
Ontological Representation
of Texts, and its Applications in Text

Analysis

by

Bent André Solheim Kristian Vågsnes

Master Thesis in
Information and Communication Technology

Agder University College

Grimstad, 26th May 2003

Abstract

For the management of a company, the need to know what people think of their prod-
ucts or services is becoming increasingly important in an increasingly competitive
market. As the Internet can nearly be described as a digital mirror of events in the
”real“ world, being able to make sense of the semi structured nature of natural lan-
guage texts published in this ubiquitous medium has received growing interest.

The approach proposed in the thesis combines natural language processing and on-
tologies to represent elements in texts and relations between them. These relations are
used to determine what terms describe what objects and what spot the descriptions put
the objects in. Are the objects spoken of in a positive or negative manner?

Throughout the report, it will be emphasized that ontologies can be applied to increase
the ability of an automated agent to reason about texts. The more meta data that exist
about a word or expression in a given context, the more deductions the agent will
be able to make. One of the ontologies we developed allows the identification of
statements that are considered either positive or negative relative to a given term.

Keywords: Natural Language Processing, Ontologies, OWL, XML, Context Free Gram-
mars, Positive/Negative Statements

Preface

The project group consists of two master thesis students from Agder University Col-
lege, Grimstad, Norway; Bent André Solheim and Kristian Vågsnes. It was supervised
by Vladimir Oleshchuk, Agder University College, and Asle Pedersen, Intermedium.

Bent Andre Solheim is a Høgskole Ingeniør graduated from Agder University College.
Presently, he is working part time at Intermedium as a systems designer, and doing his
master thesis at Agder University College.

Kristian Vågsnes is also a graduated Høgskole Ingeniør from Agder University Col-
lege. He is presently working as a senior developer in TimeBroker, and is finishing his
master thesis at Agder University College.

Special thanks to Intermedium and our supervisors for letting us formulate our thesis
definition freely, and for allowing us to work independently throughout the project
period.

Grimstad, May 2003

Bent André Solheim and Kristian Vågsnes

I

Table of Contents

Preface I

Table of Contents II

List of Figures V

List of Tables VII

List of Listings VIII

1 Introduction 1
1.1 Project Description . 1
1.2 Historical Summary . 2
1.3 Thesis Definition . 3
1.4 Our Work . 4
1.5 Report Outline . 4

2 Natural Language Processing 6
2.1 What is Natural Language Processing? 6
2.2 Morphology . 6
2.3 Sentence Boundary Disambiguation 7

2.3.1 The Direct Model . 7
2.3.2 Rule-Based Disambiguation 7
2.3.3 Maximum Entropy . 8

2.4 Text Tagging . 8
2.4.1 Rule-Based . 9
2.4.2 Probabilistic . 10
2.4.3 Transformation Based . 11

2.5 Text Analysis . 11
2.5.1 Non-Terminals . 12
2.5.2 Context Free Grammars . 12
2.5.3 Sentence-level Construction 13
2.5.4 Sentence Parsing . 15

II

TABLE OF CONTENTS

3 Ontology 17
3.1 What Is an Ontology? . 17
3.2 Building Ontologies . 18
3.3 Representing Ontologies . 19

3.3.1 Common Logic Standard . 20
3.3.2 Ontolingua . 20
3.3.3 Loom . 21
3.3.4 Resource Description Framework (RDF) 21
3.3.5 DAML+OIL Ontology Markup 21
3.3.6 OWL - Web Ontology Language 21

4 The Proposed Solution 23
4.1 Using Ontologies . 23
4.2 Method Overview . 24
4.3 The Text Ontology . 26

4.3.1 The Terminological Component 26
4.3.2 The Assertional Component 29

4.4 The Descriptions Ontology . 30
4.5 The PreProcessor . 30
4.6 The Description Temperature Ontology 33

4.6.1 The Terminological Component 33
4.6.2 The Assertional Component 34

4.7 The Reasoner . 35
4.7.1 Determining The Temperature of a Text Relative to a Term . . 35

5 Identifying Shortcomings With the Proposed Method 37
5.1 Going Beyond Single Sentence Analysis 37
5.2 Going Beyond Single Text Analysis 38
5.3 Identifying Interesting Terms Using Ontologies 38
5.4 Figures of Speech . 38

6 The Prototype 40
6.1 The Terminological Component of the Text Ontology 40
6.2 The Descriptions Ontology . 44

6.2.1 Terminological Component 44
6.2.2 Assertional Component . 44

6.3 The PreProsessor . 45
6.3.1 TextAnalyser . 46
6.3.2 OWLRepresentator . 49

6.4 The Description Temperature Ontology 54
6.4.1 Terminological Component 54
6.4.2 Assertional Component . 55

6.5 The Reasoner . 56
6.6 Limitations . 56

III

TABLE OF CONTENTS

7 Discussion 59
7.1 The Natural Language Processing 59
7.2 The Representation of Text . 61
7.3 The Description Temperatures . 61
7.4 The Prototype . 61
7.5 Results and Further Work . 62

8 Conclusion 64

Bibliography 65

A Third Party Modules 67
A.1 Part of Speech (POS) Taggers . 67

A.1.1 Grok . 67
A.1.2 NLTK . 70
A.1.3 Comparing Grok and NLTK 71
A.1.4 The Mark Watson Tagger . 71
A.1.5 Adwait Rathnaparkhi, MXPOST 71
A.1.6 The Brill Tagger . 72
A.1.7 Comparing and Testing the Different Taggers 73

A.2 The Sentence Boundary Detection Tool 74
A.2.1 MXTERMINATOR . 74

A.3 Parsers . 74
A.3.1 The NLTK-Parser . 74

B Penn Treebank Tagset 75

C Implemented Ontologies 77
C.1 The Text Ontology OWL Implementation 77
C.2 The Descriptions Ontology OWL Implementation 82
C.3 The Description Temperature Ontology OWL Implementation 83

Index 85

IV

List of Figures

2.1 Example of a dictionary of possible words and tags 10
2.2 A given sentence

���
. 13

2.3 The Lexicon of
���

. 13
2.4 The grammar of

���
, and example of phrases of each rule. 14

2.5 A parse-tree of sentence
���

. 16

3.1 The difference between a good and a bad ontology. 18
3.2 The figure shows the terminological and assertional components of an

ontology as two different logical parts. 19
3.3 The different technologies making up OWL. 22

4.1 Example Text . 24
4.2 Example of how an ontological representation of the text could look. . 24
4.3 Overview of the defined components of the proposed method. 26
4.4 A schematic representation of the concepts and relations in the Text

Ontology. 28
4.5 A schematic representation of some of the concepts and relations found

in figure 4.1. 30
4.6 A schematic representation of the concepts and relations in the De-

scriptions Ontology. 31
4.7 The steps involved in analyzing a text. 32
4.8 The Warm-Cold Scale used in the Description Temperature Ontology. 33
4.9 A schematic representation of the concepts and relations in the De-

scription Temperature Ontology. 34
4.10 An example of how the Reasoner reasons about object descriptions. . 36

5.1 A Simplified Example of a Telecom Industry Ontology. 39

6.1 The TextAnlyser components. 47
6.2 UML-diagram of the TextAnalyzer component. 47
6.3 An example of the processing performed by the TextAnalyzer class. . 48
6.4 UML-diagram of the OWLRepresentator component. 50
6.5 UML-diagram of the Reasoner component. 56

A.1 Example of TaggedTokenizer . 70
A.2 Transformation-based learning . 72

V

LIST OF FIGURES

A.3 Bar graphs of the test results comparing POS taggers 73

VI

List of Tables

2.1 Phrases . 12

4.1 The parts of speech for the words in the sentence ”Voice quality was
average.“ . 29

4.2 An example of how phrases, expressions and words will be categorized
in the Description Temperature Ontology using the descriptive terms
from the example text in figure 4.1. 35

6.1 A sample grammar. 49

7.1 Performance in seconds. 60

A.1 Table of test results comparing POS taggers 73

B.1 The Penn Treebank Tagset . 75

VII

List of Listings

4.1 The PreProcessor Algorithm . 32
4.2 The Reasoner Algorithm . 36
6.1 The Word Concept . 40
6.2 The Sentence Concept . 41
6.3 The Phrase Concept . 41
6.4 The Text Concept . 42
6.5 The Expression Concept . 42
6.6 The PartOfSpeech Concept . 42
6.7 The PhraseType Concept . 43
6.8 The Description Concept . 44
6.9 Some descriptive terms. 44
6.10 The output OWL from the parse trees in figure 6.3. 50
6.11 The Temperature Concept and the Temperature instances. 54
6.12 The TemperatedDescription Concept. 55
6.13 The assigned temperatures to the descriptive terms in listing 6.9. . . . 55
A.1 Example of a morphological description 68
A.2 The description of the NNP-tag in Grok 68
C.1 The OWL implementation of the Text Ontology 77
C.2 The OWL implementation of the Descriptions Ontology 82
C.3 The OWL implementation of the Description Temperature Ontology . 83

VIII

Chapter 1

Introduction

1.1 Project Description

There are really several aspects about the spectacular eighth wonder of the world,
the world wide web, that makes it virtually impossible for mere humans to grasp.
The overwhelming amounts of data alone lay dead any audacious attempt to locate
those golden nuggets of life altering information. To the rescue, industries, who’s
soul purpose are to locate and organize data for the users, have been emerging from
the blurry and unfriendly ocean of information for years, taking names such as search
engines, web crawlers and web portals. However, the limitations of the traditional
repertoire of these services become apparent when users want answers to questions
like “Where are hotels with good skiing conditions located in Austria?”, and then
want the results ordered by how well the guests enjoyed staying at the hotel. Until
recently, huge indexes and semi-intelligent algorithms based on a words location in
the text, have been the most common ways to filter and grade pieces of information.

This report describes how ontologies can be applied to increase an automated agents
ability to reason about natural language texts. It will become apparent that it is in fact
possible to organize hotel surveys by how well the guests enjoyed staying there.

As a branch of increasing activity in the AI1 community, the main application area of
ontologies is knowledge representation. They moved out of the research labs in the
’90s, and today many large international projects and enterprises, such as DARPA,
W3C and CYCORP, are involved in developing, maintaining and representing ontolo-
gies.

Combining ontologies and natural language processing, it is possible to model the
nature of positive and negative statements about an object, and then locate these or
similar statements in a text. This way, we can identify the ”temperature“ of which a
given object is spoken. Applying this technique in, for instance, a web crawler, key

1Artificial Intelligence

1

CHAPTER 1. INTRODUCTION

personnel could be notified when their business or products are described in a negative
fashion on some web page.

1.2 Historical Summary

Ever since the first computers were made, the interest of computer-based linguistic
technologies has grown more and more. This technology includes speech recognition
and understanding, text retrieval and understanding, and the use of these methodolo-
gies in computer assisted language acquisition. However, human language is complex
and information-rich. Therefore the work of creating automated computer systems is a
long and expensive process; large amount of varied linguistic data, texts, lexicons and
grammars are needed to make a robust and effective system.

Natural language processing is an extension of a grater unit called Artificial Intelli-
gence (AI). AI has a long history, way back to 1000 B.C, starting with I Ching, one of
the fundamental books of Confucianism. Since then, many organizations, projects and
initiatives have been working with this ”problem“, but the expansion has grown most
from the 50s and until now:

� 1946: ENIAC - The world’s first electronic electronic digital computer.

� 1958: LISP - John McCarthy created LISP. LISP is a object oriented program-
ming language, made for simplifying the handling of arbitrary lists of arbitrary
data objects.

� Early 60s - Beginning of semantic information processing; keyword � action,
translation from English to formal language (a student solves math problems
stated in English), database language queries.

� 1966: ELIZA - ELIZA is a computer therapist. It uses keywords to generate
possible responses. Functions as long as it is understood that it is some kind of
stupid.

� Early 70s - Augmented Transition Networks (ATN); move towards representing
the meaning of words (verb, noun etc)

� 1970: PROLOG - Declarative languages like Prolog try to free programmers
from thinking about what specific sequence of actions the computer will go
through, allowing them instead to spell out a series of ’declarative’ statements
that the computer is then able to determine the sequence from.

� Mid 70s - Moving towards Conceptual Information Processing; changing to top-
down approaches (oppose to bottom-up).

� 80s - Focusing on learning, integrated processing, subjective understanding.
Text generation is improving.

2

CHAPTER 1. INTRODUCTION

� 1988: 386 processor - The 386 chip brings PC speeds into a new level.

� 90s - Statistical natural language processing.

The aim of the technology of linguistics might seem to be to replace the keyboards
and mice as means of interaction with computer systems, with speech and handwritten
input. However, it is likely that people will continue to write and talk; the intelligent
systems are just becoming more and more important to us to ease our work day. This
includes the gathering, organization, categorization, generation and presentation of
data.

The latest years, W3C has been one of the leading institutions in creating standards
on the web. With Semantic Web they will make standards that enable us to express
ourselves in terms that our computers can interpret and exchange. Linguistic Data
Consortium (LDC) is an open consortium of universities, companies and government
research laboratories. It creates and collects distributed text, databases, lexicons and
other resources for research and developments purposes.

There are also several other organizations, institutions and companies involved in this
process, acting together or on their own.

1.3 Thesis Definition

Following is the thesis definition; the text on which all work is based;

“As the need for information is increasing, the problem of sorting out what is relevant,
and what is of less interest, is of equal importance. The huge amounts of data makes
it a time consuming job to discover, for instance, articles of real value. Therefore,
humans are relying more and more on computers to sort and categorize data.

Working as a market analyst, you have to be aware of how the products of your com-
pany are spoken of by your customers and customers to-be. You have read product
surveys from several sources, and the count can be overwhelming. The need to auto-
matically sort these surveys by how your products are spoken of, can be a real time
saver.

In this project, we will develop a method based on ontologies and computational lin-
guistics that can tell if a text is positive or negative relative to a given term. A proto-
type that demonstrates how it works will also be developed. Rounding up, we will try
to determine the accuracy of our algorithm, and identify the contexts in which such an
approach is applicable, and in which it is not. It is intended that the system should be
implemented and used in an information system.“

3

CHAPTER 1. INTRODUCTION

1.4 Our Work

To our knowledge, there has been no official effort to produce taxonomies of expres-
sions regarding what manner they describe an object, with the purpose of using them
to automatically determine if a text is either positive or negative relative to a given
term. There exist, however, a great deal of efforts, both open source and with lim-
ited access, to produce dictionaries, ontologies and linguistic tools with the purpose of
making more sense of natural language texts.

We will suggest how to build ontologies from texts and how these can be combined
with ontologies containing descriptions and their degree of positiveness and negativity.
This combination allows deductions of how objects are spoken of in a text.

Throughout the project we will emphasize the importance of openness and will to co-
operate to achieve results when working with natural language texts. As will become
apparent, much of the work done in this area of research, and yet to be done, is ex-
tremely time consuming, and hence, requires funding beyond that allocatable by small
and medium sized businesses. Our contribution to this ideal will be focusing our work
on the English language, the currently most common one on the Internet. Also, we
will require that the tools we use are free, preferably GPL2 open source software, or
similar.

1.5 Report Outline

The next two chapters (chapters 2 and 3) of this report are intended to give an intro-
duction to the key concepts used when presenting the proposed system in chapter 4.
Emphasis will be put on explaining what an ontology is, and its current applications.
Also, an overview of key concepts and methods regarding natural language processing
will be presented.

The proposed method is described in chapter 4. Following an explanation of how
ontologies can be applied to represent relations between words in natural language
texts, and to represent the general concepts of positive and negative terms, comes a
suggestion of how to combine these two to extract the ”temperature“ of which an
object is spoken. The implementation specifics are discussed in chapter 6.

Limitations with both the method and the prototype are presented in chapter 5. It
will become apparent that the presented approach will benefit from interconnection
with existing ontologies to be able to automate the identification of interesting terms
in specific fields of endeavor. These chapters will also put the finger on performance
problems with the prototype and the lack of real intelligence to identify such things as
ironical or sarcastic formulations.

2GNU General Public License

4

CHAPTER 1. INTRODUCTION

Rounding up, chapters 7 and 8 ties the strings together and presents our conclusions
and ideas for further work.

The appendices contain a presentation of different types of Part of Speech taggers and
a comparison test of these, the tag set used in this report, and the implementation of
the ontologies developed.

5

Chapter 2

Natural Language Processing

2.1 What is Natural Language Processing?

Ever since man started talking (and writing), the understanding of the language has
been of great importance. Every word has its own meaning, but some words are also
put together with other words to create new meanings. This knowledge, the knowledge
about words, is called morphology, and is described in more detail in section 2.2.

Scientists have for centuries studied languages and their structures to make rules about
how they should be used. However, even when all these rules are followed, it may be
hard for us to understand the meaning of the written content.

In recent years, teaching computers to understand languages has become more and
more interesting. This includes, for example, to enable an automated agent to under-
stand what is written in a report, a web site or a book.

In the following sections, common concepts used in computational natural language
processing will be introduced. This includes identifying sentence boundaries, parts of
speech tagging, and grammatical analysis.

2.2 Morphology

Words are often built from smaller meaning bearing units, morphemes. The study
about ways of making words is called morphology. Almost all words are put together
by a stem, and an affix. The stem is the main morpheme of the word, having the actual
meaning of the word, while the affix add additional meanings of various kinds.

There are four different kinds of affixes; prefix, suffix, infix and circumfix. Prefixes
appear before the stem of a word, e.g. undo, suffixes appear after the stem, e.g. doing,
infixes appear in the middle of the word (not so often in English), and circumfixes

6

CHAPTER 2. NATURAL LANGUAGE PROCESSING

appear both at the beginning and in the end of the word, e.g. undoing.

2.3 Sentence Boundary Disambiguation

Locating the end of a sentence is rendered difficult by the ambiguity of the usual sen-
tence marks such as period(’.’), comma(’,’), question mark(’?’) and exclamation mark
(’!’). They do not always work as sentence breaks. For example, a ’.’ may be used in
abbreviations, email-addresses, decimal points, and to indicate ellipsis. The question
mark and exclamation point are more constant in their meaning, but they appear in
some names, and may be used several times to emphasize a sentence boundary.

Many NLP tools require the text to be divided into separate sentences before they are
able to do any sensible work with it. It is absolutely necessary for any human being
or a computer to identify the different sentences in a context, because when a sentence
boundary has been wrongly detected, its meaning will be improper.

Several techniques for detecting sentence boundaries are available. Following is a
presentation of the most common ones.

2.3.1 The Direct Model

The Direct Model, uses hard coded routines the detect sentence boundaries. The algo-
rithm is based on regular expression techniques. To increase the accuracy, it uses an
abbreviation lexicon. Example 2.3.1 shows an example of a rule that describes a web
address.

Example 2.3.1. ’[\-_A-za-z0-9.]+\.{dom}’ WEBADDRESS

2.3.2 Rule-Based Disambiguation

Hard coding is a non-dynamical developing model. In order to improve the Direct
Model, the Rule-Based Disambiguation model has separated the description of sen-
tence boundaries and the processing needed for their recognition. Regular expressions
are used to represent the properties of sentences.

Example 2.3.2. Sentence � All Word PERIOD PUNCT PERIOD ;

describes a sentence consisting of a number of words, followed by a period, and un-
specified punctuation character and another period [1]. The rule is able to capture
ellipsis and other combinations like .". (2.3.3)

Example 2.3.3. The man said "I would like that.".

7

CHAPTER 2. NATURAL LANGUAGE PROCESSING

2.3.3 Maximum Entropy

The Maximum Entropy algorithm is a statistical way of finding sentence boundaries.
It functions like this:

� The different potential sentence boundary tokens1 is found, by scanning the text
for sequences of characters separated by white spaces (tokens) containing either
exclamation mark (’!’), period (’.’) or question mark (’?’).

