

An evaluation of compression and
streaming techniques for efficient transfer

of XML documents
 with Simple Object Access Protocol

(SOAP)

by
Ørjan Stallemo and Kristian Vatne

Masters Thesis in
Information and Communication

 Technology

Grimstad, May 2003

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) i

? May 2003 – Ørjan Stallemo and Kristian Vatne

Abstract
In SOAP, the entire XML object is generated on the server before it is returned to the client.
This puts unnecessary strain on server systems in terms of both memory and CPU. The
objectives are to find why SOAP does not allow streaming of responses, possible solutions to the
problem and outline alternative transfer methods. Furthermore, compression techniques for a
streaming SOAP environment are evaluated, as well as performance of streaming versus an
alternative method of data retrieval.

The feasibility study concluded that SOAP itself allows streaming of responses, but the HTTP
binding does not. This binding specifies the issue of a HTTP fault code in case of a SOAP
processing error, meaning the processing must be completed before a HTTP code can legally be
issued.

One alternative to streaming is using a Request/N-Response message pattern, and dividing the
data over several responses. As HTTP only supports a Request/Response message pattern,
implementing this is not possible.

Either the HTTP binding must be rewritten to allow streaming of responses while processing a
request or HTTP must be replaced with for example DIME as the transfer protocol for SOAP to
overcome these problems.

Tests are set up to find the most suitable compressor technique and to verify that streaming
SOAP responses utilize server resources better then alternative transfer methods. Results show
that bzip2 is the most suitable compressor technique. And that streaming utilizes memory
considerably more efficient, especially with multiple clients connecting.

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) ii

? May 2003 – Ørjan Stallemo and Kristian Vatne

Preface
This thesis was written for Sense Technology and is part of the Masters degree (Master i
Teknologi) in Information and Communication Technology (ICT) at Agder University College,
Faculty of Engineering and Science in Grimstad Norway. The work was carried out in the period
between January and May 2003.

Our supervisors have been Rune A. Skarbø (Manager E-field, Sense Technology) and Magne
Arild Haglund (Assistant Professor, Agder University College), they gave us continues guidance
during the entire project. We would like to thank them for their positive attitude and for assisting
us. We would also like to thank Stein Bergsmark (Director of Study, Master of Science Study,
Agder University College) for guidance during thesis write-up.

The source code produced during the work on this thesis can be found on a CD at the back
cover.

Grimstad, May 2003

Ørjan Stallemo and Kristian Vatne

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) iii

? May 2003 – Ørjan Stallemo and Kristian Vatne

Contents
1 Introduction .. 1

1.1 Background ...1
1.2 Thesis definition...2
1.3 Case...3
1.4 Literature review...5
1.5 Report outline...6

2 Background technologies.. 7
2.1 Overview ...7
2.2 XML ...8
2.3 WITSML..8
2.4 SOAP ...9

3 Compression...12
3.1 Overview ...12
3.2 Text compression...13
3.3 XML compression ...15

4 Streaming ...17
4.1 Overview ...17
4.2 Defining the term “streaming” in this thesis...18
4.3 Streaming from database ..19
4.4 Protocols used for streaming ...20
4.5 Alternative transfer technologies...22

5 Feasibility study .. 25
5.1 Overview ...25
5.2 Alternatives to streaming SOAP ...26
5.3 Combining SOAP with alternative technologies..28
5.4 The underlying problem ...30

6 Applications and adaptations for testing .. 32
6.1 Overview ...32
6.2 Software solutions..33
6.3 Test applications...35
6.4 Adaptations to this thesis..37

7 Testing... 39
7.1 Overview ...39
7.2 Compression testing ..40
7.3 Database streaming..42
7.4 Data request over network...43

8 Test results .. 47
8.1 Overview ...47
8.2 Compression test results...48
8.3 Database streaming results ...52
8.4 Data request over network results ..54

9 Discussion ... 58
9.1 Overview ...58
9.2 Compression ...59
9.3 Database streaming..60
9.4 Data request over network ...61
9.5 Feasibility discussion ...62
9.6 Future work...63

