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Abstract

In this thesis we explore the area of general purpose computing on GPU, by look-
ing at how the GPU can be utilized to accelerate transport in reservoir simulations.
We implement a general finite volume scheme and a high resolution scheme with
bilinear reconstruction. We look into how the result is affected by using single
precision instead of double as the GPUs today are best suited for single precision.
We propose a model for a corner-point grid solver for GPU. Last we look at a
heterogeneous model where we run a pressure solver in parallel on the CPU.
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Chapter 1

Introduction

1.1 Introduction

In this work we study the use of GPUs to accelerate simulation of flow through
porous medium. This kind of simulation is most extensively used in reservoir
simulations to predict and estimate production. We look into how the flow trans-
port simulation can be adapted to a GPU. We start with a general finite volume
scheme and then move over to a more advanced high resolution scheme. Further
we demonstrate a heterogeneous computing model where the CPU computes pres-
sure in parallel with the GPUs transport computations. Last we propose a GPU
implementation for the corner-point grid, which is widely used for geologic mod-
elling of rock formations. We do a performance comparison between the GPU
implementations and CPU implementations of equal design. Last, we look into
how the GPUs lack of double precision can affect the final results.
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CHAPTER 1. INTRODUCTION

1.2 Motivation

In this section we will establish our argument to why GPU computing is important,
and how this research fits into a larger area of high performance computing. The
arguments for GPU computing presented in this section can be found in a state of
the art report published by Brodtkorb et. al[5].

1.2.1 Today’s challenges of high performance computing

For the last twenty to thirty years the main contributing factor in computational
speed has been the continued increase in CPU clock frequencies. This has been
possible due to the ever shrinking transistor. However, today we have reached
limiting factors that can not be easily circumvented. Power densities on the chip
are becoming too high, and the bandwidth between the chip and main memory is
not able to keep up with the operational rate of CPUs.

The power wall

From the year 1983 to 2003 the typical CPU frequency have increased from a
mere 5MHz to 3GHz [19]. Most of the microprocessor performance increase
has come from increases in frequency. However, from the beginning of the 21st
century, increases in heat and power densities started to limit the frequency speed
for silicon chips, and today we are at a standstill around 3 to 4 GHz.

With increased transistor densities and increased frequencies, the power den-
sities on today’s chip are well above that of an ordinary kitchen stove. To continue
the frequency climb, new materials or better cooling techniques are needed. Both
these options are currently not feasible. Liquid nitrogen cooling is expensive and
impractical. Carbon nano tubes will probably replace the silicon in the future, but
this paradigm shift is still at least three years away and will be costly before good
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CHAPTER 1. INTRODUCTION

production techniques are established.

The benchmark for a computing system has for the past thirty years been flops,
or floating-point operations per second. However, flops per watt have increasingly
started to become a more valued measure. The power consumption of high per-
formance computers are today often a bigger cost than the actual hardware. And
much of that power is transferred into heat which again requires more power to
remove. Processing units which can operate well below their frequency limit and
still perform well in terms of flops are therefore becoming more important.

The memory bandwidth limit

Memory bandwidth between processor and main memory have long been known
by scientists and engineers to be a potential bottleneck in a computing system. In
the Von Neumann architecture, main memory is separated from the processor, and
thus resulting in a fetch-execute cycle. With the CPUs steadily increase in number
of operations executed per second, the speed at which data needs to be delivered
has increased proportionally. However, this has not happened. The number of
floating-point operations per memory read has therefore steadily increased over
the years, and today it is several orders of magnitude faster to perform an arith-
metic operation compared to a memory read or write. This effect is called red shift

and it leads to processors not able to utilize their full arithmetic potential.

1.2.2 Parallel computing

With all the roadblocks that are now surfacing for the development of the CPU, en-
gineers are looking for new directions to continue the climb in computing power.
One of the methodologies that are being adopted is parallel computing. The idea
behind parallel computing is to split large tasks up into smaller tasks and let mul-
ticore processors process these small tasks in parallel. However, even though con-
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CHAPTER 1. INTRODUCTION

sumer CPUs are starting to embrace this methodology, they are still easily outper-
formed by super parallel processors made up of hundreds of simpler floating-point
arithmetic cores.

Tasks that are highly suited for parallelization can often perform many times
better on a processor designed with a parallel computing model in mind. There
are today several highly capable parallel processors. The most well known are
the Cell BE and commercial GPUs. The GPUs are the most recent addition for
scientific computing with their recent launch of general purpose computing APIs.

With the introduction of parallel accelerator processors working together with
the CPU, came the term heterogeneous computing. This term refers to a com-
puting architecture where processing units of different architectures are combined
and tasks are assigned according to which processor is the most capable. In this
sense the CPU/GPU computing architecture is a heterogeneous computing system
which is very capable in most computing tasks.

GPU vs. CPU

The GPU manufacturers today do not face the same problems as the CPU manu-
facturers do. The core clock frequencies of the latest GPUs only barely pass the
1 Ghz frequency range. This is because an increase in frequency on the GPU will
result in a significant increase in power consumption. In addition the performance
increase would be minimal due to the bandwidth and memory frequency limi-
tations. However, the GPU still has a huge potential for increased performance
since its performance mainly lies in its super parallel architecture, which is easy
to expand. Bandwidth is also easier to increase because the memory lies closer to
the cores and an increase in performance is added by adding more cores, not more
speed. This means that the memory bandwidth does not need to increase in speed.
Each core instead gets a separate channel to global memory.

From the two graphs in Figure 1.1, we see how the computational power and

11



CHAPTER 1. INTRODUCTION

Figure 1.1: The two charts show the difference in memory bandwidth and flops
between CPUs and GPUs over the past years. Taken from the CUDA Manual[18]

the bandwidth rate increase significantly faster for GPUs than for CPUs. The
reason is that GPUs can dedicate a much larger part of their chip to arithmetic
logic units than the CPU, which uses a lot of the chip for caching and advanced
prefetching techniques. Therefore the CPU is much more effective for serial exe-
cution with advanced branch prediction techniques, which the GPU does not have.

12
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The rate at which new generations of GPUs are released is almost twice as fast
compared to CPUs. We can expect a new GPU chip generation approximately
once every ten to twelve months. While CPU generations have a span of almost
two years.

The role of the GPU

The GPU has until very recently served as the graphical processor of the desktop
PC. This was the only real area of application it was designed for. In its earliest
stage the GPU was produced with non-programmable hardware that could per-
form various arithmetic operations that was useful for image processing in games.
These different operations ranged from applying fog or blur effects, to smooth
surface effects for 3D meshes. These individual effects were called shaders, and
over time the GPU developed from consisting of pure hardware specific shaders
to becoming a programmable processor where developers could design their own
software shaders which ran on the GPU as small programs. Eventually the GPU
transferred completely from using hardware shaders to the unified shader pipeline,
where all the processing power of the GPU can be utilized on any type of shader
the programmer wants. This inspired the use of GPUs as a general purpose com-
puting engine.

Some minor research and hobby programming has gone into general purpose
computing on GPUs, but before the arrival of programmable shaders and unified
shader architecture, general purpose computing with GPUs was limited.

Today however the GPU manufacturers have acknowledged the interest in us-
ing their hardware for more than just graphics. With the arrival of tools and li-
braries such as CUDA[18] and OpenCL[13] that allows for easier development
of general purpose computing software, we argue that over the coming years the
GPU will go from being a dedicated graphics processor to becoming a parallel
processing unit dedicated for all parallel computing tasks.

13



CHAPTER 1. INTRODUCTION

1.3 Goal

The goal of this thesis is to study how a GPU can be utilized to accelerate a simu-
lation of advective transport through porous medium. The area of general purpose
GPU computing is a relatively young research topic and therefore the exploration
of it is limited, but growing fast. We will explore this area in several directions to
demonstrate the feasibility of using GPUs in reservoir flow simulations.

• First we will present a very simple solver for the transport equation Buckley-
Leverett running on a GPU.

– We show its numerical accuracy by comparing it to an equal solver
written for the CPU where double precision is used.

– We show what increase in computational speed we get compared to a
serial CPU solver and a multi-threaded CPU solver.

• We present a heterogeneous solution where the CPU will solve pressure
while the GPU will solve transport.

– We show that despite a loss in numerical accuracy this model provides
a result that is well within acceptable ranges.

– We show how this computing model benefits greatly in terms of com-
puting time compared to a homogeneous computing model where only
one standard CPU is used.

– We show that the small sacrifice in numerical accuracy is acceptable
in this kind of simulation compared to a stricter model where pressure
is solved for each timestep.

• We propose a prototype GPU solver for corner-point grids (see Section 2.4.6
for further description).

– We show how this is possible despite the strict hardware restrictions
on the GPU.

14
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• We present a prototype using a high resolution numerical scheme running
on a GPU.

– We show how this scheme benefits greatly in speed by using a GPU
instead of a CPU.

