

Defect Reduction by improving Inspection of UML Diagrams
in the GPRS Project

A study of available techniques and “state-of-the-practice” in the GPRS project for
inspection of UML diagrams. Experimenting a suggested method to reduce defect cost by
early detection of defects.

IKT6400 – Diploma Thesis

Siv.ing. degree in
Information and Communication

 Technology

June, 2002

Geir Arne Bunde & Anders Pedersen

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 ii

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 iii

Abstract

Since UML was introduced to the software development industry, companies have
adopted this notation language into their Object-Oriented development process.

Our object in this thesis has been to evaluate the current R&I method against new reading
techniques for object oriented diagrams and models. The new techniques, OORT focuses
the inspectors in a development process on the model and help finding defects of
different character than their current R&I method.

We preformed an experiment at Ericsson together with students at NTNU, using the new
techniques. Results from it shows that the OORT’s focuses the inspectors in a
development process on the Model and help finding defects of different character than
their current R&I method. The techniques also lead the inspector to find more subtle
defects. Ericsson’s current R&I method found more defects of technical value. This
makes the two techniques complementary.

We found that the OORT inspections would fit into RUP, if the architecture-centric
approach is used. This approach sees the system as an entity, possible divided into several
sub-entities. Each entity is self-contained with a set of information that is conceptually
whole and logically complete.

OORT-inspections are not restricted to a deadline, since it is not performed because of
implementation of a new functionality. When a system entity’s functionality has been
fully or partly covered up, an OORT inspection can be performed whenever, after this
level has been reached.

As far as we can see from the results, Ericsson would profit from implementing OORT in
their inspection process. Further on, guidelines for the new technique must be developed
and more industrial experiments should be performed with the OORT’s. The OORT’s
themselves should also be generalized to fit modern Object-Oriented Development
Processes as RUP, Extreme Programming and others.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 iv

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 v

Preface

This thesis is written for Ericsson, Grimstad and is performed to complete the Master of
Science degree in Information and Communication Technology (ICT) at Agder
University College, Faculty of Engineering and Science in Grimstad, Norway.

This thesis is a part of the R&D programme “The Mobile Student”.

During the project time we were so lucky to get access to the Ericsson file system. We
had access to the GPRS model and process documentation to study the current inspection
techniques. Parts of the time we had our own workstation at Ericsson, which were very
helpful to us.

We would like to thank the GPRS project consented in doing the experiment and
PROFIT [1] (Process Improvement for IT industry) for financing the project, so we were
able to perform the experiment at Ericsson. We would like to thank Gunhild S. Lundvall
for her work in making this possible, Bjørn E. Jensen’s Team, who where the participants
of the experiment. We want to thank Reidar Conradi for his involvement, and Lars
Christian Hegde and Tayyaba Arif for their cooperation and valuable work with the new
inspection techniques.

We would also like to thank Parastoo Mohagheghi at Ericsson for her guidance and
valuable help, Jan P. Nytun at HiA for his interest in the project and his follow up during
the process and Stein Bergsmark at Ericsson for his engagement to make us work harder.

Geir Arne Bunde Anders Pedersen

Grimstad, Norway June 2002

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 vi

Contents

ABSTRACT..III
PREFACE.. V
CONTENTS..VI
1 INTRODUCTION.. 1

1.1 THESIS INTRODUCTION .. 1
1.2 WORK/TASK DESCRIPTION .. 2
1.3 LITERATURE REVIEW ... 3
1.4 REPORT OUTLINE ... 4

2 OBJECT ORIENTED READING TECHNIQUES.. 5
2.1 BACKGROUND/HISTORY .. 5
2.2 READING TECHNIQUES (OORT)... 6

2.2.1 Object oriented design ... 6
2.2.2 Horizontal and vertical reading .. 7
2.2.3 Brief description of the techniques.. 9

2.3 READING TECHNIQUES (PBR) ..10
3 STATE OF THE PRACTICE AT ERICSSON, GRIMSTAD ..12

3.1 STATE OF THE ART ...12
3.2 SOFTWARE DEVELOPMENT AT ERICSSON ..13

3.2.1 Inspection routines ...13
3.2.2 Development Process ...14
3.2.3 Requirement workflow, artifacts and structure..15
3.2.4 Analysis & Design workflow, artifacts and structure ..18

3.3 ADOPTION OF THE TECHNIQUES AT ERICSSON, GRIMSTAD ...23
3.3.1 The Inspection Process ..23
3.3.2 Classification of defects ...25
3.3.3 Inspection process guidelines ..26

3.4 OUR EXPERIENCES WITH THE PROCESS...26
3.4.1 Inspection meeting..26
3.4.2 Our evaluation of the meeting ...28

3.5 COLLECTED INSPECTION DATA ...29
3.6 ABOUT BASELINING...30

4 EXPERIMENT PREPARATIONS OVERVIEW...31
4.1 EXPERIMENT THREATS ..31

4.1.1 Conclusion Validity ..31
4.1.2 Internal Validity..31
4.1.3 Construct Validity...32
4.1.4 External Validity...33
4.1.5 Prioritize ...33
4.1.6 COPPE TR 01...33

4.2 EXPERIMENT DESIGN ..34
4.2.1 Goals ...34
4.2.2 State Variable ...34
4.2.3 Objects...34
4.2.4 Context ..34
4.2.5 Hypothesis...34

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 vii

4.2.6 Dependent Variable..35
4.2.7 Independent Variables ...35
4.2.8 Subjects ...35
4.2.9 Design Principle...35
4.2.10 Experiment Instruments ...36

4.3 ADAPTING THE READING TECHNIQUES ...36
4.3.1 Adjusting to the experiment ...36
4.3.2 Adjusting the techniques ..37
4.3.3 Adjusting defect logs ..38

4.4 PRE-EXPERIMENT SUMMARY ..41
5 EXECUTION AND RESULTS..43

5.1 EXPERIMENT PROCESS...43
5.2 RESULTS OVERVIEW ..44
5.3 VALIDITY OF RESULTS...47
5.4 COMMENTS ON THE EXPERIMENT RESULTS ..47

5.4.1 Comments on the current R&I method..47
5.4.2 Comments on the OORT method...48
5.4.3 Comments on both techniques ...49

6 DISCUSSION..50
6.1 THE EXPERIMENT ..50
6.2 READING TECHNIQUES ..53
6.3 ERICSSON CONTEXT ..53

6.3.1 Workflows ...53
6.3.2 Artifacts...54
6.3.3 Structure..54
6.3.4 Inspection..55

6.4 SUMMARY ANALYSIS ..56
7 IMPROVED INSPECTION PROCESS AND TECHNIQUES FOR USE AT ERICSSON58

7.1 INTRODUCTION ..58
7.2 DISCUSSION ...58

7.2.1 OORT, replacing current method..58
7.2.2 OORT in addition to current R&I process..60

7.3 ORGANIZING THE OORT INSPECTIONS ..64
7.4 OORT INSPECTION GUIDELINES ...65
7.5 SUMMARY ..68

8 CONCLUSION ...69
9 ABBREVIATIONS...70
10 REFERENCES ...71
APPENDIX A - THESIS DEFINITION ..73
APPENDIX B - ERICSSON BASELINING ...76
APPENDIX C – INITIAL OORT ...77
APPENDIX D – ADJUSTED OORT..92
APPENDIX E – QUESTIONNAIRE.. 109
APPENDIX F – EXPERIMENT DATA .. 111

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 1

1 Introduction

1.1 Thesis introduction

Since UML was introduced to the software development industry, companies have
adopted this notation language into their Object-Oriented development process. In
Ericsson’s case this resulted in a move from SDL to UML [2].

Software inspections are a proven concept that is much used in industry. Some defects
can not be found by testing, and defects found late are expensive to correct. Detecting
defects on an early stage in the development process will reduce the costs on rework
considerably. Thus techniques for early defect detection are needed. Software inspections
in general have not been focused on inspecting UML-diagrams, but rather textual
documents. The reading techniques used when inspecting such documents are becoming
less and less relevant for use with the Object-Oriented paradigm.

The GPRS project at Ericsson takes advantage of the Rational Unified Process [3] and
UML diagrams for requirement engineering, analysis, design and test. While the GSN
RUP adaptation describes the artifacts that should be produced in different stages of the
project life cycle, inspection of artifacts has received less attention. Ericsson’s current
R&I method, describes what defects to look for but not how to find them.

The new reading techniques that are evaluated in this Thesis, OORT (Object-Oriented
Reading Techniques), are based on traceability between diagrams/documents. These
reading techniques consist of procedural guidelines, comparing two or three
diagrams/documents with each other in order to find defects. OORT are in the early
stages, and industrial experiments are needed to find out if they fit into modern software
development processes.

During our thesis we have performed an experiment at Ericsson, comparing the two
techniques, giving a qualitative feedback on the usability of the new techniques. The
result of this thesis will be used for product and process improvement in the organization
and in association with NTNU, be part of PROFIT experiments to learn how to conduct
studies, to be able to react to challenges in the future. This thesis intend to give Ericsson
valuable input on how to improve their inspection process and how they could tailor a
new reading technique to be used with UML design.

During our work, we learned more about OO design, inspection techniques and goals, the
Rational Unified Process, performing experimental studies in the industry and analysing
the results.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 2

1.2 Work/Task description

Thesis Title: Defect reduction by Improving Inspection of UML diagrams in the GPRS
project.

Subtitle: A study of available techniques and state-of-the-practice in the GPRS project
for inspection of UML diagrams. Experimenting a suggested method to reduce defect
cost by early detection of defects.

We worked towards the thesis goals during the thesis:

? Study the inspection techniques for UML diagrams.

? Study the state-of-the-practice in the GPRS project for inspection of UML
diagrams.

? Design and conduct an experiment where the subject is to compare the existing

inspection technique in the GPRS project for UML diagrams with an assumed
improved variant.

? Based on the studies and the experiment results, suggest improvements to the

inspection techniques for UML diagrams in the GPRS project.

? Develop guidelines that may be used by reviewers during inspections.

The experiment is based on results from a pre-diploma thesis written at NTNU and an
experiment done during spring 2002 where the participants are students from a course at
NTNU. We cooperated with he students from NTNU with the design of these
experiments. The goal for us was to learn how to conduct and analyse industrial
experiments and to evaluate the suggested improvement. Participants of the experiment
were employees at Ericsson.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 3

1.3 Literature review

This section explains where information we have studied, and what is relevant for this
thesis can be found. For more specific information about articles, see the reference,
chapter 10.

To be able to get an overview of the status of object oriented modeling and reading
techniques, we have studied a number of articles, which most of them where public.
Relevant background material can be found in articles written by Travassos, Basilli,
Carver and Shull.

When we where to study the baseline at Ericsson, we had to find material concerning the
current method for review and inspections. A lot of the baseline material was found at the
Ericsson intranet, which is not public. But the materiel there is based in articles and books
about RUP [3], UML [2] and software inspection.

Concerning the experiment preformed in this thesis, we studied various papers about
experimenting and experimenting design. A lot of information about experimentation can
be found in the book “Experimentation in software engineering”, by Wholin and others
[5]. It presents an introduction to experimentation.

When it comes to the new techniques introduced in the experiment we based our studies
on the work with the OORT’s that was preformed by the NTNU students, and their
previous work with the technique, it can be found in their pre diploma thesis [6].

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 4

1.4 Report outline

Since this is an assignment for Ericsson, to improve the inspection routines, the target
group for this report is employees at Ericsson. Since we started to work with the students
at NTNU, there is also interesting for people working with software inspections, to read
this report. Other target groups can be students and engineers with basic knowledge
or/and interest of object oriented reading techniques.

First, chapter 2 is background information to introduce Object Oriented Reading
Techniques (OORT). Where we explain the background of OORT and what it is.

The next chapter explains the state of art at Ericsson today. What their routines are today
and what the inspection process is. We also sat in at an inspection meeting, which is
described in detail. Which is followed by a chapter explaining the process before an
experiment, it includes e.g. different threats in an experiment.

Then the actual experiment is presented. This is the practical part of the thesis, which
explains our process, the experiment, the results and an analysis of the results. Which is
followed by the most important chapter, at least for Ericsson, it explains our suggested
improvements which can be implemented at Ericsson, to use in their inspection routines.

And finally the conclusion; is this the way to go for Ericsson or are there are any other
methods to use.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 5

2 Object Oriented Reading Techniques

2.1 Background/history

The reading techniques were developed by Travassos, Shull and Carver at the University
of Maryland. The background was that while developers are usually taught how to write
software documents, the skills required for effective reading are rarely taught and must be
built up through experience. Reading software documents is also a key industrial activity
and research in this area seemed to be valuable.

The first experiment was conducted at the University in Maryland. The result was
presented in OOPSLA [7] from a conference in Denver, 1999.

There has been ongoing experiments and work with the reading techniques at University
of Maryland. There was conducted a survey at Oracle, Brazil, in 2001. This was the first
time for checking the techniques in an industrial setting. The results (though much of
them was held back by the company), can be found in COPPE01 [8].

Figure 2.1 – OORT’s series of experiments

There has been done some important work at NTNU by Reidar Conradi and students
Tayyaba Arif and Lars Christian Hedge. The first academically experiment was
accomplished in year 2000 by Conradi with students as subjects. The techniques were
performed on two example system designs. See Conradi01 [9] for more details. The result
of these experiments was concrete discrepancy reports from the reading techniques, but
the students also gave general comments. The comments given covered both the software
artifacts used in the experiment to test the reading techniques, and general comments on
the techniques themselves. Later on the two mentioned students performed a pre-diploma
study, with a quasi-experiment on a set of the techniques that had been structured by
Reidar Conradi. The two students made some suggestions for improvements and also
conducted another academical experiment [6], at NTNU, based on improvements with
some adaptations to the use at Ericsson.

Feasibility study

Fall/98

Pilot Study of
Observational studies

Summer/99

Observational studies

Fall/99

Case Study: Use in the
Software Process

Spring/00

OORT’s Series of Experiments

Controlled experiment: Use in the
Industrial Software Process

Checking soundness
of the idea

Checking well-
constructiveness of
techniques

Used in a software
process

Used in industrial
software process

Summer/01

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 6

The experiment at Ericsson in our diploma was preformed in cooperation with these two
students and Reidar Conradi. This is the first industrial experiment that compares an
existing model inspection method with the new OORT’s. The experiment will fit into
ISERN definition of a “level 3” experiment [10].

2.2 Reading Techniques (OORT)

2.2.1 Object oriented design
Before we learn about OORT we have to understand what Object-Oriented Design is.
SEW99 [4] describes it as “a set of diagrams concerned with the representation of real
world concepts as a collection of discrete objects that incorporate both data structure and
behavior.”

We differ between low-level and high-level design. High-level design is made after
requirements document(s) are finished. High-level design captures the requirements and
gives them a new graphical notation in an attempt to give developers understanding of the
problem. High-level design does not try to solve the problem, but that is the case with
Low-level design.

Low-level design is a model for the code. We can ensure higher quality for these
diagrams by inspecting the High-level design, since Low-level design uses the same set
of models. This will be beneficial for the (software) coders.

The set of Reading Techniques that was developed in Maryland was concerned with
UML notation and the following diagrams: class, interaction (sequence and
collaboration), state machine and package. When used at Ericsson we had to adapt the
techniques to include the models that they used in high-level design.

The original set is based on the following sources for defining High-level design [4]
(SEW99):

? A set of functional requirements that describe the concepts and services that are
necessary in the final system;

? Use cases that describe important concepts of the system (which may eventually
be represented as objects, classes, or attributes) and the services it provides;

? A class diagram (possibly divided into packages) that describes the classes of a
system and how they are associated;

? A set of class descriptions that list the classes of a system along with their
attributes and behaviors;

? Sequence diagrams that describe the classes, objects, and possibly actors of a
system and how they collaborate to capture services of the system;

? State diagrams that describe the internal states in which a particular object may
exist, and the possible transitions between those states.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 7

The figure below shows an OO software process:

 Figure 2.2 – Object oriented software process

2.2.2 Horizontal and vertical reading
The reading techniques are sets of procedural guidelines that can be followed step-by-
step by the inspectors, when going through the diagrams that accord to the specific
reading technique. The Reading techniques are namely divided into seven different
techniques, each concerned about a specific view on two or tree diagrams. These are
diagrams that are beneficial to compare with each other.

The main focus is to find defects. They were grouped into vertical or horizontal reading
techniques, where Vertical is reading of diagrams over different life cycle phases and
horizontal is in the same life cycle phase. See the figure 2.3.

 Figure 2.3 – Traceabilty between artifacts

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 8

A nice way to put the difference between horizontal and vertical reading is that horizontal
aim to identify whether all of the design artifacts are describing the same system, and that
vertical reading tries to verify whether those design artifacts represent the right system,
described by the requirements and use-cases [4]. It is not necessary to use all techniques
and it is not necessary to follow the order presented. Although it seems reasonable to use
horizontal techniques first, to ensure that a consistent system will be checked against
requirements.

Since the level of abstraction in the requirements is different than those in the design
artifacts, it could be a help to divide system functionality into three parts: Messages,
Services and Functionality. Messages represent the communication between objects that
work together to implement system behavior. Services are combinations of one or more
messages and usually capture some basic activity necessary to accomplish functionality.
Functionality is what the end-user expects to be visible.

There are two other important terminologies that tell how the functionality is to be
implemented, not only what. These are constraints and conditions. A condition describes
what must be true for the functionality to be executed. A constraint must always be true
for system functionality.

Why should we perform horizontal reading?

UML organizes their artifacts based on the perspective it’s capturing system information.
Some of the artifacts capture static information. That is; the structure assumed by objects
of the domain, when playing specific roles in the problem domain. Other artifacts capture
dynamic information. That is; the consequences when objects are asked to perform
certain tasks to accomplish system functionalities. In order to understand whether all
these artifacts represent the same system, we apply horizontal reading.

Horizontal reading covers the semantic gap between artfiacts. I.e. the differences between
a sequence diagram and a state diagram, where sequence diagram shows messages sent
between objects and the state diagram show how objects react to messages, services or
functionality.

Why should we perform vertical reading?

There is no separation of concerns, nor a direct mapping between the two phases. Vertical
reading helps the reader identify the information he or she is looking for. I.e. a sequence
diagram are organized based on messages that that work together to provide services that
compose the right functionality. The information that the designers base these decisions
upon comes from Requirements and Use-cases which do not contain messages, but only
functionality and in some cases services. In a sequence diagram that information must be
made explicit and associated with the messages. Vertical reading explores these
differences and helps the reader find faults specific types (see defect-taxonomy in next
subchapter).

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 9

Are there other benefits except from those of software quality? Yes, there are economical
benefits. Conradi99 [3] claims that Design Inspections tend to catch 2/3 of the defects
before testing, by spending 10% of the development effort and thereby saving about 20%
of the total effort (by earlier defect correction).

2.2.3 Brief description of the techniques
The techniques (complete set can be found in Appendix C):

? OORT-1 Sequence Diagram x Class Diagram (Horizontal, Static)
? OORT-2 State Diagram x Class description (Horizontal, Dynamic)
? OORT-3 Sequence Diagram x State Diagram (Horizontal, Dynamic)
? OORT-4 Class Diagram x Class Description (Horizontal, Static)
? OORT-5 Class Description x Requirements description (Vertical, Static)
? OORT-6 Sequence Diagram x Use Case Diagram (Vertical, Dynamic/Static)
? OORT-7 State Diagram x (Requirement Description and Use Case)(Vertical,

Dynamic)

Whether the techniques are static or dynamic is open for discussion.
According to the figure shown earlier, the techniques are applied in this way:

 Figure 2.4 - Object-Oriented Reading Techniques, OORT

Requirements and Use-Case diagrams are input documents to the process. They are not
inspected for discrepancies, but serve as a reference for the other documents.
Requirements inspection can be done by using PBR (Perspective Based Reading).
Each of the seven techniques has listed input and output documents, goals and
instructions on how to reach them. There is also included some examples.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 10

In the paper “Reading Techniques for OO Design Inspections” [4] it is defined the
following defect taxonomy that the reading techniques are based on:

Type of defect Description
Omission

One or more design diagrams that should contain some
concept from the general requirements or from the
requirements document do not contain a representation for
that concept.

Incorrect Fact

A design diagram contains a misrepresentation of a concept
described in the general requirements or requirements
document.

Inconsistency

A representation of a concept in one design diagram disagrees
with a representation of the same concept in either the same or
another design diagram.

Ambiguity A representation of a concept in the design is unclear, and
could cause a user of the document (developer, low-level
designer, etc.) to misinterpret or misunderstand the meaning
of the concept.

