c=0.30 d=0.1
LR-I 0.05

Pursuit 0.01
UCB1-NORMAL

POKER

Figure A.26: Development of the number of yes votes with 100 players and 35 as the optimal number of yes votes

121

APPENDIX A. UNABRIDGED EXPERIMENTS AND RESULTS

A.5 Iterative prisoners’ dilemma

Player B

Player A
Not confess Confess

Not confess 0.8,0.8 0.0,1.0

Confess 1.0,0.0 0.4,0.4

Figure A.27: Inverted normalized game matrix in prisoners’ dilemma

Table A.23: Tournament scores of the iterative prisoners’ dilemma

Player / Iteration 10 100 1000 10 000 100 000

Tit-For-Tat 0.635 0.548 0.491 0.469 0.466

BLA Normal known σ2 = 1 0.663 0.542 0.459 0.424 0.420
BLA Normal unknown σ2 0.585 0.606 0.507 0.463 0.458

εn-greedy c =0.05 d =0.1 0.624 0.549 0.463 0.421 0.416
εn-greedy c =0.15 d =0.1 0.626 0.502 0.451 0.418 0.414
εn-greedy c =0.30 d =0.1 0.624 0.468 0.440 0.417 0.415

LR−I 0.05 0.630 0.505 0.459 0.420 0.414
LR−I 0.01 0.627 0.466 0.419 0.418 0.416
LR−I 0.005 0.629 0.460 0.382 0.411 0.414

Pursuit 0.01 0.630 0.502 0.458 0.421 0.416
Pursuit 0.005 0.629 0.483 0.445 0.420 0.416

ucb1-normal 0.564 0.515 0.459 0.434 0.431

Poker 0.639 0.499 0.376 0.320 0.311

Exp3 0.628 0.459 0.381 0.409 0.413

122

APPENDIX A. UNABRIDGED EXPERIMENTS AND RESULTS

A.6 Two-player zero-sum game

A.6.1 Pure strategy

D1 =

[

0.6 0.8
0.35 0.65

]

Figure A.28: Game matrix D1

Table A.24: Optimal actions selection probability for player A and B in D1 (A,B)

Player / Iteration 10 100 1000 10 000 100 000

BLA Bernoulli 0.69, 0.68 0.93, 0.91 0.99 ,0.99 1.00, 1.00 1.00, 1.00
BLA normal unkown σ2 0.52, 0.63 0.91, 0.96 0.99, 0.99 1.00, 1.00 1.00, 1.00

εn-greedy c =0.05 d =0.10 0.50, 0.49 0.93, 0.93 0.99, 0.99 1.00, 1.00 1.00, 1.00
εn-greedy c =0.15 d =0.10 0.51, 0.49 0.84, 0.86 0.98, 0.99 1.00, 1.00 1.00, 1.00
εn-greedy c =0.30 d =0.10 0.51, 0.49 0.68, 0.71 0.97, 0.97 1.00, 0.99 1.00, 1.00

LR−ǫP α = 0.002, β = 0.00001 0.48, 0.48 0.51, 0.55 0.59, 0.63 0.98, 0.96 0.99, 0.98

LR−I 0.05 0.51, 0.53 0.71, 0.75 1.00, 1.00 1.00, 1.00 1.00, 1.00
LR−I 0.01 0.51, 0.52 0.57, 0.58 0.91, 0.90 1.00, 1.00 1.00, 1.00
LR−I 0.005 0.51, 0.51 0.53, 0.51 0.74, 0.78 1.00, 1.00 1.00, 1.00

Pursuit 0.01 0.51, 0.52 0.71, 0.63 1.00, 1.00 1.00, 1.00 1.00, 1.00
Pursuit 0.005 0.50, 0.49 0.60, 0.60 0.98, 0.92 1.00, 1.00 1.00, 1.00

ucb1-tuned 0.73, 0.77 0.94, 0.93 0.96, 0.98 1.00, 1.00 1.00, 1.00

Poker 0.63, 0.74 0.82, 0.90 0.95, 0.94 0.97, 0.98 0.97, 0.98

D2 =

[

0.55 0.525
0.45 0.475

]

Figure A.29: Game matrix D2

123

APPENDIX A. UNABRIDGED EXPERIMENTS AND RESULTS

Table A.25: Optimal actions selection probability for player A and B in D2 (A,B)

Player / Iteration 10 100 1000 10 000 100 000

BLA Bernoulli 0.56, 0.49 0.70, 0.55 0.91, 0.63 0.99, 0.92 1.00, 0.99
BLA Normal unknown σ2 0.61, 0.55 0.81, 0.66 0.96, 0.79 0.99, 0.93 1.00, 0.99

εn-greedyc =0.05 d =0.10 0.51, 0.54 0.72, 0.54 0.85, 0.60 0.89, 0.63 0.92, 0.67
εn-greedy c =0.15 d =0.10 0.50, 0.52 0.70, 0.50 0.91, 0.57 0.97, 0.69 0.98, 0.76
εn-greedy c =0.30 d =0.10 0.50, 0.49 0.61, 0.46 0.93, 0.60 0.99, 0.77 1.00, 0.85

LR−ǫP α = 0.002, β = 0.00001 0.51, 0.50 0.51, 0.53 0.53, 0.50 0.83, 0.55 0.96, 0.90

LR−I 0.05 0.50, 0.50 0.59, 0.53 0.89, 0.58 0.94, 0.66 0.94, 0.66
LR−I 0.01 0.54, 0.52 0.52, 0.49 0.67, 0.49 0.99, 0.83 1.00, 0.98
LR−I 0.005 0.50, 0.49 0.51, 0.50 0.57, 0.51 0.97, 0.68 1.00, 1.00

Pursuit 0.01 0.52, 0.51 0.59, 0.53 0.95, 0.64 0.99, 0.81 0.99, 0.83
Pursuit 0.005 0.50, 0.51 0.54, 0.50 0.91, 0.58 1.00, 0.88 1.00, 0.92

ucb1-tuned 0.57, 0.48 0.72, 0.54 0.93, 0.65 0.98, 0.92 1.00, 0.99

Poker 0.60, 0.47 0.65, 0.53 0.79, 0.55 0.85, 0.66 0.85, 0.69

A.6.2 Mixed strategy

D3 =

[

0.8 0.2
0.4 0.6

]

Figure A.30: Game matrix D3

Table A.26: Two-player zero-sum mixed strategy tournament score with matrix D3

Player / Iteration 10 100 1000 10 000 100 000

BLA Bernoulli 0.42 4.71 54.1 864 11782
BLA Normal unknown σ2 0.00 0.65 38.6 841 11523