1.4 Thesis definition

“We will investigate the use of GPU as a computational engine in

reservoir flow simulations and prove that this approach will provide

faster runtimes compared to a serial computation on a CPU. We will

present GPU models for a high resolution scheme, corner-point grids,

and a heterogeneous model where the CPU computes pressure while

the GPU computes transport. Further, we will show that these models

perform better than serial CPU solvers and we will evaluate their

numerical accuracy compared to double floating point precision.”

1.5 Contributions

In this thesis we demonstrate an implementation of a reservoir transport solver
on GPU. We investigate into how corner-point grids, which are vital in reservoir
modeling, can fit on a GPU with its restricting hardware architecture. Further
we look at a high resolution scheme, which is more computationally demanding
than the regular models used. And last we demonstrate a heterogeneous model
where we solve pressure and transport in parallel by utilizing both the CPU and
the GPU. We provide a benchmark for the GPU prototypes compared to regular
serial execution on a CPU and a thread based execution. Finally we do numerical
testing to find inaccuracies that may arise when we move from double precision
on the CPU to single precision on the GPU.

15
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We believe that today the most important research into parallel heterogeneous
computing is providing algorithms and techniques for various computing tasks.
This field of computing has only been active for the past two years and there is still
many areas that are totally unexplored. In this thesis we contribute with a better
understanding of benefits and limitations for running reservoir flow simulation on
a GPU. In addition we uncover some new questions that will need answering.

1.6 Target audience

This thesis is a study into the use of GPU as a computational engine for simulating
flow through a porous medium. The reader will benefit if they have knowledge
in GPGPU computing, reservoir modeling or numerical modeling. However the
paper is written in way so that any reader familiar with parallel programming
and partial differential equations should be able to interpret and understand the
concepts we have used.

1.7 Report outline

In Chapter 2, we start by introducing the reader to the various fields this thesis
spans. We begin by introducing the GPU and its role in general purpose compu-
tations. We then go into floating-point numbers and the importance of accuracy
in physical simulations. Last in this chapter, we introduce the reader to reser-
voir simulations and the numerical methods used in this thesis. In Chapter 3, we
present the GPU computing prototypes to the reader. We start with the most gen-
eral and iterate through more advanced models using a high resolution scheme
and dealing with corner-point grids. We then present the various tests performed
on the different prototypes. Chapter 4 presents the results gained from testing,
both performance and numerical accuracies. In Chapter 5, we discuss the various
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findings and how they relate to our claims
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Chapter 2

Background

2.1 The Graphics Processing Unit

The Graphics Processing Unit or GPU has undergone a rapid development since
its mainstream emergence in the mid-nineties. The adoption of GPUs for real
time rendering has increased steadily since then, and today no 3D game renders
its frames without taking advantage of the GPU.

The gaming industry has had a strong influence on the development of the
GPU. Ever more computational demanding games have lead GPU manufacturers
to constantly strive for higher arithmetic throughput. The result is an extreme par-
allel computing engine, which dwarfs the computational throughput of a standard
CPU by at least an order of magnitude. And despite the extreme parallelism it is
easy to write programs or shaders for the GPU.

18
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2.1.1 Hardware

The GPU hardware architecture forms what is known as the graphics pipeline.
The pipeline contains a number of steps that should be done in a specific order to
render a frame correctly.

Figure 2.1: The graphics pipeline. From Direct3D section on MSDN[16]

Figure 2.1 shows how the pipeline is structured. All the shader steps are
programmable and can take input from the internal memory on the GPU. These
shaders are programmed in special C-like shader languages and then compiled to
run on the GPU hardware. Shaders are today a very important component in the
process of generating each frame in an interactive game. The latest GPU’s use
what is called a unified shader pipeline, which means that shaders of all types can
run on any of the GPUs cores. This gives programmers more flexibility in how
they want to utilize the GPU’s processing power.

19
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2.1.2 General purpose GPU computing

Using the GPU for non-graphical computations has become known as general
purpose computing on GPUs or just GPGPU[10]. Researchers quickly recog-
nized the power in the extreme parallel nature of the GPU. When the transition
from a fixed to a programmable pipeline was made, many started to experiment
with the GPU to speed up computationally demanding applications, and when the
fragment and pixel pipelines were made into the unified shader pipeline, the po-
tential for GPU computing grew even more. The early test results showed great
promise[11] and in 2007 the GPU manufacturers released APIs that greatly sim-
plified the process of writing GPGPU programs. Up until then, the only way
of accessing the GPU was by following the graphics pipeline through a graph-
ics API like OpenGL[14] or Direct3D[15]. Now with the new APIs like Nvidias
CUDA[18] or ATIs Stream[3], programmers get direct access to the processor
cores on the GPU.

2.2 CUDA

CUDA or Compute Unified Device Architecture[18] is Nvidia’s API for general
purpose computing on their GPUs. The API consists of a compiler and libraries
that provide extensions to the C language in order for programmers to easily map
their problem onto the GPU architecture.

2.2.1 Programming model

CUDA provides developers with a parallel programming model where the CPU
initializes data and execution configurations of functions that are then executed
on the GPU. The data can be moved between the CPU and the GPU but this
is an expensive operations and it is recommended to keep the number of copy

20
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operations between the GPU and the CPU as low as possible, or by asymmetric
data transfers so that the GPU is not forced to wait for data.

Host and device

In the CUDA programming model the main memory of the computer and the CPU
is referred to as the host. The GPU is referred to as the device. A host can have
several devices, but there can only be one host.

Kernels

Functions that are executed on the GPU are referred to as kernels. Kernels have
only access to GPU memory areas and data need to be copied from the host mem-
ory to the device memory in order for kernels to process it.

When a kernel finishes, the results are stored in the device global memory and
is available for further processing or copying back to host main memory.

2.2.2 Thread batching

CUDA uses an intuitive programming model in order for programmers to easily
split their problem up into parallel computations. Three main constructs are used:
threads, blocks and grids. A block contains a predefined number of threads. This
number is defined at the entry-point for the kernel. When writing a kernel, the
programmer has access to variables that identify each thread by a thread-id, a
block dimension, and a block-id. By using these three variables, the programmer
can index different data in different parts of memory for each thread and so write
programmes that are SIMD (single instruction multiple data). CUDA refers to
its architectural model as SIMT (single instruction multiple thread), because of
its multi-threaded pipeline architecture. Figure 2.2 shows how a grid is split into
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Figure 2.2: CUDAs thread block grid model. A grid is split into block which
again is split into threads. From the CUDA Manual[18]

blocks, which again is split into threads.
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float∗ deviceArray ; //pointer to array on device

// Kernel that increments an array on the device by 1.
__global__ void incrementArrayKernel (float∗ array )
{

//variable that defines the dataIndex for each thread.
int dataIndex = blockIdx .x∗blockDim .x+threadIdx .x ;

//Increment operation. Notice no loop is needed.
array [dataIndex ] = array [dataIndex ] + 1 . 0f ;

}

int main ( )
{

// Function that initializes array on device.
// This function must do initialization of data on host,
// allocation of memory on device and copy operations
// of data from host to device.
initalizeArrayOnDevice (devicearray ) ;

// Execute kernel with 10 threads in each block
// and 2 blocks in the grid.
incrementArrayKernel<<<2, 10>>>(deviceArray ) ;

return 0 ;
}

Figure 2.3: Code that demonstrates the SIMT programming model

In the code example in Figure 2.3 we demonstrate how a kernel function in
CUDA increments twenty elements by executing twenty threads, one for each
data element. By specifying how many threads and blocks to execute in a kernel,
the programmer can perform operations on varied data structure sizes.

23
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2.2.3 Performance optimization

CUDA provides a host of techniques and tricks that programmers can utilize to
speed up parts of their kernels. Most of these techniques deal with minimizing
memory latency between the GPU cores and GPU global memory. Data that are
shared within each block and accessed often, should be copied to shared memory,
which can be described as manually managed cache. Access to shared memory is
instant. Shared memory is only shared within each block, and so if all threads in a
kernel need access to a particular data item, this has to be kept in global memory.

Access to global memory can be optimized by doing texture referencing. This
means that you define a memory area in the internal memory of the GPU and
provide caching for this area. This will reduce access times greatly, but it becomes
a read-only area. Other techniques that can be utilized are coalesced access. This
is an access method in which the programmer makes sure that each thread accesses
consecutive memory areas in their corresponding access operations (like in Figure
2.3). The GPU can then utilize the fact that it can fetch a 64-bit or even 128-bit
word from memory and so get two or four memory-fetches at the latency cost of
one.

One of the more important things a programmer should pay attention to is
how much of the core register a block occupies. If the blocks in a grid are small
enough to fit more than one block in each core register, the GPU can mask memory
latency by switching between blocks. It is therefore recommended to have room
for at least two active blocks per processor core.