� A joint probability distribution p is estimated to the token and its surrounding
context. The distribution is made by the formula in equation 2.1.

Only specific evidence of sentence boundaries are considered by this model. This
evidence may indicate that a sentence boundary is determined, and is based on prior
linguistic knowledge about contextual features of text. Features unknown to the model,
will be assigned a uniform distribution. The model will therefore be maximally uncer-
tain about features of text for which it has no prior knowledge [1].

The formula of the distribution is given by

���������
	���
 ��
�����������

��� � !#"� ���%$'&)(+*,�.-0/)132 (2.1)

where the � � ’s are the unknown parameters of the model, and where each � � is the
weight of each features [2]. The probability of seeing an actual sentence boundary in
the context � , is thus given by ���4-5/)16���
	 .
The unknown parameters (weight) are discovered during training. Calculation of these
features is computationally expensive, because each feature must be evaluated several
times. For each iteration the task must be performed, and hundreds of iterations may
be required to until the weights have converged satisfactory.

2.4 Text Tagging

Part of speech tagging is used for the preparation of texts before subjecting them to
syntactic analysis, or in other words, the problem is to find the right tag for the right
word, since one word may have several meanings.

For example, consider the word ”race“; E.q It was a hard race and I race with my
brother every Wednesday. In the first sentence, the word race is a noun, meaning a
long run, while in the second sentence the word race is a verb. Several methods have

1A token in the training data is considered an abbreviation if it is preceded and followed be whites-
pace, and it contains a . that is not a sentence boundary.

8

CHAPTER 2. NATURAL LANGUAGE PROCESSING

been developed to disambiguate words and from the study of these methods, some
common points have emerged:

� A word may only have limited set of tags, which can be found in a dictionary or
through a morphological analysis of the word.

� When a word has more than one possible tag, rules are used to find the correct
tag from the local context.

There exists a number of different software taggers. Some are described in Appendix A.
Depending on the type of tagger, some of them require training, i.e. a feed of manu-
ally correctly tagged texts. This is done through an implementation specific training
method for each tagger.

Part-of-speech (POS) tagged training-text need to be accurate. If the taggers are trained
in a wrong way, wrong tags will be assigned wrong words when tagging untagged
text. Large amounts of manually tagged text are used as training material to make the
taggers as accurate as possible [3].

For a specific sentence there is only one correct way to tag the different words. Con-
sider a set of words � = � � + � � +.... + ��� , and a set of tags � = � � + � � +....+ ��� of the
same length. For the sentence there is a correct alignment between these two sets� � � � 	 . The tagging procedure � selects the right sequence of tags and selects the
correct alignments for each sentence:

�	�
� � � � � � � 	 (2.2)

The quality of a tagging procedure has two measures:

� At sentence level; percentage of sentences correctly tagged.

� At word level; percentage of words correctly tagged.

The percentage at sentence level is generally lower than at word level. This is because
all words must be tagged correctly for the sentence to be tagged correctly [4].

There exists a few different methods for tagging text. Some of them are based on
the same ideas of text-processing as the methods for sentence boundary detection in
section 2.3. In the following sections some of these are described in detail.

2.4.1 Rule-Based

Rule-based algorithms were the earliest form of automatically assigning part-of-speech.
It was divided into two stages; first using a dictionary to assign each word a list of po-
tential POS (figure 2.1), second a list of hand-written rules for disambiguate the first
list into a list of one tag for each word [5].

9

CHAPTER 2. NATURAL LANGUAGE PROCESSING

WORD POS ADDITIONAL POS
FEATURES

look V Present

look N singular

race N singular

race V present

racist ADJ

racist N singular

racially ADV

Figure 2.1: Example of a dictionary of possible words and tags

2.4.2 Probabilistic

First time one used probabilities in part of speech tagging, was in 1965, so the method
is quite old. The basics behind a probabilistic tagger is to ”pick the most likely tag
for this word“. More detailed descriptions of different probabilistic algorithms are
described in the following sections.

Maximum Entropy

In many ways, the maximum entropy probabilistic POS tagging algorithm functions
the same way as the maximum entropy algorithm described in section 2.3.3, but the
model is of course tailored for, in this instance, the text tagger purpose.

The tagger contains a set (�) of possible word and tag contexts (histories), and a set
(�) of allowable tags. The probability-model is defined over ����� .

� ��� � � 	 ��
�� ��
�����,� ���

�
	 � � "� (2.3)

where
 is a normalization constant, � � � � �
�
�
�
� � � are the positive model parameters
and &�� � �
�
�
�
��� � 2 are known as ”features“ � � ��� � � 	�� &��5�
�32 [3].

Hidden Markov Model

The Hidden Markov Model (HMM) chooses tags that maximizes the following for-
mula: � � � *������ ��� � 	�! � � ��� � � �"� /
#%$ *�&+1 n ��� � 1)	 (2.4)

10

CHAPTER 2. NATURAL LANGUAGE PROCESSING

A HMM-tagger tags whole sentences rather than single words. It uses a viterbi ap-
proximation [6], and chooses the most probable tag sequence for each sentence. The
algorithm tries to find the sequence of tags T = � � � ��� � ��� �
�
�
�
� ��� to the given sequence
of word (W): �

� � � � ��� � ����
	
� � � � � 	�� 5
 (2.5)

The HMM is trained by hand-tagged data, but it is also possible to use unlabeled data
to train this model using the EM algorithm2. These taggers have a dictionary which
holds lists of which tags can be assigned what words.

2.4.3 Transformation Based

Transformation Based Tagging draws inspiration from both the rule-based and prob-
abilistic taggers. It is an instance of the Transformation Based Learning (TBL) ap-
proach to machine learning. TBL has, like rule-based taggers, a list of which tags may
be assigned to which words. But it is also a way of training a program, where rules
are automatically created from the data (see figure A.2). The model is trained by a
pre-tagged training corpus.

The TBL can be described as follows; when it tries to tag a word3, it first collects all
the tags assigned to this word. Then it starts with the broadest rule, which will apply
to most of the tags. Next it tries a more specific rule, and then again an even more
specific rule until TBL can consider which tag to choose.

2.5 Text Analysis

When people read an article, they have to recognize what is written to understand the
meaning of it. The brain has through years of reading developed a way of understand-
ing text. The more one reads, the easier it is to recognize patterns in a text. Reading a
sentence that is ”out of order“, may not make any meaning.

To determine the meaning of a sentence is a complicated task. Many rules are made
about how a sentence may be build, to get proper content. For example, the sentence ”I
on would Tuesday like to cinema go“ is hard, or may even be impossible to understand,
since the order of the words is incorrect.

2[5] chapter 7 and Appendix D
3word in a sentence. This tagger tags sentences as a whole.

11

CHAPTER 2. NATURAL LANGUAGE PROCESSING

2.5.1 Non-Terminals

The rules about how to create proper sentences are made of a set of variables. These
are called non-terminals. Basically the non-terminals consist of all the different tags
the chosen text tagger uses. This could be VB (verb), PRP (personal pronoun), etc.4

Along with all these tags, a non-terminal also contains something called phrases. A
sentence is made of a noun phrase and a verb phrase. Then again, these phrases are
build from different kinds of smaller objects. In table 2.1 all the phrases used are listed.

Table 2.1: Phrases

PHRASE NAME DESCRIPTION

Noun Phrase NP A sequence of word surrounding at least one noun
(e.g three parties from Brooklyn)

Verb Phrase VP Consists of a verb followed by assorted other
strings. (e.g prefer a morning flight)

Prepositional Phrase PP Preposition followed by a noun phrase. (e.g from
Los Angeles)

Nominals NOM A nominal is an order of one or more nouns.

Adjective phrase AP Consists of one ore more adjectives.

2.5.2 Context Free Grammars

When a sentence is to be analyzed, the sentence has to be split into many smaller parts,
like the noun phrase and verb phrase mentioned in section 2.5.1. The sentence has root,
meaning the beginning of the sentence text, and then there have to be some elements
to make the sentence correct grammatically. From the sentence root, there is made a
hierarchy (or a tree). Context free grammars, or CFG is a powerful tool that is perfect
with respect to the operation of creating this hierarchies.

When computers are taught to understand sentences, they have to know about a number
of rules or grammars. One way of creating certain grammars is to use context free
grammars. A CFG consists of leaf values and node values. A node value might be
saying that a Proper Noun is a Noun phrase (NP), and a leaf value could be saying that
’the’ means a determiner (DT).

Symbols used in CFG are divided into two classes; symbols corresponding to words

4All these are listed in guidelines to the Treebank Project [7].

12

CHAPTER 2. NATURAL LANGUAGE PROCESSING

� �
= ”I am a student at Agder University College“

Figure 2.2: A given sentence
���

in the language (’bicycle’, ’work’) which are called terminal symbols, and the on-
terminals which are the set of rules that introduce these terminal symbols. The set of
rules that say which words are combined with which non-terminals are called a lexicon
(figure 2.3), whilst the rule for sentence building are called grammars, or productions
(figure 2.4).

Personal pronoun PRP � I

Verb present VBP � am

Determiner DT � a

Noun singular NN � student

Preposition IN � at

Proper-Noun singular NNP � Agder, University, College

Figure 2.3: The Lexicon of
���

A CFG like the one in figure 2.4 is used to describe a formal language. A sentence in a
certain language contains a set of strings that are derivable from a designated start sym-
bol, which each grammar must have. The start symbol is often called S (the sentence
node). If a sentence cannot be derived from the given formal grammar, the sentence is
not in the language defined by that grammar, and is referred to a ungrammatical. The
use of formal languages to model natural language is called generative grammar [7],
since the set of possible sentences is generated by the grammar.

To summarize, a grammar could be described like this:

� � ��� ���%��� � � 	
where � is a set of non-terminal symbols, � is a set of terminal symbol (disjoint from
�),

�
is a set of production (each on the form � � � , where � is a non-terminal and

� is a string of symbols from the infinite set of strings (���	�)), and � is a designated
start symbol.

2.5.3 Sentence-level Construction

Sentences are build in various ways. They can be declarative or imperative, or they can
have structures such as questions. The subject of a sentence is located differently de-

13

CHAPTER 2. NATURAL LANGUAGE PROCESSING

S � NP VP I + am a student at Agder Uni-
versity College.

NP � NN I

| DT NN a + student

NOM � NNP Agder | University | College

| NOM NOM Agder + University + College

VP � VBP am

| VP NP am + a student

| VP PP am a student + at Agder Uni-
versity College

PP � Preposition NP at + Agder University College

Figure 2.4: The grammar of
���

, and example of phrases of each rule.

pending on the sentence structure. It is important to know where to locate the subject,
since the subject often is one of the most important words in a sentence.

Declarative

Sentences with declarative structure is made of the form S � NP VP, where the
subject is in the noun phrase.

Example 2.5.1. I love Norwegian country.

Imperative

The imperative statements are often used for commands and suggestions. The structure
usually begins with a verb phrase and have no subject (S � VP)

Example 2.5.2. Give me that book!

Yes-No-Question

Questions that are possible to answer with a simple yes or no, are called yes-no-
questions. They often (not always) have an auxiliary5 verb before the subject noun
phrase, followed by a verb phrase. (S � aux NP VP)

Example 2.5.3. Do you know my name?

5Auxiliary verbs are also called helping verbs, and includes modal verbs (can, may), the perfect
(shall), the progressive (be) and the passive auxiliary (be).

14

CHAPTER 2. NATURAL LANGUAGE PROCESSING

Wh-Question

This is one of the most complex sentence structures. It is so-called because it includes
a wh-phrase, that is a phrase that contains a wh-word (who, what, whom). These
questions are grouped into two classes of sentence-levels: The wh-subject-question
and wh-non-subject-question

The first one is almost the same as the declarative structure, except that the first noun
phrase contains some wh-words (S � Wh-NP VP).

Example 2.5.4. What is the time?

In the second structure, the wh-noun phrase does not include the subject of the sen-
tence. The main subject appears in another noun phrase (S � wh-NP aux NP VP).

Example 2.5.5. Which bus do you prefer to town?

2.5.4 Sentence Parsing

A sentence may be divided into many smaller contexts. This could be verbal, subject,
object. The work of analyzing of sentences is called parsing. The parsing process of a
sentence may result in a parse-tree. An example of a parse-tree is shown in figure 2.5.

So far, only the preprocessing that has to be done before the sentence-parsing can
commence has been described. The text has been split into sentences, the sentences
have been tagged, and rules are made about where the different tags appear in sentences
and how the tags work together. The last problem is to iterate through the different
sentences to analyze what is the subject, verbal, object and so on.

The way this is done, a parser searches through the space of all possible parse-trees to
find the correct parse-tree for the sentence [7].

Figure 2.5 contains a parse-tree of the sentence ”I am a student at Agder university“.
A sentence can generate many different parse-trees, and the problem is to choose the
correct one. A parse tree has two kinds of constraints:

� The input-sentence itself. In figure 2.5 there will be exactly seven leaves (seven
words in the sentence).

� The grammar. The parse-tree can only have one root, which must be the start
symbol S.

Together with these constraints we have two parsing strategies: top-down and bottom-
up.

15

CHAPTER 2. NATURAL LANGUAGE PROCESSING

S

NP

PRP

I

@[0w]

VP

VP

VP

VBP

am

@[1w]

NP

DT

a

@[2w]

NOM

NN

student

@[3w]

PP

IN

at

@[4w]

NP

NOM

NOM

NNP

Agder

@[5w]

NOM

NOM

NNP

University

@[6w]

NOM

NNP

College

@[7w]

Figure 2.5: A parse-tree of sentence
���

Top-Down

A top-down parser tries to find a parse-tree by building from root node (S) to the
leaves. First it finds all the grammar that expands S. Then it expands the constituents
in these trees. The rest of the search is performed recursively, meaning that new sets of
expectations are provided for each ply of the search space. It finishes when the bottom
of the tree is reached. Trees which fail to match all the words in the input are rejected.

Bottom-Up

In bottom-up parsing, which is the earliest known parser-algorithm, the parser starts
with the words from the input, and tries to build trees from the words up, by applying
rules from the grammar one at a time [7]. A parse-tree is build if it manages to fit the
rules to the words. The tree starts at S, like in the top-down algorithm.

16

Chapter 3

Ontology

3.1 What Is an Ontology?

Ontology is a concept that has existed for centuries as a discipline of philosophy where
it refers to the subject of existence. It has also been confused with epistemology; about
knowledge and knowing. However, in computer science, the word has a very differ-
ent meaning. Evolving from semantic network notions, modern ontologies are stated
to be a specification of a conceptualization 1. This means that an ontology accounts
for the possible and allowed terms and relationships that can exist in a conceptualiza-
tion. Also, ontologies constrain the intended meaning by stating axioms that limit the
possible interpretations for the defined terms.

Ontologies are being built today to make a number of applications more capable of
handling complex and disparate information. When the semantic distinctions humans
take for granted are important to an application’s intention or use, ontologies are very
effective. This includes for instance handling expertise embedded in domain-specific
knowledge repositories, or dealing with common sense in natural language texts [9].

The difference between a good and a bad ontology is how well it maps to the intended
model. As figure 3.1 illustrates, mapping well to the intended model implies not only
to let the ontology be able to capture all the intended meanings, but to exclude all
the unintended ones; if a class is a description of a group of objects that share some
properties, and the classes Man and Woman are stated to be disjoint, a reasoner can
deduce that an object of the class Man is not also of the class Woman. This way,
ontologies establish a joint terminology between members of a community of interest,
being either human or automated agents.

Traditionally ontologies have been used in knowledge representation and library sci-
ence, but in recent years they have been included in most expert systems, and used for
both knowledge sharing and reuse. As of this writing, there is active research on the

1Tom R. Gruber [8]

17

CHAPTER 3. ONTOLOGY

Bad
ontology

Good
ontology

Language Intended
ModelOntology

Figure 3.1: The difference between a good and a bad ontology.

role of ontologies in fields such as knowledge representation, knowledge engineering,
database design, information retrieval, natural language processing, and the semantic
web [10].

3.2 Building Ontologies

How one goes about building an ontology reflects what is to be described. The struc-
ture and implementation of simple lexicons will differ from those of organized tax-
onomies with hierarchically related terms and distinguishing properties. The ontolo-
gies will also vary in the purpose of their content; typically we have upper level on-
tologies describing the basic concepts and relationships in the natural language of any
domain, and domain ontologies describing specific fields of endeavor, like telecom and
DAC.

Generally, ontologies can be divided into two logical parts; the terminological compo-
nent and the assertional component [11]. The terminological component is analogous
to an XML schema and defines the terms, classes (concepts), and structure of the on-
tology’s area of interest (sometimes this part is referred to simply as the ontology).
The assertional component uses the terminological concepts to define instances and
individuals. For example, as figure 3.2 shows, are Bob and Alice instances (or individ-
uals) of the classes Man and Woman, respectively, in the People-ontology. Sometimes,
these assertions are called a knowledge base (KB) and may include facts about indi-
viduals that are members of classes, and derived facts that are not literally present in
the textual representation of the ontology, but logically implied by the semantics.

18

CHAPTER 3. ONTOLOGY

Person

Man Woman

isSubClassOf isSubClassOf

Terminological Component

Assertional Component

isDisjointWith

Bob Alice

instanceOf instanceOf

Ontology: People

Figure 3.2: The figure shows the terminological and assertional components of an
ontology as two different logical parts.

3.3 Representing Ontologies

To represent ontologies, a representation language is required. Several different lan-
guages are available, some based on standardized syntax, others not. For web appli-
cations, it is important to use standardized syntax to be able to exchange ontologies
efficiently and to simplify the task of writing parsers. As XML [12] the past few years
has emerged as the standard for exchanging data on the web, a number of ontology
representation languages are based on this format. In general, ontology languages are
increasingly relying on other W3C [13] technologies as well, like RDF Schema as
language layer, XML Schema [14] for data typing, and RDF [12] to assert data [11].

Ontology languages are usually compared regarding their expressiveness, i.e. what
can be said about a specific knowledge domain. According to Gruber [8], knowledge
in ontologies can be specified using five kinds of components; concepts, relations,
functions, axioms and instances;

� Concepts, or classes, are used in a broad sense. They can be anything that it
is possible to say something about; a task, action, strategy, etc. Usually, the
concepts in an ontology are organized in taxonomies.

� Relations represent a connection or interaction between concepts in the domain
(or other domains).

� Functions are a special kind of relation where the last argument is unique for a

19

CHAPTER 3. ONTOLOGY

list of values of the n-1 preceding arguments.

� Axioms model statements that are always true. Their main purpose is to con-
strain information, i.e. ensure unambiguity, and hence verify information’s cor-
rectness, but they can also be used to deduce new information.

� Instances or individuals represent the elements of concepts in the domain. Some-
times these are maintained separately as a knowledge base.

Following is an overview of some commonly used ontology representation languages.
Only their main features will be presented, but references to their specifications or to
articles describing them are provided.

3.3.1 Common Logic Standard

Common Logic Standard [15](CL) is a framework for a family of logic-based lan-
guages. Its semantics is a superset of that of many other logic-based systems. This
way, semantics of different languages can be represented with CL, and hence infor-
mation can be preserved when interchanged among hetrogenous systems. In fact, CL
facilitates interoperability among formal specification languages like UML [16] and
semantic web initiatives like OWL (see [17] and section 3.3.6).

The specification of KIF (Knowledge Interchange Format) is a part of the CL Project.
It is being developed to solve the problem of hetrogenity of languages for knowledge
representation. Languages like Ontolingua (see [18] and section 3.3.2) is based on this
format.

3.3.2 Ontolingua

Ontolingua [18] is a language based on KIF and on the Frame Ontology (FO), and it
is the ontology-building language used by the Ontolingua Server.