10 Conclusion... 64
11 Abbreviations... 65
12 References ... 66
13 Appendices .. 70

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) iv

? May 2003 – Ørjan Stallemo and Kristian Vatne

List of Figures
Figure 2.1 Simple XML document example. ..8
Figure 2.2 The principle hierarchic structure of SOAP Envelope. ...9
Figure 2.3 SOAP message example. ...10
Figure 3.1 Text compression overview. ...13
Figure 3.2 XML document, example of a section. ...15
Figure 4.1 DataSet and DataReader overview. ...19
Figure 4.2 The OSI model ...20
Figure 4.3 HTTP request/response example. ...20
Figure 4.4 Example Email..22
Figure 4.5 Multipart message example. ..22
Figure 4.6 DIME Record Format. ..23
Figure 4.7 Principle schematic of a DIME message. ...24
Figure 4.8 BEEP session principle. ..24
Figure 5.1 Sequence chart for sending an URI and medium type with SOAP.26
Figure 5.2 Sequence chart for Request/N-Response communication with SOAP..........................27
Figure 5.3 Sequence chart for N-Request/N-Response communication with SOAP.....................27
Figure 5.4 SOAP encapsulated in a DIME message. ..29
Figure 5.5 Message to start a SOAP profile channel in BEEP example. ...29
Figure 5.6 Protocol layers and supported technologies overview. ..31
Figure 6.1 Perfmon application screenshot. ..34
Figure 6.2 Self made XML format example. ...37
Figure 6.3 Protocol layer overview and supported technologies in Visual Studio .NET.38
Figure 7.1 Compression tests overview. ..41
Figure 7.2 Database streaming test overview..42
Figure 7.3 SOAP and DIME test overview. ...44
Figure 7.4 SOAP with N- Request/N-Response overview..45
Figure 7.5 DIME streaming test overview. ...45
Figure 8.1 Section of the XML document that XMill reported error on. ..48
Figure 8.2 XMill’s error message...48
Figure 8.3 Compression ratio versus file size..49
Figure 8.4 Compression time versus file size..50
Figure 8.5 Decompression ratio versus file size. ..50
Figure 8.6 Decompression time versus file size. ..50
Figure 8.7 The process processor usage. ...52
Figure 8.8 The total CPU usage. ...52
Figure 8.9 Available bytes per second. ...53
Figure 8.10 Available bytes in SOAP tests. ...54
Figure 8.11 CPU usage for the web service “SOAP N-Request tester”...55
Figure 8.12 Memory reserved for the web service “SOAP N -Request tester”.55
Figure 8.13 Total free memory on the server. ..55
Figure 8.14 CPU usage for the web service “SOAP n-request tester”. ..56
Figure 8.15 Memory reserved for the web service “SOAP n-request tester”....................................56
Figure 8.16 CPU usage for “DIME tester” application. ...57
Figure 8.17 Memory reserved for the “DIME tester” application. ...57
Figure 8.18 Time on server for different number of rows requested. ..57

List of Tables
Table 3.1 XML compressors and implemented technique. ..16
Table 6.1 Columns in table “log” from XMLLog database. ..37
Table 7.1 Performance counters. ..44
Table 8.1 List of the files used for compression testing. ..49

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 1

? May 2003 – Ørjan Stallemo and Kristian Vatne

1 Introduction

1.1 Background
The Extensible Markup Language (XML) has gained widespread popularity in driving Enterprise
Web development today. XML promises a standard data format that can be shared easily across
applications, which is especially useful for different organizations that need to share data.

Sense Technology has developed a system, Sitecom, for acquiring, distributing and managing rig-
site data. This involves transferring real-time and historical data between offshore drill sites,
onshore control centers, head quarter offices, remote export sites, etc.

All data is transferred as Wellsite Information Transfer Standard Markup Language (WITSML)
documents, and is retrieved using SOAP. WITSML defines a number of XML objects and SOAP
interfaces for accessing and updating objects. WITSML is a markup language derived from XML
used by the oil industry to define a new standard for drilling information transfer.

XML has several advantages, like the act of agreeing to a common format for data is making
exchange easier than it ever was before. It is an open standard that represents data in a human
readable form. One disadvantage is overhead: XML documents can be many times the size of the
actual data it represents.

SOAP provides a simple mechanism for exchanging structured and typed information between
peers in a decentralized, distributed environment using XML. But SOAP has no method for
streaming a response while processing the request.

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 2

? May 2003 – Ørjan Stallemo and Kristian Vatne

1.2 Thesis definition
When retrieving historical data in WITSML, a client uses SOAP to remotely query a WITSML
server. In real-world applications the size of the query result is often 10-50MB or more. In
SOAP, the entire XML object is generated on the server before it is returned to the client. Thi s
puts an enormous burden on server systems in terms of both memory and CPU, especially when
considering that servers must support multiple clients simultaneously.

