

Evaluation of OSA API’s for 3rd party developers of Telco-services

Masters Thesis
in

Information and Communication Technology

Submitted to
Agder University College

Faculty of Engineering and Science

By

Anders Henriksen & Kjetil Ribe

Grimstad, May 2002

 Evaluation of OSA API’s for 3rd party developers of Telcoservices

 - ii -

Abstract
Changes in business models introduce new actors to the telecom business. A set of
new demands occurs and to handle this, a technical enabler like OSA is needed.

Telenor R&D, which often provides Telco services in research projects, must form an
opinion concerning this framework. Thus an evaluation of OSA is inquired.

This thesis presents an introduction and evaluations of the OSA framework, further, a
closer look at two of the OSA API’s (User Status and Terminal Capabilities) are
made. To enhance the evaluation, Youngster has been utilized as an example of where
the OSA framework can be used. An implementation of one of the API’s has also
been done with the use of Web Services and CORBA.

Our main conclusion is that OSA has not managed to make the framework user-
friendly. Too many details must be implemented to get access to Telco services, and
3rd party developers need to know unnecessary much about telecommunication.

 Evaluation of OSA API’s for 3rd party developers of Telcoservices

 - iii -

Preface
This thesis is performed to complete the Master of Science programme in Information
and Communication Technology (ICT) at Agder University College, Faculty of
Engineering and Science in Grimstad.

We would like to thank Alf Martin Sollund and Hans-Thomas Nyberg at Telenor
R&D for supervising us during this diploma-work. Also our contact at Agder
University College, Lars Line, has been supporting us.
A special thank to Mark H. Butler at Hewlett Packard Company for helping us with
DELI.

Last, but not least we would like to thank our girlfriend, Jannicke Knutsen, for being a
loving and caring person regardless of our mood swings and long working hours
during the completion of this thesis.

Kjetil Ribe Anders Henriksen

__________________ __________________

Grimstad, May 2002

 Evaluation of OSA API’s for 3rd party developers of Telcoservices

 - iv -

Abbreviations

3GPP 3rd Generation Partnership Project
AAA Authentication, Authorisation and Accounting
AAD Authentication, Authorisation and Discovery
ADO ActiveX Data Objects
API Application Programming Interface
ASP Active Server Pages
BES Borland Enterprise Server
CAMEL Customized Application for Mobile network Enhanced Logic
CAP CAMEL Application Part
CCM CORBA Component Model
CC/PP Composite Capability / Preference Profiles
CORBA Common Object Request Broker Architecture
CSE CAMEL Service environment
DELI Delivery context LIbrary for CC/PP and UAProf
DIFF Difference
ETSI European Telecommunications Standards Institute
GIOP General
GPRS Global Packed Radio Switched
GUI General User Interface
HLR Home Location register
HTML HyperText Markup Language
HTTP HyperText Transfer Protocol
HTTPS HyperText Transfer Protocol Secure
IDL Interface Description Language
IIOP Internet Inter-Orb Protocol
IP Internet Protocol
JAIN Java API’s for Integrated Networks
JDK Java Development Kit
LBS Location Based Services
MAP Mobile Application Part
MD5 Message-Digest Algorithm 5
MExE Mobile Station (Application) Execution Environment
MIME Multipurpose Internet Mail Extensions
OMG Object Management Group
ORB Object Request Broker
OSA Open Service Access
PDP Packed Data Protocol
RDF Resource Description Framework
RMI Remote Method Invocation
SAT Subscriber identity module Application Tool-Kit
SCF Service Capability Feature
SCS Service Capability Server
SDK Software Development Kit
SMS Short Message Service
SMTP Simple Mail Transfer Protocol
SOAP Simple Object Access Protocol
TC Terminal Capability
TCP/IP Transfer Control Protocol / Internet Protocol
Telco Telecommunication operators
TTM Time To Market
UAProf User Agent Profile
UDDI Universal Description, Discovery, and Integration
UL User Location
UML Unified Model Language
US User Status

 Evaluation of OSA API’s for 3rd party developers of Telcoservices

 - v -

VHE Virtual Home Envornment
W3C World Wide Web Consortium
WAP Wireless Application Protocol
WGW WAP Gateway
WGP WAP Gateway/PushProxy
WML Wireless Markup Language
WPP WAP Push Proxy
WSDL Web Service Description Language
WTA Wireless Telephony Applications
XHTML Extensible HyperText Markup Language
XLS Extensible Stylesheet Language
XML Extensible Markup Language

 Evaluation of OSA API’s for 3rd party developers of Telcoservices

 - vi -

Table of Contents

ABSTRACT...II

PREFACE.. III

ABBREVIATIONS... IV

TABLE OF CONTENTS ... VI

TABLE OF FIGURES .. VIII

1 INTRODUCTION..9

1.1 Thesis scope..9

1.2 Objective...10

1.3 Outline ..10

2 OSA EVALUATION..11

2.1 Criteria ..11

2.2 Generally ..11
2.2.1 Background...11
2.2.2 Introduction...11
2.2.3 Framework ..13
2.2.4 Service Capability Servers ...13
2.2.5 Discussion OSA general...15
2.2.6 General OSA conclusion ..16

2.3 Specific against the IST-Youngster project ...16
2.3.1 Discussion OSA in Youngster..16
2.3.2 Conclusion OSA in Youngster ...16

2.4 Alternative frameworks compared to OSA ...17

2.5 Evaluation of the Terminal Capability API ...18
2.5.1 Overview...18
2.5.2 Youngsters demands...20
2.5.3 Discussion of the Terminal Capability API ...20
2.5.4 Conclusion of the Terminal Capability API ..21

2.6 Evaluation of the User Status API ...21
2.6.1 Overview...21

 Evaluation of OSA API’s for 3rd party developers of Telcoservices

 - vii -

2.6.2 Data definitions...24
2.6.3 User Status mapping...26
2.6.4 Youngsters demands...26
2.6.5 Discussion of the User Status API ...27
2.6.6 Conclusion of the User Status API...27

3 IMPLEMENTATION OF TERMINAL CAPABILITY ...28

3.1 DELI ...28

3.2 Design...30

3.3 Web Services ..30
3.3.1 Experience with Web Services and the Terminal Capability API35

3.4 CORBA ..36
3.4.1 Experience with CORBA and the Terminal Capability API.......................................38

3.5 Discussion/conclusion implementation ...39

4 DISCUSSION..40

5 CONCLUSION...42

6 REFERENCE ...43

7 APPENDIX ...45

7.1 Appendix A - Youngster ..45
7.1.1 Youngster Partners ...46

7.2 Appendix B – Task description..47

 Evaluation of OSA API’s for 3rd party developers of Telcoservices

 - viii -

Table of figures
Figure 1 – Overview of OSA...12
Figure 2 – IpTerminalCapabilities ...18
Figure 3 – terminalIdentity ..18
Figure 4 – TpTerminalCapabilities ..18
Figure 5 – CC/PP header..19
Figure 6 – User Status sequence diagram..22
Figure 7 – Interactive request ..23
Figure 8 – Interface Class IpAppUserStatus..23
Figure 9 – Interface Class IpUserStatus...24
Figure 10 – TpUserStatus ..24
Figure 11 – TpUserStatusIndicator ..24
Figure 12 – TpTerminalType...24
Figure 13 – TpMobilityStopAssignmentData..25
Figure 14 – TpMobilityStopScope...25
Figure 15 – TpMobilityError ...25
Figure 16 – TpMobilityDiagnostic ..26
Figure 17 – UAProf header..28
Figure 18 – UAProf DIFF header ..29
Figure 19 – Architecture ..30
Figure 20 – Web-services three roles...31
Figure 21 – Web Services architecture ..32
Figure 22 – SOAP request ...33
Figure 23 – Implemented Web Service architecture..34
Figure 24 – IDL example...36
Figure 25 – The IDL Compiler turns IDL into stubs and skeletons36
Figure 26 – The main components of the CORBA architecture..................................37
Figure 27 – Implemented CORBA architecture ..38
Figure 28 – Architecture ..47

 Evaluation of OSA API’s for 3rd party developers of Telcoservices

 - 9 -

1 Introduction
New players have been introduced to the telecom business due to a change in business
models. Some want to address users directly, while others prefer to address users via a
network operator. Both way, they compete in the service market, and they need a
network. To handle this demand we need a technical enabler; OSA (Open Service
Access).

This new business model does not change the fact the network operator “owns” the
costumer through the network access.

Today there is not implemented any standardisation of how services, enabled through
the telecom operator’s networks, are offered by operators to 3rd party service
providers. 3GPP has standardised a framework to handle this called OSA.
OSA is using a set of open standardised interfaces to enable operators and 3rd party
developers to make use of network functionality.
With the use of standardised API’s, and the fact that the technology is open, will lead
to several advantages like:

 Applications will have shorter Time To Marked (TTM).
 3rd parties can develop and deploy applications.
 Network independent applications.

