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Abstract

This thesis investigates the possibility of using pattern recognition and ma-
chine learning to detect online forum posts containing descriptions of prob-
lems and issues. In addition we seek to further classify these posts as either
informative or non-informative, depending the quality of their content.

Our motivation for this research is the fact that more and more consumers
are turning to the Internet when expressing opinions, seeking help or search-
ing for advice about their purchases. As a producer, awareness of this online
“word-of-mouth” has become a key factor in brand and reputation control
and when dealing with product recall management. However, over the last
years, the amount of such online buzz has transcended the point where it’s
manually manageable. It’s simply not possible to survey thousands of online
forums by hand anymore. We therefore need systems able to automatically
monitor these web sites and detect posts of interest, such as people having
problems with a product.

In the thesis, we implement and examine three different algorithms, Naive
Bayes, k Nearest Neighbor and Self-Organizing Maps and determine what
parameters and features produce the highest accuracy. The prototype is
trained and validated using forum posts, but its application is not limited
to this type of documents. The contribution of the thesis is to the areas of
natural language text processing and classification.
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Chapter 1

Introduction

The ever-growing digital realms of the Internet have over the last decades
inarguably had massive impact on how the majority of society go about their
daily lives. Even within said decades, we have seen drastic evolutions in how
the Internet is being used – and abused. Thanks to the increasing popularity
of websites with consumer-generated media (CGM), the general public can
quickly and with ease catch up on the latest buzz and express their views to
thousands or even millions of others. These sites, such as blogs, discussion
boards, user groups, online opinion/review services and a variety of other
similar platforms, are in fact the current fastest growing segment of the
Internet [9].

With consumers taking their conversations online, effectively measuring,
interpreting and acting on this online Word-Of-Mouth (WoM) has shown to
be a key factor in keeping a competitive advantage for consumer centered
brands. Research shows that the Internet savvy consumer to a large extent
trust and base his or her purchase decisions on these opinions and reviews.
A survey by L. K. Sl̊attebrekk at BI Norwegian School of Management found
that the majority of the respondents let online product and service reviews
influence their purchase decisions (see figure 1.1) [10]. Furthermore, a similar
study by BIGresearch has found that 17% of US adult Internet users regularly
give advice and feedback about products and services online[3].

The challenge in monitoring online WoM is the sheer volume of data
to be traversed when trying to find desired information. For a company
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Figure 1.1: Online WoM’s impact on respondents’ purchase decisions[10]

attempting to learn their online reputation or the consumers opinions about
their products, it can be a daunting task. In some cases, a search engine
can surely be of great assistance – but as anyone who’s been searching for a
subject not clearly defined by a word or phrase can testify, even Google does
not always return exactly what you intended it to.

Pattern recognition and classification is the act of taking raw data and
categorizing it based on the “category” of the pattern [5]. As humans we
do this continuously throughout our lives – for example, we can understand
written symbols, recognize faces or identify an alarm clock at a nightstand
by blindly fumbling around with a hand. Unfortunately, in many areas the
amount or nature of the data make it unsuitable for a human to classify
efficiently.

Luckily, in some fields, we can also make computers do pattern classifica-
tion, albeit not with the sophistication of the human mind and senses. For
instance, we have email software automatically detecting spam messages or
touchscreen PDAs comprehending our handwriting. Newer consumer digital
cameras can recognizes faces in the motive, and prototype cars will detect if
you’re about to doze off while driving.

What if we could also have a classifier help companies with their online
reputation management, automatically detecting issues and problems con-
sumers may have with their latest purchase? Their customers, searching for
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CHAPTER 1. INTRODUCTION

information about their products, can be given more relevant results by pri-
oritizing texts classified as informative problem descriptions. Storage space
requirements can be reduced by discarding texts classified as poor descrip-
tions.

The need for such a classifier is also apparent in the area of Product Recall
Management (PRM). PRM is a combination of analysis techniques used to
identify products that may contain serious errors and have to be recalled from
the market. Obviously, recalling a product can have a substantial financial
impact on the producer, and hence it is imperative to quickly detect problems
and complaints.

Bug reporting systems for large projects is a similar application area
where one might imagine such a classifier being used. An automated classifier
could relieve the maintainers of the task of manually deleting non-descriptive
bug reports.

Although a variety of subjects can be classified with generic classifiers,
there has been no research into detecting issue/problem descriptions and
their informativeness. Because the degree of which something is informative
is difficult to formally measure, it’s not given that a classifier will work as well
as with, for example, language classification (where the difference between
each class is more distinct). A system with this ability would be quite useful
for companies where it is important to detect peoples complaints or issues
among vast amount of text.

1.1 Goal and contribution

The following hypothesis is presented: We can use a system based on ma-
chine learning and pattern recognition to classify texts as either problem
descriptions or not problem descriptions, and in addition classify them as
informative problem descriptions or non-informative ones.

For the project we have decided to investigate and compare Naive Bayes,
k-Nearest Neighbour and Kohonen Self Organizing Maps (a type of Multidi-
mensional Scaling) on our classification problem. The research questions are
as follows:
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CHAPTER 1. INTRODUCTION

1. How well are Naive Bayes, Nearest Neighbour and Kohonen SOM able
to classify arbitrary forum posts as problem descriptions and not prob-
lem descriptions?

2. Using the most efficient and accurate technique from 1., can we make a
classifier prototype that is also capable of classifying problem descrip-
tions as either informative or non-informative?

To answer these questions we will perform extensive tests with manually
classified samples and measure the accuracy of each classification technique.

Thus, this thesis’ contribution to knowledge will be how to make a clas-
sifier with the ability to recognize problem descriptions and classify them
based on their informativeness. This is a new area of application for pattern
recognition of text. In particular, we will determine which one of the three
techniques, namely k-Nearest Neighbor, Naive Bayes and Self Organizing
Maps (Multidimensional Scaling), are best suited for the task, i.e. classify-
ing as either problem description or not problem description. Additionally,
we will learn what amounts of training/pre-classified samples are required to
yield a good result for this kind of classification, and what parameters suit
the different classifiers best. Lastly, we will investigate to what degree using
N-grams can deal with grammar errors in the text without deteriorating the
classification itself.

1.2 Target audience

The target audience for this thesis is anyone with an interest in the domain of
pattern recognition and classification of text, as well as mining and analysis
of Word-of-Mouth on the Internet. The reader is assumed to have basic
knowledge of probability theory, computer programming and the Internet in
general. The essentials of the general methods and algorithms used in our
work however, are introduced and explained in the report.

1.3 Report outline

The remainder of this project report is organized as follows:
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CHAPTER 1. INTRODUCTION

Chapter 2 introduces the general concepts of pattern recognition with ma-
chine learning.

Chapter 3 explains the three main pattern recognition algorithms we are
using: Naive Bayes, k Nearest Neighbor and Self-Organizing Maps.

Chapter 4 describes our implementations of the three algorithms and how
we’ve prepared our experiments.

Chapter 5 presents the results of our experimentation and discusses the
different findings.

Chapter 6 concludes our thesis by summarizing the outcomes and suggest-
ing some ideas for further work.
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Chapter 2

Pattern recognition

Numerous methods exist in the field of automated pattern recognizers. A
trivial example could be a spam filter simply searching for words like “via-
gra” or “casino” in emails, or a single thermostat categorizing each sensor
reading as “too hot” or “too cold”. For more complex types of problems,
more intricate methods are usually needed to enable a computer to accu-
rately recognize patterns. Machine learning is “the concept of incorporating
information from training samples in the design of a pattern recognizer” [5].
This mimics the way humans become such expert pattern recognizers – our
experience and knowledge of the different patterns and the input from our
senses allow us to quickly categorize with great accuracy. Creating a learn-
ing machine that can recognize patterns, then, involves using a set of sample
data items and implementing a program that can observe features of such
data items and compare them to the features of the previously observed sam-
ples. Because of this ability to recognize the patterns of different categories
or classes, a pattern recognizer is often also called a classifier.