2.2.4 Kernel execution

When a kernel is executed, all the cores on the multiprocessors of the GPU are
loaded up with as many blocks as possible. The blocks loaded onto a GPU core are
active blocks and context switching between these blocks is extremely efficient.
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Each core executes a warp, which is 32 threads from one of the active blocks. A
thread warp is executed through a SIMD pipeline. When a warp has to wait for
memory fetches, the core can switch to another warp to hide much of the latency
related to memory fetching.

2.3 Precision and accuracy

The words precision and accuracy will be used throughout this report in order to
describe and discuss the results of my research. We will therefore state the formal
definition of the words here.

In the domain of computing, Websters dictionary defines accuracy as:

“How close to the real value a measurement is”

precision is defined as

“The number of decimal places to which a number is computed”

Both the precision and accuracy of a computation are very important when it
comes to the field of physics simulations. One should especially notice that these
two attributes of a computation are highly connected. If we increase the amount
of decimal digits computed (higher precision), we will also increase how much
our computed number deviates from the actual answer (lower accuracy). This is
because computers can only have a finite set of bits to represent an infinite amount
of real numbers. When representing very low values or very high values, the
computer often has to round off to the nearest number it knows how to represent.
When the computation requires higher precision, the computed value will deviate
more from the actual real answer. The lower digits will only add more to the
difference between the computed value and the real value.
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2.3.1 Floating point numbers

The floating point number is described in the IEEE Standard for Floating-Point
Arithmetic [4]. This standard describes how floating point operations should be
implemented and especially how all possible exceptions should be handled. These
exceptions include overflow, division by zero, and other special cases. The stan-
dard was revised in 2008 to limit some of the more loose specifications from the
1985 version.

Floating point numbers are represented with three main components. In the
32-bit (single precision) floating point number, the first bit signifies the sign of the
number. Then there are eight bits representing the exponent and last 23 bits for
the significand. The exponent is biased so that it ranges from 127 to -126. The
double precision floating point number has 11 bits for the exponent and 52 bits for
the significand.

Units in the last place (ULP) is the unit of measure used to describe the ac-
curacy of floating point operations. ULP(x) is the difference between the two
floating point numbers that are closest to the real value of x (x is in the range
between the two floating point numbers) [17].

Most of the functions in the CUDA mathematical standard library do not con-
form to the IEEE-754 standard when using single precision. An average of 2-4
ulps are present in most of the functions, while some go even higher. Addition
and multiplication are IEEE-compliant, though (0 ulps)[18]. These small errors
will in most cases be acceptable, but one should be aware that they are present.
Double precision will give greater accuracy (average 2-3 ulps and, in addition to
add and multiply, sqrt and division will also be fully IEEE-compliant). However,
the GPU hardware conforms closer to the standard than the CUDA API. There-
fore one could implement these arithmetic operations to achieve better compliance
with the standard, if this is needed.
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2.3.2 GPU single and double precision

The GPU have originally not supported double precision operations. However
when GPGPU computing started to gain interest, manufacturers saw the need to
add this feature. The newest generation of GPUs do now support double precision,
but the computing speed is significantly slower than single precision. The ratio of
single-precision arithmetic units to double-precision arithmetic units varies be-
tween the two main GPU manufacturers Nvidia and ATI.

2.3.3 Hybrid approach

To avoid both the error of single precision and the slow-down of using double
precision on the GPU, one can use what Göddeke[9][8] describe as a hybrid ap-
proach. Their technique is to use the single precision GPU for doing fast calcu-
lations and then doing an error correction with the CPU. This approach proves to
give a highly accurate result and still outperform a fine tuned CPU implementation
of the same solver.

2.4 Reservoir simulation

In this section we will explain the various aspects concerning reservoir simula-
tions, as described by Aarnes et. al[1].

2.4.1 Applications

Reservoir simulations are fundamental when modeling oil-reservoirs. In order for
drilling to be the most effective, it is vital to do simulations of the reservoir both
before and during production. This gives important information that helps when
deciding how wells are placed and managed during production.
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Figure 2.4: [6]This is a visualization the permeability in SPE10[20], a compara-
tive test dataset for a reservoir.

Samples are gathered of the reservoir volume. This data contains porosity,
permeability and volume structure. Flux values are calculated with the pressure
equation and then applied in the flow simulation which describes the saturation
transport of the second phase that is pumped into the reservoir.

As seen in Figure 2.4, there are two types of wells; injection and production.
At the injection well water or gas is pumped into the system at high pressure.
At the production well oil is forced out by the pressure difference between the
reservoir and the production well.

2.4.2 Reservoir

The formation of an oil-reservoir happens over millions of years. First organic ma-
terials pile up, layer upon layer. When the pressure and temperature start to rise,
the material slowly starts to decompose into hydrocarbons. Geological movement
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in and around these areas of hydrocarbons can lead to some of them becoming
trapped and forming a reservoir of crude oil. This reservoir is not pure liquid oil,
it exists in small pores in the rock formations. This rock is our porous medium.
Almost all rocks have pores and the distribution and volume fraction determines
the flow properties in the rock.

The reservoir is typically modelled using a grid model that gives a geometric
description of the rock formations and provides rock parameters that affect the
flow of fluids (examples of parameters include permeability and porosity). Build-
ing such models is based on data, experience with, and study of similar formations
and use of geostatistics.

2.4.3 Flow physics: the model

Buckley-Leverett(BL) is a mass transport equation used to describe flow through
porous medium. It calculates how a phase flows in the system over time, based
on flow velocity, porosity, and previously calculated saturation. The flow veloci-
ties are obtained through a pressure equation derived from mass conservation and
Darcy’s law. In its simplest form, the Buckley-Leverett equation can be written
as:

φst +−→v · ∇f(s) = q (2.1)

Where f(s) is the fractional flow, q is flow into and out of the system (wells), φ
is porosity, s is average saturation of the cell, and −→v is total velocity given by
Darcy’s law.

−→v =
−k
µ
∇p (2.2)

Where k is permeability, µ is viscosity and p is pressure.

Porosity: The rock porosity is the void volume fraction of the medium. Porosity
is denoted as φ and 0 < φ < 1.
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Saturation: Saturation is the fraction of void cell volume that is filled with wa-
ter. Saturation is denoted as s and 0 < s < 1.

Flux: Flux is the integral of the flow velocities over a finite surface.

∮
−→v · −→n ds (2.3)

In a regular 3D grid there is always six edges (all cells are perfect cubes).
Should the grid be irregular the number of edges is > 4. This is because the shape
of a cell is undetermined and a cell can have several neighbours on one edge.

Fractional flow: The fractional flow is the water fraction of the total flow and
varies depending on the saturation of water. The function can also vary depending
on various properties like viscosity and pressure. We have used the same function
throughout this work.

f(s) =
λw(s)

λw(s) + λo(s)
(2.4)

where λw(s) = sα

µw
: (α = 2, µw = 1) and λo(s) = (1−s)β

µo
: (β = 2, µo = 1),

which gives the curve depicted in figure 2.5.
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Figure 2.5: The fractional flow rate.

Figure 2.6: The saturation profile of a Buckley-Leverett model using Equation
(2.4) as fractional flow rate.
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A plot of the one-dimensional Buckley-Leverett solution clearly shows how
the saturation front advances with a shock wave followed by a slow gradual in-
crease to max saturation level. This is depicted in Figure 2.6.

2.4.4 Numerical analysis

To solve a partial differential equation on a computer, we have to deploy numerical
methods. We use an explicit finite volume method for our computations, for which
the unknown is the average saturation within each cell of the grid.

Sni =
1

|Ωi|

∫
Ωi

S(x, y, n∆t)dxdy (2.5)

The equation is discretized in space and time and we get the following expres-
sion:

φi
∆t

(sn+1
i − sni ) +

1

|Ωi|
∑
j

Fij(s
n
i , s

n
j ) = qi (2.6)

where we use an upwind approximation of the flux over each cell interface.

Fαβ =

∫
[f(sα) max(−→v · −→nαβ, 0) + f(sβ) min(−→v · −→nαβ, 0)]ds (2.7)

To fit these expressions into an algorithm for a 2D Cartesian grid, they are
further formulated into the following expression:

sn+1
i,j = sni,j +

∆t

φi,j
(qni,j −

1

∆x∆y
[max(vi+1/2,j, 0)f(sni,j) + min(vi+1/2,j, 0)f(sni+1,j)

−max(vi−1/2,j, 0)f(sni−1,j)−min(vi−1/2,j, 0)f(sni,j)]

− 1

∆x∆y
[max(vi,j+1/2, 0)f(sni,j) + min(vi,j+1/2, 0)f(sni,j+1)

−max(vi,j−1/2, 0)f(sni,j−1)−min(vi,j−1/2, 0)f(sni,j)]

Here we have used the midpoint rule to evaluate the flux integrals. In Figure 2.7
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we depict a visual representation of the geometric topology of this calculation in
three dimensions. This calculation involving all the closest neighbours is called a
stencil. The basic structure of it is important in many fields of physics simulations.