Extraneous Information

The design includes information that, while perhaps true, does
not apply to this domain and should not be included in the
design.

Table 2.1 – Defect taxonomy

2.3 Reading Techniques (PBR)

The basic goal of PBR is to examine the documentation of a logical entity from the
perspectives of the entity’s various stakeholders. An inspector using PBR therefore reads
the documentation from the perspective of a particular stakeholder in such a way as to
determine whether it satisfies the stakeholders’ particular needs. A stakeholder
perspective may be, for example, a future user of the system who wants to ensure the
completeness of the inspected analysis documents.

During the reading process, an inspector follows the instructions of a perspective-based
reading scenario (in short: scenario). A scenario tells the inspector how to go about
reading the documentation from one particular perspective and what to look for. A
scenario consists of an introduction, instructions, and questions framed together in a
procedural manner. Oliver Laitenberger [11] suggests that PBR are not only used on
textual documents, but also on graphical notations as UML diagrams.

Once an inspector has achieved an understanding of the documented information related
to the logical entity, he or she can examine and judge whether this documentation fulfils
the required quality properties. For making this judgment an inspector is supported by a
set of questions that are answered while following the instructions.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 11

Figure 2.6: Example of PBR reading: Reading from the tester’s perspective

PBR follows in general the same inspection process as the one used at Ericsson. For
tailoring the reading techniques to UP (Unified Process), it uses an Architecture-Centric
approach [12]. This is the approach we suggest, to be used if OORT are to be tailored to
RUP at Ericsson. This is discussed later in this Thesis.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 12

3 State of the practice at Ericsson, Grimstad

3.1 State of the art
In our study of object oriented inspections at Ericsson. We have gathered data and
attended an inspection meeting at Ericsson, and analyzed the process. We have covered
the inspection process they use today and written about the meeting we attended with our
views and observations. Data from old inspections have been gathered and presented.
And we have written about experimentation and some aspects we will consider in the
experiment at Ericsson.

The inspection procedures that have been adopted by Ericsson are originally developed
by Michael Fagan at IBM and so forth developed by Tom Gilb. Fagan’s Achievement
was to make statistical quality and process control methods work on ‘ideas on paper’. He
reported this in the famous paper [19] (Fagan, 1976).

 Figure 3.1 – Fagan’s inspection process [13]

The inspection consists of different phases. The figure describes a single inspection cycle
using Fagan’s method. The stages of the inspection have different inspectors and different
input and output documents.

After the kickoff, the first part of the checking is individual. Individual checking is the
most important part of the inspection. Then they have a logging meeting, where they
present the defects found, and they are categorized and logged. Then the log is handed
over to someone in charge of resolving the defects. Then the inspector leader checks that
all the defects are resolved. When the document has passed all the different stages, it exits
the inspection cycle, and is ready for the next phase.

Fagan’s original intention was to develop a method to reduce the number of defects in
produced software. He also discovered that the method would also cut cost, development

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 13

time, support and bug fix resources and generally produce software of better quality [13].
Several large companies started using this method almost right away and there have been
several enhancements of the process. Finally the techniques have been changed to meet
the needs of Ericsson.

3.2 Software Development at Ericsson

3.2.1 Inspection routines
When Ericsson talks about reviews in general, they mean both peer-reviews and
inspection. In the following we will talk about reviews in general, and state when
necessary if it is a Peer-Review or an Inspection. Ericsson in Grimstad has adopted some
of the inspection guidelines from Sweden (described in Review Guidelines, Appendix
B.III), but for the most they have their own approach. This Guidelines does anyway
describe certain factors that are not present in textual form in Grimstad, so we will have
to draw some aspects from this Guideline and comment whether this is the practice for
Grimstad or not. If Ericsson wants to strengthen their current R & I method besides what
is proposed in this thesis, it is natural for them to look in these guidelines.

A review is done after the UC analysis. The designer has made diagrams and classes of
high level abstraction, and a review is performed to see that the designer has understood
the Use Case. This is typically called an analysis phase. After that comes a Design Phase.
In RUP it is referred to as Identify Design Elements and Design Components. It results in
diagrams and design elements. A review is performed after this to see if the designer has
done a proper design.

Ericsson has either UC/scenario scope of a review or they have architectural-centric
(subsystem) scope. A sub-system scope could include several UC’s. UC/Scenario scope
is used in UC realization reviews. They are easy to plan (iteration plan), but could be
more difficult if the Use Case/scenario affects more than one part of the system. The
drawback is that this approach will focus on the same things as the Test will. And it could
most likely cause repeated reviews of the same artifact, which could lead to inspector
fatigue.

Architecture-centric scope will then focus on sub-systems, processes, classes etc.
Problems are that the artifact should be complete, but still they want reviews to be
performed as early as possible. This can be done if only a few activities will modify the
artifact. This approach is used in component reviews. This is coordinated with subsystem
responsible and CM. Ericsson Grimstad are inspecting these artifacts but not in the sense
of being “component review” or “architecture-centric scope” per se. They also organize it
in a different way.

Reviews are planned in the iteration plan. It also happens that the same artifact is
inspected several times. Reviews are performed for every RUP activity according to the
iteration plan. Several activities could be included in each review. Formal inspections are

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 14

performed at the end of the iteration. In the iteration 1/3 Presentation, Walkthrough and
peer-reviews are done. These are less formal then the inspection. Reviews come closest to
inspections because it has similar individual preparation and meeting. Often these mid-
iteration activities are postponed or not done at all because of time-pressure. Time-
pressure also often causes the formal inspection to be performed half-way so that it is
more similar to peer-review.

In addition the Model Structure Review is performed very early, and it gives answer to
some questions that are valuable input for when and how to perform inspections/reviews.
One of them is how increments will impact the model, i.e. if any parts will be updated in
every increment. This is valuable if they document it and use it in planning of
inspections/reviews. It is also considered how the teams will work on the model, and this
is also valuable to those who should attend to inspections/reviews.

There is also Milestone reviews: Objective Review (Inception phase), Architecture
Review (Elaboration phase), Operational Capability Review (Construction phase),
Release Review (Transition phase). Ericsson wants the model to be conceptually whole
and not changed in later increments before a review of this kind is performed. These
terms are not used in Ericsson in Grimstad, but they do many of these things in their
current R&I method (Milestone reviews are mentioned in Laitenberger’s writings as a
good companion to PBR inspections [12]).

According version control and configuration management, Ericsson’s control systems
like ClearCase, allows only one person at a given time to modify the model. This is why
they make comments on print-outs and take them to the logging meeting. It is also crucial
in their process that the models that are intended for the inspection is labeled so that all
participants do their preparations towards the same version. It is labeled in ClearCase by
the Author. After the review it is labeled ”reviewed” in ReqPro. It has been discussed at
Ericsson in Grimstad how this could be done.

3.2.2 Development Process
A product is realized by several projects. A project goes through all phases of the RUP
lifecycle, Inception, Elaboration, Construction and Transition. A project produces a
product release. A project can start before the previous project has ended. A project
consists of several iterations. An iteration consists of all the core workflows e.g.,
Requirement, Analysis &Design, Implementation and Test. An iteration must end before
the next iteration starts. An iteration results in some kind of executable program.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 15

Figure 3.2 - GSN RUP adoption. Horizontal phases describe time, Vertical workflows describe
Figure 3.2 – GSN PUP adaptation

3.2.3 Requirement workflow, artifacts and structure

This workflow stretches mainly over the phases Inception, Elaboration and the first
iteration in the Construction phase. After that, requirement management is mainly about
handling Change Requests (CR).

Before the inception phase starts (pre TG0) the ARS (Application Requirement
Specification) exists in the ReqPro database. The ARS captures customer requirements,
product legacy and requirements from standards. The ARS serves as a starting point from
the product management to different projects in the Project management. Between TG0
and TG1 the Functional Requirements are sketched in Rose as a Use Case and is also
placed in ReqPro. They capture the actions that a system must be able to perform. The
non functional requirements are written (sketched) down in a Word document. They
capture requirements as usability, reliability, performance and supportability. These three
artifacts come from the product management and serves as a input to another document
called the FIS. The Project management decides through the FIS what parts of the ARS
that are applicable for the project. The FIS tells if the ARS can be accepted or not and
tells how the Functional and non-functional requirements can be further detailed for the
right A&D level before TG1. The output from this iteration will be an accepted ARS and
a detailed Use Case and detailed non functional requirements.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 16

Figure 3.3 - Artifacts and activities in the Inception phase

In the elaboration the same steps will occur. FIS1 is renamed FIS2 and ARS1 is renamed
ARS2. In the Construction phase the last details are laid and requirements should be final.
The transmission phase mainly handles requirements in form of change requests. ARS2
and FIS2 are used as input in at least inception, elaboration and construction.

Figure 3.4 - Artifacts and activities in the Elaboration phase

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 17

The requirement Model is a model of the software requirements. It can be seen in the
Meta Model and is connected through its documents and diagrams with other models of
the GSN software system.

A requirement model consists of both functional and non-functional requirements. The
functional requirements are described in the Use Case model and the non-functional
requirements are described as normal text in Supplementary Specifications. The product
will be developed over time in several projects, which means that one project will
generate one or more product releases. This implies that there are both product and
project requirements. The product requirements describe all the requirements on the
product while the project requirements only describes the requirements that will be
developed and implemented in a specific product release. Both product and project
requirements are captured in a requirement model.

Figure 3.5 shows the requirements types that exist as database items in the ReqPro tool.
ReqPro ties the requirements together. It is possible to print them out on paper and some
but not all also exists as documents in addition to being represented in ReqPro. Refer to
the figure 3.5

Figure 3.5 - Functional and non-functional requirements types in ReqPro

ClearCase is a tool that organizes all tools and artifacts into an environment that let one
worker work on one artifact at a given time. It works like a library; you check one book
out, you read use it and finally you put it back.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 18

Figure 3.6 - Organization of the tools and artifacts in ClearCase

The baseline is updated through each iteration. Soda, a tool that generates reports from all
Rational tools, is not used at Ericsson, Grimstad. There are also three artifacts not present
here. That is CR, FIS (Feature impact study) and the development case. We have
explained FIS that is only a preliminary document, and CR is simply a Change Request,
written as a request for changing the requirements. The development case is a plan for
how to reach the goals set in a project. See appendix B for the requirement types and their
attributes.

3.2.4 Analysis & Design workflow, artifacts and structure

This workflow stretches mainly over the phases Elaboration and the first two iterations in the
Construction phase. The main artifacts here are Analysis Model and the Design Model. The
analysis model is created in the Elaboration phase, and is updated in the Construction
phase as the structure of the model is updated. The software architect is responsible for
this artifact.

The design model primarily sets the architecture, but is also used for analysis during the
elaboration phase. It is kept consistent with the UC model and the implementation model.
The software architect is responsible for this artifact, but designers are responsible for
packages, classes and so on. We will explain these two models further, later in this
chapter.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 19

The activities in this workflow can be described with the following flow chart.

Figure 3.7 – Flow chart AD workflow

Observe the two main categories of A&D activities. As the GSN projects will not build a
new system from scratch (there is an existing design base), the architecture centric
activities will focus on improving and evolving the current system architecture to meet
future requirements. The design centric activities, on the other hand, will focus on
implementing new functionality in the existing system.

Architecture centric activities:
These activities are for the most concerned with the Analysis Model, but also interacting
with the Design Model. Architects have the main responsibility. For input and output
artifacts for each of these activities, see the appendix.

Define candidate architecture:

Architectural analysis:

The architect uses experience to create high level packages in the logical view (Meta
Model, Appendix B.VI) in the Analysis model and Design model. It is an initial structure
for the design model made out of high level components. Further on the technical
solutions that are not described in the SAD, shall be documented in small Design
Decisions.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 20

Analysis of architecturally significant Use Cases:

Then the architect expresses the Use Case functionality by identifying Analysis Classes
and creating Main Flow Sequence Diagram and VOPC in the Analysis Model. The
identification of analysis classes is based on the flows in the UC. Documentation in the
SAD, or in the Design Decisions.

Refine architecture:

Incorporate existing design elements:

The architects incorporate and refine the result from the design teams. Reuse will be
incorporated where possible based on the subsystems and/or components interfaces. The
result from analyzing the UC done by designers in the “analyze behavior” steps are
validated and included in the analysis model as new and/or changed analysis classes.
Mapping between design and analysis model is refined and SAD and Organization of the
design model is updated if needed.

Review Architecture:

When architecture is refined there’s always being conducted reviews. There are different
concerns depending on the development status. They also detect potential mismatch
between architecture and requirements. There is also some “reverse-engineering” from
the actual Design Model.

Describe Distribution:
(Architects and designers together).

Defines the distribution of several processes across the physical nodes, in the system.
This is done by defining architecturally significant process environment blocks and
applications that will be further modeled by designers. This is documented in the
deployment view of SAD.

Describe the Run-Time architecture:

Model elements are distributed among processes and process lifecycles as well as the
concurrency requirements are defined. This is documented in the process view of SAD
and in the Process model in Rose.

Design centric Activities:
These activities are for the most concerned with the Design Model, but also interacting
with the Analysis Model. Designers have the main responsibility. For input and output
artifacts for each of these activities, see the appendix.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 21

Analyze behavior:

Use Case Analysis:

Identification and definition of new Analysis Classes and high level design elements
(subsystems and blocks). New Analysis Classes means that they are not already present
in the Analysis Model. The Analysis is closer to Design Elements than typical “RUP”-
Analysis Classes. Next is to express UC behavior in Sequence diagrams and to create
VOPC in the Design Model. All Analysis Classes have descriptions in the Design Model.

Identify and create design elements:

Analysis Classes are transformed into design elements and refining the Design Model
without affecting the defined architecture. This means creating model elements that fit
into the architectural structure in the Design Model. The Meta Model and the Modeling
Guidelines tells what kind of elements to use. Steps include identifying and creating
Subsystem Interfaces, Blocks and Block Interfaces. State diagrams connected to an
interface are used when needed.

Use Case Design:

Refining, structuring and simplifying of existing UC realization diagrams in the Design
Model. New are created if needed. Interaction between Design Elements is showed using
Sequence Diagrams. Details are hidden in sub-sequence diagrams, linked to the diagram.
Homogeneity and consistency are ensured for the Design Elements regarding names,
behavior and attributes. In preparing for review, those parts of the model is labeled and
linked to all documentation.

Design Components:

Review relevant Use Case Realizations:
Focus is to ensure that all requirements are met and secondarily to ensure consistency
towards Modeling Guidelines, Meta Model and SAD. Following the last three mentioned
ere also evaluated. Results are documented in review record. Necessary actions in case of
defects are taken.

Subsystem Design:

Use Case Realizations are refined by creating Subsystem and Block Package artifacts.
Interfaces are detailed and assigned to created components in the Component View.

Review Design:

This activity is performed when all diagrams are updated and complete. Focus is to
review the static entities in the model and to ensure that all requirements are met and to
ensure consistency towards Modeling Guidelines, Meta Model and SAD.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 22

The analysis and design workflow work in the Logical View of RUP. The typical
structure is:

Logical View
 High level package (I.E. SGSN-GT)
 Analysis model
 Use Case Realizations
 Analysis Classes
 Design Model
 Use Case Realizations
 <<Subsystem>>AAA
 <<Subsystem>>BBB
 High level package (I.E. Business Specific)
And so on (look at the Meta Model in Appendix B.VI).

The analysis model is supposed to be a bridge between the UCD and UCR. The analysis
model shall describe architecturally-significant use case realizations in terms of analysis
classes. Analysis classes are grouped in each HLP as a package called “Analysis classes”.
Analysis classes have a description explaining its purpose and responsibility. Besides
Analysis Classes there are Use Case Realizations.
Use Case Realizations include:

- Class diagram, “VOPC – (view of participating classes)”, showing the analysis
classes participating in the Use-Case Realization. It shows the design elements
that are needed for that realization and shows the static behavior.

- Sequence diagrams, “Main Flow”, showing how the Use Case is realized in terms

of collaboration between analysis classes.

- Sequence diagrams, “Alternative flow”.

The sequence diagrams describe the dynamic behavior.

Design model

The design model describes all use case realizations in terms of design objects such as
subsystems, blocks, units and modules. It is organizes in “Design Packages”. These
design subjects has a double meaning as they are both design model entities with RUP
terminology and also implementation model entities as products in the product structure.
Only modules (Erlang, C or java files) realizing interfaces shall be shown.
State charts are used in the design model to describe objects with a Finite State Machine
(FSM). State charts are not made per Use Case Realization, but belongs to the “object”.
Modeled objects are put in <<unit>>.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 23

Design elements are grouped together in the subsystems like this:

Subsystem -> Block -> Unit -> Module

Subsystems, blocks and sometimes units have interfaces and data types. These are
specified in the Rose-model so that it can be generated IDL-code from them, using IDL
add-in to ROSE (Later on it will be CORBA add-in). See appendix B.IV for details on
what the subsystems include.

3.3 Adoption of the techniques at Ericsson, Grimstad

3.3.1 The Inspection Process
The inspection team is made up of a moderator (the leader of the process), inspectors,
authors and eventually secretary. They all contribute to the inspection process and have
certain responsibilities [14].

1. Planning
2. Overview meeting (optional)
3. Preparation
4. Inspection Meeting
5. Discussion Meeting (optional)
6. Casual Analysis (optional)
7. Rework
8. Follow-Up

1. Planning
The moderator will evaluate the quality of the documents to be inspected, but mainly it is
the Authors task to assure this. It will also be checked whether all the applicable input
documents have been used and whether these have been inspected or used (Documents
used by the Author during design will be marked). If there are big amounts of documents,
they should be chunked into applicable parts so that the inspection meeting will not last
for more than two hours. This is due to human tiredness. It should be considered to only
inspect samples if there is lack of time. The result from this inspection can be used to
decide if it is necessary with a full inspection.

The moderator will decide upon team size. Typical team size will be 3-6 persons due to
viewpoints necessary, defect tendencies and volume of input documents.
Inspectors will be assigned to different viewpoints in cooperation with the moderator.
The viewpoints will be assigned with regards to talents and interests of the Inspectors.
Finally the Moderator sends out an invitation to the participants, with specification of the
task that is to be performed.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 24

2. Overview Meeting
This is optional, but recommended if the process or the inspected item needs to be
introduced. This is an informal meeting, guided by the moderator.

3. Preparation
This is the phase where the Inspectors do their individual preparation and defect finding.
Due to recommendations in the invitation and eventually at the overview meeting, the
Inspectors will plan their preparation. The documents will be studied by the Inspectors,
focusing on applicable parts for the viewpoint assigned. An inspector uses checklists to
identify defects in the inspected item. The checklists follow this report in the appendix.
Defects or issues found that not relate to the viewpoint, should also be noted. The issues
are written down and categorized directly in the document. They use a red pen for major
issues and a green pen for minor issues. Only major issues are reported, Minor Issues are
only handed over. The result (hours used, pages inspected and defects found) are notified
the moderator.

These following suggested viewpoints are meant to be a help to get started, but there
might be other helpful viewpoints. They are only used as a guide to remember the most
important view points.

View point Description

High level Is the artifact consistent with the high level documents
(standards, requirements...)

Design Rules Have applicable design rules been followed?
Modeling guideline Have applicable modeling guidelines been followed?
Programming guideline Have applicable programming guidelines been followed?
Superfluous information Check for unnecessary information that can be skipped
Language Is the language in the document appropriate?
Customer understanding Does the customer understand the document?

Usability Is the level of the information relevant for the user? Will he/she
understand?

Testability Inspect from a testability point of view
Maintainability Inspect from a maintenance point of view
Interface Check all interfaces, are all interfaces described?
Characteristics Are the system characteristics sufficient?
Table 3.1 – Suggested view points

At the end of the Preparation, the Moderator has to decide upon whether the result of the
Preparation is good enough to continue with an Inspection meeting. The inspection
meeting will be postponed if there are too many defects and/or the Inspectors have made
an improper job.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 25

4. Inspection Meeting
The main goal with this phase is to find more defects, not only report those found in the
preparation phase. There is a strong emphasis on guarding everyone’s ego. The focus is
cooperation, not defense and attack. The focus is on documents not persons.
Long discussions will be stopped and assigned to the optional discussion meeting.
There is a focus on serious defects. As an Inspector you are not supposed to dump out all
the defects you have found.

The Moderator decides upon the exit criteria for the meeting. As a rule of thumb, the exit
criteria for the inspection meeting are not met if; the rate at the meeting has been higher
than twice the recommended figure or the number of defects found per page are more
than three times the average of that document.

Finally authors will be assigned to do rework. Time is assigned to the task.

