

Providing location transparent services
with Java technologies

Testing support of Open Distributed Processing transport
transparencies in JINI, Web Services and JXTA

Rune Fauske
Per Wollebæk

Agder University College
Grimstad 2002

Abstract
This thesis tests the presence of Open Distributed Processing
(ODP) distribution transparencies in Jini, Jxta and Web
Services. The thesis presents an introduction to each
technology, a description of the test criteria developed,
selection of prototype applications, test execution and
presentation of the results. Main focus is on testing support of
transparencies at the application developer and system
designer level.

The work has shown that all technologies support
transparence types that have to do with the location of a
service; location transparency and migration transparency. But
when it comes to replication transparency, this is not
supported by Web Services. Jini provides functions to achieve
failure transparency in the JavaSpace extension; neither Web
Services nor Jxta provides this.

 i

Preface
This thesis is part of the Graduate degree (Siv.ing) in Information and
Communication Technology (ICT) at Agder University College, Faculty of
Engineering and Science in Grimstad, Norway. This work has been done in
cooperation with ObjectNet AS and the R&D project “Den Mobile Student”.

We would like to thank our employer Objectnet AS for providing two
experienced supervisors; Nils Chrisian Haugen and Stein Grimstad.
They both have given us advice and guidance through the project, even at
the cost of their own spare time.

We would also direct a special thanks to Stein Bergsmark at Ericsson AS
for reviewing of our work and Jan P Nytun at Agder University College for
helping arranging this thesis.

Rune Fauske and Per Wollebæk, Grimstad, May 2002

 ii

Contents
Abstract .. i
Preface... ii
Contents ... iii
1 Introduction.. 1

1.1 Thesis introduction .. 1
1.2 Task description... 3
1.3 Thesis outline... 4

2 Jini .. 5
2.1 Overview.. 5
2.2 What is Jini? .. 5
2.3 Jini networking... 5

2.3.1 Service .. 6
2.3.2 Lookup Service ... 7
2.3.3 Client ... 7

2.4 Jini network communication protocols... 7
2.4.1 Discovery .. 7
2.4.2 IP Multicast ... 8

2.5 JavaSpaces ... 8
2.5.1 The write Operation .. 9
2.5.2 The read operation.. 9
2.5.3 The Take operation... 10
2.5.4 The notify operation .. 10

2.6 Summary ... 10
3 JXTA ... 11

3.1 Overview.. 11
3.2 What is JXTA?... 11
3.3 JXTA software architecture ... 11

3.3.1 Platform Layer (JXTA Core) ... 12
3.3.2 Services Layer .. 12
3.3.3 Applications Layer... 12

3.4 JXTA networking ... 12
3.5 Summary ... 13

4 Web Services ... 14
4.1 Overview.. 14
4.2 What is Web Services? ... 14
4.3 Web Services model.. 14
4.4 Web Services Stack .. 15

4.4.1 Transport Network .. 15
4.4.2 XML Messaging – SOAP .. 15
4.4.3 Service Description – WSDL .. 17
4.4.4 Publication and Discovery – UDDI.. 17

4.5 Summary ... 18
5 Test Criteria.. 19

5.1 Overview.. 19
5.2 Introduction.. 19
5.3 Technical test criteria... 19

5.3.1 Service location transparency... 19
5.3.2 Service migration transparency .. 20
5.3.3 Service replication transparency... 21
5.3.4 Service failure transparency ... 21

5.4 Market review criteria .. 22
5.4.1 Technology’s market position ... 22

6 Building test applications... 23
6.1 Overview.. 23
6.2 Introduction.. 23
6.3 Jini test application .. 24
6.4 JXTA test application... 24

 iii

6.5 Web Services test application ... 25
6.6 Summary ... 25

7 Prototype testing and result... 26
7.1 Overview.. 26
7.2 Jini ... 26

7.2.1 Service location transparency... 26
7.2.2 Support of replication transparency 28
7.2.3 Service migration transparency .. 30
7.2.4 Service failure transparency ... 31
7.2.5 Technology’s market position ... 32

7.3 Web Services... 35
7.3.1 Service location transparency... 35
7.3.2 Service replication transparency... 36
7.3.3 Service migration transparency .. 38
7.3.4 Service failure transparency ... 39
7.3.5 Technology’s market position ... 40

7.4 JXTA.. 42
7.4.1 Support of service discovering.. 42
7.4.2 Support of replication transparences 42
7.4.3 Service migration transparency .. 43
7.4.4 Service failure transparency ... 44
7.4.5 Technology’s market position ... 44

7.5 Summary ... 46
7.5.1 Jini... 46
7.5.2 Web Services.. 48
7.5.3 JXTA ... 49

8 Discussion ... 50
9 Conclusion... 52

9.1 Thesis conclusion .. 52
9.2 Future Work ... 53

Abbreviations.. 54
Bibliography.. 55
Appendix A Test environment... 60

A.1 Computer configuration .. 60
Appendix B – Jini development environment 61

B.1 Software.. 61
B.1.1 Jini Technology Starter Kit v1.2.1 .. 61

B.2 Building test application.. 61
B.2.1 Jini prototype.. 61
B.2.2 JavaSpace prototype ... 62

B.3 Script... 63
B.3.1 Lookup service... 63
B.3.2 JavaSpace ... 64
B.3.3 Client starting script ... 65
B.3.4 Service starting script... 65

B.4 Source code.. 66
B.4.1 Clock Client Jini ... 66
B.4.2 Clock Service Jini... 68
B.4.3 Clock Client JavaSpace... 70
B.4.4 Clock Worker JavaSpace... 72

Appendix C – Web Services development environment 76
C.1 Software ... 76
C.2 Building test application.. 76
C.3 Script .. 77

C.3.1 Clock service’s WSDL document .. 77
C.3.2 Deployment descriptor... 78
C.3.3 Build and run scripts .. 79

C.4 Source code ... 80
C.4.1 Client.. 80
C.4.2 UDDI enabled client... 83

 iv

C.4.3 Service... 87
Appendix D – JXTA development environment 88

D.1 Software ... 88
D.1.1 Project JXTA starting kit .. 88

D.2 Building test application.. 88
D.2.1 Creating the service... 88
D.2.2 Creating the client.. 88

D.3 Script .. 88
D.3.1 Starting the service .. 88
D.3.2 Starting the client ... 89
D.3.3 Pipe service advertisement.. 89

D.4 Source code ... 89
D.4.1 Client.. 89
D.4.2 Service... 91

 v

1 Introduction

1.1 Thesis introduction
We want to communicate and share resources. This appears to be the
main motivation to build and use distributed systems. The most common
example of a distributed system is the Internet. Though it’s simple it’s not
poor, since anyone nowadays has an opinion of what it is: Communicating
and sharing resources.

There have been a lot of descriptions which try to describe what a
distributed system is. To give a simple description, distributed systems are
a collection of separate computers which are comprehended as a single
system.

Distributed systems are often organized as layers of software. Middleware
separates the application from the operating system, and creates a
platform for distributing services.

Figure 1-1 Distributed system as middleware [18]

One of the ambitions of a distributed system is to hide the fact that it is
physically distributed. If we look at the definition of a distributed system
mentioned above, we could say that the system is transparent, since the
system appears as a single system to the client. Transparency is one
aspect of the distributed system which is hidden from the user1.
Transparency must be provided by a function in a layer below the layer of
where it is needed. If our application needs a function that provides
transparency, then it must be implemented in the layer below; the
middleware service (Figure 1 1).

Leslie Lamport has this slightly humorous reflection to distributed systems
and transparency.

“You know you have one when the crash of a computer you’ve
never heard of stops you from getting any work done”

Transparency is not preferred in all situations. Distributed processing
introduces many new problems to a system. A high level of transparency
will most likely result in performance loss, and sometimes we don’t want to
hide the distribution aspect.

The main motivation for transparency in distributed systems is to reduce
implementation complexity, and raise usability. Another important aspect is
separations of concerns.

1 The user could be the programmer, system developer, user or the application program.

 1

Open Distributed Processing – Reference Model (RM-ODP) is a standard
for Open Distributed Processing. It creates an architecture within which
support of distribution, interworking and portability can be integrated [8].
The distribution transparencies which we look at in this thesis are
standardized in this ISO document.

Max Goff at Sun Microsystems has performed a critical comparison of the
technologies Jini, JXTA and Web Services in the scope of the eight
faculties2 [22]. We’ll take this testing a step further, focusing at several RM-
ODP distribution transparencies and verify if the selected technologies
conform to them. The comparison is performed by both an application test
based on simple prototypes, and discussions of the technologies
supporting the transparencies.

2 2 The eight faculties [27] are a set of assumptions often made by distributed software
developers, which in the long run are proved to be wrong.

 2

1.2 Task description
In distributed systems a separation from a static resolution of resources is
wanted. To achieve this, a dynamic registry of resources is needed. It must
be able to separate the location independent name from the actual
reference to the resource.

An example of this is accessing a web server. Knowing the static location
of the server is in many cases not necessary, an URL is enough. After
transmitting the address it will be translated by the DNS to an exact
address and the request will be forwarded to right location.

Some distributed technologies like JINI, JXTA and Web Services offer
similar solutions to provide resources such as hardware or software by
dynamic addressing.

The assignment will be both a theoretical and a practical comparative study
of different java technologies for providing location-transparent services
including locating and providing resources.

The theoretical part will include:
- An introduction to location transparent services
- Surveying of technologies (description of three distributed system

technologies)
- Identify criteria for testing the technologies
- Identify an adequate application for an evaluation
- Evaluate different solutions for distributing services

The practical part will include:
- Implementations of prototypes in different technologies
- Test runs of prototypes.

Technologies
- Technologies which are interesting to compare and study are JINI,

JXTA and Web Services. They are all offering service providing but
have different approach to the problem.

 3

1.3 Thesis outline
The next three chapters of this thesis provide an introduction to the
technologies which were tested: Jini, JXTA and Web Services.

To have a proper test, the test criteria and test definitions based on the
ODP distribution transparencies are developed and described in chapter 5.

A set of application prototypes have been developed for each technology.
These applications are described in chapter 6 along with the tools used in
the development process.

In chapter 7 each of the test cases are performed at each technology. This
chapter includes description of the execution, presentation of results,
discussions of each test and finally a conclusion for each test.

The next part discusses important observations from the test in previous
chapter.

Finally, a conclusion from the application tests and discussions are reached
and presented in chapter 8.

 4

2 Jini

2.1 Overview
This chapter provides an introduction to the Jini technology. We start with a
brief history review and introduction to network structure and
communication protocols. Then there is an introduction to a service built on
Jini architecture; the JavaSpace.

2.2 What is Jini?
Jini technology was established in Sun Microsystems Laboratory at Sun
east cost facility just outside Boston January 25, 1999.
It is a distributed computing environment that can offer “network plug and
play” and a user-friendly access to information.
Jini is based on the Remote Method Invocation (RMI3) infrastructure but
gives the opportunity to make much more advanced distributed
applications.

In an article in Dr. Dobb’s journal [12], Bill Pierce writes that “Jini puts RMI
on Steroids” and gives a detailed description of how RMI is corrected under
the implementation of Jini. Examples of such are; lookup process is
advanced from a string based Naming service to a lookup specification that
uses java concept of interfaces, which again allows much more complex
lookup queries to be built.

While the RMI implementation is bound to network address which the client
must know beforehand, the Jini infrastructure is using IP multicast which
eliminates this constraint and allows lookup services and services to be
found without any knowledge of where those services reside.

RMI’s naming service allows only stub references to Remote object to be
stored. Jini Lookup services can store both references to remote services
and serializable service object that can be downloaded and executed
locally on the client.

Finally the RMI structure has no established mechanisms for a service
object to tell when its client has failed, leaving them holding resources for
clients that no longer exist. Jini has solved this with a leasing mechanism.

Jini is built on top of a solid foundation of Java networking technologies.
Java networking itself has been available as part of Java since version 1.0
of the JDK release. In fact, Java is the first widely available
language/platform that was designed with networking in mind right from day
one.

Jini was conceived as the foundation upon which robust, truly distributed
systems can be built. Jini is nothing without a network – in fact, by
definition; Jini doesn’t exist outside of a network.

2.3 Jini networking
The Jini network consists of services. Applications are created to combine
the services to groups called federations. In a Jini network there may be
many federations, each one offering specific services.

3 To read more about RMI see (10.05.2002)
http://searchsolaris.techtarget.com/sDefinition/0,,sid12_gci214267,00.html

 5

http://searchsolaris.techtarget.com/sDefinition/0,,sid12_gci214267,00.html

Figure 2-1 Jini services in Federations

Inside a federation a client can search for services through an intermediary
service called a lookup service. There is always at least one lookup service
available in a Jini network, most cases there will actually be more than one
to implement a basic level of redundancy and fault tolerance.

The search process is usually initiated by a client telling the lookup service
what type of function (or work) it wants the service to perform. This is done
with a Java interface or attached properties. The lookup service will return
a service within the federation that fulfils the criteria.

Any service in the Jini network may make use of other services in
performing its own work. This way a service may also be a client of another
Jini service.

In a running Jini system, there are three main players; Lookup service, the
service and the client. To give a clearer indication what the different players
are doing, a short description will be given below together with a
description of how they are interacting with each other.

Figure 2-2 How Jini works, a flow diagram [44]

2.3.1 Service
Jini is designed to support a wide variety of hardware platforms, and to
bring together hardware ranging from the very cheap (under a dollar) to the
very expensive. (Million dollar servers) This makes a definition of a service
very wide, and can at best be described as any hardware or software
component that can be used by other components.

The book Core Jini [9] (page 93) gives an indication of what kind of
requirement (hardware) which the component must support before it can be
used in a Jini network.

No matter what type of machine or software component you will mount to a
Jini network it has to register at a lookup service to be available to the Jini
community. The registration is initiated by a discovery process.

 6

If there is not implemented some restrictions, a service will join all the
lookup services that is supported by the community. So if one lookup
service fails, others can stand in for it.

When a service wants to register with a lookup service it will typically
upload a proxy object. The client will later download this object from the
Lookup service.

A proxy object will work as a middleman between the service and the client.
The communication platform is option by the developer (RMI, CORBA
(Common Object Request Broker Architecture), SOAP (Simple Object
Access Protocol), etc)

2.3.2 Lookup Service
As mentioned before a service must register to a lookup service if it wishes
to join the Jini community.

A lookup service is a store which contains “service items”, each of them are
again containing the proxy for a service, a unique ID for the service, and a
set of descriptive “attributes” associated with the service. You can think of
Jini Lookup service as being like name servers, since they keep track of all
of the services that have joined a Jini community. But unlike a traditional
name server, which provide a mapping from strings to stored objects, the
Jini lookup service provides a much richer set of semantics. For one thing,
the lookup service understands the Java system, so you can search for
proxies that implements particular Java interfaces and the lookup service
will return you the proxies that implements these interfaces. You can even
search for superclasses and superinterfaces of proxies.

2.3.3 Client
A client is a process that wants to use one or more services. (Note that this
client can also be a service in the Jini community) It will announce its
presence to a lookup service and start searching for services in the
community.

If the lookup service doesn’t have access to a service that the client seeks,
the lookup service can store information about the interface. If the lookup
service later gets a registration from such a service, it will then announce
this to the client by sending it an event.

On the other hand if the lookup service has access to the wanted service
the lookup service will upload the proxy object to the client, and the
communication between the service and client can start.

A client and service are extremely loosely coupled, and this allows Jini to
survive fault to service and LUS. A client that needs work to be carried out
doesn’t need to use the same service again, unless it is the only one on the
network.

2.4 Jini network communication protocols

2.4.1 Discovery
The discovery and join protocols govern the way individual computers join,
leave and interact with a Jini federation. A federation is the collection of Jini
clients and services that come together to get work done. (Also referred to
as djinn, or Jini community)

 7

Broadly there are two types of discovery in Jini networking. One form is
used to support “serendipitous” interaction between services and lookup
services. Serendipitous interaction means that the lookup service and Jini
service find each other without any previous configuration and without
explicitly being told to search for one another.

This form of discovery is used when a service starts and needs to find all
the lookup services that may be running in its neighborhood. It is also used
when a lookup service starts and needs to announce its presence to any
Jini services that may be running, in case they wish to register with it.

The second type of discovery is used to connect a Jini service to a certain
lookup service. Unlike the serendipitous form of discovery, where services
find any and all lookup services in their neighborhood, this direct form of
discovery allows services to contact particular lookup services that they
may know about ahead of time. This form of discovery uses an URL-based
naming scheme for specifying lookup services.

Since we want to look at transparent solution in distributed networking the
serendipitous way of discovering is the most interesting.

2.4.2 IP Multicast
The network technology used in the serendipitous discovery process is IP
multicast. Multicast is a way to send messages that may be received by
any number of parties.

It is not broadcast, because it does not go to every party on the network; it
only goes to those who are explicitly listening for it. And it is not unicast,
which would entail sending a separate message to each intended recipient,
and would require that the sender know the IP address of each recipient
ahead of time.

Multicast makes efficient use of network resources, because a message
sent to multicast receivers it transmitted as a single message wherever
possible.

The form of multicast used by Jini is based on the UDP/IP protocol. UDP
provides a connectionless, unreliable transport. This means that UDP
provides no guarantees that a packet will arrive or in which order they are
arriving if there is more than one sent.

In UDP multicast, a range of special IP addresses are used as multicast
groups. Interested parties can effectively “join” a group by listening for
messages sent to that IP address. All parties listening to that address
would receive any message sent to it.

Each message sent with multicast has a scope associated with it, which is
used to limit the distance the message will travel. The benefit of scoping is
that an IP address used as a multicast group for one set of hosts may be
invisible to another set of hosts using the same IP address. In this way,
scoping effectively limits the visibility of multicast groups, and allows the
addresses used for multicasting to be reused many times across the
Internet.

2.5 JavaSpaces
Many applications in a distributed setting, just as in local settings, have a
need to share data. Jini has a solution to this demand, and it is in a service
built on top of the basic Jini substrate. This service is called JavaSpaces

 8

and provides storage facilities for java object; in fact it can hold only Java
objects.

In many ways JavaSpaces can be compared to a network file system,
where Jini services and clients can create and manipulate persistent
collections of java objects. - In other words JavaSpaces provides a facility
for distributed shared memory that can be used by any other entity in a Jini
community.

Figure 2-3 Example of interaction in a JavaSpace

JavaSpace is based on Gelernter Linda system [46]. An alternative
technology to JavaSpace is the IBM T Space [47]

JavaSpace defines only three different actions to interact with the space,
each having two modes of operations: read, write and take. They
implement blocking and non-blocking semantics. There is also and
asynchronous notification registration method available, notify(), that
utilizes Jini remote events.

2.5.1 The write Operation
The write method is used to put a new entry into JavaSpace. The object is
serialized and a copy of it is stored, together with a RMI codebase
annotation that can be used to retrieve the class information on the entry.
This information allows the object to be re-constituted for any reader of the
JavaSpace.

If you write the same entry multiple times, there will be multiple copies of
the entry residing in the space. A successful write operation returns a
lease, which the writer must renew in order to keep the written entry in the
space. On the other hand if a remote exception is raised you cannot tell if
the write was a success or not.

2.5.2 The read operation
With the read operation will the JavaSpace attempt to mach a user-filled
template against the entries held in the store. Using an associative search,
a copy of the appropriate entry will be retrieved and returned to the reader
of the space. Any null fields in the template entry act as wildcards during
the mach operations.

Note that JavaSpace API provides no way to return multiple values from a
search.

 9

The read method uses blocking, in other words will the caller be blocked
until ether a matching entry becomes available, or a specified time period
has elapsed.

The readifExist() method provides a non-blocking variant that reads entries
only if an immediate mach can be made.

2.5.3 The Take operation
The take operation works much like the read operation, with the difference
that it removes the object from the space.

If more than one client attempts to take the same object from space
simultaneously, one of them, and only one, will successfully match and
retrieve it. JavaSpace will not guarantee that the first one to give a request
will be the one to retrieve the object.

2.5.4 The notify operation
The notify operation work much the same way as the method of the same
name on Jini Lookup service. The method takes an Entry as a template
that will be matched against future writes to the JavaSpace. If a new Entry
is written that matches the template, an event will be sent to the listener
specified in the notify call. The client then have to make an read or a take
operation,- there is, however, no guarantee that the matching entry will still
be in the space by the time the client perform this operation.

2.6 Summary
In this chapter we have learned that Jini is built on RMI and that is offers a
transparent environment for developing distributed applications in Java.
The discovery process offers two different options of discovery,
serendipitous and a direct connection. The serendipitous uses multicast,
the other alternative is an URL-based naming scheme for specifying the
lookup services.

We have also learned that JavaSpace is a service built on the Jini
structure, that offers a tuple-based environment for sharing objects.

 10

3 JXTA

3.1 Overview
This chapter provides an introduction to JXTA technology, starting with a
brief history review and introduction to network structure as well as
communication protocols.

