

Using J2EE Technologies for
Implementation of ActorFrame Based

UML2.0 Models

of

Geir Melby

Masters Thesis in
Information and Communication Technology

Agder University College
Grimstad, May 2003

Geir Melby Thesis modified 27.05.2003 I

Summary

Ericsson has developed a prototype of a Java framework called ActorFrame, for
development and execution of services. The services will be deployed in networks
where current Telecommunication and Internet has merged into an open service
oriented network. The services are modeled using UML 2.0 concepts for concurrent
state machines communicating asynchronously through message passing.
ActorFrame has been used in development of prototype services deployed in real
networks as part of the AVANTEL research project. The background for this thesis
study is that Ericsson wants to move ActorFrame to a J2EE technology.

This report gives an introduction to the core technologies of interest: J2EE,
ActorFrame and UML2.0. J2EE is a set of API’s where the component technology
EJB, name server JNDI and the message system JMS are the most central
technologies. A new version of UML, called UML2.0, has been worked out by a
consortium where Ericsson has been an active partner. The basic concepts of UML2.0
that support the concept-oriented approach in ActorFrame based models, is
presented.

There exist different conceptual approaches to the problem of mapping platform
independent models to concrete implementations. The approach taken in this thesis
is a concept-oriented approach where domain specific concepts are used in the
modeling of services. The concepts are defined as stereotypes in UML and a specific
UML profile for ServiceFrame are proposed as part of this work.

The principle mapping of these concepts to the J2EE technologies are discussed,
which forms a background for the design of a prototype of a framework for EJB. The
framework is used in implementation of services by extending the classes defined in
the framework. The solution was validated through implementation of an example
that was run on a J2EE application server.

The main conclusion from this thesis work is that ActorFrame models can be
implemented on J2EE application servers in a beneficial way. The platform supports
asynchronous communication and it is possible to combine this communication style
with implementation of persistent state machines.

The J2EE platform gives additional benefits compared to the current implementation
of ActorFrame such as integration of Web services, increased management support,
flexible distributions of actors, scalable application platforms, and transaction
services.

The thesis work has also shown that there exists many mapping solutions and not all
mapping issues have been elaborated. However this work should form a basis for
further work with frameworks for service development and execution.

Geir Melby Thesis modified 27.05.2003 III

Preface

This thesis was written for Ericsson NorARC (Norwegian Applied Research Center)
and it is a part of a Norwegian master degree. The work has been carried out in the
period January 2003 and May 2003. The thesis is a part of the “mobile student” and
AVANTEL research projects.

Ericsson has evaluated the thesis regarding patent ability and has decided to file three
patent applications.

I would like to thank my supervisors, Knut Eilif Husa at Ericsson NorARC, and Jan P.
Nytun at Agder Univeristy College for valuable help and inspiration. I would also like
to thank Øystein Haugen, Birger Møller-Pedersen, Stein Bergsmark, Egil Ofstad,
Jacqueline Floch, Kristen Hestir and Rolv Bræk for their valuable comments during my
work.

Grimstad, May 2003

Geir Melby

Agder University College

Geir Melby Thesis modified 27.05.2003 V

Table of content

Summary I

Preface III

Table of content V

Chapter 1 Thesis background and problem definition 1
1.1 Services 1
1.2 ServiceFrame - a service creation and execution environment 3
1.3 UML2.0 and MDA – a modeling driven approach 4
1.4 Java 2 Enterprise Edition, Technologies and distributed services 4
1.5 Characterisation of services 5
1.6 The definition of the problem 6
1.7 The thesis work 7
1.8 Reader’s guide 7

Chapter 2 UML2.0 9
2.1 Introduction 9
2.2 Major improvements in UML2.0 9
2.3 Architectural concepts in UML 10
2.3.1 Parts 10
2.3.2 Ports 12
2.3.3 Connectors 12
2.4 State machines in UML2.0 13
2.4.1 Composite state 14
2.4.2 Generalization of behavior 15
2.5 UML profiles 16
2.6 Summary 17

Chapter 3 Ericsson’s service creation architectures 19
3.1 ServiceFrame 19
3.2 ActorFrame 20
3.2.1 Actor 20
3.2.2 ActorFrame protocol 21
3.3 JavaFrame 23
3.3.1 Composite 23
3.3.2 StateMachine 24
3.3.3 Mediators 24
3.3.4 Runtime systems 25
3.4 Summary 25

Chapter 4 J2EE – Java 2 Enterprise Edition 27
4.1 Introduction to the different J2EE technologies 27
4.2 Enterprise Java Beans (EJB) 28
4.2.1 Introduction to EJB 28

 Agder University College

VI Geir Melby Thesis modified 27.05.2003

4.2.2 EJB Architecture 28
4.2.3 Enterprise beans 30
4.3 Enterprise bean environment 33
4.3.1 Environment entries 33
4.3.2 EJB references 33
4.3.3 Web service references 34
4.3.4 Message destination references 34
4.3.5 Deployment descriptors 34
4.4 Java Messaging System 35
4.4.1 Message Oriented Middleware 35
4.4.2 Java Message Service 35
4.4.3 Integration of JMS into J2EE 36
4.5 Java Naming and Directory Interface 37
4.5.1 Naming service 37
4.5.2 Integration of JNDI and J2EE 37
4.6 Web-services 37
4.6.1 Introduction 37
4.6.2 Web service technology stack 38
4.6.3 Web services in J2EE 39
4.7 Summary 39

Chapter 5 Conceptual approach to mapping of models 41
5.1 Model oriented approach 41
5.2 Translation of models 43
5.3 UML profile for Entreprise Java Beans 45
5.3.1 Introduction 45
5.3.2 UML profile for EJB 45
5.3.3 Limitation of the EJB profile 47
5.4 Use of UML profile for EJB for ActorFrame modeling 48
5.5 Summary 49

Chapter 6 Mapping ActorFrame to J2EE 51
6.1 Mapping strategies 51
6.2 Mapping issues 51
6.3 Strategies for mapping of state machines 52
6.3.1 Multiple state machines in one bean 52
6.3.2 One state machine in one bean 54
6.3.3 Group of state machines in one bean 54
6.4 Kind of bean to be used 55
6.4.1 Session beans 55
6.4.2 Entity bean 56
6.4.3 Message bean 56
6.5 Asynchronous communication 56
6.5.1 All state machines share the same queue 57
6.5.2 One queue for each state machine 58
6.5.3 Combination of alternative 1 and 2 58
6.6 Structural relations 59

Agder University College

Geir Melby Thesis modified 27.05.2003 VII

6.6.1 Parts 59
6.6.2 Associations 60
6.6.3 Connectors 60
6.6.4 Ports 60
6.7 Naming of state machines 61
6.8 Summary 61

Chapter 7 Framework for implementation of actors on J2EE 63
7.1 The mapping solution 63
7.2 UML profile for ActorFrame 65
7.2.1 Actor 66
7.2.2 ActorMsg 67
7.2.3 ActorAddress 67
7.3 Principle behavior of EJBActorFrame 67
7.4 Description of EJBActorFrame 68
7.5 The implementation of state machine as a message bean 70
7.6 Persistence of state data 71
7.7 Use of JMS 72
7.8 Use of JNDI 73
7.9 Summary 74

Chapter 8 Implementation of a service using EJBActorFrame 75
8.1 Traffic news – a context aware service 75
8.2 Design of CAS 76
8.3 Implementation of CAS 80
8.3.1 Mapping of behavior of state machines 81
8.3.2 Mapping of state data 83
8.3.3 Use of JMS and JNDI 85
8.3.4 Implementation of parts 86
8.4 Deployment of CAS 87
8.5 Summary 88

Chapter 9 Discussion and conclusion 89
9.1 Concurrency and asynchronous communication 89
9.2 Aggregation of actors 90
9.3 Persistent state machines 90
9.4 Actor modeling using UML profiles for EJB 91
9.5 Other issues 93
9.6 Future work 94
9.7 Conclusion 94

Chapter 10 Abbreviations 97

Chapter 11 References 99

Chapter 12 List of figures 103

Appendix A Source code for EJBActorFrame (confidential) CDROM

Appendix B Source code for CAS example CDROM

 Agder University College

VIII Geir Melby Thesis modified 27.05.2003

Agder University College

Geir Melby Thesis modified 27.05.2003 1

Chapter 1 Thesis background and problem
definition

1.1 Services
The combination of mobility and Internet is creating a new and powerful industry that
will deliver attractive, content-rich services to users on the move. All over the world,
companies are preparing for the Mobile Internet. Mobile data networks (UMTS,
WLAN and Bluetooth) with increasing bandwidth, advanced phones and handheld
computers are available bringing a new generation of services into use. For instance,
the introduction of I-mode in Japan has been a tremendous success with millions of
subscribers and thousands of service providers that have created market demand for
services available through mobile phones.

The expectation of strong growth in the mobile area is one reason for the establishment
of the Open Mobile Alliance (OMA), which states on its home page [41] “The mobile
industry has experienced a period of very exceptional growth during the past ten
years. The next wave of growth is expected to come from mobile services”.

Until now telecom operators have dominated as service providers for the telecom
market. But deregulation of the telecom sector and requirements from application
providers have gradually opened the telecom networks for 3rd parties. 3GPP [42] has
specified a set of API’s called Open Service Access (OSA), which give 3rd party
application providers access to the resources and services of the telecom networks.
OSA enables telecom services to be integrated with existing Internet applications. This
integration has formed an industry, called Information and Communication
Technology (ICT), which includes network operators, service providers, equipment
vendors, application developers and content providers.

Telecom operators as part of the ICT industry have specified and partly developed the
next generation network as shown in Figure 1-1. The network architecture consists
logically of an access, a control and a service layer. These layers are connected to each
other through a high capacity backbone network that is based on the IP protocol.

The access layer consists of different types of access systems such as mobile networks
(GSM, UMTS), wireless networks (WLAN) and ADSL that are connected to the same
backbone network. Terminals as phones, PCs and faxes are connected to the different
access networks. The control layer consists of different servers as controllers and
databases for network resources. These servers provide telecom services such as basic
call set up and traffic control.

Thesis Background and problem definition Agder University College

2 Geir Melby Thesis modified 27.05.2003

ADSLWLAN hot spot

PSTN
Internet
PLMNUTR AN GER AN

Service/User Mgm HLR,
AAA, etc

Infrastructure
DHCP, etc

Service
Enablers

Internet
Portals

Application.
Server

Service layer

Access layer

ISDN Servers IP Multimedia
ServersSupport Servers Access

Control Servers
Control layer

IP Packet Backbone MGS
G

MG

GGSN BGConnectivity
layer

ADSLADSLWLAN hot spotWLAN hot spot

PSTN
Internet
PLMN

PSTN
Internet
PLMNUTR ANUTR AN GER ANGER AN

Service/User Mgm HLR,
AAA, etc

Service/User Mgm HLR,
AAA, etc

Infrastructure
DHCP, etc
Infrastructure
DHCP, etc

Service
Enablers
Service

Enablers
Internet
Portals
Internet
Portals

Application.
Server

Application.
Server

Service layer

Access layer

ISDN Servers IP Multimedia
ServersSupport Servers Access

Control Servers
Control layer

ISDN Servers IP Multimedia
ServersSupport Servers Access

Control Servers
Control layer

IP Packet Backbone MGS
G

MG

GGSN BGConnectivity
layer

IP Packet Backbone MGS
G

MG

GGSN BGConnectivity
layer

Figure 1-1 Next generation network

The service layer consists of the resources needed to perform additional control and
the service logic, which provides value added services to the end user. Service
Capability Servers (SCS) provide access to services in the control layer such as basic
call setup. Other components are user and service databases (HLR, AAA), Internet
portals and application content servers. These components also communicate with
resources in the controller layer through the IP backbone network. This layer
constitutes the service network and it will normally be connected to the Internet.

The Application Server (AS) contains the applications that provide services for end
users or clients. Application servers normally consist of tools for creation, deployment
and management of services. Web-logic [30] and JAMBALA [31] are examples of
application servers and they also support software standards as Web services [32] and
J2EE [33].

Application Servers may also provide service access to the Internet through open
Internet APIs such as Web-services. Application servers may also have open access to
Internet enabling applications for access and utilization of other services on the
Internet. In this way the service network can be integrated with Internet services.

Due to lack of profitable business cases for the introduction of UMTS, it has become
urgent for operators to provide content that users are willing to pay for. Companies in
the ICT industry have recognized this, and Lars Borman from Ericsson said in [26]
“They must quickly be able to implement new services and make them available to the
mass-market”.

To meet this requirement Ericsson, Telenor Research, and NTNU are cooperating in
the research projects AVANTEL [34] and ARTS [35], on how to make new services for
the service network. A service network with a platform for execution of services has

Agder University College Thesis Background and problem definition

Geir Melby Thesis modified 27.05.2003 3

been established, and 3rd party application developers have been invited to
experiment with the service network.

As part of the AVANTEL project, Ericsson in Norway has developed a prototype of a
application server, called ServiceFrame [1]. ServiceFrame has been used by the
participants in the research project and students at NTNU to develop and execute
prototypes of services.

1.2 ServiceFrame - a service creation and execution environment
ServiceFrame is an application server in the service network. It provides functionality
for communication with users connected through different types of terminals such as
phones, PC’s or PDA’s. It also provides access to network resources through the OSA
API, which enable services to set up phone calls between users.

SCS
Access

Net

PSE

HTTP

WAP

HTML

RMI

ASuS

Java.
client

HTML
Browser

WAP
Browser

To other ServiceFrame instances

SCS
Access

Net
Access

Net

PSE

HTTP

Parlay

WAP

HTML

RMI

ASuS

Java.
client

HTML
Browser

WAP
Browser

Adaptation

ServiceFrame: RootActor

Communities

community[*]:
Community
Agent

Applications

application[*]:
Application
Actor

ServiceEnablers

se[*]: Enabler
Agent

Users

user[*]: User
Agent

Terminals

terminal[*]:
Terminal
Agent

Appliances

appliance[*]:
Appliance
Agent

Figure 1-2 ServiceFrame [1]

ServiceFrame itself provides architectural support for service creation, service
deployment and service execution, but it does not provide any end user services.
Services are realized by ServiceFrame applications that are defined by specializing and
instantiating framework classes. In addition it has mechanisms that support
incremental development and deployment of services.

ServiceFrame is layered on top of ActorFrame and JavaFrame. ActorFrame is a generic
application framework that supports the concept of actors and roles [22]. With
ActorFrame actors play roles and involve other actors to play other roles using a role
request protocol. Actors may contain other actors. JavaFrame is both an execution
environment and a library of classes used to implement concurrent state machines and
asynchronous communication between state machines.

Thesis Background and problem definition Agder University College

4 Geir Melby Thesis modified 27.05.2003

ServiceFrame can be used as an application server in the service network as described
in the previous chapter, but it does not offer all functionality that a commercial
application servers usually have such as management functionality, data base storage
etc. ServiceFrame interacts with the different resources in the service network such as
Parlay Service Capability Server as described in Figure 1-2. ServiceFrame also
communicates with clients and other servers through the Internet. ServiceFrame has
been used in the AVANTEL project to make services that are deployed and run in the
service network.

1.3 UML2.0 and MDA – a modeling driven approach
Ericsson and other telecom companies like Motorola and Nokia have used SDL [20] in
design of telecom products. It has been possible to make a functional model of the
system, which could be used for formal analysis, verification and validation, and for
automatic generation of code. This model-oriented approach has proven to be
successful in development of complex real time systems like telecom systems. UML
has until now lacked the concepts and formalism that have made SDL successful in the
telecom industry. UML has come from a background of enterprise applications where
database modeling has been important but with little demand and support for formal
behavior modeling. Today UML has become the defacto standard modeling language
used in the software community.

With an active push and participation from leading telecom companies like Motorola,
Siemens and Ericsson, the next version of UML has taken a long step in the direction of
SDL. The proposal for UML2.0 [18], which will be voted on in the OMG [36] meeting
in June 2003, has the language concepts and formalism needed to support a model
driven approach to development of telecom systems.

OMG has also recently changed the focus from CORBA [37] that was intended to
integrate heterogeneous systems, to UML as the core language to be used in a
modeling approach called Model Driven Architecture (MDA). MDA defines two
different UML models.

1. PIM is a platform independent UML model, which can be reused in different
implementations.

2. PSM is a platform specific model that is tailored to an actual middleware
platform.

The idea is to first make a PIM model and then transform it to a PSM model. A PSM
model can then be automatically or manually transformed to an implementation using
a specific platform like J2EE or .NET [38].

1.4 Java 2 Enterprise Edition, Technologies and distributed
services

J2EE technologies are the defacto standard used for development and execution of
enterprise applications in the Java community. J2EE provides today a rather complete
set of technologies for development of server side applications. That includes
enterprise java beans (EJB) for development of distributable components, Java Naming

Agder University College Thesis Background and problem definition

Geir Melby Thesis modified 27.05.2003 5

Directory Interface (JNDI) for lookup of references to components, Remote Methods
Invocation (RMI) for transparent communication between distributed objects or
components, Java Transaction API (JTA) for transactional support including roll-back
and persistent storage and XML based technologies. The latest J2EE standard includes
also a Java Messaging Service (JMS) for support of asynchronous communications and
support for applying web-services technologies. Together with support for integration
of client technologies as Java Server Pages (JSP) and Servlets, J2EE can be used for
implementation of software applications that are distributed, scalable, transactional
and persistent. However J2EE is originally a typical client server technology. Clients
make request for information and servers respond with the requested information
(hopefully).

As described earlier application servers are used for execution of services in the service
network. 3GPP is now working with standardization of access to network resources
via an API based on Web-services. Web services are supported by the latest version of
J2EE 1.4. Application servers that support J2EE contain technologies that are necessary
for building large and scaleable applications with high availability. Ericsson supports
J2EE technologies for instance in their JAMBALA application server.

1.5 Characterisation of services
Services provided by applications that are available through the Internet, are mainly
based on single initiatives from clients. A service is requested by a user via a client to a
server, which responses to the request by accessing databases and sending information
back to the client. The client server technology as provided by J2EE and http servers
are typically used to implement such services. The tremendous success of the Internet
is proof that this request and response approach works.

Future services will be built on an integration of services provided by various, remote
computers. These will lead to loosely coupled computers physically spread around the
world with variable and considerable latency in communication. This will probably
cause increasing scaling and capacity problems in the applications servers if current
client server technology is used. The use of synchronized communication between
loosely coupled components that are physically and globally distributed does not
function very well.

The service network including Internet may consist of active components, meaning
that the components can act on their own. For instance, multiple sensors can cause
events to be sent simultaneously causing conflicting requests to the services. This will
cause concurrency problems if the services are implemented with technologies that are
based on synchronized communication between the active components. Higher
latency will increase the “window” for concurrency conflicts. Slow and non
functioning services may be the result. It is therefore important that application
platforms can handle conflicting initiatives to the same applications from many
sources simultaneously.

These problems have been addressed by research projects. Khare [27] argues for use of
asynchronous messages (events) for communication between what he calls network
services. Network services are characteristically decentralized, which means that they

Thesis Background and problem definition Agder University College

6 Geir Melby Thesis modified 27.05.2003

are crossing organizational boundaries. Network services are also loosely coupled and
are typically implemented with different technologies.

Different services may therefore require different implementation techniques. Client
server technology works well for implementation of many Internet services today, but
client server technology fails when it is used for implementation of services that are
characterized by decentralization, loose coupling and conflicting initiatives.

1.6 The definition of the problem
The main objective for this thesis is to investigate how the UML2.0 concepts that
ActorFrame are based upon can be implemented and deployed by using middleware
platforms that support J2EE technologies.

The most important feature of ActorFrame is the support of state machines that behave
concurrently and communicate asynchronously. As presented earlier in this chapter
network based services should be implemented with asynchronous messaging.
Currently J2EE based application servers support the client server paradigm for
service development. This paradigm is not sufficient for implementation of network
services.

Problem 1: How to achieve concurrency between state machines and asynchronous
messaging between state machines?

ActorFrame supports the “actor play roles” metaphor. A role is itself an actor, which
recursively again can contain roles. UML2.0 also supports an aggregation concept
called part, which can contain other parts. J2EE does not support these aggregation
concepts.

Problem 2: How to map aggregation of actors?

Persistency of data is an import aspect of commercial services. ActorFrame does not
provide any special support for persistency of data for state machines. J2EE supports
persistent storage of data.

Problem 3: How can an implementation of state machines take advantage of the support of
persistency in the J2EE platform?

When services are specified the intention is to use a UML profile that supports
ActorFrame concepts to make ActorFrame models. There is ongoing work in the Java
community for definition of a UML profile for Enterprise Java Beans (EJB), which is
part of the J2EE technology. ServiceFrame has already been used for development of
services. These services are described as ActorFrame models. These ActorFrame
models should also be used when new implementation platforms are selected.

Problem 4: Can existing UML profiles for EJB be used for making ActorFrame models that
survive changes in the implementation platforms?

It is also important that other concepts in ActorFrame can be mapped to the J2EE
platform. It is also an important aspect of this study to identify additional benefits that
may be gained by introducing ActorFrame to J2EE platform.

Agder University College Thesis Background and problem definition

Geir Melby Thesis modified 27.05.2003 7

1.7 The thesis work
The approach taken in this work is to first study the different technologies, UML2.0,
ActorFrame and J2EE. The study is then used as a basis for a discussion on possible
solutions for mapping ActorFrame to J2EE. An existing UML profile for EJB will also
be evaluated to find out if this profile could be used for ActorFrame modelling. Then
different mapping solutions will be elaborated and one concrete mapping solution will
be proposed.

To verify the mapping solutions for the problem statements 1, 2 and 3 a prototype
version of a framework for implementation of ActorFrame models will be specified
and implemented. The problem statement 1 and 3 will be verified by using the
framework to make an example of a service. The service will be run on a J2EE
application server. The result of the verification will be discussed, summarized and
used to make conclusions.

1.8 Reader’s guide
The J2EE platform constitutes of a large set of complex technologies. The specification
of the EJB standard is alone about 600 pages. The UML standard is comparable in size.
Therefore this report will focus only on those parts that are important for
understanding the content of this report. The reader is encouraged to use the
referenced literature if some of the technologies are new or the descriptions of the
technologies are too brief or incomplete.