Figure 2.7: The topology of a stencil in a 3D grid. The blue cells are neighbouring
cells, and the green cell is the local cell where we want to calculate a new value
based on the values of neighbouring the cells

This calculation immediately becomes more difficult to handle when we move
over to a corner-point grid (described in Section 2.4.6), where each cell can have
a varying number of neighbouring cells.

CFL condition

In an explicit scheme, the value of ∆t has to be carefully calculated in order to
not destabilize the system. A destabilization can happen if the flow in the system
combined with the size of ∆t results in cells being filled over their capacity in one
timestep. If this happens, the system will become unstable and produce unreliable
values in and around that cell.

The CFL condition is a function that calculates how big ∆t can be in order to
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keep the system stable. We want ∆t to be as big as possible to increase simulation
speed, but at the same time not so big that it gives rise to unstable cells. The
CFL condition depends on the velocities in the system and the derivative of the
fractional flow function.

∆t < min(
V i

F i
in

× (maxf ′)−1 × c) (2.8)

As the expression shows, the optimal ∆t value is dependent upon the flux
values, and therefore it needs to be recalculated every time the flux changes, or
every update from the pressure equation.

2.4.5 High resolution scheme

The finite volume method introduced in 2.4.4 is the most commonly used model
for reservoir simulation. However there can be certain caes where greater accuracy
is needed. When shocks or discontinuities needs to be modeled more correctly we
need to use a high resolution method.

In our particular case the saturation flows with a shock at the front. When the
simple finite volume method is used this front will be smeared and not presented
accurately in the simulation. Therefore we introduce a high resolution scheme us-
ing a second-order Runge-Kutta solver where we use bilienear reconstruction and
a central-upwind flux as described by Hagen et. al[12] when they demonstrated
the use of GPU for accelerating the shallow water equation. We will use the same
high-resolution scheme for our reservoir simulation.

Second-order Runge-Kutta

The Runge-Kutta method we employ for evolving our solver is a total variation
diminishing second-order Runge-Kutta method which is written as:
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S
(1)
ij = S

(n)
ij +

∑
j

Fij(S
(n)
i , S

(n)
j )

S
(n+1)
ij =

1

2
S

(n)
ij +

1

2
[S

(1)
ij +

∑
j

Fij(S
(1)
i , S

(1)
j ))]

Quadrature rule

For a Runge-Kutta of second order, we use a fourth order Gauss quadrature to
evaluate the edge fluxes.∫ 1/2

−1/2

f(x)dx =
1

2
[f(
−1

2
√

3
) + f(

1

2
√

3
)] (2.9)

Which for fluxes in x-direction becomes

Fi±1/2,j(t) =
1

2
[F(Q(xi±1/2, yj+α, t)) + F(Q(xi±1/2, yj−α, t))] (2.10)

Where Q(x, y, t) is the bilinear reconstruction (2.11). To obtain the point values
needed for the quadrature calculation we use a piecewise polynomial reconstruc-
tion.

Bilinear reconstruction

Because the Gaussian quadrature requires flux point values at the integration
points for the rule, we need to reconstruct these point values through a piecewise
polynomial reconstructions. In our case we use bilinear reconstruction.

Q(x, y, t) = Qn
ij + sxij(x− xi) + syij(y − yj) (2.11)
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The slope values sxij and syij are obtained from one-sided differences (slopes) based
on the neighbouring cells. Note that the bilinear reconstruction becomes a trilinear
reconstruction when we move from two dimensions to three dimensions.

To avoid introducing oscillations at discontinuities and local extremal points,
one-sided slope estimates are averaged using a nonlinear limiter function. This
gives

∆xsxij = φ(Qn
ij −Qn

i−1,j, Q
n
i+1,j −Qn

ij) (2.12)

∆ysyij = φ(Qn
ij −Qn

i,j−1, Q
n
i,j+1 −Qn

ij) (2.13)

where the limiter function φ is written as

MM(a, b) =
1

2
(sgn(a) + sgn(b))min(|a|, |b|) (2.14)

=


0, if ab ≤ 0,

a, if |a| < |b| and ab > 0,

b, if |b| < |a| and ab > 0,

(2.15)
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2.4.6 Corner-point grid

Modern geological 3D models use a geometrical scheme called corner-point grid.
These grid models are very agile and gives a very good representation of subsur-
face geology.

As described Aarnes et. al[2] the corner-point grid is constructed by inserting
vertical pillars into the reservoir. These pillars are aligned as a Cartesian grid with
one pillar in each point. Horizontal layers are then assigned to each sedimentary
bed. The structure of a corner-point grid is depicted in Figure 2.8.

Figure 2.8: A corner-point grid viewed from the side. Taken from[2]

Reservoir simulation in this grid format can easily become a very complex
operation. The problem we face when implementing a simple corner-point simu-
lation on GPU, is the fact that cells have a varying number of neighbouring cells.
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Implementation

When exploring the use of GPU for a reservoir flow simulation, we have looked
at several different topics that are interesting in this area. These topics are coop-
eration between CPU and GPU or heterogeneous computing, how to implement
corner-point grids on the GPU, and a high resolution scheme to really demonstrate
the power of the GPU. In this chapter we will describe the different prototype im-
plementations.

3.1 The basic prototype model

The basic model is a 3D Cartesian grid, in which each cell has exactly six neigh-
bours, the flux values are initialized at execution start and remain constant through-
out the entire simulation time. The porosity can be set homogeneous, which means
it is the same value in all cells, or it can be loaded from a binary file at execution
start. The Entire grid is initialized with zero saturation. ∆t, can be specified, and
it will remain constant throughout the simulation. When ∆t is not specified the
solver will calculate a ∆t from the CFL condition. When all the data is loaded
into main memory it is copied to the GPU.
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3.1.1 Memory scheme

The different values saturation, porosity, and flux are arranged in separate arrays,
which again are arranged in three dimensions for easy indexing. The exception
here is the flux, where each cell has six values, which we can cut down to three
to avoid duplication. These three values are then again split into three different
arrays, one for fluxes in x-direction, one for y-direction and one for z-direction.
The saturation array is also padded with zero-values on all the edges of the grid.
This is to avoid out-of-bounds errors when doing stencil operations.

The arrays on the GPU are bound to 3D texture references which provides
caching to reduce latency, and the indexing becomes easier as a texture fetch op-
eration for 3D textures uses coordinates as argument and not the array index. This
is shown in Figure 3.1.

3.1.2 Initializing for GPU execution

The initialization splits the entire grid into equally sized thread blocks. This is
because a kernel grid on the GPU cannot have thread blocks with varying sizes.
To accommodate some of the recommendations for optimizations, such as having
several active blocks per GPU core, the size of the blocks cannot be any larger than
4x4x4. This value is found through a simple equation from the CUDA manual
[18]. By taking into account how much shared data each block needs, how many
registers each thread occupies, and how many registers are available per core, we
calculate how many blocks can occupy a core at any given time.

We found that the most effective way to deal with a grid that do not fit a
4x4x4 block kernel is to pad the grid with extra cells. This will result in some
threads that don’t do any relevant work. However the only other way to deal with
this problem is to split the grid into different subgrids and having various block
sizes in separate kernels. This approach proved to introduce more overhead than
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a padding approach.

We want to limit data transfers between GPU global memory and GPU cores.
By keeping the thread block as a perfectly sized cube in the grid, the amount of
data that can be shared between threads in a block is maximized and the amount of
total transmissions between global memory and core registers is minimized. This
is because neighbouring cells rely upon each others data when doing the stencil
calculations.

The saturation data is loaded as a block of 6x6x6 items. Note here that the
saturation has a padding of one around the original thread block of 4x4x4. This
padding is required when the stencil is computed. The fluxes are loaded as blocks
of 5x4x4 for fluxes in x-direction, 4x5x4 for fluxes in y-direction and 4x4x5 for
fluxes in z-direction. These blocks of data reside in shared memory. This is bene-
ficial because neighbouring threads will need access to saturation data from neigh-
bouring cells, and the flux is always shared between two cells, with the exception
of boundary fluxes.

3.1.3 Computations

The main computing kernel on the GPU iterates the saturation values one timestep
forward for each time it is executed. Each block preloads the data that is needed
within each block, and then the computation is performed before the answer is
written back to global memory. Each thread in a block is responsible for one cell
and the stencil operation for that cell. The main computing part of the kernel is
shown in Figure 3.1.

Before this part of the kernel can be executed, all the data is loaded from global
memory to shared memory. This way, the data that is accessed multiple times does
not require more than one global memory fetch. Shared memory is very limited
and so not all data can be loaded to this area. The data that is most beneficial
to preload in this manner is data that is accessed several times by different cells.
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We also have to remember that data is only shared within each thread block. This
makes the data required for the stencil calculations ideal for shared memory, be-
cause cells that are in close proximity to each other will have a high probability of
being in the same thread block.