εn-greedy c =0.05 d =0.10 -0.07 3.82 6.3 321 7436
εn-greedy c =0.15 d =0.10 -0.12 2.04 14.5 478 9204
εn-greedy c =0.30 d =0.10 -0.02 -0.47 24.4 543 9746

LR−ǫP α = 0.002, β = 0.00001 -0.12 -2.49 -26.9 568 10449

LR−I 0.05 0.05 2.04 16.4 -1449 -18068
LR−I 0.01 -0.08 -1.08 32.6 246 -11482
LR−I 0.005 -0.10 -2.17 8.3 579 -3582

Pursuit 0.01 -0.03 -0.24 13.8 -345 -1693
Pursuit 0.005 -0.03 -1.11 16.8 -166 -1355

ucb1-tuned 0.34 6.05 73.2 978 11751

Poker -0.21 -11.74 -272.2 -3457 -35712

124

APPENDIX A. UNABRIDGED EXPERIMENTS AND RESULTS

Table A.27: Two-player zero-sum mixed strategy average distance from optimal reward

Player / Iteration 10 100 1000 10 000 100 000

BLA Bernoulli 2.79 9.6 37 151 714
BLA Normal unknown σ2 3.65 19.7 52 145 420

εn-greedy c =0.05 d =0.10 2.69 11.2 99 964 9881
εn-greedy c =0.15 d =0.10 2.71 8.9 68 594 5887
εn-greedy c =0.30 d =0.10 2.73 10.0 56 482 4693

LR−ǫP α = 0.002, β = 0.00001 2.71 7.9 30 90 267

LR−I 0.05 2.80 9.4 82 2127 22849
LR−I 0.01 2.71 8.3 34 476 19870
LR−I 0.005 2.69 8.2 40 129 12632

Pursuit 0.01 2.72 8.7 62 1475 17658
Pursuit 0.005 2.69 8.0 41 1276 17080

ucb1-tuned 3.13 15.4 67 524 4806

Poker 2.99 8.7 143 1535 15670

Table A.28: Two-player zero-sum mixed strategy action probability distribution A

Player / Iteration 10 100 1000 10 000 100 000

BLA Bernoulli 0.42, 0.58 0.20, 0.80 0.26, 0.74 0.26, 0.74 0.27, 0.73
BLA Normal unknown σ2 0.55, 0.45 0.48, 0.52 0.26, 0.74 0.25, 0.75 0.24, 0.76

εn-greedyc =0.05 d =0.10 0.48, 0.52 0.25, 0.85 0.17, 0.83 0.19, 0.81 0.17, 0.83
εn-greedy c =0.15 d =0.10 0.51, 0.49 0.27, 0.73 0.21, 0.79 0.23, 0.77 0.20, 0.80
εn-greedy c =0.30 d =0.10 0.49, 0.51 0.44, 0.56 0.15, 0.85 0.24, 0.76 0.22, 0.78

LR−ǫP α = 0.002, β = 0.00001 0.50, 0.50 0.48, 0.52 0.48, 0.52 0.11, 0.89 0.27, 0.73

LR−I 0.05 0.49, 0.51 0.38, 0.62 0.09, 0.91 0.07, 0.93 0.07, 0.93
LR−I 0.01 0.48, 0.52 0.48, 0.52 0.21, 0.79 0.15, 0.85 0.06, 0.94
LR−I 0.005 0.50, 0.50 0.49, 0.51 0.40, 0.60 0.31, 0.69 0.04, 0.96

Pursuit 0.01 0.49, 0.51 0.44, 0.56 0.04, 0.96 0.03, 0.97 0.01, 0.99
Pursuit 0.005 0.48, 0.52 0.49, 0.51 0.09, 0.91 0.06, 0.94 0.02, 0.98

ucb1-tuned 0.42, 0.58 0.23, 0.77 0.22, 0.78 0.21, 0.79 0.25, 0.75

Poker 0.48, 0.52 0.18, 0.82 0.11, 0.89 0.12, 0.88 0.08, 0.92

125

APPENDIX A. UNABRIDGED EXPERIMENTS AND RESULTS

Table A.29: Two-player zero-sum mixed strategy action probability distribution B

Player / Iteration 10 100 1000 10 000 100 000

BLA Bernoulli 0.34, 0.66 0.38, 0.62 0.44, 0.56 0.50, 0.50 0.46, 0.54
BLA Normal unknown σ2 0.48, 0.52 0.25, 0.75 0.45, 0.55 0.49, 0.51 0.51, 0.49

εn-greedyc =0.05 d =0.10 0.50, 0.50 0.25, 0.75 0.51, 0.49 0.49, 0.51 0.48, 0.52
εn-greedy c =0.15 d =0.10 0.49, 0.51 0.20, 0.80 0.54, 0.46 0.52, 0.48 0.50, 0.50
εn-greedy c =0.30 d =0.10 0.51, 0.49 0.28, 0.72 0.40, 0.60 0.49, 0.51 0.49, 0.51

LR−ǫP α = 0.002, β = 0.00001 0.51, 0.49 0.51, 0.49 0.40, 0.60 0.49, 0.51 0.46, 0.54

LR−I 0.05 0.47, 0.53 0.31, 0.69 0.60, 0.40 0.66, 0.34 0.66, 0.34
LR−I 0.01 0.52, 0.48 0.47, 0.53 0.24, 0.76 0.64, 0.36 0.84, 0.16
LR−I 0.005 0.48, 0.52 0.47, 0.53 0.32, 0.68 0.32, 0.68 0.87, 0.13

Pursuit 0.01 0.51, 0.49 0.31, 0.69 0.42, 0.58 0.67, 0.33 0.75, 0.25
Pursuit 0.005 0.48, 0.52 0.28, 0.62 0.20, 0.80 0.78, 0.22 0.83, 0.17

ucb1-tuned 0.28, 0.72 0.40, 0.60 0.41, 0.59 0.44, 0.56 0.44, 0.56

Poker 0.37, 0.63 0.32, 0.68 0.52, 0.48 0.40, 0.60 0.45, 0.55

126

Appendix B

Paper submitted to European
Conference on Machine Learning
PKDD 09

Results of some of the experiments conducted in this thesis have been included in the paper A
Generic Solution to Multi-Armed Bernoulli Bandit Problems Based on Random Sampling from
Sibling Conjugate Priors which has been submitted to the European Conference on Machine
Learning PKDD 2009.