This will inevitably lead to new and innovative services.

In cooperation with Telenor R&D external conditions for our thesis were set. Since
Telenor R&D participates in the Youngster project as a Telco provider, they saw the
benefit of using our thesis to gain a broader perspective of OSA. In this thesis we will
use the Youngster project as an example of how to use the OSA framework and how
they can benefit from the use of it.

Youngster will develop technologies to create a new open active mobile multimedia
environment that is accessible from anywhere by a wide range of devices and
networks and supports context-aware features (including location-awareness)
allowing seamless and highly adaptive delivery of services.
Read more about the IST-Youngster project in Appendix A - Youngster.

1.1 Thesis scope

We will define different criteria, which will be used to evaluate the framework. Also
comparing similar frameworks will be done.
In particular we will look into the services made available in the Youngster project.
Our concentration will be on the Terminal Capabilities- and the User Status API's.
During the evaluation, the matters of both the telco-provider and the 3rd party
developers will be considered.

Some implementation work will be done to support the evaluation of the framework.
During the implementation-phase we will consider different implementation models,
implement the Terminal Capabilities API, and evaluate this API in accordance to the
framework.

 Evaluation of OSA API’s for 3rd party developers of Telcoservices

 - 10 -

1.2 Objective
The objective in this thesis is to give Telenor R&D an introduction and evaluation of
the OSA Framework.

1.3 Outline
This report is structured in five chapters, which will be described briefly.

Chapter 1 gives a short introduction to the thesis; containing scope, objective and
outline.

Chapter 2 gives an introduction to OSA general and looks specific into two API’s. For
each term, we discuss it and come to a conclusion. We are also looking briefly at
alternative frameworks compared to OSA.

In chapter 3, implementation of the OSA API, Terminal Capabilities, and a briefly
introduction to the distributed models used in the implementation is described.

Chapter 4 contains an overall discussion based on the former chapters.

The final chapter 5 contains the concluding remarks.

 Evaluation of OSA API’s for 3rd party developers of Telcoservices

 - 11 -

2 OSA Evaluation
In this chapter we will define a set of criteria, give a short introduction to the OSA
framework and look further into two of the OSA API’s.

2.1 Criteria
In the beginning of the assignment we focused on defining a set of criteria, which we
later could use as a foundation for evaluating the OSA framework.
We will not use each criterion literally, but we will have them in mind, and use them
as base line for each discussion.
After several discussions and reading different specifications, we concluded with a set
of criteria, which we meant where important in an evaluation of a framework.

 Complexity
 Does the API offer what it claims to offer?
 Error handling
 Language and operation system dependency?
 How is the specification written? (i.e. IDL)
 Telco developers VS. 3rd party developers
 Dependencies of other specifications

2.2 Generally

2.2.1 Background
In the end of 1998 and the beginning of 1999, 3GPP formed a group called OSA
(Open Service Architecture, later known as Open Service Access). The focus of this
group was to define architecture to support the virtual home environment (VHE). This
group have made a specification of an API-set for Open Service Access in a release
called Release 99. This release was defined by both 3GPP and ETSI in cooperation
with Parlay. In the next release Parlay was working together with ETSI and 3GPP
with the specification, now also cooperating with JAIN.

2.2.2 Introduction
The specification contains information about API’s for use by 3rd party developers,
mapping to lower layer protocols and a framework.

The concept of the virtual home environment is that the user has access and can see
his personalised features in any kind of network, user terminal or wherever the user is
located.

 “The OSA defines an architecture that enables operator and 3rd party applications to
make use of network functionality through an open standardised API (the OSA API).”
This is the idea of OSA. The API-set gives applications an independency of
underlying network technology.

 Evaluation of OSA API’s for 3rd party developers of Telcoservices

 - 12 -

The expressions Service Capability Server (SCS) and Service Capability Feature
(SCF) are frequently used in the OSA specifications and in 3GPP. It is usefully to get
to know these expressions. SCS is the entity that is providing OSA interfaces towards
an application while a SCF is the functionality offered by a SCS through OSA
interfaces. In a way SCS acts as gateways between the network entities and the
applications.

Applications are connected to the Service Capability Servers (SCS’s) through the
OSA API. The SCS’s map these API’s to underlying protocols (e.g. Mobile
Application Protocol (MAP) and CAMEL application part (CAP)), and hides the
network complexities from the application.

OSA defines different network functionality that is offered to applications as a set of
SCF’s. This functionality is described using OMG’s Interface Description Language
(IDL). The specification also contains sequence diagrams and state chart using UML
as description language.

The main objective of OSA is to provide an extendible and scalable architecture. It
should also be open and accessible to 3rd party developers. By using IDL, OSA
becomes independent of programming language and operating systems.

OSA consists of two main parts; The Framework and the SCS. In Figure 1 –
Overview of OSA we can see these main parts. OSA consists of two set of API;
internal and external. The external API is between the application and
SCS/Framework, and the internal between the framework and the SCS.

Figure 1 – Overview of OSA

 Evaluation of OSA API’s for 3rd party developers of Telcoservices

 - 13 -

2.2.3 Framework
This part of OSA provides applications access to SCS. Services that the framework
provides are authentication, authorisation and discovery. Applications have to get
authenticated to get access to the SCS. After this the framework will find which rights
this specific application has. This is done through authorisation. After this phase, the
framework will tell the application which SCF’s this OSA implementation provides.
This is called discovery. Every new SCS must register their individual features with
the framework.

2.2.4 Service Capability Servers
These servers will provide the applications with network functionalities through
Service Capability Features. Example of this can be User Status and Call Control.

One SCF will provide a number of interfaces and methods that are specified in OSA.
We can divide the interfaces into two groups; internal interfaces and external
interfaces.

OSA specifies different API’s. These are:

Generic call control (Part 4) [6]

The generic call control SCF provides the basic call control capabilities for the API. It
allows calls to be instantiated from the network and routed through the network. The
call model is based around a central call model that has zero to two call legs that are
active (i.e. being routed or connected), each of which represents the logical
relationship between the call and an address. However, the application does not have
direct access to the call legs. Generic call control supports functionality to allow call
routing and call management for CAMEL Phase 3 and earlier services. Generic call
control is represented by the IpCallManager and IpCall interfaces that interface to
services provided by the network. Some methods are asynchronous, in that they do
not lock a thread into waiting while a transaction performs. In this way, the client
machine can handle many more calls than one that uses synchronous message calls.
To handle responses and reports, the developer must implement IpAppCallManager
and IpAppCall.

Generic user interaction (Part 5) [7]

The generic user interaction interface SCF’s are used by applications to interact with
end users. The IpUIManager, IpUI and IpUICall interfaces that interface to service
capabilities provided by the network represent the GUI.
The IpUI interface provides functions to send information to, or gather information
from, the user, i.e. this interface allows applications to send SMS and USSD
messages. An application can use this interface independently of other SCF’s. The
IpUICall interface provides functions to send information to, or gather information
from, the user (or call party) attached to a call. To handle responses and reports, the
developer must implement IpAppUIManager, IpAppUI and IpAppUICall interfaces to
provide the callback mechanism.

 Evaluation of OSA API’s for 3rd party developers of Telcoservices

 - 14 -

Mobility (Part 6) [8]

The mobility SCF consists of two main parts:

 Network user location
The network user location (UL) provides the IpUserLocationCamel interface, which
provides methods for periodic and triggered location reporting. Most methods are
asynchronous, in that they do not lock a thread into waiting while a transaction
performs.
In this way, the client machine can handle many more calls than one that uses
synchronous message calls. To handle responses and reports, the developer must
implement IpAppUserLocationCamel interface to provide the callback mechanism.

 User status
The user status (US) basically provides the application with a means of finding out
what the terminal is up to at any particular time. This means that it is able to find out
when a user completes a call and when the user switches the telephone on, off or
busy.

Terminal capabilities (Part 7) [9]

The terminal capabilities SCF enable the application to retrieve the terminal
capabilities of the specified terminal. This information is useful for the developer in
inter alia front-end considerations. This Service Capability Feature (SCF) provides an
interface that is called IpTerminalCapabilities. This interface only contains one
synchronous method, getTerminalCapabilities.

Data session control (Part 8) [10]

The data session control provides a means to control, on a per-data-session basis, the
establishment of a new data session. This means, especially in the GPRS context, that
the establishment of a PDP session (not the attach/detach mode) is modeled. Change
of terminal location is assumed to be managed by the lower tier network and is
therefore not part of the model. The underlying assumption is that a terminal initiates
a data session and the application can reject the request for data session establishment,
can continue the establishment, or can continue and change the destination as
requested by the terminal. The modeling is similar to the generic call control,
assuming a simpler underlying state model. An IpDataSessionManager and IpData
Session object are the interfaces used by the application, whereas the
IpAppDataSessionManager and the IpAppData Session interfaces are implemented by
the application.