5. Discussion meeting
This meeting is optional and can also be performed after the optional Casual Analysis.
Only relevant people to the discussion participate. Items marked with “Dis” in the defect
log will be discussed. Moderator updates the defect log if necessary.

6. Casual Analysis
This is optional because it often is performed as a separate activity. Everybody that
attended the inspection meeting is participating. Typical activity is to select one (or a
few) of the defects found for further analysis. Then they will try to find the defect
generator and give proposals on how to remove it. The findings are written down in a
CAR (Casual Analysis Report) by the Moderator.

7. Rework
The author puts action codes on the issues. These are “C” for Corrected, “R” for Rejected
and “N” for Noted. The author notifies the Moderator. Inspection surveys are updated
with actions taken and time used. CR (Change Request) is written by the Moderator for
defects found in CM controlled input documents.

8. Follow-up
The Moderator will now review the updated document. He or she uses the action codes
on the defect log as a help in this process. Then the moderator evaluates the exit criteria.
CR’s are distributed. Inspection Surveys and Defect Log’s are stored.

3.3.2 Classification of defects
The only classifications of defects are Major and Minor. Major defects are typically a
sentence/paragraph that the author later may have to explain/clarify. I.E the project will
save time and effort by rewriting the sentence at an early stage.
Minor defects will cost the same to fix, whenever in the project process it is done. I.E
there will be no doubt of the exact meaning, even if the minor defect is not dealt with.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 26

3.3.3 Inspection process guidelines

There is some support material available for the inspection process. These are Modeling
Guidelines, Checklists and Lazy Dogs. See appendix B.V.

3.4 Our experiences with the process

We attended an inspection meeting at Ericsson on February 6th, to compare theory and
practice. We have only attended one meeting so we can’t speak for all meetings, but we
got a general idea. The inspection was, according the participants a good example on how
the meetings used to be. Our experiences with the process are described in this chapter.

3.4.1 Inspection meeting

Attendees: 4 (plus two spectators)
Participants have prepared themselves in different areas (roles)
Preparation time: About 1 hour pr. participant

The reason for this inspection was; a new diagram was “finished”.

The UCR diagrams were new and old sequence-diagrams, described as;

? Sequence diagram, Analysis Model (SGSN-GT).
Level (UCR per.): Use Case; Handle MS mobility
Main flow: Inter SGSN Routing Area update, new SGSN

? Sequence diagram, Analysis Model (SGSN-GT).

Level (UCR per.): Use Case; Handle MS mobility
Main flow: Inter SGSN Routing Area update, Old SGSN

ClearCase View: Metro_architect

Ordinary approach in practice at inspections:

? Walkthrough of diagrams (Often no time for this)
? Investigation of diagrams
? Final Investigation of diagrams

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 27

This inspection was a combination of the two first approaches, though it was supposed to
be a final investigation, and all tree approaches are often done in one inspection meeting.
At this meeting they only inspected sequence diagrams. The procedure at this meeting:

? Step-by-step inspection technique (start to finish trough the sequence diagrams)
? The participants comment all they can think of, and what they found during the

preparations
? Discuss comments given on the diagram
? Discuss what the messages does and why they are done
? Discuss how detailed the diagrams should be

Comparison of the diagrams occurs in the preparations, done by the different
participants/roles. In this inspection one of the roles had as a view to check the diagrams
against UCS. Results from the meetings are only noted, often on the printout of the
diagram, to later be corrected. There is not written any defect log over the results or
errors.

The roles with view:

New Sequence diagram vs. Old Sequence diagram
New Sequence diagram vs. UCS (Use Case Specification)
Old Sequence diagram vs. UCS (Use Case Specification)
RD (Resource Deployment) impacts
SM (System Management) input
Check against Implementation/code
Understandable diagrams/documents

During the preparations the documents are rarely inspected horizontally. It will be
inspected horizontally if one feels it to be necessary. They “click” their way to the
different diagrams in the Rose model. This was done if necessary during the preparations.
Vertical checking could be checking diagrams/documents in the analysis model against
diagrams/documents in the design model. The Meta Model for the GSN project has these
levels:

1. Requirements Model
2. Analysis Model
3. Design Model
4. Implementation Model
5. Process Model
6. Deployment Model
What diagrams/documents that belong to each of the levels are listed in the GSN
modeling Guidelines.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 28

3.4.2 Our evaluation of the meeting

This is our evaluation of the inspection meeting, and the inspection techniques.

About comments in the sequence diagram:

When the participants checked the comments, it was weighted on why they do what they
do. Project specific limits should be left out of the analyze model. It has nothing to do
with the architecture either. E.g. “Check that not more than 7 UDP… .” “...and if it goes
wrong, do this and that… ” It’s enough to say that it will be checked. The diagram has to
be consistent. They want to stick with words and expressions which, historically is much
used at Ericsson.

About the sequence diagram:

There has to be a balance, regarding whether the sequence diagrams should be on an
architectural or a functionally level. High level classes are included here but are relatively
detailed with regard to functionality. In an analysis model it is not so important what
elements are called, that was more important in the design model (There were some
differing attitudes amongst the participants here). In the diagram there are elements from
different project sites. The context is scattered, and there can be an inconsistence problem
because of this.

About the process:

It was one moderator at the meeting. And there was one, later two which made notes on
the documents. There were one amongst the attendees which was not prepared, but he
probably knew more about the system than the rest, and he had a considerable
contribution to the meeting. Some rework can lead to the fact that one has to write CR’s.
E.g. it was brought to attention that they might have to make some changes in the UCS.

Some of the planned participants did not show up, but the inspection was performed since
they thought that the most important roles, except from one, were covered. The
inspection was meant as a final inspection but developed, because of bad preparations, to
a combination of a walkthrough and inspection. They considered one more inspection
after this one. Generally the participants where positive to inspections, they saw the
importance of it. One said that it was important with a walkthrough first. They didn’t
have that in this inspection, but it was preferably, it was only a matter of time-pressure.

Some of the documents where not included here, because they hadn’t been tested yet.

Other observations:

The inspection meeting seemed very educational, since it was people from different
departments with varying experience which enlightened each other. Afterwards they
would check with their superior if they where about to do major changes e.g. remove a

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 29

function. They seemed much better at modeling than one get the impression that students
are. It seemed that most of the errors were found because of pure system knowledge.

The inspection was, according the participants a good example on how the meetings used
to be. They meant it was much to improve regarding the individual preparations. Usually
most errors should be found during preparations and not at the meeting [15].

We feel regarding the experiment, that when it is hard to get people to come to the
meetings they are invited to, it may not be easy to make them do something they are not
directly working with. We had to make sure that they will attend the experiment, and still
that they are representative for the participants that use to come to the inspections. In our
case this was solved having the experiment in one of their planned inspections. But
coupling the experiment with a deadline wasn’t a good choice, unfortunately.

It’s a minor problem that they don’t check horizontally. At least formally, in relation with
an inspection.

3.5 Collected inspection data

The inspection data we have gathered at Ericsson will be presented below. It was a bit
difficult to analyze the data since e.g. the inspection time and the meeting time is written
in one field. And it was a bit difficult to separate the projects from each other, when they
where presented in the same document.

We have focused our surveys on the GSN project, which is the one we will be working
on. In appendix B.I is an overview of the inspection data from the GSN project from June
13th 2001 to March 5th 2002. It is not a good overview since some of the log hours
include both preparation and meeting. Optimally they should have been logged
separately. Design and code aren’t separated either, but we can get a general idea about
how long each process takes, so this is a part of what we will base our analysis on.

In summary of the collected data, we can see that in general at Ericsson, they don’t use
much time in preparations, but that is probably because it is a bit difficult to analyze
models alone. So they might find it is easier to work together with that in the meetings.

We created some statistics of the data collected, and the results are also presented in
Appendix B.I.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 30

3.6 About baselining

When we started baselining at Ericsson, early in the project process, we started by
reading a lot of material about Object Oriented Reading Techniques. And when we got
access to the GSN project files at Ericsson, we started gathering information. It was a bit
confusing at first because there was so much information, that we where flooded. But it
was possible to systemize it, and get a good idea of the system.

There was little statistical data from previous investigations, so it was a problem to
baseline the work at Ericsson. Since the data is a bit insufficient it will be difficult to
compare the data with the upcoming experiment at Ericsson, but the total hours of
preparation and inspection is possible compare with the results. This again is difficult
because we do not know if it is from inspecting the code or the design and we do not
know if the data is complete (some might be missing). The fact that the design and code
is not separated in the statistics, which makes it even more difficult to compare data with
the experiment, since we will only inspect design documents.

We were told that the defect logs are also insufficient so it would not be any use in them
either. We will get a general idea of the result after analysis of the result and talking to
the participants of the experiment.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 31

4 Experiment preparations overview

4.1 Experiment threats

The result of the experiment has to be valid not only for the population it is drawn for, but
also a bigger population. There are several threats to why this should happen.
There are four threats to be concerned about. That is Conclusion Validity, Internal
Validity, Construct Validity and External Validity. It is nearly impossible to have this or
any experiment without having to accept some threats.

4.1.1 Conclusion Validity
There has to be a statistical relationship between treatment and the outcome, with a given
significance. Things that could violate our experiments are several. Assumptions about
our experiment that is broken, and not dealt with could weaken the relationship. It is also
important that we do not fish for a certain result. I.e. it is tempting to find subjects for the
experiment that we think would give us a positive feedback. This would not reflect “real
world” though. Another thing is the quality of what we use for measure. The quality
should be so high on our guidelines forms and so on that the impact on the result should
be minimal. We also have to consider, when designing the experiment, if the experiment
would have the same outcome twice. If the power of the test is too low, then of course it
weakens the relationship.

The treatments should be as standard as possible. This is because it should be possible to
compare the results with other experiments. If the treatments are too different, then the
results can not be compared to each other. In our case it is most important to compare
with industrial experiments. Since there only have been one experiment, COPPE TR 01
[8], which is not so much to compare with. In that publication there is also little
information about how the experiment was conducted. It could be useful for us to know
more about this. But also, we have to make the treatment in way that makes it easy to do
it in a similar way in future experiments. Lastly we have to consider how homogenous
our groups should be. This has significance when we shall generalize to a bigger
population.

4.1.2 Internal Validity
The result of the experiment should not be a result of some unknown uncontrolled factor.
There are three different types of threats to Internal Validity; Single group threats,
multiple group threats and Social threats.

Single group
Important factors to consider here are maturation. Participants can get bored or tired. It is
important that we explain for the participants why we are doing so and so, and why it is
beneficial. Mortality is another factor. If someone leaves the experiment, how will that
affect the experiment? Can we replace him/her? Also there can be ambiguity about the
direction of causal influence. Do we know what causes what? This should be considered
when designing the experiment.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 32

Multiple groups
If we have two groups that are compared to each other in the experiment, we must be
aware of the differences in behavior. This is maybe impossible to avoid, but how will it
affect the results?

Social
If there are two groups there is a chance for compensatory rivalry. In our case the group
with the old method could try to rival with the group with the new method and try harder
than they would in “real-life”. The opposite of this could be that the “old” group could
get less active because they didn’t get the chance to try the new method. In either case it
is important for us to explain the importance of this being as realistic as possible, so that
we can decide for the best of the company if the new method is better or not.

4.1.3 Construct Validity
The observation (treatment and outcome) has to reflect the theory (cause and effect). I.e.
it is important that we do not measure on the wrong factor to observe something. There
are Design Threats and Social Threats to Construct Validity.

Design
Poor theoretical preparations are a threat. The theory for the experiment must be well-
defined. It is also important to measure on several artifacts. Another danger than having
only one operation, is to have only one method. In our thesis there will be two methods.
If it is so that system knowledge helps finding defects in either of the methods, what level
of system knowledge is explaining the causes in the experiment? That is another thing to
consider. If we want to have control of this threat, we might have to run a survey on the
participants, finding out what are their skills etc. Again, it is important that participants
have only knowledge of one treatment. If they have knowledge of both, it is hard to tell
whether the results come from knowing one of the treatments or if it is from a
combination of them. The focus has to be that it must be as realistic as possible. The
participants must not try harder only because it is a sort of a test.

The final design threat to construct validity is that conclusions are drawn on too few
results. I.e. they are only based on defects found.

Social
There is a chance that the participants could act out of what they think is the purpose with
the experiment. This is called Hypothesis guessing. Also, the participants could try
harder, because they feel that they are under some kind of evaluation. One last thing is
that they could have wrong expectations about the experiment, which could influence
their performance during the experiment. Much of the social threats can be avoided if we
clearly state, under the teaching of the subjects, what the purpose of the experiment are
and how it shall succeed.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 33

4.1.4 External Validity
The clue about external validity is that we should be able to generalize the results.
There are mainly tree threats; wrong participants, wrong environment and wrong timing.

It is important for an industrial experiment that not only participants are from industry,
but also that the artifacts and the tools are.

Wrong timing could be that the participant has knowledge about some historical elements
that could influence his or her performance under the experiment.

4.1.5 Prioritize
Sometimes an increase in focus on one threat could decrease focus on one of the other
threats. Because of this we might have to prioritize between the threats. The book
(Experimentation in software engineering) talks about two different experiments in this
context. That is Applied Research and theory testing. In our case we think it is applied
research. The book suggests this prioritizing, starting with highest importance:

1. Internal Validity
2. External Validity
3. Construct Validity
4. Conclusion Validity

4.1.6 COPPE TR 01

The report “COPPE 01” deals with the only approach to use OORT in an industrial
setting. The data collected from it is a little limited, since the enterprise decided to keep
most of the data for themselves. There are two things in this report we might have to take
account for. They address the need for an expert moderator that can answer questions and
consolidate. They also experienced the danger for having lots of false positives. These
two things connect with each other, since they found out that the moderator took all the
false positives away. They describe “false positives” as “...data that are only apparently
wrong. They alter something that is not wrong, generating a defect”.

Another interesting thing in “COPPE 01” [8] is that the maximum time used on the
experiment process is 8 hours. They also conclude with that Inspection and UML
knowledge has considerable impact on the efficiency. This contradicts to the report which
summarizes many of the academically experiments so far (ESEC 01) [20], where they
claim that it has no effect. This indicates that the expertise in UML and inspection
techniques is much higher in industry than in academy. But we must remember that this
also can be due to familiarity with the docs and with the setting.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 34

4.2 Experiment Design

4.2.1 Goals
There are certain goals because of the industrial setting. Reidar Conradi (OORT’s:
General and Technical Aspects v.1.4) [16] has stated three of them:

? Are time/effort requirements realistic in an industrial setting?
? Do OORT address industrial developing needs?
? Are there “value added” also for experienced software engineers?

4.2.2 State Variable
The state variables will be the new and the old inspection method.

4.2.3 Objects
Objects are in our case Design artifacts and some documents (Use Case Specification).
The Design is Sequence Diagrams, State Diagrams etc. This is described in chapter 5.
It should be enough artifacts to evaluate every method of interest. According to this the
sample of artifacts used in Ericsson experiment should be covering every OORT. That
means that using artifacts used in inspections at Ericsson are too few to cover the reading
techniques, if not we could use samples from several Ericsson inspections.

4.2.4 Context
The experiment will be performed on-line, which means that the experiment is performed
in its real environment, with real objects and subjects (participants in experiment).
Participants will be professionals at Ericsson, Grimstad. The problem area is real
problems, though the selection of artifacts may not be realistic.
The context as so are then specific for big industry (in Norwegian context) that develop
software in a object oriented software process that also have adopted inspection routines
on all artifacts.

4.2.5 Hypothesis
Based on reports we have read and the book “experimentation in software engineering”
[5], we have written down some Hypothesis.

Null
H0a: The New Inspection method will find more defects than the old one.

(For H0 it must be said that more defects will not be per time unit, but defects found
during performance of the technique no matter how much time it uses).

Hypothesis: Domain knowledge does not impact the inspection (ESEC01) [20].

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 35

(This hypothesis was unfortunately not tested. Instead a hypothesis according if
development experience influenced the results was defined).

H0b: Development experience did not impact the inspection.

(Development experience is throughout defined in the questionnaire in appendix E)

H0c: Have been participant in former Requirement Inspections did not impact the
inspection.

(Experience with software inspections is one of the questions in questionnaire in
appendix E)

Alternative
Ha1: The new Inspection method will find less or the same number of defects as the old
one.

Hb1: Development experience does impact the inspection.

Hc1: Have been participant in former Requirement Inspections had impact on the
inspection.

4.2.6 Dependent Variable
This variable could be total amount of defects. This is not known in our experiment.

4.2.7 Independent Variables
The Inspection method, experience of the participants, quality of the design, etc

4.2.8 Subjects
The subjects are not only the participants in the experiment, but also subjects that the
result shall be generalized to. Such subjects are support groups, project leader and anyone
that are involved inspection of such artifacts as described in this thesis. Again this will
make the results useful for other software engineering companies that use inspection of
design artifacts. Other subjects are research groups, such as ESE [23] and ISERN [24].

4.2.9 Design Principle
We will have to randomize the participants (subjects). But we will follow the old routines
that were to pick persons from certain division for certain views. But inside the division it
should be a random pick. It is dangerous to pick persons that we think will support the
experiment or that are especially interested in inspections, because this would not
represent “real world”.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 36

Since the artifacts here are typically known by the participants in the old method, we
shouldn’t do it otherwise in the new method (randomize artifacts).

The standard design type we will follow are “One factor with two treatments”. The factor
will be the inspection process, and the treatments will be the new and the old inspection
methods. We will have a randomized design, since the same subject should not perform
both treatments on the same object.

4.2.10 Experiment Instruments
Objects, in this case software design artifacts. Another instrument is the guidelines for the
experiment and also several instruments for measurement. The latter could be defect
forms, inspection forms, discrepancy reports etc.

4.3 Adapting the reading techniques

4.3.1 Adjusting to the experiment
After we studied the baseline of the inspection routines at Ericsson, the NTNU students
had to use this information together with information about their artifacts and defect log
routines. It was compared how they do it at Ericsson today, and how the OORT
guidelines have been developed today.

In the process of performing an experiment at Ericsson, we have learned quite a lot about
how it is to work in a large industrial company such as Ericsson. One of the things we
had a problem with was to set a date for the experiment. When we started planning for
this, we set a “working date” for the experiment in the middle of April. After
consultations the date was moved to late April. And as the date was closing in, it had to
be moved to May 8th, because there were no diagrams to be inspected before that.
Unfortunately the diagrams to be inspected wasn’t ready at that date, so it had to be
postponed again to may 24th, which left us very little time to study the results of the
experiment.

In order to perform a relevant experiment at Ericsson we needed to find the right
inspection techniques to use, to be able to consider if there could be any improvements in
the inspections at Ericsson. The students from NTNU have earlier worked with OORT,
which originated from OORT teams, and developed them further in a pre diploma thesis.
(The OORT teams consists of; the University of Maryland, The Fraunhofer Center and
COPPE/Federal University of Rio de Janeiro). The students at NTNU have, during their
thesis, preformed an experiment with students in a course at NTNU. In which they used
the same artifacts they used in their pre-diploma thesis, to be able to compare the result of
the techniques against each other.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 37

4.3.2 Adjusting the techniques
To be able to perform the experiment at Ericsson, the OORT techniques, needed to be
adjusted to the different diagrams they use. Since the students at NTNU had these
techniques as a pre diploma thesis, they did the evaluation and adjusting of the
techniques. We assisted, together with Parastoo Mohagheghi and Gunhild Lundvall in
getting the diagrams to use. The diagrams to use in the experiment didn’t finish until the
day before, so we had a problem in getting the diagrams to use in time. But they managed
to provide a set of adjusted techniques. Originally there is seven OORT’s that have to be
considered when performing an inspection. When they where adjusted to Ericsson there
where six modified OORT’s left, some with minor adjustments, which is quickly
presented here.

The adjusted techniques:

? OORT-1 Sequence Diagram x Class Diagram (VOPC)

o The goal of this technique is to verify that the class diagram for the system
describes classes and their relationships in such a way that the behaviors
specified in the sequence diagram are correctly captured.

? OORT-2 State Diagram x Class Diagram (VOPC)
o Goal is to verify that the classes are defined, so that they can capture the

functionality specified by the state diagram
? OORT-3 Sequence Diagram x State Diagram

o Goal is to verify that every state transition for an object can be achieved
by the messages sent and received by that object

? OORT-4 Class Diagram (VOPC) for internal consistency
o Goal is to verify that the detailed description of classes contain all the

information necessary, and that the description of classes make semantic
sense

? OORT-6 Sequence Diagram x Use Case Specification
o Goal is to verify that the sequence diagrams describe an appropriate

combination of objects and messages that capture the functionality from
the use case specification

? OORT-7 State Diagram x Use Case Specification
o Goal is to verify that the state diagrams describe appropriate states of

objects and events that trigger state changes as described by the use case
specification

From the original techniques they have replaced Requirement Description with Use Case
where it was appropriate, e.g. in OORT-7. They have also removed the class description,
in OORT-2 and OORT-4, because this can be generated directly from the model with the
use of SoDA. This is therefore called this “Class diagram, including a textual
description”. Whether this is inspected on paper or be inspected on paper depends on the
size of the model or the amount of paper to be read.