127

A Generic Solution to Multi-Armed Bernoulli

Bandit Problems Based on Random Sampling
from Sibling Conjugate Priors⋆

Thomas Norheim1, Terje Br̊adland1,
Ole-Christoffer Granmo1, and B. John Oommen2,1

1 Department of ICT, University of Agder, Grimstad, Norway
2 School of Computer Science, Carleton University, Ottawa, Canada⋆ ⋆ ⋆

Abstract. The multi-armed Bernoulli bandit (MABB) problem is a
classical optimization problem where an agent sequentially pulls one of
multiple arms attached to a gambling machine, with each pull resulting
in a random reward. The reward distributions are unknown, and thus,
one must balance between exploiting existing knowledge about the arms,
and obtaining new information.

Although computationally intractable in many cases, Bayesian methods
provide a standard for optimal decision making. This paper proposes
a novel MABB solution scheme that is inherently Bayesian in nature,
yet avoids computational intractability by relying simply on updating
the hyper parameters of sibling conjugate distributions, and on random
sampling from these posteriors. Although generic in principle, we here
study an algorithm for Bernoulli distributed rewards.

Extensive experiments demonstrate that our scheme outperforms re-
cently proposed bandit playing algorithms. We thus believe that our
methodology opens avenues for obtaining improved novel solutions.

Keywords: Bandit Problems, Conjugate Priors, Sampling, Bayesian
Learning

1 Introduction

The conflict between exploration and exploitation is a well-known problem in Re-
inforcement Learning (RL), and other areas of artificial intelligence. The multi-
armed bandit problem captures the essence of this conflict, and has thus oc-
cupied researchers for over fifty years [1]. This paper introduces a new family
of Bayesian techniques for solving the classical Multi-Armed Bernoulli Bandit
(MABB) problem, and reports empirical results that demonstrate its advantages

⋆ ⋆ ⋆ Chancellor’s Professor ; Fellow : IEEE and Fellow : IAPR. The Author also holds
an Adjunct Professorship with the Dept. of ICT, University of Agder, Norway.

⋆ The fourth author was partially supported by NSERC, the Natural Sciences and
Engineering Research Council of Canada.

over established top performers from two distinct research areas, namely, Learn-
ing Automata (LA) and Bandit Playing Algorithms (see [2, 3] and [4] for an
overview of current algorithms).

1.1 The Multi-Armed Bernoulli Bandit (MABB) Problem

The MABB problem is a classical optimization problem that explores the trade
off between exploitation and exploration in reinforcement learning. The problem
consists of an agent that sequentially pulls one of multiple arms attached to
a gambling machine, with each pull resulting either in a reward or a penalty3.
The sequence of rewards/penalties obtained from each arm i forms a Bernoulli
process with an unknown reward probability ri, and a penalty probability 1−ri.
This leaves the agent with the following dilemma: Should the arm that so far
seems to provide the highest chance of reward be pulled once more, or should
the inferior arm be pulled in order to learn more about its reward probability?
Sticking prematurely with the arm that is presently considered to be the best
one, may lead to not discovering which arm is truly optimal. On the other hand,
lingering with the inferior arm unnecessarily, postpones the harvest that can be
obtained from the optimal arm.

With the above in mind, we intend to evaluate an agent’s arm selection strat-
egy in terms of the so-called Regret, and in terms of the probability of selecting

the optimal arm4. The Regret measure is non-trivial, and in all brevity, can be
perceived to be the difference between the sum of rewards expected after N suc-

cessive arm pulls, and what would have been obtained by only pulling the optimal

arm. To clarify issues, assume that a reward amounts to the value (utility) of
unity (i.e., 1), and that a penalty possesses the value 0. We then observe that
the expected returns for pulling Arm i is ri. Thus, if the optimal arm is Arm 1,
the Regret after N plays would become:

r1N −

N
∑

i=1

r̂i, (1)

with r̂n being the expected reward at Arm pull i, given the agent’s arm-selection
strategy. In other words, as will be clear in the following, we consider the case
where rewards are undiscounted, as discussed in [5].

In the last decades, several computationally efficient algorithms for tackling
the MABB Problem have emerged. From a theoretical point of view, LA are
known for their ǫ-optimality. From the field of Bandit Playing Algorithms, con-

fidence interval based algorithms are known for logarithmically growing Regret.

3 A penalty may also be perceived as the absence of a reward. However, we choose to
use the term penalty as is customary in the LA and RL literature.

4 Using Regrets as a performance measure is typical in the literature on Bandit Play-
ing Algorithms, while using the “arm selection probability” is typical in the LA
literature. In this paper, we will use both these concepts in the interest of compre-
hensiveness.

1.2 Applications

Solution schemes for bandit problems have formed the basis for dealing with a
number of applications. For instance, a Ucb-Tuned scheme [5] is used for move
exploration in MoGo, a top-level Computer-Go program on 9 × 9 Go boards
[6]. Furthermore, the so-called Ubc1 scheme has formed the basis for guiding
Monte-Carlo planning, and improving planning efficiency significantly in several
domains [7].

The applications of LA are many – in the interest of brevity, we list a few
more-recent ones. LA have been used to allocate polling resources optimally
in web monitoring, and for allocating limited sampling resources in binomial
estimation problems [8]. LA have also been applied for solving NP-complete SAT
problems [9]. Furthermore, in [10], LA have been used to optimize throughput
in MPLS traffic engineering [10]. Note that Regret minimizing algorithms also
have found applications in network routing [11].

1.3 Contributions and Paper Organization

The contributions of this paper can be summarized as follows. In Sect. 2 we
briefly review a selection of the main MABB solution approaches, including LA
and confidence interval-based schemes. Then, in Sect. 3 we present the Bayesian
Learning Automaton (BLA). In contrast to the latter reviewed schemes, the BLA
is inherently Bayesian in nature, even though it only relies on simple counting
and random sampling. Thus, to the best of our knowledge, BLA is the first
MABB algorithm that takes advantage of the Bayesian perspective in a compu-
tationally efficient manner. In Sect. 4 we provide extensive experimental results
that demonstrate that, in contrast to typical LA schemes as well as some Ban-
dit Playing Algorithms, BLA does not rely on external learning speed/accuracy
control. The BLA also outperforms established top performers from the field of
Bandit Playing Algorithms5. Accordingly, from the above perspective, it is our
belief that the BLA represents the current state-of-the-art and a new avenue
of research. Finally, in Sect. 5 we list open BLA-related research problems, in
addition to providing concluding remarks.