//Calculate flows over all edges in cell
//sat[] and flux[] are preloaded blocks of data

//Calculate flow in x direction
float flowX =
edgeFlow (fluxX [ (threadIdx .x )∗ (bz )∗ (by ) + (threadIdx .y )∗ (bz )+threadIdx .z ] ,
fluxX [ (threadIdx .x+1)∗ (bz )∗ (by ) + (threadIdx .y )∗ (bz )+threadIdx .z ] ,
sat [ (threadIdx .x+1)∗ (bz+2)∗ (by+2)+(threadIdx .y+1)∗ (bz+2)+threadIdx .z+ 1] ,
sat [ (threadIdx .x )∗ (bz+2)∗ (by+2)+(threadIdx .y+1)∗ (bz+2)+threadIdx .z+ 1] ,
sat [ (threadIdx .x+2)∗ (bz+2)∗ (by+2)+(threadIdx .y+1)∗ (bz+2)+threadIdx .z+ 1 ] ) ;

//Calculate flow in y direction
float flowY =
edgeFlow (fluxY [ (threadIdx .x )∗ (bz )∗ (by+1)+(threadIdx .y )∗ (bz )+threadIdx .z ] ,
fluxY [ (threadIdx .x )∗ (bz )∗ (by+1)+(threadIdx .y+1)∗ (bz )+threadIdx .z ] ,
sat [ (threadIdx .x+1)∗ (bz+2)∗ (by+2)+(threadIdx .y+1)∗ (bz+2)+threadIdx .z+ 1] ,
sat [ (threadIdx .x+1)∗ (bz+2)∗ (by+2)+(threadIdx .y )∗ (bz+2)+threadIdx .z+1 ] ,
sat [ (threadIdx .x+1)∗ (bz+2)∗ (by+2)+(threadIdx .y+2)∗ (bz+2)+threadIdx .z+ 1 ] ) ;

//Calculate flow in z direction
float flowZ =
edgeFlow (fluxZ [ (threadIdx .x )∗ (bz+1)∗ (by ) + (threadIdx .y )∗ (bz+1)+threadIdx .z ] ,
fluxZ [ (threadIdx .x )∗ (bz+1)∗ (by ) + (threadIdx .y )∗ (bz+1)+threadIdx .z+1 ] ,
sat [ (threadIdx .x+1)∗ (bz+2)∗ (by+2)+(threadIdx .y+1)∗ (bz+2)+threadIdx .z+ 1] ,
sat [ (threadIdx .x+1)∗ (bz+2)∗ (by+2)+(threadIdx .y+1)∗ (bz+2)+threadIdx .z ] ,
sat [ (threadIdx .x+1)∗ (bz+2)∗ (by+2)+(threadIdx .y+1)∗ (bz+2)+threadIdx .z+ 2 ] ) ;

float dXdYdZ = 0 . 5f ;
float porosity = dt [ 0 ] / tex3D (por3DTexRef ,bidx∗bx+x ,bidy∗by+y ,bidz∗bz+z ) ;
float q = 0 . 0f ;

//Calculate stencil
float stencil = q + dXdYdZ∗flowX + dXdYdZ∗flowY + dXdYdZ∗flowZ ;

//Calculate result
float result =
sat [ (threadIdx .x+1)∗ (bz+2)∗ (by+2)+(threadIdx .y+1)∗ (bz+2)+threadIdx .z+1] +
porosity∗stencil ;

//Write result to global memory
globalMemory [myCellAddress ] = result ;

Figure 3.1: Code extract from the main kernel
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3.2 CPU - GPU: Heterogeneous prototype

During a reservoir simulation the pressure will change over time and thus chang-
ing the flow properties in the system. This change is calculated with a pressure
solver that takes saturation and various properties like permeability and porosity
as input and solves a system of equations. The result is a field of flux values that
are used when evolving the simulation. The common way to arrange this is to
solve pressure, then solve transport for a set time duration, before updating with
new pressure values, see Figure 3.2. The time duration between each pressure
should ideally be one transport step, but this is not feasible because pressure is
expensive to solve. Therefore the time can vary from a day to a year in simulation
time between each pressure step.

Figure 3.2: This figure shows how the pressure and transport is computed in a
homogeneous computing model, where only the CPU is used.

When we free up the CPU by using the GPU instead we can solve pressure
simultaneously with transport, known as heterogeneous computing. The downside
is that the pressure will lag behind. When pressure is solved for a given time,
the GPU simultaneously solves transport for that time. The lag will therefore
be exactly one pressure step. We use an inhouse-developed pressure solver and
link it with our GPU transport solver. To exchange data we write to binary files
and signal with environment variables. This is not the ideal way, but it holds to
demonstrate the concept.

The timelag introduced can give rise to some deviations in the final results.
We address this issue in the our numerical tests described in Section 3.5.3.
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Figure 3.3: This figure shows how the CPU and GPU work in relation to each
other in a heterogeneous computing model.

3.2.1 Computing CFL

In the heterogeneous model we need to recalculate ∆t each time we update with
new flux values. To speed up this calculation we use the GPU.

The calculations required needs to be performed for each cell in the grid. Fig-
ure 3.4 shows the setup of this kernel. We split the grid up as in the compute
kernel and each cell then calculates what the ideal value for ∆t is. This calcula-
tion is, as seen in Equation 2.8, based on the flow through the cell. The kernel
then returns an array with equal size to the grid. We then do an all-reduce with
the min() operator on this array. The result is what the maximum size for ∆t can
be. The reduce function is provided by the cudpp library[7], which is a library
containing scan primitives such as bitonic search and reduce functions for CUDA.
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// The CUDA internal variables have been renamed with the following scheme:
// bidx is blockIdx.x
// bx is blockDim.x
// x is threadIdx.x

// Load all flux values for each cell through texture references
float fluxX0 = tex3D (fluxX3TexRef ,bidx∗bx+x ,bidy∗by+y ,bidz∗bz+z ) ;
float fluxX1 = tex3D (fluxX3TexRef ,bidx∗bx+x+1 ,bidy∗by+y ,bidz∗bz+z ) ;
float fluxY0 = tex3D (fluxY3TexRef ,bidx∗bx+x ,bidy∗by+y ,bidz∗bz+z ) ;
float fluxY1 = tex3D (fluxY3TexRef ,bidx∗bx+x ,bidy∗by+y+1 ,bidz∗bz+z ) ;
float fluxZ0 = tex3D (fluxZ3TexRef ,bidx∗bx+x ,bidy∗by+y ,bidz∗bz+z ) ;
float fluxZ1 = tex3D (fluxZ3TexRef ,bidx∗bx+x ,bidy∗by+y ,bidz∗bz+z+ 1 ) ;

// Load porosity through texture reference
float porosity = tex3D (por3DTexRef ,bidx∗bx+x ,bidy∗by+y ,bidz∗bz+z ) ;

float f = 2 . 0f ;

float fluxin = fabs (fluxX0 ) + fabs (fluxX1 ) +
fabs (fluxY0 ) + fabs (fluxY1 ) + fabs (fluxZ0 ) + fabs (fluxZ1 ) ;

// The total flow into the cell is the sum of all flows divided by 2
// (Equal amounts flow into and out of the cell)
fluxin /= 2 . 0f ;

// The cells ideal dt is the void volume (prorsity)
// divided by how much flow through the cell multiplied with
// max inclination (derivative) of fractional flow
float myDtValue = porosity / ( fmax (fluxin , 0 . 0 0 0 0 1f )∗f ) ;

// The answer is multiplied with a safety factor (usually 0.9)
// and written to global memory.
// Note that myCellId is calculated from grid dimension sizes,
// block dimension sizes and thread id (not shown in here).
output [myCellID ] = floor (value∗safety ) ;

Figure 3.4: Code extract from the kernel calculating the ideal ∆t in each cell.

3.3 Corner-point grid prototype

The corner-point grid solver requires a total re-write from the Cartesian grid
solver. The Cartesian grid solver is hard-coded to handle cells with exactly six
neighbours. The irregular grid prototype will need to adapt each thread to handle
its edges which can vary in number from cell to cell. In addition the data needs to
be structured differently.
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Instead of having one kernel with one thread per cell, we now use two separate
kernels, where one is one-thread-per-edge and the other is one-thread-per-cell. We
need each cell thread to collect all the edge values that belongs to that cell. The
only way found to do this, was to create a mapping index that maps each cell to
all its edges. This increases the amount of memory required, and also the amount
of data that needs to be transferred between the GPUs cores and global memory.

In this model, we loose a lot of the GPU memory transfer optimizations. It is
difficult to structure data to achieve coalesced access, or to minimize transfers by
grouping cells in close proximity to each other together in blocks. This is because
the amount of data per cell can vary and there is no way of varying shared memory
on a per block basis.