Chapter 2, 3 and 4 present the core technologies UML2.0, ActorFrame and J2EE that
are used in this report. If the reader is familiar with these technologies, these chapters
can be skipped.

Chapter 5 gives an introduction to the modeling and mapping approach taken in this
report and it discusses the approach in relation to the Model Driven Architecture
(MDA) promoted by OMG.

In chapter 6 different mapping solutions of the core concepts of ActorFrame to the
J2EE platform are discussed, while in chapter 7 the proposed framework for
implementation of ActorFrame models, is presented. Chapter 8 gives an example of a
service and how this service is implemented using the framework.

In chapter 9 the solution is discussed in relation to the problem statements described in
chapter 1, and this discussion is summarized in a conclusion at the end of the chapter.

Agder University College

Geir Melby Thesis modified 27.05.2003 9

Chapter 2 UML2.0

2.1 Introduction
OMG is now at the near end of standardization of the version of UML called UML2.0.
The most important proposals to UML2.0, with respect to this report, have come from
a consortium, named U2-partners [19]. Ericsson is one of the partners and researchers
from NorARC have actively proposed new improvements to UML that are based on
earlier work from standardization of SDL. A nearly finished version of the proposal
from the U2 consortium was released in January 2003 and a final release to OMG RTF
is planned for June 2003.

This proposal defines “new user level constructs that will improve UML support for
component-based development, architectural specifications, and advanced behavioral modeling
techniques using interactions, state machines and activity diagrams”. It contains many
concepts, as it will be seen in chapter 3 are according to the concepts provided by
JavaFrame and ActorFrame.

This chapter briefly describes the major improvements in UML2.0. Those parts of the
proposal that are important to model ActorFrame based applications are described in
more detail. Focus is on those parts of UML2.0 that are important for modeling active
classes with complex behavior using state machines.

The release ad/2003-01-02 [18] from January 2003 is used in this report. Figures in this
chapter are copied from the standard.

2.2 Major improvements in UML2.0
The major improvements in UML2.0 are:

• New concepts for describing the internal architectural structure of Classes,
Components and Collaborations by means of Part, Connector and Port.

• Introduction of inheritance of behavior in state machines and encapsulation of
sub machines through use of entry and exit points.

• An improved encapsulation of components through complex ports with
protocol state machines that can “control” interaction with the environment.

• Improvements of the specification, realization and “wiring” aspects of the
components.

• Integration of actions and activities and the use of flow semantics instead of
state machines.

UML2.0 Agder University College

10 Geir Melby Thesis modified 27.05.2003

• Interactions are improved with better architectural and control concepts such
as composition, references, exceptions, loops and alternatives and an improved
overview with Interaction Overview Diagrams.

As compared with earlier versions, UML2.0 seems to have matured into a more
complete language, with improved integration of the various parts.

2.3 Architectural concepts in UML
Perhaps the most important improvement in UML2.0 with respect to modeling
complex systems is the increased architectural support. Therefore a class may describe
its behavior as a collaboration of behavior of instances of other classes contained in the
class. The core concepts for describing this internal structure are Part, Connector and
Port. These concepts are described in the sub chapters below.

2.3.1 Parts
The introduction of the Part concept in UML2.0 makes it possible to describe the
internal structure of a class. A Part is a property of the containing class meaning that
the Part lives and dies as part of the lifetime of an object of the containing class. Parts
are set of instances of other classes.

The composition association in UML can also be used to describe composition as
illustrated in Figure 2-1. However, this model does not express completely what
should be described. The model describes a Car that consists of Axle, Wheel and an
Engine. Each Axle is connected to at least two and at most four Wheels (may be three
Wheels). Each Axle is also connected to an Engine. The Boat consists of an Engine and a
Propeller. From this model it is possible that the same instance of Engine is connected to
an Axle in a Car and to Propeller in a boat at the same time.

Agder University College UML2.0

Geir Melby Thesis modified 27.05.2003 11

WheelAxle

1 2..41

Car

1

2..*

11 1

WheelAxle

1 2..41

Car

1

2..*

11 1

Engine

11
11

1

1

Engine

11
11

1

1

Propellor

Boat

1..*

1

11
11

1..*

1
0..1

0..1

1..*

Propellor

Boat

1..*

1

11
11

1..*

1
0..1

0..1

1..*

0..*

Figure 2-1 Composition versus parts [18]

That is obviously not what the model should express. The model should describe the
class Engine independent of its use (encapsulation) and describe more precisely that an
instance of class Engine is part of class Car and is connected to an Axle of that Car.
Another instance of Engine is part of Boat and connected to a Propeller of that Boat. This
is the main motivation for introducing the Part and Connector concepts.

In Figure 2-2 the class Car has got an internal structure of instances of other classes
(parts). These internal parts and connectors will only exist as a part of an instance of
the class Car. So when an Car is created, e:Engine is connected to drive:Axle that has
two or more instances of w:Wheel. The car has also one or more sets of run:Axle where
each instance has exactly one pair of nw:Wheel connected. The figure also describes
that the same instance of class Engine cannot be part of both a car and a boat, which is
possible according to the model shown in Figure 2-1.

Parts may have multiplicities in the format [n..m], where the n specifies how many
instances are created when an instances of the containing class is created. The upper
level m specifies the maximum instances that can be created.

UML2.0 Agder University College

12 Geir Melby Thesis modified 27.05.2003

Car

w:Wheeldrive:Axle
1 2..*

2run:Axle nw:Wheel
1..* 2..*

e:Engine

powerspowers

Figure 2-2 Class with internal structure [18]

2.3.2 Ports
When instances shall be connected together, the connection point should be described
formally. A Port describes an interaction point for a class as described in Figure 2-3.
Port is addressable, which means that signals can be sent to it. A Port may have a
provided interface that specifies operations and signals offered by the class and a
required interface that describes operations the class expects from its environment. In
the figure below has the port p has a required interface named power and a provided
interface named powertrain.

Figure 2-3 Ports connected to classes [18]

Use of ports enables specification of a class without knowing anything about the
environment where the class may be used. Classes can send and receive signals via
ports, and a class can expose operations through a port.

A port has an attribute isBehavior that specifies whether signal requests arriving at this
port are received by the state machine of the object, rather than by any parts that this
object contains. Such ports are referred to as behavior ports. The state machine of the
class will handle signals that are sent to the behavior port.

2.3.3 Connectors
A Connector specifies a link (an instance of an association) that enables
communication between two or more parts. In contrast to associations, which specify
links between instances of the associated classifiers, connectors specify links between
parts only. A Connector may be attached to a port or directly to a part as described in
Figure 2-4. For example, an engine e:Engine in class Car is connected by the axle
connector to the instances in the set rear:Wheel.

Agder University College UML2.0

Geir Melby Thesis modified 27.05.2003 13

Figure 2-4 Connectors and ports [18]

The figure also shows how connectors are used to connect instances of a class to
instances of different classes through ports. In the class Car rear:Wheel is connected to
the port P of e:Engine and in the class Boat the :Propeller is also connected to the port P
of e:Engine. Although the part e:Engine has the same instance name in the two classes
Car and Boat they are different instances where each of them belong to their containing
class. Connectors and ports are excellent concepts that enable more effective reuse of
types and thereby encourage a component-based approach.

2.4 State machines in UML2.0
The major changes of the state machine concept in UML2.0 compared to UML1.4 are:

• Composite state with entry/exit points that increase the scalability and
independence of behavior specification.

• State machine generalization that enables inheritance and specialization of
behavior.

• Protocol state machines that enable allowed sequences of signals and operation
calls to be specified.

• State machines that have operations that enable calls on state machines.

• State groups that enable common behavior of events in different states.

A state machine is used to model discrete behavior triggered by events. In addition to
expressing the behavior of a part of the system, state machines can also be used to
express the protocol through a port. These two kinds of state machines are referred to
as behavioral state machines and protocol state machines. The state machine
formalism used in UML2.0 is an object-oriented variant of Harel statecharts [39].

A state machine is triggered by different kind of triggers: signals, timeouts, operation
calls and change in values. A trigger causes a transition if the trigger is specified for
the current state for that state machine. A transition is described by actions that may
cause new trigger events to be generated.

UML2.0 Agder University College

14 Geir Melby Thesis modified 27.05.2003

The most important improvements of the state machine concept in UML2.0 are
encapsulation of behavior in a composite state and inheritance of behavior in sub
types. These are described in more detail in the following sub chapters.

2.4.1 Composite state
UML1.4 has no limitations on how to enter and exit composite states. It is legal to
enter directly to internal states of composite states and it is therefore difficult to specify
composite states that can be reused in other state machines. UML2.0 has introduced
exit and entry points that control access to a composite state. Figure 2-5 shows an
example of a state machine with entry and exit points. Exit and entry points are named
points that are placed on the frame of the state machine.

ReadAmountSM

selectAmount

EnterAmount

ok

abort

aborted

amount

otherAmount

abort

again
Figure 2-5 Definition of Exit / Entry points [18]

Figure 2-6 shows an example on how the ATM state machine uses the state machine
ReadAmountSM. The transition rejectTransition ends in the entry point again of the state
ReadAmount. If we look at Figure 2-5 again, we can see that transitions through this
entry point ends in the state EnterAmount. The same semantic applies on transitions
from states inside the composite state. The transition triggered by the signal abort exits
the composite state through the exit point aborted and ends in the state ReleaseCard.

Agder University College UML2.0

Geir Melby Thesis modified 27.05.2003 15

VerifyCard

OutOfService

acceptCard

ReleaseCardReleaseCardVerifyTransaction

outOfService

releaseCard

ReadAmount :
ReadAmountSM

aborted

rejectTransaction

again

ATM

Figure 2-6 Use of Exit / Entry points [18]

Use of exit and entry points enables the design of components of behavior that can be
more easily used in different places. This is analogous to use of procedures to obtain
reusable operations.

An unnamed entry or exit point represents default behavior. A composite state may
have several named entry and exit points.

2.4.2 Generalization of behavior
The generalization and specialization concepts have been an important part of the
UML language. It has not been possible until now to inherit the behavior of state
machines. As shown in Figure 2-7 this has now been added to UML in the same way
as ordinary inheritance of classes. New state machine types can also be specified using
inheritance independent of classes. New behavior specification can be added and parts
of existing behavior can be replaced as follows:

• States and transitions can be added
• States can be extended
• Transitions can be replaced or extended
• Targets of transitions can be replaced
• Submachine states can be replaced.
• Signals and operations may be added.

UML2.0 Agder University College

16 Geir Melby Thesis modified 27.05.2003

ATM

acceptCard()
outOfService()
amount()

Behaviour

Statemachine

FlexibleATM

otherAmount()
rejectTransaction()

Behaviour

Statemachine

extension

ATM

acceptCard()
outOfService()
amount()

ATM

acceptCard()
outOfService()
amount()

Behaviour

Statemachine

FlexibleATM

otherAmount()
rejectTransaction()

FlexibleATM

otherAmount()
rejectTransaction()

Behaviour

Statemachine

extension

Figure 2-7 Specialization by extension [18]

Figure 2-8 shows how the composite state ReadAmount may be extended adding two
new states (SelectAmount, EnterAmount), three transitions (OtherAmount, ok
rejectTransaction), and one port. The figure also shows that it is allowed in UML2.0 to
enter a composite state without going through an entry point. The transition
rejectTransaction in state VerifyTransaction ends directly in the state EnterAmount.

ReadAmount

EnterAmount

SelectAmount

VerifyTransactionVerifyTransaction

EnterAmount
ok

otherAmount

rejectTransaction

{extended}

FlexibleATM {extended}

Figure 2-8 Specialization of state machines [18]

2.5 UML profiles
UML defines three standard extension mechanisms: stereotypes, constraints and
tagged values. They are used to define extended metaclasses in packages that are
called UML profiles. Profiles can be used to for instance, to tailor a UML metamodel to
a specific platform such as EJB or .NET. It can also be used to make new concepts to be
used in models. An UML profile for animals will for instance contain a metaclass Cat
as shown in Figure 2-9. The class Cat is tagged with the keyword stereotype. Cat is an
extension of the metaclass Class and Cat can therefore only be applied on instances of
the metaclass Class. The stereotype can extend an existing metaclass or a stereotype.

Agder University College UML2.0

Geir Melby Thesis modified 27.05.2003 17

isActive = true
Provided interfaces
has only signals

isActive = true
Provided interfaces
has only signals

<<metaclass>>
Class

<<metaclass>>
Class

<<metaclass>>
Class

<<stereotype>>
Cat

isPersistent
Boolean

<<stereotype>>
Cat

<<stereotype>>
Cat

isPersistent
Boolean

<<profile>> Animals<<profile>> Animals<<profile>> Animals

Figure 2-9 Defining UML extensions

A stereotype can have constraints. Constraints are expressed either by using OCL [40]
or as informal text. In the example above there are two constraints defined. The
stereotype cat must have the attribute isActive equal true and its interfaces can only
contain signals. Stereotypes are defined in a UML Package tagged with <<profile>>.

A stereotype is used to tag instances of the metaclass as shown in

Figure 2-10. Attributes can be given values when the stereotype is applied.

isPersistent = falseisPersistent = false
<<Cat>>
myCat
<<Cat>>
myCat
<<Cat>>
myCat

Figure 2-10 Use of stereotypes

2.6 Summary
This chapter has presented the major features in UML2.0 as it is specified in the
proposal from the U2 consortium. It has shown that UML2.0 has been improved with
respect to modeling of behavior and composition. Behavior can now be extended,
which is important when more complex behavior is modeled. It is also possible to
make fully encapsulated behavior components, state machines, which may enable
reuse of behavior. It seems that UML2.0 now has concepts that better support
modeling of systems that have to cope with conflicting initiatives and communication
between loosely coupled components.

UML also has an extension concept called profiles. Profiles are used to define
metaclasses in UML to tailor a UML model to a specific platform such as EJB.

In the following chapter ServiceFrame is presented, which is built on concepts that are
very much inline with UML2.0.

Agder University College

Geir Melby Thesis modified 27.05.2003 19

Chapter 3 Ericsson’s service creation
architectures

3.1 ServiceFrame
ServiceFrame [1] provides architectural support for service creation and service
execution. Services are realized by ServiceFrame applications that are defined by
specializing and instantiating framework classes. The idea is that service developers
shall be able to concentrate on modeling the service functionality and be relieved from
considering technicalities that are not service specific.

ServiceFrame is intended to be packaged with method guidelines and tools to form a
model driven service development kit (MDK) see Figure 3-1.

Methods:
• rules and
• guidelines

Tools for:
• Design
• Verification
• Deployment
• Management
• Testing

ServiceFrame

ActorFrame

ApplicationApplication

JavaFrame

Application
model

FunctionalityModels using
UML2.0

Implementations
using Java

Figure 3-1 ServiceFrame - a model driven service development kit [1]

ServiceFrame provides architectural support for modeling and for implementation in
terms of domain concepts. In addition it has mechanisms that support incremental
development and deployment of services.

The architectural support is provided in three layers, as illustrated in Figure 3-2.
ServiceFrame itself is an application of ActorFrame, which is a generic application
framework supporting the concepts of actors and roles that are described in next
chapter. Both are implemented in Java using JavaFrame [2], which provide support for
state machines and asynchronous communication according to UML2.0 running on a
Java Virtual Machine.

Ericsson’s service creation architecture Agder University College

20 Geir Melby Thesis modified 27.05.2003

Application:
MyUserAgent, MyTerminalAgent,
MyCommunityAgent,…. My Roles

ServiceFrame:
UserAgents, TerminalAgents, CommunityAgents,
ApplicationActors, ….

ActoFrame:
Actors, Roles, Plays, Patterns, ….

JavaFrame:
CompositeObjects, StateMachines, Mediators,
CompositeStates, Asynchronous communication,

Java VM

Provides Application
domain concepts

Provides Role modeling
concepts

Provides UML2.0
concepts

Figure 3-2 ServiceFrame layers [1]

A description of the ServiceFrame can be found in [1] and [3].

3.2 ActorFrame
In general a service is consider as an identified functionality serving a stated need or
purpose. Since a system normally will provide many services, a service may be seen as
a partial functionality of the system.

In general, services entail collaboration among objects that provide some specific
functionality that form the part of the provided services. ActorFrame uses the well-
known metaphor that “actors play roles” [22], [23]. Actors are objects that play different
roles. Hence, a service may be defined in terms of collaborating service roles where a
service role is the part an actor plays in a service [24]. Models that use the ActorFrame
concepts are called ActorFrame models.

3.2.1 Actor
Actor is the core concept of ActorFrame. An actor, illustrated in Figure 3-3, is an object
having a state machine and an optional inner structure of actors. Some of these inner
actors are static, having the same lifetime as the enclosing actor, and others are
dynamically created and deleted during the lifetime of the enclosing actor. The state
machine of an actor will behave according to the generic actor behaviour that is
common to all actors. If the actor shall play several roles, this is accomplished by
creating several inner actors each playing one of the desired roles.

Agder University College Ericsson’s service creation architecture

Geir Melby Thesis modified 27.05.2003 21

<<actor>>
Actor

innerActor:Actor[*]

in

out

out

in

<<actor>>
Actor

innerActor:Actor[*]innerActor:Actor[*]

in

out

out

in

Figure 3-3 Class Actor

Communication between an actor and its environment takes place via an Inport and an
Outport. Internal communication among the inner actors is also routed via these ports.

An actor has a generic behavior, inherited from the base class Actor, that provides
management functionality. It manages the inner structure of actors and the roles they
play. It knows the available roles and the rules for role invocation.

The generic behavior handles role requests as described in Figure 3-4. It will either
deny the request or invoke an actor to play the requested role or an acceptable
alternative role. The generic behavior also has the capability to add and remove roles,
and to perform other actor management functions.

Requesting:
Actor

Invoked:
Actor

Requested:Actor

1. Request(role, …)

2. Play(role, …)

3. Confirm(role, …)

ActorSM

Figure 3-4 RoleRequest protocol [1]

An actor has an actor address that consists of an actor name and an actor type. The
name has to be unique among the actor instances that are in the name scope of a
requested actor, ref Figure 3-4.

3.2.2 ActorFrame protocol
ActorFrame has protocols for role requests and role releases. New roles can be created
dynamically and initiated on requests. The idea is that an actor can request another
actor to initiate new roles (actors) to do a requested service.

As shown in Figure 3-5 an actor may request several other actors and several other
actors may request one actor. All actors are running in parallel. An actor may play

Ericsson’s service creation architecture Agder University College

22 Geir Melby Thesis modified 27.05.2003

several roles in parallel. If a requested role is released from all requestors, the
requested actor will delete the role. If a requested actor or role is defined but it does
not exist, it will be created, if it is allowed to be involved

P lay

Actor1 Actor2 Actor3 Actor4 Actor5

RoleRequest

RoleRequest

RoleRequest

RoleRequest

Figure 3-5 Multiple roles and actors

The basic feature of the protocol is to allow an actor (requestor) to request another
actor to play a specific role and to allow the actors to interact to perform a service or a
play. The protocol includes also a protocol to release a requested role. Figure 3-6
shows a typical pattern of how RoleRequest and RoleRelease are used to invoke other
actors to play services. One RoleRequest may lead to another RoleRequest as shown in
the figure below. Release of roles may lead to deleting of actors if they play no more
roles. It is also possible to define that an actor may exist although it does not play any
roles.

A B C

RoleRequestref

Service Aref

RoleRequestref

Service Bref

RoleReleaseref

RoleReleaseref

sd Play

Involve other
actors

Figure 3-6 A simple service.

The term play is used for a dynamic structure of interacting actors performing
according to role types, see Figure 3-7. A play may perform a single service or a
combination of services. Exactly which services a play will perform is normally not
determined at creation time, but the involved actors and roles determine it
dynamically.

Agder University College Ericsson’s service creation architecture

Geir Melby Thesis modified 27.05.2003 23

Play1

Play2

Play3

Actor1 Actor2 Actor3 Actor4 Actor5

Figure 3-7 Play

A play has a lifetime that begins when its first role is created and ends when its last
role is ended. The difference between plays lies in the role types that are active and the
features that are selected in each. Different actors play the roles in a play concurrently.
All roles in a play may be deleted by one of the participating actors.

3.3 JavaFrame
JavaFrame is a Modeling Development Kit for development and execution of state
machines in Java. It provides a layer between the Java language and concepts used in
state machine modeling. According to Haugen [25] “With JavaFrame it is possible to
apply modeling techniques and still work in Java. The Java source and the model have one-to-
one relationship. The framework provides classes of well-proven modeling concepts, and by
using these, instead of just programming in plain Java, the abstraction level is raised”.

The concepts of JavaFrame are, as will be shown later, closely corresponding to
concepts defined in UML2.0. JavaFrame is both a library of classes to be used for
implementation of state machines and a set of basic mechanisms for execution of state
machines in terms of classes. Applications on top of JavaFrame typically define
subclasses of the provided classes and create objects from these.

Figure 3-8 JavaFrame classes [2]

The main classes in JavaFrame that are used by the designers are StateMachine,
Composite and Mediator as shown in Figure 3-8 and these are described in the following
subchapters.

3.3.1 Composite
Composite and StateMachine are active objects meaning that they have their own
behavior and are run in their own thread of control. In UML2.0 this is the same as

Ericsson’s service creation architecture Agder University College

24 Geir Melby Thesis modified 27.05.2003

setting the isActive property of UML classes to true. An active object communicates by
sending or receiving messages through Mediators.

A Composite may contain other active objects, which means it may contain other
Composites. A Composite may have one StateMachine that represents the behavior of
the composite itself. Classes in UML2.0 may also have an own state machine in
addition to all parts they may contain. The actor concept described in chapter 3.2.1
always has an own state machine.

Specialization may be applied to classes of ActiveObject. The structure of the superclass
including mediators is inherited.

3.3.2 StateMachine
StateMachine in JavaFrame is a subset of the state machine concept in UML2.0. It does
not provide support for regions, which are used to split the state machine into
orthogonal behavior areas. JavaFrame supports the submachine concept in UML and it
is called CompositeState in JavaFrame. This is not exactly the same as the state machine
concept in UML that allows entering and leaving of composite states without going
through entry and exit points. This is contrary to CompositeState in JavaFrame that
imposes the use of entry and exit points.