2 Related Work

The MABB problem has been studied in a disparate range of research fields.
From a machine learning point of view, Sutton et. al placed an emphasis on
computationally efficient solution techniques that are suitable for RL. While
there are algorithms for computing the optimal Bayes strategy to balance ex-
ploration and exploitation, these are computationally intractable for the general
case [12], mainly because of the magnitude of the state space associated with
typical bandit problems.

5 A comparison of Bandit Playing Algorithms can be found in [4], with the Ucb-Tuned

distinguishing itself in [5].

From a broader point of view, one can distinguish two distinct fields that
address bandit like problems, namely, the field of Learning Automata and the
field of Bandit Playing Algorithms. A myriad of approaches have been proposed
within these two fields, and we refer the reader to [2, 3] and [4] for an overview
and comparison of schemes. Although these fields are quite related, research
spanning them both is surprisingly sparse. In this paper, however, we will include
the established top performers from both of the two fields. These are reviewed
here in some detail in order to cast light on the distinguishing properties of
BLA, both from an LA perspective and from the perspective of Bandit Playing
Algorithms.

2.1 Learning Automata (LA) — The LR−I and Pursuit Schemes

LA have been used to model biological systems [2,3,13] and have attracted con-
siderable interest in the last decade because they can learn the optimal action
when operating in (or interacting with) unknown stochastic environments. Fur-
thermore, they combine rapid and accurate convergence with low computational
complexity. For the sake of conceptual simplicity, note that we in this subsection,
we assume that we are dealing with a bandit associated with two arms.

More notable approaches include the family of linear updating schemes, with
the Linear Reward-Inaction (LR−I) automaton being designed for stationary
environments [3]. In short, the LR−I maintains an Arm probability selection
vector p̄ = [p1, p2], with p2 = 1 − p1. The question of which Arm is to be pulled
is decided randomly by sampling from p̄. Initially, p̄ is uniform. The following
linear updating rules summarize how rewards and penalties affect p̄ with p′1 and
1 − p′1 being the resulting updated Arm selection probabilities:

p′1 = p1 + (1 − a) × (1 − p1)

if pulling Arm 1 results in a reward

p′1 = a × p1

if pulling Arm 2 results in a reward

p′1 = p1

if pulling Arm 1 or Arm 2 results in a penalty.

In the above, the parameter a (0 ≪ a < 1) governs the learning speed. As seen,
after Arm i has been pulled, the associated probability pi is increased using the
linear updating rule upon receiving a reward, with pj(j 6= i) being decreased
correspondingly. Note that p̄ is left unchanged upon a penalty.

A distinguishing feature of the LR−I scheme, and indeed the best LA within
the field of LA, is its ǫ-optimality [3]: By a suitable choice of some parameter

of the LA, the expected reward probability obtained from each arm pull can be

made arbitrarily close to the optimal reward probability, as the number of arm

pulls tends to infinity.

A Pursuit scheme (P-scheme) makes the updating of p̄ more goal-directed
in the sense that it maintains Maximum Likelihood (ML) estimates (r̂1, r̂2) of

the reward probabilities (r1, r2) associated with each Arm. Instead of using the
rewards/penalties that are received to update p̄ directly, they are rather used
to update the ML estimates. The ML estimates, in turn, are used to decide
which Arm selection probability pi is to be increased. In brief, a Pursuit scheme
increases the Arm selection probability pi associated with the currently largest
ML estimate r̂i, instead of the Arm actually producing the reward. Thus, un-
like the LR−I , in which the reward from an inferior Arm can cause unsuitable
probability updates, in the Pursuit scheme, these rewards will not influence the
learning progress in the short term, except by modifying the estimate of the
reward vector. This, of course, assumes that the ranking of the ML estimates
are correct, which is what it will be if each action is chosen a “sufficiently large
number of times”. Accordingly, a Pursuit scheme consistently outperforms the
LR−I in terms of its rate of convergence.

Discretized and Continuous variants of the Pursuit scheme has been proposed
[14–16], with slightly superior performances. But, in general, any Pursuit scheme
can be seen to be representative of this entire family.

2.2 The ǫ-Greedy and ǫn-Greedy Policies

The ǫ-greedy rule is a well-known strategy for the bandit problem [12]. In short,
the Arm with the presently highest average reward is pulled with probability
1− ǫ, while a randomly chosen Arm is pulled with probability ǫ. In other words,
the balancing of exploration and exploitation is controlled by the ǫ-parameter.
Note that the ǫ-greedy strategy persistently explores the available Arms with
constant effort, which clearly is sub-optimal for the MABB problem (unless the
reward probabilities are changing with time).

As a remedy for the above problem, ǫ can be slowly decreased, leading to
the ǫn-greedy strategy described in [5]. The purpose is to gradually shift focus
from exploration to exploitation. The latter work focuses on algorithms that
minimizes the so-called Regret formally described above. It turns out that the
ǫn-greedy strategy asymptotically provides a logarithmically increasing Regret.
Indeed, it has been proved that logarithmically increasing Regret is the best
possible [5] strategy.

2.3 Confidence Interval Based Algorithms

A promising line of thought is the interval estimation methods, where a confi-
dence interval for the reward probability of each Arm is estimated, and an “op-
timistic reward probability estimate” is identified for each Arm. The Arm with
the most optimistic reward probability estimate is then greedily selected [4,17].

In [5], several confidence interval based algorithms are analysed. These al-
gorithms also provide logarithmically increasing Regret, with Ucb-Tuned – a
variant of the well-known Ubc1 algorithm — outperforming both Ubc1,UCB2,
as well as the ǫn-greedy strategy. In brief, in Ucb-Tuned, the following opti-

mistic estimates are used for each Arm i:

µi +

√

lnn

ni

min{1/4, σ2
i +

√

2 lnn

ni

} (2)

where µi and σ2
i are the sample mean and variance of the rewards that have

been obtained from Arm i, n is the number of Arms pulled in total, and ni is
the number of times Arm i has been pulled. Thus, the quantity added to the
sample average of a specific Arm i is steadily reduced as the Arm is pulled, and
uncertainty about the reward probability is reduced. As a result, by always select-
ing the Arm with the highest optimistic reward estimate, Ucb-Tuned gradually
shifts from exploration to exploitation.

2.4 Bayesian Approaches

The MABB has also been extensively analysed from a Bayesian perspective. For
instance, in [18] the MABB is modelled as a partially observable Markov decision
process. The authors of the paper demonstrated that the difference in rewards
between the actions of stopping learning and acquiring full information goes to
zero as the number of arm pulls increases indefinitely.