3.2 What is JXTA?
JXTA, or Juxtapose, began in the summer of 2000 as a Sun Microsystems
research project or "intrapreneuring incubation" led by Chief Scientist Bill
Joy. Beginning with conversations with innovators in the Peer to Peer
(P2P) space, the JXTA team began assembling a picture of what a core
common distributed computing framework would look like. In the months
since, the sketch became an API, and finally an Open Source release on
April 25th, 2001 [41].

P2P computing is becoming increasingly popular. Software based on P2P
technologies includes Napster and Gnutella for file sharing, SETI@home
for distributed computing, and AOL and other instant messenger services.
While each of these applications performs different tasks, they all share
many of the same properties, such as discovery of peers, searching, and
file or data transfer.

What is missing is a standard set of interfaces on top of which developers
can build P2P applications. The direct consequence of this is that currently,
application development is inefficient, with developers solving the same
problems and duplicating similar infrastructure implementation.

JXTA strategy is one of complete openness and standards conformance,
from design to XML-based protocols to open-source implementation. JXTA
is lightweight and minimalist, providing only what’s vital across P2P
applications. It leaves everything below (operating environment, TCP/IP
network-awareness, and hardware) and above (application specific) to the
device/environment and application at hand. This leaves only the building-
block constituents that almost all P2P applications can use, regardless of
their intended users and specific implementation [48].

Sun has provided an initial Java language implementation for JXTA; but,
amazingly enough, Project JXTA is specific neither to the Java
programming language nor to the Java platform. In other words, anyone
can implement JXTA-based networks on any hardware platform, with any
operating system, using any programming language [49].

3.3 JXTA software architecture
The Project JXTA software architecture is divided into three layers, as
shown in Figure 3-1.

 11

Figure 3-1 Project JXTA software guide [42]

3.3.1 Platform Layer (JXTA Core)
The platform layer, also known as the JXTA core, encapsulates what is
common to P2P networking. It includes building blocks to enable key
mechanisms for P2P applications, including discovery, transport (including
firewall handling), the creation of peers and peer groups, and associated
security primitives.

3.3.2 Services Layer
The services layer includes network services that may not be absolutely
necessary for a P2P network to operate, but are common or desirable in
the P2P environment. Examples of network services include searching and
indexing, directory, storage systems, file sharing, distributed file systems,
resource aggregation and renting, protocol translation, authentication, and
PKI (Public Key Infrastructure) services.

3.3.3 Applications Layer
The applications layer includes implementations of integrated applications,
such as P2P instant messaging, document and resource sharing,
entertainment content management and delivery, P2P e-mail systems,
distributed auction systems, and many others.

The boundary between services and applications is not rigid. An application
to one customer can be viewed as a service to another customer. The
entire system is designed to be modular, allowing developers to pick and
choose a collection of services and applications that suits their needs.

3.4 JXTA networking
The JXTA network consists of a series of interconnected nodes, or peers.
Peers can self organize into peer groups, which provide a common set of
services. Examples of services that could be provided by a peer group
include document sharing or chat applications. JXTA peers advertise their
services in XML documents called advertisements. Advertisements enable
other peers on the network to learn how to connect to, and interact with, a
peer’s services. JXTA peers use pipes to send messages to one another. A
pipe is an asynchronous and unidirectional message transfer mechanism
used for service communication. Messages are simple XML documents
whose envelope contains routing, digest, and credential information. Pipes
are bound to specific endpoints, such as a TCP port and associated IP
address.

 12

3.5 Summary
What we have learned in this chapter is that JXTA is a Peer to Peer (P2P)
platform which is built on XML technology. It is not bound to a specific
developing platform, and it is by so possible to be deployed on any device
with a digital heartbeat. The task which JXTA is to fulfill is to bring all the
P2P applications together under a common platform for communication
and message exchange.

 13

4 Web Services

4.1 Overview
This chapter gives an introduction to Web Services in the scope of
business-to-business interaction in XML messages. We are looking at the
technology stack and describing each element of it. This introduction
should give the reader a common understanding of Web Services before
the concrete tests are performed.

4.2 What is Web Services?
“A web service may be defined as: An application component
accessible via standard web protocols.” [1]

The only requirement to a web service is that it must be able to send and
receive messages with a combination of different web protocols. This
indicates that web services are nothing new, but only an evolution of
principles [2].

4.3 Web Services model
The conceptual web services model could be separated into three different
roles.

[2] Service Registry

Find Publish

Bind Service Provider
Web Service
Description

Service Consumer

Figure 4-1 Conceptual Web Services model

Service Provider
The provider is the entity that creates the web services; typically a business
function is exposed through a web service.

Service Consumer
The consumer is the entity that uses the service. The consumer might have
prior knowledge to the service API, or download a description from a URL.

Service Registry
Service Registry is a central location where service providers can register
and list its Web Services. The registry typically contains business
information, what Web Services the business provides and details about
each Web Service.

A standard protocol to publish or find Web Services is The Universal
Description, Discovery, and Integration (UDDI) [17].

A standard protocol for applications to bind to Web Services is The Simple
Object Access Protocol (SOAP) [19]. SOAP is a language and platform

 14

independent mechanism for exchanging information between applications
based on Extensible Markup Language (XML) [21] messages.

A standard way of describing Web Services is The Web Services
Description Language (WSDL) [20]. A WSDL would describe methods,
parameters, data types, transport protocol and the web service’s access
point(s).

4.4 Web Services Stack
In this chapter well look closer to each of the standards that are part of the
web services technology stack.

Service
Publication/Discovery

UDDI

Service Description WSDL
XML Messaging SOAP
Transport Network HTTP,SMTP,FTP,HTTPs over

TCP/IP

Figure 4-2 Web Services technology stack [5]

4.4.1 Transport Network
Web Services are built on existing communications standards witch makes
them transport-independent, and web services might be built on top of
nearly any transport protocol. The primary role of the transport layer is to
move data between two or more locations on the network.

The choice of transport protocol is based on the transportation need of the
Web Service being developed.

4.4.2 XML Messaging – SOAP
This layer defines the message format used for application communication
between Web Services. The most commonly used protocol is SOAP, which
makes inter-application communication possible regardless of operating
system, programming environment and object model.

The communication is done using the text-based XML protocol instead of a
binary protocol used by CORBA, RMI and DCOM. This makes SOAP
highly interoperable across hardware platforms, operating systems,
programming languages and network hardware platforms. SOAP doesn’t
define the semantics of the messages; it only provides a framework for it.
Semantics will in most cases be application dependent [5].

4.4.2.1 SOAP Message
A SOAP message consists of an envelope containing an optional header
and a required body. The header contains information of how the message
is to be processed. The body contains the actual message to be delivered
and processed.

 15

SOAP Envelope

SOAP Header

Header Block

Header Block

SOAP Body

Message Body

Figure 4-3 SOAP message

The XML syntax of a SOAP message is based on the soap-envelope
namespace [4] defined by W3C [6].

4.4.2.2 RPC Messages
Typically RPC messages come in pairs as the request and the response.
SOAP doesn’t require a response to every message, but it’s common to
have the request-response pairing.

An example of a request message querying the method

Public Float getQuote(String symbol);

<s:Envelope
xmlns:s=”http://www.w3.org/2001/06/soap-envelope”>

<s:Header>
<m:transaction xmlns:m=”soap-transaction”
s:mustUnderstand=”true”>
<transactionID>1234</transactionID>

</m:transaction>
</s:Header>
<s:Body>

<n:getQuote xmlns:n=”urn:QuoteService”>
<symbol xsi:type=”xsd:string”>
IBM

</symbol>
</n:getQuote>
</s:Body>

</s:Envelope>

The response message could be something like this.

<s:Envelope
xmlns:s=”http://www.w3.org/2001/06/soap-envelope”>

<s:Body>
<n:getQuoteResponse xmlns:n=”urn:QuoteService”>
<value xsi:type=”xsd:float”>
98.06

</value>
</n:getQuoteResponse>

 16

</s:Body>
</s:Envelope>

4.4.3 Service Description – WSDL
This layer provides a mechanism for describing the capabilities and
functionality of a Web Service. WSDL is XML grammar for describing the
Web Service. A WSDL document describes endpoints and ports on both
document-oriented and procedure-oriented messages. WSDL provides
information about the Web Service in two levels, high-level transport
protocol independent abstract definition of a Web Service, and second is a
transport dependent binding description [5].

WSDL Specification
Binding

PortType
Messages

Types

Abstract Definition

(Reusable part)

Service

Port
Implementation

Specific

Figure 4-4 WSDL document overview

Port Type The portType element describes the different operations
exposed by the Web Service.

Messages The message element contains description of the data that

is transmitted. This is analogous to method parameters.

Types The types element contains the data types that is present

in the message.

Bindings The binding element maps operation element in a portType

element to a specific protocol.

4.4.4 Publication and Discovery – UDDI
In stead of providing information about each Web Service to each client,
the information could be published into a centralized registry publicly
available to interested consumers.

UDDI provides a specification for registering business information, services
and technical specification to each service into the same registry.

 17

Business

Service

Techical Specification

Figure 4-5 Simple UDDI registry overview

Business This contains the business information like name,
contacts, address and so on. A classifications
system in UDDI allows each business to describe
what kind of business they are involved in.

Service A structure which describes each Web Service this
business provides. Services might be categorized
into categories. Each service will have a
corresponding technical specification.

Technical Specification This section contains technical data about a
service such as a WSDL document.

4.5 Summary
In this chapter we have learned that Web Services is nothing new, only
evolved principles. UDDI can be used to register and lookup Web Services
by name or based on Web Services descriptions like WSDL. SOAP is used
to send XML messages to and from Web Services over the HTTP protocol.

 18

5 Test Criteria

5.1 Overview
This chapter will give an introduction to the test criteria. They are divided in
two separate categories: Technical criteria and Market review.
Each criterion will be given a short description for easier understanding
their relevance.

5.2 Introduction
Location transparency is one of the distribution transparencies defined in
ODP-RM ISO standard [8].

The topic for this thesis is to provide location transparent services with
Java. This could be simple. By referring a service by its Domain Name
System (DNS) name the location of the service is transparent since we are
hiding the service’s IP-address from the client. But in this thesis we will look
at a higher level of location transparency, since objects tend to change
regularly.

In order to achieve this, the technology must support some kind of naming
system to keep and maintain service locations, and separate them from
static client bindings. This leads to several new test criteria. The
technologies selected for this comparison are already known to have
location transparent object models.

There are several other interesting aspects when providing location
transparent services. When is a service location transparent? How will the
client locate the service? What if the service moves? What if the service
fails? Could we use several identical services to raise availability? Four
criteria have been selected based on these questions.

5.3 Technical test criteria
Each of the criteria developed for this thesis will be described thorough in
the next chapters.

5.3.1 Service location transparency
DNS provides naming for systems with more or less fixed locations, but this
type of naming system is poor in name-to-address bindings for objects that
change locations regularly [18].

To support service discovering and location transparency, the system
should offer a naming facility which hides all aspects concerning the
location of a service. Naming systems provide different types of lookup
mechanism. Some only support lookup-by-name, where others resolve
objects based on state or semantics.

 19

Figure 5-1 Location transparency

Figure 5-1In the client c1 uses the naming system (part of the middleware)
to locate the service before the actual invocation. The client has no
knowledge of the fact that service s1 is located at computer 3.

In addition to just lookup, it’s important for a naming system to remove non-
existing objects from the registry to keep it consistent [18].

The test section will answer the following questions in order to verify that
the system support lookup of services before invocation.4

1. Does the technology provide naming mechanisms to achieve
service discovery functionality?

2. What type of lookup is supported?
3. Does the naming service deal with the problem of unreferenced

objects?
4. How does the naming system scale in large distributed systems?

5.3.2 Service migration transparency
“Migration Transparency: A distribution transparency which masks,
from an object, the ability of a system to change the location of that
object …” [8]

Migration Transparency hides that a service can be moved to another
location. Migration is often used to achieve load balancing.

Figure 5-2 Before migration

Figure 5-3 After migration

In Figure 5 2 the client, c1 contacts service s1 which currently is located at
computer 2. Next in Figure 5 3 the service s1 has moved to computer 3,
and the client follows same procedure to contact the service. This would
only be transparent to the client if the middleware supports migration.

4 Questions 2 to 4 only make sense if location transparency is achieved.

 20

This test will verify if and how the technology support migration of the
service without affecting the clients way of addressing the service.

1. Does the technology support migration function to easily migrate
code between hosts?

2. If supported, how is this solved?

5.3.3 Service replication transparency
Replication transparency is a distribution transparency which masks
the use of a group of mutually behaviorally compatible objects to
support an interface. Replication is often used to enhance performance
and availability. [8]

The word replication transparency is often used in database systems when
referring to functionality built into a server which maintains and uses
several instances of the data automatically. Many heavily loaded websites
or ftp-sites use a poor way of location transparency by providing the same
document or file by different name. This doesn’t scale at all.

Replication could be achieved both on client side and server side. The
difference between them is that on the server side replication the client will
act as if it was only one service. Otherwise on the client side replication, a
proxy at the client side will handle the connection to each service replica.

Figure 5-4 Server side replication

Figure 5-5 Client side replication

By this criterion we will look into the possibility of providing services by
letting the infrastructure or service handle the replication transparency by
deploying a service at several servers. In this case the client would to know
the fact that the service might exist at several locations.

Each of the following questions will be answered in the test section:

1. Does the technology provide functions to create service clusters,
and then let these act atomically?

2. If provided, how is this supported?
3. If not supported, are there extensions to technology in order to

provide the replication function?

5.3.4 Service failure transparency
“Failure Transparency: A distribution transparency which masks, from
an object, the failure and possible recovery of other objects (or itself),
to enable fault tolerance” [8]

 21

In large and complex distributed systems, some kind of failure transparency
built into the RPC layer would be extremely useful. This is, however, not
directly supported by most distributed object models.

Failure transparency mechanisms should be able to recover from network
failures or application failures without help from the programmer.

The ODP-RM ISO standard [8] proposes two approaches to gain failure
transparency.

1. Replication might be used to raise the level of availability.
2. A checkpoint and recovery function will make it possible to continue

execution after a failure.

In this test we’ll figure out each technology’s ability to survive service
failures, which party has to take action, and if possible, how the system has
to be configured in order to make it work.

1. Does the technology provide any of the functions mentioned
above?

2. If provided, how does it work?
3. If not provided, is there known extensions to the technology which

can achieve failure transparency?

5.4 Market review criteria

5.4.1 Technology’s market position
When selecting a middleware for implementation of a distributed system,
there are other non-technical aspects that have to come into consideration.

In some settings, a system built on “new hot” technology tends to sell better
than a more “duller” one. In others, well known and sturdy technologies sell
better.

This criterion will be discussed with respect to each technology. The arena
of this criterion is not to give an absolute answer to the technology’s
position in the market, but only an indication of the general acceptance to
this technology.

 22

6 Building test applications

6.1 Overview
This chapter will give a description of the developing process of the
prototypes. The first part of this chapter introduces the test application, and
why this application is suitable for the tests. 6.3 – 6.5 will then point out
differences in the test applications for each technology.

6.2 Introduction
The test criteria which are the foundation of this thesis are based on testing
the platform of distributed systems, and the focus is set on the transparent
abilities. This indicates the ability to discover and deploy services, filter
mechanisms and persistent data support. The model should promote these
abilities and support the platform to achieve this goal.

We had to take into account the fact that the technologies which are target
in this diploma are very different in abilities and areas which they are used.
- If we chose a prototype that is too advanced, it could end up that it is
impossible or very difficult to implement on some platforms. To prevent this
we defined a minimum set of rules which the model should support; we
chose that the communication should be done through a simple string
based transmission. The ability of string transmission is in most cases
supported, and the mandatory “Hello World” example often uses exactly
this form of communication.

The next requirement was the ability to give live data and to identity of
which server supported the data stream. Since we are working with
transparent solution the source of the data stream could change from time
to time. We wanted our model to give us indication if this happened and at
the same time give us the possibility to spot when. - This could be done
with timestamp or some sort of a counter. The identity of the server could
be set by the domain name system (DNS) name.

We struggled a while to find a model which could accomplish the tasks and
still be simple to construct and implement. At last we settled on a
distributed clock system, which we found capable to support the entire
requirements we had set.
This type of prototype would have a constantly call for attention from the
service, - we found it interesting to see how this affected the platform. The
time stamp would give us an indication of latency in the system, and the
possibility of lost request. And the fact that it is a really simple model will
make the difference in implementation less important.

 23

Figure 6-1 Conseptual Service model

6.3 Jini test application
Jini is an easy platform to develop distributed applications, and the
construction of the prototype went in most cases without any trouble.
The most difficult part was actually the startup environment that consists of
web servers, lookup servers and rmid, everyone needed script file for
working properly in windows and Linux.

Figure 6-2 Conceptual model of Jini test application

The developing process was divided in two different areas; the developing
of clock service and client, supported by regular Jini architecture and the
developing of clock service and client, supported by JavaSpace
architecture.

We chose to make two different models because of the topic, load
balancing. We were struggling by the idée how to solve this in a Jini
network. After looking around and reading the Jini newsgroup, - which by
the way is excellent, we came to the conclusion that we had to use
JavaSpace.

The rest of the developing process can be found in the Appendix B.

6.4 JXTA test application
Realizing the prototype we struggled a while to make the first progress.
There is not much available material about JXTA, mostly all programming
examples is gathered at JXTA home page. Luckily we found what we
needed and we could start on our first prototype of the clock service.
We tried to make it simple and concentrated on the ability to deploy and
search for services.

 24

Figure 6-3 Conseptual model of JXTA test application

The rest of the developing process can be found in the Appendix D.

6.5 Web Services test application
The “definition” of web services above tell us that web services are nothing
new. It uses well known protocols and technologies both for transport and
application. Because of this; web services could be implemented in nearly
any language. In this thesis we’ll look at web services and clients
implemented in java.

Several development environments exist, i.e. IBM’s Web Services Toolkit
v1.0 (http://www.alphaworks.ibm.com/tech/webservicestoolkit), The Mind
Electric Glue v2.0 (http://www.themindelectric.com/glue), Sun
Microsystems Java Web Services Developer Pack v.Ea2
(http://java.sun.com/webservices/downloads/webservicespack.html) and
more.

Figure 6-4 Conseptual model of Web Services test application

The Web Services test application consists of two parties, the client c and
the service s.

The rest of the developing process can be found in the Appendix C.

6.6 Summary
In this chapter we have learned how we implemented a prototype that is
used in the testing. It is also given a short description of the developing
process for each prototype.

 25

7 Prototype testing and result

7.1 Overview
The two preceding chapters establish an understanding of the test criteria
and how the prototypes where implemented. This chapter contains all test-
runs against each technology and presentation of the results with following
discussion.

The structure of the chapter is important. Each technology is evaluated
separately against each criterion. Each test chapter is arranged into
sections of test-run, results and discussion. Finally a summary presents all
the results in a table.

7.2 Jini

7.2.1 Service location transparency

7.2.1.1 Test execution
The lookup service was started in three phases; first the web server, which
makes sure every clients and service can download the reggie proxy. The
next step is to start the RMI activation daemon rmid, And finally the lookup
service reggie. These processes are all running at computer 1.

The next step in the test is to start a service. This service has a web server
as the lookup service, which support proxy download. Both of them were
located at computer 3.

Finally the client was stated at computer 2.

7.2.1.2 Test result
When the service was started it listed out all the LUS it registered to. The
search process discovered the LUS without any trouble. What came as a
surprise was the response from LUS around the world; - Trondheim, Oslo,
Germany and even Taiwan were not rare.

When the service registration process was finished the client was started.
Not surprisingly it found our own lookup service first, and downloaded the
service proxy. However the client received response from around the world
which the service had registered to.

When the proxy was downloaded the communication could start.

We experienced no problem in this test.

7.2.1.3 Test discussion
“Does the technology provide naming mechanisms to achieve
service discovery functionality?”

By doing this test it can be concluded that Jini has the ability to support
service discovering in a transparent environment. This ability is mainly
supported through a regular service, the “Lookup service”.
Jini does not support a traditional naming service like those found in object
based distributed systems or distributed file systems [18]. Such name
services can however be easily implemented as part of the service layer
within the Jini architecture. This is exactly what is done with implementing
the Lookup service on top of the Jini service layer.

 26

A standard approach in many distributed systems is to configure the
service and client with a well known address to the lookup registry. The Jini
community has taken a different approach.

The search for LUS is done by multicast, - when a client or service wants to
contact a LUS, it is through this protocol the UDP packets are sent. When a
LUS has received a multicast message, it replies by connecting directly to
the requesting service/client, and sends a unicast (point-to-point) message.
This message contains the proxy object that the service/client can use to
contact the lookup service. Since the LUS is a service just like any other
Jini services all access is done through proxy objects. In addition to
discovery, LUS will regularly announce their presence by using multicast.

As mentioned in the test result the discovery process worked fine on our
own local area network. What came as a surprise was the discovery
process also seemed to work in a larger area. Since we have no data of
how many LUS is located in our network neighborhood, we can not
conclude if the multicast discovery process will work on a larger area, but
lookup process indicated that the multicast worked outside our local area
network.

“What type of lookup is supported?”