 Evaluation of OSA API’s for 3rd party developers of Telcoservices

 - 15 -

2.2.5 Discussion OSA general
The specification of the framework makes a god standard of authentication and
authorization. The use of UML and IDL gives a full explanation of how the
specification should be implemented, and the implementer can choose any kind of
implementation language and software platform. It is clearly explained that the SCS’s
can be implemented on different entities; this can make the OSA a fully distributed
system even inside one Telco provider.
With the usage of IDL, structure of the framework, and the distributed way of
thinking, OSA can easily be compared with the structure of CORBA Component
Model.

Since the specification is so fine grained, the threshold of the knowledge of OSA,
required by both the implementer and the 3rd party developer, is at a high level. Thus
few 3rd party developers outside of the telecom industry have made
services/applications using OSA API’s. This high demand of knowledge of OSA is
based on our experience with different specifications. Several issues like
specifications of data-types, error-handling, authentication and authorization give the
specification the level of fine grain we mean that the OSA specification has. The
thoroughness is also a reason why the specification work has been slower than
expected.

Some providers may have given easy access to some of their services, but this has
been depending on each Telco provider. The main purpose of OSA is to give 3rd party
developers easy access to all Telco services in a standardized way. By doing this, each
developer can develop applications without thinking of how difficult
telecommunication-matters is implemented and by whom.

Our thesis has focus on the connection between OSA and a 3rd party developer, but in
a discussion of OSA it is important not to forget the mapping between OSA and lower
tier protocols. This makes a big difference between regular API-set and OSA.

As documented in 2.2.4, we have seen how compound the OSA specification is. This
made us think of other solutions. One idea was to define a new layer on top of the
OSA API-set to make it easier for 3rd party developers to use the OSA API’s. This
could be done with Web Services. This extra layer could handle a lot of the
“handshaking”, and offer 3rd party developers less complex access to Telco services.

In February 2002 we saw some minutes from the OSA/Parlay meeting in Hong Kong.
They had discussed the complexity of OSA and the reason why so few 3rd party
developers had implemented services based on OSA. On this meeting OSA/Parlay
launched the idea of Parlay X. Parlay X is an XML specification of OSA, and is
meant to work as a layer on top of the OSA API. This would make it easier for 3rd
party developers to implement services using OSA API’s. In chapter 4 Discussion,
Parlay X versus our solution is further discussed.

 Evaluation of OSA API’s for 3rd party developers of Telcoservices

 - 16 -

2.2.6 General OSA conclusion
The OSA is thorough specified. This makes the API-set well founded, in some cases
very fine grained. Services provided by Telco providers have so far been difficult to
use for 3rd party developers because of the lack of standardization.
The 3rd party developer still has to know unnecessary much about telecommunication.
It seems that the Parlay X is going to make this access easier, but until the release of
this specification (planed finished 4 quarter 2002), OSA is too complicated.

2.3 Specific against the IST-Youngster project

2.3.1 Discussion OSA in Youngster
There are several issues in the Youngster project that is dependent on a Telco
provider. Example of this is User Status, User Location, Presence, and Terminal
Capabilities. Some of these are already solved in the project, like User Location,
without using OSA API’s. We will not take this into consideration in our discussion.

Since OSA provide both 3rd party API’s and mapping to lower tier protocols, OSA
should be an alternative solution for Youngster. In the documentation about Telco
services made so far in the Youngster project it has been used the OSA vocabulary,
but it has not been looked into each API, and the interfaces that are specified, has not
been used. This is caused by not having available OSA implementations in live
networks.

Since large specification organs like 3GPP, ETSI and Parlay specifies OSA, OSA is a
good attempt from the Telco side on how to provide Telco services. Companies like
Ericsson, Alcatel etc. have already made OSA gateways that follow the OSA
specification. These gateways provide both the interfaces between Telco and 3rd party
developers and the mapping to lower layer protocols.

Because OSA is so compound making a whole implementation of OSA is too
demanding on resources for a project like Youngster. The fact that Youngster is at the
end of the project makes it more difficult to implement OSA, but it seems important
to deliver the API set to 3rd party developers. Thus Youngster can easy meet the future
with the use of OSA. The use of a gateway may be a solution, especially if Telenor
R&D has one available. This will make the implementation of some of the services
that Youngster needs from a Telco provider easier.

2.3.2 Conclusion OSA in Youngster
As we have discussed in 2.3.1 Discussion OSA in Youngster, and the fact that
Youngster is a research project, OSA should be considered. Youngster will benefit
from using OSA. Youngster can, with the use of OSA, meet the future better
prepared. With this, we do not say that Youngster should implement the entire
specification, but either use an OSA gateway, or the API-set provided in the OSA
specification.
One reason to only implement the API-set is to prevent 3rd party developers from
redesign their applications when an OSA gateway is used. Another reason is that OSA
is in an early phase, and not all the features are implemented in the gateways.

 Evaluation of OSA API’s for 3rd party developers of Telcoservices

 - 17 -

2.4 Alternative frameworks compared to OSA
To evaluate a framework it is important to look at other alternative frameworks. Since
OSA is a Telco specific framework we looked for other Telco framework. This was
not an easy job. There is no concrete alternative in the Telco industry to the whole
OSA. You can find API-set that provides specific Telco services, but not any that
provides a framework like the one found in the OSA specification.

We had to look at other alternatives outside the Telco industry. This meant that
specific Telco API’s would not be present, but a good framework can be adapted into
any systems. The alternative had to be a distributed system, since the Telco provider
and the 3rd party developers often are located at different places. Also each Telco
service can be located at different entities.

One solution that’s quite similar to the way OSA is built is called CORBA
Component Model. CCM uses IDL as specification language, has the ideas of one
“home” that handles the AAA, is distributed and is well known in the market. This is
also a thorough specification, like OSA, which require that the developers and
designer have good knowledge about the framework.
It requires a long design phase to use CCM, to get it Telco specific, and it would be
different API’s from each Telco provider. With this in mind CCM is not a good
alternative to OSA.

One other solution is to use an easy standard like Web Services. This standard is easy
to implement and supports the idea of a distributed system. Web Services will not
replace OSA, but it could be used to provide specific services as discussed in chapter
4 Discussion

 Evaluation of OSA API’s for 3rd party developers of Telcoservices

 - 18 -

2.5 Evaluation of the Terminal Capability API
This API gives the 3rd party developer information on users’ terminals. This
information is useful for the developer in inter alia front-end considerations.

2.5.1 Overview
The TC API is part 7 [9] of the OSA API standardisation. This Service Capability
Feature (SCF) provides an interface that is called IpTerminalCapabilities. This
interface only contains one synchronous method, getTerminalCapabilities.

<<Interface>>

IpTerminalCapabilities

getTerminalCapabilities (terminalIdentity : in TpString) : TpTerminalCapabilities

Figure 2 – IpTerminalCapabilities

As we see in Figure 2 – IpTerminalCapabilities, the function getTerminalCapabilities
has one in parameter called terminalIdentity. This parameter identifies the terminal, it
may be a logical address known by the WAP Gateway/PushProxy.

Name Type Documentation
terminalIdentity TpString Identifies the terminal. It may be a logical address known by the WAP

Gateway/PushProxy.

Figure 3 – terminalIdentity

The return parameter of the function is TpTerminalCapabilities. This parameter
specifies the latest available capabilities of the user’s terminal. This data type is a
Sequence_of_Data_Elements that describes the terminal capabilities. It is a structured
type that consists of StatusCode and TerminalCapabilities, as shown in Figure 4 –
TpTerminalCapabilities.

Sequence Element
Name

Sequence Element
Type

Documentation

StatusCode TpBoolean Indicates whether or not the terminalCapabilities are available.
TerminalCapabilities TpString Specifies the latest available capabilities of the user's terminal.

This information, if available, is returned as CC/PP headers as specified in
W3C [4] and adopted in the WAP UAProf specification [5]. It contains
URLs; terminal attributes and values, in RDF format; or a combination of
both.

Figure 4 – TpTerminalCapabilities

 Evaluation of OSA API’s for 3rd party developers of Telcoservices

 - 19 -

The first sequence element tells the application whether the terminalCapabilities is
available or not. If it is available the next element is a TpString that is called
TerminalCapabilities. This TpString is like CC/PP headers [11]. The CC/PP header is
specified in W3C and is returned in Resource Description Framework (RDF) format
[25]. In Figure 5 – CC/PP header we can se an example of how the return TpString
can look like.