The Class Diagram (CD) diagram shows an overview of the classes involved (VOPC –
View Of Participating Classes). It also includes the textual description of each class and

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 38

of the behaviors. This information can be retrieved either by browsing the model using
Rational Rose, or by extracting the text using the tool included in Rational Rose, SoDA.

Among the Ericsson documents, the UCS will have to function as a RD because it has to
reflect ARS, SoC and also includes the UC model. Therefore in OORT-6, the Use Case
Description is changed with Use Case Specification. In OORT-7, Requirement
Description and Use Case is changed with Use Case Specification. The Use Case
Specification (UCS) is a detailed description of the use case described as a basic flow of
events and if needed several alternative flows and exceptional flows. Wherever this is
stated the Use Case Diagrams are also considered. The specification is not used without
the actual use case diagrams.

The NTNU students have studied examples of UCS and concluded that they aren’t at the
level to be used in OORT-5. This technique was removed so the OORT would fit the
Ericsson documents. The technique which was removed is presented here:

? OORT-5 Class Description x Requirements description

o Goal is to verify that the concepts and services that are described by the
functional requirements are captured by the class description

The technique was based on finding nouns as candidates for classes and attributes, verbs
as candidates’ functions and conditions/constraints attached to these. The UCS’s that
where studied where not on this level. There are also a lot of interfaces which is included
in the class diagrams, and that wasn’t described in the UCS.

The complete description of the adjusted techniques used at the experiment can be
viewed in appendix D.

4.3.3 Adjusting defect logs
To be able to get as much information possible from the experiment, there had to be made
new defect logs, different from what they use today. The reason for this is because the
error log for the OORT is very different from the one they use at Ericsson, so when we
had to compare these two techniques it would be easier to do so with similar error logs.

Today the defect logs are only used by the moderator at the inspection meeting. They use
it to write down all the information needed by the authors, to do the rework. (Most
commonly they use the diagrams inspected as defect logs). The column CRN is the status
for the defect, corrected, rejected or noted. These are filled out by the moderator after the
rework. The major difference on the new defect log is the classification of defects. The
usual classification at Ericsson is Minor and Major. Where Minor is rarely used. But in
the OORT classification there is several classifications, as described in chapter 2.2.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 39

 Figure 4.1 – Defect log at Ericsson

During this experiment we wanted the participants to each fill out their own defect log, so
we could easier analyze the results. At Ericsson they only write the defects/comments
right on the diagrams to be inspected. The fact that they have to write a defect log might
create extra work. The defect logs used in the experiment is presented in figure 4.2 and
figure 4.3.

Fig 4.2 – New defect log, Current R&I method

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 40

In the defect log for the Current R&I method inspection they had to write the role they
had during the inspections (Which diagram they inspected).

Figure 4.3 – New defect log, OORT

The difference in the OORT defect log is that they had to log which question they used,
from the technique, to find the defect. A short description of the rest of the columns:

Concept name - This is a short term that describes the notion of the defect.
Diagram - Which diagram the defect is located on
Defect type - The name of the type of defect
Class/interface – The name of the class or the interface which is involved
Granularity - The level of detail where the defect occurs. For example attribute, behavior
or relationship. Possible granularity values vary according to the diagram in question.
Detailed description - A more detailed description of the discrepancy.

Possible Granularity Values
Class Diagram (VOPC) Sequence Diagram State Diagram
attributes actor state
behavior object event
condition message behavior
inheritance data condition
relationship condition
cardinalities
roles
class
interface

Table 4.1 – Granularity values

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 41

4.4 Pre-experiment summary

The inspections at Ericsson are performed only on a few artifacts, not a whole set that
would cover all the reading techniques. Another thing is that many of the defects seem to
be found in the meeting.

We had to ensure that the inspection with the old method in the experiment was
conducted in a realistic way, being a good measurement for the new method. This seemed
to be achieved using a planned inspection. We considered using data from several
inspections to compare with an experiment with the new method. The problem is that
there weren’t planned enough inspections to give us such a set with data. Especially, not
in time to have it in April. Anyway this was postponed a little by little until late May, but
we never had time to change our planning. We had to stick with two controlled
experiments, performed on the same inspection.

The question then is if a comparison over a few selected artifacts is enough to draw
conclusions about whether the new method is better than the old one or not. This was
solved letting each participant on the new method go through all the OORT techniques
and making a “fake” State Diagram, based on the Use Case Specification. These
adjustments were made very hasty, because of the continuous postponing and breaking of
deadlines regarding deliveries of design. This made it nearly impossible to adjust
techniques to the experiment objects (documents/diagrams), and managing all the threats
identified in this chapter.

The next points summarize some aspects that we feel are important to the experiment.

- The experiment should have realistic subjects. If we only had participants that
were positive about new RT, UML, inspections and so on, we might not reflect
“real world” in the experiment. But we must ensure that the participants will
attend at the day of the experiment.

- The experiment should be given such a standard treatment that it could be

approximately reused in future experiments.

- We should try our best to explain the reason why we are performing this
experiment and how it should be conducted so we get valid results. This to
prevent biased expectations about the experiment and the performance. Also it is
motivating.

- We should not draw conclusions over too few results from the experiment. Real

world are versatile.

- Participants should not have knowledge of defects, or at least if we are to compare
two groups, no group should have more knowledge of this than the other.

- Watch out for false positives (COPPE TR 01) [8]

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 42

- We should consider making a survey among the participants to answer some of

the goals with an industrial experiment. I.e. “Is there value added for experienced
engineers?” [16]

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 43

5 Execution and results

5.1 Experiment process

The main goal of the Ericsson experiment was to verify if the OORT’s are feasible for
software inspections in an industrial software development environment.

It was a problem to get the experiment going at Ericsson because, it is a large corporation
and it requires available time among the employees. It was decided that the SGSN-G
project was to be inspected. Eventually, after a slight delay, we had three possibilities of
which we made the decision to go with "Connect to PDN". The use case "Connect to
PDN" was to be inspected and reworked by 15th of May. The date was further postponed,
which led to the fact that we had to postpone the inspection to Thursday 23rd and Friday
24th of May.

Bjørn E. Jensen is the head of the development team of 10 people. Five of these inspected
the use case and related diagrams using their old methods, and the rest used the new
techniques. To be able to compare the discrepancies found during inspection, both groups
need a common logging procedure, presented in chapter 4.

The decision of the composition of the two experiment groups, where made by the
involved party at Ericsson. The criteria of the selection were knowledge and experience
with Ericsson’s inspection process, the participants modeling experience and knowledge
about the current system. The groups were assigned to make them as even as possible
with respect to this.

In the introduction of the experiment may 23rd, the students from NTNU presented the
techniques along with a short presentation of origin of the techniques. We presented the
defect logs, and how to fill them out.

The participants filled out a questionnaire about their background. This gave us the
opportunity to make some judgments about experience and the usefulness of the
techniques. This was a questionnaire originally used in the experiment preformed at
NTNU with students, but altered to fit the experiment at Ericsson. The questionnaire was
presented to get an idea of the degree of competence in the experiment. They rated their
experience with 5 point scale, where;

The top two grades five and four state experience from industry. Five equals experience
from multiple projects while four equals experience from one project. The lower part of
the scale, two and three, express knowledge from education such as studied in class or
from a book (two) or practiced in a class project (three). One equals no experience at all
with the given field in software. For the complete questionnaire see Appendix E.

From the results, we see that the experience is quite equally distributed amongst the two
techniques. Both groups have participants with high experience and participants with
somewhat less background knowledge. Overall the table shows that participants are

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 44

professionals, hence the high representation of fours and fives. Experience with design
and experience with coding, are the most influential in this experiment. When we look at
the numbers from these columns the group using Ericsson’s current R&I method
technique might have been slightly better when it came to knowledge on coding and the
technical implementation details. The design experience is more or less equal.

During the preparations of the meeting, there were not many questions about the OORT
techniques. Some of the inspectors asked each other, and we got a few questions. Some
of the comment and questions we got was; it was a problem getting an overview, because
the CD (VOPS) was not on paper and there was many levels on the CD. It was a bit
difficult with incremental systems (VOPS is incomplete, may be good for complete
systems). And they had problems with inspection of parts of a system

All the diagrams inspected were in the construction phase. Diagrams inspected in
“connect to PDN”:

Class Diagram (VOPC)
Sequence Diagram
Use Case Specification
State diagram (not ready- created especially for the OORT.)

The number of techniques a developer will use regarding the OORT depends on the
diagrams involved in the Use case realization. All the diagrams needed to be available on
paper, as well as having the diagrams electronically available with textual comments on
the computer.

During the meeting, a secretary/moderator logged the new defects. At the end of the
meeting, we tried to gain some oral feedback from the developers. See more in chapter
5.4.

5.2 Results overview

From the experiment two types of results were gathered, the discrepancies from both
individual reading and inspection meeting, and the time spent on each of these phases
from each of the participants. We concentrated on the data from the whole inspection
instead of the individual results. This was because during the baselining there was no
individual data, and to compare the data of the baselining and the experiment is easier
when presented as similar as possible.

Table 5.1 and 5.3 shows the data collected. First the number of discrepancies and the sum
of discrepancies discovered during the whole inspection is showed. Then it shows the
time spent for preparation and in the meeting. A percentage is calculated to indicate the
ratio between discrepancies found in the preparation and the meeting. Efficiencies are

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 45

computed as discrepancies found per hour in table 5.2 and 5.4. For a graphical
presentation of the data, see figure 5.5 and figure 5.6.

The most obvious observation made from these figures is that considerably more
discrepancies were reported using the OORT’s, 25 versus 39, but they also consume more
time. This causes the average efficiency to be 1,37 versus 1,13, overall in the inspection.

The results of the experiment can be viewed fully in Appendix F

Current R&I method
Here we see that they found more defects during the preparations than in the meeting.
Note that the participants might have spent more time on preparations now than they
usually do because this was an experiment.

Total defects 25 100 %
Preparation Defects 17 68,00 %
Meeting Defects 8 32,00 %
Total hours 18,25 100 %
Hours Preparation 10 54,80 %
Hours Meeting 8,25 45,20 %

Table 5.1 – Statistics from the current R&I method inspection

Preparation meeting Preparation + meeting

1,70 Def./hr. 0,97 Def./hr. 1,37 Def./hr.
Table 5.2 – Defects per hour, current R&I method

OORT
Here we see that almost all the errors were found during preparations.

Total defects 39 100 %
Preparation Defects 38 97,44 %
Meeting Defects 1 2,56 %
Total hours 34,5 100 %
Hours Preparation 25,5 73,91 %
Hours Meeting 9 26,09 %

Table 5.3 – Statistics from the OORT inspection

Preparation meeting Preparation + meeting

1,49 Def./hr. 0,11 Def./hr. 1,13 Def./hr.
Table 5.4 – Defects per hour, OORT

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 46

Graphical comparison
When we compare the two techniques, we must also consider that the OORT was a new
technique to learn, and that might have taken extra time in preparations.

Here we see a graphical presentation of the total number of defects in the two techniques,
divided into preparations and meeting.

0 10 20 30 40

OORT

Current R&I
Method

Preparations

Meeting

Figure 5.5 – Defects on both techniques compared

Here we see a graphical presentation of the defects per hour of the inspections in the two
techniques, divided into preparations, meeting and a combination of these.

Current R&I method
OORT

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

D
ef

ec
ts

 p
er

 h
ou

r

Preparation

meeting

Preparation + meeting

Figure 5.6 – Defects per hour on both techniques compared

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 47

5.3 Validity of results

The validity of quantitative data from an experiment such as this one is always a subject
to discussion, and vital for the interpretation of the results. (Some of the general threats to
experiment validity are presented in chapter 4.)

To be able to utilize all the techniques, a state diagram was extracted from the activity
diagram in the use case specification. The activity diagram is a hybrid of a state diagram
and a data flow chart. The team using the current R&I method did not emphasize this
particular diagram. Thus, the number of discrepancies can be somewhat misleading to
compare directly without considering this issue. Removing discrepancies related to state
diagrams might give a better baseline for comparison. Still, techniques and diagrams can
be seen as a unit. The current R&I method with diagram leads to detection of one
particular set of discrepancies, while the OORT method with diagrams leads to detection
of another set of discrepancies.

5.4 Comments on the experiment results

5.4.1 Comments on the current R&I method

Participants: 5 inspectors + authors + moderator (moderator was extra in this experiment
(usually author)). (There was three authors present totally, but not present during the
whole meeting).

Usually they have a walkthrough of the diagrams before the inspections (but there was no
time for this now). During the meeting, the authors went through the diagrams step by
step and the inspectors commented as the defects occurred or as they where relevant. The
author of the diagram/document guides the participants through it. The typos was not
included as comments, they where just sent to the authors. Participants have different
focuses (viewpoints) in the inspection, and some of them just inspected one diagram. In
this inspection they had their focus on UCS, SqD and the internal construction of the
design. It is easier to detect technical defects when that is your focus.

The time spent on preparation in this group may have increased slightly due to the
experiment setting. Participants will “prove themselves”. Normal preparation time for a
regular inspection is maximum one hour per person. Preparation varied a lot amongst the
participants, both in time usage and the level of which it was performed. The different
group members were assigned viewpoints for their preparation. In practice this meant
assigning different parts of the model (VOPC, SqD and so on) to different participants.
This task was performed internally in the group, according to the usual process. We did
not influence with this at all.

The result of the meeting was largely dependent on the persons. I.E when the first author
left after they discussed one diagram, there was very little discussion. The participants do
agree on the high value of the inspection, but time is the biggest obstacle at Ericsson.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 48

5.4.2 Comments on the OORT method
Participants: 5 inspectors + authors + moderator (moderator was extra in this experiment
(usually author)). Authors from the other meeting where present to answer questions
about the design etc. (There was three authors present totally, but not present during the
whole meeting).

This meeting was done in the same way as the Current R&I method meeting. They went
through the diagrams step by step and comment as they occur or as they are relevant. In
addition they had a state diagram which was not relevant to the diagrams to be inspected,
but was added to be able to be use the OORT’s. The state diagram was written from the
UCS, but the inspection had a new version of the UCS, so it was not longer so relevant.

All of the diagrams where not implemented in the system before the meeting. As a
consequence of this, there occurred errors which would normally be OK. (Especially that
the VOPC wasn’t updated). The UCS wasn’t detailed enough for SqD, so it was difficult
to locate names for use in the techniques

The participants felt that OORT was more systematic than the Current R&I method, and
that it seemed to make inspectors more conscious with the models. The technique was
good to find errors, guides one to find defects that one wouldn’t have found else. It
should also have been possible to check against the Ericsson standard, and should include
internal rules/guides. It is also important to check against modeling guidelines for
architectural construction.

It was also said that learning a new technique took away focus on going deeper looking
for defects. Question then is if all the steps take away the focus on finding defects out of
experience. Maybe you’re satisfied when you have come through the steps and you trust
blindly on them finding all the defects. A lot of the OORT seemed to be related to
inconsistency between diagrams and requirements. It is good for checking the number of
classes in the different diagrams.

Some OORT’s should be written different to fit better at Ericsson, e.g. for CD’s because
CD x SqD didn’t give much results for the system inspected. SqD x State gave most
results and it would have been nice to implement that in the process. The OORT’s are
good for comparing documents in a vertical manner, as in comparing diagrams from
different development cycle such as comparing the UCS with the design diagrams. The
OORT’s and Ericsson’s current method seems to uncover different types of defects.
Properly adapted and used correctly, they can uncover defects such as mismatches
between the model and specifications and standards. Such defects tend to be more
expensive than the trivial implementation specific ones. Ericsson might benefit from
using a selected subset of the techniques. Some adaptation of them could also be
beneficial.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 49

5.4.3 Comments on both techniques

There was a big difference between the errors found in the two inspections. OORT
looked at the UCS, which wasn’t done during the first inspection. They look more at
standards Architectural construction and the design when they are modeling. In what
degree is this true? How much do they look at UCS? It was found more defects of
technical value during the first inspection. IE defects regarding the order in SqD’s.

The OORT may be just as good for incremental inspections, as for finished
documents/models. And some of the techniques might be used and/if modified further, to
fit to the Ericsson documents. But then it would be important to establish guidelines from
the beginning.

There is naturally more traceability with OORT. And there are more aspects regarding
the whole model during OORT inspection. The comments in the OORT meeting were
more general, focusing on design and UML defects. It was said the two techniques gave a
complementary inspection, which eventually would cover more defect types.

Using both techniques, implementation experience is important in uncovering some
defects. The participants of the current R&I method group had a slightly more technical
implementation experience and found more technical faults. One of the participants
commented that if the questions were executed more thoroughly they might have led to
the discovering of more technical defects. A possible change to the techniques would be
to check the sequence diagram internally against some guidelines/architecture rules to see
if the messages are sent in a proper order. The former group found defects of this type
because they had more implementation experience.

Ericsson develops advance telecom systems based on standards in addition to
requirements documents such as their Use Case Specification. A very important part of
the inspection is to verify that the standards are correctly implemented. The standards are
given as references in the UCS, but the OORT’s do not handle this very well. Ericsson
would probably benefit from a specific technique to verify standard conformation. The
focus should be to verify the contents and data types of the messages sent back and forth
in the system.

The OORT’s are created to inspect whole systems, but they can work for an incremental
process too. Ericsson develops in an incremental way, inspecting changes to the model
only. In addition they develop subsets of a larger system. This takes some of wholeness
and overview away from the inspection.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 50

6 Discussion

6.1 The Experiment

We have evaluated a new set of reading techniques to be used during an inspection or a
review. These techniques which consist of procedural steps guides the inspector through
diagrams and help him/her find defaults by comparing diagrams/documents with each
other, and asking questions that the inspector have to answer. These techniques (OORT)
take longer time to perform, than their current routines. So how can we expect that
inspectors will use these techniques when they are under time pressure? Even during the
experiment, the participants passed several questions, to save time. The routines they use
today are pretty easy, and even those are not performed as they should.

Of course, the new techniques took longer time because the participants had to learn a
new technique, but design teams always change at Ericsson, so it will nearly always be
someone who has to learn the techniques from the beginning. The new techniques
demand more use of time from the inspectors. This could be an unwanted load for the
participants. One could change the techniques a lot, making them slimmer, but would
they then have their original effectiveness? And would they keep their strengths?

The comments from the experiment however showed that the OORT techniques were
very useful. They found some defects that was difficult to find else, and that made the
participants more conscious about the model. There was a lot of discussion concerning
the model as a whole, and on the UML design in general. On the other side the old
technique found more defects of technical value. This was maybe according to more
implementation involved participants. But that’s more hypothetical. One of the
comments, that participants in the experiment seemed to agree with, was that the
inspection seemed complementary when both techniques had been used. This comment,
defects found and experiences from the studies, leads one to think of a possible solution
where both techniques are performed. The question is how this could be done. This is
further discussed in chapter 6.4.2.

What about the Hypothesis we defined in chapter 4?

H0a: The New Inspection method will find the more defects as the old one.

The experiment results in appendix F, show that the OORT find more defects than the
current R&I method, but less effectively. It must also be said that many of the defects
found in the OORT experiment was related to the State Diagram only used for that
experiment. 11 defects were found that was connected to that state diagram. If they are
removed the OORT found only three more defects. Tables are found in chapter 5.
Therefore based experiment results that are rather sparse, we can in guarded terms say
that Hypothesis H0a are true.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 51

H0b: Development experience did not impact the inspection.

Development experience was thoroughly described in the questionnaire with
measurements for development experience in requirements, design, coding, testing and
other. The most interesting data here can be found in the experiment of the current R&I
method. Here it is a direct connection between development experience and defects
found.

Current R&I method Development experience Defects found
Participant 1 85 8
Participant 2 79 4
Participant 3 72 3
Participant 4 61 2
Participant 5 54 0
Table 6.1 – Hypothesis H0b, Current R&I method

This gives us a clear indication that the current R&I method relies heavily on the
experience of the participants. Is this also true for the OORT experiment?