As KIF is an interchange format, it is tedious to use for specification of ontologies per
se. The FO, built on top of KIF, is a knowledge representation ontology that allows
an ontology to be specified following the paradigm of frames, providing terms such as
class, instance, subclass-of, instance-of, etc. The FO does not allow to express axioms;
therefore, Ontolingua allows to include KIF expressions inside of definitions based on
the FO. Ontolingua allows to build ontologies in any of the following three manners:

� Using exclusively the FO vocabulary (axioms cannot be represented).

� Using KIF expressions.

� Using both languages simultaneously.

20

CHAPTER 3. ONTOLOGY

3.3.3 Loom

Loom [19] is a high-level programming language and a environment intended for use
in constructing expert systems and other intelligent application programs. The main
part is a knowledge representation system, which in turn is used by the declarative
portion of the language for deductive support.

Loom allows utilization of logic programming, production rule, and object oriented
programming paradigms in a single application because of the high degree of integra-
tion between the different main parts.

3.3.4 Resource Description Framework (RDF)

The Resource Description Framework is a foundation for processing meta data, in-
tended to be used to provide meta data about data contained on the Web. This way,
RDF can be used by search engines, in cataloging, in content rating, and similar.

One of the goals of RDF is to make it possible to specify semantics for data based on
XML in a standardized, interoperable manner. See [12] and [20] for more information
on RDF.

3.3.5 DAML+OIL Ontology Markup

The DARPA Agent Markup Language [21] program officially started autumn 2000.
Its goal was to facilitate the Semantic Web with providing a language that remedied
the limitations of XML regarding relation representation. Building on RDF and RDF
Schema, it provides a rich set of constructs with which to create ontologies and to
markup information so that it is machine readable and understandable.

3.3.6 OWL - Web Ontology Language

The Web Ontology Language (OWL) [17] is a W3C standardization effort to create
a semantic mark up language for publishing and sharing ontologies on the Web. It is
derived from the DAML+OIL Ontology mark up language (see section 3.3.5), and is
hence based on other W3C standards; XML, RDF and RDFS, but facilitates greater
machine readability of web content than these technologies by providing an additional
vocabulary for term descriptions.

OWL provides two subsets intended for users not requiring the functionality of the
entire languages;

The OWL specification is, as of this writing, a work in progress.

21

CHAPTER 3. ONTOLOGY

� The OWL Lite subset was mainly
designed for easy implementation
and to provide users with a soft
introduction to OWL. It only sup-
ports a subset of the OWL lan-
guage constructs, but broadens the
modeling capabilities of RDFS by
adding some common features used
when extending ontologies with vo-
cabularies and thesauri. OWL
Lite tries to capture many of the
most common features of OWL and
DAML+OIL.

� OWL DL (Description Logic) is pri-
marily a language subset that has
desirable computational properties
for reasoning systems. It includes
the entire OWL vocabulary, only
with a few constraints. Most promi-
nent among these are that class
identifiers cannot be a properties or
individuals at the same time, and
that properties cannot be individu-
als.

� OWL Full is the name used to refer
to OWL as a whole. All constructs
of the language are available.

XML

RDF

RDF-S

DAML+OIL

OWL Lite

OWL DL

OWL Full

Figure 3.3: The different technologies
making up OWL.

22

Chapter 4

The Proposed Solution

Having discussed the most important aspects of what ontologies and natural language
processing are, this chapter will cover the proposed solution to the presented problem;
how to use ontologies to identify how an object is spoken in a natural language text.

In the description of the solution, the terms warm and cold will be used when describ-
ing how an object is spoken. These are considered more general than, for instance, the
terms positive and negative. Positive and negative descriptions will always be relative
to the individual receiving them. An article reporting that the new flagship mobile
phone from Ericsson contains a lot of software bugs, and is therefore considered a bad
phone, is of course negative for Ericsson, but could be considered positive for their
competitors. A warm or a cold description is not relative to the receiver. The new
phones from Ericsson being described as bad, is a cold description, regardless of who
is reading the review.

4.1 Using Ontologies

As mentioned in chapter 3, representing knowledge using ontologies has many ad-
vantages. Having a plain text corpus described using some ontology representation
language would enable automated agents to reason about the contents of the text. This
is possible, because the ontological representation is a representation of the knowl-
edge in the text; what does this text really mean? Instances of words, the descriptive
relations between them, and the logically implied information deducted from these re-
lations, allow agents to answer questions such as “does this review speak of my product
in a positive way?”, because the ontological representation of the text makes the terms
that describe the product in question available. These terms can then be looked up in
other ontologies to see whether or not they have a temperature that is either warm or
cold. The more relations between the words, or meta-data about the them, the more
questions are possible to answer, and the more precise the conclusions will be.

23

CHAPTER 4. THE PROPOSED SOLUTION

The sections in this chapter describe the proposed method of how to use ontologies to
determine the way an object or term is spoken of in a text. To do this, three ontologies
will be developed. One ontology containing descriptions; words and expressions, one
containing all the terms used when determining the temperature of a description, and
one containing concepts and relations required to describe relations between elements
in a text.

4.2 Method Overview

As texts usually are unavailable represented as ontologies, they must be preprocessed
to obtain such a representation. Consider the following text containing three sentences
extracted from a review of the Ericsson P800 cellular phone:

Reception proved acceptable, although signal strength
was poor in areas of weaker network coverage � . The
phone was occasionally failing to register the SIM
card � . Voice quality was average � .

Figure 4.1: Example Text

An ontological representation of this text would describe the different elements mak-
ing it up and relations between them, identifying the meaning of the different words.
The graph shows schematically how this representation could look using the second
sentence from the text in figure 4.1 as an example:

phoneThe

failing

to register

the SIM card

Takes action

Describes action

Performs action on
was

occasionally

Figure 4.2: Example of how an ontological representation of the text could look.

It would also make sense to include information about which part of speech the differ-
ent words are, and which particular phrase they belong to.

24

CHAPTER 4. THE PROPOSED SOLUTION

The ontology containing the concepts and relations used in the ontological represen-
tation of text will be called the Text Ontology. Texts represented as ontologies are
then used by a reasoner to determine how objects are spoken of. The reasoner utilizes
another ontology that defines temperatures of descriptions, called the Description Tem-
perature Ontology.

By separating the ontological representation of the text and the description tempera-
tures, the ontological representation can be used in other areas of application as well,
without mixing with description temperatures.

Considering this, the method will consist of two processing units:

� The PreProcessor - The PreProcessor is the processing unit that will perform all
the natural language processing; split the text into sentences, tag the sentences
and establish relations between words, and generate the ontological representa-
tion of the text.

� The Reasoner - The reasoner is the processing unit that will use the ontological
representation of the text and the ontological representation of object descrip-
tions to determine how a particular term or object is spoken of. The results
presented by the Reasoner will be called deductions.

and three ontologies;

� The Text Ontology - The ontology that contains the definitions of how relations
between words and expressions in texts should be represented. The assertional
component of this ontology is the preprocessed texts.

� The Descriptions Ontology - This is a simple lexicon containing words, ex-
pressions or phrases that are considered descriptions. Only terms found in this
ontology will be identified as descriptions by a reasoner.

� The Description Temperature Ontology - Contains definitions of what makes
a description. warm and what makes it cold. The assertional component of this
ontology contains the temperature of the different words and expressions the
Reasoner will be able to reason about.

The following figure (figure 4.3) describes how the five defined components are con-
nected.

In the next sections, the components will be described in more detail. First the Text
and Descriptions ontologies will be presented with all the terms, concepts and relations
required to represent a text, followed by the functionality of PreProcessor. Then the
Description Temperature Ontology will be defined. Finally, the approach to use the
assertional components of all three of the defined ontologies to discover when an object
of interest is described either in a warm or cold fashion will be outlined in the section
about the Reasoner.

25

CHAPTER 4. THE PROPOSED SOLUTION

The Text Ontology

The Description Temperature Ontology

Preprocessing

Reasoning

The PreProcessor

The Reasoner

Terminological Component Assertional Component

Terminological Component Assertional Component

Text

DeductionsThe Descriptions Ontology

gets descriptions

gets descriptions

generates ontology
from text

gets text

gets description
temperatures

Figure 4.3: Overview of the defined components of the proposed method.

4.3 The Text Ontology

The next section will describe how a natural language text can be represented using
ontologies. This includes definitions of elements making up a text and (some of) the
relations between them.

As described in chapter 3, an ontology consists of two logical parts; the terminological
component and the assertional component. In our approach, the assertional component
of the Text Ontology will be made up of the analyzed texts and the relations between
the words making them up. The terminological component defines how these texts
should be represented.

4.3.1 The Terminological Component

To be able to represent relations between different elements in a text, the different types
of elements must first be identified and formalized. Then definitions of meaningful
relations between them can be made. Following is a list of concepts required in the
ontology describing text1.

1The definitions are based on the descriptions of the words found in WordNet[22].

26

CHAPTER 4. THE PROPOSED SOLUTION

� Text - The words of something written. In our context, we redefine the term text,
narrowing it to be only the subset of texts consisting of one or more sentences.

� Sentence - A string of words satisfying the grammatical rules of a language. Per
definition, one or more sentences make up a text.

� Word - Words are the blocks from which sentences are made.

� Word class/Part Of Speech (POS) - Category of words intended to reflect their
functions in a grammatical context.

� Phrase - An expression forming a grammatical constituent of a sentence but not
containing a finite verb.

� Expression - A group of words that form a constituent of a sentence and are
considered as a single unit.

Note 4.1. The definition of the text concept is quite broad. It is not taken into con-
sideration that a text sometimes consists of elements to separate it into logical parts,
like headlines and paragraphs, nor is it distinguished between genres of texts, like ar-
ticles, reports or books. It is assumed that a text can be considered a logical unit, and
analyzed thereafter.

Note 4.2. POS is a concept comprising all the names of the categories of words. A
word will always be of one of these categories in a given context. The category noun,
for example, will be an instance of the part-of-speech concept. There exists no explicit
relation between the word-concept and the POS-concept. Only between words and
subclasses of the POS-concept.

Having defined the main concepts in the Text Ontology, the relations between them
must be made out. The following observations work as a foundation for the definitions
(the names of the relations will be written using mixed case, except for the initial letter,
which is lower case);

� A text is madeUpOf sentences.

� A sentence is madeUpOf words.

� The madeUpOf relation is transitive; since a text is made up of sentences and a
sentence is made up of words, a text is made up of words.

� An expression is madeUpOf words.

� A word can describe another.

� An expression can describe another.

� A word can describe an expression, and vice versa.

27

CHAPTER 4. THE PROPOSED SOLUTION

� A word isOf a word class.

� An expression can be a phrase. Therefore, sometimes, an expression isA phrase.

� A word can referToTheSameAs another word (The phone � it).

� An expression can referToTheSameAs a word (The new phones from Nokia �

they).

Figure 4.4 illustrates the concepts and the relations between them.

Text

Sentence Word
madeUpOf

Expression
describes

Part Of Speech

Noun Verb

subClassOf

isOfClass

. . .

subClassOf
subClassOf

madeUpOf

madeUpOf

describes

describes

disjointWith

disjointWithdisjointWith

Phrase
madeUpOf

isA

Noun Phrase

Verb Phrase

. . .

disjointWith

disjointWith

Word

Expression

referToTheSameAs

Figure 4.4: A schematic representation of the concepts and relations in the Text On-
tology.

Note 4.3. All the Part Of Speech subclasses are disjoint; if a word is of one class, it
can not be of any of the others.

The concepts (or terms) defined above will be the base of the implementation of the
terminological component of the Text Ontology. The assertional component of the
Text Ontology will be the ontological representation of texts.

When the desired natural language processing of a text has completed, the relations
and information produced by the processing is represented as an ontology, based on
the terminological component of the Text Ontology.

28

CHAPTER 4. THE PROPOSED SOLUTION

4.3.2 The Assertional Component

As mentioned above, the assertional component of the Text Ontology will be the onto-
logical representations of texts. The PreProcessor (see section 4.5) uses the termino-
logical component as a specification of how to represent the texts as ontologies. The
assertional component will be under constant modification because texts will be added
as they are processed. This allows a distributed development of the Text Ontology.

As an example, consider the third sentence from figure 4.1; ”Voice quality was aver-
age“. The part of speech tagging of this sentence yields;

WORD PART OF SPEECH

Voice Proper Noun, singular

quality Noun, singular

was Verb, past tense

average Adjective

Table 4.1: The parts of speech for the words in the sentence ”Voice quality was aver-
age.“

”Voice quality“ is the noun phrase of this sentence, while ”was average“ is the verb
phrase. The verb phrase is the action the noun is taking, i.e. the verb phrase tells
something about the noun. ”was“ connects the adjective ”average“ with the noun, so
”average“ describes ”Voice quality“. Using this reasoning, the following relations can
be made out:

� The text is madeUpOf the sentence ”Voice quality was average.“

� The sentence ”Voice quality was average“ is madeUpOf the words Voice, qual-
ity, was and average.

� The words isOfClass as described in table 4.1

� The sentence is madeUp of the expressions ”Voice quality“ and ”was average“.

� The expression ”Voice quality“ isA noun phrase.

� The expression ”was average“ isA verb phrase.

� ”average“ describes ”voice quality“.

Figure 4.5 shows how these relations could be represented:

This information will be stored in the assertional component, a knowledge base, of the
Text Ontology. The next section describes the ontology that will be used to identify
descriptive terms.

29

CHAPTER 4. THE PROPOSED SOLUTION

Verb Phrase

Sentence2

Voice

Noun Adjective

describes

isOfClass isOfClass isOfClass

isA isA

madeUpOf

Noun Phrase

Verb

quality was average

Text

Sentence1 Sentence3

madeUpOf

Figure 4.5: A schematic representation of some of the concepts and relations found in
figure 4.1.

4.4 The Descriptions Ontology

The Descriptions Ontology uses the Word, Expression and Phrase concepts defined in
the Text Ontology to create a lexicon of terms known to be descriptions. Considering
this, the Descriptions Ontology uses these concepts:

� Word - From the Text Ontology.

� Expression - From the Text Ontology.

� Phrase - From the Text Ontology.

� Descriptive Term - A descriptive term is either a Word, an Expression or a
Phrase.

4.5 The PreProcessor

If all authors took the time to make an ontological representation of all the articles or
texts they wrote, they would make life for automated reasoners a lot easier. This is not
the case, however, and the process of making such a representation of semi-structured

30

CHAPTER 4. THE PROPOSED SOLUTION

<<from Text Ontology>>
Word

<<from Text Ontology>>
Phrase

<<from Text Ontology>>
Expression

Descriptive Term

is
is

is

Figure 4.6: A schematic representation of the concepts and relations in the Descrip-
tions Ontology.

text found in articles, books, reports, etc. will have to be done as a preprocess for a
reasoner. This can be done by identifying as many of the relations between the words
in the text as possible by natural language processing.

As most texts consist of more than one sentence, the first objective is to separate the
text into a list of sentences. Then analysis of the individual sentences can start, the
overall goal being to locate the subject and objects in the sentence and how they are
described. The two main approaches to discover how an object is spoken of, are to
locate any adjectives or expressions describing it, or the adverb(s) or expression de-
scribing the action the object is taking.

31

CHAPTER 4. THE PROPOSED SOLUTION

Text

NLP Process

Ontological
representation

of text

Sentence boundary
disambiguiation

Sentence analysis

Location of descriptive
elements of a subject

or an object
Sentence tagging

Figure 4.7: The steps involved in analyzing a text.

When this is done, the sentences, words, and interword relations are stored in an on-
tology knowledge base, as figure 4.7 illustrates.

Based on the description above, the PreProcessor will operate according to the follow-
ing algorithm (listing 4.1):

� Input: Text (A natural language text)

� Output: An ontological representation of the text.

Listing 4.1: The PreProcessor Algorithm

F i r s t d i s c o v e r t h e s e n t e n c e b o u n d a r i e s .
s e n t e n c e s = s e n t e n c e _ b o u n d a r y _ d i s a m b i g u a t i o n (Text)

Tag t h e s e n t e n c e s w i t h Par t o f Speech .
t a g g e d _ s e n t e n c e s = l i s t
f o r s e n t e n c e in s e n t e n c e s :

t a g g e d _ s e n t e n c e = p o s _ t a g (s e n t e n c e)
t a g g e d _ s e n t e n c e s . append (t a g g e d _ s e n t e n c e)

Per form grammat i ca l a n a l y s i s .
s e n t e n c e _ p a r s e _ t r e e s = l i s t
f o r t s e n t in t a g g e d _ s e n t e n c e s :

p t r e e = c f g _ p a r s e (t s e n t)
s e n t e n c e _ p a r s e _ t r e e s . append (p t r e e)

Find d e s c r i p t i o n r e l a t i o n s .

32

CHAPTER 4. THE PROPOSED SOLUTION

a n a l y z e d _ s e n t e n c e s = l i s t
f o r s p t in s e n t e n c e _ p a r s e _ t r e e s :

a n a l y z e d _ s e n t e n c e = f i n d _ d e s c r i p t i o n s (s p t)
a n a l y z e d _ s e n t e n c e s . append (a n a l y z e d _ s e n t e n c e) .

Genera te o n t o l o g i c a l r e p r e s e n t a t i o n .
o n t o l o g i c a l _ r e p r e s e n t a t i o n = r e p r e s e n t _ a s _ o n t o l o g y (

a n a l y z e d _ s e n t e n c e s)

re turn o n t o l o g i c a l _ r e p r e s e n t a t i o n

The implementation specifics for the functions in the algorithm can be found in sec-
tion 6.3.

4.6 The Description Temperature Ontology

The Description Temperature Ontology will be used by the Reasoner to determine the
temperature of how objects are spoken, hence this ontology must contain information
about the temperature of descriptions; words and expressions.

4.6.1 The Terminological Component

An object description can be said to be warm (positive), cold (negative) or neutral. But
in the real world, is it common to have a higher resolution when evaluating descrip-
tions. They can be said to be very warm, for instance ”These are the perfect running
shoes¡‘, while ”These running shoes are comfortable“ has not the same level of warmth
in the description. Is it therefore necessary to develop a warm-cold scale. Words and
expressions will then be placed along this scale when developing the Description Tem-
perature Ontology. The different levels of warmth and cold used in the ontology are
described in the following figure (figure 4.8):

Neutral
Somewhat

ColdCold
Very
Cold

Somewhat
Warm Warm

Very
Warm

Figure 4.8: The Warm-Cold Scale used in the Description Temperature Ontology.

Considering this, the Description Temperature Ontology uses these concepts:

� Descriptive Term - From the Descriptions Ontology.

33

CHAPTER 4. THE PROPOSED SOLUTION

� Temperature - The level of warmth or cold in the description of an object.

The Descriptive Term is related to the Temperature concept by the hasTemperature
relation. The following figure (figure 4.9) illustrates the concepts and relations:

Temperature

Very Warm

subClassOf

hasTemperature

Warm

Somewhat Warm

Neutral

Somewhat Cold

Cold

Very Cold

<<from Text Ontology>>
Descriptive Term

Figure 4.9: A schematic representation of the concepts and relations in the Description
Temperature Ontology.

The Temperature concept will be applied to the elements found in the Descriptions
Ontology. These definitions will work as classes when the assertional component of
the Description Temperature Ontology is developed.

4.6.2 The Assertional Component

The assertional component of the Description Temperature Ontology will contain the
temperature of descriptions found in the Descriptions Ontology. If a word or expres-
sion is absent from that ontology, a reasoner has no way of grading the temperature of
a description. The following table contains an example of how expressions, words and
phrases will be categorized (the terms are collected from the Descriptions Ontology);

34

CHAPTER 4. THE PROPOSED SOLUTION

TERM TYPE CATEGORY

acceptable Word Somewhat Warm

poor Word Cold

average Word Somewhat Cold

occasionally failing Expression Somewhat Cold

Table 4.2: An example of how phrases, expressions and words will be categorized in
the Description Temperature Ontology using the descriptive terms from the example
text in figure 4.1.