<?xml version="1.0"?>
<!-- Checked by SiRPAC 1.16, 18-Jan-2001 -->
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:ccpp="http://www.w3.org/2000/07/04-ccpp#">

 <rdf:Description rdf:about="MyProfile">

 <ccpp:component>
 <rdf:Description rdf:about="TerminalHardware">
 <rdf:type rdf:resource="HardwarePlatform" />
 <display>320x200</display>
 </rdf:Description>
 </ccpp:component>

 <ccpp:component>
 <rdf:Description rdf:about="TerminalSoftware">
 <rdf:type rdf:resource="SoftwarePlatform" />
 <name>EPOC</name>
 <version>2.0</version>
 <vendor>Symbian</vendor>
 </rdf:Description>
 </ccpp:component>

 <ccpp:component>
 <rdf:Description rdf:about="TerminalBrowser">
 <rdf:type rdf:resource="BrowserUA" />
 <name>Mozilla</name>
 <version>5.0</version>
 <vendor>Symbian</vendor>
 <htmlVersionsSupported>
 <rdf:Bag>
 <rdf:li>3.0</rdf:li>
 <rdf:li>4.0</rdf:li>
 </rdf:Bag>
 </htmlVersionsSupported>
 </rdf:Description>
 </ccpp:component>

 </rdf:Description>
</rdf:RDF>

Figure 5 – CC/PP header

The W3C specification says that every attribute in the RDF file is optional. But it says
that the UAProf schema MUST consist of one or more CC/PP components, each
describing a set of properties (or attributes) within one or more RDF description
elements.

 Evaluation of OSA API’s for 3rd party developers of Telcoservices

 - 20 -

W3C specifies that the schema for WAP User Agent Profiles consists of description
blocks for the following key components [12]:

 HardwarePlatform: A collection of properties that adequately describe the
hardware characteristics of the terminal device. This includes the type of
device, model number, display size, input and output methods, etc.

 SoftwarePlatform: A collection of attributes associated with the operating
environment of the device. Attributes provide information on the operating
system software, video and audio encoders supported by the device, and user’s
preference on language.

 BrowserUA: A set of attributes to describe the HTML browser application
 NetworkCharacteristics: Information about the network-related infrastructure

and environment such as bearer information. These attributes can influence the
resulting content, due to the variation in capabilities and characteristics of
various network infrastructures in terms of bandwidth and device
accessibility.

 WapCharacteristics: A set of attributes pertaining to WAP capabilities
supported on the device. This includes details on the capabilities and
characteristics related to the WML Browser, WTA, etc.

 PushCharacteristics: A set of attributes pertaining to Push specific capabilities
supported by the device. This includes details on supported MIME-types, the
maximum size of a push-message shipped to the device, the number of
possibly buffered push-messages on the device, etc.

2.5.2 Youngsters demands
In the Youngster project it has been specified certain points about the information
needed from the Terminal Capability API:

 Type of device
 Screen colours
 Screen size

This information is needed for their Rendering component that is responsible for
applying the final transformation process to the WAP/XHTML representation of a
screen before it is sent to the user. Rendering will use the Terminal Capabilities to
select the appropriate XSL template.

2.5.3 Discussion of the Terminal Capability API
Terminal Capability consists of one interface, and one asynchronous method. The
Interface is simple and concrete, but its dependences of WAP seem to be the negative
side of the API. The dependency consists of the return-parameter from the function
specified in the interface. This parameter is the CC/PP header on RDF format. The
header is returned from the WGP, and is an extension in the HTTP header. This will
be received from a user in a HTTP request. Knowledge of RDF and CC/PP is required
to acquire the information about a terminal’s capability. Since this API has strong
dependencies to WAP, it also depends on how the WGP have implemented the
W3C’s UAProf.
The information that this API gives, will fulfil the demands set in the Youngster
project if the UAProf is available. If not, an alternative to identify TC is to use the
User-Agent string from the HTTP- header instead of the CC/PP header.

 Evaluation of OSA API’s for 3rd party developers of Telcoservices

 - 21 -

2.5.4 Conclusion of the Terminal Capability API
Until UAProf is available from most devices, the Terminal Capability API will not
provide the information that a 3rd party developer is interested in, but since this API is
a part of the specification, and UAProf most likely will be used in the future, the
Terminal Capability can be exploited.
As a conclusion we can also say that Youngster should use this API, in order to follow
the new standard. In the near future an OSA/Parlay gateway with the Terminal
Capability API will be available. If Youngster wants to use this, the 3rd party
developers will not se any changes since the API is already in use by Youngster.

2.6 Evaluation of the User Status API
This API give the 3rd party developer status information on fixed, mobile and IP-
based telephony users. This information is useful for 3rd party developer so they
always know the current status of a user. This may be online, offline or busy.

2.6.1 Overview
The User Status API is a part of part 6, Mobility in the OSA API specification [8].
This API provides two interfaces, as we see in Figure 8 and Figure 9.

The user-status application interface is implemented by the client application
developer and is used to handle user status reports.
The application programmer can use the ipUserStatus interface to obtain the status of
fixed, mobile and IP-based telephony users.

The following service capability features will be provided:

 Retrieval of User Status:
 The application will be able to retrieve the status of the user.

 Notification of User Status Change:
The application will receive notifications when the user's terminal
attaches or detaches:

• Detach: the user's terminal is switched off or the network initiates detach
upon location update failure.

• Attach: the user's terminal is switched on or there has been a successful
location update after a network initiated detach.

The application will be able to start/stop receipt of notifications for each terminal.

 Evaluation of OSA API’s for 3rd party developers of Telcoservices

 - 22 -

 : IpA ppUs erS tatus : IpUs erS tatus

1: t riggeredS tatus Report ingS tartReq(. . .

2: t riggeredS tatus Repor t(.. .

3: t riggeredS tatus Repor t(.. .

4: t riggeredS tatus Report ingS top.. .

New reports are s ent un ti l the
t riggered repor ti ng is s topp ed

Figure 6 – User Status sequence diagram

Figure 6 – User Status sequence diagram shows how an application requests triggered
status reports from the service. It will receive these reports every time a user’s status
change and the message pass the status to its callback object. This happens until the
application sends a triggeredStatusReportingStop.
A callback object is provided by the client-request in order for the server to reply to
the client requesting the periodic update.
The service is also able to return errors. If the request contain any errors i.e. parameter
error, the service will return an error code.
Also network errors can occur while processing a request from the application. If that
happen, the service will call an error method on the application. (statusReportErr())

 Evaluation of OSA API’s for 3rd party developers of Telcoservices

 - 23 -

An interactive request can be made by an application to request a status report from
the service, as shown in Figure 7 – Interactive request.

 : IpAppUserStatus : IpUserStatus

1: statusReportReq(...

2: statusReportRes(...

Figure 7 – Interactive request

1: This message is used to request the status of one or several users.
2: This message passes the result of the status request to its callback object.

The IpAppUserStatus interface must be implemented to provide the callback
mechanism, and also to handle responses and reports.

<<Interface>>

IpAppUserStatus

statusReportRes (assignmentId : in TpSessionID, status : in TpUserStatusSet) : void

statusReportErr (assignmentId : in TpSessionID, cause : in TpMobilityError, diagnostic : in
TpMobilityDiagnostic) : void

triggeredStatusReport (assignmentId : in TpSessionID, status : in TpUserStatus) : void
triggeredStatusReportErr (assignmentId : in TpSessionID, cause : in TpMobilityError,

diagnostic : in TpMobilityDiagnostic) : void

Figure 8 – Interface Class IpAppUserStatus

The interface shown in Figure 8 – Interface Class IpAppUserStatus, is implemented
by the client developer, and it is set to handle user status reports.

 Evaluation of OSA API’s for 3rd party developers of Telcoservices

 - 24 -

<<Interface>>

IpUserStatus

statusReportReq (appStatus : in IpAppUserStatusRef, users : in TpAddressSet) : TpSessionID

triggeredStatusReportingStartReq (appStatus : in IpAppUserStatusRef, users : in
TpAddressSet) : TpSessionID

triggeredStatusReportingStop (stopRequest : in TpMobilityStopAssignmentData) : void

Figure 9 – Interface Class IpUserStatus

The interface in Figure 9 – Interface Class IpUserStatus is used to obtain the status of
users. That can be fixed, mobile and IP-based telephony users.

2.6.2 Data definitions
Some of the data definitions in the IpAppUserStatus and IpUserStatus interfaces are
shown in the following figures:

 TpUserStatus defines the Sequence of Data Elements that specifies the identity
and status of a user.

Sequence Element Name Sequence Element Type Description

UserID TpAddress The user address.
StatusCode TpMobilityError Indicator of error.

Status TpUserStatusIndicator The current status of the user.
TerminalType TpTerminalType The kind of terminal used by the user.

Figure 10 – TpUserStatus

 TpUserStatusSet defines a Numbered Set of Data Elements of TpUserStatus.

 TpUserStatusIndicator defines the status of a user.

Name Value Description

P_US_REACHABLE 0 User is reachable
P_US_NOT_REACHABLE 1 User is not reachable
P_US_BUSY (see
Note)

2 User is busy (only applicable for interactive user
status request, not when triggers are used)

NOTE: Only applicable to mobile (Camel) telephony users.

Figure 11 – TpUserStatusIndicator

 TpTerminalType - Defines which kind of terminal is used.

Name Value Description

P_M_FIXED 0 Fixed terminal.
P_M_MOBILE 1 Mobile terminal.
P_M_IP 2 IP terminal.