XML compression tools provide different ways of compressing XML documents. These differ in
compression ratio and speed, often depending on document size and structure.

XML streaming techniques is used to overcome problems with transferring large XML
documents.

The objective of this thesis is to evaluate the performance of the various techniques and
implementations for compressing and streaming XML through theory and testing.

Furthermore, we will explore ways to combine streaming with SOAP.

If possible, a simple test prototype will be made, demonstrating compression and streaming of
XML documents in a SOAP query.

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 3

? May 2003 – Ørjan Stallemo and Kristian Vatne

1.3 Case

1.3.1 Compression case
Usage of XML is very far-reaching. The range of industries that employ XML, in one way or
another, now span over most modern industries including: oil, TV and computer programming.
This is done by defining their own markup language with XML as its meta language. XML’s
flexibility allows virtually every industry to map their information onto XML.

This flexibility often comes at a price. In order to achieve the mapping and making it human ly
readable, verbose tags are used. The results can be XML documents up to three times the size of
the raw data. Needless to say, the desire to reduce the size of XML documents is prominent.

A variety of approaches has been tried in compressing XML documents. From the straight
forward use of well known text compressors to analyzing the rules for structuring the document
before separating, restructuring and then compressing it.

We will test the compression ratio and time used for text compressors and XML compressors on
XML documents varying in size.

The techniques selected for the comparing will be selected from the sin gle platform/environment
where most techniques can undergo the testing under the same criteria.

Make a proposal, based on the test results and theory, as to what kind of compression should be
used by Sitecom.

1.3.2 Streaming case
Sense Technology uses SOAP in their Sitecom System, which means the entire XML object is
generated from the database on the server before it is retu rned to the client. This puts a large
strain on server systems in terms of both memory and CPU, especially when considering that
servers must support multiple clients simultaneously.

Streaming is used to overcome this problem. It allows the server to transfer the reply as it is being
built, instead of storing it in memory before transfer.

We will test streaming from a database by measuring the CPU and memory load. In addition we
will transfer XML objects from a server to a client. Performance will be measured by CPU load,
memory usage and time used on server.

1.3.3 SOAP case
SOAP allows for applications to be invoked across the Internet, independently of platform and
programming language. Applications are invoked by sending messages, often paired up as a
request and a response. The use can vary from sending greetings, giving orders to retrieving
information.

There is no support for streaming SOAP messages. When a request is made, the server will
prepare the entire message before replying, regardless of the size of message. In some scenarios
reply messages generated from data retrieved from databases can reach 50 MB. Multiple queries
being processed form different clients can put large pressure on the SOAP server, both in terms
of CPU and memory usage.

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 4

? May 2003 – Ørjan Stallemo and Kristian Vatne

We will explore ways of combining streaming with SOAP, outline alternative approaches to the
problem and try to find the theoretical reason to why SOAP does not support streaming.

Suggestions will be discussed, and rated by how much they deviate from the standards.

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 5

? May 2003 – Ørjan Stallemo and Kristian Vatne

1.4 Literature review
This section is intended to show where information on the Internet relevant to this thesis can be
found. The first passage is about compression, the next is on SOAP and SOAP related, and last
are two articles shedding light on where streaming with SOAP is today.

http://datacompression.info/ [24] has gathered an impressive collection of resources on
compression, including papers, articles, source code, executables, tutorials and news. The
resources are mostly external but the site is kept up to date. One example is the paper “A block-
sorting lossless data compression algorithm” [27] that was used when writing about Burrows-
Wheeler Transform in Chapter 3.2.4.

The Internet Engineering Task Force (IETF) [1] describes itself as “a large open international
community of network designers, operators, vendors, and researchers concerned with the evolution of the Internet
architecture and the smooth operation of the Internet.” IETF hosts a variety of Request For Comments
(RFC) and Internet Drafts. Amongst others is “The Blocks Extensible Exchange Protocol Core”
[7] that was used when writing Chapter 4.5.3.

World Wide Web Consortium (W3C) [2] develops interoperable technologies including
specifications, guidelines, software, and tools. And is a forum for information, commerce and
communication. W3C focus on standards that are World Wide Web (WWW) specific. The most
important for this thesis was the “Simple Object Access Protocol (SOAP) 1.1” [3] specification.