When a service had registered to a lookup service, clients can start to
search for it. When clients search for services, they create templates which
describe what they are looking for. This template will be matched against
the service items stored in a lookup service.
Templates provide a way to search for a service given its unique ID, the
interface the service-proxy implements or the attributes attached to it.
In most cases the interface is the only search criteria, but it can be
supplemented with attributes which containing a description of the service;
this is done by implementing Entry objects.
A well used example of this is the search for a printer. When printing a
document you are probably not interested to discover that you have to walk
a couple of mile to retrieve it. You are very likely eager to know where the
printers are and which one is closest to you. The Entry object is used to
make this process easier; you can supply string information about your
service that could describe which floor and building the printer is located.

We didn’t supply our service with entry objects to describe their abilities but
the search process still managed to find the service it was looking for. Our
search criterion was the interface. We can conclude that this was enough in
our case and that the search process worked perfect.

“Does the naming service deal with the problem of unreferenced
objects?”

The Jini network handle unreferenced objects through the leasing time. If a
service doesn’t renew it lease it will be deleted from the LUS when it is
expired.

“How does the naming system scale in large distributed systems?”

Jini address scalability through federation. A federation is Jini communities
that are linked together. Ideal the size of a Jini community is about a size of
a workgroup (10 – 100) objects.

LUS can be divided into different communities; this is done by simply
starting it with a group name. In this example we have used the group

 27

name public which means that every one is free to connect to it, - this is the
default configuration. We could however easily have used a different name
such as HIA.
GROUP=public
java -Dcom.sun.jini.reggie.proxy.debug=true -jar $JARFILE $CODEBASE
$POLICY $LOG_DIR $GROUP

Listing 7-1 Staring reggie

Look up services could be joined into federations by just adding group
names to the startup string in each LUS. Each LUS can support several
groups, just by adding multiple names to the startup script and separating
them with a comma.

GROUP=public,hia
java -Dcom.sun.jini.reggie.proxy.debug=true -jar $JARFILE $CODEBASE
$POLICY $LOG_DIR $GROUP

Listing 7-2 Starting reggie with group

The federation will probably work fine as long as the network topology
doesn’t depends on letting the multicast messages travel to far. The
multicast messages are probably Jinis greatest advantage and
disadvantage.

The fact that neither the client nor the service needs any information about
the location of the LUS makes the discovery process extremely flexible and
self maintaining.

The problems start when the Jini network grows large. Some routers will
dump multicast messages that try to leave the network, other will just make
sure that the TTL counter is not set to high and by that make sure to
decrease the radius which the packets can travel.

7.2.1.4 Test conclusion
The Jini network support service location transparency. The client creates
templates which describe what they are looking for. This template will be
matched against the service items stored in a lookup service.
Templates provide a way to search for a service given its unique ID, the
interface the service-proxy implements or the attributes attached to it.

7.2.2 Service replication transparency

7.2.2.1 Test execution
Test more than one service
First we started the lookup service as described earlier.
Then we started two services, one at computer 3 and one at computer 4.
Both services were supported with a web server.
Finally we started the client, and let it search for services.

Test more than one service on each server
We did the same test as shown above, but this time we started more than
one service on computer 3 and 4.

Test a load balancing model in JavaSpace
Two new services had to be deployed on computer 1 in order to test
JavaSpace. First the mahalo service which is the transaction manager.
Second is the outrigger service which implements JavaSpace.

 28

The services were started at Computer 3 and 4, and the client at computer
2.

7.2.2.2 Test result
The services on machine 3 and 4 seemed to work fine since both were
registered at all the lookup services.

The test with more than one service on each server gave no side effect and
they all got registered.
When we started our client, it searched among the lookup services for the
service. The search process was successful and the client received a proxy
which corresponded to the request. The fact that there was more than one
service that fitted into the search criterion did not seem to confuse the
lookup mechanism.

The JavaSpace model handled load balancing very well. When the client
had written the tuple to space, the worker/servers took turns at processing
them. The clock service was as before updated each second. And this
seemed to work fine
(We used a non-persistent version of JavaSpace)

7.2.2.3 Test discussion
“Does the technology provide functions to create service clusters,
and then let the cluster act atomically?”

The reason for replication can be divided in two primary reasons; reliability
and performance. First, data are replicated to increase the reliability of a
system. If a file system has been replicated it may be possible to continue
working after one replica crashes by simply switching to one of the other
replicas.

The other reason for replicating data is performance. Replication for
performance is important when the distributed system needs to scale in
number and geographical area. Scaling in numbers occurs, for example
when an increasing number of processes needs to access data that are
managed by a single server. In that case performance can be improved by
replicating the server and subsequently dividing the work [18].

To test the support of replication we made two different prototypes, one
that uses regular Jini network and another one that used the tuple space
JavaSpace.

After doing our test we can conclude that the Jini model can offer
replication transparency. Services and lookup services can be replicated,
without affecting the client. The replication is possible since there is a loose
connection between the client and the service and lookup service. The
multicast network makes this possible by dynamically re-connect to new
entities if one fails.

Since the selection of services in a regular Jini network is often random,
the result of this can be that the same service is chosen over and over
again. The JavaSpace model was tested to see if it could offer a better
solution. This model has a shared memory space where clients can write
objects into, and the worker/servers can extract the object to work on, the
result is returned to space.

 29

This solution seemed to work fine; it offered a better solution of load
balancing since the worker/server will not undertake another project if it is
busy working.

To increase the work capacity it is simple to introduce new server/worker to
the space.

7.2.2.4 Test conclusion
Jini supports replication both to the service and lookup service. JavaSpace
gives the opportunity to make a better load balanced system.

7.2.3 Service migration transparency

7.2.3.1 Test execution
In order to test if Jini supports migration transparency the service was
deployed on computer 1 and then moved to computer 2 while tracking all
modifications which had to be done.

The next test verifies how the system handles service migration. We
started a service on computer 1 and let it register at the lookup service.
Then we killed the process and moved the service to computer 3 and
started it.

The final test run will verify if the technology supports relocation after
migration.

7.2.3.2 Test result
In The first test we simply moved a service from a Linux box to a windows
platform. Some changes had to be done in the shell scripts; the path
separator is defined different in windows and Linux (“;” to “:”).
Since we prefer to have the web server running at the same machine as
the service, we had to change the IP address to the new web server as
well. The registration was successful when these changes were done.

The next test was the moving service, and the effect on the Jini network.
The registration at the LUS was successful after moving the service. The
old reference to the service was automatically deleted from the lookup
service when the lease time was expired.

The final test was the effect on the client if the service is relocated.
Both the services where registered at the lookup service when the client
started its lookup discovery process. It registered successfully to one of the
services and started communication.

To test relocating we killed the chosen service. This led the client to choose
the next available service.

The process succeeded: it registered to next available service.

7.2.3.3 Test discussion
“Does the technology support migration functions to easily migrate
code between hosts?”

Jini is pure Java technology. Since Java software runs in a virtual machine,
it’s more or less platform independent. It’s only required that the platform
has an implementation of the virtual machine. Because of this the only
modification needed is small changes in the startup scripts.

 30

“If supported, how is this solved?”

Jini supports migration and relocation transparency to some extent.

The lookup service has a leasing mechanism. Every service has to
implement a leasing time when it is register to the lookup service. The
leasing time is chosen by the developer, we had set it to 1 minute. This
makes it sure that the lookup service doesn’t get flooded with non
referenced services. If a service doesn’t renew it lease before it expires the
object is deleted.

A moved object will consequently be deleted after a while and this will
make sure the clients that connect in the future will not be affected by the
movement.

To make this work in runtime there must be implemented support for this in
the client. In our prototype we stored all incoming proxy discoveries in an
array. When a service didn’t response to a request it was deleted from this
array and the next one in the list was selected. This kept on until the array
was empty, then the discovery process started over again to fill the array.
This model is probably not optimized; one improvement would be to make
sure to always have a full array list. This could be done by letting a thread
do a discovery process regularly. However our model demonstrated the
principle that it is possible to achieve relocating in a Jini network.

7.2.3.4 Test conclusion
Jini support migration of services. Old references are deleted over time with
help of a leasing mechanism.
To some extend there is also possible to move services in runtime, this
future must however be implemented by the developer.

7.2.4 Service failure transparency

7.2.4.1 Test execution
Testing the lookup service.
We started the lookup service at computer 1, and let a couple of services
register at it - computer 2 and 3. Then we killed the lookup service, and
observed how it was affected after restart.

Testing the JavaSpace
We started as always the lookup service at computer 1. At the same
computer we started also the mahalo and outrigger (not the transient
version). We let some tuples be written into space and killed the
JavaSpace. After reboot we observed if the reboot had affected the
network.

7.2.4.2 Test result
The lookup server did not loose data during the reboot, neither did the
JavaSpace implementation.

This service would however not be accessible by the client through the
reboot.

7.2.4.3 Test discussion
We have decided to test the support of persistent data and the support of
transaction. By support of persistent data we mean that objects are written
to disk, this again will give the possibility to continue on the failed work after

 31

a crash or failure. A transaction means a sequence of information
exchange and related work (such as database updating) that is treated as a
unit for the purposes of satisfying a request and for ensuring database
integrity. For a transaction to be completed and database changes to make
permanent, a transaction has to be completed in its entirety5.

Jini has no support of persistent data except at the LUS (reggie) which
store all the registrations to disk. If the LUS crashes it would not loose any
registered services.
The service and client will not have any support unless a specific solution is
implemented by the developer. We have not implemented this on our clock
service since it doesn’t make any sense to store time for later.

The JavaSpace structure has on the other hand support of persistent date.
Objects written into space can be stored at the hard-drive in order to
survive a system failure. This is done by starting outrigger.jar instead of
transient_outrigger.jar (see script file for JavaSpace for more information).
Note that transparent system has poorer performance, and is not
recommended during a development process.

Jini has also transaction support to assist in carrying out series of
operations on multiple objects, the transaction manager in Jini uses two-
phase commit. This support is essentially given only in the form of a set of
interfaces; their actually implementation is left to others. However, Jini can
be configured with a default transaction manager [18].
JavaSpace has also support of transaction, writing and reading from space
is operations which are controlled by transaction.

7.2.4.4 Test conclusion
Jini core have implemented transaction mechanisms. The lookup service
has support of persistent. JavaSpace can be implemented with a persistent
space. Client and service has however no support of failure transparency.

7.2.5 Technology’s market position

7.2.5.1 Discussion
“That was our original thought. Change is not a rare event - it's
constant. We had to figure out a way to allow change to happen
without involving people. If change required people, and
considering networks now growing into millions of machines and
the amount of change those networks experience, we would all
have to become system administrators. The only way to avoid that
is to automate the ability to deal with change.” 6

Jini has been around since 1999 and is by definition (in the computer
world) already a matured technology. That Jini has survived for so long has
not been a matter of course after a tough start, this drift seems to turn.

At the moment the Jini technology is licensed by nearly 40 companies that
span a huge gamut from device vendors to enterprise software companies.
These include disk drive manufactures such as Quantum and Seagate,
cellular phone manufactures Nokia and Ericsson, printer vendors including
Xeroc, Canon, Epson and Hewlett-Packard, camera manufacturer Kodak,
network vendors Cisco and 3Com, software producers BEA Systems,
Novell and Inprise, and a huge number of consumer electronics companies

5 Definition collected at http://whatis.com
6 Jim Waldo, Sun Microsystems, responding to an interview question in Java World, about the
cost of change, Nov. 21, 2001

 32

http://whatis.com/

including Sony, Sharp, Philips and Toshiba. Jini has also been licensed for
use by companies as diverse as AOL and Kinko’s [9].

Examples of products that have been brought out of this license agreement
are Cisco systems “The Spanish Inquisition” (SI). It is a scalable
communication framework built upon Jini and JavaSpace functioning
through the use of agents (see [15] for more information).

But Jini technologies are still struggling to conquer the world. – The
greatest problem is the large memory footprint, which had restricted it to
environment of sufficient computing capacity.
Mark Driver at the Gartner Group reiterated this dilemma.

“Although Jini TM still promises to lay a sumptuous table in the next
few years in enabling next-generation networks, its current
networking capabilities have proven to be a little too rich for
application developers who, of necessity, are on strict memory and
processing power diets.”[13]

The Gartner group goes on to predict that if the footprint issues of Jini can
be overcome successfully then

“Jini should begin to emerge as a key enabling technology used in
70 percent of commercial network computing applications.”[13]

In answer to this JMatos was developed. PsiNaptics’s JMatos software is a
fully compliant micro version of Jini network technology ideally suited for
mobile constrained devices. It has a footprint of less than 100 kilobytes for
full Jini technology compatibility. This means that a small device does not
need to rely on the presence of Jini servers or surrogates in the network,
allowing clients to independently discover and utilize the services offered
by the device.7

On JavaOne 2002, PriNaptic demonstrated an integration of Jini
technology with the new mobile OS, Symbian. Considering Symbians
licensees account for approximately 70 per cent of worldwide mobile sales,
the importance of this technology breakthrough is enormous for the future
of Jini. Together with the knowledge that java will be supported by new
mobile nodes produced by Ericsson, Motorola and Nokia the foundation
should be obvious.
Jonathan Allin, Symbian's Strategic Product Manager for Java technology
says;

"There is an emerging need in the wireless environment for mobile
phones to be able to interact with each other, and with other
devices such as back-end servers, printers, and domestic
appliances. In many cases the applications and services provided
will operate within a local Bluetooth network, though 2.5G/3G wide
area networks also present exciting possibilities,"[14]

Jini will solve a lot of the problems challenged by mobile units. As the Jim
Waldo says in the beginning, the need for technology that make
communication easy and “automate the ability to deal with change” is the
key to the future. The need to manually upgrade the device with new
drivers whenever it experiences a new environment is not an issue in a Jini
network. Jini devices will automatically deal with discovery and
downloading of protocols, offered by the network.

7 To read more about JMatos use reference [13]

 33

DaimlerChrysler has done a research on how they can use the new Jini
technology in their cars [16]. The idea is that users of the car should be
able to connect to their home. Application should control through the Jini
network lights, climate, sprinkle systems, cameras, alarm systems and the
home entertainment system.

A mock home that is set up to demonstrate the DaimlerChrystler Infotronics
system enables the drivers to turn on light in the garages and in the house
as well as get real time pictures from a security system and of the family
pet.

Today, networked home applications are converging upon a Java standard
being created by the Open System Gateway Initiative (OSGI) standards
group. By incorporating the same technology in the car, the vehicle can
easily join the network home environment.

The possibilities of the future are endless, but prediction is difficult if not
impossible. Jini has answers to many of the problems which mobile
computing will be struggling with; it is already accepted as a serious
alternative as network bridge between the different entities by firms that will
lead us into the next generation of technology. Still this makes no
guarantee that it will be the chosen product, examples as WAP has shown
us that the market has the final word.

An important aspect that can be the key to solve this problem is the source
licensing Sun provides to this technology. It is in many cases similar to the
“Open Source” movement that has given us the Linux distribution and
apache web server we know today. The great advantage is the rapid
development of new software and this again can give the technology a kick
start on a new direction when this is needed.

The drawback of this is that many companies who might otherwise be
eager to develop for the technology may be reluctant to be required to turn
over their intellectual properties to a third part.
The community license model that Sun is using for this product allows very
open access to the source code, but it doesn’t require companies or
developers to hand in their developments back to Sun.

The only requirement that Sun expect before you publish your product is
that your implementation pass the Jini Platform Compatibility Kit. This
requirement is to make sure that there is no Jini service which doesn’t
comply with the original Jini specification.

An example of such product is the GigaSpaces implementation which is an
Enterprise-scale JavaSpace implementation [17]. Just a better version of
the original JavaSpace implementation from Sun, it would probably not
exist if the license requirements had been different.

7.2.5.2 Conclusion
Jini has been embraced by the mobile companies, Cisco has used it in their
switches, DaimlerChrysler is predicting future where their cars are using
the Jini network. Problems like a too big memory footprint have been
solved with the JMatos and, together with J2ME, the millions of small
devices have now the option to be a part of the Jini community.
The open software license Sun is using on this product should also give the
foundation of a rich product line maybe as much as 70% as the Gartner
group is predicting.

 34

7.3 Web Services

7.3.1 Service location transparency

7.3.1.1 Test execution
The service is registered in the IBM UDDI beta 2 register (see appendix C).
This was done manually, but could easily have been done by using the
UDDI4J API.

The service discovering test here uses UDDI to lookup services. Since we
already know who’s providing the service, we search for the actual service
at our record in the UDDI registry.

In UDDI the service is registered with an access-point and a technical
model including a WSDL document (see appendix C for details about
information registered in the UDDI registry).

For the lookup process to be successful when you have no prior knowledge
to the service, it’s important that a service has a fine-grained description. In
our test application we know the service provider and what service we
want, the only thing we need to know is where the service is located. This
information is both located in the UDDI registry and in the WSDL document
referred to in the technical model.

The client uses UDDI4J to locate the business by name, and then locate
the Clock service under the service. Then the client accesses the technical
model related to this service and uses WSIF to invoke a method at the web
service based on the WSDL document.

The service is located and the access point (URI) is extracted from the
registry and used for accessing the service.

7.3.1.2 Test results
The service was located and invoked by the client.

Web Services provide location transparency when the client uses UDDI to
look up the service’s access point.

7.3.1.3 Test discussion
“Does the technology provide naming mechanisms to achieve service
discovery functionality?”

There has been “hype” around web services and dynamic service
invocations based on UDDI and WSDL. When interacting with web services
there are at least two parties. They have to seek common understanding
on both how the service should be invoked and what each part of the
service actually relates to. Steve Vinoski of Iona states in a paper at
WebServices.org that invoking web services needs a common knowledge
at the business-to-business (b2b) layer [7]. UDDI and WSDL do not have
any support for such a feature8, and it is therefore nearly impossible to
have true dynamic lookup and invocation in web services at least in the
near future.

“What type of lookup is supported?”

8 except from the service locator taxonomies

 35

The UDDI registry is arranged around business registration. UDDI support
several ways of discovering a particular service. If you don’t know who
delivers a particular service of your need, you would first search for
businesses which deliver services in the desired business sector. If you
already know the service you would go directly to that business’s record in
the UDDI registry and search for the service. If you know how the service
signature as described in a technical model, you would search for services
which conforms to that technical model.

UDDI lookup is neither the only nor always the best tool for service
discovering. Microsoft and IBM has worked together to describe a proposal
for a Web Service Inspection language which can be used as an index to
web services at a known network location [2]. Pretending you are only
interested in interaction with services provided by IBM, you would
download the inspection document from a known location at IBM (e.g.
http://www.ibm.com/ispection.wsil) and use it to find services.

There are several companies providing UDDI registries (e.g. IBM
http://www.ibm.com/services/uddi, Microsoft http.://uddi.microsoft.com).

A drawback to UDDI is that you would have to know the exact URI in order
to access the registry, since it does not provide any mechanisms for
dynamic discovery of the location registry.

“Does the naming service deal with the problem of unreferenced
objects?”

The UDDI registry does not have any mechanisms for automatic removal of
unreferenced services. It’s entirely up to the service provider to remove
services which don’t exist from the registry.

“How does the naming system scale in large distributed systems?”

UDDI is designed to support large scale systems. Several providers (see
list at http://www.uddi.org/) replicates registry data between each other, and
then the consumer could query any UDDI registry for the same information.
Pretend a centralized registry like UDDI would store all information in a
single system; it would be a bottleneck and a critical point of failure [25].

7.3.1.4 Test conclusion
Web Services supports location transparency through the use of UDDI to
lookup services before invocation.

7.3.2 Service replication transparency

7.3.2.1 Test execution
It was not possible to implement any test application for this criterion since
replication is outside the scope of web services (see 7.3.2.3).

7.3.2.2 Test result
Not relevant

7.3.2.3 Test discussion
“Does the technology provide functions to create service clusters,
and then let the cluster act atomically?”

Replication transparency is traditionally a server feature. Web services are
similar to document-based systems like HTTP and FTP, and use the same

 36

infrastructure [18]. A SOAP invocation is received by an RPC router which
decodes the SOAP message, loads the class and invokes the method
before the result is returned as a SOAP message. In most cases the RPC
router is a servlet hosted at a Java enabled web server.

Then most likely web services could gain from replication technologies
developed for traditional web sites.

“If provided, how is this supported?”

Two types of replication solutions for document based distributed systems
are discussed in [18]. First service clusters is a client transparent solution
which uses a front-end responsible of distributing requests to a server in a
group of servers providing the same service. But this solution leads to a
potential performance bottleneck since all communication goes through a
single point.

In the ScalaServer project, S.Pai have developed a TCP handoff
mechanism which “allows a cluster front-end to hand off an established
TCP connection to another node in an efficient and client transparent
manner” [24].This mechanism will reduce the load at the front-end of a
traditional cluster solution.

Apache SOAP has a pluggable architecture which allows web services to
be implemented in several different technologies such as Enterprise Java
Beans (EJB) [j2ee website] and standard java classes. Additional the
SOAP RPC router could be deployed on nearly any Java enabled web
server.

At the UBEANS [27] web site there is a description of how an Apache
1.3.23 server could be used as a proxy front-end for two Tomcat 4.0.2b2
servers by using the mod_jk module for Apache. The work can be balanced
between servers by a factor.