2.1 Sample data

When making a classifier, one of the first steps is always to gather sample
data. Sample data is a set of data items of the same nature as the data items
we would ultimately have our classifier to classify. For example, if we wanted
to make a pattern recognition system able to classify emails as spam or not
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CHAPTER 2. PATTERN RECOGNITION

spam, our sample data would be a collection of emails including both spam
and not spam.

The sample data is divided into two subsets; one for training or learning
the system and one for measuring its accuracy (often referred to as valida-
tion). The number of training samples required to train the classifier suf-
ficiently varies with the type of data and pattern recognition system, and
typically has to be determined empirically.

The items in the validation subset always have to be manually classified.
This enables us to promptly determine how many items were classified cor-
rectly by the classifier, and thereby validating, or disproving, that it’s able to
do what we intended it to. Usually, the items in the training set also have to
be manually classified, except for some types of classifiers (see section 2.3).
In many areas, we can readily pull sample data from some source where
it’s already classified because of the nature of the source. For example, if
we wanted a pattern recognizer to classify newspaper articles based on their
language, we could simply pull a number of articles newspapers of different
nationalities into different language categories. In other cases, the process
is more time consuming and you have to go through each data item and
classify it yourself. Consider for instance a classifier classifying photos based
on the number of faces in the motive. It’s unlikely that you’d find a data
source containing photos categorized by this specific criteria, so you’d have
to manually go through a collection of photos and categorize them yourself.

2.2 Feature selection and extraction

Once we’ve acquired a satisfactory set of sample data, the next step is to
determine which features are most favorable for that type of data and the
classification task at hand. In other words, transform the data items into a
representation suitable for the learning algorithm and the classification. A
sample’s features are its individual measurable properties and characteristics
[5]. We want to use the features that are most likely to differ between samples
of the different classes. For instance, in character recognition on a touch
screen PDA, features could include the horizontal and vertical profiles of
characters, number of holes in their shape etc. In speech recognition, length
of sounds, relative power or noise ratios are likely features.
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CHAPTER 2. PATTERN RECOGNITION

She sells sea shells
 by the sea shore.

The shells she sells
 are surely sea shells.

{ sells: 1, sea: 2, shells: 1, shore: 1, surely: 0 }

Document 1

Document 2

{ sells: 1, sea: 1, shells: 2, shore: 0, surely: 1 }

Figure 2.1: Simple vector space model for two text documents

In text classification, presence and frequencies of words or segments of
words are often selected as features. Advanced classifiers may even incorpo-
rate analysis of grammar and semantics in their selection of features, but for
many classification tasks the accuracy is well beyond sufficient even without
it.

Observing the features of a data item provides us with a vector where
the elements are the measured values of each feature. For example, if we
use occurrences of words as our features and observe two text documents,
the feature vectors could be extracted as shown in figure 2.1. Notice that
common words and punctuation are stripped, and the text is transformed to
lowercase. The feature space of this set of documents has a dimension of 5.

2.2.1 N-grams

Text from user generated content such as discussion board posts are usually
quite prone to spelling mistakes and online lingo and slang. Obviously, this
has the potential to confuse the classifier considerably, and ideally we would
like a classifier to tolerate some level of noise. One technique for dealing with
this problem is the use of N-grams. An N-gram is an N-character long slice
of a longer string, with the N denoting the length of the slice. Splitting the
entire data items into N-grams, we can use these as features instead of the
actual words. Obviously, any spelling errors will still be present in the text,
but the total percentage of misspelled features is will be less. As an example,
the bigrams extracted from the phrase “don’t panic” would be d, do, on, n’,
’t, t , p, pa, an, ni, ic and c .

12
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In [4], Cavnar et al. apply this method to language classification. The
idea is that some combinations of characters occur more often in some lan-
guages than other. Their classifier is tolerant of errors, and performs quite
well (99.8%). They also try using the classifier for subject classification, with
an accuracy of 80%.

2.2.2 TF-IDF

Term Frequency - Inverse Document Frequency (TF-IDF) is a technique used
to weight elements of the feature vectors from a collection of data items
(often text documents). The weight represents the term’s importance to a
data item in the collection, and increases proportionally to the number of
times the term occurs in the data item, offset by its frequency in the whole
collection [7].

Mathematically, we can express TF-IDF for term i in document j with
the following fairly straightforward formulas. We let nij denote the number
of occurrences of term i in document j, and

∑
k nk,j the total number of

terms in the same document. This gives us the term frequency (TF) for i in
j.

tfi,j =
ni,j∑
k nk,j

Secondly, we calculate the term’s inverse document frequency (IDF). The
total number of documents |D| is divided it by the number of documents
containing term, |{d : ti ∈ d}|, and the IDF is the logarithm of that quotient.
If the dividend is equal, or nearly equal, to the divisor, the IDF converges
to 0. In other words, if a term occurs in nearly all the documents in the
collection, its IDF value is very low.

idfi = log
|D|

|{d : ti ∈ d}|

The finished TF-IDF for term i in document j is simply TF multiplied by
IDF. To summarize, high document frequency and low document frequency
yields a high TF-IDF.

(tf-idf)i,j = tfi,j × idfi

We use TF-IDF instead of the document vectors (shown in figure 2.1) to

13



CHAPTER 2. PATTERN RECOGNITION

emphasize important features to a pattern recognizer.

2.3 Supervised vs unsupervised training

In general, we have two types of classifiers based on learning machines: su-
pervised and unsupervised. A fully unsupervised learning system doesn’t
need pre-classified training samples. In return it’s only able to infer the or-
ganization or similarity of data, not actually tell you the name of the class to
which a sample belong. We can compare this to the way a child can organize
LEGO bricks based on their color or shape, but not actually tell you the
color or shape’s name. Self-organizing maps are examples of a classifier that
uses unsupervised learning.

Supervised learning, on the other hand, requires that we during the train-
ing phase inform the system about the class or category of each sample. For
each sample learned, the system amends its knowledge about that sample’s
class. If we again compare this to a child and LEGO bricks, it’s equiva-
lent of giving the child several bricks, one by one, and saying “This is a red
brick”, “This is a blue brick” etc. for each one. After a certain amount of
samples, a knowledge about each class and its features is built up, and the
classifier (in this case the child) is itself able to tell you which class a sample
belongs to. Classifiers using K-Nearest Neighbor and Naive Bayes are based
on supervised learning.

If we include some aspects of supervised learning into the unsupervised
system, we can still get a classifier. For example, after the unsupervised
system has determined the organization of data, we can tell it the name of
the major segments. For any future samples, the system can determine which
major segment is closest to the sample, and give the sample that segment’s
class name.

14



Chapter 3

Classification algorithms

As previously mentioned, a variety of different methods for machine learning
and pattern recognition exist. In this chapter, we introduce the three we
concern ourselves with in this project, namely K-Nearest Neighbor, Naive
Bayes and Self-Organizing Maps (Multidimensional Scaling). In general, we
can say that each system is comprised of two separate stages: the training
stage and the validation stage.

3.1 Naive Bayes

The family of Bayesian classifiers and Bayesian decision theory are rudi-
mentary probabilistic approaches to pattern recognition, in which evidence
or observations are used to infer the probability that a hypothesis is true
[5]. The phrase Bayes, or Bayesian, comes from the frequent use of Baye’s
theorem (sometimes called Bayes’s Law), derived from the work of reverend
Thomas Bayes (1702-1761) [6].

3.1.1 Bayesian decision theory

Bayes theorem relates the conditional and “prior” (marginal) probabilities
of two random events. The theorem has proved useful in many modern
applications, and can be explained by a discussion of playing cards. We
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CHAPTER 3. CLASSIFICATION ALGORITHMS

let P (H1) and P (H2) be the probability of drawing a red and black card,
respectively. Since there are only red and black cards in a deck of playing
cards, the probability of either occurring is exactly 1.

Next, let P(O) be the probability of drawing a face card (a Jack, Queen
or King). The joint probability P (H1O), i.e. the probability of drawing a red
face card, can then be found with the following trivial probability calculation.