For articles on where streaming with SOAP is today and problems associated with it, see articles
“Using Web Services Enhancements to Send SOAP Messages with Attachments” [18] by
Jeannine Hall Gailey, and “Beep BEEP!” [19] by Rich Salz.

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 6

? May 2003 – Ørjan Stallemo and Kristian Vatne

1.5 Report outline
The target group for this report is students and E-Field engineers at Sense Technology with a
basic knowledge of XML and SOAP. Readers with an interest in the problems surrounding
streaming of SOAP responses may benefit from reading the report.

Chapters 2, 3 and 4 give a theoretical overview of the technologies discussed in this thesis. Each
technology is explained in the detailed level needed for this thesis. For further readings, a
reference to the specification or articles describing them are supplied.

Chapter 5 is a feasibility study into the possibilities of solving the problem of server resources
when transferring large XML documents. We start by introducing alternatives to streaming. Then
look at alternative transfer technologies that has been launched to widen the usage of SOAP as it
is today, or to replace the foundation SOAP rests on. Last is an explanation to why SOAP will
not stream, and a protocol layer overview.

Then methods used during the course of this thesis are described in Chapter 6, which is divided
into three main parts. One part describing software solutions from outside vendors, mainly
Microsoft Corporation, and on part describing the software we developed to conduct testing. The
last part is about the adaptations we made going from a theoretical point to a practical.

Chapters 7 and 8 are about testing and the test results. The testing focuses on three areas:
compression, database and data request over network.

Finally, in chapter 9 we discuss the feasibility study and test results, and make recommendations
and suggestions to the solutions.

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 7

? May 2003 – Ørjan Stallemo and Kristian Vatne

2 Background technologies

2.1 Overview
This chapter provides information on the technologies this thesis deals with. Most of the actual
study is on technologies surrounding and related to the ones in this chapter. So the majority of
this chapter will not be used in discussions or conclusions, but only servers as a way of
introducing the background technologies.

First is a small introduction to the well known XML, with no rules or specification, only a short
summary and an example. Next is a section that sums up the history and functions of WITSML,
a markup language derived from XML. And finally, a more thorough look at SOAP.

Section 2.4 on SOAP covers an introduction, the architecture, an example, bindings and a bit
about future releases.

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 8

? May 2003 – Ørjan Stallemo and Kristian Vatne

2.2 XML
XML [5] is a set of rules for defining semantic tags that break documents into parts and identify
the different parts. It is a meta-language that defines the syntax in which other markup languages
can be written. To make a markup language you make up tags. These tags must be organized
according to certain principles, but they are quite flexible. The tags can be documented in a
Document Type Definition (DTD) or Schema.

The syntax that field specific markup languages (e.g. WITSML) follow are defined by XML. XML
specifies the rule for the syntax, saying how the markup is different from content and how
attributes is attached to elements. It specifies only the patterns that these elements must follow.
For example, XML tags begin with a < and ends with a >, but does not tell what names that shall
go between.

Figure 2.1 Simple XML document example.

2.3 WITSML
WITSML is a standard for sending well site information in XML documents between business
partners. WITSML was initially developed by a group of service companies (Baker Hugh es,
GeoQuest, Halliburton, Landmark and Schlumberger) sponsored by the oil industry (BP, Statoil
and Shell). WITSML 1.1.0 was released in December 2001 and WITSML 1.2.0 was available as
release candidate in January 2003. Active members are BP, Statoil, She ll, Baker Hughes,
Halliburton, Schlumberger and NPSi.

The aim of the project is according to the WITSML official website [4]: “The “right time” seamless
flow of well site data between operators and service companies to speed and enhance decision-making”.

WITSML sends information in XML documents. The content of an XML document is based on
an XML schema. The WITSML standard consists of data object and component schemas. Data
object schemas is the smallest set of data that can be transported in an XML document (well, log
etc). They contain attributes, elements and imported component schemas. Component schemas
are XML schemas, but they do not represent complete data objects. Instead they can be
implemented in several data objects.

<xml>
 <element attribute_name=”attribute_value”>content</element>
 <empty_element attribute=”attribute_value”/>
</xml>

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 9

? May 2003 – Ørjan Stallemo and Kristian Vatne

2.4 SOAP

2.4.1 Introduction
The SOAP specification [3] defines SOAP as: “SOAP provides a simple and lightweight mechanism for
exchanging structured and typed information between peers in a decentralized, distributed environment using
XML”

SOAP is at the stage where a submission to W3C has been made to propose the formation of a
working group. The current version is 1.1 [3].