StateMachine may contain both composite states and simple states as defined in
UML2.0. As in UML state machines may be specialized by replacing transitions and
adding states and composite states.

Triggering of transitions can only be done by receiving signals through mediators. It
does not support triggering of transitions based on changed values of properties and
invoking of a state machine via operations or methods calls.

Post and pre conditions are supported in StateMachine through entry and exit methods
that are called from a super class at the beginning and end of transitions. These
methods may be specialized.

As also defined in UML2.0 JavaFrame state machines support the history and deep
history concept. These are very useful concepts that allow specification of transitions
to a composite state that are common for all its sub states. A transition with a deep
history ends in the original state again, while a transition with history enter the
composite state through its default entry point.

State machines in JavaFrame also support the save concept from the SDL language
[20]. Save allows received signals to be stored temporary in a save queue. When the
state machine enters another state, signals from the save queue are resent to the state
machine.

3.3.3 Mediators
A mediator is addressable object meaning that it may be referenced and sent signals to.
A mediator is an object that belongs to a state machine and it enables an active control
of the communication flow between state machines. Such a mediator provides an
encapsulation of the state machine, which makes it easier to reuse a state machine in
different places. Simple mediators are connected to each other via references to

Agder University College Ericsson’s service creation architecture

Geir Melby Thesis modified 27.05.2003 25

another mediators. Signals sent to a mediator are forwarded to the referenced
mediator and so on.

Several different types of mediators exist:

• ProtocolMediators that hide lower level protocols.

• MulticastMediator that multicasts the signals to a set of referenced mediators.

• RouterMediator that routes signals based on information carried by the signal,
as for instance the signal name, or the specified sender or receiver of the signal.

• EdgeMediator that connects the edge of the outmost Composite with different
protocols such as RMI, CORBA, HTPP that are used to exchange information
with the environment.

A mediator is partly equal to ports in UML. It does however only support reception
and sending of signals and not operation calls. It may also have a state machine. UML
also supports a concept called complex port, which has a special kind of state machine
used to control the protocol of signals.

3.3.4 Runtime systems
In JavaFrame each state machine has its own signal queue. The queues are managed
by a scheduler, which controls the scheduling of state machines based on a Round-
Robin scheduling principle. One scheduler is run in one Java thread, so all its state
machines are run in quasi parallelism, within a single Java thread.

3.4 Summary
This chapter describes ServiceFrame as a framework for creation and execution of
services especially for the service network. It is built on ActorFrame, which supports a
role-based approach to modeling. Models that use these concepts are called
ActorFrame models. ActorFrame is built on JavaFrame that consists of state machine
classes that can be extended, and an execution environment for state machines. This
chapter has also shown that there are many similarities between ActorFrame and
UML2.0.

Agder University College

Geir Melby Thesis modified 27.05.2003 27

Chapter 4 J2EE – Java 2 Enterprise Edition

4.1 Introduction to the different J2EE technologies
Sun has, through the Java community, defined a collection of Java based technologies
for server side application development and execution named the Java 2 Platform,
Enterprise Edition (J2EE) [11]. The current official version is named J2EE version 1.3,
but version 1.4 is soon to be announced. A beta version of J2EE1.4 is used in this
report.

J2EE consists of APIs for each of the following technologies assuring that applications
that are using these API’s may be run on J2EE compliant platforms. The specification
of these APIs can be found at [11]. The most interesting APIs for this thesis work are:

1. Enterprise JavaBeans (EJB), which define software architecture for a server
side components called enterprise java beans.

2. Java Messaging Service (JMS), which provides asynchronous messaging
services for point-to-point communication and broadcasting of messages.

3. Java Naming and Directory Interface (JNDI), which provides an API for
accessing names and directories services. It is mostly used to lookup
references to EJBs by using names.

4. Remote Method Invocation (RMI/IIOP) [4] that enables a Java application to
invoke methods on objects that reside on different Java Virtual Machines
(JVM). IIOP is the protocol used in the CORBA [37] standard and J2EE
provides a common interface for both CORBA and EJB components securing
interoperability between these technologies.

5. Java Transaction API (JTA) provides mechanism for handling commit and
the rollback of transactions as well as ensuring ACID properties of a
transaction. ACID is an abbreviation for the key features Atomicity,
Consistency, Isolation and Durability.

6. Java API for XML-based RPC (JAX-RPC) that enable clients to use the SOAP
standard and HTTP to make XML-based remote procedure calls (RPCs) over
the Internet. JAX-RPC also supports WSDL and it is now integrated with EJB
in such a way that EJB components can seamlessly interact with web-services.

J2EE defines other APIs such as Java Server Pages (JSP), Java servlets, XML Processing
(JAXP), Java transaction Services (JTS), JavaMail, Java Database Connectivity and
Interface Definition Language (IDL) [43]. The J2EE standard includes complete
specifications and compliance tests to ensure portability of applications across the
wide range of existing enterprise systems capable of supporting J2EE.

J2EE – Java 2 Enterprise Edition Agder University College

28 Geir Melby Thesis modified 27.05.2003

4.2 Enterprise Java Beans (EJB)

4.2.1 Introduction to EJB
The Enterprise Java Beans Specification [12] defines architecture for building
distributed object-oriented applications in the Java programming language. EJB is a
component technology that supports a distributed paradigm and opens for interaction
with other important technologies such as web-services. It provides and hides many
troublesome mechanisms for an application developer such as transaction control,
persistency of data, thread control, and directory services. It supports a “Write Once,
Run Anywhere” philosophy.

The current version of the EJB specification is 2.1, which is also used in this report. The
latest improvements are the seamless integration with web services, a coarse-grained
timer function and extending of the Java Message Interface to include message
interaction with the JAX-RPC protocol.

Some of the most essential characteristics of an enterprise bean are listed in the EJB
specification:

• An enterprise bean typically contains business logic that operates on the
enterprise’s data.

• An enterprise bean’s instances are created and managed at runtime by a
Container.

• An enterprise bean can be customized at deployment time by editing its
environment entries (see 4.3.1).

• The Container mediates client access to the enterprise beans.

4.2.2 EJB Architecture
Enterprise beans are living inside an EJB container, which is hosted by a J2EE
Application Server as described in Figure 4-1. A J2EE application may also contain
other containers such as a web container than handle requests from web clients.

An EJB container is an abstract entity that manages the lifetime of various instances of
enterprise bean classes. The container provides the set of interfaces defined in the J2EE
specification: transaction services, persistency of data, network transparency through
use of RMI/IIOP or SOAP, thread handling, and JDBC connections to databases.

An enterprise bean is specified through a set of interfaces and bean class. These are
marked grey in Figure 4-1. An exception is the message bean that does not have any
interfaces. During deployment of a bean the container generates classes for creation of
a HomeObject and EJBObjects. There is one HomeObject for each enterprise bean type
and it is a factory object for management of EJBObjects. An EJBObject is a proxy object
for interaction with a client. There is one EJBObject for each client.

A client does not interact directly with the enterprise bean. It must access the
enterprise beans through its interfaces. An enterprise bean component has a home
interface and a remote interface. The latest specification EJB 2.1 specifies local

Agder University College J2EE – Java 2 Enterprise Edition

Geir Melby Thesis modified 27.05.2003 29

interfaces for beans that are residing in the same Java Virtual Machine (JVM). The
differences between local and remote interfaces will be described later in this chapter.

J2EE Application Server

EJB Container

Enterprise
Bean A

HomeObject

EJBObjectRemote A

Home A

Enterprise
Bean B

HomeLocalObject

EJBLocalObjectLocal B

Local-Home B

Figure 4-1 EJB Architecture

The Home interface specifies the methods for creating or finding beans, while the
Remote interface contains business methods that are specific for the enterprise bean.
The Enterprise Bean class implements the business methods defined in Remote interface
and eventually those creation methods that are defined in the Home interface.

The container is responsible for making the home interfaces of its deployed enterprise
beans available for clients through JNDI. Thus, the client can look up the home
interface for a specific enterprise bean using JNDI.

EJB Container

EJB
#1: A

HomeObject A

EJBObject
EJB
#2:AClient Y

Client X

EJBObject

Bean A

Figure 4-2 Client view of enterprise beans

AAAWhen a client accesses a specific HomeObject, the HomeObject will create an
EJBObject instance and allocate or eventually create an EnterpriseBean. This is
illustrated in Figure 4-2 where the creation of enterprise beans is illustrated with
dotted lines. How this is implemented, is not specified by the standard. A unique

J2EE – Java 2 Enterprise Edition Agder University College

30 Geir Melby Thesis modified 27.05.2003

reference to the EJBObject is returned to the client. The client can then access the
business methods through the EJBObject, which is responsible for forwarding the
method call to the allocated enterprise bean.

As mentioned earlier, there are local interfaces for use by enterprise beans that reside
in the same JVM. The reason for this is to make calls between enterprise beans much
more efficient. When the Local-Home interface is accessed, the reference to LocalObject is
returned. Calls to the LocalObject are then made by reference. This is obviously more
efficient than use of the remote interface, where RMI/IIOP is used as the
communication protocol. But this design solution also has an impact on the possibility
to freely deploy enterprise beans to different containers. RMI/IIOP passes parameters
as values, which has a different semantic than passing parameters as references used
in the call by reference mechanism.

4.2.3 Enterprise beans
The enterprise bean class contains the implementation of the methods that are
specified in interfaces. There is a specific name convention that has to be followed.
Three different kinds of enterprise beans are defined:

• Session beans that are representing both stateless and stateful services for
clients inclusive web-services.

• Entity beans that represent business data to be shared among multiple clients
in a persistent storage medium.

• Message beans that represent stateless services invoked through messages
received asynchronously.

Each of these will be further described in the following subchapters.

4.2.3.1 Session bean
A session bean represents a single client inside the J2EE Application server. It is
created by the client by invoking a create method in the home interface and it exists
only for the duration of a single session. The session bean normally represents some
business logic.

Although session beans can be transactional, the container does not guarantee
recovery after a system crash. Session beans must therefore manage their own
persistency of data.

There are two types of session beans:

• Stateless beans where the conversational state is not kept between invocation of
the beans methods.

• Stateful session beans where the container manages the conversational state of
the session bean between the different method invocations.

A session bean does not have identification, but a globally unique reference can be
obtained, which can be stored and later used for a re-invocation of the session bean.

Agder University College J2EE – Java 2 Enterprise Edition

Geir Melby Thesis modified 27.05.2003 31

A client accesses a session bean through its remote or local interfaces. A stateless
session bean can also provide a web service endpoint, which can be used by web
service clients.

The characteristics of session beans are:

• Session beans model some business logic.

• Session beans are normally used by a single client and they are normally
relatively short-lived.

• Session beans can either be stateless or stateful, but they do not survive
between sessions.

• A stateless session bean may also provide a web service endpoint.

• Session beans do not provide persistency of data.

4.2.3.2 Entity bean
Normally entity beans represent persistent data of an application. The enterprise bean
interface has methods for accessing the data. An entity bean is identified with a unique
primary key and the home interface must have a method that is used to find an entity
bean based on the primary key. The data is normally stored in an underlying database
and J2EE recommends that JDBC is used. Entity beans are often associated with
database transactions and may handle concurrent access from multiple clients.

Entity beans are transactional and there are two different types of beans, which reflect
how the beans handle the persistency of data. In container-managed persistence
(CMP) the container guarantees persistency of data, while in bean-managed
persistency (BMP) the bean is responsible for storing and restoring the data.

The specification recommends the use of CMP entity beans. The persistent data is
specified by abstract set and get methods, which are used by the container to generate
the necessary classes needed to obtain persistency service. The container also
automatically generates methods for finding entity beans based on the method
signature in the home interface.

Because most of the databases are SQL based, the EJB standard has provided a
specification of an EJB SQL language that can be used to find a specific entity bean or a
collection of entity beans.

The main characteristics of entity beans are:

• Entity beans represent business data that are persistent and are living as long
as the data exist in the database.

• Entity beans can participate in transactions and the container supports the
principles behind the acronym ACID.

• Entity beans are referenced by unique primary keys that are defined as Java
classes.

• Entity beans handle concurrent access from multiple users.

J2EE – Java 2 Enterprise Edition Agder University College

32 Geir Melby Thesis modified 27.05.2003

• The container supports CMP beans with persistency of data. But the
specification allows custom designed persistence control through use of BMP
beans.

4.2.3.3 Message beans
Message-driven beans or, in short message beans, are asynchronous message
consumers. The latest specification has extended the message beans to be able to
receive messages from other sources in addition to JMS. A message bean is defined for
a single message type, in accordance with the message listener interface it implements.
This extension is motivated by the popularity of Web-services and it has opened the
J2EE architecture to include communication with web services.

Message beans are listening on specific JMS destination or a web-service endpoints. A
JMS destination is either a message queue or a topic. A web-service endpoint
represents a service interface for a client that calls a web-service. These concepts are
described in more detail in chapter 4.4 which describes the JMS system and chapter 4.6
which describes web-services. When a message is put into a JMS destination or a client
calls a web-service endpoint, the container invokes the actual message bean. Which
web-service endpoints or JMS destinations the message bean shall receive messages
from are specified at deployment time.

Message beans do not have home and remote interfaces. They are anonymous and can
therefore only be accessed via messages. The container may create several instances of
a message bean type, which enables concurrent handling of messages. The container
does not guarantee that messages are consumed by the message beans in the same
order as they arrive into the destination or endpoint.

Message bean instances are like stateless session beans in the sense that they have no
conversional state. When more than one message bean instance is deployed, they must
serve all received messages in a equal way. Although message beans contain no state
for specific clients, they may contain data forhandling of messages. tThis is for data
that is common for all client messages such as references to other enterprise beans.

Message beans are transactional and integrated with the JMS transaction service. If a
message bean uses container managed transaction, the message acknowledgement is
handled automatically as part of a transaction commit. If bean managed transaction is
used, the reception of messages cannot be part of a transaction. The container is then
responsible for acknowledgement of messages.

It is only message beans that are allowed to implement the MessageListner interface.
Other bean types can use JMS, but without the support of the container.

The main characteristics of message beans are:

• Message beans are asynchronous message consumers receiving messages from
destinations or endpoints.

• Message beans have neither home nor remote interfaces and are therefore
anonymous for clients.

Agder University College J2EE – Java 2 Enterprise Edition

Geir Melby Thesis modified 27.05.2003 33

• Message beans are stateless beans, but they may contain information such as
references to other enterprise beans.

• The destination or service endpoint is specified at deployment time.

4.3 Enterprise bean environment
To be able to reuse an EJB component, the EJB component needs to be customized to
fit into different environments that exist for the application. The EJB specification
specifies an environment mechanism to allow customization of the enterprise bean’s
business logic, use of external resources or references to other components without
accessing the enterprise bean’s source code. All environment variables are defined in
deployment descriptors, which are XML files. The container is responsible at
deployment to read the deployment descriptors and put the environment variables
into JNDI. The environment variables are available to the bean at runtime through the
JNDI interfaces.

Several types of environment variables are defined and targeted for different
purposes. The most interesting ones in this study are described in the following
subchapters.

4.3.1 Environment entries
The enterprise bean’s environment entries allow the enterprise bean to be customized
without the need to access or change the enterprise bean’s source code.

Each enterprise bean defines its own set of environment entries. All instances of an
enterprise bean share the same environment entries. The environment entries are not
accessible to other enterprise beans. Enterprise beans are not allowed to modify the
bean’s environment at runtime.

At deployment time all environment entries that are accessed in the beans source code
have to be declared. An environment entry is declared using env-entry elements in the
deployment descriptor for the bean. An env-entry element consists of an optional
description of the environment entry, the environment entry name, the expected Java
type of the environment entry value, and an optional environment entry value. The
environment entry value must be of type String, Character, Integer, Boolean, Double,
Byte, Short, Long and Float.

4.3.2 EJB references
EJB references are used to refer to other enterprise beans by “logical” names. The EJB
references are special entries in the enterprise bean’s environment. The EJB references
are bound to the different enterprise beans that are deployed in the target runtime
environment. EJB references are declared using ejb-ref and ejb-local-ref elements of the
deployment descriptor. The difference between these two elements is that ejb-ref refers
to the remote interface of an enterprise bean, while ejb-local-ref refers to local interfaces.
All referenced elements are available through JNDI at runtime.

EJB references describe the home/local-home and remote/local interfaces of the
referenced enterprise. The ejb-ref element consists of elements for an optional

J2EE – Java 2 Enterprise Edition Agder University College

34 Geir Melby Thesis modified 27.05.2003

description name of the bean, the type of the referenced bean, and the expected Java
types of the referenced enterprise bean’s home and remote interfaces. EJB references
can only refer to session and entity beans.

4.3.3 Web service references
Service references are references to external web-services using “logical” names. The
web service references are specials entries of the environment of a bean and are used
to bind logical names to web services endpoints in the target operational environment.
A web service interface is of remote procedure call (RPC) type as defined in JAX-RPC.

A service-ref element describes the interface requirements for the referenced web
service that an enterprise bean needs for accessing the web service. It contains an
optional description, a mandatory name of the web service, and an interface name that
qualifies the JAX-RPC service.

4.3.4 Message destination references
Message destination references are references to JMS destinations that allow an
enterprise bean to send messages to other objects through use of “logical” names. The
are destinations are looked up in JNDI by using the name of the message destination
reference. The deployment element message-destination contains an optional description
element, a mandatory name to be used in the enterprise bean’s code, a specification of
the type of destination (queue or topic), and an element that defines if the destination
is used to consume or produce messages.

4.3.5 Deployment descriptors
The environment variables described above (and others) are declared in XML
deployment descriptor files. The deployment descriptor files are read at deployment
time by the container where most of the information is put into JNDI enabling the
enterprise beans to read the different variables. The container uses part of the
environment information in the deployment descriptors to configure different
properties of the enterprise beans. For instance, the container uses the specification of
JMS destinations when it creates message beans.

The deployment descriptor file consists of two types of information:

• Enterprise structural information that describes the structure of an enterprise
bean and declares the enterprise beans external dependencies such as
specification of home and remote interfaces. This information is mandatory
and cannot be changed later in the deployment process.

• Application assembly information that describes how the enterprise beans may
be composed into larger parts or applications such as environment entries.
Provision of assembly information is optional.

Agder University College J2EE – Java 2 Enterprise Edition

Geir Melby Thesis modified 27.05.2003 35

4.4 Java Messaging System

4.4.1 Message Oriented Middleware
Message Oriented Middleware (MOM) provides messaging facilities for distributed
components to be able to asynchronously communicate with each other. A component,
which is a message client, can send and receive messages to any other component.
Although MOM is used to enable distributed communication between components
that are loosely coupled, asynchronous message passing is also fundamental for the
actor paradigm described in chapter 3.2. It supports active components with own
behavior, like an actor in ActorFrame, to communicate asynchronously with other
actors. For example, MOM enables sending messages to several components at the
same time requesting some information. This reduces the response time to arrival of
the latest received message.

There has been MOM based products available for some time, but they lacked a
common specification, which caused problems with interoperability between different
products. Java Message Service (JMS) is Java based MOM middleware that is now part
of the J2EE specification and J2EE servers must support it.

In MOM a component sends a message to a destination and the receiving component
can retrieve the message from the destination. The sender and the receiver do not need
to know about each other’s methods. They only have to agree on the format of the
message and which destination to use. In this respect, messaging differs from tightly
coupled technologies, such as RMI, which require a component to know the remote
methods of other components.

4.4.2 Java Message Service
The Java Message Service (JMS) is a Java API that supports MOM functionality. It is a
common specification that enables JMS clients to communicate with other messaging
implementations and which provides interoperability between the different MOM
products.

The JMS API supports an asynchronous and reliable communication between loosely
coupled JMS clients. JMS supports both point-to-point messaging and
publish/subscribe messaging. The main differences between these concepts are:

• In point-to-point messaging there is only one receiver of each message, while in
publish/subscribe messaging, the same message is received by all receivers that
have subscribed to the topic.

• In point-to-point messaging a message is stored in a queue until it is delivered
to a receiver, while in subscribe/publish the message sent to a topic is
immediately sent to all subscribers of the topic. There is no queuing of the
messages.

Although in messaging there is timing dependency between sending and receiving of
messaging, JMS supports two different modes of message reception.

J2EE – Java 2 Enterprise Edition Agder University College

36 Geir Melby Thesis modified 27.05.2003

• Synchronously, in the sense that the receiver explicit fetches the message from
the queue or topic by calling a receive method. It may be blocked until a
message is received or it may time out.

• Asynchronously, in the sense that a receiver may register a listener interface. A
message is received when the JMS calls the listener’s onMessage method at the
time the message arrives at the queue or topic.

A message consists of a header, properties and a body. Properties may carry user
specified properties. A receiver can use these properties to filter the messages it
receives. JMS support different types of messages, which differ in the format of the
message body. The different types are listed in Table 1.

Table 1 JMS message types [10]

Queues and topics are what J2EE calls administered objects. Administrated objects are
bound by administrators of the application servers. Administered objects are
configured in the JNDI namespace, and JMS clients can look them up by using the
JNDI API.

4.4.3 Integration of JMS into J2EE
The JMS API has the following features:

• Application clients, Enterprise bean components, and Web components can
send or synchronously receive a JMS message. Application clients can in
addition receive JMS messages asynchronously.

• Message-driven beans use asynchronous consumption of messages.

• Includes messaging within distributed transactions.

• Concurrent consumption of messages by allowing multiple message bean
instances.

Agder University College J2EE – Java 2 Enterprise Edition

Geir Melby Thesis modified 27.05.2003 37

4.5 Java Naming and Directory Interface
The Java Naming and Directory Interface (JNDI provides an interface for accessing
name and directory services such as LDAP directory services and Domain Name
Service (DNS). JNDI enables Java programs to use name servers and directory servers
to look up Java objects by name. This feature enables an application to locate
distributed objects, which is essential in distributed programming. JNDI is a generic
API that works with any name or directory server and as such it provides a common
interface against existing directory and naming servers.

A directory service typically provides access to data structured in hierarchies, such as
directories in a file system. It is also used to categorize data into hierarchies such as
yellow pages. A naming service allows access to objects by name for instance, looking
up an IP-address to a computer based on a name as in DNS. In the thesis work the
naming service is the most interesting.