On the GPU, we have very limited possibility when it comes to data struc-
tures. Writing to a pointer-based data structure such as a graph, tree, or stack is
completely impossible, because race conditions would occur and threads would
overwrite each other. We can read from these structures, but it will be very inef-
ficient to find values by traversing the structure following the pointers. Therefore
the best way is to construct non dynamic structures where you always know where
the data is. Even if this requires more memory.

In our implementation the relation from an edge to its two cells is mapped by
having two arrays containing cell ids, where the array index is the edge id. One of
the arrays contain all the cells on the positive sides of the edges, while the other
contains the cells on the negative sides. The positive side of a edge has its normal
in the axis positive direction while the negative side has its normal in axis negative
direction.

We also generate two arrays for a cell-to-edge relation. One array of int2
contains an index for where the edges for this cell can be found and how many
edges the cell has. Then the second array lists out all the edges for each cell. This
gives us a good deal of data duplication because all the edges are listed twice in
this array.
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__global__ void
calculateCellSaturations (float ∗saturation1 , float dt )
{

int cellID = threadIdx .x+blockDim .x∗blockIdx .x ;

int2 edgeTablePointer = tex1Dfetch (pointersToEdgeTableTex , cellID ) ;
float myCellValue = 0 ;

// Loop for summing up the edge flows
for (int i = edgeTablePointer .x ; i < edgeTablePointer .y+edgeTablePointer .x ; i++)
{

int edgeID = tex1Dfetch (edgeTableTex , i ) ;
int posFace = tex1Dfetch (posCellIDTex , edgeID ) ;
int negFace = tex1Dfetch (negCellIDTex , edgeID ) ;
float flow = tex1Dfetch (flowTex , edgeID ) ;

if (posFace == cellID )
myCellValue += flow ;

if (negFace == cellID )
myCellValue −= flow ;

}

// The rest of the kernel is similar to the general version

float porosity = dt /tex1Dfetch (porosityTex ,cellID ) ;
float q = 0 . 0f ;

float stencil = myCellValue−q ;
float localSaturation = tex1Dfetch (saturation0Tex , cellID ) ;

float result = localSaturation + porosity∗stencil ;

saturation1 [cellID ] = result ;
}

Figure 3.5: The second kernel from the corner-point grid calculation. Here all the
edge flows are summed up

During execution we first launch a kernel that calculates the flow over each
edge, by using its own flux and the saturation values for the two cells related to
that edge. Next we execute a kernel that for each cell loops through all its edges
and sums up the flow values to generate the stencil. This is shown in Figure 3.5.
The loop cannot be split up into different threads, which is common in the CUDA
API. This would create race conditions.

In a SIMD architecture like a GPU all the threads in a warp finishes at the
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same time. When we use a loop of unknown length all the threads in a warp will
have to wait for the thread with the most loop iterations. This can potentially slow
down the kernel if many of the thread warps contains threads where many loop
iterations are needed. In our case cells with high amounts of edges will lead to
this effect. Especially if the grid system contains sparsely distributed cells with
many edges.

3.4 High resolution prototype

The high resolution scheme is a lot more demanding in terms of memory and
computations per kernel than the general scheme. In order to not exceed some of
the hardware limitations we had to split the computation into several steps.

We split the Runge-Kutta stages into separate parts, and we also split out the
bilinear reconstruction to a separate kernel. To evolve the simulation one step we
then need to execute four kernels.

__device__ float minMod (float a , float b )
{

int signa = a == 0 ? 0 : 1−2∗signbit (a ) ;
int signb = b == 0 ? 0 : 1−2∗signbit (b ) ;
float res = fmin (fabs (a ) ,fabs (b ) ) ;
return res∗ (signa+signb ) ∗ 0 . 5 ;

}

Figure 3.6: Code extract showing the limiter function

For the bilinear reconstruction, seen in Figure 3.7, we load 8x8x8 blocks of
saturation values and reconstruct the three component gradient using 6x6x6 blocks
of threads. These vectors are written to global memory. We then proceed to
compute the Runge-Kutta step. This is done with thread blocks of size 4x4x4. We
use the preloading to shared memory technique explained in Section 3.1.2 to load
flux values, saturation values and the gradient vectors padded with a boundary of
one as in Section 3.1.2.
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// The buffer zone is accounted for
int x = threadIdx .x+1;
int y = threadIdx .y+1;
int z = threadIdx .z+1;

// Gradient reconstruction in x-direction
float rx =
minMod (sat [ (x )∗ (blockDim .z+2)∗ (blockDim .y+2)+(y )∗ (blockDim .z+2)+z]−

sat [ (x−1)∗(blockDim .z+2)∗ (blockDim .y+2)+(y )∗ (blockDim .z+2)+z ] ,
sat [ (x+1)∗ (blockDim .z+2)∗ (blockDim .y+2)+(y )∗ (blockDim .z+2)+z]−
sat [ (x )∗ (blockDim .z+2)∗ (blockDim .y+2)+(y )∗ (blockDim .z+2)+z ] ) ;

// Gradient reconstruction in y-direction
float ry =
minMod (sat [ (x )∗ (blockDim .z+2)∗ (blockDim .y+2)+(y )∗ (blockDim .z+2)+z]−

sat [ (x )∗ (blockDim .z+2)∗ (blockDim .y+2)+(y−1)∗(blockDim .z+2)+z ] ,
sat [ (x )∗ (blockDim .z+2)∗ (blockDim .y+2)+(y+1)∗ (blockDim .z+2)+z]−
sat [ (x )∗ (blockDim .z+2)∗ (blockDim .y+2)+(y )∗ (blockDim .z+2)+z ] ) ;

// Gradient reconstruction in z-direction
float rz =
minMod (sat [ (x )∗ (blockDim .z+2)∗ (blockDim .y+2)+(y )∗ (blockDim .z+2)+z]−

sat [ (x )∗ (blockDim .z+2)∗ (blockDim .y+2)+(y )∗ (blockDim .z+2)+z−1] ,
sat [ (x )∗ (blockDim .z+2)∗ (blockDim .y+2)+(y )∗ (blockDim .z+2)+z+1]−
sat [ (x )∗ (blockDim .z+2)∗ (blockDim .y+2)+(y )∗ (blockDim .z+2)+z ] ) ;

Figure 3.7: Code extract from the kernel calculating the slope gradient between
cells. Notice how the limiter function minMod is used to control the values

The point reconstructions have to be done in separate functions for each edge.
This means that each cell executes six different reconstruction functions before the
stencil is summed up and written back to global memory. The point reconstruction
for edge x0 can be seen in Figure 3.8.
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#define I VALUE 0.2886751346 f

__device__ float
CUW_X0 (float sat0 , float sat1 , float4 grad0 , float4 grad1 , float flux )
{

//x-1
float fl = 0 . 2 5f∗ (
fractionalFlow (sat0+grad0 .x∗0 .5f+grad0 .y∗I_VALUE+grad0 .z∗I_VALUE )+
fractionalFlow (sat0+grad0 .x∗0 .5f−grad0 .y∗I_VALUE+grad0 .z∗I_VALUE )+
fractionalFlow (sat0+grad0 .x∗0 .5f+grad0 .y∗I_VALUE−grad0 .z∗I_VALUE )+
fractionalFlow (sat0+grad0 .x∗0 .5f−grad0 .y∗I_VALUE−grad0 .z∗I_VALUE ) ) ;

//x
float fr = 0 . 2 5f∗ (
fractionalFlow (sat1−grad1 .x∗0 .5f+grad1 .y∗I_VALUE+grad1 .z∗I_VALUE )+
fractionalFlow (sat1−grad1 .x∗0 .5f−grad1 .y∗I_VALUE+grad1 .z∗I_VALUE )+
fractionalFlow (sat1−grad1 .x∗0 .5f+grad1 .y∗I_VALUE−grad1 .z∗I_VALUE )+
fractionalFlow (sat1−grad1 .x∗0 .5f−grad1 .y∗I_VALUE−grad1 .z∗I_VALUE ) ) ;

return fmin (flux , 0 )∗fr+fmax (flux , 0 )∗fl ;
}

Figure 3.8: Code extract from the kernel reconstructing edgepoint values with the
bilinear reconstructed gradient

The bilinear reconstruction and the Runge-Kutta step is done twice (second-
order RK) for each transport stage.

3.4.1 CPU prototypes

For all the GPU prototypes we also made an equal CPU prototype. These proto-
types where used for comparison in all of our tests. The CPU prototype was made
as a template so that it was easy to switch between single and double precision.
We also used OpenMP to split the most computationally demanding for-loops into
threads.
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3.5 Testing

We tested the different prototypes for both computing speed and the accuracy of
results. This section explains the different testing techniques and parameters.