Figure 12 – TpTerminalType

 Evaluation of OSA API’s for 3rd party developers of Telcoservices

 - 25 -

 TpMobilityStopAssignmentData -Assignments is used for periodic or triggered
reporting of a user's location or status. This data type defines a request to stop
the assignment. The request is made up by a sequence of Data Elements listed
in Figure 13 – TpMobilityStopAssignmentData.

Sequence Element
Name

Sequence Element
Type

Description

AssignmentId TpSessionID Identity of the session that shall be
stopped.

StopScope TpMobilityStopScope Specify if only a part of the assignment or
if all the assignment shall be stopped.

Users TpAddressSet Optional parameter describing which users a
stop request is addressing, when only a
part of an assignment is to be stopped.

Figure 13 – TpMobilityStopAssignmentData

 TpMobilityStopScope -This enumeration is used in requests to stop mobility

reports that are sent from a mobility service to an application.

Name Value Description
P_M_ALL_IN_ASSIGNMENT 0 The request concerns all users in an assignment.
P_M_SPECIFIED_USERS 1 The request concerns only the users that are explicitly specified in a list.

Figure 14 – TpMobilityStopScope

 TpMobilityError -Defines an error that is reported by one of the mobility

services.

Name Value Description Fatal
P_M_OK 0 No error occurred while processing the request. N/A

P_M_SYSTEM_FAILURE 1 System failure.
The request can not be handled because of a general problem in

the mobility service or the underlying network.

Yes

P_M_UNAUTHORIZED_NETWORK 2 Unauthorised network,
The requesting network is not authorised to obtain the user’s

location or status.

No

P_M_UNAUTHORIZED_APPLICATION 3 Unauthorised application.
The application is not authorised to obtain the user’s location or

status.

Yes

P_M_UNKNOWN_SUBSCRIBER 4 Unknown subscriber.
The user is unknown, i.e. no such subscription exists.

Yes

P_M_ABSENT_SUBSCRIBER 5 Absent subscriber.
The user is currently not reachable.

No

P_M_POSITION_METHOD_FAILURE 6 Position method failure.
The mobility service failed to obtain the user’s position.

No

Figure 15 – TpMobilityError

 Evaluation of OSA API’s for 3rd party developers of Telcoservices

 - 26 -

 TpMobilityDiagnostic - Defines a diagnostic value that is reported in addition
to an error by one of the mobility services.

Name Value Description

P_M_NO_INFORMATION 0 No diagnostic information present.
Valid for all type of errors.

P_M_APPL_NOT_IN_PRIV_EXCEPT_LST 1 Application not in privacy exception list.
Valid for ‘Unauthorised Application’ error.

P_M_CALL_TO_USER_NOT_SETUP 2 Call to user not set-up.
Valid for ‘Unauthorised Application’ error.

P_M_PRIVACY_OVERRIDE_NOT_APPLIC 3 Privacy override not applicable.
Valid for ‘Unauthorised Application’ error.

P_M_DISALL_BY_LOCAL_REGULAT_REQ 4 Disallowed by local regulatory requirements.
Valid for ‘Unauthorised Application’ error.

P_M_CONGESTION 5 Congestion.
Valid for ‘Position Method Failure’ error.

P_M_INSUFFICIENT_RESOURCES 6 Insufficient resources.
Valid for ‘Position Method Failure’ error.

P_M_INSUFFICIENT_MEAS_DATA 7 Insufficient measurement data.
Valid for ‘Position Method Failure’ error.

P_M_INCONSISTENT_MEAS_DATA 8 Inconsistent measurement data.
Valid for ‘Position Method Failure’ error.

P_M_LOC_PROC_NOT_COMPLETED 9 Location procedure not completed.
Valid for ‘Position Method Failure’ error.

P_M_LOC_PROC_NOT_SUPP_BY_USER 10 Location procedure not supported by user.
Valid for ‘Position Method Failure’ error.

P_M_QOS_NOT_ATTAINABLE 11 Quality of service not attainable.
Valid for ‘Position Method Failure’ error.

Figure 16 – TpMobilityDiagnostic

2.6.3 User Status mapping
The interface class methods defined in 3GPP TS 29.198-6 can be mapped onto
CAMEL Application Part (CAP) operations and Mobile Application Part (MAP)
operations [24].

2.6.4 Youngsters demands
Demands made by the Youngster project are that the API should deliver the current
status of a given end-user. By status, Youngster means whether the user is offline, or
online, i.e. connected to GPRS networks or not.
They attend to use this information in inter alia their Context Server. They have a
Notifier that checks the Context Server whether the user wants, or is able to be
notified.

 Evaluation of OSA API’s for 3rd party developers of Telcoservices

 - 27 -

2.6.5 Discussion of the User Status API
This service provides two types of reporting; you can either request to get a triggered
status report. This means that every time a user’s status changes, the application will
get notified. Or you can make an interactive request. This is the same as the triggered
request, but you will only get one response.
Both the trigged status and the requested status gives information if the user is online
or offline but the busy status will only be applicable to mobile (CAMEL) telephony
users, and it will only be applicable for interactive requests, not when triggers are
used. The latter may be a problem for applications that has to know if the user is busy
or not. The alternative is to use interactive requests with a periodic timer, or whenever
the status information is needed.
An alternative solution drawn by Youngster is to get the user-status from the LBS.
This assumes that the user is offline if an error message is returned, and online if not.
With this solution, Youngster will not always know if the user is offline or online.
Thus, it will not provide the correct status of the user. We assume that this solution
will be more time consuming than the trigged request method in User Status. This is
because Youngster has to request the user to get the status.

2.6.6 Conclusion of the User Status API
OSA’s User Status API provides the 3rd party developer with the information that is
required concerning users status. The status of a user is provided in release 4 as [6]:

 User is reachable
 User is not reachable
 User is busy

We will recommend, for Youngster, the use of this API. It is not a solution to
implement it, but to use an existing OSA/Parlay gateway. This gateway will provide
the API in question.

 Evaluation of OSA API’s for 3rd party developers of Telcoservices

 - 28 -

3 Implementation of Terminal Capability
We decided in cooperation with Telenor R&D to implement the Terminal Capability
API. This API’s dependency of WAP and Youngsters needs of this API was the
reason for this choice.

Youngster needs this API to adapt to devices used by their users to present different
content for different devices. So far in the project, Youngster can only differ between
WAP users and regular web-browser users, but in the future they want to differ
between the devices used due to the increasing number of devices with different
characteristics.

Initially we examined UAProf and the WAP specification to find out if it was possible
to extract the user profile from a user request. We found different implementations,
which made this possible, and we tested one of them called DELI. This
implementation is described below.

3.1 DELI
DELI is an open-source library that provides an application interface (API) to allow
Java servlets to resolve HTTP requests containing delivery context information from
CC/PP or UAProf capable devices and queries the resolved profile.

UAProf header:

Format: x-wap-profile = "x-wap-profile" ":" 1#reference
reference = <"> (absoluteURI | profile-diff-name) <">
absoluteURI = <a URI as defined by RFC2396>
profile-diff-name = profile-diff-seq "-" profile-diff-digest
profile-diff-seq = ("1"|"2"|"3"|"4"|"5"|"6"|"7"|"8"|"9")
*DIGIT
profile-diff-digest = *OCTET “;” < MD5 message digest encoded by base64 >
DIGIT = <any US-ASCII digit "0".."9">
Default: None

Figure 17 – UAProf header

DELI must be implemented on a server capable of processing Java servlets. DELI
receives CC/PP or UAProf information from a client-device see Figure 17 – UAProf
header, it resolves the received information, and can then pass on this information in
order for the appropriate content-provider to adjust the content for that specific user.
Profile resolution is central to this process. To identify a terminal UAProf uses
profile-diff-digits which is a MD5 message digit encoded by base64. DELI decodes
the MD5 message which is a part of the resolving.

One of the goals with CC/PP is that it is supposed to work on even terminals with low
bandwidth. In order to do that the client is not sending an entire profile with every
request, but only a reference to a profile. The profile is sent only once and then stored
on a third device known as a profile repository. The process of interpreting the profile
references and differences is known as profile resolution.

 Evaluation of OSA API’s for 3rd party developers of Telcoservices

 - 29 -

This is where DELI comes at hand, as a middle-agent. It performs profile resolution,
reassembling packets and then querying profiles in the profile repository.
If DELI is not used, or an equivalent solution is brought at hand; the CC/PP or
UAProf information is ignored, thus the server is not able to deliver the content based
on the terminal capabilities.

Unlike any HTTP based solution, the CC/PP based solution is always up to date. It
doesn’t rely on a database or manually updating. DELI just read and interprets the
CC/PP profile as a request is made.

When DELI interprets a request made by a terminal that is not providing any CC/PP
or UAProf information, it will determine which type of terminal it is in a database
providing information for old terminals based on the User-Agent string.