Section 6.5 describes how the ontology was implemented.

4.7 The Reasoner

The Reasoner is, as mentioned earlier, the processing unit that combines the Text On-
tology the Descriptions Ontology and the Description Temperature Ontology to deter-
mine if a specific object or term is spoken of in a warm of cold manner (or neutral).
This is done by combining a text processed by the PreProcessor (and hence is in the
Text Ontology assertional component), with the warm-cold-graded terms in the De-
scription Temperature Ontology.

4.7.1 Determining The Temperature of a Text Relative to a Term

To determine how an object is spoken, the sentences that describe the object is located.
If any expressions, phrases or words describes the term in question, the temperature
of this description determines how the object is spoken of. For example, consider
”Voice quality was average“ from earlier. The adjective ”average“ describes ”voice
quality“. In the Description Temperature Ontology, the word average will typically be
categorized as somewhat cold, hence voice quality in the sentence is described in a
somewhat cold manner. The Reasoner identifies the words, expressions or phrases that
describes the given object and looks these up in the Description Temperature Ontology.
Figure 4.10 illustrates:

35

CHAPTER 4. THE PROPOSED SOLUTION

Reasoner

Text Ontology (AC)... average
[describes]

voice quality ...

Description Temperature
Ontology (AC)

[Looks Up]
Average

[Returns]
Somewhat Cold

Deduction
voice quality
is described in a
somewhat cold manner.

Figure 4.10: An example of how the Reasoner reasons about object descriptions.

Also, if the object in question is theSameAs another object that is described in the sen-
tence, the Reasoner finds out how this object is spoken of. Knowing this, the algorithm
of the Reasoner is as follows (listing 4.2):

� Input: OntText (A text from the Text Ontology.)

� Input: Term (The term that should be checked for warm or cold descriptions.)

� Output: The deduced conclusion of the general temperature of the text relative
to the input term.

Listing 4.2: The Reasoner Algorithm

Loca te a l l s e n t e n c e s w i t h t h e term i n q u e s t i o n .
s e n t e n c e s = l o c a t e _ s e n t e n c e s _ w i t h _ t e r m (OntText , Term)

Find a l l d e s c r i p t i o n s o f t h e term .
d e s c r i p t i o n s = g e t _ t e r m _ d e s c r i p t i o n s (s e n c t e n c e s , Term)

Get t h e t e m p e r a t u r e s o f t h e d e s c r i p t i o n s .
desc_ temps = g e t _ d e s c r i p t i o n _ t e m p e r a t u r e (d e s c r i p t i o n s)

Compute a g e n e r a l i m p r e s s i o n o f t h e t e m p e r a t u r e .
gen_temp = n o r m a l i z e _ d e s c r i p t i o n _ t e m p e r a t u r e s (desc_ t emps)

re turn gen_temp

The specifics for the implementation of the algorithm can be found in section 6.5.

36

Chapter 5

Identifying Shortcomings With the
Proposed Method

As has become apparent while developing the proposed method, it suffers shortcom-
ings that will become subject for further work. The sections below describes them in
detail.

5.1 Going Beyond Single Sentence Analysis

When an object is referred to in several consecutive sentences, it is common to replace
the object name with a personal pronoun to ease the reading. Consider this example
(Example 5.1.1):

Example 5.1.1. To summarize, P800 is an excellent cellular phone. It looks good as
well.

The proposed method does not consider such constructs (even though they are quite
common). The word ”it“ and ”P800“ refers to the same object in these sentences,
and it would be desirable to establish the refersToTheSameAs relation between these
words to be able to locate more descriptions of the object. This way a more accurate
conclusion could be made about how the object in question is spoken of. Typically -
consider the example - the word ’P800’ would be used as few times as possible, and
in the worst case scenarios, ’P800’ would have no relation to descriptive terms at all,
only properties of the phone (signal strength, voice quality, etc.). In such cases, the
proposed method breaks.

37

CHAPTER 5. IDENTIFYING SHORTCOMINGS WITH THE PROPOSED
METHOD

5.2 Going Beyond Single Text Analysis

Going beyond single sentence analysis will allow the identification of more descrip-
tions. Going beyond single text analysis allows the identification of trends. Consider
analyzing several texts from several sources in a given time span. Does any of these
sources speak of my products more critically than the others? Less critically? Is the
trend that the media speaks of our company more and more positive, or more and more
negative? Have the resent marketing efforts made the online discussion groups talk
more friendly of our company or our products? Such trends are time consuming to
discover and to measure without the help of able automated agents.

Supplying enough meta data about the texts analyzed, it is possible to provide this and
similar statistics automatically. This way we add the time dimension to the analysis
of the temperatures of descriptions; how has the ”public opinion“ of our company
evolved through the last months?

5.3 Identifying Interesting Terms Using Ontologies

The proposed method allows identification of how a term is spoken of in a text. How-
ever, imagine an automated marketing surveillance system that reports online articles
that speak of Ericsson in some unfavorable fashion. Configuring the system, it is in-
sufficient to report only when the word Ericsson is spoken of unfavorable. Ericsson
produces cellular phones and other services, and negative reviews of these reflects
badly upon the company itself.

Consider an Ericsson ontology, or even better, a Telecom industry ontology, mapping
the Telecom industry landscape; all its actors, common terms and concepts, etc. (see
figure 5.1) When configuring the system to report negative formulations about ele-
ments that concern Ericsson, the ontology will tell the reasoner that negative descrip-
tions of the voice quality of the T68 mobile phone reflects negatively on the devel-
opment department of Ericsson, and hence the company as a whole. Combining the
current functionality of the proposed method with domain specific ontologies, as the
Telecom Industry Ontology, would reduce configuration time and maintenance of the
reasoner, in addition to obtaining an increase in areas of application by orders of mag-
nitude.

5.4 Figures of Speech

There are a number of linguistic instruments available to make ones point when writing
a text. Irony and sarcasm are such instruments. Both are frequently used in oral
language, and some times in the written context. They are mostly used in causeries

38

CHAPTER 5. IDENTIFYING SHORTCOMINGS WITH THE PROPOSED
METHOD

Telecom

Terms
Actors

UMTS GSM

Mobile Phone

Signal Strenght

Screen Resolution

Voice Quality

GPRS

SiemensEricssonNokia

Management

Development

. . .

P800

T68

isTerm
isTermisTerm

isTerm

hasProperty

hasProperty

hasProperty

isActor
isActor

isActor

consistOf
consistOf

isDepartment

isDepartment

produces

produces

instanceOf

instanceOf

isCEO

Figure 5.1: A Simplified Example of a Telecom Industry Ontology.

and contributions in newspapers and similar media.

Irony and sarcasm express the opposite of, or something different than, what is actually
written. Sarcasm is more harsh than irony, and easier to realize.

Example 5.4.1. That new haircut of yours is so nice...

Some constructs of irony are more obvious than others, and people have different
abilities to understand irony and sarcasm. It is both a matter of training and maturity.
Children can not understand irony until they are ten years old, and scholars generally
have an easier time understanding it than people scarcely-read.

Metaphors give words a figurative meaning.

Example 5.4.2. You are an angel

Sometimes these can be extremely hard to perceive. ”House in the Dark“ by Tar-
jei Vesaas for instance, would be hard to make sense of without having reference to
the second World War and Norway under the German occupation. It goes without
saying that it is a challenging task to make a computer understand the meaning such
metaphors; the same text could have two completely different meanings if it was writ-
ten a decade sooner, or a decade later than the actual year of publication.

The writing techniques described above will ”confuse“ an implementation of the pro-
posed solution, because it is not taken into consideration that an object can be described
in any other way than directly, without the use of irony, sarcasm and similar.

39

Chapter 6

The Prototype

This section describes how the proposed approach is implemented. First, a description
of the Text and Descriptions Ontologies are presented. Then, the PreProcessor and
how it uses these two ontologies will be shown. Finally, the Description Tempera-
tures Ontology and the Reasoner are implemented, followed by a presentation of the
limitations of all aspects of the prototype.

6.1 The Terminological Component of the Text Ontol-
ogy

All the ontologies developed were implemented using the Ontology Markup Language
(OWL).1 This section describes how the terminological component of the Text Ontol-
ogy was implemented.

Based on the concepts and relations identified in section 4.3, the Text Ontology is
implemented as follows (see the OWL Semantics and Abstract Syntax ([17]) for a de-
tailed description of the OWL syntax). All the relations are mappings of those found
on page 27.

Listing 6.1 defines the Word concept and the relations in the Word domain. The word-
Text property of the Word class is the textual representation of the word.

Listing 6.1: The Word Concept

< o w l : C l a s s r d f : I D ="Word " / >

< o w l : D a t a T y p e P r o p e r t y r d f : I D =" wordText ">
< r d f s : d o m a i n r d f : r e s o u r c e =" #Word " / >

1See the OWL Semantics and Abstract Syntax [17] and the OWL Guide [23] for a description of
how to develop ontologies with OWL.

40

CHAPTER 6. THE PROTOTYPE

< r d f s : r a n g e r d f : r e s o u r c e =" h t t p : / /www. w3c . o rg / 2 0 0 0 / 1 0 /
XMLSchema# s t r i n g " / >

</ o w l : D a t a T y p e P r o p e r t y >

< o w l : O b j e c t P r o p e r t y r d f : I D =" i s O f C l a s s ">
< r d f s : d o m a i n r d f : r e s o u r c e =" #Word " / >
< r d f s : r a n g e r d f : r e s o u r c e =" # P a r t O f S p e e c h " / >

</ o w l : O b j e c t P r o p e r t y >

< o w l : O b j e c t P r o p e r t y r d f : I D =" wordDescr ibesWord ">
< r d f s : d o m a i n r d f : r e s o u r c e =" #Word " / >
< r d f s : r a n g e r d f : r e s o u r c e =" #Word " / >

</ o w l : O b j e c t P r o p e r t y >

< o w l : O b j e c t P r o p e r t y r d f : I D =" w o r d D e s c r i b e s E x p r e s s i o n ">
< r d f s : d o m a i n r d f : r e s o u r c e =" #Word " / >
< r d f s : r a n g e r d f : r e s o u r c e =" # E x p r e s s i o n " / >

</ o w l : O b j e c t P r o p e r t y >

< o w l : O b j e c t P r o p e r t y r d f : I D =" wordIsTheSameAsWord">
< r d f s : d o m a i n r d f : r e s o u r c e =" #Word " / >
< r d f s : r a n g e r d f : r e s o u r c e =" #Word " / >

</ o w l : O b j e c t P r o p e r t y >

< o w l : O b j e c t P r o p e r t y r d f : I D =" wordIsTheSameAsExpress ion ">
< r d f s : d o m a i n r d f : r e s o u r c e =" #Word " / >
< r d f s : r a n g e r d f : r e s o u r c e =" # E x p r e s s i o n " / >

</ o w l : O b j e c t P r o p e r t y >

Listing 6.2 defines the Sentence concept and the sentenceMadeUpOfWord relation.

Listing 6.2: The Sentence Concept

< o w l : C l a s s r d f : I D =" S e n t e n c e " / >

< o w l : O b j e c t P r o p e r t y r d f : I D =" sentenceMadeUpOfWord ">
< r d f s : d o m a i n r d f : r e s o u r c e =" # S e n t e n c e " / >
< r d f s : r a n g e r d f : r e s o u r c e =" #Word " / >

</ o w l : O b j e c t P r o p e r t y >

Listing 6.3 defines the Phrase concept and the relations it its domain.

Listing 6.3: The Phrase Concept
< o w l : C l a s s r d f : I D =" P h r a s e " / >

< o w l : O b j e c t P r o p e r t y r d f : I D =" isOfType ">
< r d f s : d o m a i n r d f : r e s o u r c e =" # P h r a s e " / >
< r d f s : r a n g e r d f : r e s o u r c e =" # Pha ra seType " / >

41

CHAPTER 6. THE PROTOTYPE

</ o w l : O b j e c t P r o p e r t y >

Listing 6.4 defines the Text concept and the relations it its domain.

Listing 6.4: The Text Concept

< o w l : C l a s s r d f : I D =" Text " / >

< o w l : O b j e c t P r o p e r t y r d f : I D =" madeUpOfSentence ">
< r d f s : d o m a i n r d f : r e s o u r c e =" # Text " / >
< r d f s : r a n g e r d f : r e s o u r c e =" # S e n t e n c e " / >

</ o w l : O b j e c t P r o p e r t y >

Listing 6.5 defines the Expression concept and the relations it its domain.

Listing 6.5: The Expression Concept

< o w l : C l a s s r d f : I D =" E x p r e s s i o n " / >

< o w l : O b j e c t P r o p e r t y r d f : I D =" expressionMadeUpOfWord ">
< r d f s : d o m a i n r d f : r e s o u r c e =" # E x p r e s s i o n " / >
< r d f s : r a n g e r d f : r e s o u r c e =" #Word " / >

</ o w l : O b j e c t P r o p e r t y >

< o w l : O b j e c t P r o p e r t y r d f : I D =" express ionCanBeA ">
< r d f s : d o m a i n r d f : r e s o u r c e =" # E x p r e s s i o n " / >
< r d f s : r a n g e r d f : r e s o u r c e =" # P h r a s e " / >

</ o w l : O b j e c t P r o p e r t y >

< o w l : O b j e c t P r o p e r t y r d f : I D =" e x p r e s s i o n D e s c r i b e s W o r d ">
< r d f s : d o m a i n r d f : r e s o u r c e =" # E x p r e s s i o n " / >
< r d f s : r a n g e r d f : r e s o u r c e =" #Word " / >

</ o w l : O b j e c t P r o p e r t y >

< o w l : O b j e c t P r o p e r t y r d f : I D =" e x p r e s s i o n D e s c r i b e s E x p r e s s i o n ">
< r d f s : d o m a i n r d f : r e s o u r c e =" # E x p r e s s i o n " / >
< r d f s : r a n g e r d f : r e s o u r c e =" # E x p r e s s i o n " / >

</ o w l : O b j e c t P r o p e r t y >

Listing 6.6 defines the PartOfSpeech concept and the relations it its domain. It also
defines the instances of the PartOfSpeech found in the Penn Treebank Tag Set (see
Appendix B).

Listing 6.6: The PartOfSpeech Concept

< o w l : C l a s s r d f : I D =" P a r t O f S p e e c h ">
< r d f s : l a b e l xml: lang =" en "> P a r t o f Speech </ r d f s : l a b e l >

</ o w l : C l a s s >

42

CHAPTER 6. THE PROTOTYPE

< P a r t O f S p e e c h r d f : I D ="CC" / >
< P a r t O f S p e e c h r d f : I D ="CD" / >
< P a r t O f S p e e c h r d f : I D ="DT" / >
<! ��� E n t i r e l i s t o m i t t e d . ��� >

< o w l : A l l D i f f e r e n t >
< o w l : d i s t i n c t M e m b e r s r d f : p a r s e T y p e =" C o l l e c t i o n ">

< t e x t : P a r t O f S p e e c h r d f : a b o u t =" #CC" / >
< t e x t : P a r t O f S p e e c h r d f : a b o u t =" #CD" / >
< t e x t : P a r t O f S p e e c h r d f : a b o u t =" #DT" / >
<! ��� E n t i r e l i s t o m i t t e d . ��� >

</ o w l : d i s t i n c t M e m b e r s >
</ o w l : A l l D i f f e r e n t >

Listing 6.7: The PhraseType Concept

< o w l : C l a s s r d f : I D =" PhraseType " / >

< PhraseType r d f : I D ="NP" / >
< PhraseType r d f : I D ="VP" / >
< PhraseType r d f : I D =" PP" / >

< o w l : A l l D i f f e r e n t >
< o w l : d i s t i n c t M e m b e r s r d f : p a r s e T y p e =" C o l l e c t i o n ">

< t e x t : P h r a s e T y p e r d f : a b o u t =" #NP" / >
< t e x t : P h r a s e T y p e r d f : a b o u t =" #VP" / >
< t e x t : P h r a s e T y p e r d f : a b o u t =" #PP" / >
<! ��� E n t i r e l i s t o m i t t e d . ��� >

</ o w l : d i s t i n c t M e m b e r s >
</ o w l : A l l D i f f e r e n t >

See Appendix C.1 for the entire OWL implementation of the terminological compo-
nent.

43

CHAPTER 6. THE PROTOTYPE

6.2 The Descriptions Ontology

The Descriptions Ontology is of the simplest kinds of ontologies; lexicons. It’s just a
list of terms and what kind of term it is. Most of the concepts required to implement
the ontology is defined in the Text Ontology. The Descriptions Ontology only defines
the term Descriptive Term.

Note 6.1. It is implied that all adjectives and adverbs are descriptive terms.

6.2.1 Terminological Component

The terminological component defines the DescriptiveTerm concept used to point out
that a term is descriptive about an object.

Listing 6.8: The Description Concept

< o w l : C l a s s r d f : I D =" D e s c r i p t i v e T e r m " / >
< o w l : D a t a T y p e P r o p e r t y r d f : I D =" term ">

< r d f s : d o m a i n r d f : r e s o u r c e =" # D e s c r i p t i v e T e r m " / >
< r d f s : r a n g e r d f : r e s o u r c e =" . / t e x t #Word " / >
< r d f s : r a n g e r d f : r e s o u r c e =" . / t e x t # E x p r e s s i o n " / >
< r d f s : r a n g e r d f : r e s o u r c e =" . / t e x t # P h r a s e " / >

</ o w l : D a t a T y p e P r o p e r t y >

6.2.2 Assertional Component

The assertional component of the Descriptions Ontology defines terms that are consid-
ered descriptive. Following is an excerpt from the ontology, defining the descriptive
terms from the example text from figure 4.1:

Listing 6.9: Some descriptive terms.

<Word r d f : I D =" a c c e p t a b l e ">
<wordText r d f : d a t a t y p e =" h t t p : / /www. w3c . o rg / 2 0 0 0 / 1 0 /

XMLSchema# s t r i n g "> a c c e p t a b l e </ wordText >
</Word>
<Word r d f : I D =" poor ">

<wordText r d f : d a t a t y p e =" h t t p : / /www. w3c . o rg / 2 0 0 0 / 1 0 /
XMLSchema# s t r i n g "> poor </ wordText >

</Word>
<Word r d f : I D =" a v e r a g e ">

<wordText r d f : d a t a t y p e =" h t t p : / /www. w3c . o rg / 2 0 0 0 / 1 0 /
XMLSchema# s t r i n g "> a v e r a g e </ wordText >

</Word>
<Word r d f : I D =" o c c a s i o n a l l y ">

44

CHAPTER 6. THE PROTOTYPE

<wordText r d f : d a t a t y p e =" h t t p : / /www. w3c . o rg / 2 0 0 0 / 1 0 /
XMLSchema# s t r i n g "> o c c a s i o n a l l y </ wordText >

</Word>
<Word r d f : I D =" f a i l i n g ">

<wordText r d f : d a t a t y p e =" h t t p : / /www. w3c . o rg / 2 0 0 0 / 1 0 /
XMLSchema# s t r i n g "> f a i l i n g </ wordText >

</Word>
< E x p r e s s i o n r d f : I D =" c f 4 6 3 3 f 6 5 0 5 8 a 0 f e 5 f 3 2 3 c 7 5 e d d 8 e 2 e 5 ">

<expressionMadeUpOfWord r d f : r e s o u r c e =" # o c c a s i o n a l l y " / >
<expressionMadeUpOfWord r d f : r e s o u r c e =" # f a i l i n g " / >

</ E x p r e s s i o n >

< D e s c r i p t i v e T e r m r d f I D =" d e s c _ a c c e p t a b l e ">
< term r d f : r e s o u r c e =" a c c e p t a b l e ">

</ D e s c r i p t i v e T e r m >

< D e s c r i p t i v e T e r m r d f I D =" d e s c _ p o o r ">
< term r d f : r e s o u r c e =" poor ">

</ D e s c r i p t i v e T e r m >

< D e s c r i p t i v e T e r m r d f I D =" d e s c _ a v e r a g e ">
< term r d f : r e s o u r c e =" a v e r a g e ">

</ D e s c r i p t i v e T e r m >

< D e s c r i p t i v e T e r m r d f I D =" d e s c _ c f 4 6 3 3 f 6 5 0 5 8 a 0 f e 5 f 3 2 3 c 7 5 e d d 8 e 2 e 5 "
>
< term r d f : r e s o u r c e =" c f 4 6 3 3 f 6 5 0 5 8 a 0 f e 5 f 3 2 3 c 7 5 e d d 8 e 2 e 5 ">

</ D e s c r i p t i v e T e r m >

See Appendix C.1 for the entire OWL implementation of the Descriptions Ontology.