P (H1O) = P (O|H1)P (H1) =

(
6

26

) (
26

52

)
=

3

26

Or, put differently:

P (H1O) = P (H1|O)P (O) =

(
6

12

) (
12

52

)
=

3

26

Combining these two, we get the equation:

P (H1|O) =
P (O|H1)P (H1)

P (O)

That is, the probability that the card is red, given that it is a face. Similarly
for black face cards:

P (H2|O) =
P (O|H2)P (H2)

P (O)

For an experiment with n mutually exclusive outcomes (as is typically the
case with text classification), the denominator can be shown to equal 1.
Furthermore, even if they aren’t mutually exclusive, it stays constant for
each outcome, and can hence be left out from each calculation [8].

In Thomas Baye’s own words: “If there be two subsequent events, the
probability of the second b/n and the probability of both together P/N and
it being first discovered that the second event has happened, from hence I
guess that the first event has also happened, the probability I am in the right
is P/b.” [8]

Now, it’s somewhat unlikely that any card player immediately would find
this very interesting. He already knows this probability is 6

12
, since there are

12 face cards in the deck, and half of them are of each colour. We say that
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CHAPTER 3. CLASSIFICATION ALGORITHMS

the parameters are fixed, and that the data is random (i.e. which card is
drawn) [6].

Let’s turn these assumptions around, and consider the parameters to be
random, coming from a distribution of values, and the data to be known.
Say we’re out fishing. In advance, the local (very mathematically inclined)
fishermen teach us that, at this time of year, the probability of getting a
cod is P (H1) = 30%, and for trout P (H2) = 20%. We call this our prior
knowledge, or a priori probability.

Similarly, the fishermen have taught us a characteristic, or a feature, the
two kinds of fish have: A cod usually has a distinct chin barbell, while the
trout does not. In fact, the fishermen have found that, 90% of all cod fish
have visible chin barbell, but only 5% of trouts do. We call this the class-
conditional probability for that feature. Because the fishermen have been
fishing all their lives, they’ve deducted these probabilities from the known
data (i.e. the fish they’ve caught).

We’re in luck, and get a bite on the first throw. With the fish in our
hands, we observe that it has a distinct chin barbell clearly visible. We use
our newly learned information to determine what our catch is. How likely
is it that it is a cod, based on the size of the chin barbell and the fact that
it allegedly is 30% likely to catch a cod? How likely is it that it is a trout
based on the same criteria? The priori and class-conditional probabilities for
the two fish inserted into Baye’s equation gives us:

P (cod|barbell) = P (barbell|cod) ∗ P (cod) = 90% ∗ 30% = 27%

P (trout|barbell) = P (barbell|trout) ∗ P (trout) = 5% ∗ 20% = 1%

Notice that, as mentioned earlier, the right hand side denominator (P (barbell))
has been excluded from the calculations, because it is simply a constant in
both.

The equation gives us the posteriori probability for each fish. We choose
the fish category that gives the highest value. We have now classified our
fish using a Bayesian decision.

17



CHAPTER 3. CLASSIFICATION ALGORITHMS

3.1.2 Naive Bayes classifier

A Naive Bayes classifier is a classifier that adopts Bayes decision theory to
decide which category a data item belongs to[6]. As in the fishing example
in the previous section, the decisions are probabilistic – or more specifically
based on maximum a posteriori. The data is fed through the classifier, just
as our catch was evaluated in our imaginary fish classifier, which produces
a posterior probability for each category. Finally, the category with highest
probability is selected for that particular data item. Expressed as a mathe-
matical formula, this becomes:

hNB = arg max
hj∈H

P (hj)
∏

i

P (oi|hj)

In the above formula, you may notice that the prior probability is multi-
plied with the product of many state-conditional probabilities. In the fishing
example, we had only one state-conditional probability to multiply with –
because we only had one feature. In more realistic applications, there will be
several, perhaps thousands of features to incorporate. For instance, in a text
classifier, a typical feature set is simply the frequency of the words occurring
in the posts. How the state-conditional probabilities for the words can be
calculated is described in section 4.2.2.

This multiplication of each feature’s state-conditional probability means
that we have made the assumption that:

P (o1, o2, . . . on|hj) =
∏

i

P (oi|hj)

This is called the Naive Bayes assumption and implies that o1, o2, . . . on are
conditionally independent. Very often this is not the case at all! For example,
in the case of a text classifier, with each word being a feature, the contexts of
the words are lost when they’re treated as separate entities. This fallacious
assumption is where the Naive Bayes classifier gets the “naive” part of its
name.

Nevertheless, even in applications such as text classifiers, the Naive Bayes
classifier proves to work surprisingly well, regardless of its naivety. In fact,
research shows that in many cases, it performs comparably to many signif-
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icantly more complex techniques [11]. Its high performance to complexity
ratio has been an important factor in the Naive Bayes classifier’s success.

3.2 K-Nearest Neighbor

K-Nearest Neighbor is perhaps the most elementary algorithm for machine
learning and pattern recognition. The learning stage of the algorithm is often
called lazy learning, because no actual processing of the training samples is
performed during the training stage. One might even say that the algorithm
has no distinct training stage, since all we do is assign it a set of pre-classified
samples.

3.2.1 Algorithm

To classify a data item X, the algorithm first takes the X’s feature vector
and calculates the distance from it to every feature vector in the training
set. Recall from section 2.2 that the feature vectors can be term frequencies,
for example by words or ngrams for text classification, or TF-IDF vectors.
The distance between X’s feature vector and that of a training set sample
represents the similarity between those two data items. The distance can be
found in a number of different ways, for example using Euclidean Distance,
Manhattan Distance or cosine similarity.

Regardless of the method used, when the distances to each vector in the
training set have been found, the training set samples are sorted in ascending
order based on their vector’s distance to X. The k topmost samples, i.e. the
k nearest neighbors, determine the classification of X by majority vote. If
the majority of the k nearest neighbors are of class C, then X is classified as
C and so on.
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X

Figure 3.1: k Nearest Neighbor example with different k

3.2.2 Distance calculation

The Euclidean Distance between two vectors P = (p1, p2, . . . , pn) and Q =
(q1, q2, . . . , qn) is calculated using the following formula.

deuclidean =
√

(p1 − q1)2 + (p2 − q2)2 + ... + (pn − qn)2

A different method of calculating the distance is Manhattan Distance. The
Manhattan Distance between P and Q from above is calculated as follows:

dmanhattan = |p1 − q1|+ |p2 − q2|+ . . . + |pn − qn|

Similarly, we can also use cosine similarity, in which case the “distance” is
the angle between the vectors. A cosine of -1 means the vectors are exactly
opposite, 1 means exactly the same and 0 indicates that they are independent
(orthogonal). The cosine similarity between our P and Q is found with the
following formula.

dcosim = cos θ =
P ·Q
|P ||Q|

=
p1 ∗ q1 + p2 ∗ q2 + . . . + pn ∗ qn√

p2
1 + p2

2 + . . . + p2
n ∗

√
q2
1 + q2

2 + . . . + q2
n

3.2.3 Selecting k

As with most parameters for a learning system, k usually has to be decided
empirically. This means trying a number of different values and seeing which
one yields the best results for that particular data and classification task. In
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X

Figure 3.2: k Nearest Neighbor example with too large k

general, it’s a good idea to choose a k not divisible by the number of classes,
as this could lead to situations where the majority vote ends with a tie. If
we choose k = 1, the algorithm is simply called Nearest Neighbor.

Generally, we can say that increasing k reduces the effect of irregularities
among the neighbors. For example, consider samples in a 2D plane as shown
in figure 3.1, and the unlabeled sample X. Using a k-value of 3 (indicated
by the solid gray circle) would yield the class “triangle” because of the 2
triangles that for some reason are located among the squares. However,
if we increase k and consider a larger neighborhood, for example k ≈ 6
indicated by the dashed gray circle, it becomes obvious that the X is in a
neighborhood dominated by squares. On the other hand, too large k-values
make the boundaries between the different neighborhoods more vague, as
seen in figure 3.2.
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3.3 Kohonen Self-Organizing Maps (MDS)

The examples in figure 3.1 and 3.2 show samples with a feature space of
2, meaning that we can visualize their distribution in a 2D plane. With
text classification, the dimensionality of the feature space may well exceed
hundreds or thousands, because each distinct term adds one dimension (see
figure 2.1). This means that finding the most similar training samples be-
comes quite computationally intensive. It also means that we can no longer
directly visualize the samples and their proximities in a nice 2D plane.