The Bea WebLogic Application server provides a cluster solution where
several EJB services could be deployed on a server group [26]. The
WebLogic server uses three mechanisms for service replication. First of all
it uses DNS load balancing. When a DNS name is mapped to several IP
addresses in the server cluster it will cycle through the IP addresses each
time a client performs a DNS lookup. Secondly it uses a content aware
proxy system where certain requests are forwarded to the correct server in
the cluster. E.g. requests for static html pages could be forwarded to one
server and request for servlets could be forwarded to another server. In
addition to the content aware proxy, the application server also supports a
traditional cluster solution with a front end which balances the load between
each server in the cluster.

By deploying web services at a cluster enabled application server such as
Bea WebLogic and Apache Tomcat, it would support replications
transparency.

“If not supported, are there extensions to technology in order to
provide the replication function?”

See previous discussion. Replication would be implemented in underlying
layers like the web server.

 37

7.3.2.4 Test conclusion
Web Services does not support replication in its service model. But we
have discussed how Web Services could benefit from standard clustering
mechanisms.

7.3.3 Service migration transparency

7.3.3.1 Test execution
This test was based on the same prototype as the location transparency
test.

First the code was deployed at computer 4, and executed as in 7.3.1.1.
Then the web service implementation was moved to computer 3, and
executed there.

The changes in code and configuration were tracked.

7.3.3.2 Test result
Migration of Apache SOAP web services requires only reconfiguration. No
code has to be altered.

First of all, the actual web service implementation has to be moved to the
new location (ant build-script). Then the Apache SOAP deployment tool
has to be executed. Now the web service is operational in its new location,
but in order to let the client find the service, the UDDI registry entry has to
be altered with the new location. The last step is required if the client uses
WSDL for invocation, then the <service> section of the WSDL document
has to be altered to reflect the new service location.

7.3.3.3 Test discussion
“Does the technology support migration functions to easily migrate
code between hosts?”

Migration and relocation transparency is mainly part of the mobile object
discussion. Web Services is coupled to web technology and is by definition
a document based distributed system. These systems are hardly ever
mobile. Web applications are deployed on one server and they remain
there. When a web site is moved, the most common solution is to place a
redirector in the old location which forwards the consumer to the new
location.

We could foresee an equal solution when moving web services, but the
location transparency function tested in section 7.3.1 is an even better
solution than the redirector.

Verified by the test, we could state that migration transparency is
supported.

“If supported, how is this solved?”

Migration transparency is mainly gained by reconfiguration. Simple ant
build scripts, similar to the one generated for these tests, could be used to
automate the process of migrating the service.

The Apache Axis has, in contrast to Apache SOAP, better support for
automatic deployment and WSDL generation. The process could be even
more unattended than the method outlined above.

 38

7.3.3.4 Test conclusion
Web Services supports migration transparency when UDDI is used for
lookup of services. The migration of services requires some reconfiguration
at the server.

7.3.4 Service failure transparency

7.3.4.1 Test execution
Web Services is a document-based distributed system (see section 7.3.2.3)
and gain from the mechanisms developed for web servers. Web services
do not provide any mechanism for failure transparency.

7.3.4.2 Test result
Not applicable

7.3.4.3 Test discussion
“Does the technology provide a replication or a checkpoint and
recovery function?”

Fault tolerance in document-based distributed systems is achieved by
client-side caching and server replication [18]. Since web services provide
dynamic content, it is not relevant to use client caching. But by using
service replication as described in section 7.3.2.3, availability could be
raised. But failure recovery and transaction control is not supported.

“If provide, how does it work?”

Not totally failure transparent, but replication is supported which would
increase web service accessibility. See section 7.3.2.3 where this is
discussed.

“If not provided, is there known extensions to the technology which
can achieve failure transparency?”

We have not been able to locate any technologies which enable full failure
transparency in web services.

7.3.4.4 Test conclusion
Failure transparency is not supported in Web Services. But replication
could be used to increase availability.

 39

7.3.5 Technology’s market position

7.3.5.1 Discussion
Beyond the hype, Web Services seam to have got a kick-start as nearly
every company in the e-commerce applications server business sector
nowadays is advertising support for web services.

A poll at WebServices.org “Do you think Web Services are just hype, or
have huge potential?”

Huge potential 48%
Have promise 30%
Too early to say 14%
Just hype 8%

Table 7-1 Web Services "hype-poll" [31]

Most standards used by Web Services are evolved mainly by companies
and then submitted to W3C. IBM and Microsoft founded the Web Services
Interoperability Organization (WS-I) which works to achieve interoperability
between different Web Services implementations. WS-I is supported by
100+ members, which is divided into working groups.

Web Services have the propensity to provide a new platform both for b2b
integration, and integration between new and legacy applications in the
vertical market.

Another even more interesting poll at WebServices.org: “What language do
you use to develop your WebServices?”

C# 8%
C++ 2%
Java 75%
Perl 4%
Visual Basic 5%
Other 5%

Table 7-2 Web Services implementation language poll [33]

This emphasizes java’s position as the implementation language for Web
Services. Even the lack of optimism from Sun Microsystems, which actually
was quite skeptic to Web Services in the start, seems not to have limited
this. This is probably caused by IBM’s position in the Web Services
evolution. Now IBM wants Sun to join WS-I as a founder member because
java seems to be one of the largest developer languages for Web Services.
But Microsoft seems to dislike this since Sun was rather late in the game.

The Gartner Group thinks that web services might be the opportunity for
creating new growth for service companies in the short to midterm.

”Web services have the potential to be the next key demand generator in
the IT marketplace. No services firm can afford to ignore them” [33]

IBM delivers Web Services solutions for Storebrand ASA [34]. Storebrand
ASA, Norway’s largest insurance company has been using Web Services
to replace the manual process of calculating personal benefits for 390,000
employees at 6,500 different customers. Now is the information extracted
directly from the customer’s payroll system, and processed in Storebrand’s
mainframe [35].

 40

AvantGo announce support of Web Services in their M-Business solution
[36] and almost any company with java enabled application servers
announces support for Web Services in their server solutions e.g. IBM
WebSphere [37], Microsoft .net [38], Bea WebLogic [39] and Sybase [40].

7.3.5.2 Conclusion
Web Services seems to have got a strong position already, there are
however some doubters. Web Services is mainly adopted in the vertical
market, where it’s mainly used for business-to-business integration, and
integration between new and legacy applications.

 41

7.4 JXTA

7.4.1 Service location transparency

7.4.1.1 Test execution
The simplicity of starting the JXTA test is interesting. The service was
started first at computer 1 and the client was first started at computer 2.
There is no lookup service or other form of registration storage which had
to be started.

7.4.1.2 Test result
When we started our service we first had to implement our username and
password. This is mandatory with every startup of JXTA peers but it can be
implemented in the script instead. When the service was started it waited
for incoming clients to register.

Starting the client we had to go through the same process writing
username and password. After this process was finished the client
discovered the service and the communication started.

We experienced no problems in executing this test.

7.4.1.3 Test discussion
The JXTA platform support service discovering in a transparent
environment, the process is controlled by advertisement in form of XML.
This advertisement is sent to all known peers the searching peer knows
about; - they will again distribute the request to all peers they know about.
The Peer Discovery Protocol consists of only two messages; a request
format to use to discover advertisements, and a response format for
responding to a discovery request.

These advertisements are the basic unit of data exchanged between peers
to provide information on available services, peers, peer groups, pipes and
endpoints.

The elements of the Discovery Query Message describe the discovery
parameters for the query. Only those advertisements that match all of the
requirements described by the query’s discovery parameters are returned
by a peer.

The fact that there is no central form of registration of services worked
amazingly well. It must be said that in our test the two computers were on
the same network and only separated by a switch. We have however
examples of similar network in Gnutella, even if some discovery processes
can take awhile and request are sent more than one time, the ability to
cover the entire world is there.

7.4.1.4 Test conclusion
JXTA supports service location transparency. Searches are done through
advertisement in XML and peers that find a mach will send a response.

7.4.2 Service replication transparency

7.4.2.1 Test execution
We started two services, one at computer 1 and the second at computer 3.
The client was started at computer 2.

 42

7.4.2.2 Test result
After we had filled in login information and started the two services, we
could start our client. The discovery process worked fine and the client
chose one of the services.

7.4.2.3 Test discussion
We can conclude that replication is supported in a JXTA network. Actually
there is a great advantage that there is more than one service present. This
increases the chance of discovering, and at the same time it makes sure
that not only one server has to take all the traffic. The technology is a
natural extension of the Internet’s philosophy of robustness through
decentralization.

In many communities that share resources there is a risk of suffering from
The Tragedy of the Commons: the overuse of a shared resource to the
point of its destruction. The Tragedy of the Commons originally referred to
the problem of over-grazing on public lands, but the term can apply to any
public resource that can be used without restriction. In some P2P systems,
peers can use the resources (bandwidth, storage space) of others on the
network without making resources of their own available to the network,
thereby reducing the value of the network. As more users choose not to
share their resources, those peers that do share resources come under
increased load, and in many ways the network begins to revert to the
classic client/server architecture. Taken to its logical conclusion, the
network eventually collapses, benefiting no one.

7.4.2.4 Test conclusion
JXTA network is dependent of replication of services. This increase the
possibility of finding services as it also makes sure to divide the traffic
through out the network.

7.4.3 Service migration transparency

7.4.3.1 Test execution
The test of this test is no different than the test of location transparent. See
7.4.1.1

7.4.3.2 Test result
Not relevant

7.4.3.3 Test discussion
The fact that there is no central registration where the object reference is
stored makes the system very resistant to problems of migration. Every
service is responsible of its own advertisement, and if it is moved to
another location the advertising will be moved at the same time.
If a client was connected to the moved service it must once more go
through a discovery process to relocate the new location.

7.4.3.4 Test conclusion
JXTA supports migration of services. Since there is no central registration
of services, old references is not a problem

 43

7.4.4 Service failure transparency

7.4.4.1 Test execution
We have based our test on persistent data. Since this is not present in a
JXTA environment we couldn’t test this feature.
The closest to persistent data is the storing of discovery data to disk.
Discovery data is the data of other nodes and their location.

7.4.4.2 Test result
Not tested

7.4.4.3 Test discussion
JXTA has no support of failure transparency, if this should be supported it
must fully be implemented by the developer. Failure to services will
however have small effect on the network if there is more than one
available.

The main advantage of P2P networks is that they distribute the
responsibility of providing services among all of the peers on the network;
this eliminates service outages due to a single point of failure, and provides
a more scalable solution for offering services.

7.4.4.4 Test conclusion
JXTA does not support persistent data of any kind. Failure to services will
however have small effect on the network if there is a redundant supply.

7.4.5 Technology’s market position

7.4.5.1 Discussion
Almost overnight, users everywhere have adopted innovative technologies
that enable them to participate in a larger vision of the Internet. Distributed
computing applications like SETI@home have empowered millions of users
to contribute their computing resources to work on a common
computational analysis. Instant messaging services have enabled users to
communicate and collaborate with their peers in real time. And true peer-to-
peer (P2P) computing, embodied by applications like Napster, Gnutella,
and Freenet, has offered a compelling and intuitive way for Internet users
to find and share resources directly with each other, often without requiring
a central authority or server.

P2P has proven its popularity and its place in the future. Still the use is
often limited to search for stolen music and movies, but the fact is that
those searching mechanisms could as easily been used to search for web
pages or any other kind information.

The vision of the JXTA organization is to gather all the different applications
that will be developed on one platform, JXTA. If this will succeed is difficult
to predict, but two years later there is still no big applications built on this
platform. Rael Dornfest said this in an article he wrote in oreillynet;

“All told, JXTA provides some remarkable vision and a bare bones yet well-
thought-out framework. Its Sun developers and community regulars are a
smart, enthusiastic, and hard-working crowd. Yet two years since its
inception, still much of what we’re seeing coming out of the JXTA project
has been at the level of experimentation rather than any real applications.
To be fair, JXTA has, from the start, been designated a research project --
occasional media-clip prognostications notwithstanding. And research, in

 44

our opinion, is what JXTA is and shall remain for the foreseeable
future.”[43]

I doubt the JXTA team will agree to this statement, but there is probably a
great deal of truth in it.

JXTA is not currently a “complete” product. In truth, it may never be
complete. Like many open-source projects, JXTA is constantly evolving, as
open source developers augment the existing reference implementation
and specification to address new problems in peer-to-peer computing.
This is probably the hope and reason for survival of this technology. The
open source foundation gives the possibility of fast evolving the technology
into new directions. - Directions which by now are not thought about, but
maybe will have great influence on the market.

Sun has already logged 50,000 downloads of the code, and says it has
seen considerable interest in helping move the Jxta service beyond Java
technology. Maybe JXTA just need some time to mature before it shows its
real future [51].

7.4.5.2 Conclusion
There is by now no indication of success of this technology. But the
technology is still in progress and may soon evolve into something new and
path-breaking.

 45

7.5 Summary

7.5.1 Jini

7.5.1.1 Technical criteria

Criteria Result of test Comments
Service location
transparency

Supported The Jini network support
service location
transparency
Templates provide a way to
search for a service given
its unique ID, the interface
the service-proxy
implements or the attributes
attached to it

Service migration
transparency

Supported Jini support migration of
services. Old references are
deleted over time with help
of a leasing mechanism.
To some extend there is
also possible to move
services in runtime, this
future must however be
implemented by the
developer.

Service replication
transparency

Supported Jini supports replication
both to the service and
lookup service. JavaSpace
gives the opportunity to
make a better load
balanced system.

Failure transparency Not supported Jini core have implemented
transaction mechanisms.
The lookup service has
support of persistent.
JavaSpace can be
implemented with a
persistent space. Client and
service has however no
support of failure
transparency.

Table 7-3 Summary of Jini application tests

 46

7.5.1.2 Market criterion
Table 7-4 Summary Market criterion

Criteria Result of discussion Comments
Technology’s market
position

Positive future Jini has been embraced by
the mobile companies,
Cisco has used it in their
switches, DaimlerChrysler
is predicting future where
their cars are using the Jini
network. Problems like a
too big memory footprint
are solved with the JMatos
and, together with J2ME
the millions of small
devices have now the
option to be a part of the
Jini community.
The open software license
Sun is using on this
product should also give
the foundation of a rich
product line maybe as
much as 70% as the
Gartner group is
predicting.

 47

7.5.2 Web Services

7.5.2.1 Technical criteria
Criteria Result of

test

Service location
transparency

Supported Supported by use of the UDDI
registry for lookup.

Service migration
transparency

Supported Services could be migrated
between host, but it would require
a location update in the UDDI
registry

Service replication
transparency

Not
Supported

Not supported in the scope of web
services, but could be incorporated
by use of well known cluster
technologies developed for web
servers.

Service failure
transparency

Not
Supported

Not supported in the scope of web
services, but partly supported by
the increased availability gained by
using cluster methods mentioned
in the replication transparency part
of the tests.

Table 7-5 summary of Web Services application tests

7.5.2.2 Market criterion
Criteria Result of

discussion
Comments

Technology’s market
position

Growing
strong

Large companies stake a lot on
providing Web Services support in
their portfolio.

 48

7.5.3 JXTA

7.5.3.1 Technical criteria
Criteria Result of test Comments
Service location
transparency

Supported JXTA supports service
location transparency.
Searches are done through
advertisement in XML and
peers that find a mach will
send a response.

Service migration
transparency

Supported JXTA supports migration of
services. Since there is no
central registration of
services, old references is
not a problem

Service replication
transparency

Supported JXTA network is dependent
of replication of services.
This increase the possibility
of finding services as it also
makes sure to divide the
traffic through out the
network.

Service failure
transparency

Not supported JXTA does not support
persistent data of any kind.
Failure to services will
however have small effect
on the network if there is a
redundant supply.

Table 7-6 summary of JXTA application tests

7.5.3.2 Market criterion
Criteria Result of discussion Comments
Technology’s market
position

Unclear There is by now no
indication of success of
this technology. But the
technology is still in
progress and may soon
evolve into something new
and path-breaking.

 49

8 Discussion
The support of dynamic discovery is probably the strongest ability in a Jini
network. Services and clients can instantly start communication with the
lookup service when they are plugged to the network, this ability makes it a
strong candidate in a mobile network.

By using a centralized registry such as a Lookup service, you are
guaranteed a match as long as the service is registered; the problem is that
you can experience the “single point of failure”. To overcome this problem
Jini has introducing the possibility of a redundant source of lookup services.
Redundancy is central ability in the Jini network, every entity such as the
service, web server and lookup service have the ability to be multiplied,
without having negative effect on the network. This makes it possible to
divide the traffic through the network and make it more stable in a failure
situation.

It does, however come with a cost. The network is built around the
multicast protocol. This makes it possible, without any knowledge, to locate
every entity in you local area network. Without it you would be bound to a
more static system. The problem is, however, that the multicast system
doesn’t scale well when it grows to larger network. There are several
reasons for this. The multicast protocol is based on UDP and there is no
guarantee that they will reach the destination. Packets are often trashed
during transport through overloaded network. The second problem is the
TTL in the UDP packet. This is a counter which is decreased every time the
packet passes a router, once the TTL count is exceeded the message is
dropped.

While most modern IP routers support multicast, there is still some
machines on the internet that do not. If a router connecting two network
segment does not support multicast, then multicast traffic originate on one
segment will not be forwarded on to the second segment. Other routers are
configured to control the TTL and make sure to drop packets which have to
large TTL number. This will effetely reduce the radius were interested
parties will hear the messages, and also the possibility of the network to
grow larger.
There is however solutions to the problem, a bridge can be built between
the two segments such a way that multicast traffic passes between them, it
is called a “multicast tunneling” and is fairly easy to set up.

The Jini structure is based on RMI; this gives it the ability of an object
orientated platform support. Java object are exchange much in the same
way as in a regular java program. The draw back of this is that there is not
possible to implement a Jini network in another language than java. This
problem can however be overcome by letting the Jini network exchange the
proxy object between the client and service, which again can use an
another communication platform such as CORBA [44] or wrapping Jini
together with ActiveX [45].

Web Services by its XML messaging is well suited for business-to-business
applications and integrating new systems with legacy-applications. And it is
these types of applications where early adoptions of web services have
been seen.

UDDI provides Web Services with a lookup registry which to some extent
supports location transparency. The UDDI registry was originally developed
for locating services like finding a plumber in the Yellow-pages. Because of

 50

the design the registry isn’t suited for more mobile services. This is mainly
a result of missing “garbage-collection” in the registry, and the need of a
manual re-registering of the service when it has moved to a new location.

Web Services have obtained much attention, around dynamic location and
invocation of services based on service descriptions. The problem is that
dynamic invocations require common knowledge on how the system has to
be invoked. Just agreeing on a set of interfaces isn’t enough. Both parties
must have common understanding of what each entity relates to and how
the methods should be invoked. Neither the UDDI registry nor the WSDL
document supports behavior description.

JXTA strongest and at the same time, weakest ability is the lack of central
registration mechanisms, the Lookup mechanism is decentralized to each
peer. This gives JXTA solution great freedom when objects are moved or
not regularly connected to the network. The drawback is the uncertainty
when searching after services. Take a practical example, someone using a
JXTA solution for downloading music in Norway may experience a boast of
ability to retrieve any old favorite piece at any time. Yet on the very same
system, someone living in South Africa may not be able to find any music
at all, no matter how frequently they try.

JXTA is built to be flexible; seldom has a system managed this to the
extreme which JXTA has. The communication platform is built on XML; this
makes it possible to implement the JXTA application in virtually any
language, this again will make it possible to implement it on any operative
system platform. The fact is that JXTA even allows the developer to choose
which communication platform to base it on, from IP to bluetooth or
infrared.

JXTA has a lot to offer, but it is still uncertain when and where the first killer
application from P2P may come from – and therefore who will ultimately
define the “true” meaning of P2P computing, JXTA having a full stack deck,
stands a good chance of being the place where exciting future action will
occur.

 51

9 Conclusion

9.1 Thesis conclusion
This thesis does a comparative study of ODP distribution transparencies in
Jini, Jxta and Web Services. Large parts of the thesis have dealt with the
process of identifying the test criteria and develop the prototype for each
test. The comparison focuses on the transparency level seen by the
developer.

The target area is different for the technologies and because of this a direct
comparison of each technology against each other would not be practical.
In spite of this, the technologies might overlap in some areas. With this as a
starting point, we conclude with the technologies in two main groups:
Mobile services and fixed-location services.

A network of mobile entities:
Jini is most suitable for distributed systems based on mobile objects, solely
by its naming system. The mixture of dynamic discovery together with
garbage collection of old entities makes this system self maintaining and
robust.

The latest implementation of the Jini version, JMatos with small memory
footprint makes it also a strong candidate in networks of mobile units like
PDA’s and cellular phones.

Jini offers replication of both the lookup service and the service in order to
increase availability. Some fault tolerance is provided by transaction,
persistent lookup registry and persistent tuple space.

It is easy to plug new services or resources into the JXTA network. This a
result of the distributed search algorithm used to locate services.

Fixed-location services
Web Services is the most suitable technology for systems with fixed-
location of services. This technology is fully based on well known
technologies used in regular document-based distributed systems. Web
Services target area appears to be medium to large business-to-business
applications.