Format: x-wap-profile-diff = "x-wap-profile-diff" ":" profile-diff-seq";" profile-desc
profile-diff-seq = ("1"|"2"|"3"|"4"|"5"|"6"|"7"|"8"|"9")
 *DIGIT
profile-desc =<XML document containing profile subset of the schema defined
in Section 7>
DIGIT = <any US-ASCII digit "0".."9">
Default: None

Figure 18 – UAProf DIFF header

Terminals will if a certain characteristic change sends a UAProf DIFF header. This
header contains information on with characteristic that has been changed and the new
value. If DELI receives a UAProf DIFF header, Figure 18 – UAProf DIFF header, it
will update the repository with the new information. This way changes in the profile
do not consume large bandwidth, as it would if it sent the whole profile again.

DELI is an alternative to the OSA terminal capability API. It can be used as a stand
alone API to resolve the terminals capability. But it can also be used together with the
OSA API, as a lower tier for the API on the Telco side. This way the 3rd party
developer will only see the OSA API, use the framework and AAD, and get the
terminal capability from the OSA TC API.

The input parameter in the function getTerminalCapability can be the UAProf header;
which in the specification is a string (tpString) that identifies the terminal, thus the
UAProf header as an input parameter is according to the specification.

During our testing of DELI we had regular contact with Mark H. Butler. He is the
leader of the project DELI at Hewlett-Packard Company.

 Evaluation of OSA API’s for 3rd party developers of Telcoservices

 - 30 -

3.2 Design
We decided to implement this API with two different implementation models and
languages. Before we decided which models, we started the design phase. In this
phase it was important to follow the OSA framework with a Telco provider and a 3rd
party developer. Thus the architecture of the system became like this:

Figure 19 – Architecture

The communication between the Telco provider and a 3rd party developer had to be
solved with a distributed model. We had different alternatives like Java RMI,
CORBA, and Web Services etc. Since both CORBA and Web services are well
known technologies, we decided to use these models.

3.3 Web Services
Web Services is a kind of web-based applications. It encapsulates all necessary
information about the service it provide, both what it shall do and what it really does.
This way the implementation of the function is not accessible from the outside, and a
change in the implementation of the function does not affect the use of the function.
A Web Service can be published, located and used across the Internet. It is not
depended on a software platform or an implementation language.
Web Services is based on three roles:

 Service Publisher
o Provides an infrastructure and maintains a registry of available Web

Services. And publishes Web Services to a broker.
 Service Broker

o Organize best match between publisher and consumer of a Web
Service

 Service Consumer
o The one who asks a Service Broker of a given functional service, and

uses the one or those Web Services which fits with the demands.

 Evaluation of OSA API’s for 3rd party developers of Telcoservices

 - 31 -

Figure 20 – Web-services three roles

In Figure 20 – Web-services three roles we see how these three roles interact. Web
Services contains of four basic elements, the figure shows three (WSDL, SOAP and
UDDI) additional to these are XML. SOAP is, according to W3C, a lightweight
protocol for exchange of information in a decentralized, distributed environment. It is
an XML based protocol that consists of three parts: an envelope that defines a
framework for describing what is in a message and how to process it, a set of
encoding rules for expressing instances of application-defined datatypes, and a
convention for representing remote procedure calls and responses [23].

XML is perfect to move structured data over a network. In this way data
representation is not bounded to a particular hardware or software demand. These data
can be read and manipulated in many different ways. SOAP uses HTTP requests to
execute function across a network. A Web Service can interact with remote computers
and application. This is done by using HTTP or other transport protocol (e.g. SMTP)
as a transport of XML messages.

 Evaluation of OSA API’s for 3rd party developers of Telcoservices

 - 32 -

Figure 21 – Web Services architecture

SOAP is an easy protocol that contains of three parts (see Figure 21 – Web Services
architecture):

 SOAP Envelope
o A cover that tells what the message contains of.

 SOAP Header
o Sets of coding rules declaring data types etc.

 SOAP Body
o A description of methods, parameters and return values.

 Evaluation of OSA API’s for 3rd party developers of Telcoservices

 - 33 -

Request:

POST /TerminalCapabilities/Service1.asmx HTTP/1.1
Host: 128.39.203.53
Content-Type: text/xml; charset=utf-8
Content-Length: length
SOAPAction: "http://microsoft.com/webservices/getTerminalCapabilities"

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <getTerminalCapabilities xmlns="http://microsoft.com/webservices/">
 <terminalIdentity>string</ terminalIdentity >
 </getTerminalCapabilities>
 </soap:Body>
</soap:Envelope>
Response:

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: length

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <getTerminalCapabilitiesResponse xmlns="http://microsoft.com/webservices/">
 <getTerminalCapabilitiesResult>string</getTerminalCapabilitiesResult>
 </getTerminalCapabilitiesResponse>
 </soap:Body>
</soap:Envelope>

Figure 22 – SOAP request

In Figure 22 a SOAP request and response is listed. This SOAP request is calling the
function getTerminalCapabilities at 128.39.203.53, with a parameter called
terminalIdentity which is a string. The response is returned in a tag called
getTerrminalCapabilitiesResponse with the getTerminalCapabilitiesReulst as result
tags.

UDDI is a catalog service where you can search and find services from different
actors. It uses the XML based WSDL to describe services. UDDI can be used internal
in a company, branch specific, news, search service, etc.

 Evaluation of OSA API’s for 3rd party developers of Telcoservices

 - 34 -

Web services can be implemented on different platforms and with different
implementation languages. Below are listed two different environments.

Java environment

JDK 1.3
Apache soap
Tomcat 3.2.1
 Xerces XML parser 1.2.3
Windows/Linux

Microsoft .NET environment:
 Microsoft .NET SDK
 Microsoft Internet Information Server
 Windows 2000

Microsoft .NET is a new technology and expected to be adopted by a large number of
developers and designers. This is the reason why we have chosen .NET as the
environment for our Web Service implementation.

The architecture of our Web Service implementation became like this:

 Figure 23 – Implemented Web Service architecture

 Evaluation of OSA API’s for 3rd party developers of Telcoservices

 - 35 -

3.3.1 Experience with Web Services and the Terminal Capability API
The Terminal Capability API is a quite simple API. It got one interface with one
method. So this should make it possible to implement. Since Web Services is a new
technology, there were several different challenges. Also the fact that we used
Microsoft .NET, made a couple of problems with e.g. the access to the Web Service.

Using .NET should be easy, it generate a lot of code for you, maybe too much.
Sometimes you loose control of what you are developing. We wrote some of the code
in Notepad, instead of using the pre made code in .NET.

When every bug were fixed, the Web Service was easy to access and use. To make a
Web Service (Telco side) and to use it (3rd party developer) is not a problem after you
have tried a couple of times.

When using just HTTP there is no security. Every function request and response is
sent in clear text. For sensitive information this is not a good idea. But by using HTTP
secure (HTTPS) each HTTP message are send cryptic, and the security is much better.
With the use of Web Services, the problems with access through a firewall are
avoided. Web Services is using HTTP as transport protocol, and therefore the
communication is through the common web-port (port 80).
We will later come to a conclusion about the Terminal Capability API from OSA seen
from a developer point of view. But we can say that the specification gives to little
information on how to get the terminals capabilities.

 Evaluation of OSA API’s for 3rd party developers of Telcoservices

 - 36 -

3.4 CORBA
CORBA is a standard maintained by the largest software consortium in the world;
OMG. CORBA is a middleware design that allows applications programs to
communicate with another without regard to their programming languages,
hardware/software platforms, the network they communicate over and their
implementers.

First you define interfaces in CORBA’s IDL, see Figure 24, build application, and
client access methods in IDL interfaces of CORBA objects by means of remote
method invocation. The middleware that handles the RMI is called ORB.

module TerminalCapabilities_server {

 struct TpTerminalCapabilities {
 boolean StatusCode;
 string TerminalCapabilities;
 };

 interface IpTerminalCapabilities {
 TpTerminalCapabilities getTerminalCapabilities(in string terminalIdentity);
 };
};
Figure 24 – IDL example

To communicate between ORB’s CORBA is using a protocol called GIOP. This is a
general protocol that can be implemented on any transport layer with connections.
The implementation of GIOP for the Internet uses the TCP/IP protocol and is called
IIOP.

When you have written the IDL you use an IDL compiler specific for the language
you want to implement the application in. Figure 25 illustrates this [1]:

Figure 25 – The IDL Compiler turns IDL into stubs and skeletons

When executing the IDL Compiler there will be generated two files; a Stub and a
Skeleton. The Stub file has to be placed on the client side and the Skeleton file on the
server side.

 Evaluation of OSA API’s for 3rd party developers of Telcoservices

 - 37 -

Figure 26 – The main components of the CORBA architecture

In Figure 26 – The main components of the CORBA architecture, we see [3]:

 ORB core. Carry out the request-replay protocol. The ORB core also provides
invocation semantic.