6.3 The PreProsessor

The PreProcessor takes a text as input and outputs an ontological representation of
the same text. This process includes separating the text into sentences, tagging the
text, giving reasonable parses of the text, and use the OWL implementation of the
Text Ontology to get a OWL representation of the text. The PreProcessor is run using
Jython 2.1.

The functionality of the PreProcessor has been wrapped in two Python (Jython) com-
ponents;

� TextAnalyzer - This class wraps functions to find sentence boundaries (using
the MXTERMINATOR classes [24]), tags the sentences with part of speech (us-
ing the Monty Tagger [25]) and performs sentence analysis to discover phrases

45

CHAPTER 6. THE PROTOTYPE

in the text (using the Python Natural Language ToolKit [26]). Output from the
TextAnalyser.getPhrases function is used to get an OWL representation of the
text using an object of the OWLRepresentator class.

� OWLRepresentator - This class has functions to represent a sentence parse-tree
as an OWL ontology. It also generates relations between words beyond that of
the TextAnalyser, discovering what describes what in a text. This class is used
to develop the assertional component of the Text Ontology, and assigns IDs to
texts using the MD5-algorithm.

6.3.1 TextAnalyser

As described above, the TextAnalyser performs most natural language processing in-
volved the system.

To divide the text into sentences, the analyzer utilizes an instance of the class Text_processor.
This is a wrapper of the MXPOST and MXTERMINATOR described in section A.1.5.
The Text_processor is written in Java. It has a function called sentence_boundary,
which takes the text to be processed as an argument and returns a string divided by
’

�
n’ (line break) as sentences. MXTERMINATOR writes all its results to System.out

(to circumvent this, i.e. allowing the use of the MXTERMINATOR outside the com-
mand line, System.out is redirected to a String buffer, instead of to the console).

For all sentences there exist a common set of CFGProduction objects(2.5.2) that con-
tains context free grammar rules to identify phrases in a sentence (e.g. noun phrase,
verb phrase etc.) See table 6.1 on page 49 for an example of how these grammars are
built. They are combined with rules generated by the Brill-tagger - the tuple of word
and tag for each word in the sentence (see section A.1.6 for an explanation of why this
POS tagger has been chosen for the implementation). The sum of all these rules are
used as parameter to a NLTKParser object, which uses them to generate a Chart object
that describes the sentence as a parse-tree. Figure 6.1 illustrates;

46

CHAPTER 6. THE PROTOTYPE

Sentence Specific
Rules (POS tags)

Sentence
Text MXTERMINATOR Brill Tagger

NLTKParser

Common Rules

Parse-tree

Rules

TextAnalyser

The MXTERMINATOR splits into
several sentences, but for the
sake of the example, only one
is used.

Figure 6.1: The TextAnlyser components.

Figure 6.2 shows an UML diagram of the TextAnalyzer class, which has a method
called getPhrases. This method performs all the natural language processing described
above.

TextAnalyzer

+getPhrases(text:String): Parse

MontyTagger

+train(text:String): void
+tag(text:String): String

NLTKParser

+parse(text:String): String

Text_Processor

+sentence_boundary(text:String): String

Grammar

+getProduction(): CFGProduction
+addProduction(tag:NonTerminal,word:String): void

Figure 6.2: UML-diagram of the TextAnalyzer component.

Example Run

The following figure (figure 6.3) illustrates how the text from figure 4.1 is affected
by the different steps involved in the processing. For the sake of the example, when
the text has been split into sentences, only one of them (the first) is used to explain
how grammar rules and parse-trees are generated. The left side of the dotted line is
the component the text is being processed by, and the right side is the text after the
processing. The sentence parse-trees are used as parameter the the OWLRepresentator
described in the next section.

47

C
H

A
PT

E
R

6.
T

H
E

PR
O

T
O

T
Y

PE

N
LT

K
P

ar
se

r

B
ril

l T
ag

ge
r

T
ex

t

M
X

T
E

R
M

IN
A

T
O

R

R
ej

ec
tio

n
pr

ov
ed

 a
cc

ep
ta

bl
e,

 a
lth

ou
gh

si
gn

al
 s

tr
en

gt
h

w
as

 p
oo

r
in

 a
re

as
 o

f
w

ea
ke

r
ne

tw
or

k
co

ve
ra

ge
.

T
he

 p
ho

ne
 w

as
 o

cc
as

io
na

lly
 fa

ili
ng

 to

re
gi

st
er

 th
e

S
IM

 c
ar

d.

V
oi

ce
 q

ua
lit

y
w

as
 a

ve
ra

ge
.

R
ej

ec
tio

n/
N

N
 p

ro
ve

d/
V

B
D

 a
cc

ep
ta

bl
e/

JJ
al

th
ou

gh
/IN

 s
ig

na
l/N

N
 s

tr
en

gt
h/

N
N

w
as

/V
B

D
 p

oo
r/

JJ
 in

/IN
 a

re
as

/N
N

S

of
/IN

 w
ea

ke
r/

JJ
R

 n
et

w
or

k/
N

N

co
ve

ra
ge

/N
N

S

S

NP

NOM

NN

Reception

@[0w]

VP

VBD

proved

@[1w]

AP

JJ

acceptable

@[2w]

IN

although

@[3w]

S

NP

NOM

NN

signal

@[4w]

NOM

NN

strength

@[5w]

VP

VP

VBD

was

@[6w]

AP

JJ

poor

@[7w]

PP

IN

in

@[8w]

NP

NOM

NNS

areas

@[9w]

IN

of

@[10w]

AP

JJR

weaker

@[11w]

NOM

NN

network

@[12w]

NOM

NN

coverage

@[13w]

Fi
gu

re
6.

3:
A

n
ex

am
pl

e
of

th
e

pr
oc

es
si

ng
pe

rf
or

m
ed

by
th

e
Te

xt
A

na
ly

ze
r

cl
as

s.

48

CHAPTER 6. THE PROTOTYPE

ROOT RULE DESCRIPTION

S � NP VP A sentence consists of a noun phrase and a
verb phrase.

S � S IN S A sentence may be to complite sentences di-
vided by a conjunction.

NP � NP NOM A nominal is a noun phrase.

NP � PRP A pronoun is a noun phrase.

VP � VP NP A verb phrase followed by a noun phrase.

VP � VP PP A verb phrase followed by a prepositional
phrase.

VP � VBD AP A verb (past tense) followed by a adjective
phrase.

VP � VBD AP A verb in past tense followed by a adjectiv
phrase.

PP � IN NP A sentence consists of a noun phrase and a
verb phrase.

PP � TO NP A sentence consists of a noun phrase and a
verb phrase.

NOM � NN A noun is a nominal.

NOM � NN NOM A noun followed by a nominal.

AP � JJ A adjective phrase is an adjective.

Table 6.1: A sample grammar.

6.3.2 OWLRepresentator

The OWLRepresentator is a Python class used to represent a list of sentence parse
trees as OWL. This class also has the responsibility to generate the relations describes
and referToTheSameAs between terms. It generates instances of the concepts defined
in the Text Ontology based on the information in the parse trees. These instances make
up the assertional component of the Text Ontology.

To be able to identify descriptive terms, the OWLRepresentator uses the Descriptions
Ontology lexicon (as mentioned earlier, all adjectives and adverbs are descriptions
per definition). The entire Descriptions Ontology is loaded on initialization and is
wrapped in the Descriptions class. The following UML model describes the classes
and relations between them. The two locator classes uses simple heuristics to locate
the describes and refersToTheSameAs relations.

49

CHAPTER 6. THE PROTOTYPE

OWLRepresentator

Descriptions

DescribesLocator
RefersToTheSameAsLocator

Figure 6.4: UML-diagram of the OWLRepresentator component.

The Assertional Component of the Text Ontology

The OWLRepresentator generates OWL from the output from the TextAnalyzer. Con-
tinuing the example in figure 6.3, inputing the parse trees returned from the TextAna-
lyzer yields:

Listing 6.10: The output OWL from the parse trees in figure 6.3.

<Word r d f : I D =" a c c e p t a b l e _ J J ">
<wordText r d f : d a t a t y p e =" h t t p : / /www. w3c . o rg / 2 0 0 0 / 1 0 /

XMLSchema# s t r i n g "> a c c e p t a b l e </ wordText >
< i s O f C l a s s r d f : r e s o u r c e =" # J J " / >
< d e s c r i b e s r d f : r e s o u r c e =" # Reception_NN " / >

</Word>
<Word r d f : I D =" p o o r _ J J ">

<wordText r d f : d a t a t y p e =" h t t p : / /www. w3c . o rg / 2 0 0 0 / 1 0 /
XMLSchema# s t r i n g "> poor </ wordText >

< i s O f C l a s s r d f : r e s o u r c e =" # J J " / >
< d e s c r i b e s E x p r e s s i o n r d f : r e s o u r c e =" #

u h j d f f u 8 b r s 7 4 3 c b v 7 c 9 s d l x s f 2 c e r a 6 j e ">
</Word>
<Word r d f : I D ="SIM_NNP">

<wordText r d f : d a t a t y p e =" h t t p : / /www. w3c . o rg / 2 0 0 0 / 1 0 /
XMLSchema# s t r i n g ">SIM </ wordText >

< i s O f C l a s s r d f : r e s o u r c e =" #NNP" / >
</Word>
<Word r d f : I D =" a v e r a g e _ J J ">

<wordText r d f : d a t a t y p e =" h t t p : / /www. w3c . o rg / 2 0 0 0 / 1 0 /
XMLSchema# s t r i n g "> a v e r a g e </ wordText >

< i s O f C l a s s r d f : r e s o u r c e =" # J J " / >
< d e s c r i b e s E x p r e s s i o n r d f : r e s o u r c e =" #

d f 4 d f g f 8 9 8 b r s 7 4 3 c 5 7 c 9 s d 8 f 2 c 6 8 a 6 7 8 f ">
</Word>
<Word r d f : I D =" a l t h o u g h _ I N ">

50

CHAPTER 6. THE PROTOTYPE

<wordText r d f : d a t a t y p e =" h t t p : / /www. w3c . o rg / 2 0 0 0 / 1 0 /
XMLSchema# s t r i n g "> a l t h o u g h </ wordText >

< i s O f C l a s s r d f : r e s o u r c e =" #IN " / >
</Word>
<Word r d f : I D =" phone_NN ">

<wordText r d f : d a t a t y p e =" h t t p : / /www. w3c . o rg / 2 0 0 0 / 1 0 /
XMLSchema# s t r i n g ">phone </ wordText >

< i s O f C l a s s r d f : r e s o u r c e =" #NN" / >
</Word>
<Word r d f : I D =" fa i l ing_VBG ">

<wordText r d f : d a t a t y p e =" h t t p : / /www. w3c . o rg / 2 0 0 0 / 1 0 /
XMLSchema# s t r i n g "> f a i l i n g </ wordText >

< i s O f C l a s s r d f : r e s o u r c e =" #VBG" / >
</Word>
<Word r d f : I D =" proved_VBD ">

<wordText r d f : d a t a t y p e =" h t t p : / /www. w3c . o rg / 2 0 0 0 / 1 0 /
XMLSchema# s t r i n g "> proved </ wordText >

< i s O f C l a s s r d f : r e s o u r c e =" #VBD" / >
</Word>
<Word r d f : I D =" s t r eng th_NN ">

<wordText r d f : d a t a t y p e =" h t t p : / /www. w3c . o rg / 2 0 0 0 / 1 0 /
XMLSchema# s t r i n g "> s t r e n g t h </ wordText >

< i s O f C l a s s r d f : r e s o u r c e =" #NN" / >
</Word>
<Word r d f : I D ="The_DT">

<wordText r d f : d a t a t y p e =" h t t p : / /www. w3c . o rg / 2 0 0 0 / 1 0 /
XMLSchema# s t r i n g ">The </ wordText >

< i s O f C l a s s r d f : r e s o u r c e =" #DT" / >
</Word>
<Word r d f : I D ="was_VBD">

<wordText r d f : d a t a t y p e =" h t t p : / /www. w3c . o rg / 2 0 0 0 / 1 0 /
XMLSchema# s t r i n g ">was </ wordText >

< i s O f C l a s s r d f : r e s o u r c e =" #VBD" / >
</Word>
<Word r d f : I D =" Reception_NN ">

<wordText r d f : d a t a t y p e =" h t t p : / /www. w3c . o rg / 2 0 0 0 / 1 0 /
XMLSchema# s t r i n g "> R e c e p t i o n </ wordText >

< i s O f C l a s s r d f : r e s o u r c e =" #NN" / >
</Word>
<Word r d f : I D =" the_DT ">

<wordText r d f : d a t a t y p e =" h t t p : / /www. w3c . o rg / 2 0 0 0 / 1 0 /
XMLSchema# s t r i n g "> t h e </ wordText >

< i s O f C l a s s r d f : r e s o u r c e =" #DT" / >
</Word>
<Word r d f : I D =" of_IN ">

<wordText r d f : d a t a t y p e =" h t t p : / /www. w3c . o rg / 2 0 0 0 / 1 0 /
XMLSchema# s t r i n g "> of </ wordText >

51

CHAPTER 6. THE PROTOTYPE

< i s O f C l a s s r d f : r e s o u r c e =" #IN " / >
</Word>
<Word r d f : I D =" areas_NNS ">

<wordText r d f : d a t a t y p e =" h t t p : / /www. w3c . o rg / 2 0 0 0 / 1 0 /
XMLSchema# s t r i n g "> a r e a s </ wordText >

< i s O f C l a s s r d f : r e s o u r c e =" #NNS" / >
</Word>
<Word r d f : I D =" s igna l_NN ">

<wordText r d f : d a t a t y p e =" h t t p : / /www. w3c . o rg / 2 0 0 0 / 1 0 /
XMLSchema# s t r i n g "> s i g n a l </ wordText >

< i s O f C l a s s r d f : r e s o u r c e =" #NN" / >
</Word>
<Word r d f : I D =" weaker_JJR ">

<wordText r d f : d a t a t y p e =" h t t p : / /www. w3c . o rg / 2 0 0 0 / 1 0 /
XMLSchema# s t r i n g ">weaker </ wordText >

< i s O f C l a s s r d f : r e s o u r c e =" # JJR " / >
</Word>
<Word r d f : I D =" Voice_NNP">

<wordText r d f : d a t a t y p e =" h t t p : / /www. w3c . o rg / 2 0 0 0 / 1 0 /
XMLSchema# s t r i n g ">Voice </ wordText >

< i s O f C l a s s r d f : r e s o u r c e =" #NNP" / >
</Word>
<Word r d f : I D =" to_TO ">

<wordText r d f : d a t a t y p e =" h t t p : / /www. w3c . o rg / 2 0 0 0 / 1 0 /
XMLSchema# s t r i n g "> t o </ wordText >

< i s O f C l a s s r d f : r e s o u r c e =" #TO" / >
</Word>
<Word r d f : I D =" card_NN ">

<wordText r d f : d a t a t y p e =" h t t p : / /www. w3c . o rg / 2 0 0 0 / 1 0 /
XMLSchema# s t r i n g "> c a r d </ wordText >

< i s O f C l a s s r d f : r e s o u r c e =" #NN" / >
</Word>
<Word r d f : I D =" r e g i s t e r _ V B ">

<wordText r d f : d a t a t y p e =" h t t p : / /www. w3c . o rg / 2 0 0 0 / 1 0 /
XMLSchema# s t r i n g "> r e g i s t e r </ wordText >

< i s O f C l a s s r d f : r e s o u r c e =" #VB" / >
</Word>
<Word r d f : I D =" network_NN ">

<wordText r d f : d a t a t y p e =" h t t p : / /www. w3c . o rg / 2 0 0 0 / 1 0 /
XMLSchema# s t r i n g "> network </ wordText >

< i s O f C l a s s r d f : r e s o u r c e =" #NN" / >
</Word>
<Word r d f : I D =" coverage_NN ">

<wordText r d f : d a t a t y p e =" h t t p : / /www. w3c . o rg / 2 0 0 0 / 1 0 /
XMLSchema# s t r i n g "> c o v e r a g e </ wordText >

< i s O f C l a s s r d f : r e s o u r c e =" #NN" / >
</Word>

52

CHAPTER 6. THE PROTOTYPE

<Word r d f : I D =" qua l i t y_NN ">
<wordText r d f : d a t a t y p e =" h t t p : / /www. w3c . o rg / 2 0 0 0 / 1 0 /

XMLSchema# s t r i n g "> q u a l i t y </ wordText >
< i s O f C l a s s r d f : r e s o u r c e =" #NN" / >

</Word>
<Word r d f : I D =" in_IN ">

<wordText r d f : d a t a t y p e =" h t t p : / /www. w3c . o rg / 2 0 0 0 / 1 0 /
XMLSchema# s t r i n g "> i n </ wordText >

< i s O f C l a s s r d f : r e s o u r c e =" #IN " / >
</Word>
<Word r d f : I D =" o c c a s i o n a l l y _ R B ">

<wordText r d f : d a t a t y p e =" h t t p : / /www. w3c . o rg / 2 0 0 0 / 1 0 /
XMLSchema# s t r i n g "> o c c a s i o n a l l y </ wordText >

< i s O f C l a s s r d f : r e s o u r c e =" #RB" / >
</Word>
< S e n t e n c e r d f : I D =" c 9 6 d e b 4 3 9 7 a 0 e a 4 a e 6 f c 2 4 f 4 0 1 b c f c f 7 ">

<sentenceMadeUpOfWord r d f : r e s o u r c e =" # Reception_NN " / >
<sentenceMadeUpOfWord r d f : r e s o u r c e =" #proved_VBD " / >
<sentenceMadeUpOfWord r d f : r e s o u r c e =" # a c c e p t a b l e _ J J " / >
<sentenceMadeUpOfWord r d f : r e s o u r c e =" # a l t h o u g h _ I N " / >
<sentenceMadeUpOfWord r d f : r e s o u r c e =" # s igna l_NN " / >
<sentenceMadeUpOfWord r d f : r e s o u r c e =" # s t r eng th_NN " / >
<sentenceMadeUpOfWord r d f : r e s o u r c e =" #was_VBD" / >
<sentenceMadeUpOfWord r d f : r e s o u r c e =" # p o o r _ J J " / >
<sentenceMadeUpOfWord r d f : r e s o u r c e =" # in_IN " / >
<sentenceMadeUpOfWord r d f : r e s o u r c e =" # areas_NNS " / >
<sentenceMadeUpOfWord r d f : r e s o u r c e =" # of_IN " / >
<sentenceMadeUpOfWord r d f : r e s o u r c e =" # weaker_JJR " / >
<sentenceMadeUpOfWord r d f : r e s o u r c e =" #network_NN " / >
<sentenceMadeUpOfWord r d f : r e s o u r c e =" # coverage_NN " / >

</ Sen tence >
< S e n t e n c e r d f : I D =" e854a f f8 f55b0 16 05 8 e7 ee c4 69 74 7 29 d ">