Web Services doesn’t provide any functions for replication or failure
transparency, but depends upon functions implemented in application
server where the services are deployed.

 52

9.2 Future Work
There are mainly four subjects left out in this thesis, and thus suitable for
future work.

1. The three transparencies, access, relocation and persistence
haven’t been cover enough in this thesis. In addition to this it would
be interesting to do a more thorough study of the transparences at
different levels such as the user and application level.

2. Web Services lacks support of failure transparency. Some failure

avoidance can be achieved through transaction support which isn’t
supported yet. There are companies working on implementations of
transaction support in Web Services. It would be interesting to
study different approaches and solutions for achieving transaction
support in Web Services.

3. The Jini network would be suitable for communicating between

small devices. In this scope it’s interesting to look into if the JMatos
is adequate for small devices. Is the memory footprint small
enough, and is the computer power on these machines strong
enough to support the network?

4. JXTA has a potential to become the platform in P2P networks in

the years to come. An interesting study would be to cover what
type of services P2P network could cover? Is the potential of P2P
as huge as the supporters want it to be?

 53

Abbreviations
API Application Program Interface
b2b business-to-business
CORBA Common Object Request Broker Architecture
DCOM Distributed Component Object Model
DNS Domain Name System
FTP File Transfer Protocol
HTTP Hypertext Transfer Protocol
IP Internet Protocol
J2ME Java 2 Platform, Micro Edition
JDK Java Development Kit
LUS Lookup Service
RM-ODP Open Distributed Processing - Reference model
OSGI Open System Gateway Initiative
P2P Peer to Peer
PDA personal digital assistant
RMI Remote Method Invocation
SMTP Simple Mail Transfer Protocol
SOAP Simple Object Access Protocol
TCP Transmission Control Protocol
TTL Time to Live
UDDI The Universal Description, Discovery, and Integration
UDDI4J UDDI for Java
UDP User Datagram Protocol
URI Uniform Resource Identifier
URL Uniform Resource Locator
W3C World Wide Web Consortium
WAP Wireless Application Protocol
WSDL Web Services Description Language
WS-I Web Services Interoperability Organization
WSIF Web Service Invocation Framework
XML Extensible Markup Language

 54

Bibliography
[1] Subrahmanyam Allamaraju, Cedric Buest, John Davies, Tyler Jewell,

Rod Johnson, Andrew Longshaw, Ramesh Nagappan, Dr P. G.
Sarang, Alex Toussaint, Samer Tyagi, Gary Watson, Mark Wilcox,
Alan Williamson, Daniel O’Connor

 Professional Java Server Programming – J2EE 1.3 Edition,
Wrox Press, ISBN 1-86100-537-7, 2001

[2] James Snell, Dough Tidwell, Pavel Kulchenko
Programming Web Services with Soap,
O’Reilly, ISBN 0-596-00095-2, 2002

[3] UDDI.ORG – Web site
http://www.uddi.org
2002.05.10

[4] SOAP Envelope namespace
http://www.w3.org/2001/06/soap-envelope
2002.05.10

 [5] Mack Hendricks, Ben Galbraith, Romin Irani, James Milbery, Tarak
Modi, Andre Tost, Alex Toussaint, S. Jeelani Basha, Scott Cable
Professional Java Web Services,
Wrox Press, ISBN 1-861003-75-7, 2001

[6] W3C, World Wide Web Consortium
http://www.w3.org
2002.05.10

[7] Vinosky, Steve
Web Services and Dynamic Lookup
http://www.webservices.org/index.php/article/articleview/66/
2002.04.02

[8] ISO/IEC 10746-1 Open Distributed Processing – Reference
Model: Overview
1996.09.15

[9] W. Keith Edwards

Core Jini second edition
Prentice Hall PTR, ISBN 0-13-089408-7, 2001

[10] W. Keith Edwards, Tom Rodden
Jini example by example
Prentice Hall PTR, ISBN 0-13-033858-3, 2001

[11] Sing Li
Professional Jini
Wrox Press Ltd, ISBN 1-861003-55-2, 2000

[12] Bill Pierce
Building Service Based Architectures with Jini
Dr. Dobb’s journal June issue 2001

[13] Steve Hashman, Steven Knudsen
The Application of Jini™ Technology to Enhance the Delivery of
Mobile Services

 55

http://www.uddi.org/
http://www.w3.org/2001/06/soap-envelope
http://www.w3.org/
http://www.webservices.org/index.php/article/articleview/66/

December 2001
http://wwws.sun.com/software/jini/whitepapers/PsiNapticMIDs.pdf
2002.05.06

[14] PsiNaptic press release
PsiNaptic's JMatos™ Software makes Jini™ technology
possible on Symbian OS for mobile devices
http://www.symbian.com/news/2002/pr020321.html
2002.05.06

[15] Spanish Inquisition

http://wwws.sun.com/software/jini/whitepapers/si_whitepaper.pdf
2002.5.6

[16] IT Cruiser Telematics Concept
DaimlerChrysler Corporation, Auburn Hills, Michigan
DaimlerChrysler Research and Technology North America, Palo Alto,
California Sun Microsystems, Southfield, Michigan
DaimlerChrysler IT Cruiser Telematics Concept
January 2001
http://java.sun.com/products/consumer-
embedded/automotive/whitepapers/ITCruiser-Whitepaper.pdf
2002.05.06

[17] International Business Machines Corporation and Microsoft
Corporation,
UDDI Technical White Paper
September 2000

[18] Andrew S. Tanenbaum, Maarten Van Steen

Distributed Systems Principles and Paradigms
Prentice-Hall, ISBN 0-13-088893-1, 2002

[19] W3C
Simple Object Application Protocol, working drafts overview
http://www.w3.org/2002/ws
2002.05.14

[20] W3C
Web Services Description Language version 1.1, specification
http://www.w3.org/TR/wsdl
2002.05.14

[21] W3C
Extensible Markup Language, working drafts overview
http://www.w3.org/XML/
2002.05.14

[22] Max Goff
Sun Technology Audio casts
http://developer.java.sun.com/developer/onlineTraining/webcasts/20p
lus/mgoff.html
2002.05.15

[23] Colorado software summit

http://www.softwaresummit.com/
2002.05.10

[24] Department of Computer Science Rice University
The ScalaServer project

 56

http://wwws.sun.com/software/jini/whitepapers/PsiNapticMIDs.pdf
http://www.symbian.com/news/2002/pr020321.html
http://wwws.sun.com/software/jini/whitepapers/si_whitepaper.pdf
http://java.sun.com/products/consumer-embedded/automotive/whitepapers/ITCruiser-Whitepaper.pdf
http://java.sun.com/products/consumer-embedded/automotive/whitepapers/ITCruiser-Whitepaper.pdf
http://www.w3.org/2002/ws
http://www.w3.org/TR/wsdl
http://www.w3.org/XML/
http://developer.java.sun.com/developer/onlineTraining/webcasts/20plus/mgoff.html
http://developer.java.sun.com/developer/onlineTraining/webcasts/20plus/mgoff.html
http://www.softwaresummit.com/

http://www.cs.rice.edu/CS/Systems/ScalaServer/
2002.05.13

[25] Coulouris, Dollimore, Kindberg,
Distributed Systems, Concepts and Design, Third edition
Addison-Wesley, ISBN 0-201-61918-0, 2001

[26] Bea WebLogic Server Cluster Paper
http://www.bea.com/products/weblogic/server/paper_wls_clustering.p
df
2002.05.15

[27] UBEANS Web Site
Apache/Tomcat cluster solution http://www.ubeans.com/tomcat/
2002.05.12

[28] Peter Deutsch
The eight fallacies of distributed computing
http://java.sun.com/people/jag/Fallacies.html
2002.05.12

[29] Jim Waldo, Geoff Wyant, Ann Wollrath, Sam Kendall
A note on Distributed Computing
Sun Microsystems, 1994

[30] Leslie Lamport’s home page.
http://lamport.org
2002.05.2002

[31] WebServices.org
Do you think Web Services are just hype, or have huge
potential?
http://www.webservices.org/index.php/poll/result/5/
2002.05.15

[32] WebServices.org
What language do you use to develop your Web Services?
http://www.webservices.org/index.php/poll/result/10/
2002.05.15

[33] Ben Pring
Web Services, The Changing Nature of IT Service Opportunity
The Gartner Group
http://www4.gartner.com/DisplayDocument?id=353343&acsFlg=acce
ssBought
2002.05.15

[34] International Business Machines (IBM)
Case study on Storebrand ASA
http://www-3.ibm.com/software/success/cssdb.nsf/CS/NAVO-
4ZMTDR?OpenDocument&Site=dmmain
2002.05.14

[35] Scott Durchslag
Beyond the hype... the Reality of Early Web Services Adoption
Web Services Journal, March 2002 issue
http://www.wsj2.com
2002.05.14

[36] AvantGo

 57

http://www.cs.rice.edu/CS/Systems/ScalaServer/
http://www.bea.com/products/weblogic/server/paper_wls_clustering.pdf
http://www.bea.com/products/weblogic/server/paper_wls_clustering.pdf
http://www.ubeans.com/tomcat/
http://java.sun.com/people/jag/Fallacies.html
http://lamport.org/
http://www.webservices.org/index.php/poll/result/5/
http://www.webservices.org/index.php/poll/result/10/
http://www4.gartner.com/DisplayDocument?id=353343&acsFlg=accessBought
http://www4.gartner.com/DisplayDocument?id=353343&acsFlg=accessBought
http://www-3.ibm.com/software/success/cssdb.nsf/CS/NAVO-4ZMTDR?OpenDocument&Site=dmmain
http://www-3.ibm.com/software/success/cssdb.nsf/CS/NAVO-4ZMTDR?OpenDocument&Site=dmmain
http://www.wsj2.com/

http://avantgo.com/products/mbus_server_app.html
2002.05.14

[37] International Business Machines (IBM)
WebSphere Application Server
http://www-3.ibm.com/software/webservers/
2002.05.18

[38] Microsoft,
.net technology
http://www.microsoft.com/net/
2002.05.18

[39] Bea
Bea WebLogic Server
http://www.bea.com/products/weblogic/server/index.shtml
2002.05.18

[40] Sybase
Application Servers,
http://www.sybase.com/products/applicationservers
2002.05.18

[41] Kammie Kayl
 JOY POSES JXTA INITIATIVE Pushing the Boundaries of

Distributed Computing
http://java.sun.com/features/2001/02/peer.p.html
19.05.2002

[42] Project JXTA: An Open, Innovative Collaboration

http://www.jxta.org/project/www/docs/OpenInnovative.pdf
19.05.2002

[43] Rael Dornfest

Emergin Technology Review, JXTA
http://www.oreillynet.com/pub/a/webservices/2002/03/12/jxta.html
22.03.2002

[44] JINI Network technology, datasheet
http://wwws.sun.com/software/jini/whitepapers/jini-datasheet0601.pdf
22.05.2002

[45] JavaSpaces Technology

http://java.sun.com/products/javaspaces/
22.05.2002

[46] Linda Systems

http://www.cs.yale.edu/HTML/YALE/CS/Linda/linda.html
22.05.2022

[47] IBM T Space
http://www.almaden.ibm.com/cs/TSpaces/index.html
22.05.2022

[48] JXTA Takes Its Position
 http://www.openp2p.com/pub/a/p2p/2001/04/25/jxta_position.html
 22.05.2002
[49] Sing Li

A hands-on, working introduction to the latest P2P technology
 http://www-106.ibm.com/developerworks/library/j-p2pint1.html

 58

http://avantgo.com/products/mbus_server_app.html
http://www-3.ibm.com/software/webservers/
http://www.microsoft.com/net/
http://www.bea.com/products/weblogic/server/index.shtml
http://www.sybase.com/products/applicationservers
http://java.sun.com/features/2001/02/peer.p.html
http://www.jxta.org/project/www/docs/OpenInnovative.pdf
http://www.oreillynet.com/pub/a/webservices/2002/03/12/jxta.html
http://wwws.sun.com/software/jini/whitepapers/jini-datasheet0601.pdf
http://java.sun.com/products/javaspaces/
http://www.cs.yale.edu/HTML/YALE/CS/Linda/linda.html
http://www.almaden.ibm.com/cs/TSpaces/index.html
http://www.openp2p.com/pub/a/p2p/2001/04/25/jxta_position.html
http://www-106.ibm.com/developerworks/library/j-p2pint1.html

 22.05.2002

[50] Sing Li

JXTA, Peer-to-Peer Computing with Java
Wrox Press, ISBN 1-81006-35-7, 2001

[51] John Borland

Sun's Joy rapturous over JXTA
 http://news.com.com/2100-1001-267963.html
 22.05.2002

 59

http://news.com.com/2100-1001-267963.html

Appendix A Test environment
The test environment is put together by 4 machines. The operation system
is divided between Win2000 and Linux. System information is given below.

A.1 Computer configuration
Computer 1

Intel Celeron 330 Mhz, 256 MB Ram
 ReadHat Linux 7.2 (Enigma) Kernel 2.4.7-10
 Java platform is J2SDK 1.4.0
 JINI platform is Jini 1.2
Computer 2

Intel Pentium-2 400 Mhz, 392 MB Ram
 Windows 2000, workstation
 Java platform is J2SDK 1.4.0
 JINI platform is Jini 1.2
Computer 3

Intel Pentium-2 400 Mhz, 392 MB Ram
 Windows 2000, workstation
 Java platform is J2SDK 1.4.0
 JINI platform is Jini 1.2
 Jakarta-tomcat 4.0.3
 Apache SOAP 2.2
Computer 4

K6-2 350 Mhz, 300 MB Ram
 RedHat Linux 7.2 (Enigma) Kernel 2.4.7-10
 Java platform is J2SDK 1.4.0
 JINI platform is Jini 1.2
 Jakarta-tomcat 4.0.3
 Apache SOAP 2.2

 60

Appendix B – Jini development environment

B.1 Software

B.1.1 Jini Technology Starter Kit v1.2.1
The Jini starter kit can be downloaded for free from sun. It contains
everything that is needed to support at Jini network, including install
instructions.

http://developer.java.sun.com/developer/products/jini/

B.2 Building test application

B.2.1 Jini prototype
To make the service able to find the lookup service it had to implement a
discovery listener. The same process has to be done with the client.

Fortunately the Jini developer pack makes this process really easy you
actually just have to implement an interface “DiscoveryListener” and the
Jini process takes care of the rest.

Public interface DiscoveryListener extends EventListener{

public void discovered(DiscoveryEvent evt);
public void discareded(DiscoveryEvent evt);

}//end interface

Listing 6 1 DiscoveryListener example

Of course you have to process the information the DiscoveryListener
returns. The discovered method will be called whenever a new lookup
service is found via the discovery protocols. And the discovery protocol is
controlled by a LookupDiscoveryManager. This class is controlling both
multicast and unicast forms of discovery, and for doing general
housekeeping on the discovery process. So in other words you will also
need to implement a LookupDiscoveryManager class to get a Jini network
up and running.
Anyway by implementing this you will have an independent Jini network up
and running, and the clients and service will find the LUS without any
previous configurations.

The leasing mechanism makes the Lookup service more stable. If a service
fails it doesn’t have to keep record of it for more than the leasing time. And
the network will heal it self. This however makes the service depend of
renewing the leas time over and over again.

To make this process work we had to implement a LeaseRenewalManager,
which handle the whole process. (The leasing time is option by the
developer)

Sometimes the service is not available when the clients are searching
through the network. The Jini network has implemented an interesting
solution to this problem. The clients have the opportunity to be registrar at
the lookup service and be given response if the wanted service arrives.
This is done with making a class implementing RemoteEventListener.

Since this is based on RMI we had to send the class thorough RMIC to
produce the stubs and skeletons file which is required to make a RMI

 61

http://developer.java.sun.com/developer/products/jini/

communication to work. The RMIC is a standard implementation of the JDK
distribution pack.

One problem that arises is the requirement of the client to have access to
the stub file. In a Jini network this is done by letting the LUS (which are the
client in this example) download the stub file from a HTTP server. Most of
the file transaction in the Jini network is done by HTTP servers.

When the LUS has got the stub object it has the opportunity to send
information to the client about newly discovered services.

After a successful discovery process the client will have a list of wanted
services which it can choose between. Of course this depends if there are
more than one service available!

We wanted the client to be able to switch between the services if the one in
use is failing.

To solve this problem we made an object handler which stored all the
incoming proxy objects. Among this the client could choose the one it
wants to get time reference from. If the one in use fails it simply deleted the
object and went for the next. The problem arises when the entire stock of
stored object fails, what then?

To solve this problem the discovery process starts over again and this
process will continue to on or more suitable service is found.

Making the service able return the exact time of the server, we had to make
a new class file. This class implemented the interface BackendProtocol
which again meant that the class had to implement the function
getServerTime(). This function returns a string that is built up by server
address and time reference.

B.2.2 JavaSpace prototype
In one of the criteria we came to the problem where load balancing is an
issue. We were struggling by the idée how to solve this in a Jini network.
After looking around and reading the Jini newsgroup, - which by the way is
excellent, we came to the conclusion that we should use JavaSpace.

Developing the model gave us some problems, mostly because none of the
examples that we found in the books worked as they should. - This again
gave some frustration since finding the errors can be difficult when
references are missing. (The reasons for failure are the differences in Jini
distributions)
The JavaSpace prototype became however a reality after some hour with
frustration.

We went for a model where the client sends a challenge and the
workers/servers are listening at space fetching the object and process
them, and sending them back into space where the client could again could
fetch them for download.

 62

public class TimeTuple implements Entry{
public String TimeStamp = null;
public InetAddress addr = null;

public TimeTuple() {}//end constructor

public TimeTuple(String TimeStamp, InetAddress addr) {
this.TimeStamp = TimeStamp;
this.addr = addr;

}//end constructor

public String getHost(){
return addr.getHostName();

}//end getHost

}//end class

The TimeTuple, as we chose to call it, is the object that will be used as a
messenger in the space. It has implemented Entry as every object in space
must have one way or another.

We decided to implement a string which contains the timestamp and an
InetAddress. When the client writes a new object to space both of them will
have null values. This is also the search criteria for the workers; - any tuple
which contains null values must be handled.

The workers will when they have time for it download the objects and
update them with a timestamp and the DNS address of the worker and
return it to space.

The search criteria for clients fetching TimeTuple from space are when
TimeStamp and InetAddress contain no null values. When a client has
downloaded an object it will also feed the space with a new empty one, -
and the circle can start over again.

B.3 Script
Staring the Jini network you have to run a Lookup service the client and the
service, the JavaSpace need even more components to run. Below the
scripts will be listed.

B.3.1 Lookup service

B.3.1.1 RMI Activation Daemon (RMID) (Linux)
#!/bin/sh
echo Staring RMID with NO execPolicy
echo Log dir is /usr/java/RunScript/JINI/Log

rmid -J-Dsun.rmi.activation.execPolicy=none -log /usr/java/RunScript/JINI/Log/

B.3.1.2 Web Server (Linux)
#!/bin/sh

echo Starting Web server at port 8081
echo Source at $JINI_HOME/lib

java -jar $JINI_HOME/lib/tools.jar -port 8081 -dir $JINI_HOME/lib/ -trees -verbose

B.3.1.3 Reggie (Linux)
#!/bin/sh
echo Staring Reggie....

 63

HOSTNAME=128.39.203.37

POLICY=$JINI_HOME/policy/policy.all
JARFILE=$JINI_HOME/lib/reggie.jar
CODEBASE=http://$HOSTNAME:8081/reggie-dl.jar
LOG_DIR=/usr/java/RunScript/JINI/Log/reggie_log
GROUP=public

java -Dcom.sun.jini.reggie.proxy.debug=true -jar $JARFILE $CODEBASE $POLICY
$LOG_DIR $GROUP

B.3.2 JavaSpace
Staring the JavaSpace we need two services; Mahalo and Outrigger.
Mahalo is the Sun’s implementation of the transaction manager service
while Outerigger is the Sun’s implementation of JavaSpace.
Outrigger is in two different implementations one transient and one
persistent. The persistent version will make sure to store the entire stock of
object that is written to space, to disk. If the system should fail a reboot, the
object will still be present.

B.3.2.1 Mahalo (Linux)
#!/bin/sh

echo Staring Mahalo......

Set this to wherever the webserver is running
HOSTNAME=128.39.203.37

everything below should work with few changes
POLICYFILE=$JINI_HOME/policy/policy.all
JARFILE=$JINI_HOME/lib/mahalo.jar
CODEBASE=http://$HOSTNAME:8081/mahalo-dl.jar
TXN_POLICYFILE=$POLICYFILE
LOG_DIR=/usr/java/RunScript/JINI/Log/txn_log
GROUP=public

java -jar -Djava.security.policy=$POLICYFILE -
Dcom.sun.jini.mahalo.managerName=TransactionManager $JARFILE
$CODEBASE $TXN_POLICYFILE $LOG_DIR $GROUP

B.3.2.2 Transient Outrigger (Linux)
#!/bin/sh

echo Starting transient Outrigger.....