3.5.1 Test platform

Tables 3.1 and 3.2 give a description of the hardware used during testing.

Table 3.1: Desktop specifications

CPU Intel i7 920@ 2.67GHz
Memory 6Gb DDR3 RAM
GPU GeForce 260 XFX

Table 3.2: GPU specifications

Core clock frequency 1.24GHz
Number of multiprocessors 27
Number of cores 216
Global memory 1Gb
Max block size 512x512x64
Max threads per block 512
Registers per block 16384

3.5.2 Performance testing

All of the prototypes where measured for computing time per timestep computed.
This was done by a simple timer that was started at the beginning of a computing
step and stopped when the step was finished. The total compute time accumulated
was averaged over the number of steps we had computed.
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Today CPUs with two and four cores are common in desktop PCs and we
therefore ran tests where only one core was used and tests where we used OpenMP
to use all the cores simultaneously. The testing platform was, as seen in table
3.1, equipped with an iCore 920, which with its four cores and hyper-threading
technology is ideal for multi-threaded computing.

The performance tests where performed using the SPE10[6] comparative dataset
with zero-flow boundaries, production in cell 0 and injection in the last cell of
layer one (cell 60x220x1). We ran tests using one layer, ten layers and all layers
(85).

3.5.3 Numerical testing

To verify that the prototype solvers produced accurate results, we performed sev-
eral numerical tests to prove our claims.

Accuracy testing

Hagen et. al[11] demonstrate that the results from a single precision solver of the
shallow-water equation to a double precision solver does not differ higher than in
the 6th to 7th digit. This is a good indication, and our flow simulation should not
produce results far from these.

To test this we do a l∞ norm calculation of our single precision GPU solver
compared to a double precision CPU solver. We use the general prototype in these
tests. The error values that we measure here should be equal across the different
prototypes.

The l∞ norm error calculation is expressed as the maximum value across vec-
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tor X:

X =


x0

x1

...
xn

 (3.1)

|X|∞ = max
i
|xi| (3.2)

Where xi is the difference between the double and single precision value of
cell i.

We measure the difference at pressure update. Pressure was set to follow sim-
ulation time. This means that if we update pressure every second day, we simulate
two days of transport between each update. This way all the measurements should
be as equal in value as possible when the conditions are equal.

We also do numerical comparisons between float an double precision where
we eliminate as many factors as possible that can affect the final result. We use a
constant flux field by cutting out the pressure solver completely and manually set
the flux value. We make sure that the measurements are done at the place in time
where a pressure update should have been if we had used a pressure solver. We
also set a constant porosity.

Heterogeneous model

For the heterogeneous model, we needed to to verify that the time shift we intro-
duced between the pressure solver and the transport solver would not add signif-
icant errors in the results. We therefore ran several tests where we checked how
the results were affected. We looked at how the final results was influenced with
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various time lag between pressure and transport. We also tried different viscosities
to see how this could affect the result.

The measurements was performed in the production well. This is the point
where fluids leave the system. We measure the saturation in this cell and plots the
values over time. Measurements were performed at every pressure update. We
used 64x64 grid with quarter-five spot well setup. This means a injection in lower
left corner and production in upper right corner, with zero flow boundaries. We
also ran tests through layer one of SPE10[6].
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Test results

4.1 Performance test results

The performance tests of the prototype solvers are presented in this section.

4.1.1 General prototype solver

Table 4.1: General prototype performance results

Grid size Solver Computing time Speedup
60x220x1 Serial CPU 0.9ms 1.0x

Threaded CPU 1.2ms 0.7x
GPU 0.8ms 1.1x

60x220x10 Serial CPU 11.5ms 1.0x
Threaded CPU 5.2ms 2.2x

GPU 2.0ms 5.7x
60x220x85 Serial CPU 76.8ms 1.0x

Threaded CPU 30.8ms 2.5x
GPU 8.0ms 9.6x
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We see from results presented in Table 4.1 that the GPU provides a significant
performance increase. What we especially notice is that the GPU becomes more
and more effective, compared to the CPU, as the problem grows. As explained
in Section 3.5.2, the results presented here are averaged values of computing time
per timestep.

4.1.2 High resolution solver

Table 4.2: High resolution prototype performance results

Grid size Solver Computing time Speedup
60x220x1 Serial CPU 24.6ms 1.0x

Threaded CPU 23.6ms 1.0x
GPU 9.9ms 2.4x

60x220x10 Serial CPU 147.5ms 1.0x
Threaded CPU 60.4ms 2.4x

GPU 19.0ms 7.8x
60x220x85 Serial CPU 1179.2ms 1.0x

Threaded CPU 355.4ms 3.3x
GPU 100.9ms 11.7x

We see in Table 4.2 that the performance increase for the higher solution
scheme is even better than what we observed for the general scheme in Table 4.1.
The high resolution scheme requires more computations per cell so this difference
was expected.
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4.2 Numerical test results

4.2.1 Heterogeneous prototype
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Figure 4.1: The plots show how the heterogeneous solver diverges from the serial
solver as the window between each pressure solve is widened. This simulated in a
homogeneous quarter five spot 64x64 grid. Note that ∆t is the time between each
pressure update.

The heterogeneous versus serial comparison test produced results close to
what we expected. As seen in figure 4.1 the plots are equal in shape, but as the
window between each pressure solve is widened they will start to diverge slightly
from each other. The lag in pressure directly affects the speed of the front. When
the window becomes too large, the two different fronts will arrive at the produc-
tion well at different times. Figure 4.2 shows this effect even better, where we
simulate flow through the first layer of the SPE 10 comparative dataset[20].

We see from the plots in Figure 4.3 that the heterogeneous version can intro-
duce error if the viscosity of the injected phase becomes higher than the displaced
phase. Here the timestep between each pressure solve is coarse, so we can reduce
the time window between pressure updates to dampen this effect.
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Figure 4.2: The plots show how flow differ between different pressure timesteps.
This is simulated in layer one of the SPE10 comparative dataset. Note that ∆t is
the time between each pressure update.
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Figure 4.3: The plots show how the heterogeneous solver diverges from the serial
solver as the viscosity ratio between fluids changes. This simulated in a homoge-
neous quarter five spot 64x64 grid
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4.2.2 Double-precision versus single-precision

Here we present the results for the numerical tests that we performed to compare
double versus single precision.
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Figure 4.4: The plots show the max difference between single and double preci-
sion solvers.

In Figure 4.4 the dotted lines are homogeneous solvers with constant porosity
and flux. The red line shows the max error between single and double precision
solvers for layer one in SPE10. Notice how the size of ∆t (the size of each trans-
port step) is the determining factor that decides how fast the error accumulates.
This is important because when going from using double precision to single pre-
cision the amount of timesteps that can be computed, before a significant error
accumulates, is reduced. A double precision solver can run more steps because
the the error added per timestep is many times smaller due to increased precision
in the arithmetic operations.
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In Figure 4.5 we see how a CPU single precision solver differ from a GPU
singler precision solver. We see that the difference is no more than 10−6. This
error is to be expected because of different hardware implementations of the IEEE-
754 floating point standard.
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Figure 4.5: The plot show the max difference between a CPU single precision
solver and a GPU single precision solver.

4.2.3 Mixed precision

To solve the error that arises from the use single precision instead of double pre-
cision Göddeke et. al[8][9] proposes a mixed precision scheme, where double
precision is used some places to cancel out the most error contributing factors.
We can test this out by doing some simple changes in our CPU implementation.
We then run the saturation as double precision where the stencil and old saturation
values are added in double precision.

As Figure 4.6 shows, this has an extremely positive effect. We reduce the
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error by several orders of magnitude. The difference between mixed precision
and double precision is smaller than the GPU to CPU single precision error.
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Figure 4.6: The plot show the max difference between a mixed precision solver
and a double precision solver referenced against the GPU vs single precision error
plot

The reason for this positive effect is that a small difference occur between
the single and double precision solvers when the saturation values of the stencil
computation is added together with the local cells old value. This error is removed
when the saturation values are kept in double precision.

4.3 Corner-point grid prototype

The corner-point grid prototype was not tested extensively. We ran a corner-point
format grid, that contained no irregularities, to verify that the prototype functioned
correctly. The prototype worked correctly and it performed surprisingly well. On
a 60x220x1 grid, it performed equally with the general prototype.
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We do expect it to not perform this well when the grid becomes more irregular,
but we did not have the chance to test this.

61



Chapter 5

Discussion

5.1 Results

In this section we will discuss the various results we obtained during testing. And
we will also discuss the implementations and further work that can be done to
improve them.

5.1.1 Performance

From our results we see that the CPU is able to keep up with the GPU when the
problem size is small, but as the number of cells is increased the GPU performs
more effectively. This is especially true for the high resolution model which is
highly demanding in terms of flops.