<sentenceMadeUpOfWord r d f : r e s o u r c e =" #The_DT" / >
<sentenceMadeUpOfWord r d f : r e s o u r c e =" #phone_NN " / >
<sentenceMadeUpOfWord r d f : r e s o u r c e =" #was_VBD" / >
<sentenceMadeUpOfWord r d f : r e s o u r c e =" # o c c a s i o n a l l y _ R B " / >
<sentenceMadeUpOfWord r d f : r e s o u r c e =" # fa i l ing_VBG " / >
<sentenceMadeUpOfWord r d f : r e s o u r c e =" # to_TO " / >
<sentenceMadeUpOfWord r d f : r e s o u r c e =" # r e g i s t e r _ V B " / >
<sentenceMadeUpOfWord r d f : r e s o u r c e =" # the_DT " / >
<sentenceMadeUpOfWord r d f : r e s o u r c e =" #SIM_NNP" / >
<sentenceMadeUpOfWord r d f : r e s o u r c e =" #card_NN " / >

</ Sen tence >
< S e n t e n c e r d f : I D =" e63ede55066a9041b086fcd30cd34fb6 ">

<sentenceMadeUpOfWord r d f : r e s o u r c e =" #Voice_NNP" / >
<sentenceMadeUpOfWord r d f : r e s o u r c e =" # qua l i t y_NN " / >
<sentenceMadeUpOfWord r d f : r e s o u r c e =" #was_VBD" / >

53

CHAPTER 6. THE PROTOTYPE

<sentenceMadeUpOfWord r d f : r e s o u r c e =" # a v e r a g e _ J J " / >
</ Sen tence >
< Text r d f : I D =" 4 f 8 9 8 b 7 4 3 c 5 7 c 9 8 f 2 c 6 8 a 6 7 8 f 4 3 e d f c 9 ">

<madeUpOfSentence r d f : r e s o u r c e =" #
c 9 6 d e b 4 3 9 7 a 0 e a 4 a e 6 f c 2 4 f 4 0 1 b c f c f 7 ">

<madeUpOfSentence r d f : r e s o u r c e =" #
e854a f f8 f55b0 16 05 8e 7 eec 4 69 74 72 9 d ">

<madeUpOfSentence r d f : r e s o u r c e =" #
e63ede55066a9041b086fcd30cd34fb6 ">

</ Text >
< E x p r e s s i o n r d f : I D =" d f 4 d f g f 8 9 8 b r s 7 4 3 c 5 7 c 9 s d 8 f 2 c 6 8 a 6 7 8 f ">

<expressionMadeUpOfWord r d f : r e s o u r c e =" # s igna l_NN " / >
<expressionMadeUpOfWord r d f : r e s o u r c e =" # s t r eng th_NN " / >

</ E x p r e s s i o n >
< E x p r e s s i o n r d f : I D =" u h j d f f u 8 b r s 7 4 3 c b v 7 c 9 s d l x s f 2 c e r a 6 j e ">

<expressionMadeUpOfWord r d f : r e s o u r c e =" #Voice_NN " / >
<expressionMadeUpOfWord r d f : r e s o u r c e =" # qua l i t y_NN " / >

</ E x p r e s s i o n >

6.4 The Description Temperature Ontology

The Description Temperature Ontology defines the terms identified in section 4.6. It
also contains the Temperature instances from figure 4.8. These instances are related to
descriptive terms in the Descriptions Ontology to set their temperature.

6.4.1 Terminological Component

The Description Temperature Ontology defines the Temperature and the hasTempera-
ture relation. In order to relate a temperature to a descriptive term, the concept Tem-
peratedDescription is also defined. The relation temperates relates a DescriptiveTerm
and a TemperatedDescription. The following listings shows how this is implemented:

Listing 6.11: The Temperature Concept and the Temperature instances.
< o w l : C l a s s r d f : I D =" Tempera tu re " / >

< Tempera tu re r d f : I D =" VeryCold " / >
< Tempera tu re r d f : I D =" Cold " / >
< Tempera tu re r d f : I D =" SomewhatCold " / >
< Tempera tu re r d f : I D =" N e u t r a l " / >
< Tempera tu re r d f : I D =" SomewhatWarm " / >
< Tempera tu re r d f : I D ="Warm" / >
< Tempera tu re r d f : I D =" VeryVarm " / >

54

CHAPTER 6. THE PROTOTYPE

Listing 6.12: The TemperatedDescription Concept.

< o w l : C l a s s r d f : I D =" T e m p e r a t e d D e s c r i p t i o n " / >
< o w l : O b j e c t P r o p e r t y r d f : I D =" t e m p e r a t e s ">

< r d f s : d o m a i n r d f : r e s o u r c e =" # T e m p e r a t e d D e s c r i p t i o n " / >
< r d f s : r a n g e r d f : r e s o u r c e =" # D e s c r i p t i v e T e r m " / >

</ o w l : O b j e c t P r o p t e r y >
< o w l : O b j e c t P r o p e r t y r d f : I D =" h a s T e m p e r a t u r e ">

< r d f s : d o m a i n r d f : r e s o u r c e =" # T e m p e r a t e d D e s c r i p t i o n " / >
< r d f s : r a n g e r d f : r e s o u r c e =" # Tempera tu re " / >

</ o w l : O b j e c t P r o p e r t y >

6.4.2 Assertional Component

The asseritonal component of the Description Temperature Ontology relates a Tem-
perature instance to a DescriptiveTerm through the TemperatedTerm. The following
listing (listing 6.13) assigns temperatures to the descriptive terms defined in listing 6.9.

Listing 6.13: The assigned temperatures to the descriptive terms in listing 6.9.

< T e m p e r a t e d D e s c r i p t i o n r d f : I D =" t e m p _ d e s c _ a c c e p t a b l e ">
< t e m p e r a t e s r d f : r e s o u r c e =" # d e s c _ a c c e p t a b l e " / >
< h a s T e m p e r a t u r e r d f : r e s o u r c e =" #SomewhatWarm " / >

</ T e m p e r a t e d D e s c r i p t i o n >
< T e m p e r a t e d D e s c r i p t i o n r d f : I D =" temp_desc_poor ">

< t e m p e r a t e s r d f : r e s o u r c e =" # d e s c _ a c c e p t a b l e " / >
< h a s T e m p e r a t u r e r d f : r e s o u r c e =" # Cold " / >

</ T e m p e r a t e d D e s c r i p t i o n >
< T e m p e r a t e d D e s c r i p t i o n r d f : I D =" t e m p _ d e s c _ a v e r a g e ">

< t e m p e r a t e s r d f : r e s o u r c e =" # d e s c _ a c c e p t a b l e " / >
< h a s T e m p e r a t u r e r d f : r e s o u r c e =" # SomewhatCold " / >

</ T e m p e r a t e d D e s c r i p t i o n >
< T e m p e r a t e d D e s c r i p t i o n r d f : I D ="

t e m p _ d e s c _ c f 4 6 3 3 f 6 5 0 5 8 a 0 f e 5 f 3 2 3 c 7 5 e d d 8 e 2 e 5 ">
< t e m p e r a t e s r d f : r e s o u r c e =" #

d e s c _ c f 4 6 3 3 f 6 5 0 5 8 a 0 f e 5 f 3 2 3 c 7 5 e d d 8 e 2 e 5 " / >
< h a s T e m p e r a t u r e r d f : r e s o u r c e =" # SomewhatCold " / >

</ T e m p e r a t e d D e s c r i p t i o n >

See Appendix C.3 for the entire OWL implementation of the Description Temperature
Ontology.

55

CHAPTER 6. THE PROTOTYPE

6.5 The Reasoner

The Reasoner loads a Text instance from the Text Ontology, locates all expressions
describing the desired term and checks the temperatures of these expressions. The
coldest temperature describing the object in question is returned as the final conclusion.

Note 6.2. No normalization of the temperatures of the descriptive expressions is per-
formed. This is due to the ”warning-flag“ perspective of the implementation of the
Reasoner; ”Let me know if anybody is discontent with . . . “.

The Reasoner is wrapped in a Python (Jython) application, the main functionality of
which being accessed through the Reasoner class. The UML diagram in figure 6.5
shows the design:

Descriptions

Reasoner

Text
DescriptionTemperatures

TextParser

DescriptionTemperaturesParser

<<from sgmllib>>
SGMLParser

Figure 6.5: UML-diagram of the Reasoner component.

The text OWL representation is wrapped in the Text class and allows extraction of
expressions that describe a given term. All the descriptions and their temperatures are
accessed through the DescriptionTemperatures class. Both the Text and Description-
Temperatures classes use a Python sgmllib.SGMLParser to process the OWL ontolo-
gies.

6.6 Limitations

There are several aspects about the prototype that limits its usage. Citing from the
thesis definition (section 1.3), A prototype that demonstrates how it works will also be

56

CHAPTER 6. THE PROTOTYPE

developed, nutshells these limitations; natural language processing is a tricky business.
It was never the intention, nor would it have been a realistic one, to be able to process
all constructs of the English language. The same goes for establishing relations be-
tween descriptions and objects. To be able to do this in a general and fail proof way
would require research beyond the scope of the thesis definition. The intention with the
prototype was to prove that the proposed solution to identify how objects are spoken
of in natural language texts, is one way to approach the problem. However, the main
aspects of the prototype that compromises the degree of correctness of the conclusions
are listed below:

� Sentence Boundary - The sentence boundary disambiguation algorithm is based
on an abbreviation list. Abbreviations absent from this list may result in in-
correctly placed sentence breaks. This may in turn compromise the entire text
analysis.

� Tagging - None of the POS taggers tested were 100% accurate. Inaccuracy in
the part of speech tagging has consequences for the grammatical analysis and
the OWL representation of the text.

� Parsing - The sentence parsing module requires every aspect of the grammars
in the language analyzed defined. Undefined constructs may result in the parser
failing to assign phrases to the different parts of the sentence all together. If this
happens, the program will break.

� Performance - In the prototype, the performance has been given a lower priority,
hence the speed of the system is low. The weakest link of performance is the text
parser, and it will continue to get slower as the amount of rules increases. The
amount of rules will have to increase through time to map to the entire English
grammar.

� Sentence Parts - A sentence may contain several smaller independent or depen-
dent parts.

– A sentence could be made from a subordinate clause, before the main
clause.

Example 6.6.1. One problem we faced was the phone occasionally failed
to register the SIM card.

– A sentence may contain a reference to something that has been said.

Example 6.6.2. The production manager of Ericsson said:”The P800 will
set a new sales record“.

The different parts are usually divided by comma followed by a conjunction.
Such constructs are not supported in the set of grammatical rules of the proto-
type.

57

CHAPTER 6. THE PROTOTYPE

� Representing Relations - The set of rules used to identify what makes a phrase
describe another is limited, and is missing a number grammatical constructs.

� Ontologies - The ontologies developed to represent descriptions and their tem-
peratures are in no way complete. Developing such ontologies is a continual and
time consuming process spanning several years.

58

Chapter 7

Discussion

Before being able to implement the proposed method, several implementation issued
had to be resolved. The project started with a thorough literature study on both com-
putational natural language processing, and ontology technologies, both of which we
had scarce or no previous knowledge. Several different approaches to sentence disam-
biguation, part of speech tagging, grammatical analysis and ontology representation
were covered. This was necessary to be able to make sensible identifications of the
tools required to complete the task at hand.

The purpose of the project was to identify how ontologies combined with natural lan-
guage processing could aid an automated agent in identifying how objects are spoken
of in texts.

We have divided the topics of the discussion into the following groups:

� The Natural Language Processing

� The Representation of Text

� The Description Temperatures

� The Prototype

� Further Work

7.1 The Natural Language Processing

After having read up on the basics of natural language processing, we had to locate
and decide what tools to use to obtain our goals. As mentioned in the introduction,
the criterion was that the tools were freely available, preferably under a GPL license.
There proved to be a number of these available with different capabilities (the ones we
tested, and a thorough description of them can be found in chapter A).

59

CHAPTER 7. DISCUSSION

We were aware of two toolkits for text processing from earlier; the Python Natural
Language Toolkit (NLTK) and the Grok toolkit, but we had no experience with any
of them. The Grok-toolkit (for Java) was too complicated to get control of quickly,
while the NLTK-toolkit, providing the same or adequate functionality, was much easier
to use. We also preferred Python as our prototype implementation language, so the
selection process was easy. An other reason for choosing NLTK, was that Grok had its
release of version 0.7, the first final release, finished at 24th of February this winter.

Decision about choosing a part of speech tagger was a bit harder. Since we used Python
as our language of implementation, we had available taggers written in Java as well,
through Jython. We performed a test of four different taggers (the results of this test
can be found in Appendix A), ending up with the most accurate one, the Brill based
Monty Tagger, disregarding performance issues.

Throughout the development process we have had accuracy as a number one priority,
considering speed only in cases where the tool spent extreme amounts of time (this
did not happen with any of the tools in the test). Having speed as a secondary priority,
however, has had its consequences. Running the Monty Tagger and NLTK through
Jython is very inefficient. Jython is implemented in Java, and is therefore slower than
the original C implementation of Python. The Monty Tagger is originally a Java imple-
mentation and is hence only available to us through Jython (this is what stuck us to the
Jython platform, as we wanted to use NLTK). NLTK tree generation also runs slower
on the Jython platform than on the C implementation. The following table presents per-
formance comparisons of running the different toolkits on the Java, Jython and Python
platforms, where available, using the text from figure 4.1 (initialization of the toolkit
in question is included the timing). As can be seen from the table, the performance of

Platform /
Toolkit

Java Jython Python

Monty Tag-
ger

0.51 0.53 N/A

NLTK
Grammars

N/A 213 s 88 s

Table 7.1: Performance in seconds.

Jython is considerably lower than that of Java and Python. Hence, utilizing Jython to
combine the desired tools in a seamless manner, compromises performance compared
with that feasible when running the tools in their optimal environments.

Another thing affecting the execution speed, is the number of rules defined when gen-
erating the grammar trees. The grammar defined in our thesis is only a subset of the
grammar of the English language, but still the generation of grammar trees is the most
time consuming of the processes the texts go through. Platforms and other implemen-
tation specifics aside, grammatical analysis is a time consuming process, because the

60

CHAPTER 7. DISCUSSION

generation of grammar trees is recursive - a verb phrase can contain a verb phrase and
a noun phrase, for instance. It is not realistic to create specific grammatical rules for
every possible construct of a sentence, compromising performance.

7.2 The Representation of Text

The representation of the ontologies we developed during this project is done with
the Web Ontology Language specified by the World Wide Web Consortium. Having
decided to do this already before the project started (because we wanted to use a format
that was a standard), this also had its negative consequences. OWL is still a work in
progress. Not lacking documentation, though, the OWL tool box is still missing the
most useful libraries. As OWL is based on the more established DAML+OIL, and
DAML+OIL would probably be adequate for our purposes, it might be argued that
we should have chosen this ontology mark up language instead. However, writing
the OWL parsers based on the Python sgmllib.SGMLParser, was not of the most time
consuming tasks, and this way we learned the OWL language better. We still feel
confident that the selection was the right one.

Establishing the describes relation was hard to make work in all cases. The rules for
doing this are mostly based on heuristics from discussion groups and own ideas. This
should probably be developed into a bundle of formal rules.

7.3 The Description Temperatures

”Temperating“ descriptive terms circumvents the Comparative Expression Ambiguity
Problem [27] because assigning temperatures to a descriptive term is not the same as
assigning meaning. Saying that some object � is better than some other object � ,
and temperating better than as Warm, does not say anything about what it means to
be better, only that being better is probably positive. This way, the temperature of
a description is an implied property of the description, and could hence be deduced
from an ontology where terms had assigned meanings. Having this kind of ontologies
available, would automate the process of building the ontologies required to make our
prototype functional.

7.4 The Prototype

As implied in the introduction and thesis definition, the prototype is of the Proof-of-
Concept kind. We have shown that it is possible to implement the proposed approach,
and in the process of developing both the methods and prototype, we have come across

61

CHAPTER 7. DISCUSSION

several shortcomings that we feel incomplete our work and are subject for future en-
hancements. These are presented in section 7.5.

As mentioned in section 6.6, only a subset of the English grammar has been included in
the prototype. Also, the ontologies we have developed contain far too few descriptive
terms to make the prototype useful. Expanding the grammars and developing complete
ontologies can be considered subjects for separate projects themselves, as it involves
a lot of work. Especially assigning temperatures to terms; this will be a continual
process.

Making domain specific ontologies available to the reasoning agent would make its
range of application greater. The ability to identify how ”things“ are related in a spe-
cific field, allows the agent not only to find the temperatures of descriptions of a spe-
cific term, but also of the properties of the term in question. The lack of availability
of such ontologies, especially in scarcely propagated languages like Scandinavian lan-
guages, makes us believe that the effects of the anticipated revolution of the Semantic
Web is still a few years into the future.

7.5 Results and Further Work

The elements that are subject to further work are basically the shortcomings with the
method and prototype. We list here the most important ones:

� The Grammatical Rules - The set of grammatical rules used to parse the sen-
tences has to map better to those of the language used for parsing. Without a
close-to-complete grammar, it is harder to make sense of the text.

� Definition of Relations - The rules used to establish relations between words
has to be expanded to include the refersToTheSameAs in a more robust manner,
and across sentences. Omitting this step, will make the agent ”miss“ a lot of
descriptions of an object when it is referred to using, for instance, a personal
pronoun.

� The Ontologies - The Descriptions Ontology and the Description Temperatures
Ontology has to be expanded to include more terms. This could be done manu-
ally, semi-automatically (developing some descriptive term identifier algorithm),
or automatically (having meaning-ontologies available (7.3))

� Interconnect Domain Ontologies - Interconnecting domain ontologies is prob-
ably the enhancement that will make the Reasoner take the biggest leap in func-
tionality. However, the lack of these publicly available in most domains of en-
deavor, makes the enhancement also the most expensive one. Tailoring ontolo-
gies for a specific domain is a job for experts, and is therefore a costly process
in regards of both time and money.

62

CHAPTER 7. DISCUSSION

� Processing - The prototype runs on a platform proven to be inefficient regarding
processing time. A reimplementation in a lower level language is recommended
to be able to acquire results within reasonable times.

Adressing the listed issues, will, in our opinion, result in an agent that will be able to
identify how objects are spoken of in a robust and accurate manner.

63

Chapter 8

Conclusion

We have developed a prototype system that uses ontologies to identify descriptive
terms and their temperatures. In this process, we applied natural language process-
ing to identify intersentence relations, and ontologies to make sense of these relations.

When we first sat down to discuss the thesis definition, natural language processing
was relatively unfamiliar to us. Setting the final periods on the report, we have come
to agree with the vast majority of the NLP community; natural language processing is
hard. However, we feel that we have provided a solution to the problem defined in the
thesis definition, in the degree possible, with the time and resources available.

In the course of the project period, we have seen that making a computer understand
text involves a lot of work. For a computer to understand a word, it is not enough to
supply a textual explanation of the word, because the explanation would not make any
sense. The task is to simulate the cognitive process humans go through when we read,
and formalize this into algorithms. Quite a few tools that take one or two steps in this
direction are available, but we have seen that there still is a long way to go.

The proposed approach and the prototype leave several subjects open for further work.
Some of these are themes for entire projects of their own. Though the prototype we
have developed is working, we still think that implementing most of the proposed
enhancements is required to have a really useful agent able to discover how objects are
spoken of in natural language texts.