Multidimensional Scaling (MDS) is a set of techniques used to represent
multidimensional data in a much lower dimensional space, for example a
2D plane. Self-Organizing Maps (SOM) is one such technique, invented by
Finnish professor Teuvo Kohonen and therefore often called “Kohonen net-
works”. When fed with a training set of multidimensional vectors, Kohonen’s
technique creates a map where the topological relationships (distances) be-
tween the training vectors are represented in an arbitrary dimensionality. If
we for instance use the feature vectors in a text classification task, it’s impos-
sible for us to see their proximities, e.g. similarity, in a 2D map. That would
also enable us to more quickly find the k Nearest Neighbors by measuring
the distance between coordinates in the map.

One of the most interesting aspects of Self-Organizing Maps is that the
learning process is unsupervised. You feed the algorithm a set of vectors,
and it figures out their organization and similarities all by itself. Still, as you
may recall from section 2.3, you will need labeled samples if you wish the
classifier to tell you the exact classification of a data item.

3.3.1 Algorithm

For this project, we only consider multidimensional scaling down to 2D,
but SOMs can in theory be of any dimensionality. Before the training can
commence we create a x by y matrix of what is called processing units. A
processing unit is a vector of the same dimension as the vectors in the training
set. Then, the learning algorithm proceeds with the following steps.

1. Initialize each processing unit’s vector. Every element, or “weight”, is
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set to a random value. The value is typically within the range of values
found in the training set’s vectors.

2. Choose a vector at random from the training set, an input vector.

3. Calculate the distance (similarity) to each processing unit (as in section
3.2.2). The closest unit is called the Best Matching Unit (BMU).

4. Determine the BMU’s neighborhood. The neighborhood is the sur-
rounding processing units, up to a certain radius. The radius usually
starts out large, perhaps even spanning the whole matrix, but is re-
duced over time.

5. Adjust each neighboring unit’s weight vector to make it more like the
input vector. The magnitude of the adjustment depends on how close
it is to the BMU, and how early in the training we are.

6. Repeat from step 2 for a pre-defined number of iterations.

Adjusting the neighbors

Determining the BMU’s neighbors and their proper adjustments can be done
using the following single formula. Each processing unit’s weight vector is
transformed by this, and while it may look cryptic at first, it can be explained
in fairly simple terms.

W(t + 1) = W(t) + θ(d, t)L(t)(D(t)−W(t)) (3.1)

The essence is that a processing unit’s new weight vector, W (t + 1),
should equal its old weight vector, W (t), plus some adjustment. The added
adjustment is a fraction of the difference between the input vector and the
old weight vector, D(t)−W (t). The size of this fraction is determined by the
two functions θ(d, t) (the neighborhood factor) and L(t) (the learning rate
factor).

The neighborhood factor ensures two things. Firstly, only processing
units within the neighborhood should be adjusted, and as we progress through
the training the neighborhood should decrease. We can use an exponential
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Figure 3.3: SOM neighborhood radius (a) and factor (b) decay graphs

decay function to calculate the neighborhood radius, for instance:

σ(t) = σ0 ∗ exp

(
− t

λ/ log(σ0)

)
t = 1, 2, 3 . . . (3.2)

In this formula σ0 is the pre-defined initial neighborhood radius for our SOM
and λ is the total number of iterations. This gives us a nice decaying neigh-
borhood radius over time, as shown in figure 3.3a.

Secondly, the neighborhood factor should ensure that processing units
close to the BMU should get a large adjustment compared to units in the
outskirts of the neighborhood. We use a Gaussian decay function incorpo-
rating the current iteration’s radius from equation 3.2 and the input vector’s
distance d from the BMU:

θ(d, t) = exp

(
− d2

2 σ2(t)

)
t = 1, 2, 3 . . . (3.3)

This is the neighborhood factor, or neighborhood function, θ(d, t) found in
equation 3.1.

The second factor determining the adjustment in equation 3.1 is the learn-
ing rate factor L(t). The learning rate is a small pre-defined variable which
also decreases with time. Its decay is calculated similarly to the neighbor-
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(a) 0 iterations (b) 50 iterations (c) 200 iterations (d) 1000 iterations

Figure 3.4: Self-Organizing color map (6 colors)

(a) 0 iterations (b) 50 iterations (c) 200 iterations (d) 1000 iterations

Figure 3.5: Self-Organizing color map (hundreds of colors)

hood radius decay:

L(t) = L0 exp

(
− t

λ/ log(σ0)

)
t = 1, 2, 3 . . . (3.4)

Where L0 is the initial pre-defined learning rate, and as before, σ0 is the pre-
defined initial neighborhood radius and λ is the total number of iterations.

3.3.2 Color mapping example

One typical introductory example of an SOM is mapping of colors. A color
is represented by a three dimensional vector, (red, green, blue) where each
element has a value within the range [0, 255]. The network is initialized with
a completely random color in each processing unit, yielding a map that can
be visualized as in figure 3.4a.

Secondly, we generate a training set – for this example, we use the colors
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red, green, blue, light blue, pink and yellow. The number of iterations,
learning rate and other parameters aren’t very important here, so we just
try with a learning rate of 0.1 and about 1000 iterations. After 50 iterations
of fetching an input vector randomly from the training set and feeding it
to the algorithm, the map is transformed into the one shown in figure 3.4b.
It’s evident that the BMUs for the input vectors have been found, and them
and their neighbors have been adjusted slightly to more closely resemble the
input vector.

After 150 iterations, the different colors have already gotten fairly distinct
borders (figure 3.4c). If watched in real-time, it’s easy to see how the amount
of adjustment for each iteration is reduced. The last 500 iterations or so
only yield minor corrections that are hardly noticeable. This is of course
because both the learning rate and the neighborhood radius is lowered for
each iteration. When the training is complete at 1000 iterations, the map
looks as in figure 3.4d.

Of course, if we wanted, we could use all colors, not just those six. That
would give us a much smoother map, such as in figure 3.5, with no distinct
borders between a few different colors.
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Chapter 4

Design & implementation

Now that we’ve described the background behind our area of pattern recog-
nition and machine learning, we’ll go more into detail on how we implement
the different techniques for our experiments. In practice, the techniques are
applicable to most areas of pattern recognition, but here we’ll outline how
we use them in text classification.

4.1 Sample data

Two sets of sample data are needed for our classification tasks.

Problem descriptions / not problem descriptions This set will be used
for the first classification task, which is testing which of our three clas-
sification methods are best able to recognize problem descriptions.

Good / bad problem descriptions This set is for the second classifica-
tion task, where we will test whether or not the best classifier is also
able to tell the difference between good and bad problem descriptions.

We mentioned in section 2.1 that for some classification tasks, pre-classified
samples are already available. We’re not that fortunate, so we’ll have to find
and label the samples ourselves. We use Integrasco’s database of forum posts
as source for our samples. The database contains millions of entries gathered
from a vast variety of Internet forums over several years.
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Figure 4.1: Training set generation helper

Generating the sample data is essentially manual work, i.e. basically a
matter of fetching a batch of discussion board posts and classifying each and
every one by hand – a very tedious task. A simple tool, depicted in figure
4.1, was created to make the work as quick and effective as possible.

For both our sets of sample data, we use a 50-50 ratio between the classes.
This means we’ll get a 50% accuracy from just guessing the classification. For
Naive Bayes, it also means that the prior knowledge (a priori) will be 50%
for each class. This does not reflect the real distribution in Integrasco’s
database, where, for instance, non-problem posts outnumber problem posts
by hundreds. Thus, if we were to use our classifier on posts from outside our
sample sets, accuracy is likely to be reduced.