2.4.2 Structure
A SOAP message is in reality an XML document that follows certain rules. The three parts
SOAP Envelope, SOAP Encoding and SOAP Remote Procedure Call (RPC) have their own
rules.

The rules for SOAP envelope can be found in Schema for the SOAP/1.1 envelope [47]. Figure
2.2 shows the hierarchy of SOAP Envelope.

Figure 2.2 The principle hierarchic structure of SOAP Envelope.

SOAP encoding rules define how to map features found in type systems (e.g. programming
languages and databases) to XML. This includes amongst others number, date, array and struct.
Rules can be found at Schema for the SOAP/1.1 encoding [48]. SOAP does not require these
rules to be used, but encourages it.

Using XML in RPC is one of SOAP’s design goals. In order to make a method call, information
about the Uniform Resource Identifie r (URI) of the target object, the method name and
parameters is needed.

RPC method calls and responses are carried in the SOAP Body element, and additional relevant
information that is not a part of the formal method signature is carried as a child element of
SOAP Header.

Although most SOAP applications depend on Hyper Text Transfer Protocol (HTTP) for
transferring their RPC, SOAP is really independent of the underlying protocol.

2.4.3 An example of SOAP message exchange
This SOAP message is from the specification [3]. The message requests GetLastTradePrice, with
DIS as parameter.

<envelope>
 <header> </header>
 <body> </body>
</envelope>

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 10

? May 2003 – Ørjan Stallemo and Kristian Vatne

Figure 2.3 SOAP message example.

2.4.4 SOAP in HTTP
The most common way of transferring SOAP messages is trough HTTP. The semantics of
SOAP is defined in a way the fits to HTTP.

Although SOAP messages are one-way messages, they are often combined to form
request/response sequences. These sequences fit very well to HTTP ’s request/response.

SOAP errors while processing a request causes the server to issue a HTTP fault code “500
Internal Server Error” response with a SOAP message containing a SOAP Fault element
included.

2.4.5 The upcoming SOAP 1.2
The next version of SOAP is version 1.2. The specification is spread over the following three
documents:

? Part 0: Primer [33]
? Part 1: Messaging Framework [34]
? Part 2: Adjuncts [35]

For a list of the changes between SOAP 1.1 and SOAP 1.2, please see: Section 6 in Part 0: Primer
[33].

In our view, the changes are important to clarifying and improving SOAP. But they are not
revolutionary in the way SOAP will be develop and used on the Internet.

In his article “SOAP 1.2 spec takes next step” [20] Paul Krill quotes W3C representative Jane
Daly saying: “The functionality of Version 1.2 is essentially the same as the existing W3C standard, Version
1.1”

In relations to the subject of this thesis, a few new interesting aspects have arisen. From Part 2
section 6.2 about the Request-Response Message Exchange Pattern (MEP), the following is
quoted:

POST /StockQuote HTTP/1.1
Host: www.stockquoteserver.com
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn
SOAPAction: "Some-URI"

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <SOAP-ENV:Body>
 <m:GetLastTradePrice xmlns:m="Some-URI">
 <symbol>DIS</symbol>
 </m:GetLastTradePrice>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 11

? May 2003 – Ørjan Stallemo and Kristian Vatne

“Bindings that implement this MEP MAY provide for streaming of SOAP responses. That is, responding
SOAP nodes MAY begin transmission of a SOAP response while a SOAP request is still being received and
processed.”

So supporting streaming is not mandatory in the next version of SOAP, but the option is there.
Hopefully the major developers will choose to implement it, even if it involves a lot of
redesigning.

A “SOAP 1.2 Attachment Feature” draft has been released [36]. It describes a general way of
allowing attachments, like pictures, videos and so forth, to be transferred along with the SOAP
message. This is similar to how SOAP Messages with Attachments (SwA), section 5.3.1, and
Direct Internet Message Encapsulation (DIME) section 5.3.2.

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 12

? May 2003 – Ørjan Stallemo and Kristian Vatne

3 Compression

3.1 Overview
The Data compression book [31] describes data compression as follows: “Data compression
seeks to reduce the number of bits used to store or transmit information”

We distinguish between two different types of data compression:

? Lossless. No information is lost during compression-decompression. An example of
lossless compression is data files.