64

Bibliography

[1] D. J. Walker, D. E. Clements, M. Darwin, and J. W. Amtrup, “A Comparison of Paradigms
for Improving MT Quality,” in Machine Translation Summit Conference, 9 2001. [Online].
Available: http://www.eamt.org/summitVIII/papers/walker.pdf

[2] J. Reynar and A. Ratnaparkhi, “A maximum entropy approach to identifying sentence
boundaries,” in Proceedings of the Fifth Conference on Applied Natural Language Processing,
1997, pp. 16–19. [Online]. Available: citeseer.nj.nec.com/reynar97maximum.html

[3] A. Ratnaparkhi, “A Maximum Entropy Model for Part-Of-Speech Tagging,” in Conference
on Empirical Methods in Natural Language Processing, 1996. [Online]. Available: http:
//acl.ldc.upenn.edu/W/W96/W96-0213.pdf

[4] B. Merialdo, “Tagging English Text with a Probabilistic Model,” in Computational Linguistics,
Volume 20, Number 2, 6 1994. [Online]. Available: http://acl.ldc.upenn.edu/J/J94/J94-2001.pdf

[5] D. Jurafsky and J. H. Martin, SPEECH and LANGUAGE PROCESSING. Prentice Hall, 2000,
vol. 1, an introduction to Natural Language Processing, Computational Linguistics, and Speech
Recognition.

[6] Viterbi algorithm. [Online]. Available: http://www.math.tau.ac.il/~rshamir/algmb/00/scribe00/
html/lec06/node4.h%tml

[7] B. Santorini, “Part-of-Speech Tagging Guidelines for the Penn Treebank project,” University
of Pennsylvania, Dept. of Computer and Information Science, 6 1990. [Online]. Available:
ftp://ftp.cis.upenn.edu/pub/treebank/doc/tagguide.ps.gz

[8] T. R. Gruber, “A Translation Approach to Portable Ontology Specifications,” Knowledge
Aquisition, vol. 5, pp. 199–220, 3 1993. [Online]. Available: http://ksl-web.stanford.edu/KSL_
Abstracts/KSL-92-71.html

[9] C. technical staff, “The cyc knowledge base,” Cycorp, August 1997. [Online]. Available:
http://www.cyc.com/cyc-2-1/cover.html

[10] Laboratory for applied ontology home page. [Online]. Available: http://ontology.ip.rm.cnr.it/

[11] M. Denny, “Ontology building: A survey of editing tools,” XML.com, 11 2002. [Online].
Available: http://www.xml.com/pub/a/2002/11/06/ontologies.html

[12] S. Holzer, Inside XML. New Riders Publishing, November 2000.

[13] W3c home page. [Online]. Available: http://www.w3.org/

[14] E. van der Vlist, XML Schema. O’Reilly, June 2002.

[15] C. Menzel, “Common Logic Standard,” in Santa Fe 2003 Metadata Forum Symposium on
Ontologies, 2003. [Online]. Available: http://cl.tamu.edu/CL-ISO.pdf

[16] Unified Modeling Language (UML), Object Management Group Spec., Rev. 1.5, March 2003,
formal/03-03-01. [Online]. Available: http://www.omg.org/docs/formal/03-03-01.pdf

65

BIBLIOGRAPHY

[17] P. F. Patel-Schneider, P. Hayes, and I. Horrocks, OWL Web Ontology Language Semantics
and Abstract Syntax, W3C Working Draft, March 2003. [Online]. Available: http:
//www.w3.org/TR/owl-absyn/

[18] A. Farquhar, R. Fikes, and J. Rice, “The ontolingua server: A tool for collaborative ontology
construction,” Knowledge Systems Laboratory Stanford University, 1996. [Online]. Available:
http://www.ksl.stanford.edu/software/ontolingua/

[19] R. MacGregor, “Retrospective on loom,” USC ISI, August 1999. [Online]. Available:
http://www.isi.edu/isd/LOOM/papers/macgregor/Loom_Retrospective.html

[20] Resource Description Framework (RDF) Model and Syntax Specification, W3C Spec.,
February 1999, rEC-rdf-syntax-19990222. [Online]. Available: http://www.w3.org/TR/1999/
REC-rdf-syntax-19990222/

[21] I. Horrocks, F. van Harmelen, and P. P.-S. et al., DARPA Agent Markup Language (DAML+OIL),
DARPA Spec., Rev. 1.15, March 2001. [Online]. Available: http://www.daml.org/2001/03/daml+
oil-index.html

[22] Wordnet home page. [Online]. Available: http://www.cogsci.princeton.edu/~wn/

[23] M. K. Smith, C. Welty, and D. McGuinness, OWL Web Ontology Language Guide, W3C Working
Draft, March 2003. [Online]. Available: http://www.w3.org/TR/2003/WD-owl-guide-20030331/

[24] Mxpost. [Online]. Available: http://www.cis.upenn.edu/~adwait/statnlp.html

[25] The monty tagger home page. [Online]. Available: http://web.media.mit.edu/~hugo/research/
montytagger.html

[26] Natural language toolkit. [Online]. Available: http://nltk.sourceforge.net/

[27] D. E. Olawsky, “The lexical semantics of comparative expressions in a multi-level
semantic processor,” in Proc. of the 27th ACL, 1989, pp. 169–176. [Online]. Available:
http://acl.ldc.upenn.edu/P/P89/P89-1021.pdf

[28] D. L. McGuinness, “Conceptual modeling for distributed ontology environments,” in
International Conference on Conceptual Structures, 2000, pp. 100–112. [Online]. Available:
citeseer.nj.nec.com/mcguinness00conceptual.html

[29] Grok homepage. [Online]. Available: http://grok.sourceforge.net/

[30] M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz, “Building a large annotated corpus
of English: the Penn Treebank,” University of Pennsylvania, 1992. [Online]. Available:
http://www.cis.upenn.edu/~treebank/home.html

[31] University of pennsylvania. [Online]. Available: http://www.upenn.edu/

[32] Mark Watsons Homepage. [Online]. Available: http://markwatson.com

[33] Eric Brills Homepage. [Online]. Available: http://research.microsoft.com/~brill/

[34] Hidden markov models. [Online]. Available: http://www.scs.leeds.ac.uk/scs-only/
teaching-materials/HiddenMarkovMode%ls/html_dev/main.html

66

Appendix A

Third Party Modules

A.1 Part of Speech (POS) Taggers

To decide which POS tagger to use for the implementation, two different toolkits and
tree different applications have been examined. Throughout the examination, testing
of these have been done to find the one the would deliver the most satisfying result,
satisfying result being accurate and swift tagging. To decide which product to choose,
these criterion have been used to evaluate; Precision and Speed.

There is a natural difference between the toolkits and the application. The toolkits
needs to be trained to gain the same accuracy as the applications. Therefore the toolkits
and the applications is described in different sections.

A.1.1 Grok

The Grok project is dedicated to developing a large collection of basic tools for use
in natural language software. A particularly important aspect of Grok is that its nat-
ural language modules should follow specific guidelines, or interfaces, so that they
may be freely exchanged with other modules of the same type. To accommodate this
goal, Grok provides a library of modules that implement the interfaces specified by
OpenNLP.

The most developed aspect of Grok is its preprocessing subsystem, which includes
components for doing tokenization, sentence detection, part-of-speech tagging and
name finding. The parsing system is currently being revamped to support new ex-
tensions to the Combinatory Categorical Grammar formalism which Grok uses [29].

Grok is based on XML. All rules and lexicons are described in large XML-files, which
means that large lists of words would have to be put into these files to have satisfac-
tory morphologies (see section 2.2). Listing A.1 shows the description of the word
astonished.

67

APPENDIX A. THIRD PARTY MODULES

Listing A.1: Example of a morphological description
< e n t r y word=" a s t o n i s h e d " stem =" a s t o n i s h " pos ="V" macros =" @past

" / >
<macro n=" @past ">

< l f >
< s a t o p nomvar="E">

<d m=" t e n s e ">
<prop n=" p a s t " / >

</d>
</ s a t o p >

</ l f >
</ macro >

How the XML-files are build is scarcely documented, but there are a couple of exam-
ples that shows the use of the toolkit. Listing A.2 shows how the NNP-tag is described
in Grok. It is complex and unintuitive. Still, Grok contains most of the functionality
needed to reach the goals in the text-processing process.

Listing A.2: The description of the NNP-tag in Grok
< f a m i l y pos ="NNP" name="Name">

< e n t r y name=" Pr imary ">
< a t o m c a t t y p e =" np ">

< f s i d =" 2 ">
< f e a t a t t r ="num">

< f e a t v a r name="NUM" / >
</ f e a t >
< f e a t v a l ="+" a t t r =" 3 rd " / >
< f e a t a t t r =" i n d e x ">

< l f >
<nomvar name="X" / >

</ l f >
</ f e a t >

</ f s >
< l f >

< s a t o p nomvar="X">
< prop name=" [� DEFAULT �] " / >

</ s a t o p >
</ l f >

</ a tomcat >
</ e n t r y >
< e n t r y name=" F r o n t e d ">

< complexca t >
< a t o m c a t t y p e =" s ">

< f s i n h e r i t s F r o m =" 1 ">
< f e a t v a l =" f r o n t e d " a t t r =" marking " / >

</ f s >
</ a tomcat >

68

APPENDIX A. THIRD PARTY MODULES

< s l a s h mode=" ^ " d i r =" / " / >
< complexca t >

< a t o m c a t t y p e =" s ">
< f s i d =" 1 ">

< f e a t a t t r ="num">
< f e a t v a r name="NUM" / >

</ f e a t >
< f e a t a t t r =" 3 rd ">

< f e a t v a r name=" 3RD" / >
</ f e a t >
< f e a t v a l =" f i n " a t t r =" vform " / >
< f e a t v a l =" none " a t t r =" marking " / >
< f e a t v a l =" � " a t t r =" i n v " / >
< f e a t v a l =" � " a t t r =" q u a n t " / >
< f e a t a t t r =" i n d e x ">

< l f >
<nomvar name="E" / >

</ l f >
</ f e a t >

</ f s >
</ a tomcat >
< s l a s h d i r =" / " / >
< a t o m c a t t y p e =" np ">

< f s i d =" 2 ">
< f e a t a t t r ="num">

< f e a t v a r name="NUM" / >
</ f e a t >
< f e a t v a l ="+" a t t r =" 3 rd " / >
< f e a t a t t r =" i n d e x ">

< l f >
<nomvar name="X" / >

</ l f >
</ f e a t >

</ f s >
</ a tomcat >

</ complexca t >
< l f >

< s a t o p nomvar="X">
< prop name=" [� DEFAULT �] " / >

</ s a t o p >
</ l f >

</ complexca t >
</ e n t r y >

</ f ami ly >

69

APPENDIX A. THIRD PARTY MODULES

A.1.2 NLTK

The NL Toolkit (NLTK) is a Python package intended to simplify the task of program-
ming natural language processing systems [26].

NLTK was designed for a course at the University of Pennsylvania. There has also
been written a book, SPEECH and LANGUAGE PROCESSING [5], that uses NLTK
in examples and exercises.

NLTK offers different kinds of functionality; taggers, tokenizers and parsers to men-
tion some.

tagged_text_str = open(’corpus.txt’).read()
’John/NN saw/VB the/AT book/NN on/IN the/AT
table/NN ./END He/NN sighed/VB ./END’

tokens = TaggedTokenizer().tokenize(tagged_text_str)
[’John’/’NN’@[0w], ’saw’/’VB’@[1w], ’the’/’AT’@[2w],
’book’/’NN’@[3w], ’on’/’IN’@[4w], ’the’/’AT’@[5w],
’table’/’NN’@[6w], ’.’/’END’@[7w], ’He’/’NN’@[8w],
’sighed’/’VB’@[9w], ’.’/’END’@[10w]]

Figure A.1: Example of TaggedTokenizer

Tokenizers

NLTK has created a tokenizer called TaggedTokenizer. Figure A.1 shows how this
tokenizer tokenizes sentences. If the tagger encounters a word without a tag, it assigns
it the tag none. To train the taggers, the taggers has a method called train, which takes
sentences tokenized by the TaggedTokenizer as input.

Taggers

To get to best result from the tagging process, NLTK offers a tagger called Backoff-
Tagger. This is a tagger that is a combination of several other taggers. An example of
tagger-combinations is listed bellow:

� NN_CD_tagger, which tags the text with NN if its not a number

� UnigramTagger, which is a simple statistical tagger, that tags a word with the
most likely tag for that token’s type.

� NthorderTagger, which is tagger that has a number n as argument in its construc-
tor. In addition to considering the token’s type, it also considers the POS-tags of

70

APPENDIX A. THIRD PARTY MODULES

the n preceding tags. 0 equals UnigramTagger, 1 is called BigramTagger and 2
is called TrigramTagger.

All the taggers but the NN_CD_Tagger needs to be trained. When using them in the
BackoffTagger, the order they are put into the constructor is essential for the outcome.
The most accurate tagger should be first in line, and the more less accurate in their
respective orders.

A.1.3 Comparing Grok and NLTK

Grok offers almost the same functionality as NLTK, but it is more complicated to put
into use. The taggers in NLTK has a train-method used to train the taggers quickly,
and there are a lot of pretagged texts on the Internet, suitable for the training process.
This is absent from the Grok toolkit. Grok has XML-files which needs to contain all
possible words in all of its possible forms to achieve analysis accuracy. No interface
for creating these files is supplied, and training is a slow and tedious process.

A.1.4 The Mark Watson Tagger

Mark Watson is a consultant in Java development, artificial intelligence and natural
language processing. He has written several books on Java, C++, Linux etc, and he
has made a lot of products. One of these products is the POS tagger [32].

The tagger is a part of a categorizing package. It is made exclusively for English texts,
and is based on a lexicon of 100.000 English words. The method used in the tagging
process is a version of the TBL described in 2.4.3.

As will become apparent in the test described below, the tagger is inaccurate. The set
of rules in the tagger was originally inadequate, therefore a few more were added to
rid the worst errors.

A.1.5 Adwait Rathnaparkhi, MXPOST

Adwait Rathnaparkhi is working at Microsoft, and has created a tagger that he has
called MXPOST. This tagger is based on the maximum entropy method described
in 2.4.2. He has also created a program for sentence detection called MXTERMINA-
TOR [24].

The MXPOST-tagger is written in Java, and is freely available in binary form (no
source code). The interface towards the program is a main method, which takes an
InputStream as parameter. This input could be a file, which has to contain text divided
into sentences (one pr. line). The result of the tagging process is written to System.out.

71

APPENDIX A. THIRD PARTY MODULES

The sentence boundary program divides the text into proper sentences (some prepro-
cessing to the text is necessary to circumvent a couple of bugs in the binary).

It is possible to train the MXPOST program. MXPOST is pretrained with a lexicon of
over 100000 words, and all the words is placed in files that can be edited manually, or
edited by running the training module of the program.

A.1.6 The Brill Tagger

Eric Brill works at Microsoft Research, and has been a faculty member of the Depart-
ment of Computer Science at U.Penn. He has developed a recognized algorithm for
tagging of text [31].

Initial State

Learner

Unannotated Text

Annotated Text

Truth

Rules

Figure A.2: Transformation-based learning

The Brill tagger is based on the TBL method in 2.4.3. It uses a transformation-based
error-driven learning technique. Training of this tagger is fully automated. Figure A.2
describes the learning process.

This tagger has improved the lexicalization of unknown words. The original transformation-
based tagger had relatively low accuracy at this point. The traditional tagger tags all
unknown words as proper nouns if capitalized, and common noun otherwise [33].

The version of the Brill tagger we have tried is called the Monty Tagger. It is based on
a lexicon of about 100000 words, and is written in Jython.

72

APPENDIX A. THIRD PARTY MODULES

A.1.7 Comparing and Testing the Different Taggers

With the Monty Tagger, there was a test-program, that we have modified to test all the
taggers we have tried. The test corpus is approximately 23.000 words, and is collected
from the Penn Treebank Corpus [30].

The test was run on a Pentium III, with a 1000 MHz processor and 512 MB of RAM.
The result was as follows:

TAGGER SPEED CORRECTNESS

Watson 2 s Percent Agreement: 86.97%

NLTK 7 s Percent Agreement: 73.45%

MXPOST 19 s Percent Agreement: 92.88%

Monty 73 s Percent Agreement: 94.63%

Table A.1: The test results

0

20

40

60

80

100

P
er

ce
n
ta

g
e

co
rr

ec
t

W
at
so
n

N
LT

K

M
X
P
O
ST

M
on

ty
Ta

gg
er

Part of Speech Tagger

(a) The figure shows the accuracy in per-
cent for each of the tested taggers.

0

20

40

60

80

100

S
ec

o
n
d
s

W
at
so
n

N
LT

K

M
X
P
O
ST

M
on

ty
Ta

gg
er

Part of Speech Tagger

(b) The figure shows the time spent for
each tagger to tag 23.000 words.

Figure A.3: Bar graphs of the test results

As can be seen from the results, the Monty Tagger is the best looking at accuracy,

73

APPENDIX A. THIRD PARTY MODULES

while the Watson tagger is extremely fast. Considering graphs A.3(a) and A.3(b), we
must conclude the the MXPOST tagger gives us the most satisfying result, since it has
a relatively high score, and it is fast as well. However, since accuracy of the tagger is
more important than the time spent on tagging in our approach, the Monty tagger is
the tagger choosen in this thesis.

A.2 The Sentence Boundary Detection Tool

A.2.1 MXTERMINATOR

As mentioned in section A.1.5, Adwait Ratnaparkhi also has developed a tool that
divides text into sentences. The MXTERMINATOR is based on the maximum entropy
method descibed in section 2.4.2.

Even though this method would find most of the sentence boundaries, there are a few
disturbing elements in that has to be remove. These are abbreviations1. Abbreviations
often ends with a ., which may result in confusion to the program. Therefore the
MXTERMINATOR has a abbreviation list. This list is easy to edit, and to add new
abbreviations.

A.3 Parsers

A.3.1 The NLTK-Parser

The parsers in NLTK has recently changed from being divided into lexicons and rules,
to become a combination of both. It is called Context Free Grammars and is described
in section 2.5.2

The parser is trained from a set of grammatical rules. The more precise these rules are,
the fewer parse-trees is returned from the parser2. There is no to express all combina-
tions of words in a natural language. A analyzing system can not include all possible
rules. The solution is to use recursion. Example A.3.1 shows that a verb phrase may
consist of a verb and a sentence.

Example A.3.1. VP � Verb S

1Abbreviations like Mr. Mrs., U.S.
2The parser may return zero or more parse-trees

74

Appendix B

Penn Treebank Tagset

These are the most important tags used in the Penn Treebank Tagset.

Table B.1: The Penn Treebank Tagset

POS TAG DESCRIPTION EXAMPLE

CC coordinating conjunction and

CD cardinal number 1, third

DT determiner the

EX existential there there is

FW foreign word d’hoevre

IN preposition/subordinating conjunction in, of, like

JJ adjective green

JJR adjective, comparative greener

JJS adjective, superlative greenest

LS list marker 1)

MD modal could, will

NN noun, singular or mass table

NNS noun plural tables

NNP proper noun, singular John

NNPS proper noun, plural Vikings

PDT predeterminer both the boys

POS possessive ending friend’s

75

APPENDIX B. PENN TREEBANK TAGSET

Table B.1: (continued...)