4.1.1 Sample data bias

To ease the task of finding forum posts that are problem descriptions, we
make use of Integrasco’s search API. This allows us to find posts containing
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typical problem related terms, such as “problem”, “trouble”, “fail”, “freez”,
“doesn’t work”, “wont work”.

However, using search phrases to find samples of a specific classification
introduces a particular obstacle. By forcing our problem description sam-
ples to contain certain words, they become less representative of real world
problem descriptions. After all, a problem description is in real life certainly
not required to contain any of the aforementioned terms. We say that the
samples are biased, reflecting our particular methods and opinions more than
reality.

To avoid bias completely is essentially impossible when we’re making
the sample sets manually. The samples will always be biased to some de-
gree, at least when there’s no formally defined distinction between the differ-
ent classes. For example, during the gathering and manual classification of
samples, there were several occasions where we were simply unsure whether
something should count as a problem description or not.

To deal with the problem of samples being biased by the search terms
mentioned above, we have three possible solutions.

Ignore the problem Don’t alter the samples in any way to reduce bias.
This will probably yield unrealistically good results, because the search
terms will be very strong characteristics of a problem description (i.e.
the classifier will learn that those words are almost exclusive to prob-
lem descriptions). We call our sample set using this strategy the NS
sample set (None Stripped).

Remove search terms Erase all search terms from the samples. This is
likely to have the opposite effect and produce too pessimistic results,
because now we’re forcing the samples to not contain certain words –
thereby possibly removing too much information. We call the sample
set processed like this the AS sample set (All Stripped).

Remove conditionally If a sample contains one of the search terms remove
it, otherwise remove nothing. We believe this provides the most realistic
results, seeing as it is a compromise between removing all the forced
terms and acknowledging the fact that some problem description may
very well have contained these terms without being forced. This sample
set we name the CS sample set (Conditionally Stripped).
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Informativeness of samples

The training and validation samples for the second classification task (infor-
mative / not informative) are a set of 500 samples in total. Half the set is
samples we consider informative problem descriptions, and the other half is
“non-informative”. There’s an obvious issue with this arrangement, namely
the fact that informativeness nearly impossible to measure in any formal way,
and certainly not really with two discrete values. Rather, you would typi-
cally say that something is not very informative, a little informative, very
informative and so on. Additionally, the informativeness is very much in the
eye of the beholder – what’s informative to me may not be informative to
someone else.

Because of this, the samples are very difficult to objectively classify man-
ually. In many cases the samples fall into “gray area” where it’s hard to tell
whether it’s really informative or not. Furthermore, it could be informative
within the context of it’s original forum thread, but not as a standalone post.
All in all, because the classes are so difficult to distinguish, we find it un-
reasonable to expect the classifier to perform very well based on this sample
data.

4.2 The prototype

4.2.1 Feature extraction (tokenization)

For this project we’re using two kinds of features, words and n-grams. The
first step of our prototype takes care of extracting the features and gener-
ating feature vectors for each sample. Programmatically, we use a common
interface for both the word tokenizer and n-gram tokenizer, so that we’re
able to easily swap between the two during the experiments.

During feature extraction, stop words1 are stripped from the text. We
also remove all punctuation, markup codes/characters and other meta data.
Also, since we are working with discussion board posts, we make sure to
remove quotations.

1A list of small and frequently occurring words like and, or, in, if [1]
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Additionally, two of the classification algorithms want their feature vec-
tors weighted with the TF-IDF scheme. This is generated subsequently to
the tokenization, and is independent of whether we’re extracting n-grams or
entire words. We call this process of tokenization (and, if applicable TF-IDF
generation) the feature extraction stage. When we generate TF-IDF for a
verification sample (to be used in the classification/verification stage), we
use the document frequencies from the training samples, and not from the
verification samples.

4.2.2 Naive Bayes

The Naive Bayes classifier itself has the two obvious stages: the training/learn-
ing stage and the classification/validation stage. The sample data items, to-
kenized in the feature extraction stage, is passed to the classifier, which then
proceeds with its two stages. There is no persistence of data here, meaning
that each run of the program re-learns everything and then validates again.
The training set is randomized and split into a subset of training samples and
a subset used for validation. By re-doing the whole process from scratch like
this, we can do many runs to rule out the possibility that one run was just
a sporadic “best case”. Of course, in a production system, the knowledge
learned from a training set is persisted and reused later.

Training stage

The pseudo code for this stage is shown in listing 4.1. A subset of the sample
data is fed to this routine, as described above.

Listing 4.1: Pseudo code for the Naive Bayes training stage

1 learn_samples ( Samples , Categories ) {
2

3 foreach ( sample in Samples ) {
4

5 sample . category . samples += sample

6

7 foreach ( term in sample . terms ) {
8 sample . category . termcount [ term ] += 1
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9 total . termcount [ term ] += 1
10 }
11 }
12

13 foreach ( category in Categories ) {
14 category . priori = count ( category . samples ) / count ( samples )
15

16 foreach ( term in category . termcount ) {
17 category . conditional_prob [ term ] =
18 category . termcount [ term ] / total . termcount [ term ]
19 }
20 }
21 }

In its bare essence, what this part of the algorithm does, is to calculate
the prior probability for each category, and the conditional probability for
each feature in each category.

Note that in line 5 and 8 we refer to “a sample’s category” (sample.category).
While this may seem counter intuitive (the sample already knows its cate-
gory!), remember that these are pre-categorized samples used to train the
classifier.

Verification stage

The verification stage of the program is the part that actually tells us if our
classifier is working as it should. It uses the remainder of the sample data
after the training component has done its work, and is shown as pseudo code
in listing 4.2.

Listing 4.2: Pseudo code for the Naive Bayes verification stage

1 classify_samples ( Samples , Categories ) {
2

3 max_posterior = 0
4 best_category = undefined

5 correct_count = 0 , success_rate = 0
6

7 foreach ( sample in Samples ) {
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8

9 foreach ( category in Categories ) {
10 posterior = calculate_posterior ( sample , category )
11 if ( posterior > max_posterior ) {
12 best_category = category

13 max_posterior = posterior

14 }
15 }
16

17 if ( best_category == sample . category ) correct_count++
18 }
19 success_rate = correct_count / count ( samples )
20 }

You may have noticed that perhaps the most interesting part of this com-
ponent, namely the calculation of the posterior probability for each category
and sample, is abstracted away with a function call calculate_posterior
in line 10. It will be explained next.

Recall from section 3.1.1 that we use Bayes theorem to calculate the
posterior probability. When we have our prior probabilities and the set of
conditional probabilities for each feature in each category, it can be translated
into the following formula:

P (category|W ) = P (category)
∏

wiεW

P (wi|category) (4.1)

In the formula, W is the set of term frequencies of each word in the
text to be classified that also appears in the term count from the training
component. What this means is that we take the prior probability for the
category and multiply it with the conditional probability for each term in
that category found in the text.

When this is done for each category, one of them has been found to have
the highest posterior probability for that text. The text is then classified as
belonging to that category. Finally, the determined category is compared to
the actual category of the sample. Again, since we are using the training set,
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the true category of each sample is known. If the categories are one and the
same, we increase a counter telling us how many successful categorizations
we have made. When each verification sample has been attempted classified,
we can then calculate an accuracy.

4.2.3 k Nearest Neighbor

As expressed in 3.2, k Nearest Neighbor (kNN) is one of the simplest algo-
rithms for pattern recognition with machine learning. As with Naive Bayes,
a subset of the sample data is fed to the training stage, and another to the
verification.

For kNN the samples should have TF-IDF weighted vectors. This is
taken care of in the feature extraction stage, so the training stage of kNN
is therefore concerned solely with storing the sample documents in a list for
future use by the classification/verification stage.

The classification/verification stage is naturally a little more intricate,
but compared to Naive Bayes and SOM, even this is fairly straightforward.
Its essence is shown in listing 4.3.