OORT Development experience Defects found
Participant 1 86 10
Participant 2 79 Not available
Participant 3 74 10
Participant 4 69 18
Participant 5 44 9
Table 6.2 – Hypothesis H0b, OORT

As we see there is no clear indication here. We assume these two tables show us that
while the current R&I method relies much on the inspectors experience for finding
defects, OORT is more dependent on how well the participants has followed the OORT’s.
 This adds reason to the comments from participants that the current method found
defects of more technical art. The OORT found other, more subtle defects that were not
detected by the first look on a diagram/document.

For this experiment we can say that H0b is true for OORT. But the fact that it is not true
for the current R&I method (H1b), gives us valuable indications about the nature of the
two techniques.

H0c: Have been participant in former Requirement Inspections did not impact the
inspection.

The participants had all good experience with inspections. All of them had either 4 or 5’s
on the questionnaire, except one that had “1”, but he found just as many defects as the
others, so we can conclude that for this experiment, inspection experience did not
influence the result. In other words, H0c is true. See Appendix E.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 52

In chapter 4, we detected some threats to the experiment. The unfortunate situation with
postponing and late clarification on what artifacts to be used, led to hasty and poor
preparations to the experiment. The possible threats we found in the period before the
experiment gives us anyway understanding about factors that could have influenced our
experiment. Following are the most actual threats. We only comment the threats that we
felt was not good enough covered.

Conclusion validity

“The treatments should be as standard as possible. This is because it should be possible
to compare the results with other experiments”.

The OORT techniques was held as close to the original as possible. The accomplishment
of the experiment however was not conducted in a way that it could be called a controlled
experiment. There were too many unsure factors. The accomplishment was to a large
degree result of hasty preparations.

Internal validity, Social

“If there are two groups there is a chance for compensatory rivalry”.

The setting at Ericsson, with many dismissals, created some tense circumstances. We felt
to some degree, maybe also because of the questionnaire that had to be filled out, that
there were some tendencies from the OORT group that could have lead to increased
performance. This is somewhat hypothetical. It seemed to be a general rise in
performance from both groups. But since this was equal for both groups, it did hopefully
not influence the result too much.

Construct validity, Design

“Again, it is important that participants have only knowledge of one treatment. If they
have knowledge of both, it is hard to tell whether the results come from knowing one of
the treatments or if it is from a combination of them”.

The OORT group had of course knowledge of the current R&I method. This could not be
avoided. The OORT group had plenty to do with coming through all the OORT’s, so we
can hope for that this didn’t influence the result too much.

The fact that the state-diagram was only used for OORT is a crucial point that leads to
difficulties comparing the two techniques in the experiment. It was possible to detect
from the results what faults that were according to this diagram. That helped a little, but
didn’t say too much on how this influenced the time usage. It was a mistake to use this
only with OORT. Again this decision was made very hasty. Actually, the state diagram
was made in addition to the Ericsson artifacts, the night before the experiment.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 53

In the experiment the requirements was based on the UCS. This is dangerous because the
UCS was neither detailed enough, especially with regards to interfaces, and also this is
the same requirement base that the test team uses. The latter would mean that OORT and
the Test would catch many of the same defects, which is not cost-effective. On the other
side the UCS was too big for the inspection experiment, not fitting into the time-limits of
a normal inspection. One would have to filter the UCS to the specific item(s) that are
under inspection. This is considered in chapter 7.2.

Coppe

“They also conclude with that Inspection and UML knowledge has considerable impact
on the efficiency”.

One of the hypotheses that should be investigated because of the results from the COPPE
[8] experiment was how system knowledge influenced the experiment. This was
forgotten when preparing the experiment. Further on, inception knowledge should be
better defined in the questionnaire. Only one value for the inspection knowledge was too
little too draw conclusions on, since the participants seemed to have an overall good
experience with inspections.

6.2 Reading techniques

The PBR and the Document based reading/ Check list based reading have been
throughout discussed in other papers (such as “isern-99-01”) [22], and PBR has been found
superior also in experiments [18]. It is difficult to label Ericsson's current R&I method. It
has elements from both of the mentioned methods. The only way we can say something
about the current method is through the studies and the experiment in this Thesis.

Speaking of OORT versus PBR it is clear that one thing differentiates the two reading
techniques from each other. That is the principle of traceability. OORT is the only
technique that compares two or three diagrams with each other consequently. Our
subjective opinion on this matter is that OORT as reading technique would be superior.
This of course should be investigated through experiments.

6.3 Ericsson Context

6.3.1 Workflows
The Unified Process (UP) is a generic process framework that can be specialized for a
very large class of software systems. A specific instance of it is the Rational Unified
Process. The RUP is component-based, which means that the software system being built
is made up of software components. The distinguishing aspects of RUP are captured in
three key phrases – “use-case driven”, “architecture-centric”, and “iterative and

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 54

incremental”. Inspections use the concepts of the first and the last, but maybe not the
architecture-centric concept. Doing so would give wholeness in covering defect-detection
for a software development system based on RUP.

According the development process, we see that there are performed Use Case testes and
System testes. Having an R&I method that based on Use Cases, one could also have, as
proposed in chapter 7, an inspection method for the system, based on OORT. This is
further discussed in chapter 6.4.2.

Reviews/Inspections seem to be held three times, one time during the analysis phase and
twice during the design phase. This is of course not always true in reality.

6.3.2 Artifacts
Requirement guidelines wants the Project Management to be finished with 80% of the
requirement detailing before construction phase starts, both functional and non-
functional. So it could be beneficial to perform after that time, but we have to remember
that the system are not build from scratch and also requirements are build on each other.
This means that it already is a stable base of requirements available. What determines if
the requirements are good enough is in what degree it describes the low level design. This
has to be decided upon when picking out the artifacts for the inspection.

Designers seem to use these artifacts in their work:

- Requirements
- Modeling Guidelines, Meta Model and SAD
- Old Design

6.3.3 Structure
The structure or we might also say the architecture is separated from the design using
“views”. A design model can have several “views”, that are different abstractions of the
model, depending on who’s supposed to read them.

In the experiment the VOPC from the design model was used. This was reported to be
useless. The VOPC adds nothing new that is not already found in the subsystem’s class
diagrams. Because of this updating the VOPC are often postponed. The VOPC also gets
big in size and one have to search for the actual class that are to be inspected since there
are many classes involved in the VOPC that are not part of the inspection.

It is also important to have in mind when tailoring the OORT’s to the model(s) that they
are supposed to work horizontally and vertically. Horizontally would be inside the Design
Model and Vertical would be between the Requirements Model and the Design Model.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 55

6.3.4 Inspection
Ericsson has addressed the need to improve the routines regarding their Review and
Inspection process. Especially the preparations before inspections and frequent reviews
suffer from participants having time pressure. Maximum preparation per inspector in the
preparations has been one hour maximum. They understand the need for inspections, but
deadlines are prioritised. It is even hard sometimes to get participants to the inspections.
We cannot expect the priority of deadlines to change in the future. So this problem wills
most likely still be present in the future.

Same diagrams in UML/RUP are used in several models. Should we inspect models or
diagrams? Test at the end of each iteration based focuses on the fact that each iteration
adds new information but also changes or extends a lot of the existing diagrams and
classes. By changing them it is likely that inconsistencies within classes and subsystems
are introduced. Picking the right unit for inspection might be focused on a particular type
of defects or on compensating for inconsistencies to previous iterations. Although at first
sight this nearly document-oriented approach appears to be a good strategy, it leads to
two difficulties.

First, crucial information is often distributed across various parts of a document or even
across different document types. Thus, if the inspection is limited to a particular (part of
a) document, an inspector may miss crucial information for a sound inspection. This is by
some degree covered by Ericsson, Grimstad’s use of views. Object-oriented development
methods and the recent appearance of the Unified Modeling Language (UML) accentuate
this problem because they usually use different types of diagrams to represent various
sets of information.

Figure 6.1 - Diagrams are ”windows” onto the Model

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 56

Because of this, information about a given logical entity, such as a class or an object, can
be described in many different documents, and a specific document can contain
information about many different logical entities, that is, there is a many-to-many
relationship between logical entities and diagrams. An inspection whose goal is to check
a particular (part of a) document may end up either having to analyze many logical
entities, or may only partially cover a logical entity that it describes.

In addition, basing the inspections on many off the same things would give a less
orthogonal approach, finding defects of same kind. Based on cost-effectiveness it would
be preferable with a more orthogonal approach.

OORT techniques seemed to be valuable in making users conscious about the whole
model. This was one of the comments from the experiment. If this should give value in
the A&D workflows, it should be performed early in the elaboration phase. But this
might be replaced with an extensive walkthrough of the model, showing the traceability
between diagrams for the design team. Walkthroughs are often postponed because of time
pressure. If the walkthrough is done early, there might be less time pressure and such a
walkthroughs for the team can be done. This is much according to the experience of each
team. Anyway there is information about the model in the GSN modelling guidelines.

6.4 Summary Analysis

Inspections at Ericsson are for the most coupled with implementation of new
functionality. Unfortunately they suffer under the time-pressure connected with the
deadlines.

The experiment showed that the two reading techniques were complementary in many
ways. In addition it would be positive to have an inspection that was based on other
premises than the Use Case test, as is the case with their current R&I method.
The only general reading technique besides OORT that focuses on graphical notation in
design is PBR. PBR ore mature in sense that it has been more used in experiments and
also it has been tailored to Object-Oriented Software Development processes. OORT has
a strong advantage in using the concept of traceability between diagrams/documents.
Their current R&I reading technique are under constant development. It uses elements
from Check-list based Reading, Perspective Based Reading and Scenario Based Reading.
Using the architecture centric scope, helps organizing the use of OORT inspections since
the documents/diagrams connected with an entity are conceptually whole and easier to
determine for the organizer of the inspection.

At Ericsson, Grimstad they use RUP, and develop diagrams/documents incrementally and
in parallel with each other. During the experiment it was said that the requirement
documents was too big for the limits of the inspection. They also covered many low-level
elements that were not part of the inspection. If OORT was to be used at Ericsson, a
possibly solution to this could be to filter the UCS and SS through FIS documents, and in
turn the UCS and FIS could filter the ARS. The references in these documents make it

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 57

possible to move in as many levels as necessary in the requirements.
The views used in RUP (Logical view, process view etc) separate the architecture from
the design. Architecture in addition to old design and different requirements are the most
important input for the designers. The experiment also showed that the class diagrams in
the subsystems should be used instead of the VOPC for use with OORT. VOPC only
shows the participating classes for all subsystems and are not always updated.

Inspections as they are now are for the most based on single documents/diagrams, but
since information in UML and RUP is spread over several diagrams/documents, it should
also be performed inspections over whole models. OORT fits perfectly for this, being
originally made for that purpose. In addition the OORT in the experiment seemed to
make participants more conscious about the model.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 58

7 Improved inspection process and techniques

7.1 Introduction

One of the Thesis goals was to suggest improved inspections techniques and develop
guidelines to be used with them. Because the experiment was performed so late, we had
less time to make the guidelines. Anyway it is clearly stated in the following how these
techniques (OORT) should be used in Ericsson’s context and how guidelines should be
further developed.

But first we will discuss the how this could be done. Either based on the same premises
as the current R&I method and secondly based on a new architectural-centric approach.
After the discussion we come with our solution in chapter 7.3 and 7.4. Finally we make a
summary of this chapter.

7.2 Discussion

7.2.1 OORT, replacing current method

Each iteration ends with a delivery of a build. The design is therefore reviewed/inspected
at the end of each iteration.

Figure 7.1 – Iterations

Let us think that a project has two iterations during the Elaboration phase. Even if it could
be beneficial to perform an OORT early in the elaboration phase, since defects should be
detected as early as possible out of cost concerns, it would mean that one should perform
an OORT inspection at least twice during the elaboration phase. This seems very unlikely

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 59

to be executable as we saw the experiment being postponed so much as it was because of
time-pressure. It is also obvious that many of the design artifacts are very incomplete
until the project comes to the end of the elaboration phase. The bottom line is if not it
could be best to perform OORT at the end of the elaboration phase, where all the
requirements artifacts also are almost complete. It should also be considered to use
OORT as a final inspection some time out in the construction phase, where many of the
design diagrams are getting close to completeness. This because of the time-consuming
nature of OORT inspections and the fact that “time is money”. But this would be the case
only if OORT are connected with the iterations, replacing the other techniques. Such
approach would not be preferable since results from the experiment showed existing R&I
method to be complementary with OORT.

If OORT should replace the current R&I method, the planning of inspection would be left
to the Use Case team. The Use Case team sees some requirement artifacts that are
tailored to what they shall do, in a ReqPro base tailored to each team. They work with
their design artifacts, delivering them for build in the end of a iteration. Some of the
OORT techniques require artifacts that do not directly exist inside each teams “world”.
This calls for the need of someone who has overview over all the artifacts involved in a
bigger part of the system in the early phases of the process. That is the Inception and
Elaboration phases. The question is whether its natural that sub-system responsible
should take care of this, and if the UC team leader should do it, would he/she have time
to do all that investigation?

Test will mainly connect their test cases to the lowest level of requirements, ProjUCD,
ProjNFD and SoC’s.

 Figure 7.2 – Requirements structure

Basing the inspections on other artifacts than the test team gives more orthogonal
approach. It’s is a danger, if OORT are to be performed, based on the same artifacts as
the test team uses. The PBR techniques tailored to UP uses checklist to go through the
artifacts. At first look OORT seems superior to this technique when it comes to showing
traceability between diagrams. PBR on the other hand seems more usable when applied
to the whole model in an Object-Oriented process. The routines that are used at Ericsson

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 60

now touch some of the same principles when it comes to assigning different viewpoints
(usability, testability, High Level). Though it doesn’t use the principle of stakeholder
(users, architect, tester and so on), it could easily be expanded with this. The stakeholders
are also identified in the ARS, so it should be easy to identify them. Maybe the review
and inspection team should look more on PBR tailored for UP for hints?

But again dropping the OORT for PBR would cause Ericsson to miss the whole concept
of inspection based on traceability between diagrams. Experiment showed that OORT
was valuable in a different way than the original techniques which are closer to PBR
tailored to UP. Besides, it could be more effective to use PBR in the Requirements
workflow since there are so many “perspectives” involved already. This is considered in
the next chapter.

7.2.2 OORT in addition to current R&I process
An inspector can’t inspect software by looking at it. It’s invisible. He or she has to look at
the representation of that object. In a more general sense, the logical entities making up a
system, and the relationship between them, are collectively viewed as the architecture of
the system.

Figure 7.3 - Entities and the documentation of them

By looking at this, we see that it would mean inspecting only and one document, that one
would miss seeing the wholeness of an entity. It’s good to have reviews of single
documents/diagrams to check for inconsistency with regards to the old document/diagram
or for internal quality, but one should also inspect whole entities, discovering other
defects and also finding defects of other character than the test team. This could be called
an Architecture-driven inspection.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 61

The Unified Process, for example, distinguishes between structural elements, such as
subsystems or classes, and models that describe the structural elements, such as use-case
or collaboration diagrams. Hence, the Unified Process uses the term "structural element"
instead of logical entity and "model" instead of documentation of the logical entity. We
decided to use the word "logical entity", since it best conveys the conceptual and invisible
nature of software, and "documentation", since it best conveys the idea of something
tangible that can be used for the purpose of inspection.

The architecture-centric solution for inspection organization is beneficial for three
reasons: First, the set of information for each logical entity by definition is logically self-
contained and conceptually complete. It therefore provides an inspector with all crucial
information for performing a sound inspection and, at the same time, represents the
appropriate set of information that is intellectually manageable. The latter prevents
inspectors from being swamped with a lot of unnecessary information. Second, the
architecture-centric approach is scalable. If the documentation of a logical entity is still
too large, an inspection organizer can look at the substructure of the logical entity and
choose an appropriate logical entity of smaller granularity. This process can be repeated
until the right scope for a single inspection is determined. This method has been used
with conventional methods, such as the Cleanroom Process [11]. But it’s not limited to
conventional methods, it can also be tailored to Object-Oriented Development Processes.

Review guidelines in Sweden use architecture-centric scope when inspecting sub-
systems, classes, processes and so on, they call it ”component review”. It is unclear in
what degree this is adopted in Grimstad. Our suggestion is that this is also used with Use
Case realizations. This comes from the nature of the OORT’s where structural elements
are compared with dynamic artifacts as e.g. sequence diagrams.

Architecture centric approach in Ericsson’s context could be a little misleading, because
architecture in Ericsson often is connected with the Analysis model and not the Design
model that is our main target.

Architecture-centric software inspections in the context of the RUP can be organized
around components, their interfaces, and their interactions. Components as seen from the
development point of view are subsystems that have high internal cohesion and low
external coupling and are reusable by other developers. A component as part of the
architecture is best represented by multiple, coordinated architectural views. Just as the
design model in the GPRS project is shown in different views. Inspections can then be
made for what’s available at the moment from the different views connected to the
subsystem or another logical entity.

So the Architecture-centric way of using OORT with the design model seems to make
sense. What about the analysis model? It have to be investigated if not it is more effective
to use PBR for inspections with the Analysis Model, because there are so many different
views (perspectives) and the fact that state Diagram are never present in the Analysis
Model.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 62

If we were to use OORT with the Analysis model, then SAD and Design decisions are
important documentation when it comes to using OORT on the Analysis Model.
OORT for Analysis Model can possible be used after these activities: ”Analysis of
architecturally significant Use Case”(Sequence Diagrams are made) and ”Incorporate
existing design elements”. They do perform Review architecture after these activities (at
least according to the review guidelines from Sweden), where they ”reverse-engineer”
against the Design Model and search for mismatches against requirements. The question
is whether these inspections are based on what to defects to find and not how to find
them. Remember that one of the positive comments from the experiment was that OORT
helped them find defects that they couldn’t see at first sight.

For use of OORT in the Deployment and Physical View of the Analysis Model, the
deployment View in the SAD has documentation on architecturally significant process
environment blocks and applications that will be further modeled by designers.
For use of OORT in the Process View of the Analysis Model, the Process View in the
SAD has documentation on how Model elements are distributed among processes and
process lifecycles as well as definitions of concurrency requirements. The process Model
in Rose also connects to this.

During the Design centric activities, State Diagrams are possibly made in ”Identify and
create design elements” and Sequence Diagrams are made in ”Use Case design”.

Understanding that the Architecture-centric approach would make it possible to use
OORT on the Design Model and maybe also on the Analysis Model, how could we find
the entities in the system we should focus on? Can VOPC in the analysis model show
architectural important entities? The UCS and the flows therein are used as input for that
artifact.

There seems to be two different ways of finding the entities of a system. One attempt is to
locate them in the VOPC of the Analysis Model, the other is to use ”only” the subsystems
and the blocks therein as entities. Sometimes the VOPC are not very updated since doing
so sometimes is postponed. If so, one possibly has to look in the SAD.

If VOPC is used one can also look at the sequence diagrams in help for finding out how
entities relates to each other. This can then be used as input for tailoring the OORT’s.

It remains unclear when inspections should occur. In other words, what conditions or
events trigger the inspection of the diagrams and related artifacts for a given logical
entity? Since RUP is an iterative and incremental process, driven by use-cases, the
various models defined by RUP are not developed in sequence (as in the classic waterfall
model) but are rather elaborated incrementally over time. In other words, each iteration
adds a slice of information to the various models as part of the elaboration of the driving
use-case. Since we are advocating an architecture-centric organization of inspections, this
means that an inspection of a logical entity (such as a subsystem or a class) should be
triggered when all the relevant information is ready for examination (including analysis,
design and implementation information).

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 63

Figure 7.4 - Incremental development

At first sight this might appear to imply that all inspections will defer to the end of the
entire project, but this is not the case in RUP for two reasons. First, because RUP follows
an incremental approach, analysis, design and implementation determines the availability
of the necessary inception information is not the level of abstraction (e.g.. analysis or
design level) as in traditional methods, but the completion of all the functional slices
(e.g.. the use-cases) affecting the logical entity concerned. Assuming that most logical
entities are only involved in a subset of the use-cases, it follows that they will become
available for inspection as soon as their functionality has been covered. The order in
which use-case are developed is therefore the primary factor when finding out if the
documentation of a logical entity is sufficient for inspection. For large systems one could
perform intermediate inspections, based on functionality covered up to that point. When
the Use Cases are developed, is planned in Iteration and Integration Plans.

The logical entities themselves as well as the priority of use-cases can be identified at a
early stage of RUP development project, since the architecture is stabilized in the early
development phases.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 64

7.3 Organizing the OORT inspections

Since RUP develops incrementally it means that both analysis, design and
implementation determine the availability of the necessary information for inspection not
based on the level of abstraction but on the completion of all functional slices (e.g.. the
UC’s) affecting the logical entity. The logical entities can be described as figure 7.1
shows.