The use of Bayesian methods in inference problems of this nature has also
been reported. The authors of [1] have proposed the use of such a philosophy
in their probability matching algorithms. By using conjugate priors, they have
resorted to a Bayesian analysis to obtain a closed form expression for the prob-
ability that each arm is optimal given the prior observed rewards/penalties.
Informally, the method proposes a policy which consists of calculating the prob-
ability of each arm being optimal before an arm pull, and then randomly select-
ing the arm to be pulled next using these probabilities. Unfortunately, for the
case of two arms in which the rewards Bernoulli-distributed, the computation
time becomes unbounded, and it increases with the number of arm pulls. Fur-
thermore, it turns out that for the multi-armed case, the resulting integrations
have no analytical solution. Similar problems surface when the probability of
each arm being optimal is computed for the case when the rewards are nor-
mally distributed6. The authors of [19] take advantage of a Bayesian strategy in
a related domain, i.e., in Q-learning. They show that for normally distributed
rewards, in which the parameters have a prior normal-gamma distribution, the
posteriors also have a normal-gamma distribution, rendering the computation
efficient. They then integrate this into a framework for Bayesian Q-learning by
maintaining and propagating probability distributions over the Q-values, and
suggest that a non-approximate solution can be obtained by means of random
sampling for the normal distribution case. It would be interesting to investigate
the applicability of these results for the MABB.

6 It turns out that in the latter case, the approximate Bayesian solution reported by [1]
is computationally efficient

2.5 Boltzmann Exploration and POKER

One class of algorithms for solving MABB problems is based on so-called Boltz-

mann exploration. In brief, an arm i is pulled with probability pk = eµ̂i/τ
P

n
j=1

where

µ̂i is the sample mean and τ is defined as the temperature of the exploration.
A high temperature τ leads to increased exploration since each arm will have
approximately the same probability of being pulled. A low temperature, on the
other hand, leads to arms being pulled proportionally to the size of the rewards
that can be expected. Typically, the temperature is set to be high initially, and
then is gradually reduced in order to shift from exploration to exploitation. Note
that the Exp3 scheme, proposed and detailed in [20], is a more complicated vari-
ant of Boltzmann exploration. In brief, this scheme calculates the arm selection
probabilities pk based on dividing the rewards obtained with the probability of
pulling the arm that produced the rewards [4].

The “Price of Knowledge and Estimated Reward” (Poker) algorithm pro-
posed in [4] attempts to combine the following three principles: (1) Reducing
uncertainty about the arm reward probabilities should grant a bonus to stimu-
late exploration; (2) Information obtained from pulling arms should be used to
estimate the properties of arms that have not yet been pulled; and (3) Knowl-
edge about the number of rounds that remains (the horizon) should be used to
plan the exploitation and exploration of arms. We refer the reader to [4] for the
specific algorithm that incorporates these three principles. Note, however, that
principle (2) and (3) assumes knowledge about the MABB that is not univer-
sally available. E.g., the reward probabilities of the arms may in many cases be
independent and accordingly, information about the reward probability of one
arm, does not necessarily provide information about the reward probabilities of
other arms. Furthermore, in many cases, one must assume that the MABB are
to be played for an unlimited number of rounds, with undiscounted rewards,
which leaves the concept of a horizon inappropriate.

3 The Bayesian Learning Automaton (BLA)

Bayesian reasoning is a probabilistic approach to inference which is of signifi-
cant importance in machine learning because it allows quantitative weighting of
evidence supporting alternative hypotheses, with the purpose of allowing opti-
mal decisions to be made. Furthermore, it provides a framework for analyzing
learning algorithms [21].

We here present a scheme for solving the MABB problem that inherently
builds upon the Bayesian reasoning framework. We coin the scheme Bayesian

Learning Automaton (BLA) since it can be modelled as a state machine with
each state associated with unique Arm selection probabilities, in an LA manner.

A unique feature of the BLA is its computational simplicity, achieved by
relying implicitly on Bayesian reasoning principles. In essence, at the heart of
BLA we find the Beta distribution. Its shape is determined by two positive
parameters, usually denoted by α and β, producing the following probability

density function:

f(x; α, β) =
xα−1(1 − x)β−1

∫ 1

0
uα−1(1 − u)β−1 du

, x ∈ [0, 1] (3)

and the corresponding cumulative distribution function:

F (x; α, β) =

∫ x

0
tα−1 (1 − t)β−1 dt

∫ 1

0
uα−1(1 − u)β−1 du

, x ∈ [0, 1]. (4)

Essentially, the BLA uses the Beta distribution for two purposes. First of
all, the Beta distribution is used to provide a Bayesian estimate of the reward
probabilities associated with each of the available bandit Arms - the latter being
valid by virtue of the Conjugate Prior [22] nature of the Binomial parameter.
Secondly, a novel feature of the BLA is that it uses the Beta distribution as the
basis for an Order-of-Statistics-based randomized Arm selection mechanism.

The following algorithm contains the essence of the BLA approach.

Algorithm: BLA-MABB Input: Number of bandit Arms r.
Initialization: α1

1 = β1
1 = α1

2 = β1
2 = . . . = α1

r = β1
r = 1.

Method:
For N = 1, 2, . . . Do

1. For each Arm j ∈ {1, . . . , r}, draw a value xj randomly from the associated
Beta distribution f(xj ; α

N
j , βN

j) with the parameters αN
j , βN

j .
2. Pull the Arm i whose drawn value xi is the largest one of the randomly

drawn values:
i = argmax

j∈{1,...,r}

xj .

3. Receive either Reward or Penalty as a result of pulling Arm i, and update
parameters as follows:
– Upon Reward: αN+1

i = αN
i + 1; βN+1

i = βN
i ; and αN+1

j = αN
j , βN+1

j =

βN
j for j 6= i.

– Upon Penalty: αN+1

i = αN
i ; bN+1

i = bN
i + 1; and αN+1

j = αN
j , βN+1

j =

βN
j for j 6= i.

End Algorithm: BLA-MABB

As seen from the above BLA algorithm, N is a discrete time index and the
parameters φN = 〈αN

1 , βN
1 , αN

2 , βN
2 , . . . , αN

r , βN
r 〉 form an infinite discrete 2× r-

dimensional state space, which we will denote with Φ. Within Φ the BLA navi-
gates by iteratively adding 1 to either αN

1 , βN
1 , αN

2 , βN
2 , . . . , αN

r or βN
r .