Classification/verification

Listing 4.3: Pseudo code for the kNN verification stage

1 knn_classify ( Samples , TrainingSamples , k ) {
2

3 correct_count = 0 , success_rate = 0
4

5 foreach ( sample in Samples ) {
6 distances = [ ]
7 foreach ( trainingSample in TrainingSamples ) {
8 distances [ trainingSample ] =
9 euclideanDistance ( sample , trainingSample )

10 }
11 orderAscending ( distances )
12 neighbors = distances . subset (0 , k )
13
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14 if ( sample . realCategory == majorityCategory ( neighbors ) ) {
15 correct_count++
16 }
17 }
18

19 success_rate = correct_count / count ( samples )
20

21 }

We find the k nearest neighbors in line 11 and 12 by ordering the list
of training samples based on their distance in ascending order and then ex-
tracting the top k elements of the list. Determining the actual classification
is done in line 14, where the call to majorityCategory determines the class
that has majority within the neighbors.

4.2.4 Self-Organizing Maps (Kohonen/MDS)

Self-Organizing Maps is a significantly more complex algorithm than both
Naive Bayes and kNN. We’ve implemented our classifier in three stages: the
training stage, a visualization/anchoring stage and the classification/verifi-
cation stage.

Training stage

The training stage is where the Self-Organizing Map “self-organizes” based
on our training set with TF-IDF vectors. This is done using the 6 steps from
section 3.3.1, and outlined in pseudo code in listing 4.4.

Listing 4.4: Learning stage of the SOM implementation (pseudo code)

1 learn ( Samples , MapNodes , iterations ) {
2

3 for ( iteration = 0 to iterations ) {
4

5 sample = getRandomSample ( Samples )
6 bmu = undefined , bmuDistance = inf

7

8 for ( mapNode in MapNodes ) {
9 distance = euclideanDistance ( sample , mapNode )
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10 if ( distance < bmuDistance ) {
11 bmu = mapNode

12 bmuDistance = distance

13 }
14 }
15

16 for ( mapNode in MapNodes ) {
17 bmuDistance = euclideanDistance (bmu , mapNode )
18 alterMapNode ( mapNode , sample ,
19 getNeighborhoodFactor ( iteration , bmuDistance ) ,
20 getLearningRateFactor ( iteration )
21 )
22 }
23 }
24 }

This stage alone has a number of different parameters we can adjust to
better suit the algorithm to our classification task. The first are the map’s
dimension and size. Like we have mentioned before, we’ll only consider 2D
maps in this project. The map size, on the other hand, is one of the parame-
ters we’ll investigate. We use square processing units, but other shapes such
as hexagons are also normal.

Another parameter we’ll test is the number of learning iterations. For
each iteration, one sample is taken from the training set and incorporated
into the map topology, this enhancing the segmentation of the map (as seeing
in the color examples in figures 3.4 and 3.5).

A third parameter is the initial learning rate. The learning rate influences
the magnitude of alteration done to each processing unit’s weight vector, and
decays exponentially. A large initial learning rate yields larger alterations to
the weight vectors in the neighborhood, but the rate of decay is steeper than
for lower values.

The initial neighborhood radius is a different parameter. In our imple-
mentation we use a radius of half the map’s width. If one wanted, of course
using a different function for the radius decay would be entirely possibly, but
we’ll limit ourselves to the ones described in section 3.3.1.
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Figure 4.2: Examples of pre-classified samples “anchored” in a SOM

Visualization/anchoring stage

In theory, this stage isn’t really a part of Self-Organizing Maps as such. How-
ever, as we pointed out in section 2.3, we have to introduce some elements of
supervised learning to the unsupervised SOM to actually be able to perform
classification.

At this point we have our map self-organized and ready. We can take
a document, generate a TF-IDF vector and then position it in the map, by
calculating which processing unit is most similar. This is where we introduce
the “supervised” portion of the training. We position several pre-classified
training samples in the map, using different colors for each class. This stage
we call the anchoring stage, because we consider these positioned samples as
“anchors” to be used later in the actual classification stage.

In this stage we also take advantage of the fact that we have a “mul-
tidimensionally scaled” map, i.e. something we can render into a human
readable figure. After having anchored a number of pre-classified samples,
we may end up with a layout similar to the one shown in figure 4.2. As this
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clearly illustrates, samples of the two different classes are clustered together
(the radius of the circles indicate the number of samples anchored in that
processing unit). We also note that even though we can clearly see clusters,
some stray samples have been positioned in the wrong ones.

Moderately simplified, this stage can be described with the pseudo code
in listing 4.5.

Listing 4.5: Anchoring stage of the SOM implementation (pseudo code)

1 anchor_samples ( Samples , MapNodes ) {
2

3 for ( sample in Samples ) {
4

5 bmuDistance = inf

6 bmu = undefined

7

8 for ( mapNode in MapNodes ) {
9 distance = euclideanDistance ( sample , mapNode )

10 if ( distance < bmuDistance ) {
11 bmu = mapNode

12 bmuDistance = distance

13 }
14 }
15

16 sample . x = bmu . x
17 sample . y = bmu . y
18

19 }
20 render ( MapNodes , Samples )
21 }

Classification/verification stage

The last step in the SOM implementation is of course the actual classification,
which will verify if (or to what degree) our program manages our classification
task. Having the map with anchored, pre-classified sample documents, two
simple steps will classify a sample:
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1. Position the input sample in the map (find BMU).

2. Use k-Nearest Neighbor to determine which class’ neighborhood the
BMU is in.

This begs the question: Why go through all the trouble of generating a
SOM if we’re just going to use kNN anyway? The answer is two-fold. Firstly,
the 2D map showing the organization and clustering of data is in many cases
useful for presentation purposes. Second, and arguably more important, is
the fact that kNN in only 2 dimensions is quicker than kNN in the dimension
of the feature vectors.

For example, if the sample data is 600 samples containing 3000 unique
words in total, simple kNN would have to calculate the distance to 600 vec-
tors in the 3000th dimension (assuming we don’t use any neighbor search
optimizations). In the SOM, the kNN step only has to calculate the distance
to a small number of vectors (the anchor samples) in 2 dimensions. True
enough, we still have to calculate distances in the 3000th dimension to find
the BMU in step 1, but only to a small number of vectors (each processing
unit). Listing 4.6 outlines how the classification is done in our implementa-
tion.

Listing 4.6: SOM classification stage (pseudo code)

1 som_classify ( Samples , MapNodes , AnchoredSamples ) {
2

3 correct_count = 0 , success_rate = 0
4

5 foreach ( sample in Samples ) {
6

7 bmuDistance = inf , bmu = undefined

8

9 for ( mapNode in MapNodes ) {
10 distance = euclideanDistance ( sample , mapNode )
11 if ( distance < bmuDistance ) {
12 bmu = mapNode

13 bmuDistance = distance

14 }
15 }
16 sample . x = bmu . x
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17 sample . y = bmu . y
18

19 classification = knn_classify_2d ( sample , AnchoredSamples , k )
20

21 if ( sample . realCategory == classification ) correct_count++
22

23 success_rate = correct_count / count ( samples )
24 }
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Chapter 5

Results & discussion

5.1 Classifying problem / not problem

Our initial experiments concern the detection of problem/issue descriptions.
To train the classifiers and validate the classifiers, we have a set of 800 sam-
ples, of which 400 are problem/issue descriptions and the remaining are not.
We seek to determine which classifier that has the highest accuracy and ef-
ficiency.

A typical problem description may look something like the following: “My
iPhone hangs when entering camera mode. I have tried this on my friend’s
phone, and the same problem occurs here. The firmware installed on both
phones is version X28923”.

5.1.1 Naive Bayes

Our implementation of Naive Bayes has no parameters to tweak. Our first
experiments therefore simply involve finding the most accurate configuration
of training set size and feature selection (words/n-grams). We also observe
the differences in accuracy between the NS, AS and CS training sets (see
section 4.1.1).