Figure 7.5 - Architecture-centric approach (Laitenberger [18])

This is very meaningful in an Ericsson context, since architecture already is a
considerable input for designers (referring to SAD). As mentioned, the inspections would
not be based on the increments, but on when the logical entity is complete enough to be
considered as a target for inspection. Complete enough would mean that the connected
UC’s are implemented. This allows inspections to be performed early, since the
architecture is set on a very early stage of the process. Very large logical entities could
then be target for intermediate inspections based on the parts of the entity that have been
implemented to that point.

The selection of artifacts should be done by sub-system responsible, since he/she should
have an overview of the system. Then it should be delivered to Use Case team leader for
review. The sub-system responsible should plan the inspections together with the Use
Case team leader, consulting Architect whenever needed. The Iteration plan and the
Integration plan determine when and which UC’s are implemented. The same UC’s that
make the fundament for when an inspection should be conducted on the logical entity
also lists references to the requirements for the logical entity. The FIS documents also list
what artifacts that are affected by implementation from the UC. So the documents that
help finding the set of information to an inspection are: UCS, FIS and SAD. They are
sometimes leading to other documents such as SoC/Standards and Supplementary
Specifications. The documents that determine when an inspection should be performed
are ARS (it lists the UC´s), iteration plan and integration plan. Inspections should finally
be documented in the R&I plan by the team leader, assisted by sub-system responsible.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 65

Control of how often OORT inspections are to be performed are then given to the sub-
system responsible.

Finally it has to be identified similar artifacts as those used in the original OORT’s. This
should be done before OORT are taken into use in the development process, but to some
extent it may be needed to do further tailoring, though it should be minimal. So when the
logical entity is identified and the artifacts are on place on the planned time for
inspections, it should be easy to pick out a subset of the OORT’s to be used on the logical
entity. I.e. if a logical entity at a given point that inspection is planned, has not
implemented state-diagrams yet, the OORT’s regarding State diagrams are not used, but
could be used in a later inspection. The team leader should be aware of and control that
the artifacts that are planned used for the inspection are in sync in time for the inspection,
labeling them in ClearCase. He or she should also be responsible for giving feedback if
review and inspections plans are to be changed. This should be consulted with the sub-
system responsible.

Because of this the inspections are not dependent on unstable increment deadlines and
avoid the time-pressure problem. Inspections can be performed whenever after an entity’s
functionality up to a given level has been implemented.

7.4 OORT inspection guidelines

Regarding the techniques we assume that the best would be to use OORT as close to the
original set as possible. It should maybe be postponed until more industrial experiments
are conducted. Anyway the OORT has proven their strength in all the experiments it has
been through so far. One could also hope for a use of the architecture centric approach for
organizing inspections with OORT’s from its original authors (Laitenberger) [12].

So what document/diagrams could replace the ones in the original OORT’s? Remember
this is only meant as a proposal, or means to discussion. The OORT’s should be
throughout examined by someone with great knowledge of the model and the system at
the GSN project at Ericsson.

When adjusting the OORT’s to be used at Ericsson, one has to look at how they
originally were intended to be used.
The original OORT’s rely on two artifacts from requirements, and that is Requirement
Description and Use Case diagrams.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 66

Figure 7.6 – Vertical Reading and Horizontal Reading

The Requirements Description is supposed to offer certain qualities. It should be possible
to mark candidate classes/objects/attributes, services and constraints/conditions in a
document. It should be possible to read the functional requirements to determine the
possible states of the object, which states are adjacent to each other, and which
events/actions cause the state changes.

The Use Cases (the other requirement artifact) should be used to determine what causes
the state changes. In addition it should be possible to mark system concepts and services
and the data necessary to achieve such services.

If these requirements qualities are present, the requirement part of the OORT’s should be
in place.

The high level design documents/diagrams that could be used as input for those OORT’s
that uses them are:
Use Case Specification, Supplementary Specification. These two could be filtered
through (several) FIS documents to guide the organizer in hiding requirements
information in these rather huge documents that does not apply to the inspection. If
further requirements are needed according to the OORT’s, one could look in the
references f the UCS and the SS’s to find requirements on a even higher level. This could
be reference to ARS, SoC (Standards), CR’s, other UCS’s and SS’s.

Low – level design are easier to identify with the OORT’s.
The low level documents/diagrams that could be used as input for those OORT’s that
uses them are:

Class diagrams and state-diagrams in the sub-systems, Class diagrams and state diagrams
in the Blocks. Possible Classes/Interfaces in the units. Use Case Realizations as Sequence
diagrams divided into Main Flows, Alternative Flows and Exceptional Flows. Class
descriptions in the packages, in the Logical View of the Design Model.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 67

The Sub-systems and the Blocks even have one class diagram that are functional and one
that is non-functional that could be used against the UCS and the SS’. In addition there is
an overview diagram. For further details, see Appendix B.IV.

The OORT’s would then look something like this, hiding the questions that could need a
closer review. Look in the original set of OORT’s (Appendix C) for the questions:

? OORT-1 Sequence Diagram(UCR) x Class Diagram(Overview-Subsystem)
? OORT-2 State Diagram(Sub-system) x Class description (Package)
? OORT-3 Sequence Diagram(UCR) x State Diagram (Sub-system)
? OORT-4 Class Diagram(Overview-Subsystem) x Class Description (Package)
? OORT-5 Class Description(Package) x UCS & SS other req.(Through FIS(‘s))
? OORT-6 Sequence Diagram(UCR) x UCS
? OORT-7 State Diagram(Sub-system) x (UCS & SS other req.(Through FIS(‘s))

We have not had the time to look closer at the questions, and most likely there are
information missing in these artifacts that are requested in the techniques. The techniques
as we have listed them here are the ideal set, assuming that all the wanted information is
available. Also the original purpose of horizontal and vertical reading is kept here.
It has to be developed a way of answering the questions regarding the Classes. Since this
cannot be done on print-outs it should be recorded in some other way. Maybe bit could be
made logs that could easily be filled out.

The OORT’s should be extended with guidelines that cover other models connected to
the entity. This is somewhat covered by the existing R& I method, but then use-case
driven and not focused on the architectural-centric approach, maybe except reviews of
components, possibly missing important information. But of course, it is partly covered,
since e.g.. the deployment-represent attend to multiple reviews, in sum covering some of
the entity. It could also be considered to use other reading techniques on these models,
and also there already are other methods in use in Grimstad for doing this. This has been
partly discussed already in chapter 6. To sum it up, support material should include:

- Guidelines on when and based on what in the process OORT’s could be used
- Guidelines on roles/workers
- Guidelines on relevant artifacts
- Guidelines on suited OORT’s

Suggestions to the current R&I process would be:

- Use more detailed/different defect logs
- Use web based logging

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 68

7.5 Summary

OORT coupled with iterations and deadlines is not preferable because of little overview
on the needed artifacts, and trouble with time-pressure. Basing OORT inspections on
logical entities in the architecture on the other hand, makes it easy to provide the needed
artifacts, even if they are spread outside the scope of a Use Case team.
At Ericsson, Grimstad, possible entities could be sub-systems and blocks or they could be
identified using the VOPC in the Analysis Model, since it is meant to show
architecturally significant classes.

OORT could also be used with the Analysis Model as a target, but it should be considered
if not PBR should be used on that model instead, because of its many “perspectives” and
the fact that state-diagrams are never present there.

The time for performing OORT inspections based on entities are not limited to the
abstraction of the models. Because of this, it can be performed very early in the phases.
The architecture, being laid on an early stage makes the architecure-centric approach very
suitable to be used with early fault-detection methods in an Object-oriented development
process.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 69

8 Conclusion

In our Thesis we have described an improved inspection process for Ericsson, Grimstad.
We have thoroughly studied the system, the development process and the roles at
Ericsson so that our suggestion would fit their needs. Part of our Thesis was to conduct an
experiment, comparing the two techniques. Results from it shows that the OORT’s
focuses the inspectors in a development process on the Model and help finding defects of
different character than their current R&I method. The techniques also lead the inspector
to find more subtle defects. Ericsson’s current R&I method find more defects of technical
value. This makes the two techniques complementary.

The reading techniques had to be suited to the Ericsson context. The target workflow is
the Analysis & Design. It should mainly be used in the Design Model but also the
Analysis Model could be target for an OORT inspection. We wanted to base the OORT
inspections on other premises than the current R&I method, making the two techniques
supplementary also on a process level. We found out that the OORT inspections would fit
into RUP, if the architecture-centric approach is used. This approach sees the system as
an entity, possible divided into several sub-entities. Each entity is self-contained with a
set of information that is conceptually whole and logically complete. The inspection
organizer will be supplied with intellectually manageable and crucial information for
performing an inspection. Further on the approach is scalable, which means that if the
entity is too large, an inspection organizer can look at the substructure of the logical
entity and choose an appropriate entity of smaller granularity. In addition, OORT-
inspections are not restricted to a deadline, since it is not performed because of
implementation of a new functionality. Thus avoiding time-pressure and poor
preparations, as a result of prioritising design work. When a system entity’s functionality
have been fully or partly covered up, a OORT inspection can be performed whenever
after this level has been reached, assuming that the actual artifacts are labelled in e.g.. a
personal view in ClearCase. Example of an entity is a subsystem.

As far as we can see, Ericsson would profit from implementing OORT in their inspection
process. Papers and articles have been written on how UML designs often are filled with
more defects, though of smaller size, than conventional design. This could speak for that.
Ericsson could have an increased cost when implementing the new routine in their
organization, but in the long run they would most likely gain from it. The OORT’s needs
some adjustments to the Ericsson context, but should be kept as close to the original set
as possible, maintaining its original strengths. More detailed guidelines should also be
written down. It should be investigated if the Architectural views in RUP also could be
used when detecting entity’s and it should be experimented with use of OORT and also
PBR in the requirement workflow. This Thesis could also be a valuable input for the
Method & Tool team at Ericsson, Grimstad.

Further on, guidelines for the new technique must be developed and more industrial
experiments should be performed with the OORT’s. Possibly one should also compare
PBR and OORT. The OORT’s themselves should also be generalized to fit modern
Object-Oriented Development Processes as RUP, Extreme Programming and others.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 70

9 Abbreviations

ARS Application Requirement Specification
CBR Check-list Based Reading
FIS Feature Impact Study
GPRS General Packet Radio Service
GSN GPRS Support Node
OORT Object Oriented Reading Techniques
UC Use Case
UCD Use Case Diagram
UCS Use Case Specification
UCR Use Case Realization
UML Unified Modeling Language
PBR Perspective Based Reading
ProdUC Product Use Case
ProdNF Product Non-functional Requirement
ProjUC Project Use Case
ProjUCD Project Use Case Detail
ProjNF Project Non-functional Requirement
R&I Review and Inspection
RUP Rational Unified Process
SAD System Architectural Description
SBR Scenario Based Reading
SGSN Serving GPRS Support Node
SoC State of Compliance
SS Supplementary Specification
UP Unified Process

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 71

10 References

[1] Profit - Process Improvement for IT industry: “PROFIT – Generell

presentasjon”, 2001, Foil set, 13 slides.

[2] Martin Fowler w/Kendall Scott: "UML Distilled, Second Edition", Addison
Wesley, New Jersey, USA, 2000 ISBN 0-201-65783-X.

[3] Philippe Krauten: “The Rational Unified Process, an introduction”, Addison
Wesley, New Jersey, USA, 1999 ISBN 0-201-60459-0.

[4] Guilherme H. Travassos, Forest Shull, Jeff Carver, Victor, R. Basili: “Reading
Techniques for OO Design Inspections”, SEW99_paper, 10 pages.

[5] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Regnell,
Anders Wesslén : “Experimentation In Software Engineering – An Introduction”,
Kluwer Academic Publishers, Boston, USA, 2000, 205 p. ISBN 0-7923-8682-5.

[6] Tayyaba Arif, Lars Christian Hegde, NTNU: “Inspection of Object Oriented
Construction”, Pre Diploma Thesis, 2001, 135 pages.

[7] Guilherme H. Travassos, Forest Shull, Michael Fredericks, Victor, R. Basili:
“Detecting Defects in Object Oriented Designs: Using reading techniques to
increase software quality”, 1999, paper 10 pages.

[8] Walcélio Melo, Forest Shull, Guilherme H. Travassos: “Software Review
Guidelines”, 2001

[9] Reidar Conradi, NTNU: "Preliminary NTNU report of the OO Reading
Techniques (OORT) exercise in course 7038 on Programming Quality and
Process Improvement, spring 2000, v1.12", 2001

[10] Kaiserslauten: “Defect Cost Reduction”, 2001, 21 pages.

[11] O. Laitenberger, Cost-effective Detection of Software
Defects through Perspective-based Inspection. PhD Thesis,
University of Kaiserslautern, 2000.

[12] Oliver Laitenberger, Kristin Kohler, Colin Atkinson: “Architechture-centric
Inspection for the Unified Development Process (UP)”

[13] Tom Gilb, Dorothy Graham: "Software inspection", Addison Wesley, London,
UK, 1993. ISBN 0-201-63181-4

[14] Magne Ribe: “Review & Inspection Training”, 2001, foils, 85 p.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 72

[15] Reidar Conradi, Amarjit Singh Marjara, Øivind Hantho, Torbjørn Frotveit, and
Børge Skåtevik: “A study of inspections and testing at Ericsson, Norway”, 2001,
paper 20 pages

[16] Guilherme H. Travassos, Forest Shull, Jeff Carver, Victor, R. Basili, UMD, and
Reidar Conradi, NTNU, p.t. Univ. Maryland: "Fag 45038 Programvarekvalitet og
prosessforbedring, IDI, NTNU, Trondheim, våren 2000, 21.feb.2000-Object-
Oriented-Reading Techniques (OORTs) for design Documents: general and
technical aspects (v1.4)", foils, 64 p.

[17] Olivier Laitenberger, Colin Atkinson: “Generalized Perspective-based Inspection
to handle Object-Oriented Development Artifacts”, Proceedings of ICSE 1999,
pages 494 – 503.

[18] Oliver Laitenberger, Colin Atkison, and Khaled El Emam: “Using Inspection
Technology in Object-oriented Development Projects”, June 2000

[19] M.E. Fagan, “Design and code inspections to reduce errors in
program development”, IBM Systems Journal 15 (No. 3, 1976), pp. 182-211

[20] F. Shull, J. Carver, G. Travassos, “An Empirical Methodology for Introducing Software
Processes”, (ESEC01), 9 pages.

[21] O. Laitenberger, K. Emam, T. Harbich, “An Internally Replicated Quasi-Experimental
Comparison of Checklist and Perspective-based Reading of Code Documents”, (isern-
99-01), 57 pages.

[22] The intranet at Ericsson. (Not public)

[23] http://www.esernet.org

[24] http://www.iese.fhg.de/ISERN/

[25] Travassos, Shull & Carver, "Working with UML: A Software Design Process based on
Inspections for the Unified Modeling Language" - Utdrag fra bok

[26] Travassos, Shull & Carver, "An Empirical Methodology for Introducing
SoftwareProcesses"

[27] Travassos, Shull & Carver, "Evolving A Process for Inspecting OO Designs"

[28] Travassos, Shull & Carver, "A Family of Reading Techniques for OO Design
Inspections"

[29] Software Engineering Group, NTNU

[30] Phillipe Kruchten, "A Rational Development Process"

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 73

Appendix A - Thesis definition

Supervisors: Parastoo Mohagheghi (ETO S/R/Z) in contact with Prof. Reidar Conradi at
NTNU. Gunhild Sørensen Lundvall and Magne Ribe from ETO will also support the
student(s).

Student(s): Geir Arne Bunde and Anders Pedersen

Responsible line manager: Fritz Ekløff.

Thesis Title: Defect reduction by Improving Inspection of UML diagrams in the GPRS
project.

Subtitle: A study of available techniques and state-of-the-practice in the GPRS project
for inspection of UML diagrams. Experimenting a suggested method to reduce defect
cost by early detection of defects.

Background: Some defects can not be found by testing. Further defects found late are
expensive to correct. Thus techniques for early defect detection are needed. Inspections
performed early in the development are one of those techniques. ESERNET
(Experimental Software Engineering Research Network) is a network started on
01.08.2001 as one of the EU R&D programs where NTNU and UiO are also
participating. One of the project goals is to perform experiments in the industry and
among students, especially in the fields of component-based development, inspections
and testing. Experiments are either industrial survey (description of the state-of-the-
practice), benchmarking a standard inspection technique or controlled experiments
where a baseline also exists. Organisations can choose the experiment option based on
the effort and anticipated benefits; as a controlled experiment needs more effort than
benchmarking which in turn needs more effort than a state-of-the-practice study. The
results will be used for product and process improvement in the organisation and be part
of the ESERNET experiments to learn how to conduct studies to be able to react to
challenges in the future.

The GPRS project at Ericsson takes advantage of the Rational Unified Process and UML
diagrams for requirement engineering, analysis, design and test. While the GSN RUP
adaptation describes the artifacts that should be produced in different stages of the
project life cycle, inspection of artifacts has received less attention. Software reading
techniques try to increase the effectiveness of inspections by providing guidelines that
can be used by reviewers of software artifacts. Object-oriented Reading Techniques
(OORT) is a method for inspecting UML diagrams and their relationships and
consistency.

Early fault detection is the main focus of a recently started project in Grimstad that
focuses on inspection improvement. This thesis’s results can be used in the project and
integrated into the existing inspection processes.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 74

Thesis definition

? Thesis goals are:

? Study the inspection techniques for UML diagrams.

? Study the state-of-the-practice in the GPRS project for inspection of UML
diagrams.

Design and conduct an experiment where the subject is to compare the existing
inspection technique in the GPRS project for UML diagrams with an assumed improved
variant. The experiment is based on results from a pre-diploma thesis written at NTNU
and an experiment done during spring 2002 where the participants are students from a
course at NTNU. The students from HiA and NTNU will cooperate for design of these
experiments. The goal is to learn how to conduct and analyse industrial experiments and
to evaluate the suggested improvement. Participants may be employees of Ericsson or
students from HiA.

? Based on the studies and the experiment results, suggest improvements to the
inspection techniques for UML diagrams in the GPRS project. Develop guidelines
that may be used by reviewers during inspections.

Competence:

? Object-Oriented requirement specification, analysis and design using UML.

? Basic knowledge of the Rational Unified Process.

During the work, the students will learn more about OO design, inspection techniques
and goals, the Rational Unified Process, performing experimental studies in the industry
and analysing the results.

Security: The students should have access to the GPRS model and process
documentation to study the current inspection techniques.

Originality, IPR and reuse:

Limitations:

Activities: As described in the thesis definition.

Prerequisites:

Working place and conditions: The students need access to the file system at
Ericsson during the project time (UML model and documents). Experiments may be
done at Ericsson or HiA.

Budget and funding: The SIMULA research lab at IT-fornebu can finance experiment
costs. A possible budget is 10 persons a 10 hours (a 500 NOK?) = 50000 NOK,
including training in relevant techniques.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 75

References:

- http://www.esernet.org/

- http://www.idi.ntnu.no/grupper/su/

- Material on ESERNET project and OORT are available by asking the author.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 76

Appendix B - Ericsson baselining

Confidential

Because of the material included in this Appendix cannot be published; it was removed
from the thesis. The results from the baselining and the other material can be made
available on request and approval from Ericsson.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 77

Appendix C – Initial OORT

The initial set of reading techniques, improved by the NTNU students, before any
changes were implemented.

OORT-1: Sequence Diagram x Class Diagram

Inputs:
1. A class diagram, possibly in several packages.
2. Sequence diagrams.

Outputs:
1. Annotated versions of above diagrams.
2. Discrepancy reports.

Goal: To verify that the class diagram for the system describes classes and their
relationships in such a way that the behaviors specified in the sequence diagrams are
correctly captured

Instructions:
Do steps R1.1 and R1.2.

Step R1.1: From a sequence diagram – identify system objects, system
services, and conditions.

Inputs:
1. Sequence diagram (SqD).

Outputs:
1. System objects, classes and actors (underlined with blue on SqD);
2. System services (underlined with green on SqD);
3. Constraints/conditions on the messages/services (circled in yellow on SqD).
I.e., a marked-up SqD is produced, and will be used in R1.2.

Instructions: – matches outputs above.

Q11.a: Underline system objects, classes and actors in blue on SqD.

Q11.b: Underline system services in green on SqD.

Q11.c: Circle constraints/conditions on messages/services in yellow on SqD.

Step R1.2: Check related class diagrams, to see if all system objects are
covered.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 78

Inputs:
1. Marked up sequence diagrams (SqDs) – from R1.1.
2. Class diagrams (CDs).