Since the state space of BLA is both discrete and infinite, BLA is quite dif-
ferent from both the Variable Structure- and the Fixed Structure LA families [2],
traditionally referred to as Learning Automata. In all brevity, the novel aspects
of the BLA are listed below:

1. In traditional LA, the action chosen (i.e, Arm pulled) is based on the so-
called action probability vector. The BLA does not maintain such a vector,
but chooses the arm based on the distribution of the components of the
Estimate vector.

2. The second difference is that we have not chosen the arm based on the a

posteriori distribution of the estimate. Rather, it has been chosen based on
the magnitude of a random sample drawn from the a posteriori distribution,
and thus it is more appropriate to state that the arm is chosen based on the
order of statistics of instances of these variables7.

3. The third significant aspect is that we can now consider the design of Pursuit
LA in which the estimate used is not of the ML family, but on a Bayesian
updating scheme. As far as we know, such a mechanism is also unreported
in the literature.

4. The final significant aspect is that we can now devise solutions to the Multi-
Armed Bandit problem even for cases when the Reward/Penalty distribu-
tion is not Bernoulli distributed. Indeed, we advocate the use of a Bayesian
methodology with the appropriate Conjugate Prior [22].

In the interest of notational simplicity, let Arm 1 be the Arm under inves-
tigation. Then, for any parameter configuration φN ∈ Φ we can state, using a
generic notation8, that the probability of selecting Arm 1 is equal to the proba-
bility P (XN

1 > XN
2 ∧XN

1 > XN
3 ∧· · ·∧XN

1 > XN
r |φN) — the probability that a

randomly drawn value x1 ∈ XN
1 is greater than all of the other randomly drawn

values xj ∈ XN
j , j 6= i, at time step N , when the associated stochastic vari-

ables XN
1 , XN

2 , . . . , XN
r are Beta distributed, with parameters αN

1 , βN
1 , αN

2 , βN
2 ,

. . . , αN
r , βN

r respectively. In the following, we will let pφN

1 denote this latter prob-
ability.

The probability pφN

1 can also be interpreted as the probability that Arm 1 is
the optimal one, given the observations φN . The formal result that we derive in
the unabridged paper shows that the BLA will gradually shift its Arm selection
focus towards the Arm which most likely is the optimal one, as the observations
are received.

Finally, observe that the BLA does not rely on any external parameters
that must be configured to optimize performance for specific problem instances.
This is in contrast to the traditional LA family of algorithms, where a “learning
speed/accuracy” parameter is inherent in ǫ-optimal schemes.

4 Empirical Results

In this section we evaluate the BLA by comparing it with the best performing
algorithms from [4, 5], as well as the LR−I and Pursuit schemes, which can be

7 To the best of our knowledge, the concept of having automata choose actions based
on the order of statistics of instances of estimate distributions, has been unreported
in the literature

8 By this we mean that P is not a fixed function. Rather, it denotes the probability
function for a random variable, given as an argument to P .

seen as established top performers in the LA field. Based on our comparison with
these “reference” algorithms, it should be quite straightforward to also relate the
BLA performance results to the performance of other similar algorithms.

For the sake of fairness, we base our comparison on the experimental setup
for the MABB found in [5]. Although we have conducted numerous experiments
using various reward distributions, we here report, for the sake of brevity, results
for the experiment configurations enumerated in Table 1.

Experiment configuration 1 and 4 forms the simplest environment, with low
reward variance and a large difference between the reward probabilities of the
arms. By reducing the difference between the arms, we increase the difficulty of
the MABB problem. Configuration 2 and 5 fulfill this purpose. The challenge of
configuration 3 and 6 is their high variance combined with the small difference
between the available arms.

For these experiment configurations, an ensemble of 1000 independent repli-
cations with different random number streams was performed to minimize the
variance of the reported results9. In each replication, 100 000 arm pulls were con-
ducted in order to examine both the short term and the limiting performance of
the evaluated algorithms.

Note that real-world instantiations of the bandit problem, such as Resource
Allocation in Web Polling [8], may exhibit any reward probability in the interval
[0, 1]. Hence, a solution scheme designed to tackle bandit problems in general,
should perform well across the complete space of reward probabilities.

For all of the experiment configurations in the table, we compared the per-
formance of both the BLA, ǫn-greedy, LR−I , Pursuit, Ucb-1, Ucb-Tuned,
Exp3, Poker, and IntEstim. In Table 2 we report the average probability of
pulling the best arm over 100 000 arm pulls. By taking the average probability
over all the arm selections, a low learning pace is penalized, however, long term
performance is emphasized. As seen in the table, BLA provides either equal or
better performance than any of the compared algorithms, expect for experiment

9 Some of the tested algorithms were unstable for certain reward distributions, pro-
ducing a high variance compared to the mean regret. This confirms the observations
from [23] where the high variance of e.g. Ucb-Tuned was first reported. Thus, in our
experience 100 replications were too few to unveil the “true” performance of these
algorithms.

Table 1. Reward distributions used in 2-armed and 10-armed Bandit problems with
Bernoulli distributed rewards

Config./Arm 1 2 3 4 5 6 7 8 9 10

1 0.90 0.60 - - - - - - - -
2 0.90 0.80 - - - - - - - -
3 0.55 0.45 - - - - - - - -
4 0.90 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60
5 0.90 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
6 0.55 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45

configuration 6 where Ucb-Tuned provides slightly better performance than
BLA. Also note that the ǫn-greedy algorithm is given the difference between
the best arm and the second best arm, thus giving it an unfair advantage.