We run 50 iterations of training and validation for each configuration,
with training and validation sets consisting of different samples each time.
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Figure 5.1: Naive Bayes accuracy with different training set sizes

The reason for this is that we want to rule out extremely good or bad results
caused by incidentally getting an abnormally favorable set of samples. Ad-
ditionally, the training and validation with Naive Bayes is relatively fast, so
50 iterations with 800 samples can be completed within reasonable time on
our testing machine.

Words as features

Table 5.1 shows the average classifier accuracy using different training set
sizes. Since we consider the CS training set the most unbiased, we focus on
that. As indicated by the graph in figure 5.1, already at 100 training samples,
the average accuracy is close to 90%. Even using only 4 training samples,
the accuracy is better than what you’d get by simply guessing ( 50%).
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# samples Best Worst Avg Std Dev
600 99% 93% 96% 1.2%
200 99% 89% 94% 1.9%
100 97% 85% 92% 3.0%
50 96% 79% 88% 5.5%
10 96% 51% 78% 14.4%
4 95% 45% 68% 15.1%

Table 5.1: Naive Bayes accuracy with words as features
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Figure 5.2: Naive Bayes accuracy per iteration

However, if we ignore the overall average accuracy and investigate the
accuracy at each training iteration, the numbers tell a slightly different story.
Figure 5.2 shows how much less the accuracy deviates from the average with
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Figure 5.3: Naive Bayes accuracy standard deviation with different training
set sizes

600 and 10 training samples.

Our results indicate that although the average accuracy may appear im-
pressive even when using a tiny training set, you need a larger set to reduce
the standard deviation. In other words, the smaller training set, the more
dependent the classifier is on getting an overly ”good” training set. Figure
5.3 illustrates how the standard deviation is reduced exponentially when the
training set size grows.

The average accuracy (figure 5.1) seems to flatten out when we exceed a
few hundred training samples. Similarly the standard deviation flattens out
around the same area. Because of this, we assume that anything more than
our largest training set (600 samples) is unlikely to increase the performance
significantly.
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Figure 5.4: Naive Bayes accuracy, bigrams vs words

N-grams as features

Interestingly, both using bigrams or trigrams instead of words produces a
marginal increase in the already rather impressive accuracy. However, as
can be seen in figure 5.4, the increase is negligible, so in practice all three
feature selections perform equally well for our classification task. Standard
deviations resemble those found for words in the previous section.

5.1.2 K Nearest Neighbor

As with Naive Bayes, our K Nearest Neighbor implementation doesn’t have
very many parameters, apart from training set size and type of features. It
does, however, have the k, which determines how many neighbors should
vote on the classification. In addition to set sizes and features, we will learn
which k produces the most accurate votes.
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Figure 5.5: kNN accuracy with different training set sizes and varying k

Words as features

Once again, we’re focusing on the CS sample set. Plotting the accuracy for
different values of k gives us the graphs shown in figure 5.5. Their values
indicate clearly that the most ideal k varies with the size of the training set.
Please note that while it may look like k = 0 gives a high accuracy, all four
graphs in reality have an accuracy of 50 when k is zero, which is the same as
ignoring the neighbors and and just guessing the classification.

The graphs in figure 5.5 show the accuracy for kNN with training sets of
400, 200, 100 or 50 samples. The highest recorded average accuracy for the
400 set is 93% when k is 30. Similarly, for the 50 sample set, the highest is
83% when i is 10 and so on. Table 5.2 shows the highest recorded accuracies
for several more training sets of different sizes.
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# samples Highest avg k at highest avg
600 94% 50
400 93% 30
200 91% 20
100 86% 10
50 84% 10
10 70% 5

Table 5.2: kNN accuracy with words as features

If we plot the data from table 5.2, we get the graph in figure 5.6. The
trends resemble those of Naive Bayes: after a certain amount of samples, the
classifier hits its maximum. For Naive Bayes that amount was around 200
samples, for kNN it’s found near 400. This indicates that NB is more accurate
than kNN when trained with fewer samples. The overall best accuracy for
kNN converges around 94% (versus 97% for NB).
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Figure 5.6: Best recorded average accuracy for kNN
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N-grams as features

In figure 5.6 we have also plotted the best recorded results using bigrams and
trigrams as features. We see that the results are similar to those we found
with for Naive Bayes: using n-grams increases the accuracy slightly, but for
all intents and purposes negligible.

5.1.3 Self-Organizing Map (Kohonen Network)

The Self-Organizing Maps technique introduces a plethora of different param-
eters compared to Naive Bayes and kNN. In addition to the type of feature
selection and training set size, the SOM (as described in 3.3.1) can be gen-
erated with different number of learning iterations, initial learning rate, map
size and so on. Furthermore, we can vary the number of anchor documents
in the anchoring stage, and the classification/validation can be done with
different values of k (recall that we are using kNN in this stage). Because of
the number of different combinations of these parameters, and the fact that
generating a map takes a considerable amount of time compared to kNN and
Naive Bayes, we’ll take some shortcuts.

We’ll only consider words as features. Because SOM and kNN are both
based on comparing TF-IDF vectors, we can (rightfully, as the results will
show) assume that their results will be similar. Since choosing n-grams over
words had limited impact on kNN’s accuracy, it’s unlikely affect the accu-
racy differently here. Additionally, as we have mentioned earlier, we limit
ourselves to 2 dimensional maps with square processing units.

Sample set sizes, learning rate and iterations

As always, one of the most interesting parameters is the number of training
samples required to get a good accuracy. We start off with a SOM size of
10x10 and investigate how the accuracy varies with different sample set sizes,
learning iterations and initial learning rate. Figure 5.7 shows the recorded
results for 4 different learning rates. Note that the results here were produced
with a k of 40 during the validation stage.

With respect to training set size, the results show that bigger is better,
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Figure 5.7: 10x10 SOM, varying iterations, training set sizes and initial learn-
ing rate

but anything more than 200 samples is usually a waste. With the exception
of when the learning rate is very small (5.7a), increasing the training set from
200 to 600 only improves the accuracy with 1%.
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(a) 200 iterations (b) 800 iterations

Figure 5.8: 10x10 SOM, anchored samples (learning rate 0.1 and 200 training
samples)

If we consider the number of training iterations and learning rate, we
see that a small initial learning rate requires more iterations and vica versa.
With an initial learning rate of 0.01, at least 1000 iterations are needed to
push the accuracy over 60%. A higher learning rate, for example 0.5, gives us
a steeper graph initially where 60% is surpassed already by the 50th iteration
(5.7c). The snapshots in figure 5.8a and 5.8b show how the anchor samples
would typically organize themselves after 200 and 800 iterations, respectively.

On the other hand, the overall best accuracy belongs to the lower learning
rates. We find the best combination of training set size, learning rate and
iterations with a learning rate of 0.1, 200 training samples and about 1000
iterations. This produces a classification accuracy of just under 85%. Neither
upping the amount of samples, using more iterations or smaller learning rate
increases the accuracy significantly from that point.

Anchor samples and k

It’s reasonable to think that the amount of anchor samples should have a
substantial influence on our choice of k for the kNN in the validation/clas-
sification stage. If we have few anchor samples, a large k would probably
include too many neighbors in the vote and produce inaccurate results. From
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Figure 5.9: SOM accuracy with varying number of anchor samples and k

a performance perspective, we always want to have as few anchor samples
as possible, but using too few will impede the accuracy. The results with
different number of anchor samples and a varying k is shown in figure 5.9.
The graphs have several noteworthy elements.

First off, it’s evident that even using just Nearest Neighbor (i.e. k = 1)
gives us a decent classifier. Even with only 50 anchor samples, the accuracy
is above 75% when k is 1. If we increase k to 10, 50 anchor samples actually
yields 80% accuracy, which is fairly impressive.

The overall impression of the graphs is that more anchors equals higher
accuracy. This does, however, not seem to be the case for the smallest
values of k. We attribute this to the fact that smaller k are more prone
to irregularities in the samples (section 3.2.3). With SOMs being very time
consuming to generate, we had to reduce the number of training/validation
runs. While we could easily so 50 runs for each parameter combination with
Naive Bayes, with SOM we had to reduce the number to 5. The results
per run will therefore deviate more and may sometimes produce a slightly
misguiding average accuracy.
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Figure 5.10: SOM accuracy from different map sizes

We also observe that the overall best accuracy does not seem to improve
much from what we found using k = 40 in the previous tests (just under
85%). True enough, with 600 anchors, we see a peak ever so slightly over
85%, but the improvement is negligible. More interesting though, is the fact
that 300 anchors seem to perform comparably with 600.