We believe that the computing speed ratio between CPU and GPU will con-
tinue to grow proportionally with the problem size. This will continue until the
problem size overflows the global memory of the GPU. When this happens we
have to start swapping between host memory and global memory and this will
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probably create a drop in performance.

We have not spent time on fine tuning and optimizations so we believe the
performance of the GPU solvers can be increased even more. Especially the high
resolution prototype should be possible to speed up more. This prototype takes up
a lot of registers on the GPUs cores and so, parts of it is pushed to local memory.
This is not ideal and should be avoided to get good performance.

We now use a lot of time to preload data into the GPUs cores. We have not had
the chance to test if this preloading leads to more overhead than the time saved by
reducing global memory fetches. There might be ways to avoid the preloading and
only fetch data when needed that runs faster than our prototypes. The argument
behind this theory is that the prefetching takes up so many registers in the kernel
that the number of active blocks per core becomes significantly reduced.

On the other hand, by not preloading data into shared memory all the threads
would have to fetch its own data, and could not rely on other threads sharing
their data. This would at least quadruple the amount of memory fetches, but
since not all the threads are involved in the preloading routine it would not add
more operations per thread. It could however, add time in the form of latency.
If not done correctly to avoid most of the latency, this could potentially create a
bottleneck where a lot of time goes into waiting for memory fetches.

5.1.2 Precision

Our results show that a CPU single precision solver and a GPU single precision
solver does not differ more than what we expected. Due to some different imple-
mentations of the float standard in the GPU hardware, they can differ by 10−7.

Comparing against double precision also gives expected results. These results
show that the number of timesteps computed on a GPU will have to be reduced
compared against a double precision solver. This is because the iterative transport
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solver will give a difference in accuracy between single and double precision. This
will, over enough time steps, accumulate up to a difference which is unacceptable.
We should also point out that this same effect exist while using double precision,
compared against the actual real solution. However, here the added error each step
is many orders of magnitude smaller. A double precision solver can therefore run
more timesteps than a single precision solver without accumulating this error.

This error should however, be possible to correct. By running an algorithm at
regular intervals it should be possible to restore the single precision result to match
the double precision result. We try a slightly different approach and test a mixed
precision method, which almost eliminates this accumulation error all together.

By keeping the saturation values in double precision and doing the summation
of the stencil in double precision, we get a very satisfying result which is well
within the tolerance threshold. However A GPU implementation of this scheme
does require a restructuring of the current kernel. We must keep in mind that
double precision operations on the GPU is expensive both in terms of performance
and in terms of memory requirement. Should an error correction scheme, executed
at regular intervals, prove to be equally effective, this will probably be easier to
implement and still keep the performance increases the GPU provides.

We should however, not fail to mention that double precision is still faster on
GPU than on CPU. The performance increase is smaller than single precision and
the memory footprint will be larger, but the GPU should still outperform the CPU,
though not to the same extent.

5.1.3 Heterogeneous computing model

The heterogeneous computing prototype really demonstrate what we believe is
the strongest argument for using GPUs. We can eliminate the computing time
of the pressure update almost completely. The numerical tests show that long
intervals between each pressure update, or a high water to oil viscosity rate can

64



CHAPTER 5. DISCUSSION

introduce deviations in the result when using this model. However most reservoir
simulations done today are well within these boundaries.

The viscosity rate is a variable that cannot be changed without affecting the
final results, but the pressure solve timestep can be set to a lower boundary of
one pressure step per transport step. The only thing this will affect is that the
simulation will need more computation time. Therefore if a high water to oil
viscosity rate is needed, it is possible to compensate for the deviation by reducing
the time window between each pressure solve.

5.2 Further development

There are still many aspects of reservoir flow simulation that needs to be tested
further on the GPU. We leave many of the aspects of flow simulation totally un-
explored. These aspects vary from introducing gravity into the model, to multi-
component flow, and further exploration and testing of corner-point grids.

5.2.1 Gravity

Gravity introduces a good deal of extra arithmetic operations and we believe that
this could further increase the performance gap between the GPU and the CPU.
While both will get a negative impact in performance , the CPU is much less able
to tolerate such increases in operations per cell.

5.2.2 Corner-point grid

Our study of the corner-point grid implementation should be extended. We only
had the chance to develop a simple prototype with the most general computation
methods. It would be interesting to see if a high resolution corner-point scheme is
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even possible to implement on a GPU. We would also like to see more study into
how the performance is affected as the grid becomes more irregular.

The corner-point grid prototype is not well optimized with its large indexing
tables. We would like to see more work being done to find ways to make use of
CUDAs shared memory for the corner-point grid implementation. We have intro-
duced a lot of memory fetching in order to solve the cell to edge and edge to cell
relation. Some of these fetches can probably be avoided with better structuring of
memory tables.

5.2.3 Multi-component flow

Multi-component flow is another feature that should be looked into and tested.
Most of the industrial flow simulations requires two or three component systems
(water, gas and oil). This will introduce a lot more data that need to be transferred
and processed. The shared memory will come close to reaching its limit or even
overstepping it. Thus one would have to either fetch all data into registers when
needed, or do a gradual fetching procedure and switch between phases of fetching
data and processing data inside the kernel.

On the other hand, a multi-component solver requires more arithmetic opera-
tions to evaluate flux functions. This will probably aid to increase the performance
difference between the CPU and the GPU.

5.2.4 More advanced CFL condition

Another aspect that can be improved to speed up the simulation is a stronger CFL
calculation. By taking into account how much saturation a cell has and using the
slope value of fractional flow for this saturation, one could find a larger ∆t. This
would reduce the amount of steps needed, and directly speed up the simulation.
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5.2.5 Scaling

One of the areas we did not explore at all was scaling. It is easy to add more GPUs
into a system, but is it possible to run reservoir simulations across several GPUs
and still retain good performance? We have to keep in mind here that this would
require a good deal of data transfer between the GPUs.

Scaling in terms of problem size is also an area we left largely unexplored.
How many cells can the GPU handle? We assume that the computing time per
timestep will rise proportionally with the amount of cells in the system. At least
as long as global memory can hold the entire dataset. According to our tests the
CPU will have a much steeper rise in computing time than the GPU. Will this trend
hold even after GPU global memory is filled and swapping needs to be introduced
into the system?
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Conclusion

6.1 Summary of Results

Our performance tests show that the GPU quickly starts outperforming the CPU
when the problem size grows. This holds for the general prototype, and the high
resolution prototype even more so.

We see from the testing that the heterogeneous computing model works quite
well. However, there are some very specific exceptions. Large time windows
between pressure updates or high water to oil viscosity rates leads to errors in the
results. However, the viscosity issue can be compensated for by running pressure
updates more often.

From the precision testing we see that using single point precision drastically
reduces the number of timesteps we can compute before the results start to deviate.
However, we also see that the change that is needed to correct this is not very large,
and is very feasible to implement on a GPU.

68



CHAPTER 6. CONCLUSION

6.2 Conclusion

6.2.1 Performance at low cost

From our general prototype and the high resolution prototype we see that the
GPU is vastly more capable than a CPU when the computing task is of a parallel
nature. Many of the more demanding scientific simulations possess these basic
characteristics that make them so easy to split into smaller parallel tasks.

Not only does a data-parallel processor, like the GPU, provide a great perfor-
mance increase, but the parallel architecture also provides the most power efficient
computing engines that can be used in high performance computing. Todays CPU
waste a huge portion of its energy to heat emission, which again has to be re-
moved to avoid overheating of CPU and other vital components. The GPU and
other parallel architectures can avoid much of this heat generation by running at
low frequencies, and still outperform the fastest CPUs in any parallel computing
task.

6.2.2 Single vs double precision

The strongest argument against GPU accelerated simulations is its limited double
precision performance. We show that running a reservoir simulation using sin-
gle precision does not produce acceptable results when the number of iterations
computed goes up beyond 104. However, we also show that by using a mixed
precision solver, this problem is not an issue and this opens up the possibility of
using GPUs.

In addition the trend seems to be that GPUs will slowly move over to the use of
double precision as well as single precision. The performance for double precision
on GPUs today is low compared to single precision, and so most of the benefits of
using a GPU is not that high. But this will change as the need for double precision
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increases.

6.3 Contributions

We have demonstrated an implementation of a reservoir simulation on GPU, both
for a general finite volume scheme, but also for a more advanced high resolution
scheme with bilinear reconstruction of point values. Further we have tested a het-
erogeneous reservoir simulation model where we solve pressure on the CPU and
transport on the GPU. Finally we have proposed a computing model for corner-
point grids.

This work forms a solid base to build further research and work into GPU-
accelerated reservoir simulations. We have shown that the GPU is quite capable of
providing increased performance, but that some problems still needs to be solved.
We provide some insight into the the single versus double precision dilemma,
but this problem still needs more study to overcome the GPUs limited double
precision support. Our mixed precision tests show that this can be a viable solution
if it is possible to implement effectively on the GPU.
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