4.5.1 Naming service
A naming service provides a method for mapping unique identifiers or names to a
specific value or a reference to an object. It is important that the name is unique in the
actual namespace. Compound names are names that consist of a sequence of names
that conform to the naming convention. For instance, “melby/ola” is a different name
than “husa/ola” although the person has the same name “ola”. This convention is often
used for scaling the number of unique names in a namespace. It is also possible to
define composite names that consist of several namespaces. An URL consists usually
of three parts: protocol name, name of server, and name of the file to be accessed.

A name must be bound to a value that may be an object, a Java class or a reference to
an object or class. Remote Method Invocation (RMI) is an example of a distributed
object management system that provides a name service for mapping names to objects
residing on different computers. The object may be looked up by using the name of the
object and gets in return the object or a reference to the object.

A context is the initial starting point when searching for objects. JNDI provides a
listing facility that returns a list of items in the defined context. A lookup facility is
used to look up a single object based on an object name in the context.

4.5.2 Integration of JNDI and J2EE
JNDI is a core service in J2EE. It is used to locate Enterprise beans and to let Enterprise
beans get access to different environment variables. Other components in the J2EE
framework are also available through JNDI as for instance JMS destinations. An EJB
container is responsible for putting names specified in the deployment descriptor into
JNDI.

4.6 Web-services

4.6.1 Introduction
Web services are applications that are defined, published and accessed across the Web.
It consists of a set of technologies enabling loosely coupled applications to expose

J2EE – Java 2 Enterprise Edition Agder University College

38 Geir Melby Thesis modified 27.05.2003

service interfaces (WSDL), a protocol that enables communication between
applications (SOAP) and a registry (UDDI) for publishing the services. Together these
technologies provide a Service Oriented Architecture (SOA). Web services are an
answer to the need to integrate business applications, enabling exchange of business
information in real time. To that purpose an open and implementation independent
standard is needed, which emphasizes services rather than interconnection of
computers. Although Java RMI and CORBA are middleware for connecting
distributed applications together, they are limited in integrating a wide variety of
systems that exist over a rather unstable and firewall protected Internet. The SOAP
protocol can run on different communication protocols such as HTTP, and it supports
asynchronous communication of messages. Current web-service standards support
only synchronized communication between service endpoints. The proposal for
SOAP1.2 [47] defines an asynchronous communication style between service
endpoints. This enables networks to route service requests as SOAP messages to the
correct service endpoint like computers are addressed on the Internet today.

4.6.2 Web service technology stack
Web services are based on the three main technologies SOAP, WSDL and UDDI. In
addition there is XML [50], which is a text-based language used to describe data, a core
technology for describing service interfaces and the content of SOAP messages.

SOAP or Simple Object Access Protocol supports the encoding of arbitrary data,
usually described in XML, and the transfer of data over a channel between
communication endpoints. SOAP is wire protocol neutral and therefore can be used
over different protocols like for instance HTTP, FTP and SMTP. But because of the
ubiquity of the HTTP protocol, most implementations today use HTTP. SOAP is a
lightweight mechanism for exchange of data between heterogeneous applications that
is independent of operating systems, programming languages and network protocols.
SOAP supports a language independent Remote Procedure Call (RPC) protocol
mechanism. Specification of different encoding rules enables exchange of application-
specific data types. SOAP supports also definition of schemas for data types. This
makes SOAP a good protocol for integrating of heterogeneous applications.

WSDL or Web Service Description Language is an XML based language that describes
the functionality of Web services. It has similarities with the Interface Description
Language IDL used for instance to define CORBA interfaces. WSDL describes the
operations a Web service offers including the parameters of each operation and the
return value. But WDSL does not describe the semantics of the operations. WSDL
enables method calls to a web-service regardless of the selected RPC mechanism.

UDDI or Universal Description Discovery and Integration provides global directory
services for Web services. It supports also a protocol for publishing and discovering of
services. The Web services are described with WSDL and are stored in the UDDI as
WSDL files. The WSDL files are retrieved from the UDDI by an application developer
making it possible to make calls to Web services.

Agder University College J2EE – Java 2 Enterprise Edition

Geir Melby Thesis modified 27.05.2003 39

4.6.3 Web services in J2EE
In the recent J2EE specification Web services are a part of the J2EE API framework.
Web services and EJB are complementary technologies. EJB is a way of making an
application and Web-service is a way to offer services to other applications or clients.
The foundation for this integration was the inclusion of the XML based technologies in
J2EE. The specification J2EE1.4 require “To support web service interoperability, the
EJB 2.1 specification requires compliant implementations to support XML-based web
service invocations using WSDL 1.1 and SOAP 1.1 over HTTP 1.1 in conformance with
the requirements of JAX-RPC “

An EJB application exposes a Web service interface through a stateless session bean.
The Web service client view may be initially defined by a WSDL document and then
mapped to a web service endpoint interface that conforms to this. The WSDL
description may be stored in UDDI.

J2EE supports the JAXM protocol, which enables Java applications to send and receive
document oriented XML messages. A message bean may receive SOAP messages
instead of JMS messages. The message bean must then implement a specific interface
for receiving a SOAP message with attachment.

An Enterprise bean may also access a Web service as an ordinary Web service client,
but invoking Web services will introduce an unpredictable delay since the calls are
synchronous. A Web service endpoint is accessible for a bean through the JNDI API.

4.7 Summary
In this chapter different J2EE technologies have been presented. It has been shown that
together they comprise a complete set of API’s that can be used to develop distributed
applications, and with its recent integration with web services, J2EE applications can
be part of a globally Open Service Network. With the integration of MOM based
messaging into J2EE, J2EE now supports an asynchronous message paradigm, which
is important for the ActorFrame approach. However this approach is currently limited
by Web services that still support only synchronous communication with the RPC
mechanism.

Agder University College

Geir Melby Thesis modified 27.05.2003 41

Chapter 5 Conceptual approach to mapping
of models

There are different approaches to software engineering, which focus on how to
specify, design, implement, test and deploy software systems. The different
approaches can be divided into two categories.

• Implementation oriented where the focus is on the implementation of a system.
Although there may exist design and modeling descriptions they are not
formal and are often incomplete. The system can usually only be understood in
terms of the implementation.

• Model oriented where the focus is on the descriptions of the functionality or
the properties of the system. These descriptions constitute more or less formal
models of the system and they can be verified, analyzed and understood
independently of the implementation of the system. The models can be used
for many different implementations.

ActorFrame is based on a model-oriented approach to software engineering. This
chapter will give a description of the modeling oriented approach and the impacts this
approach has on mapping of ActorFrame models to middleware platforms.

5.1 Model oriented approach
There is seldom an easy solution to the problem of describing a complex reality. It is
not possible to have all things in mind at the same time. Separation of concern and
conceptual abstraction are two techniques that in combination can be used to manage
the complexity.

Separation of concern in this context means [28] “to factor out aspects that can be
understood one at a time and combined into an understanding of the whole”. Independent
parts of the problem should be identified and described separately. In development of
services the functionality of the service can be understood and described
independently of how to implement the service. A service like “redraw cash” can be
described and understood independent of how the system should be implemented for
instance, as an automatic teller machine or handled by a bank clerk. The mapping and
deployment of the functionality of the system to the actual realization need to be
described. These three main aspects are shown in Figure 5-1 [28].

Deployment defines a mapping between the functionality and the realization of the
system, by identifying the technology to be used and where the functionality is to be
realized. Deployment description focuses on aspects of the system that come in
addition to the core functionality such as distribution, use of middleware and class
libraries.

Conceptual approach to mapping of models Agder University College

42 Geir Melby Thesis modified 27.05.2003

Realisation

softwareelectronicsmechanics

Deployment

Functionality
(Structure + Behaviour)Reality

Descriptions
Structure Behaviour

Figure 5-1 Three main aspects [28]

Abstraction is built on the idea to remove irrelevant details in order to focus on the
essential from the actual context. Conceptual abstraction means [28] “to replace low level
concepts representing technical detail by more abstract concepts that are better suited to
describe and study some aspects”. The essential part of a service, like most software
applications, is the ability to perform logically and to handle information related to the
service. For instance it is better to describe a “depositing cash” service using the UML
language than the C programming language.

The reference model for Open Distributed Processing (RM-ODP), has defined a
different set of viewpoints: Enterprise, Information, Computation, Engineering, and
Technology, where the three first viewpoints cover the functionality aspects, and
Computational and Engineering cover Realization.

The choice of concepts for the description of the functionality is dependent on the
characteristic of the system to be described. Applications to be deployed in Service
Network as described in chapter 1.1, which are characterized by communication
between concurrently operating and physically distributed objects, are best described
in terms of communicating state machines that encapsulate data. As shown in chapter
2, UML2.0 has those concepts needed to describe this type of functionality.

There are different approaches [28] to the process of transforming the description of
the functionality to a realization:

• The elaboration approach where the functionality is described with informal or
semi informal languages, and therefore the models are incomplete and not
precise. Additional details have to be added by elaboration, during
deployment and during realization. This is the most common approach in
software engineering today also among those that use UML to describe the
functionality.

• The translation approach where the functionality is described completely and
formally. The deployment description is kept orthogonally to the functional
description to obtain transparency. There is also a trend against leaving out the
deployment information for the deployment of a component. These two
descriptions define the input to the realization, as such can the functionality

Agder University College Conceptual approach to mapping of models

Geir Melby Thesis modified 27.05.2003 43

survive technology and platform changes. The translation can be both
automatic or manually.

Model Driven Architecture (MDA) defined by OMG supports the translation
approach. The PIM model is the functional description and the PSM describes both
the implementation and the functionality aspects of the system.

5.2 Translation of models
A common way to specify the deployment is to tag the different elements of a model.
These tags are used by the translator to select the mapping rules that should be
applied for each model element. There are two principle types of tags.

• Platform specific tags where the different tags represent concepts in the
realization platform. For instance if a J2EE platform is used, the tags can
identify the different types of Enterprise java beans. This approach can be used
with MDA. The PIM is defined with UML and it should be independent of the
realization. If a J2EE platform shall be used in the realization, the different
elements of an UML model should be tagged by stereotypes defined in a UML
profile for this platform. The PIM model is then tailored with deployment
information, which transforms the PIM model to PSM model.

• Concepts specific tags where the tags represent concepts in the domain of
interest. They normally do not tell anything about the realization, only which
phenomenon it represents. How to realize these concepts, is part of the
definition of the translator. So the translator has to be changed if the realization
platform is changed. This approach is often called concept modeling. These
concepts can also be defined as stereotypes. The stereotypes are used in the
platform independent model as modeling elements. This is different from the
use of realization-oriented concepts that are added to the PIM model.

The differences between these two approaches are significant as shown in Figure 5-2.
The figure describes the different approaches to transforming of platform independent
UML models to an EJB platform using the Java programming language.

When platform specific tags are used there are two complete models that each describe
the functionality. The PIM is transformed to a PSM model by adding platform specific
information to the PIM model. The PSM model is then transformed to an
implementation using corresponding classes from the EJB java package.

Conceptual approach to mapping of models Agder University College

44 Geir Melby Thesis modified 27.05.2003

UML model

EJB java package

EJB
stereotyped model

Implementation
using

EJB classes

M
od

el
in

g

PSM

Im
pl

em
en

ta
tio

n

PlM

EJB java package

Concepts
using

EJB java package

Implementation
using

Concept classes

Concept model

Platform tags Concept tags

UML model

EJB java package

EJB
stereotyped model

Implementation
using

EJB classes

M
od

el
in

g

PSM

Im
pl

em
en

ta
tio

n

PlM

EJB java package

Concepts
using

EJB java package

Implementation
using

Concept classes

Concept model

Platform tags Concept tags

Figure 5-2 Realization versus concept tags

When concept tags are used there are also two models, but they are orthogonal
descriptions. There is only one functional model tagged with concepts. The PSM
information is placed in own descriptions, but these are independent of the concept
model. They only tell how to map the different concepts to the EJB platform. The
concept model and the deployment descriptions are used to implement the model by
extending Java classes that represents the concepts. These concept classes are again
implemented by extending classes from the EJB java package.

The figure is simplified to show the difference between these two approaches. In both
cases the transformation will generate additional information to be used at
deployment of the EJB components.

The main advantage of the concept-oriented approach is

1. There is only one platform independent model to maintain

2. Most of the implementation may be reused either when the platform changes
or when the model changes.

The main disadvantage is that if tools are used for transformation of the models, they
have to be customized or made for each concept.

There is a proposal for an UML profile for Enterprise Java Beans developed by the Java
community. The next subchapter will describe this profile and answer the question:
can it be used to describe ActorFrame models?

Agder University College Conceptual approach to mapping of models

Geir Melby Thesis modified 27.05.2003 45

5.3 UML profile for Entreprise Java Beans

5.3.1 Introduction
There are two EJB profiles defined in the proposal from the Java community [13].

• The EJB Design profile defines how to model EJB applications by using
stereotyped concepts for the different EJB concepts types of beans, interfaces
etc.

• The EJB Deployment profile is used to define artifacts in EJB terms such as ejb-
jar files.

The Design profile supports two different views.

• The code-centric view uses stereotypes that closely match the underlying Java
files. All needed EJB classes and interfaces are supported. This leads to a very
implementation oriented view. EJB requires some redundant information to be
specified for instance, create methods are defined in the implementation class
and in the local / remote interfaces.

• The ejb-centric view is more abstract and avoids exposing implementation
details. This approach is more like the approach that the TIMe methodology
[49] recommends. The ejb-centric view defines all information needed in an
Enterprise Bean class. For example is all methods that are exposed on the
different interfaces are shown as stereotyped methods on this class.

5.3.2 UML profile for EJB
This profile supports EJB version 2.0. The UML profile builds on the UML 1.4 with
some minor extensions that are included in the draft version of UML2.0.

The most important stereotypes defined in EJB Design Profile are listed in Table 2. The
different elements of PIM model can be tagged with these stereotypes telling how the
model can be mapped to the EJB platform.

Table 2 EJB Design stereotypes (stripped version) [13]

Stereotype Applies To Definition

«EJBBusiness» Method Indicates that the Method represents an instance-level
business method, a method that supports the “business
logic” of the EJB.

«EJBCmpField» Attribute,
AssociationEnd

Indicates that the Attribute or Association End
represents a container-managed field for an EJB Entity
Bean with container-managed persistence

«EJBCreate» Method Indicates that the Method represents an EJB Create
Method.

«EJBEnterpriseBean» Class Specializes the standard UML Stereotype
«implementationClass». An abstract Class that
represents an EJB Enterprise Bean..

«EJBEntityBean» Class Indicates that the Class represents an EJB Entity Bean.
Specializes «EJBEnterpriseBean».

«EJBFinder» Method Indicates that the Method represents an EJB Finder
Method.

«EJBHome» Method Indicates that the Method represents an EJB Home

Conceptual approach to mapping of models Agder University College

46 Geir Melby Thesis modified 27.05.2003

Method, either local or remote, which is a class-level
“business” method, as opposed to a “create”, “finder”,
etc. method.

«EJBLocalMethod» Method Indicates that the Method represents a method that is
exposed on either the local or local-home interface.

«EJBLocalReference» Dependency A stereotyped Dependency representing an EJB Local
Reference, where the client is an EJB-JAR and the
supplier is an EJB Enterprise Bean.

«EJBMessageDrivenBean» Class Indicates that the Class represents an EJB Message
Driven Bean. Specializes «EJBEnterpriseBean».

«EJBPrimaryKey» Usage Indicates that the supplier of the Usage represents the
EJB Primary Key Class for the EJB Enterprise Bean
represented by the client.

«EJBRealizeHome» Abstraction Indicates that the supplier of the Abstraction represents
an EJB Remote Home Interface for the EJB Enterprise
Bean Class represented by the client.

«EJBReference» Dependency A stereotyped Dependency representing an EJB
(Remote) Reference, where the client is an EJB-JAR
and the supplier is an EJB Enterprise Bean.

«EJBRelationship» Association Indicates that the EJB Entity Bean at the supplier
Association End represents a container-managed
relationship field for the client EJB Entity Bean. (EJB
2.0)

«EJBRemoteMethod» Method Indicates that the Method represents a method that is
exposed on either the remote or remote-home interface.
The former case is assumed if the EJB Business
stereotype is also present.

«EJBSessionBean» Class Indicates that the Class represents an EJB Session
Bean. Specializes «EJBEnterpriseBean».

To support the ejb-centric approach a generic stereotype EJBEnterpriseBean captures all
common properties of the different bean types. This is shown in Figure 5-3 [13]. Note
that Core::Actor which is a metaclass in UML, is not the same as the actor concept
defined in ActorFrame.

Agder University College Conceptual approach to mapping of models

Geir Melby Thesis modified 27.05.2003 47

Core::Class

«stereotype»
EJBEnterpriseBean

«TaggedValue» EJBEnvEntries
«TaggedValue» EJBJNDIName
«TaggedValue» EJBNameInJar
«TaggedValue» EJBResources
«TaggedValue» EJBResourcesEnv
«TaggedValue» EJBVersion

«stereotype»
Core::implementationClass

«stereotype»
EJBEntityBean

«TaggedValue» EJBAbstractSchemaName
«TaggedValue» EJBCmpVersion
«TaggedValue» EJBPersistenceType
«TaggedValue» EJBReentrant

«stereotype»
EJBMessageDrivenBean

«TaggedValue» EJBAcknowledgeMode
«TaggedValue» EJBMessageDrivenDestination
«TaggedValue» EJBMessageSelector
«TaggedValue» EJBTransType

«stereotype»
EJBSessionBean

«TaggedValue» EJBSessionType
«TaggedValue» EJBTransType

«stereotype»
EJBRoleNameRef

Core::Actor

«baseClass»
«baseClass»

Figure 5-3 Stereotypes and tagged values for EnterpriseBean [44]

The tagged values are mapped to deployment descriptor elements. Not all of these
have to be defined. One of the advantages of using the stereotype EJBEnterpriseBean in
the model is that a single lifeline in a sequence diagram can be used to represent the
bean. In the code-centric view the methods calls must be represented with one lifeline
for the home object, one for the remote object and one for the implementation class.
This makes the sequence diagram unnecessarily detailed.

5.3.3 Limitation of the EJB profile
This profile presented here is based on UML 1.4. UML2.0 introduces new structural
concepts as parts, ports and connectors. UML2.0 also supports a more asynchronous
communication style and the use of state machines to model complex behavior. How
shall these concepts be mapped to EJB?

For each concept the EJB profile has defined, a set of constraints that should be applied
to UML classes that represent the concept. The stereotype EJBEnterpriseBean, which is
the super class for the different beans as shown in Figure 5-3, has set a constraint on
UML classes that cannot be active (isActive=false). This prohibits use of state machines
in the classes, which is the core concept in ActorFrame. It has also restricted use of the
concurrency property of operations in UML to be sequential. In UML2.0 the behavior
of operations may be described by use of state machines. This profile allows use of
message beans, which support asynchronous communication, but it is not clear how
this restricts the UML model from using asynchronous communication when sending
signals between UML classes.

Conceptual approach to mapping of models Agder University College

48 Geir Melby Thesis modified 27.05.2003

5.4 Use of UML profile for EJB for ActorFrame modeling
How the actor concepts should be expressed in the PIM model is important. If the
UML profile for EJB is used to represent the actor concept, the actor concept will be a
platform specific concept telling how the actor concept can be implemented on the EJB
platform. Platform specific information should be avoided in the PIM model. The actor
concept must therefore be represented by general UML classes or by predefined
classes that represents the actor concept. It is not, in the general case, possible for a
translator to know that these specific classes shall be mapped to a specific pattern in
the PSM model unless this information is present in the PIM model. If the actor
concept shall be mapped to the classes X and Y in the PSM model, the PIM model must
also reflect the same structure. This is illustrated in Figure 5-4 where classes X and Y
together represent the actor concept in the PIM model. Class Y represents the state
machine and class X represents the state data for the actor.

UML model A

X

EJB package

Home Entity MessageRemote

UML EJB Stereotyped model

<<entity>>
X

<<message>>
Y

Java classes

XHome XRemote XEntity Message

M
od

el
in

g

PSM

Im
pl

em
en

ta
tio

n

PlM YY

Figure 5-4 Use of UML profile for EJB for ActorFrame modeling

The UML profile for EJB can then be used to make a PSM, where class X is stereotyped
with the <<entity>> tag and class Y with the <<message>> tag. The translator can then
map objects of these classes to the corresponding Java classes as shown in the figure
above.

This solution has the following weaknesses:

• The actor concept is invisible in PIM model, which reduces the effect of using
the actor concept.

• The PIM model consists of more classes than necessary because two classes
represent each actor.

• The PIM model is inspired by the underlying concepts such as the state data
class is related to the to entity bean. Changes in the platform may then affect
the PIM model.

Agder University College Conceptual approach to mapping of models

Geir Melby Thesis modified 27.05.2003 49

A single UML class can also represent the actor concept, but then the problem remains
of how to mark this class such as it is recognized as an actor. A better solution is to
make an UML profile for ActorFrame and then use this profile in the PIM model. This
profile will then express the actor concept independent of the realization. An UML
profile for ActorFrame is proposed in chapter 7.2.

5.5 Summary
This chapter has presented a model-oriented approach to software engineering. It has
also presented different approaches to transformation of models. If the models are
described with formal languages, they can also be used for a translation approach to
model transformation. Models are then tagged with specific tags representing either
platform or domain specific concepts. An UML profile for the EJB platform was
presented. Concepts and approaches defined in this chapter will be used later as a
reference for discussion.

Agder University College

Geir Melby Thesis modified 27.05.2003 51

Chapter 6 Mapping of ActorFrame to J2EE

There are many possible ways of mapping ActorFrame to the J2EE platform. Each
alternative has different characteristics regarding performance, resource usage,
persistence etc. In this chapter the different mapping possibilities are discussed
separately although they are dependent of each other. However, these dependencies
will be taken into consideration when a concrete proposal shall be made as it is done in
chapter 8.