Table 2. Results on 2-armed and 10-armed Bandit problem with Bernoulli dis-
tributed rewards

Algorithm/Config. 1 2 3 4 5 6

BLA Bernoulli 1.000 0.999 0.997 0.998 0.988 0.975
ǫn − greedy c =0.05 1 0.981 0.992 0.965 0.996 0.961 0.893
ǫn − greedy c =0.15 1 1.000 0.999 0.991 0.990 0.988 0.957
ǫn − greedy c =0.30 1 1.000 0.997 0.997 0.982 0.981 0.977
LR−I 0.05 0.999 0.918 0.985 0.832 0.378 0.526
LR−I 0.01 0.998 0.993 0.993 0.992 0.885 0.958
LR−I 0.005 0.995 0.986 0.986 0.984 0.940 0.951
Pursuit 0.05 1.000 0.970 0.932 0.912 0.699 0.608
Pursuit 0.01 0.999 0.998 0.998 0.998 0.875 0.848
Pursuit 0.005 0.999 0.999 0.998 0.997 0.960 0.924
Ucb1 0.998 0.982 0.983 0.979 0.848 0.848
Ucb-tuned 1.000 0.997 0.997 0.997 0.977 0.978
Exp3 γ = 0.01 0.990 0.978 0.980 0.913 0.736 0.749
Poker 0.995 0.991 0.876 0.982 0.916 0.812
IntEstim 0.01 0.961 0.949 0.796 0.920 0.905 0.577

1 Parameter d is set to be the difference in reward probability between the best
arm and the second best arm

Both learning accuracy and learning speed governs the performance of ban-
dit playing algorithms in practice. Table 3 reports the average probability of
selecting the best arms after 10, 100, 1000, 10 000, and 100 000 arm pulls for
experiment configuration 5. As seen from the table, IntEstim provides the best
performance after 10 arm pulls, being slightly better than BLA. After 100 arm
pulls, however, BLA provides the best performance. Then, after 1000 arm pulls,
one of the parameter configurations of ǫn-greedy as well as the Pursuit scheme
provide slightly better performance than BLA, with BLA being clearly superior
after 10 000 and 100 000 arm pulls.

We now consider the Regret of the algorithms. Regret offers the advantage
that it does not overly emphasize the importance of pulling the best arm. Indeed,
pulling one of the non-optimal arms will not necessarily affect the overall amount
of rewards obtained in a significant manner if for instance the reward probability
of the non-optimal arm is relatively close to the optimal reward probability. For
Regret it turns out that the performance characteristics of the algorithms are
mainly decided by the reward distributions, and not by the number of arms.
Thus, we will now consider the configurations in pairs. Fig. 1 contains the com-
parison on experiment configuration 1 and 4, with the best arm having reward
probability 0.9 and the inferior arms having reward probability 0.6. The plots
show the accumulation of regret with the number of arm pulls. Because of the
logarithmically scaled x- and y-axes, it is clear from the plots that both BLA

and Ucb-Tuned attain a logarithmically growing regret. Moreover, the perfor-
mance of BLA is significantly better than that of the other algorithms, with the
Pursuit scheme catching up from the final 10 000 to 100 000 rounds. Note that if
the learning speed of the Pursuit scheme is increased to match that of BLA, the
accuracy of the Pursuit schemes becomes significantly lower than that of BLA.
Surprisingly, both of the LA schemes converge to constant regret. This can be
explained by their ǫ-optimality and the relatively low learning speed parameter
used (a = 0.01). In brief, the LA converged to only selecting the optimal arm in
all of the 1000 replications.

For experiment configuration 5, however, it turns out that the applied learn-
ing accuracy of the LA is too low to always converge to only selecting the optimal
arm (a = 0.005). In some of the replications, the LA also converges to selecting
the inferior arm only, and as seen in Fig. 2, this leads to linearly growing regret.
Note that the LA can achieve constant regret in this latter experiment too, by
increasing learning accuracy. However, this reduces learning speed, which for the
present setting already is worse than that of BLA and Ucb-Tuned. As also seen
in the plots, the BLA continues to provide the best performance.

Finally, we observe that the high variance of configuration 3 and 6 reduces
the performance gap between BLA and Ucb-Tuned, as seen in Fig. 3, leaving
Ucb-Tuned with slightly lower regret compared to BLA. Also, notice that the
Pursuit scheme in this case too is able to achieve more or less constant regret,
at the cost of somewhat reduced learning speed.

From the above results, we conclude that BLA is the superior choice for
MABB problems in general, providing significantly better performance in most
of the experiment configurations. Only in two of the experiment configurations
does it provide slightly lower performance than the second best algorithm for

Table 3. Detailed overview of the 10-armed problem with optimal arm p = 0.9 and
p = 0.8 on the rest

Algorithm/#Arm Pulls 10 100 1000 10000 100000

BLA Bernoulli 0.112 0.197 0.549 0.916 0.988

ǫn − greedy c =0.05 d =0.10 0.101 0.124 0.630 0.898 0.961
ǫn − greedy c =0.15 d =0.10 0.105 0.100 0.511 0.911 0.988
ǫn − greedy c =0.30 d =0.10 0.099 0.099 0.359 0.872 0.981

LR−I 0.05 0.103 0.119 0.273 0.368 0.378
LR−I 0.01 0.104 0.105 0.156 0.672 0.885
LR−I 0.005 0.102 0.102 0.126 0.518 0.940

Pursuit 0.05 0.100 0.157 0.567 0.682 0.699
Pursuit 0.01 0.098 0.116 0.550 0.840 0.875
Pursuit 0.005 0.101 0.108 0.488 0.910 0.960

ucb-1 0.100 0.119 0.166 0.406 0.848

ucb1-tuned 0.100 0.164 0.425 0.841 0.977

Exp3 γ = 0.01 0.097 0.099 0.104 0.156 0.736

Poker 0.105 0.180 0.444 0.751 0.916

IntEstim 0.01 0.126 0.194 0.519 0.857 0.905

 0.0573086

 0.148644

 0.385543

 1

 2.59374

 6.7275

 17.4494

 45.2593

 117.391

 304.482

 789.747

 2048.4

 10 100 1000 10000 100000

re
gr

et

rounds

BLA
LRI 0.05

Pursuit 0.05
UCB-Tuned

EXP 0.01
POKER

INTESTIM 0.01
En-Greedy c=0.15 d=0.1

 0.148644

 0.385543

 1

 2.59374

 6.7275

 17.4494

 45.2593

 117.391

 304.482

 789.747

 2048.4

 5313.02

 10 100 1000 10000 100000

re
gr

et

rounds

BLA
LRI 0.01

Pursuit 0.01
UCB-Tuned

EXP 0.01
POKER

INTESTIM 0.01
En-Greedy c=0.05 d=0.3

Fig. 1. Regret for experiment config. 1 (top) and config. 4 (bottom)

those configurations. Finally, BLA does not rely on fine-tuning some learning
parameter to achieve this performance.