Set this to wherever the webserver is running
HOSTNAME=128.39.203.37

everything below should work with few changes
POLICYFILE=$JINI_HOME/policy/policy.all
JARFILE=$JINI_HOME/lib/transient-outrigger.jar
CODEBASE=http://$HOSTNAME:8081/outrigger-dl.jar
LOG_DIR=/usr/java/RunScript/JINI/Log/js_log
GROUP=public

java -jar -Djava.security.policy=$POLICYFILE -
Djava.rmi.server.codebase=$CODEBASE -
Dcom.sun.jini.outrigger.spaceName=JavaSpaces $JARFILE $GROUP

 64

B.3.2.3 Persistent Outrigger (Linux)
#!/bin/sh

echo Starting transient Outrigger.....

Set this to wherever the webserver is running
HOSTNAME=128.39.203.37

everything below should work with few changes
POLICYFILE=$JINI_HOME/policy/policy.all
JARFILE=$JINI_HOME/lib/outrigger.jar
CODEBASE=http://$HOSTNAME:8081/outrigger-dl.jar
LOG_DIR=/usr/java/RunScript/JINI/Log/js_log
GROUP=public

java -jar -Djava.security.policy=$POLICYFILE -
Djava.rmi.server.codebase=$CODEBASE -
Dcom.sun.jini.outrigger.spaceName=JavaSpaces $JARFILE $GROUP

B.3.3 Client starting script

B.3.3.1 Clock client Jini (Linux)
#!/bin/sh

HOSTNAME=128.39.202.156:8086
CLASSFILES= $JINI_HOME/lib/jini-core.jar:$JINI_HOME/lib/jini-ext.jar:\
 $JINI_HOME/lib/sun-util.jar:/usr/java/RunScript/JINI

java -cp $CLASSFILES -Djava.rmi.server.codebase=http://$HOSTNAME/ -
Djava.security.policy=$JINI_HOME/policy/policy.all prototypejini.ClockClient

B.3.3.2 Clock client JavaSpace (Linux)
java -Djava.security.policy=d:\java\jini1_2\policy\policy.all -
Doutrigger.spacename=JavaSpaces -Dcom.sun.jini.lookup.groups=public -cp
d:\java\jini1_2\lib\jini-core.jar;d:\java\jini1_2\lib\jini-ext.jar;d:\java\jini1_2\lib\sun-
util.jar;d:\Test\Space2 javaspacetimecontrol.TimeClient.ClientStart

B.3.4 Service starting script

B.3.4.1 Clock service Jini (Linux)
#!/bin/sh

echo Java home: $JAVA_HOME
echo Jini home: $JINI_HOME

CP=$JINI_HOME/lib/jini-core.jar:$JINI_HOME/lib/jini-ext.jar:$JINI_HOME/lib/sun-
util.jar:service

$JAVA_HOME/bin/java -cp $CP -
Djava.rmi.server.codebase=http://sgrm348.grm.hia.no:8085/ -
Djava.security.policy=$JINI_HOME/policy

B.3.4.2 Clock service JavaSpace (Windows)
java -Djava.security.policy=%JINI_HOME%\policy\policy.all -
Doutrigger.spacename=JavaSpaces -Dcom.sun.jini.lookup.groups=public -cp
%JINI_HOME%\lib\jini-core.jar;%JINI_HOME%\lib\jini-
ext.jar;%JINI_HOME%\lib\sun-util.jar;.
javaspacetimecontrol.TimeService.ServiceStart

 65

B.4 Source code

B.4.1 Clock Client Jini

B.4.1.1 ClockClient
import net.jini.discovery.*;
import net.jini.core.lookup.*;
import net.jini.core.event.*;
import java.io.*;
import java.rmi.*;
import java.util.*;
public class ClockClient implements Runnable{

private ServiceTemplate template;
private LookupDiscovery disco;
private final int LEASE_TIME = 10*60*1000;
private MyEventListener eventCatcher;
private objectHandler objecthandler;
private MyListener listener;
private ClockFrame clientFrame;

public ClockClient() throws IOException{
Class[] type = {ClockServiceInterface.class};
template = new ServiceTemplate(null,type,null);
objecthandler = new objectHandler();

if(System.getSecurityManager() == null){
System.setSecurityManager(new RMISecurityManager());

}//end if

disco = new LookupDiscovery(new String[] {""});
listener = new MyListener(this,template,objecthandler);
disco.addDiscoveryListener(listener);
eventCatcher = new MyEventListener(objecthandler);

clientFrame = new ClockFrame();
}//end constructor

public void run(){
while(true){

try{
Thread.sleep(1*1*1000);
getTime();

}catch(InterruptedException ex){}
}//end while

}//End run

public void getTime(){
Vector vector = objecthandler.getVector();
if(vector.size()>0){

try{
ClockServiceInterface testInter = (ClockServiceInterface)vector.lastElement();
clientFrame.setLabelTekst(testInter.getTime());

}catch(Exception e){
System.out.println("Error in Vector.. element removed!! " + e);
vector.removeElement(vector.lastElement());

}//End try/catch

}//end if
else{
disco.removeDiscoveryListener(listener);
listener = new MyListener(this,template,objecthandler);
disco.addDiscoveryListener(listener);

}//end else
}//end getTime

public void removeDisco(ServiceRegistrar lusvc){
disco.discard(lusvc);

}//end temoveDisco

public void registerForEvents(ServiceRegistrar lu) throws RemoteException{

lu.notify(template,ServiceRegistrar.TRANSITION_NOMATCH_MATCH,eventCatcher,null,LEASE_TIME);
}//end registerForEvents

public static void main(String[] args) {
try{

ClockClient clockClient1 = new ClockClient();
Thread thread = new Thread(clockClient1);
thread.start();

}catch(IOException e){
System.out.println("Error in constructor: "+ e.getMessage());

}//end try/catch
}//end main

}//end class

 66

B.4.1.2 ClockFrame
import java.awt.*;
import javax.swing.*;
import javax.swing.border.*;

public class ClockFrame extends JFrame{
private JPanel jPanel1 = new JPanel();
private JLabel jLabel1 = new JLabel();
private TitledBorder titledBorder1;
private String labelTekst;

public ClockFrame() {
makeFrame();

this.setSize(400,100);
this.setLocation(200,200);
this.show();

}//end constructor

public void setLabelTekst(String tekst){
jLabel1.setText(tekst);

}//end setLabelTekst

public void makeFrame(){
titledBorder1 = new TitledBorder("JINI Clock client");
jPanel1.setBorder(titledBorder1);
jLabel1.setText(labelTekst);
this.getContentPane().add(jPanel1, BorderLayout.CENTER);
jPanel1.add(jLabel1, null);

}//end makeFrame
}//end class

B.4.1.3 ClockServiceInterface
public interface ClockServiceInterface {

public String getTime() throws java.rmi.RemoteException;
}//end interface

B.4.1.4 MyEventListener
import java.rmi.server.*;
import java.rmi.RemoteException;
import net.jini.core.event.*;
import net.jini.core.lookup.*;
import java.util.*;

public class MyEventListener extends UnicastRemoteObject implements RemoteEventListener{
private objectHandler objecthandler;
public MyEventListener(objectHandler p_objecthandler) throws RemoteException{

objecthandler = p_objecthandler;
}//end constructor

public void notify(RemoteEvent evt)throws RemoteException, UnknownEventException{
System.out.println("Got an event from: " + evt.getSource());

if(evt instanceof ServiceEvent){
ServiceEvent sev = (ServiceEvent)evt;
ServiceItem item = sev.getServiceItem();
ClockServiceInterface hws = (ClockServiceInterface)item.service;
System.out.println("Got a service!");
if(hws != null){

objecthandler.addObject(hws);
}//end if

}//end if
else{

System.out.println("Not a service event, ignoring");
}//end else

}//end notify
}//end class

B.4.1.5 MyListener
import net.jini.discovery.*;
import net.jini.core.lookup.*;
import java.io.*;
import java.rmi.*;

public class MyListener implements DiscoveryListener{
private ClockClient parent;
private ServiceTemplate template;
private objectHandler objecthandler;

public MyListener(ClockClient p_parent,ServiceTemplate p_template,objectHandler
p_handler) {

parent = p_parent;
template = p_template;
objecthandler = p_handler;

}//end constrctor

public void discovered(DiscoveryEvent evt){
ServiceRegistrar[] newregs = evt.getRegistrars();
for(int a=0;a<newregs.length;a++){

if(lookForService(newregs[a]) != null){
objecthandler.addObject((ClockServiceInterface)lookForService(newregs[a]));
System.out.println("New element added:!");

 67

}//end if
}//end for

}//end discovered

public void discarded(DiscoveryEvent evt){

}//end discarded

protected Object lookForService(ServiceRegistrar lusvc){
Object object = null;
try{

object = lusvc.lookup(template);
}catch(RemoteException e){

return null;
}//end try/catch

if(object == null){
System.out.println("No matching services");
try{

parent.registerForEvents(lusvc);
}catch(RemoteException e){

System.out.println("Error when registrating event: " + e.getMessage());
parent.removeDisco(lusvc);

}//end try/catch
return null;

}//end if
return object;

}//end lookupService
}//end class

B.4.1.6 objectHandler
import java.util.*;

public class objectHandler {
private Vector objectVector;
public objectHandler() {

objectVector = new Vector();
}//end constructor

public Vector getVector(){
return objectVector;

}//end getVector

public ClockServiceInterface getFirst(){
return (ClockServiceInterface)objectVector.firstElement();

}//end getFirst

public void addObject(ClockServiceInterface object){
objectVector.addElement(object);

}//end addObject

public void removeObject(ClockServiceInterface object){
objectVector.remove(object);

}//end removeObject
}//End class

B.4.2 Clock Service Jini

B.4.2.1 Backend
import java.rmi.*;
import java.rmi.server.*;
import java.util.*;
import java.net.*;

public class Backend extends UnicastRemoteObject
implements BackendProtocol {

public static final boolean DEBUG = true;
private long count = 60;

public Backend() throws RemoteException {
if(DEBUG)
System.out.println("Backend created");

}

public String getServerTime() throws RemoteException {
String hostname = null;

try {
InetAddress addr = InetAddress.getLocalHost();
hostname = addr.getHostName();

} catch (Exception ex) {}
if(DEBUG & (count++ % 60 == 0))
System.out.print("#");

Date now = new Date(System.currentTimeMillis());
return now.toString() + " " + hostname;

}
}

 68

B.4.2.2 BackendProtocol
import java.rmi.Remote;
import java.rmi.RemoteException;

public interface BackendProtocol extends Remote {

public String getServerTime() throws RemoteException;
}

B.4.2.3 ClockService
import net.jini.discovery.*;
import net.jini.core.discovery.LookupLocator;
import net.jini.core.lookup.*;
import net.jini.lease.*;
import net.jini.core.lease.*;
import java.util.*;
import java.io.*;
import java.rmi.*;

public class ClockService implements Runnable, LeaseListener {

private final int LEASE_TIME = 1*1000;
private HashMap registrations = new HashMap();
private ServiceItem item;
private LookupDiscovery disco;
protected LeaseRenewalManager lrm;

public ClockService() throws IOException {
item = new ServiceItem(null, createProxy(), null);
if(System.getSecurityManager() == null)
System.setSecurityManager(new RMISecurityManager());

disco = new LookupDiscovery(new String[] {""});
disco.addDiscoveryListener(new Listener());
lrm = new LeaseRenewalManager();

}

public ClockServiceInterface createProxy() {

try {
Backend backend = new Backend();
return new ClockServiceProxy(backend);

} catch (RemoteException ex) {
System.out.println("Error creating backend: " +
ex.getMessage());

System.exit(1);
return null;

}
}

synchronized void registerWithLookup(ServiceRegistrar registrar) {

ServiceRegistration registration = null;
try {
registration = registrar.register(item, LEASE_TIME);

} catch (RemoteException ex) {
System.out.println("Couldn't register: " + ex.getMessage());
return;

}

if(item.serviceID == null) {
item.serviceID = registration.getServiceID();
System.out.println("set service id to " + item.serviceID);

}

registrations.put(registrar, registration);
lrm.renewFor(registration.getLease(), Lease.FOREVER, this);

}

public void run() {

while(true) {
try {
Thread.sleep(1000000);

} catch (InterruptedException ex) {
}

}
}

public void notify(LeaseRenewalEvent evt) {

System.out.println("Couldn't renew lease: " + evt.getLease());
}

public static void main(String args[]) {

try {
ClockService clockService = new ClockService();
new Thread(clockService).start();

} catch (IOException ex) {
System.out.println("Failed to start service: " + ex.getMessage());

}
}

class Listener implements DiscoveryListener {

 69

public void discovered(DiscoveryEvent evt) {

System.out.println("Discovered lookup service: ");
ServiceRegistrar[] newRegs = evt.getRegistrars();

for(int i = 0;i < newRegs.length;i++) {
try {
LookupLocator loc = newRegs[i].getLocator();
System.out.println(loc.getHost() + ":" + loc.getPort());

} catch (RemoteException ex) {
}

if(!registrations.containsKey(newRegs[i]))
registerWithLookup(newRegs[i]);

}
}

public void discarded(DiscoveryEvent evt) {

ServiceRegistrar[] deadRegs = evt.getRegistrars();
for(int i = 0;i < deadRegs.length;i++)
registrations.remove(deadRegs[i]);

}
}

}

B.4.2.4 ClockServiceInterface
public interface ClockServiceInterface {

public String getTime() throws java.rmi.RemoteException;
}

B.4.2.5 ClockServiceProxy
import java.io.Serializable;
import java.rmi.Remote;
import java.rmi.RemoteException;

public class ClockServiceProxy implements Serializable, ClockServiceInterface {

protected BackendProtocol backend;

public ClockServiceProxy() {
}

public ClockServiceProxy(BackendProtocol backend) {
this.backend = backend;

}

public String getTime() throws RemoteException {

return backend.getServerTime();
}

}

B.4.3 Clock Client JavaSpace

B.4.3.1 ClientStart
import net.jini.lookup.ServiceDiscoveryManager;
import net.jini.core.lookup.ServiceTemplate;
import net.jini.core.lookup.ServiceItem;
import net.jini.space.JavaSpace;
import net.jini.lease.LeaseListener;
import net.jini.lease.LeaseRenewalEvent;
import net.jini.core.lease.Lease;
import com.sun.jini.lease.landlord.LandlordLease;
import net.jini.core.transaction.server.TransactionManager;
import net.jini.core.transaction.Transaction;
import net.jini.core.transaction.TransactionFactory;

import java.rmi.RMISecurityManager;
import java.util.Vector;

import java.io.*;

import net.jini.discovery.*;
import net.jini.core.lookup.*;

import javaspacetimecontrol.TimeTuple;
import java.net.*;

public class ClientStart implements Runnable,ListenerInterface{
private ServiceTemplate template;
private MyListener listener;
private LookupDiscovery disco;
private boolean Registrer = true;
public ClientStart() throws IOException{

if(System.getSecurityManager() == null){
System.setSecurityManager(new RMISecurityManager());

}//end if

Class[] type = new Class[] {JavaSpace.class };
template = new ServiceTemplate(null,type,null);

disco = new LookupDiscovery(new String[] {""});
listener = new MyListener(template,this);

 70

disco.addDiscoveryListener(listener);

}//end constructor

public void HandleSpaceObject(JavaSpace jsp){
if(Registrer){

System.out.println("Starting Thread");
ThreadController controller = new ThreadController(jsp);
Thread thread = new Thread(controller);
thread.start();
Registrer = false;

}//end if
else{

System.out.println("drop to registrar");
}//end else

}//end HandleSpaceObject

public void run(){
while(true){

try{
Thread.sleep(10*1*1000);

}catch(InterruptedException ex){}
}//end while

}//end run

public static void main(String[] args) {
try{

ClientStart serviceStart1 = new ClientStart();
Thread thread = new Thread(serviceStart1);
thread.start();

}catch(IOException e){
System.out.println("Feil i constructor: "+ e.getMessage());

}//end try/catch
}//end main

}//end class

B.4.3.2 ListenerInterface
import net.jini.space.JavaSpace;
public interface ListenerInterface {

public void HandleSpaceObject(JavaSpace jspace);
}//end interface

B.4.3.3 MyListener
import net.jini.discovery.*;
import net.jini.core.lookup.*;
import java.io.*;
import java.rmi.*;
import net.jini.space.JavaSpace;

public class MyListener implements DiscoveryListener{
private ServiceTemplate template;
private JavaSpace javaSpace = null;
private ListenerInterface parent;
public MyListener(ServiceTemplate p_template,ListenerInterface p_parent) {

template = p_template;
parent = p_parent;

}//end constrctor

public void discovered(DiscoveryEvent evt){
ServiceRegistrar[] newregs = evt.getRegistrars();
for(int a=0;a<newregs.length;a++){

JavaSpace js = findJavaSpace(newregs[a]);
if(js !=null){

try{
System.out.println("URL:" + getURL(newregs[a]));
System.out.println("Groups:" + getGroups(newregs[a]));

}catch(RemoteException e){
System.out.println("Feil med henting av URL: "+ e);

}//end try/catch
parent.HandleSpaceObject(js);

}//end if
}//end for

}//end discovered

public void discarded(DiscoveryEvent evt){}//end discarded

public String getURL(ServiceRegistrar reg) throws RemoteException{
return reg.getLocator().toString();

}//end getURL

public String getGroups(ServiceRegistrar reg) throws RemoteException{
String[] groups = reg.getGroups();
if(groups == DiscoveryGroupManagement.ALL_GROUPS){

return "<ALL GROUPS>";
}//end if
if(groups == DiscoveryGroupManagement.NO_GROUPS){

return "<NONE>";
}//end if

StringBuffer buf = new StringBuffer();

for(int a=0;a<groups.length;a++){
if(groups[a] == null){

buf.append("NULL");
}//end if

 71

else if(groups[a].equals("")){
buf.append("PUBLIC");

}//End else if
else{
buf.append(groups[a]);

}//end else
}//end for
return buf.toString();

}//end getURL

public JavaSpace findJavaSpace(ServiceRegistrar reg){
if(javaSpace != null){

return null;
}//end if

try{
JavaSpace midJavaSpace = (JavaSpace)reg.lookup(template);
if(midJavaSpace != null){

System.out.println("Found a Space!");

return midJavaSpace;
}//end if

}catch(RemoteException e){
System.out.println("Error doing lookup: " + e.getMessage());

}//end try/catch
return null;

}//end findJavaSpace

}//end class

B.4.3.4 ThreadController
import net.jini.space.*;
import javaspacetimecontrol.TimeTuple;
import java.net.*;
import java.util.*;
import net.jini.core.lease.Lease;

public class ThreadController implements Runnable{
private JavaSpace jspace;
private TimeTuple time;
private TimeTuple tuple;

public ThreadController(JavaSpace jspace) {
this.jspace = jspace;
try {

jspace.write(new TimeTuple(),null, Lease.FOREVER);
System.out.println("Object er registrert");

} catch (Exception e) {
System.out.println ("write to Space exception: " + e);

}//end try/catch
}//end constructor

public synchronized void readFromSpace(){
try {

if((tuple = (TimeTuple)jspace.read(new
TimeTuple(null,null),null,JavaSpace.NO_WAIT)) != null){

if(tuple.TimeStamp != null){
jspace.take(tuple,null,JavaSpace.NO_WAIT);
System.out.println("Time found: " + tuple.TimeStamp);
System.out.println("Host: " + tuple.getHost());
jspace.write(new TimeTuple(),null, Lease.FOREVER);

}//end if
else{

System.out.println("Fant ingen som ikk er null");
}//end else

}//end if
else{

System.out.println("Fant ikke objekt");
}//end else

} catch (Exception e) {
System.out.println ("read from Space exception: " + e);

}//end try/catch
}//End readFromSpace

public void run(){
while(true){

try{
Thread.sleep(1*1*1000);
readFromSpace();

}catch(InterruptedException ex){}
}//end while

}//end run
}//end class

B.4.4 Clock Worker JavaSpace

B.4.4.1 ListenerInterface
import net.jini.space.JavaSpace;
public interface ListenerInterface {

public void HandleSpaceObject(JavaSpace jspace);
}//end interface

 72

B.4.4.2 MyListener
import net.jini.discovery.*;
import net.jini.core.lookup.*;
import java.io.*;
import java.rmi.*;
import net.jini.space.JavaSpace;

public class MyListener implements DiscoveryListener{
private ServiceTemplate template;
private JavaSpace javaSpace = null;
private ListenerInterface parent;
public MyListener(ServiceTemplate p_template,ListenerInterface p_parent) {

template = p_template;
parent = p_parent;

}//end constrctor

public void discovered(DiscoveryEvent evt){
ServiceRegistrar[] newregs = evt.getRegistrars();
for(int a=0;a<newregs.length;a++){

JavaSpace js = findJavaSpace(newregs[a]);
if(js !=null){

try{
System.out.println("URL:" + getURL(newregs[a]));
System.out.println("Groups:" + getGroups(newregs[a]));

}catch(RemoteException e){
System.out.println("Feil med henting av URL: "+ e);

}//end try/catch
parent.HandleSpaceObject(js);