 Object adapter. The object adapter is a bridge between CORBA objects with
IDL interfaces and the programming language interfaces. It creates object
references for CORBA objects and activates the objects.

 Skeleton. RMI are posted via a skeleton to a particular servant, and the
skeleton unmarshals the arguments in the request message and marshals the
result in the replay message.

 Stub. The stub marshals the arguments in an invocation request and
unmarshals results in replies.

 Implementations repository. This repository is responsible for activating
registered severs on demand and for locating servers that are currently
running.

 Interface repository. The interface repository provides information about
registered IDL interfaces to clients and servers that require this information.
Not all ORB’s provide an interface repository.

 Evaluation of OSA API’s for 3rd party developers of Telcoservices

 - 38 -

Since we chose .NET as the implementation environment for Web Services we
decided to use Java for the CORBA implementation. The following environment was
used.

 Sun JDK 1.2.2
 Inprise VisiBroker 4.5.1
 Tomcat 4.0
 Borland Enterprise Server 4.5
 Windows 2000

We used Jbuilder 6.0 as programming application. As we se in Figure 27 –
Implemented CORBA architecture the architecture were almost the same as the Web
Service architecture.

Figure 27 – Implemented CORBA architecture

3.4.1 Experience with CORBA and the Terminal Capability API
CORBA is a more compound model than Web Services. Together with this
complexity the use of different JDK’s, ORB’s and web servers makes a lot of
different challenges. We started our development with the use of JDK 1.3.1 and
Visibroker 4.5.1, after several tests and reading on the Internet, we came to the
conclusion that Visibroker 4.5.1 and JDK 1.3.1 doesn’t work together. We then
installed JDK 1.2.2 and everything worked well. We then had made a dynamic HTML
page that a client could access. This page was made with HTML, JSP, JavaBean and
the use of the stub file created by the IDL2Java compiler so we could access the Telco
provider function called getTerminalCapability. The client then got returned his user
profile.
The benefit of using CORBA instead of Web Services is that you can return an object,
which in our case a Sequence_of_Data_Elements called TpTerminalCapabilities. This
is not possible in Web Services, where we had to return a string, and use “;” as
delimiter between the StatusCode and the TerminalCapabilities.

 Evaluation of OSA API’s for 3rd party developers of Telcoservices

 - 39 -

3.5 Discussion/conclusion implementation
The Terminal Capability API is a simple API. It consists of one interface and one
method. This makes the implementation of it, and the use of it, easy. During our
implementation we had only technical problems with the different models we used
and not any problem with understanding and implementing the API.

To get a communication between the Telco provider and the 3rd party developer was
practicable. The problem was to implement the functionality behind the API. In the
specification there is no mapping to telecommunication systems, it is only mentioned
that it returns a CC/PP header in RDF format. The specification also says that we
should use the WAP UAProf-header to get the terminal capability. We tested an
existing implementation called DELI. This API could work together with the OSA TC
API.
In order to use DELI you need a UAProf capable device. At this date we have only
found three such devices; Ericsson T39, Ericsson T68 and Trium Eclipse.
For other non-UAProf capable devices, the old method of requesting the User Agent
string in the HTTP header is needed, and then to look up the appropriate information
in a legacy database.

 Evaluation of OSA API’s for 3rd party developers of Telcoservices

 - 40 -

4 Discussion
In each chapter we have discussed the themes that have been brought up. We will now
combine these previous discussions and finally, in chapter 5, come with an overall
conclusion.

OSA is a one-of-a-kind in the market. There is no other, finer grained specification
that is specific for the Telco providers, uses standard descriptions, and API known to
people outside the Telecommunication industry. The combination of ETSI, 3GPP,
Parlay and JAIN has been strengthening to the OSA specification work. OSA, with
the use of IDL and UML as description methods, is prepared for new design and
implementation technologies, like component based development. It is independent of
software platforms and implementation languages.

OSA is a complete framework. It has specified elements like authentication,
authorization and discovery.

In addition to provide API set to 3rd party developers, OSA also specifies mapping to
underlying network technologies. This makes the specification attractive to Telco
providers.

Some of the API’s are more thoroughly prepared than other; the User Status is an
example of this. In the User Status specification several state charts and sequence
diagrams explains how the API should work. The API provides both requested and
trigged methods, and the error handling is thoroughly done.
There is also a specification for handling the mapping to underlying network
technologies; like MAP and CAMEL.

Other API’s like the Terminal Capability is not so thoroughly prepared. The API is
weak about what exactly should be returned from the methods and there is no
information on how the Telco provider actually gets the capability from a terminal.
This API is dependent of several WAP specifications, and how each terminal has
implemented UAProf. Our experience with the Terminal Capability API is that few
terminals have implemented UAProf, and therefore getting a correct and updated
version of a terminal’s capability is difficult. But at this point we can’t see other
alternatives to the UAProf to get the terminals capability, and in the future more and
more terminals will be UAProf capable.
During our implementation of the Terminal Capability API we experienced the
dependencies to WAP specifications regarding the UAProf and CC/PP header and the
different ways terminal vendors have implemented this. This made the
implementation of Terminal Capabilities difficult. The communication between the
3rd party developer and the Telco-provider is specified in a way that makes the
implementation obvious.

 Evaluation of OSA API’s for 3rd party developers of Telcoservices

 - 41 -

Early in our project phase we discussed the fine grain of the OSA specification. It
seemed that the 3rd party developers had to know too much about telecommunication
to make services based on the OSA API’s. We thought of a solution with a layer on
top of the OSA API at the Telco side. This layer should perform some of the
handshaking that is specified in OSA. Coarse grained API’s could be provided to the
3rd party developers, e.g. in forms of Web Services. Our idea was to do some of this in
the implementation phase, but in February we saw in a report from a Parlay group
meeting in Hong Kong, where they had discussed the complexity of OSA, and had
come to a conclusion: the complexity is the reason why so few 3rd party developers
have implemented services built on the OSA technology. They started a group called
Parlay X. This group specified a XML based layer on top of OSA to make it easier for
3rd party developers to access telecommunication services. Since OSA had come to
this conclusion, we saw no reason to go any further with our solution other than
outlining it in this chapter.

Further in this discussion, we will use Youngster as an example of where OSA can be
used.
Since the Youngster project contains of both 3rd party developers and Telco-providers,
the features with AAD is unnecessary. Authentication of Youngster-clients will be
handled in the Youngster Service Platform and not the Telco-provider. The
developers do not want/need to perform the authentication and authorization phase.
They know which services the Telco provider offers, and therefore also the discovery
phase is unnecessary. What Youngster really need is an easy API-set for the specific
services they are going to use with a Telco provider. These are services like User
Location, User Status, Presence, Terminal Capabilities, etc. OSA specifies both the
framework and the services thoroughly and there are no problems using only the
services as an easy access to telecommunication systems.

In Youngster the User Status information is needed in the Context Server. Entries in
the Context Server will be made when Youngster needs information on a user’s status.
By using the trigged method in the OSA User Status API, Youngster will always have
the updated information on the User Status. To use OSA’s specification, Youngster
will both have a specification of how to implement the User Status on the Telco side,
and a good specification on the API between Telco and 3rd party developers. In the
Youngster documentation there is an alternative solution illustrated. This is to get the
user status in form of an error or succeed response from the LBS. This is a more time
consuming solution and the Context Server will not always have the updated user
status.

The Terminal Capability API is needed in Youngsters Rendering component so they
can apply the final transformation process to the WML/HTML representation of a
terminal before it is sent to the user. To give the correct representation Youngster is
dependent on having the updated information on a user’s UAProf.

 Evaluation of OSA API’s for 3rd party developers of Telcoservices

 - 42 -

5 Conclusion
OSA has not managed to make the access to Telco services for 3rd party developers
easy enough. The specification is very fine grained and still too many
telecommunication matters have to be implemented by the 3rd party developer.
This fine grain makes OSA unique in the marked; the combination of the API-set
specification, framework, and mapping to Telco specific protocols.
Because of this, OSA has to be considered used by Telco-providers, but since the
specification’s thoroughness has made it difficult for the non-telco industry, few 3rd
party developers has made services based on OSA API’s. Waiting for the Parlay X
specification is a solution.

Based on our evaluation of the User Status API discussed in chapter 2.6.5, this API
provides what both 3rd party developers and Telco-providers demands concerning the
API, the mapping to telco-protocols, and the information User Status returns.

Referring to our previous discussions in chapter 2.5.3 about Terminal Capabilities, we
recommend Youngster to use this API. This for providing Telco services on a
standardised way and the fact that UAProf will be implemented on most terminals in
the future.
To implement Terminal Capability we recommend Youngster to use CORBA as
middleware and DELI to get the terminals capability on the server side.

With the use of OSA in Youngster, and other similar projects, an API set to 3rd party
developers will be provided in a standardised way. There is no need to implement the
entire specification, but either to use an OSA gateway, or the best solution; implement
the API’s that Youngster needs from the OSA specification. Some of the API’s are
more compound than other and therefore the use of a gateway is a solution.