5 Conclusion and Further Work

In this paper we presented the Bayesian Learning Automaton (BLA) for tackling
the classical MABB problem. In contrast to previous LA and regret minimiz-
ing approaches, BLA is inherently Bayesian in nature. Still, it relies simply on
counting of rewards/penalties and random sampling from a set of sibling beta
distributions. Thus, to the best of our knowledge, BLA is the first MABB algo-

 0.0220949

 0.0573086

 0.148644

 0.385543

 1

 2.59374

 6.7275

 17.4494

 45.2593

 117.391

 304.482

 789.747

 10 100 1000 10000 100000

re
gr

et

rounds

BLA
LRI 0.01

Pursuit 0.005
UCB-Tuned

EXP 0.01
POKER

INSTESTIM 0.01
En-Greedy c=0.15 d=0.1

 0.0220949

 0.148644

 1

 6.7275

 45.2593

 304.482

 2048.4

 13780.6

 10 100 1000 10000 100000

re
gr

et

rounds

BLA
LRI 0.005

Pursuit 0.005
UCB-Tuned

EXP 0.01
POKER

INTESTIM 0.01
En-Greedy c=0.15 d=0.1

Fig. 2. Regret for experiment config. 2 (top) and config. 5 (bottom)

rithm that takes advantage of Bayesian estimation in a computationally efficient
manner.

Extensive experimental results demonstrated that, unlike the ǫn-greedy,
LR−I , and IintEstim schemes, BLA does not rely on external learning speed/accuracy
control. The BLA also outperformed Ucb-Tuned, achieving logarithmically
growing regret.

Accordingly, in the above perspective, it is our belief that the BLA rep-
resents a new promising avenue of research. E.g., incorporating other reward
distributions, such as Gaussian and multinomial distributions, into our scheme
is of interest. Secondly, we believe that our scheme can be modified to tackle
bandit problems that are non-stationary, i.e., where the reward probabilities are

 0.0220949

 0.148644

 1

 6.7275

 45.2593

 304.482

 2048.4

 10 100 1000 10000 100000

re
gr

et

rounds

BLA
LRI 0.01

Pursuit 0.01
UCB-Tuned

EXP 0.01
POKER

INSTESTIM 0.01
En-Greedy c=0.30 d=0.1

 0.0220949

 0.148644

 1

 6.7275

 45.2593

 304.482

 2048.4

 10 100 1000 10000 100000

re
gr

et

rounds

BLA
LRI 0.01

Pursuit 0.01
UCB-Tuned

EXP 0.01
POKER

INSTESTIM 0.01
En-Greedy c=0.30 d=0.1

Fig. 3. Regret for experiment config. 3 (top) and config. 6 (bottom)

changing with time. Finally, systems of BLA can be studied from a game theory
point of view, where multiple BLAs interact forming the basis for multi-agent
systems.

References

1. Wyatt, J.: Exploration and Inference in Learning from Reinforcement. PhD thesis,
University of Edinburgh (1997)

2. Thathachar, M.A.L., Sastry, P.S.: Networks of Learning Automata: Techniques for
Online Stochastic Optimization. Kluwer Academic Publishers (2004)

3. Narendra, K.S., Thathachar, M.A.L.: Learning Automata: An Introduction. Pren-
tice Hall (1989)

4. Vermorel, J., Mohri, M.: Multi-armed bandit algorithms and empirical evaluation.
In: Proceedings of ECML 2005, Springer (2005) 437–448

5. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time Analysis of the Multiarmed
Bandit Problem. Machine Learning 47 (2002) 235–256

6. Gelly, S., Wang, Y.: Exploration exploitation in Go: UCT for Monte-Carlo Go. In:
Proceedings of NIPS-2006, NIPS (2006)

7. Kocsis, L., Szepesvari, C.: Bandit Based Monte-Carlo Planning. In: Proceedings
of ECML 2006, Springer (2006) 282–293

8. Granmo, O.C., Oommen, B.J., Myrer, S.A., Olsen, M.G.: Learning Automata-
based Solutions to the Nonlinear Fractional Knapsack Problem with Applications
to Optimal Resource Allocation. IEEE Transactions on Systems, Man, and Cy-
bernetics, Part B 37(1) (2007) 166–175

9. Granmo, O.C., Bouhmala, N.: Solving the Satisfiability Problem Using Finite
Learning Automata. International Journal of Computer Science and Applications,
4(3) (2007) 15–29

10. Oommen, B.J., Misra, S., Granmo, O.C.: Routing Bandwidth Guaranteed Paths
in MPLS Traffic Engineering: A Multiple Race Track Learning Approach. IEEE
Transactions on Computers 56(7) (2007) 959–976

11. Blum, A., Even-Dar, E., Ligett, K.: Routing Without Regret: On Convergence to
Nash Equilibria of Regret-Minimizing Algorithms in Routing Games. In: Proceed-
ings of the Twenty-Fifth Annual ACM SIGACT-SIGOPS Symposium on Principles
of Distributed Computing (PODC 2006), ACM (2006) 45–52

12. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press
(1998)

13. Tsetlin, M.L.: Automaton Theory and Modeling of Biological Systems. Academic
Press (1973)

14. Agache, M., Oommen, B.J.: Generalized pursuit learning schemes: New families
of continuous and discretized learning automata. IEEE Transactions on Systems,
Man, and Cybernetics-Part B: Cybernetics 32(6) (2002) 738–749

15. Lanctôt, J.K., Oommen, B.J.: Discretized estimator learning automata. IEEE
Transactions on Systems, Man, and Cybernetics SMC-22(6) (1992) 1473–1483

16. Oommen, B.J., Agache, M.: Continuous and discretized pursuit learning schemes:
Various algorithms and their comparison. IEEE Transactions on Systems, Man,
and Cybernetics-Part B: Cybernetics 31 (2001) 277–287

17. Kaelbling, L.P.: Learning in Embedded Systems. PhD thesis, Stanford University
(1993)

18. Bhulai, S., Koole, G.: On the Value of Learning for Bernoulli Bandits with Un-
known Parameters. IEEE Transactions on Automatic Control 45(11) (2000) 2135–
2140

19. Dearden, R., Friedman, N., Russell, S.: Bayesian q-learning. In: In AAAI/IAAI,
AAAI Press (1998) 761–768

20. Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.E.: Gambling in a Rigged
Casino: the Adversial Multi-Armed Bandit Problem. In: Proceedings of the 36th
Annual Symposium on Foundations of Computer Science (FOCS’95), IEEE (1995)
322–331

21. Mitchell, T.M.: Machine Learning. McGraw-Hill (1997)
22. Duda, R., Hart, P., Stork, D.: Pattern Classification. 2nd edn. John Wiley and

Sons, Inc., New York, NY (2000)
23. Audibert, J.Y., Munos, R., Szepesvarri, C.: Tuning bandit algorithms in stochastic

environments. In: Proceedings of the 18th International Conference of Algorithmic
Learning Theory, Springer Verlag (2007) 150–165