}//end if
}//end for

}//end discovered

public void discarded(DiscoveryEvent evt){}//end discarded

public String getURL(ServiceRegistrar reg) throws RemoteException{
return reg.getLocator().toString();

}//end getURL

public String getGroups(ServiceRegistrar reg) throws RemoteException{
String[] groups = reg.getGroups();
if(groups == DiscoveryGroupManagement.ALL_GROUPS){

return "<ALL GROUPS>";
}//end if
if(groups == DiscoveryGroupManagement.NO_GROUPS){

return "<NONE>";
}//end if

StringBuffer buf = new StringBuffer();

for(int a=0;a<groups.length;a++){
if(groups[a] == null){

buf.append("NULL");
}//end if
else if(groups[a].equals("")){

buf.append("PUBLIC");
}//End else if
else{
buf.append(groups[a]);

}//end else
}//end for
return buf.toString();

}//end getURL

public JavaSpace findJavaSpace(ServiceRegistrar reg){
if(javaSpace != null){

return null;
}//end if

try{
JavaSpace midJavaSpace = (JavaSpace)reg.lookup(template);
if(midJavaSpace != null){

System.out.println("Found a Space!");

return midJavaSpace;
}//end if

}catch(RemoteException e){
System.out.println("Error doing lookup: " + e.getMessage());

}//end try/catch
return null;

}//end findJavaSpace

}//end class

B.4.4.3 ServiceStart
import net.jini.lookup.ServiceDiscoveryManager;
import net.jini.core.lookup.ServiceTemplate;
import net.jini.core.lookup.ServiceItem;
import net.jini.space.JavaSpace;
import net.jini.lease.LeaseListener;
import net.jini.lease.LeaseRenewalEvent;
import net.jini.core.lease.Lease;
import com.sun.jini.lease.landlord.LandlordLease;
import net.jini.core.transaction.server.TransactionManager;
import net.jini.core.transaction.Transaction;
import net.jini.core.transaction.TransactionFactory;

 73

import java.rmi.RMISecurityManager;
import java.util.*;

import java.io.*;

import net.jini.discovery.*;
import net.jini.core.lookup.*;
import java.net.*;

import javaspacetimecontrol.TimeTuple;

public class ServiceStart implements ListenerInterface,Runnable{
private ServiceTemplate template;
private MyListener listener;
private LookupDiscovery disco;

public ServiceStart() throws IOException{
if(System.getSecurityManager() == null){

System.setSecurityManager(new RMISecurityManager());
}//end if

Class[] type = new Class[] {JavaSpace.class };
template = new ServiceTemplate(null,type,null);

disco = new LookupDiscovery(new String[] {""});
listener = new MyListener(template,this);
disco.addDiscoveryListener(listener);

}//end constructor

public void HandleSpaceObject(JavaSpace jsp){
ThreadController controller = new ThreadController(jsp);
Thread thread = new Thread(controller);
thread.start();
System.out.println("Started a new Thread to handler Space");

}//end HandleSpaceObject

public void run(){
while(true){

try{
Thread.sleep(10*1*1000);

}catch(InterruptedException ex){}
}//end while

}//end run

public static void main(String[] args) {
try{

ServiceStart serviceStart1 = new ServiceStart();

Thread thread = new Thread(serviceStart1);
thread.start();

}catch(IOException e){
System.out.println("Feil i constructor: "+ e.getMessage());

}//end try/catch
}//end main

}//end class

B.4.4.4 ThreadController
import net.jini.space.*;
import javaspacetimecontrol.TimeTuple;
import java.net.*;
import java.util.*;
import net.jini.core.lease.Lease;

public class ThreadController implements Runnable{
private JavaSpace jspace;
private TimeTuple time;
public ThreadController(JavaSpace jspace) {

this.jspace = jspace;
}//end constructor

public synchronized void registarInSpace(){
try {

if (jspace != null){
InetAddress addr = InetAddress.getLocalHost();
Date now = new Date(System.currentTimeMillis());

if((time = (TimeTuple)jspace.read(new TimeTuple(),null,JavaSpace.NO_WAIT))
!= null){

if(time.TimeStamp == null){
jspace.take(time,null,JavaSpace.NO_WAIT);

// System.out.println("Empty TimeTuple, removed: " + time.TimeStamp);
jspace.write(new TimeTuple(now.toString(),addr),null, Lease.FOREVER

);
System.out.println("New TimeTuple added: " + now.toString());

}//end if
}//End if

}//end if
else{

System.out.println("Object is null!!!");
}//end else

} catch (Exception e) {
System.out.println ("Roombuilder:main() exception: " + e);

}//end try/catch
}//end registarInSpace

public void emptySpace(){
try {

 74

if (jspace != null){
InetAddress addr = InetAddress.getLocalHost();
Date now = new Date(System.currentTimeMillis());

if((time = (TimeTuple)jspace.take(new TimeTuple(),null,JavaSpace.NO_WAIT))
!= null){

System.out.println("Empty TimeTuple, removed: " + time.TimeStamp);
}//End if

}//end if
else{

System.out.println("Object is null!!!");
}//end else

} catch (Exception e) {
System.out.println ("Roombuilder:main() exception: " + e);

}//end try/catch
}//end registarInSpace

public void run(){
while(true){

try{
Thread.sleep(1*1*1000);
registarInSpace();

// emptySpace();
}catch(InterruptedException ex){}

}//end while
}//end run

}//end class

 75

Appendix C – Web Services development environment

C.1 Software
Jakarta Tomcat v4.0.3 (jakarta.apache.org/tomcat)
Apache SOAP v2.2 (xml.apache.org/soap)
UDDI4J v2 beta (www.uddi4j.org)
WSIF v1.0 (alphaworks.ibm.com/tech/wsif)
Jakarta Ant v1.4.1 (jakarta.apache.org/ant)

C.2 Building test application
The implementation in this thesis uses Apache SOAP v2.2 toolkit and IBM
UDDI for Java v2.0b (UDDI4J).

First we started using Sun Microsystems Java Web Services Development
Pack ea2, which had everything from a SOAP implementation to a UDDI
registry and a tomcat server bundled. But we struggled a lot because of
tool immaturity and lack of documentation. The pack actually contained a
lot of documentation, but at a very course art.

Jakarta-ant is used for building all sources, deploying the service and
running the samples. In this section we only refer to the different build
tasks. See the build.xml make file for details on each build task.

The service is a simple clock which returns the current time plus the name
of the computer where the service is located. The clock is implemented in a
class Clock which includes one method getTime.

Apache SOAP runs as a servlet inside a Java HTTP server. To invoke the
web service, the class files have to be copied into the web server’s
classpath and deployed using the SOAP Admin application9. Information
about implementation class and methods exposed is described in a simple
deployment descriptor; clock_dd.xml.

This ant task was used for web service deployment.

ant deploy-clock

Now the service is deployed and ready for receiving SOAP calls through
the soaprcp router.

The client uses UDDI4J, WSIF and SOAP for respectively lookup, bind and
invocation. Two different clients were developed, and yet a third was used
for testing the WSIF dynamic invocation.

The first client uses a proxy system to invoke the web service. First a
generic SOAPProxy class was developed. This class could make SOAP
calls based on names i.e.

Object soapCall(String method, Vector params)

The SOAPProxy does wrap standard soap calls, and is only developed for
convenience, since a SOAP call requires quite a lot of code.

9 Apache SOAP actually supports two different methods for deployment, but we only use the
simple command line method in this thesis.

 76

Then a proxy matching the Clock service was developed. This proxy
extends the SOAPProxy and exposes the getTime method from the Clock
service.

interface
ClockInterfac

+getTime:Strin

ClockClien

+main:void

SOAPProxy

ClockInterfacePro

+getTime:String

Figure 9-1 - Clock client, conceptual model

The second client is nearly identical to the first one, but the SOAP proxy is
redesigned to be a “UDDI-aware” proxy which searches for the service in a
UDDI register before the first invocation.

Figure 9-2 - Invocation procedure for the clock client (WSIF)

C.3 Script

C.3.1 Clock service’s WSDL document
<?xml version="1.0" ?>
<!--

Id

WSDL description for the ClockService
-->
<definitions name="ClockService"

targetNamespace="urn:ClockService"
xmlns:tns="urn:ClockService"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:java="http://schemas.xmlsoap.org/wsdl/java/"
xmlns="http://schemas.xmlsoap.org/wsdl/">

 77

<!--
Definition of user defined types used
(no-one in our case; using only built in string type)

-->
<types/>

<!--
Definition of the messages used when invoking methods

-->
<message name="getTime" />
<message name="getTimeResponse">

<part name="result" type="xsd:string"/>
</message>

<!--
Port definitons
Messages are mapped to methods

-->
<portType name="ClockIF">

<operation name="getTime">
<input message="tns:getTime"/>
<output message="tns:getTimeResponse"/>

</operation>
</portType>

<!--
Bindings maps port operations to network invokation
protocols such as SOAP

-->
<binding name="ClockIFBinding" type="tns:ClockIF">

<operation name="getTime">
<input>

<soap:body
encodingStyle=http://schemas.xmlsoap.org/soap/encoding/”
use="encoded" namespace="urn:ClockService"/>

</input>
<output>

<soap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
use="encoded" namespace="urn:ClockService"/>

</output>
<soap:operation soapAction=""/>

</operation>
<soap:binding transport="http://schemas.xmlsoap.org/soap/http"

style="rpc"/>
</binding>

<!--
Service elements constains the locataion(s) of a service
implementation on the network.

-->
<service name="urn:ClockService">

<port name="ClockIFPort" binding="tns:ClockIFBinding">
<soap:address

location="http://diplom.mine.nu:8080/soap/servlet/rpcrouter"
/>

</port>
<port name="ClockIFPort2" binding="tns:ClockIFBinding">

<soap:address
location="http://diplom2.mine.nu:8080/soap/servlet/rpcrouter"

/>
</port>

</service>
</definitions>

C.3.2 Deployment descriptor
<!--

Id
Deployment descriptior used for deployment with Apache SOAP
(http://xml.apache.org/soap/)

-->

<dd:service xmlns:dd="http://xml.apache.org/xml-soap/deployment"
id="urn:ClockService">

 78

<dd:provider type="java"
scope="Application"
methods="getTime">

<dd:java class="prototype.ws.service.Clock" static="false" />
</dd:provider>
<dd:faultListener>

org.apache.soap.server.DOMFaultListener
</dd:faultListener>
<dd:mappings />

</dd:service>

C.3.3 Build and run scripts

C.3.3.1 Ant file
<?xml version="1.0"?>
<!-- Id -->
<project name="Clock Web Service" default="build" basedir=".">

<property file="build.properties" />
<property environment="env" />

<path id="classpath">
<fileset dir="${dir.commonlib}">

<include name="*.jar" />
</fileset>

</path>

<target name="prep">
<mkdir dir="${dir.classes}" />
<mkdir dir="${dir.lib}" />

</target>

<target name="compile" depends="prep">
<javac srcdir="${dir.src}" destdir="${dir.classes}">

<include name="**/*.java" />
<classpath refid="classpath" />

</javac>
</target>

<!--
This target deploys the ClockService as a Apache SOAP web

service.
-->
<target name="deploy-clock" depends="compile">

<copy file="clock.wsdl" todir="${env.TOMCAT_HOME}/webapps/ROOT"
/>

<copy todir="${env.TOMCAT_HOME}/webapps/soap/WEB-INF/classes/">
<fileset dir="${dir.classes}">

<include name="**/Clock*.class" />
<exclude name="**/*Client*.class" />

</fileset>
</copy>

<!-- deploy using admin client -->
<java classname="org.apache.soap.server.ServiceManagerClient"

fork="yes">
<classpath refid="classpath" />
<arg line="http://diplom.mine.nu:8080/soap/servlet/rpcrouter"

/>
<arg line="deploy" />
<arg line="clock_dd.xml" />

</java>
</target>

<!--
Run the client using dynamic invocation with the WSIF
environment

-->
<target name="run-dynamic">

<java classname="clients.DynamicInvoker" fork="yes">
<classpath refid="classpath" />
<arg line="http://diplom.mine.nu:8080/clock.wsdl getTime" />

 79

</java>
</target>

<!--
This target runs the clock client

-->
<target name="run-clock-client" depends="compile">

<java classname="prototype.ws.client.ClockClient" fork="yes">
<classpath refid="classpath" />
<classpath path="${dir.classes}" />
<arg line="http://diplom.mine.nu:8080/soap/servlet/rpcrouter"

/>
<arg line="urn:ClockService" />
<arg line="10" />
<arg line="1000" />

</java>
</target>

<!--
UDDI test target

-->
<target name="run-uddi-client">

<java classname="prototype.ws.uddiclient.UddiClockClient"
fork="yes">

<classpath refid="classpath" />
<classpath path="${dir.classes}" />
<classpath path="." />
<arg line="ClockService" />
<arg line="10" />
<arg line="1000" />

</java>
</target>

<!--
Simple clean target... removes created class files and jars

-->
<target name="clean">

<delete dir="${dir.classes}" />
<delete dir="${dir.lib}" />

</target>
</project>

C.3.3.2 Ant properties
build.properties
dir.src=${basedir}/src
dir.classes=${basedir}/classes
dir.lib=${basedir}/lib

libraries
dir.commonlib=${basedir}/common/lib

C.3.3.3 Properties file for UDDI enabled client
uddi.properties
queryManagerURL=http://www-3.ibm.com/services/uddi/v2beta/inquiryapi

service description
ClockService.org.name=Diploma RF & PW

C.4 Source code

C.4.1 Client

C.4.1.1 ClockClient.java
package prototype.ws.client;

import java.io.*;
import java.net.*;
import java.util.*;
import org.apache.soap.*;
import org.apache.soap.rpc.*;

 80

/**
* Test client implementation for invoking the <code>
* Clock</code> Web Service.
*
* @see prototype.ws.client.SOAPProxy SOAP call impl.
* @see prototype.ws.service.Clock The web service
*/

public class ClockClient {

/**
* Ivokes the call to the web service
*/

private ClockInterfaceProxy proxy;

/**
* Simple constructor; instaniate the proxy
*/

public ClockClient(URL endpoint, String uri) {
proxy = new ClockInterfaceProxy(endpoint, uri);

}

/**
* Invoke the method
*/

public String makeCall() throws Exception {
return proxy.getTime();

}

/**
* main method
*/

public static void main(String[] args) throws Exception {

URL url;
String serviceName;
int n;
int delay;

// parse command line
System.out.println("parsing command line paramters... found " +

args.length + " parameters");
if(args.length >= 2) {

url = new URL(args[0]);
serviceName = new String(args[1]);

try {
n = Integer.valueOf(args[2]).intValue();

} catch (Exception e) {
n = 1;

}

try {
delay = Integer.valueOf(args[3]).intValue();

} catch (Exception e) {
delay = 1000;

}

System.out.println("Using endpoint: '" + url + "'");
System.out.println("Invoking service: " + serviceName + " " + n

+ " time(s) with " + delay +"ms delay");
System.out.println();

// invoke the web service
ClockClient app = new ClockClient(url, serviceName);
while(n-- > 0) {

System.out.println("\tTime is: " + app.makeCall());
Thread.sleep(delay);

}
} else {

System.out.println("Usage:");

 81

System.out.println("\tprototype.ws.client.ClockClient
<endpoint> <service> <n> <delay>");

System.exit(1);
}

}
}

C.4.1.2 ClockClientInterfaceProxy.java
// Id
package prototype.ws.client;

import prototype.ws.service.ClockInterface;
import java.net.URL;

/**
* Custom SOAP proxy class supporting the ClockInterface
*/

public class ClockInterfaceProxy extends SOAPProxy implements
ClockInterface {

/**
* Simple constructor just invoking the Proxy
*
* @param endpoint SOAP rpc endpoint
* @param uri Service uri
*/

public ClockInterfaceProxy(URL endpoint, String uri) {
super(endpoint, uri);

}

/**
* Redirecting the getTime method to the
* proxy
*/

public String getTime() throws Exception {

Object result = soapCall("getTime", null);

return (String) result;
}

}

C.4.1.3 SOAPProxy.java
// Id
package prototype.ws.client;

import prototype.ws.service.ClockInterface;
import java.net.URL;

/**
* Custom SOAP proxy class supporting the ClockInterface
*/

public class ClockInterfaceProxy extends SOAPProxy implements
ClockInterface {

/**
* Simple constructor just invoking the Proxy
*
* @param endpoint SOAP rpc endpoint
* @param uri Service uri
*/

public ClockInterfaceProxy(URL endpoint, String uri) {
super(endpoint, uri);

}

/**
* Redirecting the getTime method to the
* proxy
*/

public String getTime() throws Exception {

Object result = soapCall("getTime", null);

return (String) result;

 82

}
}

C.4.2 UDDI enabled client

C.4.2.1 UddiClockClient.java
package prototype.ws.uddiclient;

import java.io.*;
import java.net.*;
import java.util.*;
import org.apache.soap.*;
import org.apache.soap.rpc.*;

/**
* Test client implementation for invoking the <code>
* Clock</code> Web Service.
*
* @see prototype.ws.client.SOAPProxy SOAP call impl.
* @see prototype.ws.service.Clock The web service
*/

public class UddiClockClient {

/**
* Ivokes the call to the web service
*/

private UddiClockInterfaceProxy proxy;

/**
* Simple constructor; instaniate the proxy
*/

public UddiClockClient(String uri) {
proxy = new UddiClockInterfaceProxy(uri);

}

/**
* Invoke the method
*/

public String makeCall() throws Exception {
return proxy.getTime();

}

/**
* main method
*/

public static void main(String[] args) throws Exception {

URL url;
String serviceName;
int n;
int delay;

// parse command line
System.out.println("parsing command line paramters... found " +

args.length + " parameters");
if(args.length >= 1) {

serviceName = new String(args[0]);

try {
n = Integer.valueOf(args[1]).intValue();

} catch (Exception e) {
n = 1;

}

try {
delay = Integer.valueOf(args[2]).intValue();

} catch (Exception e) {
delay = 1000;

}

 83

System.out.println("Invoking service: " + serviceName + " " + n
+ " time(s) with " + delay +"ms delay");

System.out.println();

// invoke the web service
UddiClockClient app = new UddiClockClient(serviceName);
while(n-- > 0) {

System.out.println("\tTime is: " + app.makeCall());
Thread.sleep(delay);

}
} else {

System.out.println("Usage:");
System.out.println("\tjava prototype.ws.client.ClockClient

<service> <n> <delay>");
System.exit(1);

}
}

}

C.4.2.2 UDDIClockInterfaceProxy.java
// Id
package prototype.ws.uddiclient;

import prototype.ws.service.ClockInterface;
import java.net.URL;

/**
* Custom SOAP proxy class supporting the ClockInterface
*/

public class UddiClockInterfaceProxy extends
UddiSoapProxy implements ClockInterface {

/**
* Simple constructor just invoking the Proxy
*
* @param uri Service uri
*/

public UddiClockInterfaceProxy(String uri) {
super(uri);

}

/**
* Redirecting the getTime method to the
* proxy
*/

public String getTime() throws Exception {

Object result = soapCall("getTime", null);

return (String) result;
}

}

C.4.2.3 UDDISoapProxy.java
// Id
package prototype.ws.uddiclient;

import org.uddi4j.*;
import org.uddi4j.response.*;
import org.uddi4j.client.*;
import org.uddi4j.datatype.*;
import org.uddi4j.datatype.binding.*;
import org.uddi4j.datatype.business.*;
import org.uddi4j.datatype.service.*;
import org.uddi4j.datatype.tmodel.*;
import org.uddi4j.util.*;
import org.uddi4j.transport.*;

import org.apache.soap.Constants;
import org.apache.soap.Fault;
import org.apache.soap.rpc.Call;
import org.apache.soap.rpc.Response;

 84

import org.apache.soap.rpc.Parameter;

import java.util.Properties;
import java.util.Vector;
import java.util.Enumeration;
import java.io.FileInputStream;
import java.net.URL;
import java.net.MalformedURLException;

public class UddiSoapProxy {

/**
* Loads uddi properties from file
*/

static {

Properties props = new Properties(System.getProperties());
try {

FileInputStream in = new FileInputStream("uddi.properties");
props.load(in);
in.close();
System.setProperties(props);

} catch (Exception e) {
System.out.println("Failed to load properties file");

}
}

/**
* Service identification
*/

private String uri;

/**
* Service url
*/

private URL endpoint;

/**
* @param uri Used for service identification
*/

public UddiSoapProxy(String uri) {

this.uri = uri;

try {
findService();

} catch (Exception e) {
e.printStackTrace();

}
}

/**
* Generic soap call
*
* @param method The name of the method to invoke
* @param params Vector with parameters to the call
* @return Result of method call
*/

public Object soapCall(String method, Vector params) throws
Exception {

if(endpoint == null)
throw new RuntimeException("endpoint not set, can't invoke

method");
if(uri == null)

throw new RuntimeException("uri not set, can't invoke method");
Call call = new Call();
call.setTargetObjectURI("urn:"+uri);
call.setMethodName(method);
call.setEncodingStyleURI(Constants.NS_URI_SOAP_ENC);
call.setParams(params);