6.1 Mapping strategies
In chapter 5, different approaches to implementation of models were presented. The
choice of approach depends on the methodologies in software engineering that are
used. The intention behind ActorFrame is to support a model oriented approach to
software engineering. Formal models of the functionality should be made with
ActorFrame concepts described as stereotyped UML models. These ActorFrame
models can then be verified and validated through simulation, and code can be made
for the target platform. This approach has proven to be beneficial especially if good
tools are available, and thereby enabling automatic code generation [45].

A model-oriented approach enables a translational approach to be applied. In chapter
5.3 a UML profile for the EJB platform was presented. This UML profile used
realization specific concepts to tag the UML model. But ActorFrame supports concept
modeling, so the actor concept should be used in modeling. All elements of the model
that represent an actor should be tagged with a concept specific tag for an actor. The
translator will for all elements in the model tagged as an actor, do a translation of the
element to the specific platform according to mapping rules or pattern.

The mapping of the ActorFrame concepts to the EJB platform and a UML profile for
ActorFrame modeling need to be specified. A UML profile for ActorFrame is proposed
in chapter 7.2. The rest of this chapter will describe alternatives for mapping
ActorFrame concepts to a J2EE platform. Chapter 7 describes a framework called
EJBActorFrame, which is a class library used to implement actors on the EJB platform.

6.2 Mapping issues
The following requirements are important for selection of mapping strategies from
ActorFrame to J2EE:

• Asynchronous communication between state machines

• Parallel or quasi parallel execution of the state machines (active classes)

• The persistency of state machines

Mapping of ActorFrame to J2EE Agder University College

52 Geir Melby Thesis modified 27.05.2003

• The scalability of mapping solution meaning the possibility to distribute state
machines

• How efficiently the solution uses the resources managed by the container

• Performance achieved by the different solutions

• How the solution is “faithful” to the intention of the design of middleware. For
instance: a solution can be possible, but the middleware was not intended to be
used in that way.

• The size of the code that has to be implemented. If the implementation is done
manually, it is important that the mapping is as trivial as possible. For example
how many java classes have to be implemented for each state machine.

• Portability of the application to new platforms.

6.3 Strategies for mapping of state machines
An important question is how the set of state machines shall be mapped to the beans.
There exist 3 possible solutions:

1 All state machines are implemented in one bean

2 One state machine is implemented in one bean

3 A combination of 1 or 2.

The choice of solution will influence heavily the characteristics of the implemented
systems.

6.3.1 Multiple state machines in one bean
One possible solution is to map multiple state machines into one bean as shown in
Figure 6-1. A bean is run in one Java thread and no other treads are allowed to be
spawned from the bean. Because of this restriction, the bean itself has to manage the
concurrent execution of the state machines. How does the bean execute a state
machine and how does it select which state machine is to be started?

Agder University College Mapping of ActorFrame to J2EE

Geir Melby Thesis modified 27.05.2003 53

Remote

Home c:C d:D

a:C b:C

myActor: Bean

ShedulerRemote

Home c:C d:D

a:C b:C

myActor: Bean

Sheduler

MyActor

c:C

d:D

a,b:C

MyActorMyActor

c:C

d:D

a,b:C

d:Dd:D

a,b:C

Figure 6-1 All state machines into one bean

A possible solution is to have one internal queue for each state machine. A state
machine that has one or more messages in the input queue is ready to execute. If
several state machines are ready for execution, the scheduler selects one of the state
machines according to a scheduling principle like “round robin”. When no state
machines are ready, the container then suspends the bean until new messages are sent
to the bean. The bean then puts the message into the input queue for the state machine
according to the value of receiver address field of the message.

This solution is used by the JavaFrame system. It is very efficient with respect to
message passing between the state machines that belong to the same bean. The
messages are sent as references between the state machines.

On the other hand this solution has some drawbacks. It does not scale very well. As all
state machines reside in one bean, they cannot be distributed without doing a
redesign. It does not utilize the management functionality that the container supports
for instance transaction control and scheduling of beans.

Another important restriction that has to be fulfilled is that the state machine cannot
be allowed to wait during a transition. Ideally a transition should take no time. A state
machine should for instance not perform RPC or RMI calls that entail blocking or
waiting situations. No other state machines can be executed during the time the
transition takes. All interactions that take time should therefore be realized by
asynchronous communication, thus avoiding and allowing other state machines to be
executed while awaiting a response.

In the next chapter another solution is presented that does not have these limitations.

Mapping of ActorFrame to J2EE Agder University College

54 Geir Melby Thesis modified 27.05.2003

6.3.2 One state machine in one bean
The other extreme mapping strategy is to use one bean to implement one state
machine. Then there is no need for a special scheduler, because the container does the
job. The bean, which is actually the state machine, receives messages addressed to it
and executes the transition. Each state machine owns one thread and it may interact
with other resources since blocking of the state machine is not a problem. The
container is responsible for executing concurrent state machines that also receive
messages. The state machines can be distributed freely on different machines thus
achieving a more scaleable solution.

Remote

Home c:C d:D

a:C b:C

myActor: Bean

ShedulerRemote

Home c:C d:D

a:C b:C

myActor: Bean

Sheduler

MyActor

c:C

d:D

a,b:C

MyActorMyActor

c:C

d:D

a,b:C

d:Dd:D

a,b:C

Figure 6-2 One State Machine into on bean

It is also easy to use the transaction control service that the container offers. For
instance if a state machine sends several messages during a transition and one or more
of these messages fail to be received by a state machine then transaction control will
redraw the messages that have been sent. A precondition is that the messaging system
is integrated with the transaction control system that the container has. As described in
chapter 4.4, the Java Message System is integrated with EJB as defined in J2EE 1.4.

A major drawback with this solution is that it uses too many resources. A system may
consist of thousands of state machines and requiring one JMS queue or message bean
for each state machine will probably not scale very well.

6.3.3 Group of state machines in one bean
Between these two extremes described above there exists a solution that balances the
number of beans required and the number of state machines in each bean. Normally a
system consists of a smaller number of different types of state machines. The number of
instances of each type of state machine may vary a lot from a single one to thousands.
As illustrated in Figure 6-3 all instances of a state machine type can be implemented by
one bean.

Agder University College Mapping of ActorFrame to J2EE

Geir Melby Thesis modified 27.05.2003 55

Remote

Home d:D

D: Bean

ShedulerRemote

Home d:D

D: Bean

ShedulerRemote

Home c:C

a:C b:C

C: Bean

ShedulerRemote

Home c:C

a:C b:C

C: Bean

Sheduler

MyActor

c:C

d:D

a,b:C

MyActorMyActor

c:C

d:D

a,b:C

d:Dd:D

a,b:C

Figure 6-3 State machines of same type into one bean

This solution maintains the strengths of the above solution, and it reduces the
weaknesses of the two other solutions. This solution has several advantages:

• The number of beans are reduced, which is a drawback of the “one2one”
solution

• Transaction control between state machines is possible

• Enable an efficient handling of persistence of state data

• The resource control in the container is better utilized

• All instances of a state machine type share common behavior that can be
implemented as the behavior of a bean.

6.4 Kind of bean to be used
In chapter 4.2 the different types of bean were presented. In the following subchapter
it will be discussed what the differences between the beans will mean for the mapping.

6.4.1 Session beans
The intention of session beans is to serve typical client requests that last some time.
Stateless beans are used for single requests and statefull beans are used for multiple
requests from the same client. A statefull bean keeps state information during a
session. It is possible to use both variants for implementation of state machines. The
choice depends on how long time the state machines should last. In most cases a
statefull session bean could be used for implementation of state machines that are
relatively short lived and need not to be persistent.

Mapping of ActorFrame to J2EE Agder University College

56 Geir Melby Thesis modified 27.05.2003

A session bean can be used for implementation of both single and multiple state
machines. It exists as long as a client has references to it. The EJB standard
recommends that only a single client should keep a reference to a session bean.

Session beans are not allowed, according to the standard, to receive JMS messages
asynchronously. However session bean can send and synchronously receive JMS
messages.

6.4.2 Entity bean
Normally entity beans are used for storage of data. A CMP entity bean can be used to
achieve persistence of state data. It also provides transaction control. An entity bean
can also be used to implement instances of a state machine type. A client can access an
entity bean by finding the methods that the entity bean provides. Then it calls the state
machine with a message. The state data is accessed directly during a transition.

Access to entity beans should normally be relatively short-lived. An entity bean can
use JMS to send messages and receive messages synchronously. However, entity bean
should not wait for synchronized reception of messages because this will cause other
beans that call the entity bean, to be blocked.

6.4.3 Message bean
A message bean is designed for receiving messages from JMS. It does not provide
persistence of data and it is normally short-lived. The JMS Destination controls the
execution of the bean. When a message arrives at the JMS Destination specified at
deployment time, the container activates a random message bean from a pool of
message beans.

A message bean can implement a state machine, but it cannot store data for that
particular instance. It has to use another storage medium for that or it may use CMP
entity beans which also provide persistence and transaction control. The behavior
structure of the state machine, which is common for all instances of the same state
machine type, can be stored in the message bean.

The container provides multiple instances of message beans in a pool created at
deployment time. So more that one message bean may receive messages for the same
state machine. This must be prohibited because the same state machine cannot execute
simultaneously. A bean managed transaction control can be used to lock entity beans
for access while state machine execute transitions. This mechanism is the Isolation part
of the ACID mechanism that EJB supports.

A message bean is very simple to implement. It has no remote or home interfaces. This
solution will scale well. Only few message beans are necessary for a specific state
machine type. The state data for each state machine will be “loaded” and “stored” for
each transition. This may on other hand lead to performance problems.

6.5 Asynchronous communication
As outlined in chapter 1, asynchronous communication between the state machines is
essential. The first versions of J2EE did not provide asynchronous message passing.

Agder University College Mapping of ActorFrame to J2EE

Geir Melby Thesis modified 27.05.2003 57

Version 2.0 integrated JMS with EJB to achieve this. The message bean is integrated
with JMS and this provides a good solution for asynchronous communication between
state machines. The other types of beans can only send and synchronously receive JMS
messages, which means that the bean can call a JMS destination and then wait for a
message. This will block the bean to be called by other beans or clients.

JMS provides different mechanism that can be used to make an infrastructure of state
machines. In principle there are the following possibilities:

1. All state machines share the same queue.

2. One queue for each state machine

3. Combination of alternative 1 and 2

The advantages and drawbacks of each of the solutions are discussed below.

6.5.1 All state machines share the same queue
As illustrated in Figure 6-4 it is possible to let all state machines receive messages from
the same queue. JMS supports a mechanism to select a message by specifying a pattern
that the message must match. The pattern can be evaluated against fields in the header
or property fields of a message. Using a property field that specifies the receiving
address of the state machine can be used to do the message selection. This works also
for beans that implements multiple state machines.

StateMachine
c:C

StateMachine
d/a:C

StateMachine
d/b:C

StateMachine
d:D

--

Figure 6-4 All state machines share same queue

This solution is simple both to implement and to use. All output messages are sent to
the same queue. There is no need for addressing the right queue.

However this solution does not scale very well. A real application with many state
machines waiting for messages from the same queue will probably cause poor
performance. The container will spend time checking the selection patterns to find the
right state machine to send the message to.

Mapping of ActorFrame to J2EE Agder University College

58 Geir Melby Thesis modified 27.05.2003

6.5.2 One queue for each state machine
It is also possible to create one queue for each state machine. This is shown in Figure
6-5. With this solution the message selection concept in JMS is not needed. The state
machine that waits on a queue shall receive all messages that are sent to that queue.

StateMachine
c:C

StateMachine
d/a:C

StateMachine
d/b:C

c/Cc/C

d/a/Cd/a/C

d/b/Cd/b/C

StateMachine
d:Dd/Dd/D

Figure 6-5 One queue for each state machine

An advantage of this solution is the simplicity of the process of receiving messages. On
the other hand the state machine must select which queue it shall send messages to. So
sending message is a little bit more complicated.

This solution does not scale very well either because of the number of queues that
have to be created. This probably requires too much memory and processing resources
on the application server.

6.5.3 Combination of alternative 1 and 2
A better solution is to balance the number of queues with the complexity of receiving
the message. A solution is to group all state machines of the same type into one bean
and let this bean wait for message from only one queue. This is the same principle
solution as presented in chapter 6.3.3.

This solution will reduce the number of queues and increase the performance. The
receiving bean needs only to “load” and “store” the state data for the state machine
that is addressed in the message.

Agder University College Mapping of ActorFrame to J2EE

Geir Melby Thesis modified 27.05.2003 59

StateMachine
d:DDD

StateMachine
c:C

StateMachine
d/a:C

StateMachine
d/b:C

CC

Figure 6-6 State machine of same type share one queue

6.6 Structural relations
Structural relations are concepts in UML that describe the structure of the model. It
describes what a class consists of (parts), which classes are associated and how classes
are connected to each other.

It is important to understand that this structural information serves different purposes.

• It describes or specifies what are legal associations, what a class may consist of
and how ports are connected to each other. At runtime this information should
be used to check the legality of operations.

• The structural information is also an important part of the behavior of the
model. This information must be stored at runtime to take care of changes in
the runtime model such as creating or deleting parts or associations. For
example, to delete an instance of a class also means that all its inner instances
must be deleted.

As long as a state machine is part of a class, the same structure also applies to the state
machines. Even if state machines are implemented in a flat structure, the structural
information in the implementation needs to be taken care of.

How to map this information for each of the concepts is described below.

6.6.1 Parts
The part concept in UML, as described in chapter 2.3, is used to make a structure of a
class. It is used to construct a class that consists of other instances of other classes.
These inner parts exist only as part of the surrounding object of the class. This is
illustrated in the Figure 6-7. The structure is a part of the behavior of the model. For
example, if the state machine d:D is deleted, all its inner state machines will also be
deleted.

Mapping of ActorFrame to J2EE Agder University College

60 Geir Melby Thesis modified 27.05.2003

MyActor

c:C

d:D

a,b:C

MyActorMyActor

c:C

d:D

a,b:C

d:Dd:D

a,b:C

Figure 6-7 Parts in UML2.0

There is no counterpart in EJB to the part concept. The information about the structure
has to be stored in the state machine. This is done in ActorFrame by extending the
state data of the state machine with information about its inner actors and the
containing actor.

Another possible solution is to use CMP entity beans for storing this information. the
“SQL” statements in EJB can then be utilized to find those state machines that are part
of its structure.

6.6.2 Associations
Mapping of associations can be done in a similar way as for parts. In this context
associations are references to other state machines. But EJB also has a concept called ejb-
ref and ejb-local-ref that is used to keep references to other beans. The only difference
between these is that ejb-local-ref refers to the local home interface, which means that
the referenced entity beans have to reside in the same JVM. This is guaranteed when
the two beans are deployed in the same ejb-jar. These references are set in the
deployment descriptors.

The entity bean also supports associations between locally deployed entity beans. This
may be used to map UML association between instances of passive classes.

Ejb-ref and ejb-local-ref may be used to map one-to-one references to other ejbs that
are not state machines, but they cannot refer to message beans. The most general
solution is therefore to associations as part of the state data of the state machine.

6.6.3 Connectors
Connectors (see chapter 2.3.3) are used to connect ports together. A connector can
convey messages. Connectors could be mapped to ejb-references, but should then be
restricted to connect objects of passive UML classes. As will be presented in chapter
6.7, JNDI is used to find the addresses of other state machines, so connectors could be
mapped to JNDI names set at deployment time.

6.6.4 Ports
Ports, see chapter 2.3.2, are used to specify connection points of a UML class. All
communication with external objects can be done through ports. Ports can also pass
messages. Ports can be mapped to JMS destinations, which may either be a queue or a
topic. State machines are logically connected to JMS queues. A queue will then

Agder University College Mapping of ActorFrame to J2EE

Geir Melby Thesis modified 27.05.2003 61

represent a one-way port in UML. Messages sent to the queue, will be received by the
corresponding state machine. This solution will be further described in chapter 7
where the EJBActorFrame is described.

6.7 Naming of state machines
Naming is a critical issue when it comes to addressing state machines. In UML objects
may have references to other objects. Sending a message to a state machine is done by
using the reference to the other object.

An ejb bean can be globally referenced. JNDI (see chapter 4.5) is used to store global
names for the beans. These names can be set at deployment time, so one solution is to
map names of ports to JNDI names that refer to a JMS destination. State machines will
then be associated with the JNDI name of the JMS destination.

Another problem is to make names globally unique. The instance name of a state
machine in UML has to be qualified with the instance names of the containing state
machines. Instances of the same state machine type can be created with the same
name, but only if they are created in different name scopes. This is illustrated in Figure
6-8, where two instances of class C are created, but they can be distinguished by
adding the instance name of containing object. These two instances will therefore be
named in the context of class MyActor, as c/C and d/c:C.

Class D

c:C

Class DClass D

c:C

MyActorMyActor

c:C

ActorActor

Address: c:C Address: d:D Address: d/c:C

ActorAddress

actorId: String
actorType: String

ActorAddressActorAddress

actorId: String
actorType: String

d:D

c:C

d:Dd:D

c:C

Figure 6-8 Name scope for actors

6.8 Summary
This chapter describes different solutions to mapping of ActorFrame concepts to the
J2EE platform. Each concept has been discussed separately, but some of these
mappings are dependent on each other. This has to be considered when a concrete
mapping solution shall be made.

Agder University College

Geir Melby Thesis modified 27.05.2003 63

Chapter 7 Framework for implementation of
actors on J2EE

7.1 The mapping solution
The mapping solution selected is according to the framework approach described in
chapter 5.1. The UML model is modeled using Actors, which are described in chapter
3.2.1. In chapter 6 alternative mappings are discussed. There is not a single mapping
solution that fits to all implementations. This mapping is chosen to solve the problem
stated in chapter 1.7.

Message * State data
myPos = ”Asker”
curState = ”Idle”

State data
myPos = ”Asker”
curState = ”Idle”

State data
myPos = ”Oslo”
curState = “wait”

State data
myPos = ”Oslo”
curState = “wait”

queuequeue

Signal
pos

State data
curState = ”idle”
myPos = ”Asker”

Message bean

State machine

Entity beans

Composite state
state idle

input: pos
state wait

JMS queue

Figure 7-1 Implementation of state machines

The principle solution for mapping of state machines to an EJB middleware platform
is shown in Figure 7-1. The state machine is implemented as part of a message driven
bean that receives signals from a single JMS queue. The state data is stored as entity
beans. The state data is copied to the state machine to obtain a backward compatibility
of previous implemented state machines. The reasons for selecting this mapping
solution are:

• Use of entity beans to achieve persistency and transactional support of state
data.

• Use of message beans to get a seamless integration with JMS, to achieve
asynchronous communication and to limit the amount of queues.

• Use of entity beans, which are optimized for large amounts of data, to achieve
scalability and persistent storage of state data.

• To use EJB as it was intended.

Framework for implementation of actors on J2EE Agder University College

64 Geir Melby Thesis modified 27.05.2003

The main drawback caused by splitting the state data from the state machine behavior
is partly reduced by using local references between the message bean and the entity
bean. Calls to state data are then done by reference avoiding the extra burden caused
by invoking RMI.

The implementation is split into three layers as shown in Figure 7-2 EJBActorFrame.

• Java code that implements the application specific functions. It uses
ActorFrame classes from the EJBActorFrame package.

• EJBActorFrame is the actual implementation of the ActorFrame concepts that
the model is using.

• The EJB package provides classes for implementation of EJB applications.

EJB ejb package

Home EntityBean Message
DrivenBeanEJBObject

Java classes

MyActorCSMyActorSM

EJBActorFrame

Actor ActorBean ActorSM ActorCS State

MyActorHome MyActorBeanMyActor

Composite ActorAddressState
Machine

ActorHome

StateDataBeanStateDataStateDataHome

M
od

el
in

g Actor model

<<actor>>
Actor MyActor

Im
pl

em
en

ta
tio

n

EJB ejb package

Home EntityBean Message
DrivenBeanEJBObject

Java classes

MyActorCSMyActorSM

EJBActorFrame

Actor ActorBean ActorSM ActorCS State

MyActorHome MyActorBeanMyActor

Composite ActorAddressState
Machine

ActorHome

StateDataBeanStateDataStateDataHome

M
od

el
in

g Actor model

<<actor>>
Actor MyActor

Im
pl

em
en

ta
tio

n

Figure 7-2 EJBActorFrame

It is the implementation of the classes in the EJBActorFrame package that is specific for
the EJB platform. These classes have the same signature as the classes in the
ActorFrame package, which ensure the portability of the implementation to other
middleware platforms.

Figure 7-3 describes how the different parts of class MyActor are mapped to
EJBActorFrame classes. Each of the numbered arrows represents a mapping. These are

1. The actor type is mapped to the name of the different interfaces of the entity
bean and to the class name for the entity bean implementation class.

2. The instance name “actor” is mapped to a primary key representing the entity
bean instance.

3. The state data is mapped to persistent data in the entity bean.

4. Methods for set and get values of the different state data are defined in the
entity bean’s remote (local) interface such as getMyPosition.

Agder University College Framework for implementation of actors on J2EE

Geir Melby Thesis modified 27.05.2003 65

5. The state data is also mapped to property definition of a variable of class
ActorSM.

6. The behavior definition of the class Actor is mapped to the class ActorCS.

7. The port Actor is mapped to a JNDI name of the input queue for the state
machine.

Actor: Entity Bean

onMessageActorActor
Actor

getMyPosition

ActorHome
ActorBean

myPosition

ActorSM

ActorCS

Actor: Message Bean

Actor

actor = ”actor”,”Actor”State machine ActorCS State data
myPosition

Actor
Port

1234567

Figure 7-3 Mapping of Actor class to EJBActorFrame classes

The following subchapters will describe the different parts (classes) of EJBActorFrame.
A mapping of an example is described in chapter 8.

7.2 UML profile for ActorFrame
The stereotypes needed to model ActorFrame are defined in the profile package
ActorFrame as shown in Figure 7-4. The sterotypes are used to define constraints and
to add tagged values to stereotype classes. The stereotype actor represents the actor
concept in ActorFrame. Actor should not be mistaken with the actor concept that is
used in use case diagrams in UML. The stereotype ActorMsg represents the only
message type that actor may receive and send. The stereotype ActorAddress represents
the name of an actor instance. All these stereotypes are described below.