Map size

We can adjust the SOM’s resolution and thereby produce a more fine-grained
map than the 10x10 used in the previous experiments. An increased reso-
lution will in theory give more accurate results, but obviously also require
more time to self-organize. The graphs in figure 5.10 indicate that increasing
the map size beyond 10x10 provides no increase in overall accuracy for our
classification task. The number of iterations before the accuracy converges
to its maximum also remains the same.
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Figure 5.11: Result comparison Naive Bayes, kNN and SOM

5.1.4 Comparison

Based on the results seen in this section, we can illustrate the comparison
between the three techniques as seen in figure 5.11. In summary, we see
that Naive Bayes produces the most accurate classification, with kNN close
behind, while SOM turns out to be slightly less accurate. Because SOM
and kNN both are based on measuring distances between the samples’ TF-
IDF vectors, one would perhaps think that their performances would be
more similar. However, some information is lost in the process of scaling the
multidimensional feature vectors down to 2D [2], so it’s unrealistic to expect
SOM to perform as accurately as kNN.
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Figure 5.12: Naive Bayes accuracy on informative/not informative

5.2 Classifying based on informativeness

The second part of our hypothesis was that we could also use a classifier to
determine whether a problem description was informative or not informative.
The classifier used to test this would be the one with the highest accuracy
from our first classification task (problem/not problem, section 5.1). This
marginally turned out to be Naive Bayes.

As we mentioned in section 4.1.1, the sample data for this classification
task is potentially very confusing to the classifier. Regardless, our Naive
Bayes classifier is more than happy to try. In figure 5.12 we’ve plotted the
results with different numbers of training samples. Unfortunately, but un-
surprisingly, we can ascertain that the results are well under par, even when
utilizing 400 training samples (the remaining 100 being used for the valida-
tion). The average accuracy steadily remains between 50 and 55% - barely
any better than guessing. Moreover, we see that the increase in training
set size hardly yields any perceptible improvement on accuracy. The clas-
sifier has simply not been able to learn what distinguishes informative and
non-informative forum posts.

In section 5.1.1, we saw that even though average accuracy may not
improve much from increasing the amount of training samples, it may reduce
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Figure 5.13: Naive Bayes accuracy deviation on informative/not informative

the standard deviation between the different runs that make up the average.
Recall that we do several runs with different training and validation samples
each time. A smaller standard deviation means that the results are more
consistent for each such run. The graphs in figure 5.13 show the individual
accuracy results for each run.

Even at a glance, it’s clear that the deviation is not noticeably reduced
from 5 training samples to 400. A closer look at the numbers reveal that the
standard deviations are 4.3 and 4.0 for 5 and 400 training samples, respec-
tively.
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Chapter 6

Conclusion & further work

6.1 Conclusion

In this thesis we have developed a prototype application for detecting problem
descriptions among online forum posts. The prototype implements three
different algorithms for pattern recognition with machine learning, namely
k Nearest Neighbor, Naive Bayes and Self-Organizing Maps. We have run
extensive tests with each one to determine which one and what parameters
will yield the highest accuracy.

Furthermore, we have investigated whether we could also extended the
prototype to classify problem descriptions as either informative or non-informative.
For this second classification task we used the algorithm that most accurately
detected problem descriptions.

All three algorithms have been shown to perform fairly well for the first
task (detecting problem descriptions), given the right training, configura-
tion and parameters. Naive Bayes proved to be the winner, reaching an
impressive classification accuracy of 96%. K Nearest Neighbor was only
marginally worse, with a maximum recorded accuracy of 94%. Being that
Self-Organizing Maps rely heavily on the many of same calculations as kNN,
we expected them to perform comparably. However, the accuracy of our
SOM topped out at 85%, indicating that some information is lost to the in-
herent reduction of feature space dimensionality. Regardless, the SOM did
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excellent in illustrating the clustering of samples, as seen in figure 4.2. Over-
all, these results should be of great use in situations where it’s important to
get an overview of people’s issues or complaints with a product.

The results of classification based on informativeness were not as satis-
factory as the first. This was essentially something we feared already from
the point where the training samples were gathered. It was simply incredibly
difficult to objectively and formally determine whether a sample should be
considered informative or not informative. The determining factors were usu-
ally contextual or subjective: for example a forum post could be informative
when seen in the context of the forum thread but not on its own.

Our fears were reflected in the classification accuracy. At best, 56% were
consistently classified correctly – hardly better than simple guessing. In other
words, the classifier in its current form is not able to classify informative and
non-informative samples.

6.2 Further work

The three algorithms admittedly performed beyond expectation for the first
classification task. This is a testament to the fact that “naive” classifiers
can often perform extremely well even in cases where one would think the
features are dependent and need contextual data to convey their importance
(such as when classifying text based on its “meaning”). Nevertheless, we’ve
discussed a number of possible improvements that should be researched from
here on.

Combining the algorithms Even though Naive Bayes proved to perform
better than kNN and SOM, it safe to assume that all three have
strength and weaknesses. A possible improvement to our classifier pro-
totype would be to let all three have a vote in the classification of a
sample. They’re all in practice probabilistic, meaning that instead of a
classification, they can produce the probability of each class being the
correct one. Let’s imagine that Naive Bayes tells us that the probability
of a sample being a problem description is 60% and 40% that it isn’t.
At the same time kNN informs us that 75% of the sample’s k nearest
neighbors are problem descriptions and 25% are not. We can then, for
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example, choose to trust kNN, because it seems to be more “certain”
than Naive Bayes. Alternatively, we can take the average probability
from each classifier or simply use a majority vote.

Improving feature extraction So far we’ve used words or n-grams as fea-
tures for our classifiers, and observed that the differences in accuracy
were essentially negligible. What we haven’t tried, is to use mixed or-
der n-grams. Mixed order n-grams means for example using bigrams
and trigrams at the same time, or even together with the whole words.

The second classification task was not as successful as we’d hoped. With
such a depressing accuracy, it’s obvious that more research is in order. What’s
important to note is that even though our Naive Bayes classifier was unsuc-
cessful in this classification task, we can’t thereby deem it unsuited. The
main issue is probably not the nature of the classifier and its naivety, but
rather the poor distinction between the two classes in our training set. As
we have mentioned before, it’s more appropriate to have a linear scale to
measure informativeness, rather than two discrete classes.

58



Bibliography

[1] “Swansea university, library jargong glossary,”
http://www.swan.ac.uk/lis/HelpAndGuides/LibraryJargon/.

[2] W. Basalaj, “Proximity visualization of abstract data,” 2001,
http://www.pavis.org/essay/index.html.

[3] BIGreasearch. Simultaneous media usage study 10.
Http://globaltechforum.eiu.com/index.asp?layout=rich storydoc id=11201.

[4] W. B. Cavnar and J. M. Trenkle, “N-gram-based text categorization.”

[5] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. John
Wiley & Sons, Inc., 2001. [Online]. Available: http://www.amazon.
com/Pattern-Classification-2nd-Richard-Duda/dp/0471056693

[6] D. T. Larose, Data mining, Methods and models. John Wiley & Sons,
Inc., 2006.

[7] Y. Liao and V. R. Vemuri, “Using text categorization tech-
niques for intrusion detection,” University of California, 2002,
http://www.usenix.org/event/sec02/full papers/liao/liao html/text ss02.html.

[8] D. Mack, “Reverend bayes’ useful contribution,” Potentials, IEEE,
vol. 12, no. 1, pp. 41–42, Feb 1993.

[9] About consumer-generated media (cgm). Nielsen Online. [Online]. Avail-
able: http://www.nielsen-online.com/resources.jsp?section=about cgm
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