Outputs:
1. Discrepancy reports.

Instructions (as questions – here and after):

Q12.a: Can every object/class/actor in the SqD be found in the CDia?
Possible [inconsistency?]

Q12.b: Can every service/message in the SqD be found in the CDia, and with proper
parameters? [inconsistency?]

Q12.c: Are all system services covered by (low-level) messages in the SqD? Possible
[omission?]

Q12.d: Is there an association or other relationship between two classes in case of
message exchanges? [omission?]

Q12.e: Is there a mismatch in behavior arguments or in how constraints / conditions are
formulated between the two documents? [inconsistency?]

Q12.f: Can the constraints from the SqD in R1.1 be fulfilled?

E.g. Number of objects that can receive a message (check cardinality in CDia)?
E.g. Range of data values?
E.g. Dependencies between data or objects?
E.g. Timing constraints?

Report any problems. [inconsistency?]

Q12.g: Overall design comments, based on own experience, domain knowledge, and
understanding:

E.g. Do the messages and their parameters make sense for this object?
E.g. Are the stated conditions appropriate?
E.g. Are all necessary attributes defined?
E.g. Do the defined attributes/functions on a class make sense?
E.g. Do the classes/attributes/functions have meaningful names?
E.g. Are class relationships reasonable and of correct type? (ex. association vs.

composition relationships).
Report any problems. [incorrect fact?]

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 79

OORT-2: State Diagram x Class Description

Inputs:
1. A set of class descriptions.
2. A set of state diagrams for the system objects.

Outputs:
1. Discrepancy reports.

Goal: To verify that the classes are defined, so that they can capture the functionality
specified by the state diagram.

Instructions:
Repeat steps R2.1 – R2.3 for each state diagram (StD).

Step R2.1: Read state diagram to understand possible states and their
transition.

Inputs:
1. State diagram (StD).
2. Set of class descriptions (CDe).

Outputs:
1. Object states (marked in blue on StD).
2. Transition actions/conditions (marked in green on StD).
I.e., a marked-up state diagram is produced, used in R2.2 and R2.3.
3. Discrepancy reports.

Instructions:

Q21.a: Identify the actual class from the state diagram. Missing? [omission?]

Q21.b: Underline the name of each object state (by blue pen).

Q21.c: Underline the transition actions/conditions (by green pen).

Q21.d: Can you understand the object's behavior from Q21.b-c above? [ambiguity?]

Step R2.2: Identify the associated class, and its attributes and behavior.

Inputs: partly from state diagram (StD)
1. Set of class descriptions (CDe).
2. Object states (marked in blue on StD – from R2.1).
3. Transition actions/conditions (marked in green on StD – from R2.1).

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 80

Outputs:
1. Discrepancy reports.

Instructions:

Q22.a: In the CDe, identify the class being modeled by this state diagram.
Missing? [omission?]

Q22.b: Find out how a blue state is represented, i.e. has the class captured each modeled
state in a unique way?

E.g. by an explicit attribute.
E.g. by an implicit attribute (merely via control flow).
E.g. by a combination of attributes.
E.g. by subtyping of the actual object (consult the class hierarchy).

Report the result. [inconsistency? or ambiguity?]

Q22.c: Are all green transition actions/conditions covered by class behavior?
If not: error. [inconsistency?]

Q22.d: Are green transition conditions using object data that are defined as class
attributes with matching names?
If not: error. [inconsistency?]

Step R2.3: Compare class diagram to state diagram.

Inputs: from state diagram (StD)
2. Object states (marked in blue on StD – from R2.1).
3. Transition actions and conditions (marked in green on StD – from R2.1).

Outputs:
1. Discrepancy reports.

Instructions:

Q23.a: From your domain knowledge, are all relevant states defined in the StD?
[incorrect fact?]

Q23.b: For each unmarked state, assess if it is appropriate and essential:
[incorrect fact? or extraneous?]

Q23.c: For each unmarked transition action/condition: here is missing information.
[inconsistency?]

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 81

OORT-3 Sequence Diagram x State Diagram

Inputs:
1. A set of sequence diagrams.
2. A set of state diagrams for several objects.

Outputs:
1. Discrepancy reports.

Goal: To verify that every state transition for an object can be achieved by the messages
sent and received by that object.

Instructions:
Repeat steps R3.1 – R3.3 for each state diagram (StD).

Step R3.1: Read the state diagram to understand the possible object states,
their transitions and corresponding actions.

Inputs:
1. Given state diagram (StD).

Outputs:
1. Marked-up state diagram (StD), with transition actions labeled in green.
2. Discrepancy reports.

Instructions:

Q31.a: Determine which class is being modeled. Missing? [omission?]

Q31.b: Trace all transitions from the start state to the end state, and mark corresponding
actions with a unique name (A1, A2 etc.) with a green pen.

Q31.c: In general, do these transitions/actions and states make sense and are they
understandable for such an object? [ambiguity?]

Step R3.2: Read the sequence diagrams to understand how the transition
actions are achieved by messages sent to/from the relevant object.

Inputs:
1. Marked-up state diagram (StD) (w/ transition actions in green – from R3.1).
2. Set of sequence diagrams (SqD).

Outputs:
1. Marked-up sequence diagrams (SqD), with matching object messages labeled in green.
2. Discrepancy reports.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 82

Instructions:

Q32.a: Pick the relevant subset of SqDs concerning this state diagram (StD)
Is there a problem to identify these? [omission? or extraneous?]

For each relevant sequence diagram (SqD) do below points Q32.b-e:

Q32.b: Read the sequence diagram to identify the associated system service and its
messages.

Q32.c: Identify the object states in the StD, being semantically related to the actual
system service.

Q32.d: Map message arrows (one or many) in the SqD to state transitions in the StD. Are
there “enough” messages to accomplish a given transition? [omission?]
Mark related SqD-messages and StD-transitions with a green star.

Q32.e: Look for constraints and conditions on the above SqD-messages. Check if the
same constraint/condition information stands in both diagrams. [inconsistency?]
Such SqD-information may be correspondingly expressed in the StD by:
1) State information (e.g. t>0),
2) Transition information (what occurs when t>0?),
3) Nothing (not relevant for StD).

Step R3.3: Review the marked-up diagrams to make sure that all transition
actions are accounted for.

Inputs:
1. Transaction actions on the given StD (labeled in green – from R3.1)
2. Object messages on the SqD (labeled in green – from R3.2)

Outputs:
1. Discrepancy reports.

Instructions:

Q33.a: Look for unlabeled transaction actions in the StD, i.e. those not implemented by
available messages in the SqD (cf. Q32.d). Report these. [inconsistency?]

Q33.b: Are the event order the same in the StD and SqD, i.e. check if labeled
messages/transitions in the SqD appear in logical order? [inconsistency?]
E.g. that action Ax on a later transition in the StD actually occurs after an action Ay on an
earlier transition.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 83

OORT-4: Class Diagram x Class Description

Inputs:
1. A class diagram (CDia), possibly in several packages.
2. A set of class descriptions (CDe).

Outputs:
1. Discrepancy reports.

Goal: To verify that the detailed descriptions of classes contain all the information
necessary according to the class diagram, and that the description of classes make
semantic sense.

Instructions:
Repeat steps R4.1 and R4.2 for each class in the class diagram (CDia).

Step R4.1: Read the class diagram to understand the necessary properties.

Inputs:
1. Given class from class diagram (CDia).
2. A set of class descriptions (CDe).

Outputs:
1. Discrepancy reports.

Instructions:

Q41.a: Is there a CDe for this class? [omission?] Mark with a star (“*”) in blue on the
CDe when found, see R4.2.

Q41.b: Is the name and textual description of this class meaningful in the CDe?
[ambiguity?]

Q41.c: Are attributes and their types consistent between the CDia and CDe?
[inconsistency?]

Q41.d: Can this class meaningfully contain all these attributes and with given types?
[ambiguity? or incorrect fact?]

Q41.e: On behavior and constraints:

E.g. Check consistency for behavior and constraints between the CDia and
CDe.

E.g. Are behaviors in the CDe described at the same level of detail /
pseudocode? [inconsistency?]

E.g. In general, should this class really contain all these behaviors and
constraints? [incorrect fact?]

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 84

E.g. Do the behaviors and constraints in the CDe use available behaviors or
attributes from elsewhere, and are they defined? [omission? or
ambiguity?]

E.g. Do the behaviors and constraints in the CDe rely "excessively" on
attributes in remote classes? I.e. too high coupling? [miscellaneous?]

Q41.f: In case of use of inheritance in the CD:

E.g. Is inheritance also included in the CDe? [omission?]
E.g. In general, is it “meaningful” for the given class be a supertype/subtype of

the given subclasses/superclass? [miscellaneous?]

Q41.g: Check that all relationships are correctly described:

E.g. Do they have the right cardinalities, and are they also defined in the CDe?
[inconsistency?]

E.g. We object roles in the CDia also defined in the CDe? [inconsistency?]
E.g. I s the correct graphical notation used in the CDia? [inconsistency?]
E.g. In general, do the stated relationships “make sense”, such as composition

vs. aggregation vs. association vs. inheritance etc.? [miscellaneous?]
E.g. Is an attribute used to represent a relationship, and does this have the right

type (a reference or sets of references)? [inconsistency?]

Step R4.2: Review the class for extraneous information.

Inputs:
1. A set of class descriptions (CDe).

Outputs:
1. Discrepancy reports.

Instructions:

Q42.a: Are there any unstarred (i.e. superfluous) classes in the CDe? [extraneous?]

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 85

OORT-5: Class Description x Requirement Description

Inputs:
1. A set of requirement descriptions (RD), mainly functional.
2. A set of class descriptions (CDe).

Outputs:
1. Discrepancy reports.

Goal: To verify that the concepts and services that are described by the functional
requirements are captured by the class descriptions.

Instructions:
Do steps R5.1 - R5.3.

Step R5.1: Read the requirements to understand the functionality described.

Inputs:
1. Set of requirement descriptions (RD).
2. Set of class descriptions (CDe).

Outputs:
1. Candidate classes/objects/attributes (marked in blue in RD).
2. Candidate services (marked in green in RD).
3. Constraints or conditions on services (marked in yellow in RD).
I.e., a marked-up RD is produced, used in R5.2and R5.3below.

Instructions:
Q51.a: Find the nouns, being candidates for classes/objects/attributes. Underline with a
blue pen.

Q51.b: Find the verbs or action descriptions, being candidates for services or behaviors.
Underline with a green pen.

Q51.c: Look for constraints and conditions on nouns/verbs above, e.g. for relationships,
limiting quantities, or non-functional requirements. Underline with a yellow pen.

Step R5.2: Compare the class description to the requirements

Inputs:
1. Set of marked-up requirement descriptions (RD) – from R5.1
2. Set of class descriptions (CDe).

Outputs:
1. Corresponding concepts have been marked on the RD and CDe.
2. Discrepancy reports.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 86

Instructions:

Q52.a: For each green-underlined verb/action in the RD:

E.g. Find associated behavior(s) in the CDe.
E.g. Do the classes/objects receive the right information to accomplish their

required behavior, and are appropriate results produced? [incorrect fact?]

Q52.b: For each blue-underlined noun/concept in the RD, try to find an associated class
in the CDe, and mark both with a blue star (“*”).

E.g. Does the class description contain sufficient and clear information for this
concept, and does the class name resemble the noun you had marked?
[ambiguous?]

E.g. Does the class encapsulate related (blue-marked) attributes, and does the
class encapsulate related (green-marked) behavior, and are all identified
constraints and conditions for this class described in the RD? [omission?]

Q52.c: For each remaining, blue-underlined noun/concept in the RD, try to find a
matching attribute in the CDe, and mark both with a blue star (“*”).

E.g. In general, is the CDe using appropriate types to represent information
from the RD, and are the (yellow-underlined) constraints and conditions
on these attributes also contained in the CDe? [incorrect fact?]

Step R5.3: Review the Class Descriptions and Requirement Documents to
ensure that all concepts mutually correspond.

Inputs:
1. Set of marked-up requirement descriptions (RD) – from R5.1.
2. Set of marked-up class descriptions (CDe) – from R5.2.

Outputs:
1. Discrepancy reports.

Instructions:

Q53.a: Are there still unstarred blue-underlined nouns or green-underlined activities in
the RD, i.e. not being represented in the CDe? [omission?]
Note: some RD-concepts may have been used just for explanation.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 87

OORT-6: Sequence Diagram x Use Case Diagram

Inputs:
1. A use case diagram (UC) for a part of the system, with its services.
2. One or more sequence diagrams (SqD) for relevant system objects and services.
3. A set of associated class descriptions (CDe).

Outputs:
1. Discrepancy reports.

Goal: To verify that sequence diagrams describe an appropriate combination of objects
and messages that capture the functionality from the use case.

Instructions:
Do steps R6.1 – R6.3 (only R6.3 finds defects).

Step R6.1: Identity the main functionality of a use case and its important
system concepts.

Inputs:
1. Use case diagram (UC).

Outputs:
1. System concepts (marked by blue on UC).
2. System services provided (marked by green on UC).
3. Data necessary to achieve such services (marked by yellow on UC).

Instructions: (similar to R5.1 for RD, but here for UC)

Q61.a: Find the unique nouns/concepts in the UC.
Underline and number consecutively with a blue pen (used in Q61.d).

Q61.b: For each noun, find verbs/actions "to or by" that noun.
Underline and number in assumed performance order with a green pen.

Q61.c: Mark constraints/conditions in double-green (part of service marking).

Q61.d: Also find the information or data to be sent/received in order to perform a certain
action. Label the data in yellow as "Dx,y", where x,y are the nouns involved.

Step R6.2: Identify and inspect the related sequence diagrams, to identify if
the corresponding functionality is described accurately and whether
behaviors and data are represented in the right order.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 88

Inputs:
1. Use case diagram (UC), marked-up w/ concepts, services, and data – from R6.1.
2. A set of sequence diagrams (SqD).

Outputs:
1. System concepts (marked in blue on SqD).
2. System services (marked in green on SqD).
3. Data exchanged between objects (marked in yellow on SqD).

Instructions: (cf. above R6.1, but here for SqD)

Q62.a: For each SqD, underline in blue the system objects, and with the same noun
number (from Q61.a) as in the UC.

Q62.b: Identify the services described in the SqD.
I.e. look at the horizontal message arrows between objects, and possibly cluster several
arrows into one service. Underline the identified services in green,andnumber them in
occurrence order (top-to-bottom) in the SqD.

Q62.c: Identify information/data exchanged between two system classes (x,y).
Label the data in yellow as "Dx,y", as in R6.1.

Step R6.3: Compare the marked-up Use Case / Sequence Diagrams to
determine whether they represent the same domain concepts.

Inputs:
1. Use case (UC), w/ marked-up concepts, services, and data – from R6.1.
2. Set of sequence diagrams (SqD), with similar mark ups – from R6.2.

Outputs:
1. Discrepancy reports.

Instructions:

Q63.a: For each blue-marked noun in the UC, search for a similar one in the SqD.
Mark by blue star (“*”) in the UC if found.
For unstarred nouns in the UC, check also if they possibly are attributes in some class.
The remaining, unstarred nouns from the UC may represent defects, as they are missing
in the design (SqD). [omission?]

Q63.b: Similarly, for each unmarked noun in the SqD, it may belong to some design-
internal or worse: an unused concept. [extraneous?]

Q63.c: For each blue-marked service in the SqD, look for the corresponding done in the
UC.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 89

E.g. Are SqD classes/objects exchanging messages in the same order as in the
UC? If not, this may be a defect.

E.g. Are message parameters on the SqD correctly described in the UC, e.g.
right data between right Dx,y etc.?

E.g. Is it possible to “understand” the expected functionality, for instance from
data being sent/received, by just reading the SqD?

Report any problem in all this. [inconsistency? or ambiguity?]

Q63.d: Are double-green-marked constraints/conditions from the UC being observed by
the SqD? [incorrect fact?

OORT-7: State Diagram x (Requirement Description /
Use Case)

Inputs:
1. The set of all state diagrams (StD).
2. The set of all requirement descriptions (RD).
3. The set of use case diagrams (UC).

Outputs:
1. Discrepancy reports.

Goal: To verify that the state diagrams describe appropriate states of objects and events
that trigger state changes as described by the requirements and use cases.

Instructions: For each state diagram(StD) / object, do the steps R7.1 - R7.4:

Step R7.1: Read the state diagram to basically understand what the object it
is modeling (nothing more here).

Step R7.2: Read the functional requirements to determine the possible states
of the object, which states are adjacent to each other, and which
events/actions cause the state changes.

Inputs:
1. Set of requirement descriptions (RD).

Outputs:
1. Object States (marked in blue on RD).
2. Adjacency Matrix (AM), recording if there is a state transition from one state to
another.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 90

Instructions: (just reading)

Q72.a: Put away the StD and erase any previous stars (“*”) in the RD.
Read through the RD and mark up lightly – with a star (“*”) by a pencil – the places
where the actual StD-object/concept is used.

Q72.b: Locate all corresponding places in the RD for all different states of this object,
mark these places with a blue pen and number them from 1..N.

Q72.c: Identify which of the numbered states being the Initial state ("I"), and similarly
with the endstate ("E").

Q72.d: Make a N*N Adjacency Matrix (AM) on a separate sheet of paper.
Try to identify possible ij-state transitions here, i.e. if state i can lead to state j.
Put a check mark (“v”) in these AM-ij entries.

Step R7.3: Read the use cases and determine the events that cause state
changes.

Inputs:
1. Use case diagrams (UC).
2. Preliminary Adjacency Matrix (AM) – from R7.2.

Outputs:
1. Completed Adjacency Matrix (AM).

Instructions: (just reading)

Q73.a: Read through the use cases and find the ones where the object participates.

Q73.b: For each marked AM-ij entry (i.e. having a transition), document precisely the
associated event and/or constraint someplace on the AM paper sheet.

Q73.c: For the blank entries, see if there still might be events that may cause the
transition. If not, write a “X” in that entry.

Step R7.4: Read the state diagrams to determine if the described states are
consistent with the requirements, and if the transitions are consistent with
the requirements and use cases.

Inputs:
1. Marked-up requirement descriptions (RD) – from R7.2.
2. Set of state diagrams (StD).
3. Completed Adjacency Matrix (AM) – from R7.3.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 91

Outputs:
1. Discrepancy reports.

Instructions: Repeat the following steps for each state diagram (StD):

Q74.a: For each numbered state in the RD, find the corresponding state in the StD and
mark it with a blue pen and corresponding number.
Note: state names may be different in the RD and the StD, and overlapping names may
not represent identical states.

E.g. Were all states in the RD found in the StD? [omission?]
Or maybe some RD states were combined into one StD state, but this was
not a sensible combination? [incorrect fact?]

E.g. Inversely, were there extra states in the StD? [extraneous?]
Or maybe a RD state was split into more than one StD state, but again this
was not a sensible combination? [incorrect fact?]

Q74.b: Check transition events and actions in the AM-matrix/sheet:

E.g. Do all events in the AM appear on the StD? [omission?]
E.g. Do all events in the StD appear on the AM? [extraneous?]

Q74.c: Check transition constraints in the AM-matrix/sheet:

E.g. Do all constraints in the AM appear on the StD? [omission?]
E.g. Do all constraints in the StD appear on the AM? [extraneous?]

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 92

Appendix D – Adjusted OORT

These techniques where developed by Lars Christian Hegde and Tayyaba arif. These
where used during our experiment at Ericsson.

OORT-1: Sequence Diagram x Class Diagram
OORT-2: State Diagram x Class Diagram
OORT-3: Sequence Diagram x State Diagram
OORT-4: Class Diagram for internal consistency
OORT-6: Sequence Diagram x Use Case Specification
OORT-7: State Diagram x Use Case Specification

Abbreviations:

Class Diagram – CD
This diagram shows an overview of the classes involved (VOPC – View Of Participating
Classes). It also includes the textual description of each class and of the behaviors. This
information can be retrieved either by browsing the model using Rational Rose, or by
extracting the text using the tool included in Rational Rose, SoDA.

Use Case Specification – UCS
This is a detailed description of the use case described as a basic flow of events and if
needed several alternative flows and exceptional flows. Wherever this is stated the Use
Case Diagrams are also considered. The specification is not used without the actual use
case diagrams.

State Diagram – StD

Sequence Diagram – SqD

NB!

Only the changes in the given diagrams are to be inspected. In the UCS the changes
are given in bold, so that they can easily be read. For the other documents, see the
additional list of recent changes made to the model.

Also, other referenced documents in the use case specification such as standards may need to be consulted.