Framework for implementation of actors on J2EE Agder University College

66 Geir Melby Thesis modified 27.05.2003

<<stereotype>>
actor

actor : ActorAddress

<<metaclass>>
Class

<<stereotype>>
ActorAddress

actorId : String
actorType : String

<<profile>> ActorFrame

<<stereotype>>
actorMsg

sender : ActorAdddress
Receiver : ActorAddress

<<metaclass>>
Signal

<<stereotype>>
actor

actor : ActorAddress

<<stereotype>>
actor

actor : ActorAddress

<<metaclass>>
Class

<<metaclass>>
Class

<<stereotype>>
ActorAddress

actorId : String
actorType : String

<<stereotype>>
ActorAddress

actorId : String
actorType : String

<<profile>> ActorFrame

<<stereotype>>
actorMsg

sender : ActorAdddress
Receiver : ActorAddress

<<stereotype>>
actorMsg

sender : ActorAdddress
Receiver : ActorAddress

<<metaclass>>
Signal

<<metaclass>>
Signal

Figure 7-4 Profile for ActorFrame

7.2.1 Actor
The stereotype actor extends the metaclass Class in UML and it represents the actor
concept defined in ActorFrame. The actor concept can also be described in UML as
shown in Figure 7-5, which is stereotyped with actor. The Actor class has one in port
and one out port. An actor has an “own behavior”, which is illustrated with a rounded
rectangle connected to the in port. The “own behavior” is the actor behavior such as
the RoleRequest protocol described in chapter 3.2. The behavior is described with a
state machine that is defined separately. The actor class can have inner actors as parts
and their ports are connected to the ports of the containing actor.

<<actor>>
Actor

innerActor:Actor[*]

in

out

out

in

<<actor>>
Actor

innerActor:Actor[*]innerActor:Actor[*]

in

out

out

in

Figure 7-5 Class Actor

The actor concept in ActorFrame supports a subset of features in the class Class in
UML. The following constraints are therefore placed on the stereotype:

• Provided interfaces have only signals stereotyped with ActorMsg

• A port has either a provided or a required interface: the in port

• The Actor class has only one port with provided interface: the out port

• The Actor class has one port with required interface

• The Actor class has no operations that are publicly visible

Agder University College Framework for implementation of actors on J2EE

Geir Melby Thesis modified 27.05.2003 67

• The output statement in the actions language can only send to a port with a
required interface

• An Actor supports the RoleRequest protocol

• All instances of class Actor must have a unique instance name

• The class is set to be active meaning that it has its own thread of control

• The in and out ports are protocol ports, which mean that they contain own
behavior

• The class Actor has an own state machine that supports the RoleRequest
protocol

7.2.2 ActorMsg
The stereotype ActorMsg is a signal with the properties sender and receiver, which are
stereotyped with ActorAddress.

There is one constraint for ActorMsg. The receiver of the signal has to be set prior to
sending of ActorMsg signals.

7.2.3 ActorAddress
The stereotype ActorAddress represents the global address of an actor instance. It has
the properties actorId and actorType, which both are strings.

There is no constraint defined for ActorAddress.

7.3 Principle behavior of EJBActorFrame
In Figure 7-6 the conceptual solution of the implemented state machine is shown. An
asynchronous message passing is obtained by using a JMS queue for reception of
signals to the state machine. A message driven bean contains the behavior of the state
machine and the state data is stored in entity beans.

Actor: Entity Bean

onMessageactoractor Actor

ActorHome

ActorBean
ActorSM

ActorCS

Actor: Message Bean

1

2

3

4

5

67

8

other
actor
other
actor

Figure 7-6 Operation of an actor state machine

Input signals trigger transition in the state machine. This is obtained through
following the steps numbered according to the figure above.

1. A JMS message is sent to the queue named “actor”.

Framework for implementation of actors on J2EE Agder University College

68 Geir Melby Thesis modified 27.05.2003

2. JMS calls the onMessage method in the message bean with the message as
parameter. The onMessage method checks if the message contains an actor
message (type ActorMsg). If not, the message is skipped.

3. The reference to the entity bean’s home object was obtained through lookup
in JNDI name server when the message bean was created. This reference is
now used to call the findByPrimary() method, which finds the entity bean that
contains the state data of this actor instance. The instance identification is
obtained through the receiver address of the received message. The
findByPrimary() method returns a reference to the actor object of the entity
bean.

4. The onMethod() calls the method getCurrentState() in the Actor interface of the
entity bean, which returns a string currentStateId representing the current
state. Eventually a transaction will be started.

5. The actual state object is found by searching through the state hierarchy to
find the state that is equal to the currentStateId. A reference to this state is
stored in the currentState variable.

6. The execTrans() method of the current state object is called with an instance of
ActorMsg as a parameter. ExecTrans() checks if the current state contains this
signal. If so, a transition is triggered.

7. New signals may be sent during the transition to other JMS destinations
representing the input queues for other actors.

8. If the destination of the transition is a new state, the currentStateId is updated.
The state data is stored in the entity bean by calling the setCurrentState()
method of the entity bean. The transaction is eventually ended.

The steps above are similar for all sub types of class Actor. If sub types of class Actor
are defined, the state date for the subtypes may be extended with new attributes. If so,
the instances of these attributes have to be retrieved from the entity bean defined for
that subtype. This will be explained in chapter 8, where an example of implementation
of subtype of an actor is shown.

7.4 Description of EJBActorFrame
EJBActorFrame consists of two parts of classes, behavior and state data related classes.
In Figure 7-7 the classes for implementation of the behavior of the state machine are
shown. Most of these classes are equal to the classes in ActorFrame described in
chapter 3. The main difference between EJBActorFrame and ActorFrame is
implementation of the class StateMachine. This class implements the interface
MessageDrivenBean from the EJB package. As described in chapter 4.2.3.3, the
MessageDrivenBean interface contains only the onMessage method, which receives
messages from specified JMS queues. Class StateMachine has references to the
interfaces of the entity bean where the state data of the state machine is stored.

Agder University College Framework for implementation of actors on J2EE

Geir Melby Thesis modified 27.05.2003 69

ActorCS
(f rom j avafram e)

ActorSM
(f rom ja vaframe)

MessageDrivenBean

onMess age()

(from ejb)

<<Interface>>ActorAddress
(from ja vafram e)

State
(f rom j avafram e)

CompositeState
(from javaframe)

StateDataHome
(from javaframe)

<<Interface>>
StateMachine
(from ja vafram e)

1

StateData
(from javaframe)

<<Interface>>11

1

Figure 7-7 EJBActorFrame classes

In Figure 7-8 the classes for implementation of state data as an entity bean are shown.
The class StateDataBean is the implementation class of the entity bean. It contains the
definitions of each data element of state data. State data contains a string currentState
that represents the current state of the state machine and an actor identity myId, which
is also the primary field for the entity bean.

As presented in chapter 4.2.3.1 the properties of an entity bean are specified by
defining abstract “get” and “set” methods for each of the properties. These are listed
in the operation field of the class StateDataBean marked with cursive script. The other
methods in class StateDataBean are the standard methods that an entity bean has to
implement according to the EJB standard. These methods are empty, but they may be
overridden in subclasses of the class StateDataBean.

StateDataHome

findByPrimaryKey()
create()
findAll()

(from javaframe)

<<Interfac e>> StateDataBean

setMyId()
getMyId()
getCurrentStateId()
setCurrentStateId()
ejbRemove()
ejbActiviate()
ejbPassivate()
ejbLoad()
ejbStore()
setEntityContext()
unsetEntityContext()

(from javaframe)StateData

s etM yId()
getM yId()
getCurrentState()
s etCurrentState()

(from javaframe)

<<Interface>>

EJBHome
(from ejb) EJBObject

(from ejb)

<<Interface>>
EntityBean

(from ejb)

<<Interfac e>>

Figure 7-8 State data classes

Framework for implementation of actors on J2EE Agder University College

70 Geir Melby Thesis modified 27.05.2003

Each of the get and set methods are also specified in the interface called StateData.
These methods define the business methods that are available for other beans, which
in this case is the class StateMachine.

The interface StateDataHome defines the methods used to find or create entity beans.
The method findByPrimaryKey() finds the state data for a specific state machine
instance. The primary key myId represents a unique identification of a state machine
instance.

The class StateMachine is the only client that accesses the StateData entity bean. To
optimize access to state data the local home and remote interfaces are used1. A method
call to the state data bean is then done by reference and not RMI. A prerequisite is that
both the entity bean and the message bean are deployed in the same jar file.

7.5 The implementation of state machine as a message bean
The class StateMachine implements the message bean interface. This interface contains
one method onMessage that is called by the container when the message bean receives a
JMS message.

StateMachine is an abstract class. It contains abstract methods that must be defined in
the concrete subclasses of class StateMachine. These methods are listed in Table 3.
Common for all these abstract methods are that they are specific for the EJB bean that
implements the subtype of class StateMachine. These methods are called from the class
StateMachine. In the definition of the class StateMachine the goal has been to simplify
what has to be implemented in the subtypes. In general the class StateMachine contains
functionality needed to execute a general state machine including persistency of state
dataAn example is given in chapter 8 to illustrate this.

Class Actor is a subtype of class StateMachine and it defines all the abstract methods
listed in the table below. A new class that is a subtype of class Actor does not therefore
define these methods.

Table 3 Abstract methods in class StateMachine

Finds all instances of a state machine type and returns a
collection of references to the local objects

findAllInstances

Finds an entity bean with the specified instance name and
returns a reference to the local object

findEntityBean

Creates a new instance of the state machine, which
means a new bean

createInstance

Stores the attributes of the subtyped state machine that is
specific to the subtype.

storeData

Reads the state data that is specific for the subtype into
the corresponding attributes of the sybtype

getData

DescriptionAbstract method

Finds all instances of a state machine type and returns a
collection of references to the local objects

findAllInstances

Finds an entity bean with the specified instance name and
returns a reference to the local object

findEntityBean

Creates a new instance of the state machine, which
means a new bean

createInstance

Stores the attributes of the subtyped state machine that is
specific to the subtype.

storeData

Reads the state data that is specific for the subtype into
the corresponding attributes of the sybtype

getData

DescriptionAbstract method

1 Because the application server JBOSS seems not to support use of local interfaces of beans,
the ordinary remote interfaces were in the implementation of EJBActorFrame package. JBOSS
supports optimization of calls between beans deployed in the same container.

Agder University College Framework for implementation of actors on J2EE

Geir Melby Thesis modified 27.05.2003 71

The behavior of the state machine is defined by extending the class CompositeState. The
implementation follows the pattern defined for JavaFrame.

7.6 Persistence of state data
The major advantage of using entity beans is that persistency of state data is achieved.
State data is stored in underlying databases and the container synchronizes the state of
data in memory with the database. In this system, which is based on read and write of
state data at every transition, this may cause performance problems. It is therefore
important that the size of data to be stored in entity beans is as small as possible.

State (idle)

ActorSM

myActorCS

ActorCS ()

Idle:State

busy:
CompositeState BusyCS (busy)

wait:State

enclosingState

enclosingState
enclosingState

currentState

State (wait)

enclosingState

Figure 7-9 Dependency of the state hierarchy

The state data for an actor type is current state and the instance id of the state machine.
In JavaFrame current state is a reference to the state object. That solution is appropriate
when the current state is kept in memory during the lifetime of the actor. But not
appropriate in the case where the state data is stored in a database, all variables in the
state data are serialized before they are stored. When an object is serialized all
referenced java objects are also included in the serialization. Figure 7-9 shows an
example of structure of a state machine. As this figure shows currentState in class
ActorSM refers to the state wait. As explained in chapter 3.3.2, a state also has a
variable enclosingState that refers to its enclosing state, which in this case is the state
busy. A CompositeState contains references to its sub states and when currentState is
serialized the whole state hierarchy is included in the serialization. This is a poor
solution regarding performance and use of memory resources.

Framework for implementation of actors on J2EE Agder University College

72 Geir Melby Thesis modified 27.05.2003

State (idle)

ActorSM

myActorCS

ActorCS ()

BusyCS (busy)

currentStateID =
”wait”

State (wait)

children: Hastable

”idle” -> Idle

”busy” -> Busy children: Hastable

”wait” -> wait

Figure 7-10 Current state represented as a state id

A string is used to refer to current state as illustrated in Figure 7-10. A new table is
included in the class CompositeState that contains a reference to all its sub states. The
table is indexed with the state identification. A new variable currentStateId is included
in the class StateMachine that keeps the state identification as a reference to the current
state. This variable is stored in the entity bean as part of the state data.

At the next transition the currentStateId is used for searching in the state hierarchy for
current state object. A recursive method findCurrentState() searches first the top level
composite state, which in this case is ActorCS, to see if this composite state contains a
state equal to the value of currentStateId. If not, all sub states of the children table are
search recursively. The figure above shows the current state “wait” is found in BucyCS
and the variable currentState is set to refer to this state.

7.7 Use of JMS
JMS, see chapter 4.4, is used to achieve asynchronous communication between actors.
The queue mechanism in JMS is design for architectures where multiple clients send
messages to a single recipient. This is in line with actor concept where actors are
sending signals between each other.

As described in chapter 6.5 there are alternative solutions on how to organize the
structure of JMS queues. The solution shown in Figure 6-6, uses a single queue as
input to all instances of the same actor type. A typical system will then consist of only
a few queues. Addressing an actor is the same as sending a signal to the queue
attached to the message bean that implements the actor type.

JMS queues and JMS topics are called managed objects in the J2EE standard. Managed
objects are created and deleted independently of the deployed beans. The middleware
vendors may do this differently. In the application server JBOSS a separate xml file

Agder University College Framework for implementation of actors on J2EE

Geir Melby Thesis modified 27.05.2003 73

defines the JMS queues that are deployed in an application server. The queue names
are stored in JNDI and the beans can use JNDI to find references to the names as
described in chapter 7.8.

In EJBActorFrame the message type Object is used to convey actor messages. The class
ActorMsg is serialized by JMS before it is delivered to the destination. Automatic
acknowledge is used to guarantee that a message is delivered to the message
consumer, which in this case is a message bean.

Other clients, like servlets and other java applications, can access JMS queues. This
makes it easy to integrate loosely coupled components distributed on the net. Clients
implemented in other languages can also communicate via JMS.

7.8 Use of JNDI
JNDI is as described in chapter 4.5, a naming directory containing references to
deployed EJB components, JMS destinations and environment variables. JNDI in
EJBActorFrame is used to read environment variables and to find references to other
actors. As mentioned in the previous chapter, the JNDI name of the queue is
equivalent to addressing a specific actor type.

C: Entity Bean

onMessageCC C

CHome

CBean
CSM

CCS

CSM: Message Bean

DD

JNDI

queue
queue/D
queue/C

ejb
ejb/D
ejb/DSM
Ejb/C
Ejb/CSM

Figure 7-11 JNDI names of actors

In Figure 6-8 an example of a name scope for actors is shown. In JNDI these addresses
will be shown as names for JMS queues and beans as shown in Figure 6-8. The EJB
standard recommends that JNDI names for beans and JMS queues are qualified with
the “/ejb” and “/queue” respectively. The figure shows that JNDI names for queues
have the same names as the actor types C and D. These names are used when actors
are sending signals to other actors. JNDI names for entity beans are only the name of
actor types. The JNDI name for an entity bean that keeps the state data, is accessed
only by the corresponding message bean. Names of message beans are not stored in
the JNDI, because message beans are not allowed to be called from other beans, they
can only receive JMS messages through queues or topics.

Framework for implementation of actors on J2EE Agder University College

74 Geir Melby Thesis modified 27.05.2003

7.9 Summary
This chapter describes the EJBActorFrame Java package. It consists of a set of classes
that are extended to form new subtypes of actors. A message bean receives messages
from a JMS queue for all instances of an actor type. The state data for each instance is
stored in a separate entity bean, which provides persistency.

JMS is used to obtain asynchronous communication between actors. JNDI provides a
lookup service for beans, JMS queues and environment variables. An UML profile
called EJBFrame, for actor concepts has been defined and this profile is used in
ActorFrame modeling.

Agder University College

Geir Melby Thesis modified 27.05.2003 75

Chapter 8 Implementation of a service using
EJBActorFrame

An example of how to map an application modeled with ActorFrame concepts, to the
J2EE platform is presented in this chapter. The example is described using the
EJBFrame profile package for UML2.0. The application is implemented using the
EJBActorFrame Java package described in chapter 7.

The figures in this chapter are not complete or have correct UML syntax. The arrows in
associations always closed although in most cases these should be open. It does not
either contain a complete description of the design or the implementation. The
presentation is meant to give the reader an understanding of how the different parts of
an ActorFrame model are implemented. State machines are almost coded according to
the pattern proposed in JavaFrame.

8.1 Traffic news – a context aware service
Context Aware Traffic News (CATN), is a service that restricts the flow of traffic news
to only news that is relevant to the user. The selection criterion is based on the current
position of the user. A typical situation is a user that is traveling by car who is
approaching a traffic jam. The user, who subscribes to this CATN service, receives an
sms message on its mobile phone telling the user about the traffic jam 5 km ahead. The
user can then drive an alternative route to his destination. The user does not receive
traffic news that is not relevant for him.

User

User profile

Information

Information
Information type

Information Providers

Information
Subscribers
Services

Terminal

Capabillities
Position

use

1 *

want

*

*

owns

* *

*

1 1

*
subscribe

Present

User

User profile

UserUser

User profile

Information

Information
Information type

InformationInformation

Information
Information type

Information Providers

Information
Subscribers
Services

Information ProvidersInformation Providers

Information
Subscribers
Services

Terminal

Capabillities
Position

TerminalTerminal

Capabillities
Position

use

1 *

want

*

*

owns

* *

*

1 1

*
subscribe

Present

Figure 8-1 Domain model of the CATN service

 A UML domain model of this service is shown in Figure 8-1. A domain model
describes the most import concepts in the domain of interest. The model describes that

Implementation of a service using EJBActorFrame Agder University College

76 Geir Melby Thesis modified 27.05.2003

User wants Information, which in this case is relevant traffic news. The User has
Terminals, where the user receives relevant information. The terminal has a Position.
An Information provider receives information from different sources and the
Information provider selects the subscribed information and presents it to the User on
his Terminal dependent on the current position of the terminal. This domain model
does not state anything about the how this service is implemented.

:Information Source :Terminal:Information Provider:User

Subscribe TrafficNews

SMS

Information

sd Context Aware Traffic News

Position

Position

Position

:Information Source :Terminal:Information Provider:User

Subscribe TrafficNews

SMSSMS

Information

sd Context Aware Traffic News

PositionPosition

PositionPosition

PositionPosition

Figure 8-2 CATN service scenario

A typical scenario is shown in Figure 8-2, where the Information Provider sends only
relevant information to the User, when the position of the terminal tells that this
information is relevant for him.

8.2 Design of CAS
The service CATN that was introduced above is an example of a service that a Service
provider would like to offer its customers. An application called Context Aware
Services (CAS) is therefore proposed where a different kind of context aware services
may be implemented. A design model of the CAS application is shown in Figure 8-3.

Agder University College Implementation of a service using EJBActorFrame

Geir Melby Thesis modified 27.05.2003 77

Mobile Position

Phone: number

Information Source

Name: NRK P1

Mobile

Number

CAS
<<actor>>

in

Information
MobilePosition

out

GetPosition
Sms
RegMobilePosition

:User:Mobile

:Information
1

0..* 0..*

Mobile PositionMobile Position

Phone: number

Information Source

Name: NRK P1

Information SourceInformation Source

Name: NRK P1

Mobile

Number

MobileMobile

Number

CAS
<<actor>>

CAS
<<actor>>

in

Information
MobilePosition

in

Information
MobilePosition

out

GetPosition
Sms
RegMobilePosition

out

GetPosition
Sms
RegMobilePosition

:User:User:Mobile:Mobile

:Information:Information
1

0..* 0..*

Figure 8-3 Context Aware Services

The CAS application communicates with a mobile positioning system, different
information sources like NRK Traffic News, and with mobile phones through GSM
systems. The different signals that the application receives and sends through its ports
are shown in comments attached to the ports. The interaction diagram in Figure 8-4
shows the scenario described in Figure 8-2, where the application CAS is represented
as one instance in the diagram.

:Information Source :Mobile Position:CAS:Mobile

Subscribe Traffic News

SMS

sd Context Aware Traffic News

Position

Position

Position

Information

:Information Source :Mobile Position:CAS:Mobile

Subscribe Traffic News

SMS

sd Context Aware Traffic News

Position

Position

Position

Information

:Information Source :Mobile Position:CAS:Mobile

Subscribe Traffic News

SMSSMS

sd Context Aware Traffic News

PositionPosition

PositionPosition

PositionPosition

InformationInformation

Figure 8-4 CAS - interaction with environments

The CAS application consists of one instance named TrafficNews of class Information,
zero or more instances of classes Mobile and User.

The class User is shown in Figure 8-5 and it consists of one Position instance and zero
or one instance of class TrafficNews. All these classes are stereotyped with actor like the
class User shown in the figure below.

Implementation of a service using EJBActorFrame Agder University College

78 Geir Melby Thesis modified 27.05.2003

User
<<actor>>

UserProfile

User
<<actor>>

UserProfile

:Position:Position :TrafficNews:TrafficNewsin out

SubscribeInfo
CancelNews
UserProfile

GetProfile

1 0..1

Figure 8-5 Class User

The sequence diagram for the TrafficNews service is shown in Figure 8-6. This
diagram uses UML2.0 notation for sequence diagrams. The diagram describes two sets
of alternatives and a loop.

• Loops describe a loop of sequences that are repeated until a condition is
satisfied.

• Alternatives describe a set of possible sequences of interactions separated with
a dotted line that may happen.