 Evaluation of OSA API’s for 3rd party developers of Telcoservices

 - 43 -

6 Reference
[1] Java distributed Objects by Bill McCarty and Luke Cassady-Dion

[2] The Youngster project. (http://www.ist-youngster.org)

[3] Distributed systems; Concepts and design by George Coulouris, Jean Dollimore and Tim
 Kindberg

[4] 3GPP’s specification of the OSA API Part 1. 3GPP TS 29.198-1 V4.3.0 (2001-12)

[5] 3GPP’s specification of the OSA API Part 3. 3GPP TS 29.198-3 V4.3.0 (2001-12)

[6] 3GPP’s specification of the OSA API Part 4. 3GPP TS 29.198-4 V4.3.0 (2001-12)

[7] 3GPP’s specification of the OSA API Part 5. 3GPP TS 29.198-5 V4.3.0 (2001-12)

[8] 3GPP’s specification of the OSA API Part 6. 3GPP TS 29.198-6 V4.3.0 (2001-12)

[9] 3GPP’s specification of the OSA API Part 7. 3GPP TS 29.198-7 V4.3.0 (2001-12)

[10] 3GPP’s specification of the OSA API Part 8. 3GPP TS 29.198-8 V4.3.0 (2001-12)

[11] Composite Capability/Preference Profiles (CC/PP): A user side framework for content
 negotiation (http://www.w3.org/TR/NOTE-CCPP). W3C note 27 July 1999

[12] WAG UAProf Wireless Application Protocol WAP-248-UAPROF-20011020-a
 http://www1.wapforum.org/tech/documents/WAP-248-UAProf-20011020-a.pdf

[13] Delivering Seamless Services in Open Networks Using Intelligent Service Mediation by
 Michel L. F. Grech, Robert D. McKinney, Sharad Sharma, John J. Stanaway, Jr.,
 Douglas W. Varney, and Kumar V. Vemuri
 http://www.itpapers.com/cgi/PSummaryIT.pl?paperid=9202&scid=100

[14] Parlay Technical overview by Julian Richards and Erik van der Velden. A presentation
 on the Parlay Group Member Meeting 27 – 29 June 2000 (Download:
 http://www.parlay.org/docs/june2000mm/05 Parlay Technical Overview J. Richards E. van der Velden.pdf)

[15] Parlay / OSA APIs in new Telco Eco System, by Holger Schreyer.
 http://www-dse.doc.ic.ac.uk/Events/opensig-2001/SchreyerInfitel.pdf

[16] The OSA API and other related issues, by R M Stretch.
 http://www.bt.com/bttj/vol19no1/stretch/stretch.pdf

[17] DELI and Mark H. Butler
 http://www.hpl.hp.co.uk/people/marbut/

[18] Parlay/OSA: an open API for service development, by Chelo Abarca, Andy Bennet, Ard-
 Jan Moerdijk and Musa Unmehapo.
 (Download: http://www.3gpp.org/tb/cn/cn5/n5-020130_allaboutparlayosa.ppt)

[19] UML Components; A simple Process for Specifying Component-Based Software, by
 John Cheesman and John Daniels.

[20] Microsoft .NET show. (http://msdn.microsoft.com/theshow/Archive.asp)

[21] Web Service learning (http://www.uddicentral.com/)

 Evaluation of OSA API’s for 3rd party developers of Telcoservices

 - 44 -

[22] WSDL is governed by the World Wide Web Consortium. Full information on the
 specification of the standard can be found at the W3C site.(http://www.w3.org/TR/wsdl)

[23] Simple Object Access Protocol (SOAP) 1.1 (http://www.w3.org/TR/SOAP/)

[24] 3GPP’s specification of mapping for OSA API Part 6. 3GPP TS 29.998-6 V4.3.0 (2001-
12)

[25] Resource Description Layer (RDF) Model and Syntax Specification. Lassila O. Swick R.
W3C Working Draft (http://www.w3.org/tr/WD-rdf-syntax)

 Evaluation of OSA API’s for 3rd party developers of Telcoservices

 - 45 - Appendix A

7 Appendix

7.1 Appendix A - Youngster
The Youngster Project is a European collaboration involving different players within
mobile telecommunication. Sony and Siemens contribute with knowledge of mobile
terminals, T-Systems Nova and Telenor are tele operators, Steria is a French software
company, Norwegian Broadcasting Corporation contributes with content expertise,
while Heriot-Watt University, Edinburgh, is experienced in technological research.

The aim of the project is to find out how young people want to use mobile services in
the future and to produce these services. The partners will develop technologies to
create an active mobile multimedia environment that is accessible from anywhere by
different devices and networks.

The innovative, open active mobile service platform (MSP) will support a generation
of enhanced mobile services, also to be developed within the project. These services
will be personalized and support context awareness, including location/positioning
information. Any information may be filtered according to the users preferences, and
the security and privacy of the users will be ensured at all times. The project has

Through various service modules of the MSP the users will be able to create their own
active and personalized services. Thereby having the opportunity to explore, adjust
and create their own mobile communication environment and information space.

New business models will be designed for our target group as they cannot afford
premium services. They will therefore be examined to ensure that developments
arising from this project can be marketed to different user groups. At the end of 2002
the partners will present an open platform for mobile services for young people to the
EU Commission which funds the project through the IST programme.

Milestone date Anticipated Project Results

January 2001 Project start

June 2001 Application Scenario; Mobile Service Platform (MSP) Functionality

October 2001 MSP Base System

May 2002 MSP Final System

October 2002 End of User Trials

December 2002 End of the Project

 Evaluation of OSA API’s for 3rd party developers of Telcoservices

 - 46 - Appendix A

7.1.1 Youngster Partners
Heriot-Watt University,UK
The Computing & Electrical Engineering Department has extensive experience in
research and development in software development as well as database and
information systems.
www.cee.hw.ac.uk

NRK - Norwegian Broadcasting Co. Ltd., Norway
Among the front-runners when it comes to content on mobile and traditional devices.
NRK has several youth targeted newsrooms and programme divisions, and is the
project´s only content provider.
www.nrk.no

Siemens AG, Germany
World leading in electrical engineering and electronics. Possesses core competencies
within the next-generation Internet, wireless communications and advanced
electronics.
www.siemens.com

Sony International (Europe) GmbH, Germany
Entertainment company and leading manufacturer of audio, video, communications
and information technology products for the consumer and professional markets.
www.sony-europe.com

Steria, France
Designs and implements IT solutions for the development of companies within the
sectors of banking, telecommunications, transport, industry and power production,
insurance and services.
www.steria.com

T-Systems Nova GmbH Berkom, Germany
Berkom is the application-oriented innovation center of T-Systems Nova, a fully-
owned subsidiary of T-Systems. Its primary task is to conceive, develop, test and roll
out new products, applications and services for the telematics sector.
www.t-systems.de

Telenor AS, Norway
The company is Norway´s leading distributor of voice, information, knowledge and
entertainment through a broad range of modern communications services.
www.telenor.com

 Evaluation of OSA API’s for 3rd party developers of Telcoservices

 - 47 - Appendix B

7.2 Appendix B – Task description
The background for this assignment is the desire of the project Youngster to make
available services delivered by telco providers to 3rd party developers.
Today there is no standardization of how these services are presented, thus 3GPP has
standardized a framework to handle this. The Youngster project need to make a
decision of how they are going to present their services, thus an appraisal of 3GPP's
OSA is needed.
As shown in Figure 28 – Architecture, the focus in this assignment will be the
interfaces between the OSA and the 3rd party developer. We will define different
criteria which will be used to evaluate the framework. Also considerations about
different similar frameworks will be made.

Figure 28 – Architecture

In particular we will look into the services made available in the Youngster project.
Our concentration will be on one, or maybe two of the following API's:

 User Status (US) API - The User Status service capability features enable an
application to retrieve the user's status, i.e. to find out on which terminals the
user is available.

 Terminal Capability API - enables the application to retrieve the terminal
capabilities of the specified terminal.

 Presence API - Information about the context of a user, such as disposition and
activity status.

 User Interaction (UI) API - User Interaction service capability feature is used
by applications to interact with end users.

 Evaluation of OSA API’s for 3rd party developers of Telcoservices

 - 48 - Appendix B

 Call Control (CC) API - The Generic Call Control Service (GCCS) provides
the basic call control service for the API. It is based around a third party model,
which allows calls to be instantiated from the network and routed through the
network. The Multi-party Call Control service enhances the functionality of the
Generic Call Control Service with leg management. It also allows for multi-
party calls to be established, i.e. up to a service specific number of legs can be
connected simultaneously to the same call.

During the evaluation, the matters of both the telco-provider and the 3rd party
developers will be considered.
Some implementation work will also most likely be done to support the evaluation of
the frameworks through participation in the IST project Youngster. During the
implementation-phase we will consider different implementation models, implement a
pair, and evaluate them in accordance to the framework.