In general, you must familiarize yourself with the use case specification before the
inspection.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 93

OORT-1: Sequence Diagram x Class Diagram

Inputs:
1. A class diagram (CD including textual description), possibly in several packages.
2. Sequence diagrams (SqD).

Outputs:
1. Annotated versions of above diagrams.
2. Discrepancy reports.

Goal:
To verify that the class diagram for the system describes classes and their relationships in
such a way that the behaviours specified in the sequence diagrams are correctly captured.

Instructions:
Do steps R1.1 and R1.2.

Step R1.1:
From a sequence diagram – identify system objects, system services, and conditions.

Inputs:
Sequence diagrams (SqD).

Outputs:
Annotated diagram with:
1. System objects, classes and actors (underlined with blue on

SqD);
2. System services (underlined with green on

SqD);
3. Constraints/conditions on the messages/services (circled in yellow on SqD).

Instructions: – matches outputs above.

Q11.a: Underline system objects, classes and actors in blue on SqD.

Q11.b: Underline system services in green on SqD.

Q11.c: Circle constraints/conditions on the messages and services in yellow on SqD. This

may be restriction on the number of classes/objects to which a message can be sent,
restrictions on the global values of an attribute, dependencies between data, or time
constraints that can affect the state of the object. Also circle any conditions that
determine under what circumstances a message will be sent.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 94

Step R1.2:
Check related class diagrams, to see if all system objects are covered.

Inputs:
1. Annotated sequence diagrams (SqDs) – from R1.1.
2. Class diagrams (CDs).

Outputs:
1. Discrepancy reports.

Instructions: (as questions – here and after):

Q12.a: Can every object, class and actor in the SqD be found in the CD? If an actor

cannot be found, you need to consider whether the actor must be represented as a
class in the system in order to provide necessary behaviour. If the desired behaviour
can be achieved without explicit representation, it’s not to be considered an
inconsistency.
 Possible [inconsistency?]

Q12.b: Is there a message on the sequence diagram for which the receiving class does not
contain an appropriate behaviour on the class diagram? [inconsistency?]

Q12.c: Are all system services covered by (low-level) messages in the SqD?

To have an idea of what the system services are, its important to keep the
requirements in mind. When the system services do not have appropriate behaviours,
it means that no class assumes responsibility for a particular service.
Possible [omission?]

Q12.d: Is there an association or other relationship between two classes in case of

message
exchanges? If a message is exchanged between two classes they must be related in
some way. [omission?]

Q12.e: Is there a mismatch in behaviours or in how constraints / conditions are

formulated between the two documents? [inconsistency?] Are there any missing
behaviours, without which the system service cannot be achieved? [omission?]

Q12.f: Can the constraints from the SqD in R1.1 be fulfilled in the class diagram?
E.g Is there a limit on the number of objects that can receive a message? The

constraint should appear as cardinality information for the appropriate
association in the CD.

E.g Is there a specified range of permissible values for data? The constraint
should appear as a value range on an attribute in the CD.

E.g Are there dependencies between data or objects? (“a bill object cannot
exist without a purchase object”)This information should be included as a
constraint or relation on the CD.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 95

E.g Is there any timing constraints? This information should be included as a
constraint or relation on the CD.

Report any issues [inconsistency?]

Q12.g: Overall design comments, based on own experience, domain knowledge, and

understanding.
E.g. Do the messages and their parameters make sense for this object?
E.g. Are the stated conditions appropriate?
E.g. Are all necessary attributes defined?
E.g. Do the defined attributes/functions on a class make sense?
E.g. Do the classes/attributes/functions have meaningful names?
E.g. Are class relationships reasonable and of correct type? (ex. association vs.

composition relationships).
Report any problems. [incorrect fact?]

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 96

OORT-2: State Diagram x Class Diagram

Inputs:
1. A set of class diagram (including textual description).
2. A set of state diagrams for the system objects.

Outputs:
1. Discrepancy reports.

Goal:
To verify that the classes are defined, so that they can capture the functionality specified
by the state diagram.

Instructions:
Repeat steps R2.1 – R2.3 for each state diagram (StD).

Step R2.1:
Read state diagram to understand possible states and their transition.

Inputs:
1. State diagram (StD).

Outputs:
1. Object states (underlined in blue on StD)
2. Transition actions/conditions (underlined in green on StD)

I.e., a marked-up state diagram is produced, used in R2.2 and R2.3.
3. Discrepancy reports.

Instructions:

Q21.a: Identify which class this diagram is modelling. [omission?]

Begin at the filled circle and follow the transitions until you reach an end state (double
circle). Make sure you cover all states and transitions.

Q21.b: Underline the name of each object state (by blue pen).

Q21.c: Underline the transition actions (represented by arrows) and conditions (by green

pen).

Q21.d: Can you understand what’s going on with the object from Q21.b-c above?

[ambiguity?]

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 97

Step R2.2:

Identify the state diagram’s associated class or class hierarchy, attributes
and behaviour.

Inputs: partly from state diagram (StD)
1. Set of class diagram (CD).
2. Object states (underlined in blue on StD – from R2.1)
3. Transition actions/conditions (underlined in green on StD – from R2.1)

Outputs:
1. Discrepancy reports.

Instructions:

Q22.a: In the CD, identify the class or class hierarchy that corresponds to this StD. Did
you find the corresponding class? If not, you have found a defect. [inconsistency?]

Q22.b: Find out how a blue-underlined state is represented, i.e. has the class captured
each modelled state in a unique way?

E.g. By an explicit attribute. An attribute exists with possible values that
correspond to system states.

E.g. By an implicit attribute. An object state depends on the value of an
attribute, but the state is not recorded explicitly.

E.g. By a combination of attributes.
E.g. By subtyping of the actual object (consult the class hierarchy). E.g

subclasses “fixed_rate_loan” and “variable_rate_loan” can be considered
states of parent class “loan”.

Mark each blue-underlined state with a star (*) in the StD as they are found. Does the
StD capture all the states? The object cannot capture certain states (inconsistency), or
it is not clear how they are represented (ambiguity)?
Report the result. [inconsistency? or ambiguity?]

Q22.c: Are all green-underlined transition actions/conditions covered by class
behaviour?

Make sure to look through the whole class hierarchy for the current class when
looking for behaviours. Starr (*) each green highlighted transition action in StD as
corresponding behaviour is found in the CDe
If not: error. [inconsistency?]

Q22.d: Could you identify the object data used to verify the green marked transition
conditions? Are they consistent between the state diagram and the class description?
If not: error. [inconsistency?]

Step R2.3:
Check Class diagram to see if the states are appropriate.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 98

Inputs: from state diagram (StD)
1. Object states (underlined in blue on StD from R2.1)
2. Transition actions and conditions (underlined in green on StD from R2.1)

Outputs:
1. Discrepancy reports.

Instructions:

Q23.a: From your domain knowledge, are all relevant states for the behavior of the class

defined in the StD? [incorrect fact?]

Q23.b: For each unmarked state in the StD, consider if the state is really needed or if it
represents extraneous information. [incorrect fact? or extraneous?]

Q23.c: For each unmarked transition action/condition in the StD, report inconsistency
between CD and StD. [inconsistency?]

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 99

OORT-3: Sequence Diagram x State Diagram

Inputs:

1. A set of state diagrams for several objects.
2. A set of sequence diagrams.

Outputs:
1. Discrepancy reports.

Goal:
To verify that every state transition for an object can be achieved by the messages sent
and received by that object.

Instructions:
Repeat steps R3.1 – R3.3 for each state diagram (StD).

Step R3.1:
Read the state diagram to understand the possible states of the object and the
actions that trigger transition between them.

Inputs:
1. Given state diagram (StD).

Outputs:
1. State diagram (StD), with transition actions labelled and highlighted in green.
2. Discrepancy reports.

Instructions:

Q31.a: Determine which class is being modelled. Missing? [omission?]

Q31.b: Trace the sequence of states (from start state to end state) and the transition

actions through the state diagram. Highlight transition actions (represented by arrows)
as you come to them using a green pen and give each action a unique label (A1,
A2…). Transitions with equal names and end state is considered equal, and can be
labeled with the same label.

Q31.c: In general, do these transitions/actions and states make sense and are they

understandable for such an object? Is it possible to understand and describe what is
going on with the object just by reading this state machine? [ambiguity?]

Step R3.2:
Read the sequence diagrams to understand how the transition actions are achieved
by messages sent to/from the relevant object.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 100

Inputs:
1. State diagrams (StD), with transition actions labelled and highlighted in green (from

R3.1).
2. Set of sequence diagrams (SqD).

Outputs:
1. Annotated sequence diagrams (SqD), with matching object messages starred and

labeled in green.
2. Discrepancy reports.

Instructions:

Q32.a: Take the sequence diagrams and choose the ones that use the object modelled by

the state diagram, use only this subset for the remainder of this step. Could you find
the sequence diagrams in which the object participates? [omission? or extraneous?]

For each relevant sequence diagram (SqD) do below points Q32.b-e:

Q32.b: Read the diagram to identify the system service being described and the messages

that this object receives.

Q32.c: Identify the object states in the StD, being semantically related to the actual

system service.

Q32.d: Map the object messages on the SqD to the state transitions on the StD. Each

transition action may map to one message, or a sequence of messages. To accomplish
this, consider the semantics of the messages. Were there additional messages needed
to achieve the state transition? Mark the related SqD-messages and StD-transitions
actions, both with a green star (*). Label the SqD-messages with the same label given
to their associated StD-action (highlighted and labelled arrows from Q31.b).

Q32.e: Look for constraints and conditions on the above SqD-messages. Check if the

same constraint/condition information stands in both diagrams. [inconsistency?] Look
to see that any constraints/conditions found are captured somehow on the state
diagram. If there is some information not captured on the state diagram, you need to
consider if it is important enough to the object states that it should have been
represented somehow? Such SqD-information may be correspondingly expressed in
the StD by:
1) State information (e.g. t>0)
2) Transition information (what occurs when t>0?)
3) Nothing (not relevant for StD)

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 101

Step R3.3:
Review the marked-up diagrams to make sure that all transition actions are
accounted for.

Inputs:
1. Transaction actions on the given StD (annotated in green – from R3.1)
2. Object messages on the SqD (annotated in green – from R3.2)

Outputs:
1. Discrepancy reports.

Instructions:

Q33.a: Look for unstarred transition actions in the StD that could not be associated with

object messages. Look for constraints or events belonging to an unstarred transition
action, are these somehow represented by a message or sequence of messages or an
event performed by an actor? If not, report the unstarred transition actions (cf. Q32.d).
Report these. [inconsistency?]

Q33.b: Are the event order the same in the StD and SqD, i.e. check if with starred

messages and transition actions in the SqD appear in logical order? [inconsistency?]
E.g. that action Ax on a later transition in the StD actually occurs after an action Ay
on an earlier transition.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 102

OORT-4: Class Diagram for internal consistency

Inputs:
1. A class diagram (CD including textual description), possibly in several packages.

Outputs:
1. Discrepancy reports.

Goal:
To verify that the detailed descriptions of classes contain all the information necessary,
and that the description of classes make semantic sense.

Instructions:
Repeat steps R4.1 and R4.2 for each class in the class diagram (CD).

Step R4.1:
Read the class diagram to understand the necessary properties.

Inputs:
1. Given class from class diagram (CD).

Outputs:
1. Discrepancy reports.

Instructions:

Q41.a: Is there a textual description for each class? [omission?]

Q41.b: Is the name and textual description of this class meaningful? [ambiguity?]

Q41.c: Can this class meaningfully contain all these attributes and with given types?

[ambiguity? or incorrect fact?]

Q41.d: On behaviour and constraints:

E.g. Are behaviours described at the same level of detail?
[inconsistency?]

E.g. In general, should this class really contain all these behaviours and
constraints?
[incorrect fact?]

E.g. Do the behaviours and constraints use available behaviours or
attributes from elsewhere, and are they defined? [omission? or
ambiguity?]

E.g. Do the behaviours and constraints rely "excessively" on attributes
in remote classes? I.e. too high coupling? [miscellaneous?]

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 103

Q41.e: In case of use of inheritance in the CD:
E.g. In general, is it “meaningful” for the given class be a supertype/subtype of

the given subclasses/superclass? [miscellaneous?]

Q41.f: Check that all relationships are correctly described:
E.g. Do they have the right cardinalities? [inconsistency?]
E.g. In general, do the stated relationships “make sense”, such as composition
vs.

aggregation vs. association vs. inheritance etc.? [miscellaneous?]
E.g. Is an attribute used to represent a relationship, and does this have the right

type (a reference or sets of references)? [inconsistency?]

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 104

OORT-6: Sequence Diagram x Use Case Specification

Inputs:
1. A use case specification (UCS) for a part of the system, with its services.
2. One or more sequence diagrams (SqD) for relevant system objects and services.

Outputs:
1. Discrepancy reports.

Goal:
To verify that sequence diagrams describe an appropriate combination of objects and
messages that capture the functionality from the use case specification.

Instructions:
Do steps R6.1 – R6.3 (only R6.3 finds defects).

Step R6.1:
Identify the main functionality of a use case specification and its important system
concepts.

Inputs:
1. Use case diagram (UC).

Outputs:
1. System concepts (annotated by blue on UCS).
2. System services provided (annotated by green on UCS).
3. Data necessary to achieve such services (annotated by yellow on UCS).

Instructions:

Q61.a: Find the unique nouns/concepts in the UCS.

Underline and number consecutively with a blue pen.

Q61.b: For each noun, find verbs/actions "to or by" that noun.
Underline and number in assumed performance order with a green pen.

Q61.c: Mark constraints/conditions in double-green (part of service marking).
Constraints and conditions are given in plain text in the UCS. Read it carefully to
identify the constraints/ conditions that are necessary for the marked actions to be
performed.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 105

Step R6.2:
Identify and inspect the related sequence diagrams, to identify if the corresponding
functionality is described accurately and whether behaviours and data are
represented in the right order.

Inputs:
1. Use case specification (UCS), annotated w/ concepts, services, and data – from R6.1.
2. A set of sequence diagrams (SqD).

Outputs:
1. System concepts (annotated in blue on SqD).
2. System services (annotated in green on SqD).
3. Data exchanged between objects (annotated in yellow on SqD).

Instructions: (cf. above R6.1, but here for SqD)

Q62.a: For each SqD, underline in blue the system objects, and with the same noun

number (from Q61.a) as in the UCS.

Q62.b: Identify the services described in the SqD. I.e. look at the horizontal message

arrows between objects, and identify the services described in the SqD. To do this,
look at the information exchanged (horizontal message arrows) between objects in the
SqD. If the messages are very detailed, you may need to cluster several messages
together to identify the service they provide. Underline the identified services in
green, and number them in occurrence order (top-to-bottom) in the SqD.

Step R6.3:
Compare the marked-up Use Case Specification/ Sequence Diagrams to determine
whether they represent the same domain concepts.

Inputs:
1. Use case specification (UCS), w/ annotated concepts, services, and data – from R6.1.
2. Set of sequence diagrams (SqD), with similar annotation – from R6.2.

Outputs:
1. Discrepancy reports.

Instructions:
Q63.a: For each blue-marked noun in the UCS, search for a similar one in the SqD.

Mark by blue star (“*”) in the UCS if found.
For unstarrred nouns in the UCS, check also if they possibly are attributes in some
class. Check the CDe. The remaining, unstarred nouns from the UCS may represent
defects, as they are missing in the design (SqD). [omission?]

Q63.b: Similarly, for each unmarked noun in the SqD, it may belong to some design-
internal or worse: an unused concept. Mark the nouns on the sequence diagram with a

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 106

blue cross (x) if they appear only on the SqD. Are there any crossed nouns in the
SqD? This may be an extraneous concept or a lower-level concept. Try do decide
whether this concept is necessary for the high-level design or not. Report this.
[extraneous?]

Q63.c: For each green-marked service in the SqD, look for the corresponding done in the

UCS.
E.g. Are SqD classes/objects exchanging messages in the same order as in the

UCS? If not, this may be a defect.
E.g. Is it possible to “understand” the expected functionality, for instance from

data being sent/received, by just reading the SqD?
Report any problem in all this. [inconsistency? or ambiguity?]

Q63.d: Are all double-green marked constraints/conditions from the UCS observed in
the SqD? Are all behaviour and data directly concerned with the UCS? [incorrect fact?]

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 107

OORT-7: State Diagram x Use Case Specification

Inputs:
1. The set of all state diagrams (StD).
2. The set of use case specification (UCS)

Outputs:
1. Discrepancy reports.

Goal:
To verify that the state diagrams describe appropriate states of objects and events that
trigger state changes as described by the Use Case Specification.

Instructions:
For each state diagram (StD) / object, do the steps R7.1 - R7.3:

Step R7.1:
Read the state diagram to basically understand what the object it is modelling
(nothing more here).

Step R7.2:
Read the use case specification (UCS) to determine the possible states of the object,
which states are adjacent to each other, and which events/actions cause the state
changes.

Inputs:
1. Set of requirement specification (UCS).

Outputs:
1. Object States (marked in blue on UCS).

Instructions: (just reading)

Q72.a: Put away the StD and erase any previous stars (“*”) in the UCS.

Read through the UCS and mark up lightly – with a star (“*”) by a pencil – the places
where the actual StD-object/concept is used.

Q72.b: Locate all corresponding places in the UCS for all different states of this object,
mark these places with a blue pen and number them from 1..N.

Q72.c: Identify which of the numbered states being the Initial state ("I"), and similarly

with the end state ("E").

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 108

Step R7.3:
Read the state diagrams to determine if the described states are consistent with the
specifications, and if the transitions are consistent with use case specification.

Inputs:
1. Annotated use case specification (UCS) – from R7.2.
2. Set of state diagrams (StD).

Outputs:
1. Discrepancy reports.

Instructions: Repeat the following steps for each state diagram (StD):

Q73.a: For each numbered state in the UCS, find the corresponding state in the StD and

mark it with a blue pen and corresponding number. Note: state names may be
different in the UCS and the StD, and overlapping names may not represent identical
states.
E.g. Were all states in the UCS found in the StD? [omission?] Or maybe some

UCS states were combined into one StD state, but this was not a sensible
combination? [incorrect fact?]

E.g. Inversely, were there extra states in the StD? [extraneous?] Or maybe a
UCS state was split into more than one StD state, but again this was not a
sensible combination? [incorrect fact?]

Q73.b: Check if the state transition events and actions correspond with the transition

events and actions in the use case specification.
[omission?] [extraneous?]

Q73.c: Check if the transition constraints correspond with the transitions constraints in
the use case specification.
[omission?] [extraneous?]

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 109

Appendix E – Questionnaire

Experience Questionnaire (for OO Reading techniques)

Name: __

Software Development Experience

Please rate your experience in this section with respect to the following 5-point scale:

1 = none
2 = studied in class or from book
3 = practiced in a class project
4 = used on one project in industry
5 = used on multiple projects in industry

Experience with Requirements

? Experience writing requirements 1 2 3 4 5
? Experience writing use cases 1 2 3 4 5
? Experience reviewing requirements 1 2 3 4 5
? Experience reviewing use cases 1 2 3 4 5
? Experience changing requirements for maintenance 1 2 3 4 5

Experience in Design

? Experience in design of systems 1 2 3 4 5
? Experience in design of systems from requirements/use cases 1 2 3 4 5
? Experience with creating Object-Oriented (OO) designs 1 2 3 4 5
? Experience with reading OO designs 1 2 3 4 5
? Experience with the Unified Modeling Language (UML) 1 2 3 4 5
? Experience changing designs for maintenance 1 2 3 4 5

Experience in Coding

? Experience in coding, based on requirements/use cases 1 2 3 4 5
? Experience in coding, based on design 1 2 3 4 5
? Experience in coding, based on OO design 1 2 3 4 5
? Experience in maintenance of code 1 2 3 4 5

Experience in Testing

? Experience in testing software 1 2 3 4 5
? Experience in testing, based on requirements/use cases 1 2 3 4 5
? Experience with equivalence-partition testing 1 2 3 4 5

Other Experience

? Experience with software project management? 1 2 3 4 5
? Experience with User Interface (UI) design? 1 2 3 4 5
? Experience with software inspections? 1 2 3 4 5

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 110

Confidential

Because of the material included in this Appendix cannot be published; it was removed
from the thesis. The results from the questionnaire can be made available on request and
approval from Ericsson.

IKT 6400 - Diploma Thesis HiA Grimstad 2002

 111

Appendix F – Experiment Data

The data gathered from the experiment is presented here.

Confidential

Because of the material included in this Appendix cannot be published; it was removed
from the thesis. The results from the experiment can be made available on request and
approval from Ericsson.