An interesting note to this diagram is that TrafficNews and Position is part of User (see
Figure 8-5) and these instances therefore could be modeled in one lifeline, which will
have simplified the diagram. A new sequence diagram for User would have shown
the internal interaction of User.

create

GetProfile

UserProfile SubscribePosition

sd CAS - Traffic News

loop

RegMobilePosition

TrafficNews Message sms

Information

Alt

CurPositionSubscribeInfo

SubscriptionOK

MobilPosition

:TrafficNews

:Position :Mobile:Information:User

GetPosition[Now-interv>last]

[Pos == PosInfo]

[Pos != PosInfo]

[Pos-lastPos>delta]

[Pos-lastPos<delta]

Alt

Alt

create

GetProfile

UserProfileUserProfile SubscribePositionSubscribePosition

sd CAS - Traffic News

loop

RegMobilePositionRegMobilePosition

TrafficNewsTrafficNews MessageMessage smssms

InformationInformation

Alt

CurPositionSubscribeInfo

SubscriptionOKSubscriptionOK

MobilPosition

:TrafficNews

:Position :Mobile:Information:User

GetPosition[Now-interv>last]

[Pos == PosInfo]

[Pos != PosInfo]

[Pos-lastPos>delta]

[Pos-lastPos<delta]

Alt

Alt

Figure 8-6 Sequence diagram of CAS application

Agder University College Implementation of a service using EJBActorFrame

Geir Melby Thesis modified 27.05.2003 79

The class TrafficNews is shown in Figure 8-7. It inherits the class Service, which is
common for all CAS services. The class Service specifies common properties and
behavior such as UserProfile and the communication with the User to obtain the user
profile. The class TrafficNews adds the service specific attributes and behavior
including signals.

Service
<<actor>>

myUserProfile
myPosition
myMessagein out

Traffic news

GetPosition
SubscribePosition

CurPosition

in

TrafficNews
SubscriptionOK

out

SubscribeInfo
Message

Service
<<actor>>

myUserProfile
myPosition
myMessage

Service
<<actor>>
Service
<<actor>>

myUserProfile
myPosition
myMessagein out

Traffic newsTraffic newsTraffic news

GetPosition
SubscribePosition

CurPosition

in

TrafficNews
SubscriptionOK

out

SubscribeInfo
Message

Figure 8-7 Class TrafficNews extends class Service

The behavior of class TrafficNews is modeled as a state machine as shown in Figure 8-8.
The state machine of TrafficNews extends the behavior of the state machine of the
super class. The transition caused by reception of the event UserProfile in state Idle is
redefined in the state diagram for class TrafficNews. An output signal SubscribePosition
is sent and the next state is set to Waiting.

Implementation of a service using EJBActorFrame Agder University College

80 Geir Melby Thesis modified 27.05.2003

Traffic news

in

Traffic newsTraffic newsTraffic news

in

Service
<<actor>>

in

Service
<<actor>>
Service
<<actor>>
Service
<<actor>>

in

Idle

RolePlay
Output GetProfile

UserProfile

Service

Idle

RolePlay
Output GetProfile

UserProfile

Service

Idle

Waiting

Request

Listening

UserProfile
Output SubscribePosition

CurPosition
Output SubscribeInfo

SubscriptionOK

CurPosition

TrafficNews
Output Message

TrafficNews extends Service

Idle

Waiting

Request

Listening

UserProfile
Output SubscribePosition

CurPosition
Output SubscribeInfo

SubscriptionOK

CurPosition

TrafficNews
Output Message

TrafficNews extends Service

Figure 8-8 Behavior of class TrafficNews

8.3 Implementation of CAS
The CAS application is implemented by extending the classes defined in the
EJBActorFrame Java package. In the figure the classes that must be implemented for
each actor are marked in grey. The Figure 7-3 on page 65 describes how different parts
of actors are mapped to these classes. The UML class TrafficNews and its super class
Service are used as an example of how each Java class is implemented.

The UML class TrafficNews inherits the class Service. The class TrafficNews does not
add new properties or state data. It is only the state machine that is extended.
Therefore the classes that implement the state data as entity beans are omitted as
illustrated in Figure 8-9.

Agder University College Implementation of a service using EJBActorFrame

Geir Melby Thesis modified 27.05.2003 81

Service
<<actor>>

myUserProfile
myPosition
myMessage

Traffic News State data

TrafficNewsCSTrafficNewsSM

UML Java implementation

State machine

State data

ServiceCSServiceSM

EJBActorFrame
Actor ActorBean ActorSM ActorCS State

ServiceHome ServiceBeanService

Composite ActorAddressState
Machine

ActorHome

StateDataBeanStateDataStateDataHome

State machineService
<<actor>>

myUserProfile
myPosition
myMessage

Service
<<actor>>
Service
<<actor>>

myUserProfile
myPosition
myMessage

Traffic NewsTraffic News State data

TrafficNewsCSTrafficNewsSM

UML Java implementation

State machine

State data

ServiceCSServiceSM

EJBActorFrame
Actor ActorBean ActorSM ActorCS State

ServiceHome ServiceBeanService

Composite ActorAddressState
Machine

ActorHome

StateDataBeanStateDataStateDataHome

State machineState data

ServiceCSServiceSM

EJBActorFrame
Actor ActorBean ActorSM ActorCS State

ServiceHome ServiceBeanService

Composite ActorAddressState
Machine

ActorHome

StateDataBeanStateDataStateDataHome

State machine

Figure 8-9 Implementation of the UML class TrafficNews

8.3.1 Mapping of behavior of state machines
The behavior of the UML class TrafficNews is implemented in the class TrafficNewCS. It
extends the class ServiceCS as illustrated in Figure 8-10. The figure describes how the
different parts of the state chart of class TrafficNews are implemented. The method
execTrans is called when this state machine receives a signal. The second statement in
this method shows how the state machine of its super type Service is called. According
to the UML2.0 a transition may be redefined, but it cannot be extended. That means
that if the subclass accepts the signal, the super type class shall not be called. The
JavaFrame pattern does the opposite by calling the super type first. If the super type
accepts the signal, the sub type discards the signal. In this example the super type is
called first, and if the sub type has defined the same signal, the transition in the
subtype is also executed. The semantic is that the subtype may also extend the
transition and it allows new target state to be defined. This solution ensures that the
behavior defined in the super type will be executed, but it allows adding behavior in
the sub type. In this case an output of the signal SubscribePosition is added and next
state is redefined to state waiting.

Implementation of a service using EJBActorFrame Agder University College

82 Geir Melby Thesis modified 27.05.2003

Idle

RolePlay
Output GetProfile

UserProfile

Service

Idle

RolePlay
Output GetProfile

UserProfile

Service

Idle

Waiting

Request

Listening

CurPosition
Output SubscribeInfo

SubscriptionOK

CurPosition

TrafficNews
Output Message

TrafficNews extends Service

Idle

Waiting

Request

Listening

CurPosition
Output SubscribeInfo

SubscriptionOK

CurPosition

TrafficNews
Output Message

TrafficNews extends Service

UserProfile
Output SubscribePosition

public final class TrafficNewsCS extends ServiceCS{
 public TrafficNewsCS(String sn, CompositeState cs){}

 public TrafficNewsCS(String sn) {
 super("trafficNews");
 waiting.enclosingState = this;
 …
 }
 State waiting = new State("waiting", this);
 State requestNews = new State("requestNews",this);
 State listening = new State("listening", this);

 protected boolean execTrans(ActorMsg sig, State st, StateMachine curfsm) {
 TrafficNewsSM asm = (TrafficNewsSM)curfsm;
 if (super.execTrans(sig,st,curfsm)) return true;
 if (st == idle) {
 if (sig instanceof UserProfileMsg) {
 performExit(curfsm);
 asm.output(new SubscribePositionMsg(asm.myProfile.getMobile(),

 "mobile"),asm.myActorId+"/mobile","position");
 waiting.enterState(curfsm);
 }
 return false;
 }
 else if (st == waiting) {
 ..

protected boolean execTrans(ActorMsg sig, State st, StateMachine curfsm)
{

ServiceSM asm = (ServiceSM)curfsm;
if (super.execTrans(sig,st,curfsm)) return true;
if (st == idle) {

if (sig instanceof UserProfileMsg) {
UserProfileMsg upm = (UserProfileMsg)sig;
asm.myProfile = upm.getUserProfile();
sameState(curfsm);

} else if (sig instanceof RolePlayMsg){

Figure 8-10 Implementation of behavior – class TrafficNewsCS

Figure 8-10 shows also how state data is accessed in a transition. Transition for class
Service for the signal UserProfile defines an assignment of asm.myProfile to the profile
carried as data in the received message. Asm is a reference to current state machine,
which contains the state data. This is according to the JavaFrame pattern. The variable
myProfile was read from the entity bean before the ExecTrans was called and it is stored
again after the transition.

Agder University College Implementation of a service using EJBActorFrame

Geir Melby Thesis modified 27.05.2003 83

8.3.2 Mapping of state data
The state data is defined in the sub type of class StateMachine. It is these variables that
are accessed during a transition. In the proposed mapping the state data is also stored
in entity beans to ensure persistent storage of data. The class TrafficNews does not
define new data other than that which it inherits from its super type Service. Service
specifies the remote interface, ServiceHome, and the SeriviceBean class defines the
classes used for storage of the state data as entity beans. These classes are shown in
Figure 8-11, and they are implemented according to the EJB standard for CMP beans.

public interface ServiceHome extends EJBHome {
Service findByPrimaryKey(String key) throws FinderException, RemoteException;
Service create(String myId, String stateId) throws CreateException, RemoteException;
Collection findAll() throws FinderException, RemoteException;

}

public interface Service extends Actor {
UserProfile getUserProfile() throws RemoteException;
void setUserProfile(UserProfile userProfile) throws RemoteException;
Position getPosition() throws RemoteException;
void setPosition(Position position) throws RemoteException;
String getMessage()throws RemoteException;
void setMessage(String message) throws RemoteException;

}

public abstract class ServiceBean extends ActorBean {
public abstract UserProfile getUserProfile();
public abstract void setUserProfile(UserProfile userProfile);
public abstract Position getPosition();
public abstract void setPosition(Position position);
public abstract String getMessage();
public abstract void setMessage(String message);

}

Figure 8-11 Implementation of state data as CMP bean

Implementation of a service using EJBActorFrame Agder University College

84 Geir Melby Thesis modified 27.05.2003

public interface ServiceHome extends EJBHome {
Service findByPrimaryKey(String key) throws FinderException, RemoteException;
Service create(String myId, String stateId) throws CreateException, RemoteException;
Collection findAll() throws FinderException, RemoteException;

}

public interface Service extends Actor {
UserProfile getUserProfile() throws RemoteException;
void setUserProfile(UserProfile userProfile) throws RemoteException;
Position getPosition() throws RemoteException;
void setPosition(Position position) throws RemoteException;
String getMessage()throws RemoteException;
void setMessage(String message) throws RemoteException;

}

public abstract class ServiceBean extends ActorBean {
public abstract UserProfile getUserProfile();
public abstract void setUserProfile(UserProfile userProfile);
public abstract Position getPosition();
public abstract void setPosition(Position position);
public abstract String getMessage();
public abstract void setMessage(String message);

}

Figure 8-11 Implementation of state data as CMP bean

The abstract methods listed in Table 3 on page 70 must be specified when new state
data is added to a sub type of class Actor. The method findEntityBean, which is listed
in Figure 8-12 calls the home object of the entity bean Service and returns a reference of
type Service. The reference is used by the methods getData to retrieve state data and
storeData to store data of the entity bean. These methods are shown in Figure 8-12.
Both methods call the respective super type method, which reads and stores the
inherited state data.

Agder University College Implementation of a service using EJBActorFrame

Geir Melby Thesis modified 27.05.2003 85

protected StateData findEntityBean(EJBHome home, String myId)throws RemoteException{
Service service = null;
try {

service = ((ServiceHome)home).findByPrimaryKey(myId);
} catch (FinderException e) {

service = null;
e.printStackTrace();

}
return service;

}

protected void getData(StateData smr) throws RemoteException{
super.getData(smr);
Service s = (Service)smr;
myProfile = s.getUserProfile();
myPosition = s.getPosition();
myMessage = s.getMessage();

}

protected void storeData(StateData smr) {
super.storeData(smr);
Service ref = (Service) smr;
try {

// store local state data
ref.setUserProfile(myProfile);
ref.setPosition(myPosition);
ref.setMessage(myMessage);
// end of storing local state data

} catch (RemoteException e) {
e.printStackTrace();

}
}

Figure 8-12 Storage of state data

Class StateMachineSM calls getData before a transition is executed. The state data
stored in the StateMachineSM is updtated with the state data stored in the entity bean
for that particular state machine instance. After the transition is executed the entity
bean is updated with state data stored in the StateMachineSM.

8.3.3 Use of JMS and JNDI
JNDI is used to find JMS queues, entity beans and to read input variables defined in
the deployment descriptors. Most of the code is implemented in the class StateMachine.
The constructor of class StateMachine does most of the initialization as shown in Figure
8-13. This constructor is called from the sub type with the name of the actor type as a
parameter. This may be changed to allow the constructor to read from an environment
variable that defines the actor type as the statement commented as “todo” in the code.
The name of entity beans, JMS queues and environment variables are defined in the
deployment file and the container reads these names and stores them into JNDI.

Implementation of a service using EJBActorFrame Agder University College

86 Geir Melby Thesis modified 27.05.2003

public StateMachine(String actorType){
currentState = null;
currentMessage = null;
currentStateId = null;
saveQueue = new MailBox();
myActorType = actorType;
try {

context = new InitialContext();
queueConnectionFactory = (QueueConnectionFactory) context.lookup("ConnectionFactory");
queueConnection = queueConnectionFactory.createQueueConnection();
queueSession = queueConnection.createQueueSession(false, Session.AUTO_ACKNOWLEDGE);
message = queueSession.createObjectMessage();
queueSender = queueSession.createSender(null);
// todo myActorType = (String)context.lookup("env/actorType");
System.out.println("ActorType read from JNDI is: " + myActorType);
objectRef = context.lookup("ejb/"+ myActorType);

} catch (NamingException e) {
System.out.println("JNDI API lookup failed for queue connection: " + e.toString());

} catch (JMSException e) {
e.printStackTrace();

}
}

Figure 8-13 Initialization of JMS and JNDI

8.3.4 Implementation of parts
The class CAS Figure 8-3 on page 77, which defines the CAS application consists of 3
parts: Information, Terminal and User. The class diagram for CAS defines the initial
number of instances that shall be created when an instance of the containing class is
created and the maximum number of instances that are allowed to be instantiated
during the lifetime of the containing class. Figure 8-14 shows how this information is
stored in a hash table of the containing class, which in this case, is the class CasSM.
When an instance of class is created or when new instances of the inner parts are
created, this information is used in management of the lifetime of the parts.

protected void init(){
super.init();
part.add(new Part("information",1));
part.add(new Part(“mobile",0,*));
part.add(new Part("user",0,*));

}

CAS
<<actor>>

:User:Mobile

:Information 1

0..* 0..*

CAS
<<actor>>

CAS
<<actor>>

:User:User:Mobile:Mobile

:Information:Information 1

0..* 0..*

Figure 8-14 Implementation of parts

An actor manages its own inner parts and this information is stored in the message
bean. The information is necessary when inner parts shall be deleted.

Agder University College Implementation of a service using EJBActorFrame

Geir Melby Thesis modified 27.05.2003 87

8.4 Deployment of CAS
Deployment descriptors are used for deployment of actors into EJB application
servers. Figure 8-15 describes the deployment descriptor for an entity bean for the
actor type TrafficNews. The local interfaces local-home ServiceHome and local Service
optimize the access for other beans located in the same deployment file. The message
bean and the entity bean that implement an actor should always be deployed into the
same container so the message bean can therefore use the local interfaces. Calls to the
entity bean are then implemented by the call-by-reference mechanism.

State data for the actor that shall be persistent is defined with the <cmp-field> tag.
Because the EJB standard does not support inheritance of beans and descriptors, <cmp-
fields> for all attributes that the actor inherits must be defined.

<entity>
<ejb-name>C</ejb-name>
<local-home>se.ericsson.eto.norarc.diplom.ejb.trafficnews.ServiceHome</local-home>
<local>se.ericsson.eto.norarc.diplom.ejb.trafficnews.Service</local>
<ejb-class>se.ericsson.eto.norarc.diplom.ejb.trafficnews.TrafficNewsBean</ejb-class>
<persistence-type>Container</persistence-type>
<prim-key-class>java.lang.String</prim-key-class>
<reentrant>False</reentrant>
<cmp-version>2.x</cmp-version>
<cmp-field><field-name>myId</field-name></cmp-field>
<cmp-field><field-name>currentStateId</field-name></cmp-field>
<cmp-field><field-name>context</field-name></cmp-field>
<cmp-field><field-name>myUserProfile</field-name></cmp-field>
<cmp-field><field-name>myPosition</field-name></cmp-field>
<cmp-field><field-name>myMessage</field-name></cmp-field>
<primkey-field>myId</primkey-field>

</entity>c

Figure 8-15 Deployment of entity bean for state data of class TrafficNews

Figure 8-16 shows the deployment descriptor of the message bean for the actor type
TrafficNews. The JMS destination type is set to Queue. The name of the JMS queue is
defined in a container specific deployment file. In the JBOSS [29] application server the
name of this deployment file is jboss.xml.

An environment entry called actorType is defined, which defines the name of the entity
bean to be used in finding the entity bean. Class StateMachine uses this environment
variable to access the local home interface of the entity bean that stores the state data.

<message-driven>
<ejb-name>TrafficNews</ejb-name>
<ejb-class> se.ericsson.eto.norarc.diplom.ejb.trafficnews.TrafficNewsSM</ejb-class>
<transaction-type>Container</transaction-type>

<message-driven-destination>
<destination-type>javax.jms.Queue</destination-type>

</message-driven-destination>
<env-entry>
<env-entry-name>actorType</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>TrafficNews</env-entry-value>

</env-entry>
</message-driven>

Implementation of a service using EJBActorFrame Agder University College

88 Geir Melby Thesis modified 27.05.2003

Figure 8-16 Deployment of class TrafficNews as message bean

8.5 Summary
EJBActorFrame and EJBFrame packages have been implemented as part of this thesis
work. The implementation of class CompositeState in the EJBFrame package is a
modified version of the corresponding class in the JavaFrame package. Two state
machines have been tested using the “pingpong” example included in the appendix.
This test has proven that the concept proposed in this thesis works. JBOSS [29] has
been used as an application server. All state machines were run in the same container,
but they could easily be distributed in different containers.

The RoleRequest protocol of ActorFrame is only partly implemented. Some of the
more advanced features such as play and remove of contained instances are left out.
The ActorFrame protocol itself is an application built on the EJBFrame package.

The implementation of this example has shown that the pattern for implementation of
behavior part of state machines from JavaFrame can be used also for EJBActorFrame.
The only difference is a new constructor in the ActorCS class. This ensures that earlier
implemented services can easily be moved to the EJB platform using the
EJBActorFrame package.

Agder University College

Geir Melby Thesis modified 27.05.2003 89

Chapter 9 Discussion and conclusion

The solutions presented in this report are validated against the problem statements
described in chapter 1.6. Each of these problem statements are presented in the
following subchapters. Other issues such as performance and optimization of the
presented solution are also discussed. This chapter also proposes some additional
research topics, before the main conclusion is drawn.

9.1 Concurrency and asynchronous communication
The first problem stated in chapter 1.6 was “How to achieve concurrency between state
machines and asynchronous messaging between state machines?” Concurrency does not
mean in this context that the state machines have to execute in parallel. Concurrency
between state machines is a conceptual way of organizing the software. Each state
machine can be run independently and if it is desirable, be executed in parallel.
Asynchronous communication is tightly coupled to independent execution of state
machines. Synchronous calls between state machines will cause dependencies between
them.

ActorFrame models, which are based on UML2.0, are state machines that
communicate by sending signals to each other. Chapter 6 discussed ways to map state
machines to EJB beans. A solution was selected which was a tradeoff between
performance and resource usage. All instances of one state machine type were
implemented by one message bean that received signals to these instances from one
JMS queue. Asynchronous communication between state machines was achieved
using this solution. All signals were sent through JMS queues, which resulted in state
machines that were decoupled from each other both in time and space.

The solution described does not allow distribution of instances of the same state
machine. All instances have to be executed in the same container. EJB allows message
beans of the same type to receive signals from the same queue, but the container does
not guarantee the order of the signals that are received by the message bean.

Signals received by the different message beans that are addressed to the same state
machine instance, can cause conflicts in the access of state data of that state machine.
There is also a possibility to use the selection mechanism in JMS to choose between
signals. One message bean could receive signals for a sub set of the state machine
instances. How to handle concurrent access of state data needs further investigation.

Another solution is to use bean managed transaction control. The entity bean that
keeps the state data for an instance can be locked during the transition, which will
prevent “dirty” reads from other message beans.

Performance issues have not been investigated. Use of JMS may cause significant
performance reduction when the number of signals sent between state machines

Discussion and conclusion Agder University College

90 Geir Melby Thesis modified 27.05.2003

increases. Tightly coupled state machines could, in these situations, be implemented in
the same message bean and “lightweight” queues could be used instead of JMS queues
for signaling between the state machines.

The conclusions that can be drawn from this work regarding problem statement number 1 are:

• Concurrency between state machines can be achieved using entity beans combined with
the quasi-parallel execution of beans supported by an EJB container.

• Asynchronous communication between state machines is achieved by using JMS
queues combined with message beans.

9.2 Aggregation of actors
The actor concept may contain other actors is a mechanism needed to able to be model
complex structures and behavior. For instance in ServiceFrame, used by the
AVANTEL research project, a user may participate in different services at the same
time or the user can play multiple roles simultaneously. The part concept is also
supported by UML2.0, and the mapping of parts was discussed in chapter 6.6. There is
no counterpart to this concept in EJB, which is the basis for the second problem
statement in chapter 1.6 “How to map aggregation of actors?”

Chapter 6.6 described how structural information, such as parts, are used both to
control what is allowed to be done at run time and to manage the lifetime of actors
such as deleting inner parts. The implementation of the part concept was shown in
chapter 8.3.4 and this solution seemed adequate for most cases. The structural
information mapped from the UML model was stored in the session bean, while the
information about existing parts was stored as part of the state data of a state machine
instance. The state data was stored in the corresponding entity bean. The parent object
of a part uses this information when new inner parts shall be created or deleted.

The related name problem was discussed in chapter 6.7. The implemented solution,
which used the instance names of the parent object recursively, ensured a uniqueness
of part names in the scope of the system.

The solution presented in this thesis represents one possible solution to the problem of
aggregation of actors. However, the solution has a drawback because the information
about the parts is distributed to all state machines. Another solution could be to store
this management information about created actors in a central database. This will
enable a more efficient management of the lifetime of actors and the solution could
also be used for implementation of a lookup service for executing actors.