Response resp = call.invoke(endpoint, "");
if(resp.generatedFault()) {

Fault fault = resp.getFault();
System.out.println("Fault code: " + fault.getFaultCode());
System.out.println("Fault string: " + fault.getFaultString());

 85

return null;
} else {

Parameter result = resp.getReturnValue();
return result.getValue();

}
}

/**
*/

private void findService() throws
MalformedURLException, UDDIException, TransportException {

UDDIProxy proxy;
BusinessEntity businessEntity;
String queryManagerURL = System.getProperty("queryManagerURL");

System.out.println("finding service, using uddi service at\n\t" +
queryManagerURL);

proxy = new UDDIProxy(new URL(queryManagerURL), null);

// find business
// Create a vector of Name objects, which is used for the inquiry
Vector names = new Vector();
names.addElement(new Name(System.getProperty(uri+".org.name")));

// Makes the call on the proxy
BusinessList list =

proxy.find_business(names, null, null, null, null, null, 0);
BusinessInfos infos = list.getBusinessInfos();

// If the returned vector is empty, no business could be found
if(infos.getBusinessInfoVector().size() == 0) {

throw new RuntimeException("No business found");
}

// Obtain the unique identifier for this entry in the registry
BusinessInfo info =

(BusinessInfo) infos.getBusinessInfoVector().elementAt(0);
String businessKey = info.getBusinessKey();

// Uses the unique identifier to obtain the full record
businessEntity =

(BusinessEntity) proxy.get_businessDetail(businessKey).
getBusinessEntityVector().elementAt(0);

// find service
BusinessServices bs = businessEntity.getBusinessServices();
if(bs != null) {

boolean found = false;
Vector services = bs.getBusinessServiceVector();
Enumeration enum = services.elements();
while(enum.hasMoreElements() && !found) {

BusinessService service = (BusinessService)
enum.nextElement();

System.out.println("Service: " +
service.getDefaultNameString());

if(service.getDefaultNameString().equals(uri)) {
found = true;
System.out.println("found service: " +

service.getDefaultNameString());

BindingTemplates bTemplates =
service.getBindingTemplates();

Vector bTempVector = bTemplates.getBindingTemplateVector();
if(bTempVector.size() > 0) {

BindingTemplate bTemp =
(BindingTemplate) bTempVector.elementAt(0);

AccessPoint ap = bTemp.getAccessPoint();
endpoint = new URL(ap.getText());
System.out.println("Using endpoint: " + endpoint);

} else
throw new RuntimeException("No endpoint registered");

}
}

 86

}
}

}

C.4.3 Service

C.4.3.1 ClockInterface.java
// Id
package prototype.ws.service;

/**
* Interface used for a simple method specification
* for the web service
*/

public interface ClockInterface {

/**
* Gets current time
* @return the time plus hostname
*/

public String getTime() throws Exception;
}

C.4.3.2 ClockService.java
// Id
package prototype.ws.service;

import java.util.Date;
import java.net.InetAddress;

/**
* Simple implementation of the Clock Web Service
*/

public class Clock implements ClockInterface {

/**
* @see prototype.ws.service.ClockInterface#getTime
*/

public String getTime() {
String hostname = null;

try {
InetAddress addr = InetAddress.getLocalHost();
hostname = addr.getHostName();

} catch (Exception ex) {
ex.printStackTrace(System.err);

}

Date now = new Date(System.currentTimeMillis());
return now.toString() + " " + hostname;

}

 87

Appendix D – JXTA development environment

D.1 Software

D.1.1 Project JXTA starting kit
The starting kit for JXTA is free, and can be downloaded from the URL
below. The installation is made simple and is in many cases almost 100%
independent of user interaction.

http://download.jxta.org/easyinstall/install.html

D.2 Building test application

D.2.1 Creating the service
The first that had to be made was a module class advertisement associated
with the service.
The Module class advertisement is a small advertisement that only
advertises the existence of service. In order to access the service, a peer
will have to discover the associated module spec advertisement.
Then we had to create a pipe advertisement for the Service. The client
must use the same pipe advertisement to talk to the service. When the
client discovers the module advertisement it will extract the pipe
advertisement to create its pipe.
To make sure that the service always creates the same service we are
reading the pipe advertisement from a file. The file is an XML document
containing an id and a service name associated with it.
When this is done we can publish into the local cache the netpeergroup.
The next step is to make an output pipe which is used to send data to the
clients when they are looking for time data.

D.2.2 Creating the client
The first that is done in the client is to start searching for the service; this
search can be done locally and remote. The local search is based on
earlier discovery that has been done before and then stored to the disk. If
this search is not a success the next step is a remote search.
A remote discovery is asynchronous, and we do not know how long it is
going to take before we get an answer, if we get an answer at all. Since we
have no guarantee that we will find a service this process will loop until
success.
When the service is discovered the pipe advertisement must be collected.
The pipe advertisement is used to create an input pipe which the service
can collect the information that the service is sending out.

D.3 Script
The deployment of a JXTA network is easy and does not require other
components as a lookup server or similar.

D.3.1 Starting the service
#!/bin/sh

echo Staring Service......

everything below should work with few changes

CLASSFILES=$JXTA_HOME/lib/jxta.jar:$JXTA_HOME/lib/jxtacms.jar:$JXTA_H
OME/lib/jxtasecurity.jar:$JXTA_HOME/lib/instantp2p.jar\

 88

http://download.jxta.org/easyinstall/install.html

:$JXTA_HOME/lib/log4j.jar:$JXTA_HOME/lib/beepcore.jar:$JXTA_HOME/lib/
jxtashell.jar:$JXTA_HOME/lib/cryptix-asn1.jar\
:$JXTA_HOME/lib/cryptix32.jar\:$JXTA_HOME/lib/minimalBC.jar:$JXTA_HOM
E/lib/jxtaptls.jar

D.3.2 Starting the client
#!/bin/sh

echo Staring Service......

everything below should work with few changes

CLASSFILES=$JXTA_HOME/lib/jxta.jar:$JXTA_HOME/lib/jxtacms.jar:$JXTA_H
OME/lib/jxtasecurity.jar:$JXTA_HOME/lib/instantp2p.jar\
:$JXTA_HOME/lib/log4j.jar:$JXTA_HOME/lib/beepcore.jar:$JXTA_HOME/lib/
jxtashell.jar:$JXTA_HOME/lib/cryptix-asn1.jar\
:$JXTA_HOME/lib/cryptix32.jar\:$JXTA_HOME/lib/minimalBC.jar:$JXTA_HOM
E/lib/jxtaptls.jar

java -classpath $CLASSFILES:. prototypejxta.StartClient

D.3.3 Pipe service advertisement
<?xml version="1.0"?>
<!DOCTYPE jxta:PipeAdvertisement>
<jxta:PipeAdvertisement xmlns:jxta="http://jxta.org">

<Id>
urn:jxta:uuid-

9CCCDF5AD8154D3D87A391210404E59BE4B888209A2241A4A162A10916074A9504
</Id>
<Type>

JxtaUnicast
</Type>
<Name>

JXTA-TIMESERVICE
</Name>

</jxta:PipeAdvertisement>

D.4 Source code

D.4.1 Client
import java.io.IOException;
import java.io.StringWriter;
import java.util.Enumeration;
import net.jxta.document.Advertisement;
import net.jxta.document.AdvertisementFactory;
import net.jxta.document.StructuredTextDocument;
import net.jxta.document.MimeMediaType;
import net.jxta.document.TextElement;
import net.jxta.endpoint.Message;
import net.jxta.pipe.PipeService;

import net.jxta.protocol.ModuleSpecAdvertisement;
import net.jxta.protocol.PipeAdvertisement;
import net.jxta.discovery.DiscoveryService;
import net.jxta.peergroup.PeerGroup;
import net.jxta.peergroup.PeerGroupFactory;
import net.jxta.exception.PeerGroupException;
import net.jxta.pipe.InputPipe;
import net.jxta.pipe.PipeMsgEvent;
import net.jxta.pipe.PipeMsgListener;

public class clientStart implements PipeMsgListener, Runnable{
static PeerGroup netPeerGroup = null;
private DiscoveryService discoSvc;
private PipeService pipeSvc;
private InputPipe myPipe; // input pipe to connect the service
private Message msg; // message to be sent
private final static String SERVICE = "JXTASPEC:JXTA-TIMESERVICE"; // service name
private final static String TAG = "DataTag"; // tag in message

public clientStart() {
try {

// create, and Start the default jxta NetPeerGroup
netPeerGroup = PeerGroupFactory.newNetPeerGroup();

} catch (PeerGroupException e) {
// could not instantiate the group, print the stack and exit
System.out.println("fatal error : group creation failure");
e.printStackTrace();
System.exit(1);

}//end try/catch

 89

// get the discovery, and pipe service
System.out.println("Getting DiscoveryService");
discoSvc = netPeerGroup.getDiscoveryService();
System.out.println("Getting PipeService");
pipeSvc = netPeerGroup.getPipeService();
startClient();

}//end constructor

private void startClient() {
// Let’s initialize the client
System.out.println("Start the Client");
// Let’s try to locate the service advertisement SERVICE
// we will loop until we find it!
System.out.println("searching for the " + SERVICE + " Service advertisement");
Enumeration enum = null;
while (true) {

try {
// let’s look first in our local cache to see
// if we have it! We try to discover an advertisement
// which has the (Name, JXTASPEC:JXTA-TIMESERVICE) tag value
//
enum = discoSvc.getLocalAdvertisements(DiscoveryService.ADV, "Name",

SERVICE);
// Found it! Stop searching and go send a message.
if ((enum != null) && enum.hasMoreElements()) break;
// We could not find anything in our local cache, so let’s send a
// remote discovery request searching for the service advertisement
discoSvc.getRemoteAdvertisements(null, DiscoveryService.ADV, "Name",

SERVICE,1, null);
// The discovery is asynchronous as we do not know
// how long is going to take
try { // sleep as much as we want. Yes we

// could implement asynchronous listener pipe...
Thread.sleep(2000);

} catch (Exception e){}
} catch (IOException e){
/* found nothing! move on*/

}//end try/catch
System.out.print(".");

}//end while
System.out.println("We found the service advertisement:");
// Ok get the service advertisement as a ModuleSpecAdvertisement
ModuleSpecAdvertisement mdsadv = (ModuleSpecAdvertisement)enum.nextElement();
try {

// let’s print the advertisement as a plain text document
StructuredTextDocument doc = (StructuredTextDocument)
mdsadv.getDocument(new MimeMediaType("text/plain"));
StringWriter out = new StringWriter();
doc.sendToWriter(out);
System.out.println(out.toString());
out.close();
// Get the pipe advertisement -- need it to talk to the service
PipeAdvertisement pipeadv = mdsadv.getPipeAdvertisement();
if (pipeadv == null){

System.out.println("Error -- Null pipe advertisement!");
System.exit(1);

}
// create the input pipe endpoint to connect
// to the server, try 3 times to bind the pipe listening endpoint to
// the endpoint pipe of the service
myPipe = null;
for (int i=0; i<3; i++) {

System.out.println("Trying to bind to pipe...");
try {

myPipe = pipeSvc.createInputPipe(pipeadv,this);
break;

} catch (java.io.IOException e) {}//end try/catch
}//end for
if (myPipe == null) {

System.out.println("Error resolving pipe endpoint");
System.exit(1);

}//end if

} catch (Exception ex) {
ex.printStackTrace();
System.out.println("Client: Error receiving message from the service");

}//end try/catch
}//end startClient

public void pipeMsgEvent(PipeMsgEvent evt){
Message msg=null;
try {

msg = evt.getMessage();
if (msg == null) return;

}catch (Exception e) {
e.printStackTrace();
return;

}//end try/catch
// Get message
String newMessage = msg.getString(TAG);
if (newMessage == null) System.out.println("null msg received");
else System.out.println("Received message: " + newMessage);

}//end pipeMsgEvent

public void run(){
while(true){

try{
Thread.sleep(10*10*1000);

}catch(InterruptedException ex){}
}//end true

 90

}//end run

public static void main(String[] args) {
clientStart clientStart1 = new clientStart();
Thread thread = new Thread(clientStart1);
thread.start();

}//end main
}//end class

D.4.2 Service
import java.io.*;
import java.net.URL;
import net.jxta.document.*;
import net.jxta.peergroup.*;
import net.jxta.protocol.*;

import net.jxta.discovery.DiscoveryService;
import net.jxta.exception.PeerGroupException;

import net.jxta.endpoint.Message;
import net.jxta.id.IDFactory;
import net.jxta.platform.ModuleClassID;

import net.jxta.pipe.PipeService;
import net.jxta.pipe.InputPipe;
import net.jxta.pipe.OutputPipe;

import net.jxta.pipe.OutputPipeListener;
import net.jxta.pipe.OutputPipeEvent;
import java.util.Date;

public class ServiceStart implements Runnable{
static PeerGroup group = null;
private DiscoveryService discoSvc;
private PipeService pipeSvc;
private OutputPipe myPipe; // input pipe for the service
private Message msg; // message received on input pipe
private final static String SERVICE = "JXTASPEC:JXTA-TIMESERVICE"; // service name
private final static String TAG = "DataTag"; // tag in message
private final static String FILENAME = "pipeserver.adv"; // file containing pipe

advert.

public ServiceStart() {
try {

// create, and Start the default jxta NetPeerGroup
group = PeerGroupFactory.newNetPeerGroup();

} catch (PeerGroupException e) {
// could not instanciate the group, print the stack and exit
System.out.println("fatal error : group creation failure");
e.printStackTrace();
System.exit(1);

}//end try/catch

// get the discovery, and pipe service
System.out.println("Getting DiscoveryService");
discoSvc = group.getDiscoveryService();
System.out.println("Getting PipeService");
pipeSvc = group.getPipeService();

startServiceDaemon();
}//end constructor

public void startServiceDaemon(){
System.out.println("Start the Server daemon");
try {

// Create the Module class advertisement associated with the service
// We build the module class advertisement using the Advertisement
// Factory class by passing it the type of the advertisement we
// want to construct. The Module class advertisement is a
// a very small advertisement that only advertises the existence
// of service. In order to access the service, a peer will
// have to discover the associated module spec advertisement.
ModuleClassAdvertisement mcadv =

(ModuleClassAdvertisement)AdvertisementFactory.newAdvertisement(ModuleClassAdvertisement.get
AdvertisementType());

mcadv.setName("JXTAMOD:JXTA-TIMESERVICE");
mcadv.setDescription("Time advertisement service");
ModuleClassID mcID = IDFactory.newModuleClassID();
mcadv.setModuleClassID(mcID);
// Ok the Module Class advertisement was created, just publish
// it in my local cache and to my peergroup. This
// is the NetPeerGroup
discoSvc.publish(mcadv, DiscoveryService.ADV);
discoSvc.remotePublish(mcadv, DiscoveryService.ADV);
// Create the Module Spec advertisement associated with the service
// We build the module Spec Advertisement using the advertisement
// Factory class by passing in the type of the advertisement we
// want to construct. The Module Spec advertisement will contain
// all the information necessary for a client to contact the service
// for instance it will contain a pipe advertisement to
// be used to contact the service
ModuleSpecAdvertisement mdadv =

(ModuleSpecAdvertisement)AdvertisementFactory.newAdvertisement(ModuleSpecAdvertisement.getAd
vertisementType());

// Setup some of the information field about the servive. In this
// example, we just set the name, provider and version and a pipe
// advertisement. The module creates an input pipes to listen
// on this pipe endpoint.

 91

 92

mdadv.setName(SERVICE);
mdadv.setVersion("Version 1.0");
mdadv.setCreator("sun.com");
mdadv.setModuleSpecID(IDFactory.newModuleSpecID(mcID));
mdadv.setSpecURI("http://www.jxta.org/Ex1");
// Create a pipe advertisement for the Service. The client MUST use
// the same pipe advertisement to talk to the server. When the client
// discovers the module advertisement it will extract the pipe
// advertisement to create its pipe. So, we are reading the pipe
// advertisement from a default config file to ensure that the
// service will always advertise the same pipefs
System.out.println("Reading in file " + FILENAME);
PipeAdvertisement pipeadv = null;
try {

FileInputStream is = new FileInputStream(FILENAME);
pipeadv = (PipeAdvertisement)AdvertisementFactory.newAdvertisement(new

MimeMediaType("text/xml"), is);
is.close();

} catch (java.io.IOException e) {
System.out.println("failed to read/parse pipe advertisement");
e.printStackTrace();
System.exit(-1);

}//end try/catch

// add the pipe advertisement to the ModuleSpecAdvertisement
mdadv.setPipeAdvertisement(pipeadv);
// display the advertisement as a plain text document.
System.out.println("Created service advertisement:");
StructuredTextDocument doc = (StructuredTextDocument)
mdadv.getDocument(new MimeMediaType("text/plain"));
StringWriter out = new StringWriter();
doc.sendToWriter(out);
System.out.println(out.toString());
out.close();
// Ok the Module advertisement was created, just publish
// it in my local cache and into the NetPeerGroup.
discoSvc.publish(mdadv, DiscoveryService.ADV);
discoSvc.remotePublish(mdadv, DiscoveryService.ADV);
// We are now ready to start the service --
// create the output pipe endpoint clients will
// use to connect to the service

for (int i=0; i<10; i++) {
System.out.println("Trying to bind to pipe...");
try {

myPipe = pipeSvc.createOutputPipe(pipeadv, 10000);
break;

} catch (java.io.IOException e) {
// go try again;
}//end try/catch

}//end for
if (myPipe == null) {

System.out.println("Error resolving pipe endpoint");
System.exit(1);

}//end if

} catch (Exception ex) {
ex.printStackTrace();
System.out.println("Server: Error publishing the module");

}//end try/catch
}//end startServiceDeamon

public void writeMessage(){
if (myPipe == null) {

System.out.println("Error resolving pipe endpoint");
}//end if
else{

Date now = new Date(System.currentTimeMillis());
String myMsg = "Date from peer " + group.getPeerName() + " Date: " +

now.toString();

msg = pipeSvc.createMessage();
msg.setString(TAG, myMsg);
// send the message to the client pipe
try{

myPipe.send(msg);
}catch(Exception e){

System.out.println("Error when sending message: " + e);
}//End try/catch
System.out.println("message \"" + myMsg + "\" sent to the Client");

}//end else
}//end writeMessage

public void run(){
while(true){
try{

writeMessage();
Thread.sleep(1*1*1000);

}catch(InterruptedException ex){}
}//end true

}//end run

public static void main(String[] args) {
ServiceStart serviceStart1 = new ServiceStart();
Thread thread = new Thread(serviceStart1);
thread.start();

}//end main

}//end class

	Introduction
	Thesis introduction
	Task description
	Thesis outline

	Jini
	Overview
	What is Jini?
	Jini networking
	Service
	Lookup Service
	Client

	Jini network communication protocols
	Discovery
	IP Multicast

	JavaSpaces
	The write Operation
	The read operation
	The Take operation
	The notify operation

	Summary

	JXTA
	Overview
	What is JXTA?
	JXTA software architecture
	Platform Layer (JXTA Core)
	Services Layer
	Applications Layer

	JXTA networking
	Summary

	Web Services
	Overview
	What is Web Services?
	Web Services model
	Web Services Stack
	Transport Network
	XML Messaging – SOAP
	SOAP Message
	RPC Messages

	Service Description – WSDL
	Publication and Discovery – UDDI

	Summary

	Test Criteria
	Overview
	Introduction
	Technical test criteria
	Service location transparency
	Service migration transparency
	Service replication transparency
	Service failure transparency

	Market review criteria
	Technology’s market position

	Building test applications
	Overview
	Introduction
	Jini test application
	JXTA test application
	Web Services test application
	Summary

	Prototype testing and result
	Overview
	Jini
	Service location transparency
	Test execution
	Test result
	Test discussion
	Test conclusion

	Service replication transparency
	Test execution
	Test result
	Test discussion
	Test conclusion

	Service migration transparency
	Test execution
	Test result
	Test discussion
	Test conclusion

	Service failure transparency
	Test execution
	Test result
	Test discussion
	Test conclusion

	Technology’s market position
	Discussion
	Conclusion

	Web Services
	Service location transparency
	Test execution
	Test results
	Test discussion
	Test conclusion

	Service replication transparency
	Test execution
	Test result
	Test discussion
	Test conclusion

	Service migration transparency
	Test execution
	Test result
	Test discussion
	Test conclusion

	Service failure transparency
	Test execution
	Test result
	Test discussion
	Test conclusion

	Technology’s market position
	Discussion
	Conclusion

	JXTA
	Service location transparency
	Test execution
	Test result
	Test discussion
	Test conclusion

	Service replication transparency
	Test execution
	Test result
	Test discussion
	Test conclusion

	Service migration transparency
	Test execution
	Test result
	Test discussion
	Test conclusion

	Service failure transparency
	Test execution
	Test result
	Test discussion
	Test conclusion

	Technology’s market position
	Discussion
	Conclusion

	Summary
	Jini
	Technical criteria
	Market criterion

	Web Services
	Technical criteria
	Market criterion

	JXTA
	Technical criteria
	Market criterion

	Discussion
	Conclusion
	Thesis conclusion
	Future Work