POS TAG DESCRIPTION EXAMPLE

PRP personal pronoun I, he, it

PRP$ possessive pronoun my, his

RB adverb however, usually

RBR adverb, comparative better

RBS adverb, superlative best

RP particle give up

SYM Symbol AU (gold)

TO to to go, to him

UH interjection oh, please

VB verb, base form take

VBD verb, past tense took

VBG verb, gerund/present participle taking

VBN verb, past participle taken

VBP verb, sing. present, non-3d take

VBZ verb, 3rd person sing. present takes

WDT wh-determiner which

WP wh-pronoun who, what

WP$ possessive wh-pronoun whose

WRB wh-abverb where, when

76

Appendix C

Implemented Ontologies

C.1 The Text Ontology OWL Implementation

Listing C.1: The OWL implementation of the Text Ontology
<?xml v e r s i o n =" 1 . 0 " ?>
<!DOCTYPE owl [

<!ENTITY t e x t " . / t e x t # " >
<!ENTITY owl " h t t p : / /www. w3 . o rg / 2 0 0 2 / 0 7 / owl# " >
<!ENTITY xsd " h t t p : / /www. w3 . o rg / 2 0 0 0 / 1 0 / XMLSchema# " >
] >

<rdf:RDF
xmlns = " . / t e x t # "
x m l n s : t e x t = " . / t e x t # "
xmlns :owl = " h t t p : / / www. w3 . o rg / 2 0 0 2 / 0 7 / owl # "
x m l n s : r d f = " h t t p : / / www. w3 . o rg /1999/02/22 � r d f � syn tax � ns # "
x m l n s : r d f s = " h t t p : / / www. w3 . o rg / 2 0 0 0 / 0 1 / r d f � schema # "
x m l n s : x s d = " h t t p : / / www. w3 . o rg / 2 0 0 0 / 1 0 / XMLSchema# ">

< owl :On to lo g y r d f : a b o u t =" ">
< r d f s : l a b e l > Text Onto logy </ r d f s : l a b e l >

</ owl :On to logy >

< o w l : C l a s s r d f : I D ="Word " / >
< o w l : D a t a T y p e P r o p e r t y r d f : I D =" wordText ">

< r d f s : d o m a i n r d f : r e s o u r c e =" #Word " / >
< r d f s : r a n g e r d f : r e s o u r c e =" h t t p : / /www. w3c . o rg / 2 0 0 0 / 1 0 /

XMLSchema# s t r i n g " / >
</ o w l : D a t a T y p e P r o p e r t y >
< o w l : O b j e c t P r o p e r t y r d f : I D =" i s O f C l a s s ">

< r d f s : d o m a i n r d f : r e s o u r c e =" #Word " / >

77

APPENDIX C. IMPLEMENTED ONTOLOGIES

< r d f s : r a n g e r d f : r e s o u r c e =" # P a r t O f S p e e c h " / >
</ o w l : O b j e c t P r o p e r t y >
< o w l : O b j e c t P r o p e r t y r d f : I D =" wordDescr ibesWord ">

< r d f s : d o m a i n r d f : r e s o u r c e =" #Word " / >
< r d f s : r a n g e r d f : r e s o u r c e =" #Word " / >

</ o w l : O b j e c t P r o p e r t y >
< o w l : O b j e c t P r o p e r t y r d f : I D =" w o r d D e s c r i b e s E x p r e s s i o n ">

< r d f s : d o m a i n r d f : r e s o u r c e =" #Word " / >
< r d f s : r a n g e r d f : r e s o u r c e =" # E x p r e s s i o n " / >

</ o w l : O b j e c t P r o p e r t y >
< o w l : O b j e c t P r o p e r t y r d f : I D =" wordIsTheSameAsWord">

< r d f s : d o m a i n r d f : r e s o u r c e =" #Word " / >
< r d f s : r a n g e r d f : r e s o u r c e =" #Word " / >

</ o w l : O b j e c t P r o p e r t y >
< o w l : O b j e c t P r o p e r t y r d f : I D =" wordIsTheSameAsExpress ion ">

< r d f s : d o m a i n r d f : r e s o u r c e =" #Word " / >
< r d f s : r a n g e r d f : r e s o u r c e =" # E x p r e s s i o n " / >

</ o w l : O b j e c t P r o p e r t y >

< o w l : C l a s s r d f : I D =" S e n t e n c e " / >
< o w l : O b j e c t P r o p e r t y r d f : I D =" sentenceMadeUpOfWord ">

< r d f s : d o m a i n r d f : r e s o u r c e =" # S e n t e n c e " / >
< r d f s : r a n g e r d f : r e s o u r c e =" #Word " / >

</ o w l : O b j e c t P r o p e r t y >

< o w l : C l a s s r d f : I D =" P h r a s e " / >
< o w l : O b j e c t P r o p e r t y r d f : I D =" isOfType ">

< r d f s : d o m a i n r d f : r e s o u r c e =" # P h r a s e " / >
< r d f s : r a n g e r d f : r e s o u r c e =" # Pha ra seType " / >

</ o w l : O b j e c t P r o p e r t y >

< o w l : C l a s s r d f : I D =" Text " / >
< o w l : O b j e c t P r o p e r t y r d f : I D =" madeUpOfSentence ">

< r d f s : d o m a i n r d f : r e s o u r c e =" # Text " / >
< r d f s : r a n g e r d f : r e s o u r c e =" # S e n t e n c e " / >

</ o w l : O b j e c t P r o p e r t y >

< o w l : C l a s s r d f : I D =" E x p r e s s i o n " / >
< o w l : O b j e c t P r o p e r t y r d f : I D =" expressionMadeUpOfWord ">

< r d f s : d o m a i n r d f : r e s o u r c e =" # E x p r e s s i o n " / >
< r d f s : r a n g e r d f : r e s o u r c e =" #Word " / >

</ o w l : O b j e c t P r o p e r t y >
< o w l : O b j e c t P r o p e r t y r d f : I D =" e x p r e s s i o n I s A ">

78

APPENDIX C. IMPLEMENTED ONTOLOGIES

< r d f s : d o m a i n r d f : r e s o u r c e =" # E x p r e s s i o n " / >
< r d f s : r a n g e r d f : r e s o u r c e =" # P h r a s e " / >

</ o w l : O b j e c t P r o p e r t y >
< o w l : O b j e c t P r o p e r t y r d f : I D =" e x p r e s s i o n D e s c r i b e s W o r d ">

< r d f s : d o m a i n r d f : r e s o u r c e =" # E x p r e s s i o n " / >
< r d f s : r a n g e r d f : r e s o u r c e =" #Word " / >

</ o w l : O b j e c t P r o p e r t y >
< o w l : O b j e c t P r o p e r t y r d f : I D =" e x p r e s s i o n D e s c r i b e s E x p r e s s i o n ">

< r d f s : d o m a i n r d f : r e s o u r c e =" # E x p r e s s i o n " / >
< r d f s : r a n g e r d f : r e s o u r c e =" # E x p r e s s i o n " / >

</ o w l : O b j e c t P r o p e r t y >

< o w l : C l a s s r d f : I D =" P a r t O f S p e e c h ">
< r d f s : l a b e l xml: lang =" en "> P a r t o f Speech </ r d f s : l a b e l >

</ o w l : C l a s s >

< P a r t O f S p e e c h r d f : I D ="CC" / >
< P a r t O f S p e e c h r d f : I D ="CD" / >
< P a r t O f S p e e c h r d f : I D ="DT" / >
< P a r t O f S p e e c h r d f : I D ="EX" / >
< P a r t O f S p e e c h r d f : I D ="FW" / >
< P a r t O f S p e e c h r d f : I D =" IN " / >
< P a r t O f S p e e c h r d f : I D =" J J " / >
< P a r t O f S p e e c h r d f : I D =" JJR " / >
< P a r t O f S p e e c h r d f : I D =" JJS " / >
< P a r t O f S p e e c h r d f : I D ="LS" / >
< P a r t O f S p e e c h r d f : I D ="MD" / >
< P a r t O f S p e e c h r d f : I D ="NN" / >
< P a r t O f S p e e c h r d f : I D ="NNS" / >
< P a r t O f S p e e c h r d f : I D ="NNP" / >
< P a r t O f S p e e c h r d f : I D ="NNPS" / >
< P a r t O f S p e e c h r d f : I D ="PDT" / >
< P a r t O f S p e e c h r d f : I D ="POS" / >
< P a r t O f S p e e c h r d f : I D ="PRP" / >
< P a r t O f S p e e c h r d f : I D ="PRP$ " / >
< P a r t O f S p e e c h r d f : I D ="RB" / >
< P a r t O f S p e e c h r d f : I D ="RBR" / >
< P a r t O f S p e e c h r d f : I D ="RBS" / >
< P a r t O f S p e e c h r d f : I D ="RP" / >
< P a r t O f S p e e c h r d f : I D ="SYM" / >
< P a r t O f S p e e c h r d f : I D ="TO" / >
< P a r t O f S p e e c h r d f : I D ="UH" / >
< P a r t O f S p e e c h r d f : I D ="VB" / >
< P a r t O f S p e e c h r d f : I D ="VBD" / >
< P a r t O f S p e e c h r d f : I D ="VBG" / >
< P a r t O f S p e e c h r d f : I D ="VBN" / >

79

APPENDIX C. IMPLEMENTED ONTOLOGIES

< P a r t O f S p e e c h r d f : I D ="VBP" / >
< P a r t O f S p e e c h r d f : I D ="VBZ" / >
< P a r t O f S p e e c h r d f : I D ="WDT" / >
< P a r t O f S p e e c h r d f : I D ="WP" / >
< P a r t O f S p e e c h r d f : I D ="WP$ " / >
< P a r t O f S p e e c h r d f : I D ="WRB" / >

< o w l : A l l D i f f e r e n t >
< o w l : d i s t i n c t M e m b e r s r d f : p a r s e T y p e =" C o l l e c t i o n ">

< t e x t : P a r t O f S p e e c h r d f : a b o u t =" #CC" / >
< t e x t : P a r t O f S p e e c h r d f : a b o u t =" #CD" / >
< t e x t : P a r t O f S p e e c h r d f : a b o u t =" #DT" / >
< t e x t : P a r t O f S p e e c h r d f : a b o u t =" #EX" / >
< t e x t : P a r t O f S p e e c h r d f : a b o u t =" #FW" / >
< t e x t : P a r t O f S p e e c h r d f : a b o u t =" #IN " / >
< t e x t : P a r t O f S p e e c h r d f : a b o u t =" # J J " / >
< t e x t : P a r t O f S p e e c h r d f : a b o u t =" # JJR " / >
< t e x t : P a r t O f S p e e c h r d f : a b o u t =" # JJS " / >
< t e x t : P a r t O f S p e e c h r d f : a b o u t =" #LS" / >
< t e x t : P a r t O f S p e e c h r d f : a b o u t =" #MD" / >
< t e x t : P a r t O f S p e e c h r d f : a b o u t =" #NN" / >
< t e x t : P a r t O f S p e e c h r d f : a b o u t =" #NNS" / >
< t e x t : P a r t O f S p e e c h r d f : a b o u t =" #NNP" / >
< t e x t : P a r t O f S p e e c h r d f : a b o u t =" #NNPS" / >
< t e x t : P a r t O f S p e e c h r d f : a b o u t =" #PDT" / >
< t e x t : P a r t O f S p e e c h r d f : a b o u t =" #POS" / >
< t e x t : P a r t O f S p e e c h r d f : a b o u t =" #PRP" / >
< t e x t : P a r t O f S p e e c h r d f : a b o u t =" #PRP$ " / >
< t e x t : P a r t O f S p e e c h r d f : a b o u t =" #RB" / >
< t e x t : P a r t O f S p e e c h r d f : a b o u t =" #RBR" / >
< t e x t : P a r t O f S p e e c h r d f : a b o u t =" #RBS" / >
< t e x t : P a r t O f S p e e c h r d f : a b o u t =" #RP" / >
< t e x t : P a r t O f S p e e c h r d f : a b o u t =" #SYM" / >
< t e x t : P a r t O f S p e e c h r d f : a b o u t =" #TO" / >
< t e x t : P a r t O f S p e e c h r d f : a b o u t =" #UH" / >
< t e x t : P a r t O f S p e e c h r d f : a b o u t =" #VB" / >
< t e x t : P a r t O f S p e e c h r d f : a b o u t =" #VBD" / >
< t e x t : P a r t O f S p e e c h r d f : a b o u t =" #VBG" / >
< t e x t : P a r t O f S p e e c h r d f : a b o u t =" #VBN" / >
< t e x t : P a r t O f S p e e c h r d f : a b o u t =" #VBP" / >
< t e x t : P a r t O f S p e e c h r d f : a b o u t =" #VBZ" / >
< t e x t : P a r t O f S p e e c h r d f : a b o u t =" #WDT" / >
< t e x t : P a r t O f S p e e c h r d f : a b o u t =" #WP" / >
< t e x t : P a r t O f S p e e c h r d f : a b o u t =" #WP$ " / >
< t e x t : P a r t O f S p e e c h r d f : a b o u t =" #WRB" / >

</ o w l : d i s t i n c t M e m b e r s >
</ o w l : A l l D i f f e r e n t >

80

APPENDIX C. IMPLEMENTED ONTOLOGIES

< o w l : C l a s s r d f : I D =" PhraseType " / >

< PhraseType r d f : I D ="NP" / >
< PhraseType r d f : I D ="VP" / >
< PhraseType r d f : I D ="PP" / >

< o w l : A l l D i f f e r e n t >
< o w l : d i s t i n c t M e m b e r s r d f : p a r s e T y p e =" C o l l e c t i o n ">

< t e x t : P h r a s e T y p e r d f : a b o u t =" #NP" / >
< t e x t : P h r a s e T y p e r d f : a b o u t =" #VP" / >
< t e x t : P h r a s e T y p e r d f : a b o u t =" #PP" / >

</ o w l : d i s t i n c t M e m b e r s >
</ o w l : A l l D i f f e r e n t >

</ rdf:RDF >

81

APPENDIX C. IMPLEMENTED ONTOLOGIES

C.2 The Descriptions Ontology OWL Implementation

Listing C.2: The OWL implementation of the Descriptions Ontology

<?xml v e r s i o n =" 1 . 0 " ?>
<!DOCTYPE owl [

<!ENTITY t e x t " . / d e s c r i p t i o n s # " >
<!ENTITY owl " h t t p : / /www. w3 . o rg / 2 0 0 2 / 0 7 / owl# " >
<!ENTITY xsd " h t t p : / /www. w3 . o rg / 2 0 0 0 / 1 0 / XMLSchema# " >
] >

<rdf:RDF
xmlns = " . / d e s c r i p t i o n s # "
x m l n s : t e x t = " . / d e s c r i p t i o n s # "
xmlns :owl = " h t t p : / / www. w3 . o rg / 2 0 0 2 / 0 7 / owl # "
x m l n s : r d f = " h t t p : / / www. w3 . o rg /1999/02/22 � r d f � syn tax � ns # "
x m l n s : r d f s = " h t t p : / / www. w3 . o rg / 2 0 0 0 / 0 1 / r d f � schema # "
x m l n s : x s d = " h t t p : / / www. w3 . o rg / 2 0 0 0 / 1 0 / XMLSchema# ">

< owl :On to lo g y r d f : a b o u t =" ">
< o w l : i m p o r t s r d f : r e s o u r c e =" . / t e x t o n t o l o g y . owl " / >
< r d f s : l a b e l > D e s c r i p t i o n s Onto logy </ r d f s : l a b e l >

</ owl :On to logy >

< o w l : C l a s s r d f : I D =" D e s c r i p t i v e T e r m " / >
< o w l : D a t a T y p e P r o p e r t y r d f : I D =" term ">

< r d f s : d o m a i n r d f : r e s o u r c e =" # D e s c r i p t i v e T e r m " / >
< r d f s : r a n g e r d f : r e s o u r c e =" . / t e x t #Word " / >
< r d f s : r a n g e r d f : r e s o u r c e =" . / t e x t # E x p r e s s i o n " / >
< r d f s : r a n g e r d f : r e s o u r c e =" . / t e x t # P h r a s e " / >

</ o w l : D a t a T y p e P r o p e r t y >
<\ rdf:RDF >

82

APPENDIX C. IMPLEMENTED ONTOLOGIES

C.3 The Description Temperature Ontology OWL Im-
plementation

Listing C.3: The OWL implementation of the Description Temperature Ontology
<?xml v e r s i o n =" 1 . 0 " ?>
<!DOCTYPE owl [

<!ENTITY t e x t " . / d e s c r i p t i o n t e m p e r a t u r e # " >
<!ENTITY owl " h t t p : / /www. w3 . o rg / 2 0 0 2 / 0 7 / owl# " >
<!ENTITY xsd " h t t p : / /www. w3 . o rg / 2 0 0 0 / 1 0 / XMLSchema# " >
] >

<rdf:RDF
xmlns = " . / d e s c r i p t i o n t e m p e r a t u r e # "
x m l n s : t e x t = " . / d e s c r i p t i o n t e m p e r a t u r e # "
xmlns :owl = " h t t p : / / www. w3 . o rg / 2 0 0 2 / 0 7 / owl # "
x m l n s : r d f = " h t t p : / / www. w3 . o rg /1999/02/22 � r d f � syn tax � ns # "
x m l n s : r d f s = " h t t p : / / www. w3 . o rg / 2 0 0 0 / 0 1 / r d f � schema # "
x m l n s : x s d = " h t t p : / / www. w3 . o rg / 2 0 0 0 / 1 0 / XMLSchema# ">

< owl :On to lo g y r d f : a b o u t =" ">
< o w l : i m p o r t s r d f : r e s o u r c e =" . / d e s c r i p t i o n s . owl " / >
< r d f s : l a b e l > D e s c r i p t i o n Temera tu re Onto logy </ r d f s : l a b e l >

</ owl :On to logy >

< o w l : C l a s s r d f : I D =" Tempera tu re " / >

< Tempera tu re r d f : I D =" VeryCold " / >
< Tempera tu re r d f : I D =" Cold " / >
< Tempera tu re r d f : I D =" SomewhatCold " / >
< Tempera tu re r d f : I D =" N e u t r a l " / >
< Tempera tu re r d f : I D =" SomewhatWarm " / >
< Tempera tu re r d f : I D ="Warm" / >
< Tempera tu re r d f : I D =" VeryVarm " / >

< o w l : C l a s s r d f : I D =" T e m p e r a t e d D e s c r i p t i o n " / >
< o w l : O b j e c t P r o p e r t y r d f : I D =" t e m p e r a t e s ">

< r d f s : d o m a i n r d f : r e s o u r c e =" # T e m p e r a t e d D e s c r i p t i o n " / >
< r d f s : r a n g e r d f : r e s o u r c e =" # D e s c r i p t i v e T e r m " / >

</ o w l : O b j e c t P r o p t e r y >
< o w l : O b j e c t P r o p e r t y r d f : I D =" h a s T e m p e r a t u r e ">

< r d f s : d o m a i n r d f : r e s o u r c e =" # T e m p e r a t e d D e s c r i p t i o n " / >
< r d f s : r a n g e r d f : r e s o u r c e =" # Tempera tu re " / >

</ o w l : O b j e c t P r o p e r t y >

83

APPENDIX C. IMPLEMENTED ONTOLOGIES

<\ rdf:RDF >

84

Index

action, 31
adjective, 31
adverb, 31
Artificial Intelligence, 2
assertional component, 18
automated agent, 23
automated reasoner, 30
axiom, 19

Brill, Eric, 72

CFG, 12
common sense, 17
concept, 19, 26
conceptualization, 17

deductions, 25
description temperature, 24, 25
Description Temperature Ontology, 25, 33, 54

assertional component, 34
terminological component, 33

Descriptions Ontology, the, 25, 30
domain, 18
domain ontology, 18

expression, 27

function, 19

Grok, 67
Gruber, Tom R., 17, 19

instance, 19

knowledge base, 32
knowledge domain, 19
knowledge repositories, 17

Lexicon, 13
lexicon, 18

morphology, 6

natural language processing, 31
nltk, 70

object, 31

ontological representation, 23
ontological representation of texts, 28
ontology, 1, 17
ontology representation language, 19

Part Of Speech, see POS
phrase, 27
POS, 27
precise conclusion, 23
PreProcessor, the, 25, 30
processing unit, 25

Rathnaparkhi, Adwait, 71
RDF Schema, 19
Reasoner, the, 25, 35
relation, 19

semantic distinctions, 17
semantic network, 17
semi-structured text, 31
sentence, 27
subject, 31

taxonomy, 18
terminological component, 18
text, 27
Text Ontology, the, 25, 26

assertional component, 29
terminological component, 26

upper level ontology, 18

Watson, Mark, 71
word, 27
word class, see POS

XML, 19
XML Schema, 19

85