The conclusion that can be drawn from this thesis work is that the implemented solution is one
way to solve the problem with aggregation of actors (problem 2) on the EJB platform.

9.3 Persistent state machines
Reliability of applications is the underlying reason for the third problem stated in
chapter 1.6 “How can an implementation of state machines take advantage of the support of
persistency in the J2EE platform?”

Agder University College Discussion and conclusion

Geir Melby Thesis modified 27.05.2003 91

The specification of EJB requires that an EJB container shall support persistency of
entity beans. This is called Container Managed Persistency (CMP). The mapping
solution proposed in chapter 7.6 used CMP beans to store the state data of state
machines, ensuring persistency of state data.

However using this solution will decrease the performance of an application. For
every signal the state machine receives, the state data is first read, the transition
executed and then the state data is written back to the entity bean. This solution
ensured backward compatibility with previously implemented applications based on
ActorFrame. Another solution could be to pass the entity bean reference to the
transition and then use get and set methods to access the state data during the
transition. This solution will reduce the overhead of using the entity bean for storing
state data considerably.

The proposed solution implemented all actors as persistent state machines. This is
probably not necessary. A property of the actor stereotype could be used to define if
an actor should provide persistent state data. If no persistency is needed, the state data
could be stored as local data in the message bean.

If applications require that state data should be persistent, this must be provided
regardless of the type of implementation that is used. In these situations the persistent
state machines could be implemented as proposed in this thesis without any added
performance reduction relatively to traditional implementations.

The conclusion is that the implemented solution that used container managed persistency types
of entity beans for storage of state data, is a solution to the problem of how to achieve
persistent state machines on the J2EE platform.

9.4 Actor modeling using UML profiles for EJB
In chapter 5 the concept oriented modeling approach was presented. ActorFrame
supports this approach to modeling. The actor concept is used in modeling of services.
Reuse of models is an import issue, which is the reason for the last problem statement
“Can existing UML profiles for EJB be used for making ActorFrame models that survive
changes in the implementation platforms?”

The UML profile for Enterprise Java Beans proposed by the Java community was
described in chapter 5.3. This profile represented tags that were used to stereotype the
UML model with platform specific tags.

How the actor concepts are expressed in the model is important. Chapter 5.4 showed
that the UML profile for EJB could not be used to express the actor concept in a
beneficial way. It was augmented for having an own UML profile for ActorFrame
modeling. An example of such a profile was presented in chapter 7.2 and used in the
PIM model for the CAS application presented in chapter 8.

An important argument for not using an UML profile for EJB is that a change of
middleware platform may affect on the PIM model as shown in Figure 9-1. The reason
for this was discussed in chapter 5.4

Discussion and conclusion Agder University College

92 Geir Melby Thesis modified 27.05.2003

The PIM model represents the implementation independent description of the
functionality of an application. The goal is that this model can be reused if the
underlying technologies are changed. An interesting question is how a change in the
middle platform will affect the different parts in Figure 9-1.

The actor model, which is a PIM model, can be directly implemented following the
mapping rules for the actor to the specific platform. The EJBActorFrame described in
chapter 7, contains the Java classes that represent the ActorFrame concepts. The
ActorFrame model was implemented by extending these classes according to the
guidelines used in implementation of the example in chapter 8.

The UML model was first translated to a PSM model using the UML profile for EJB
described in chapter 5.3. The PSM model can then be mapped to the corresponding
classes in the EJB Java package.

In Figure 9-1 the parts that are affected by the change in the platform from EJB to .NET
are marked in grey. The major difference is that in the concept-oriented approach the
PIM model is unaffected by the change of platform, while in the MDA approach both
the PIM and PSM models are affected. Obviously the PSM model is affected because
the stereotypes are different in EJB and .NET.

M
od

el
in

g

PSM

Im
pl

em
en

ta
tio

n

PlM

NET package

NET ActorFrame
package

Implementation
using Actor classes

Actor modelUML model

.NET package

UML .NET
Stereotyped model

Implementation
using .NET classes

Figure 9-1 Change of middleware effect on the different approaches

The UML model may also be affected by a change of platform. The reason for this was
presented in chapter 5.4. Chapter 5.4 illustrated that the PIM model must reflect the
underlying concepts so it is possible for a translator to map actor classes to a
corresponding stereotype defined in the UML profile for the new platform. If the
platform does not support the same concepts as the old platform, this has to be
reflected in the PIM model. For instance, if the new platform has support for persistent
state machines, then an actor can be represented by one class rather than two classes as
shown in Figure 5-4.

In the concept oriented approach the PIM model is tagged with an actor stereotype.
The translator recognizes the actor stereotype and can map the UML class to a specific
platform provided that the information exists in the ActorFrame model.

If a manual translation is used to map the ActorFrame model, it is desirable that a
great deal of the implementation remains unaffected by a platform change. The .NET

Agder University College Discussion and conclusion

Geir Melby Thesis modified 27.05.2003 93

ActorFrame package offers the same classes as the ActorFrame. However this is not
always possible, as the experience from making the EJBActorFrame has shown. Some
new classes had to be implemented for mapping of state data to entity beans.

The conclusion is therefore that a UML profile for EJB cannot be used to make ActorFrame
models that are not affected by a change of middleware platform. An UML profile for
ActorFrame, which can be used to make ActorFrame models that survive changes in
implementation platform, was therefore proposed.

9.5 Other issues
Entity beans have been used to achieve persistency of state data. Persistency causes
performance reduction because at each transition the state data in principle has to be
stored again in a database. It is not always the case that state data needs to be
persistent. For instance in the example presented in chapter 8, the TrafficNews actor
gets parts of its state data from the User actor and this data can easily be reproduced
again from the User. In such cases the state machines could be implemented without
use of entity beans. To achieve improvement of performance, state data could be
stored in a simple database as part of the state machine. The class StateMachine could
implement a hash table where the state data for all instances of that type is stored. The
state data has to then be implemented as an own class, which can be extended by
subclasses of the state machine. This optimization could be specified by an attribute
isPersistent of the actor stereotype.

Another optimization is to implement many state machines in one message bean as
described in chapter 6.3.1, to avoid the overhead of communicating through JMS
queues. This would improve performance especially in situations where there are
many interactions between a set of state machines. This solution combined with the
optimization regarding persistency of state data, will reduce the overhead
considerably.

Inheritance is a powerful mechanism and this technique is used both in ActorFrame
modeling and in the implementation of EJBActorFrame as shown in Figure 8-7 and
Figure 7-2. Inheritance of an actor class requires that if the subtype adds new attributes
to the state data, two interfaces and one class must be defined and used to implement
the entity beans that keep the state data. Interfaces and classes can be extended by
using ordinary inheritance mechanisms in Java. EJB does not support inheritance of
the bean concept. The deployment descriptors of entity beans must completely define
all fields including those inherited from the super type. Changes in the super type will
therefore cause the interfaces and classes of all subtypes to be changed. This is a major
drawback when implementation is done manually.

As pointed out in the summary of chapter 8, services implemented previously using
the ActorFrame package can easily be moved to the J2EE platform by changing to the
EJBActorFrame package, with only a few changes in the Java code. Most of the
changes are hidden in the framework classes.

Discussion and conclusion Agder University College

94 Geir Melby Thesis modified 27.05.2003

9.6 Future work
J2EE consists of a large set of technologies and this study has studied many of them.
However, some issues have not been studied in detail. These issues have been noted
for further study and are summarized below:

• Integration of EJBActorFrame with web services needs to be done. Although
J2EE is integrated with web services, it does not have transparent support for
asynchronous messaging. How this should be handled is subject for further
study.

• An important issue is how to extend web services with support for
asynchronous communication. There is some interesting work going on in
Nielsen [48], who is proposing asynchronous communication between web
services. They have also introduced the concept of SOAP routers, which seems
promising. This approach is very much inline with the ServiceFrame concept
and should therefore be investigated.

• Inheritance of behavior is rather immaturely understood in UML. The solution
selected in UML2.0 on how to extend a state machine creates problems when
UML2.0 is used to describe frameworks. The approach selected here for the
implementation of state machines is different from UML2.0, but it makes
inheritance of classes in a framework easier. Definition of a behavior concept
that is also beneficial for framework design should be investigated further

• Inheritance of EJB is not supported and is an important issue. The component
concept in UML is not studied during this thesis, but the concept looks
interesting and it may be a way to improve the EJB component technology.

• Optimization of EJBActorFrame is important if this solution is to be used in a
commercial setting. Some improvements have been presented here, others
should also be investigated based on a better understanding on how the
container concepts work. For instance, can more message beans be used to run
the same state machine but for different instances. This becomes an important
issue if high capacity is needed in the application server.

• This thesis has not studied in detail the transaction service in EJB. How to
utilize transaction control should be studied and an adaptation in
EJBActorFrame should probably be done.

• Timers are important in ActorFrame modeling to handle for instance timeouts
where actors are waiting for a response from external resources. Timers are
supported in ActorFrame. In the latest version of EJB a timer concept is
specified. A study should be conducted to find out if this timer concept could
be used to implement a timer functions in EJBActorFrame.

• Security issues have not been taken into consideration in this thesis work, but
should be studied.

9.7 Conclusion
In this thesis the problem of mapping of ActorFrame models to the J2EE platform has
been discussed. The thesis has proposed mapping solutions addressing the problems

Agder University College Discussion and conclusion

Geir Melby Thesis modified 27.05.2003 95

stated in chapter 1.6. A concrete mapping solution has been proposed and a Java
framework for implementation of actors has been developed. A concrete example has
also been developed using this framework and part of the example was executed on a
J2EE application server and the result has been evaluated and discussed.

The main conclusion is that ActorFrame models can be implemented on J2EE
application servers in a beneficial way. J2EE has technologies that support
asynchronous communication and it is possible to combine this communication style
with implementation of persistent state machines. It is also possible to map the
structural concepts as parts, connectors and gates to this platform in such a way that
the implementation also benefits from these concepts.

This study has also shown that the UML profile for EJB from the Java community does
not support the concept oriented approach that ActorFrame is founded on. This profile
caused the need for an extra platform dependent model to be defined. This approach,
which is propagated by OMG, is not robust against change of underlying platforms. A
UML profile for ActorFrame, which enables a concepts-oriented approach, was
proposed and the implementation of the CAS example has shown that this approach is
more robust in regard to change of platforms.

The J2EE platform gives additional benefits compared to the current implementation
of ActorFrame:

• Integration of emerging technologies such as Web services

• Management support such as deployment of actors “on the fly”

• Flexible distributions of actors

• Scalable platforms

• Transactional services

• Persistent state machines

However this thesis work has experienced that

• Application servers for J2EE are complex requiring detailed competence
on application servers

• Software development tools are not very well integrated with the J2EE
platforms

• The proposed solution may cause performance problems for
applications.

These issues have to be taken into consideration when a decision shall be taken about
using J2EE based application servers for implementation of ActorFrame models.

The thesis work has also shown that many mapping solutions exist and not all
mapping issues have been elaborated. However this work forms a basis for further
work in this area with the goal to be able to design frameworks for development of
services, which can be deployed in the future service network.

Agder University College

Geir Melby Thesis modified 27.05.2003 97

Chapter 10 Abbreviations

ACID - Atomicity, Consistency, Isolation and Durability
CORBA – Common Object Request Broker Architecture
CS – Composite State
SM – State Machine
EJB – Enterprise Java Beans
IIOP - Internet Inter-Orb Protocol
J2EE – Java 2 Enterprise Edition
J2SE - Java 2 Standard Edition
JMS – Java Messaging Service
JNDI – Java Naming Directory Interface
JVM – Java Virtual Machine
MDK – Modeling Development Kit
MSC – Message Sequence Chart
RMI – Remote Method Invocation
RMI/IIOP – Remote Method Invocation over Internet Inter-Orb Protocol
RPC – Remote Procedure Call
SDL - Specification and Description Language
SOA – Service-Oriented Architecture
SOAP – Simple Object Access Protocol
UDDI - Universal Description, Discovery, and Integration
UML – Unified Modeling Language
UMTS – Universal Mobile Telecommunications System
WAP – Wireless Application Protocol
WSDL – Web Services Description Language
XML – Extensible Markup Language
API – Application Programming Interface
JAX-RPC – Java XML based Remote Procedure Call
MDA – Modeling Driven Approach
PIM – Platform Independent Models - used in MDA terminology
PSM – Platform Specific Models – used in MDA terminology
ALIN – Application Layer Internet working
MDA – Model Driven Architecture
SMTP – Simple Mail Transfer Protocol
HTP - Hyper Text Protocol
FTP – File Transfer Protocol
HLR – Hosting Location Register
AAA – Authentication, Authorization, and Accounting
JDBC – Java Data Base Connectivity
CMP – Container Managed Persistency
BMP – Bean Managed Persistency
MOM – Message Oriented Middleware
DNS – Domain Name Server

 Agder University College

98 Geir Melby Thesis modified 27.05.2003

UMTS – Universal Mobile Telecommunications System
GSM – Global System for Mobile communication
ICT – Information and communication Technology
OSA – Open Service Access
SCS – Service Capability Server
JMS – Java Messaging System
3GPP – 3 Generation Partner Program

Agder University College

Geir Melby Thesis modified 27.05.2003 99

Chapter 11 References

1. Bræk, Rolf, Husa, Knut Eilif and Melby, Geir. ServiceFrame Whitepaper, draft
1.9.2001, Ericsson NorARC, 2001.

2. Haugen, Øystein and Møller-Pedersen, Birger. JavaFrame: Framework for Java-enabled
modelling, ECSE2000, Ericsson NorARC, Stockholm, 2000.

3. Husa, Knut Eilif. Serviceframe Software Architecture Document, Initial Version
29/01/02, Ericsson NorARC, 2002.

4. Sun Microsystems, Inc. Java Remote Method Invocation Specification, Available from:
http://java.sun.com/j2se/1.4/docs/guide/rmi/spec/rmiTOC.

5. Couloris, George, Dollimore, Jean and Kindberg, Tim. Distributed Systems: Concepts
and Design (3rd Edition), Addison-Wesley, 2001.

6. Winer, Dave. XML-RPC specification, Available from: http://www.xmlrpc.com/spec

7. W3C. Simple Object Access Protocol (SOAP) 1.1, 2000, Available from:
http://www.w3.org/TR/SOAP/

8. Haugen, Øystein. JavaFrame 2.5 Modeling Guidelines, Ericsson NorARC, 2001.

9. Microsoft’s .Net web page. Available at:
http://www.microsoft.com/net/defined/whatis.asp.

10. The Java™ Messaging Service web page, Documentation available from:
http://java.sun.com/products/jms/

11. The Java™ 2 Standard Edition, release 1.4 web page, Documentation available
from: http://java.sun.com/j2se/1.4/.

12. The JavaBeans specification. Available from:
http://java.sun.com/products/javabeans/docs/

13. JSR 26 UML/EJB Mapping Specification;
http://salmosa.kaist.ac.kr/~course/DrBae/cs650_2001/LectureNotes/UMLProfileFor
EJB.pdf

14. The J2EE Tutorial for the SUN ONE Platform;
http://java.sun.com/j2ee/1.3/docs/tutorial/doc/index.html

15. EJB & JSP – Java On The Edge; Lou Marco; METT Books; ISBN: 0-7645-4802-06

16. Developing Java Enterprise Application; Stephen Asbury, Scott R. Weiner; Wiley;
Second edition; ISBN: 0-471-40593-0

17. SOAP 1.1 specification, available from http://www.w3.org/

18. UML 2.0 Superstructure Proposal (2nd revision) January 2003; U2 Partners;
http://www.u2-partners.org/artifacts.htm

19. U2-partners home page: http://www.u2-partners.org

 Agder University College

100 Geir Melby Thesis modified 27.05.2003

20. SDL - Specification and Description Language, CCITT recommendation Z100;

21. MSC – Message Sequence Chart, CCITT recommendation Z120

22. T.Reenskaug, P. Wold, and O. A. Lehne; Working With Objects. Manning: Prentice
Hall, 1995.

23. Rolv Bræk et al; Quality by construction exemplified by TIMe – The Integrated
Method; http://www.sintef.no/time/

24. Rolv Bræk; Using roles with types and objects for service development. IFIP
International Conference on Intelligence in Networks, Smartnet 99, Bangkok,
November

25. Haugen, Ø. and B. Møller-Pedersen. JavaFrame - Framework for Java-enabled
modeling. in ECSE2000. 2000. Stockholm.

26. Lars Boman; Ericssons Service Network: a “melting pot” for creating and
delivering mobile Internet services. Ericsson review 2/2000.

27. Robit Khare; Soap routing; the missing link; O’Railly Emerging Technologies
Conference; UC Irvine & Know How, Inc

28. Bræk, Rolv;On Methodology Using the ITU-T Language and UML; Teletektonikk
4.2000.

29. JBOSS; J2EE Application Server; http://jboss.org/

30. Web-logic; BEA Systems; http://www.beasys.com/products/weblogic/

31. Jambala; Ericsson;
http://www.ericsson.com/products/product_selector/JSCS_hpprod.shtml

32. Web services; W3C; http://www.w3.org/2002/ws/

33. J2EE – Java 2 Enterprise Edition; Sun; http://java.sun.com/j2ee/

34. AVANTEL – Research project; http://www.item.ntnu.no/avantel/

35. ARTS – Research project; http://www.item.ntnu.no/avantel/arts.html

36. OMG – Object Management group; http://www.omg.org/

37. CORBA - http://www.corba.org/

38. .NET; http://www.microsoft.com/net/

39. David Harel; Paper
http://www.wisdom.weizmann.ac.il/~dharel/SCANNED.PAPERS/OOStatecharts.p
df

40. OCL – Object Constraint Language; Part of the UML standard.

41. OMA – Open Mobile Alliance; homepage: http://www.openmobilealliance.org/

42. 3GPP – Third Generation Partner Ship; homepage: http://www.3gpp.org/

43. OMG; IDL - Interface Definition Language

44. Sun Java Community; UML Profile for EJB;

Agder University College

Geir Melby Thesis modified 27.05.2003 101

45. SISU - research project; http://www.sintef.no/units/informatics/projects/sisu/

46. UML; Object Management Group OMG; Specification found at
http://www.omg.org/

47. W3C; SOAP 1.2; Proposal: http://www.w3.org/TR/soap12-part1/ and
http://www.w3.org/TR/soap12-part2/

48. Nilsen; Microsoft Corporation; Presentation SOAP routing and Message Path
Modeling; PDC 2001, October 22-26, 2001

49. TIMe – The Integrated Methodology; SISU project; http://www.sintef.no/time/

50. W3C – XML; Specification: http://www.w3.org/XML/

Agder University College

Geir Melby Thesis modified 27.05.2003 103

Chapter 12 List of figures

Figure 1-1 Next generation network...2
Figure 1-2 ServiceFrame [1]..3
Figure 2-1 Composition versus parts [18] ..11
Figure 2-2 Class with internal structure [18] ...12
Figure 2-3 Ports connected to classes [18] ..12
Figure 2-4 Connectors and ports [18]..13
Figure 2-5 Definition of Exit / Entry points [18] ..14
Figure 2-6 Use of Exit / Entry points [18] ...15
Figure 2-7 Specialization by extension [18]..16
Figure 2-8 Specialization of state machines [18]..16
Figure 2-9 Defining UML extensions..17
Figure 2-10 Use of stereotypes...17
Figure 3-1 ServiceFrame - a model driven service development kit [1]19
Figure 3-2 ServiceFrame layers [1] ..20
Figure 3-3 Class Actor ...21
Figure 3-4 RoleRequest protocol [1]..21
Figure 3-5 Multiple roles and actors ...22
Figure 3-6 A simple service. ...22
Figure 3-7 Play ...23
Figure 3-8 JavaFrame classes [2]..23
Figure 4-1 EJB Architecture..29
Figure 4-2 Client view of enterprise beans...29
Figure 5-1 Three main aspects [28]..42
Figure 5-2 Realization versus concept tags ..44
Figure 5-3 Stereotypes and tagged values for EnterpriseBean [44]................................47
Figure 5-4 Use of UML profile for EJB for ActorFrame modeling..................................48
Figure 6-1 All state machines into one bean ..53
Figure 6-2 One State Machine into on bean ...54
Figure 6-3 State machines of same type into one bean...55
Figure 6-4 All state machines share same queue ..57
Figure 6-5 One queue for each state machine..58
Figure 6-6 State machine of same type share one queue ...59
Figure 6-7 Parts in UML2.0 ..60
Figure 6-8 Name scope for actors ..61
Figure 7-1 Implementation of state machines ...63
Figure 7-2 EJBActorFrame..64
Figure 7-3 Mapping of Actor class to EJBActorFrame classes...65
Figure 7-4 Profile for ActorFrame ...66
Figure 7-5 Class Actor ...66
Figure 7-6 Operation of an actor state machine ..67
Figure 7-7 EJBActorFrame classes ...69
Figure 7-8 State data classes ...69

 Agder University College

104 Geir Melby Thesis modified 27.05.2003

Figure 7-9 Dependency of the state hierarchy...71
Figure 7-10 Current state represented as a state id...72
Figure 7-11 JNDI names of actors..73
Figure 8-1 Domain model of the CATN service..75
Figure 8-2 CATN service scenario...76
Figure 8-3 Context Aware Services ...77
Figure 8-4 CAS - interaction with environments ..77
Figure 8-5 Class User...78
Figure 8-6 Sequence diagram of CAS application ..78
Figure 8-7 Class TrafficNews extends class Service ...79
Figure 8-8 Behavior of class TrafficNews...80
Figure 8-9 Implementation of the UML class TrafficNews ...81
Figure 8-10 Implementation of behavior – class TrafficNewsCS....................................82
Figure 8-11 Implementation of state data as CMP bean ..84
Figure 8-12 Storage of state data..85
Figure 8-13 Initialization of JMS and JNDI ..86
Figure 8-14 Implementation of parts ..86
Figure 8-15 Deployment of entity bean for state data of class TrafficNews87
Figure 8-16 Deployment of class TrafficNews as message bean.....................................88
Figure 9-1 Change of middleware effect on the different approaches...........................92