? Lossy. The decompressed data may differ from the original data. Examples of lossy
compression are images compression and real time voice.

The focus in this thesis is on lossless compression of XML files.

The first section is on traditional text compressors. They are introduced with an overview of
relations between the various algorithms, methods and formats. Then a short summary of how
the algorithm/method/format works.

Last is a description of compressors developed specially for compressing XML documents. We
start by going through the most commonly used techniques, and finish with an overview of what
compressors implements which techniques.

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 13

? May 2003 – Ørjan Stallemo and Kristian Vatne

3.2 Text compression

3.2.1 Introduction

Figure 3.1 Text compression overview.

Text data compression is a form for lossless compression. Figure 3.1 shows the
algorithms/methods/formats described in this section. The figure is designed to give a rough
overview, not an exact picture. The borders between method, format and programs are not
always straight forward.

3.2.2 Lempel-Ziv (LZ77)
LZ77 is an algorithm that uses a substitutional compression schemes proposed by Jakob Ziv and
Abraham Lempel in 1977 [25]

The principle of the algorithm is to find sequences of data that are repeated. It uses previously
seen text as a dictionary and replaces phrases in a text with pointers to the dictionary. The
amount of compression depends on the size of the window into previously seen text and how
long the text phrases are.

The LZ77 model is an attractive compression algorithm because it is simple to maintain and
encode. Popular programs such as PKZip use variants of the LZ77 algorithm.

3.2.3 Huffman Coding
Huffman coding was first described in a seminal paper by D.A. Huffman in 1952 [26] and
belongs to a family of codes with variable code word length.

This means that individual symbols are coded with a bit sequence with a distinct length. Huffman
build on the fact that distinct symbols have distinct probability of incident. This is used to create
code words that really contribute to reduce redundancy in data. Symbols with high probability are
coded with shorter code words and symbols with low probability are coded with longer code
words. This means that long code words do not show up as often and this contributes to the
optimality of code.

Lempel
- Ziv

Deflate

Burrows -
Wheeler

bzip2

Huffman /
Algorithmic
codings Algorithms/

Codings

Methods

Programs /
Formats GZIP

Deflate64

PKZIP v4.5+

Markov

PPM family

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 14

? May 2003 – Ørjan Stallemo and Kristian Vatne

Huffman code can be properly decoded because it obeys to the prefix property, which means
that no code can be the prefix of another Huffman code. This compression is used in
compression programs like PKZip and bzip2.

3.2.4 Burrows-Wheeler Transform (BWT)
Michael Burrows and David Wheeler released a research report in 1994 [27], discussing work they
had been doing on a transformation function. The BWT transforms a block of data into a format
that is extremely well suited for compression.

The basic of the algorithm is that it takes a block of data and rearranges it with a sorting
algorithm, such that it is much more suited for compression. The transformation is reversible so
that data can be restored with no loss of fidelity.

The idea is that if a given string of character is transformed, a few characters are likely to appear
much more frequent in a distinct region. This will group up the character in the string.

The bzip2 format use this reorganized string in combination with Huffman coding for
compression.

3.2.5 Markov modeling
The basics of Markov modeling is to predict the probability of a given character to appear based
on what has come before it. This probability is what an arithmetic encoder, similar to Huffman,
needs to perform effective compression.

The Prediction by Partial Match (PPM) [29] is a specialized form of compression based on
Markov modeling.

3.2.6 Deflate
Deflate is described in RFC1951 [37]. It is a lossless compression algorithm that builds on the
two compression strategies Huffman coding and LZ77 algorithm.

The compressed data consist of a series of blocks, corresponding to the input data. Each block is
compressed using a combination of Huffman coding and LZ77.

The Huffman trees for each block of data are independent from the previous code blocks. The
LZ77 algorithm can use reference to e arlier duplicate code blocks, up to 32 KB input bytes
before.

Each block of compressed data consists of two parts. A pair of Huffman code trees that describe
a representation of the compressed data, and the compressed data. The Huffman code trees are
compressed using Huffman coding.

3.2.7 Deflate64
The Deflate64™ , also know as Enhanced Deflate, compression algorithm is a variation of the
Deflate algorithm that uses a 64 KB sliding window rather than a 32 KB window in order to
compress a sequence of bits. Deflate64™ is developed by PKWARE Inc [28], and is used in
PKZIP version 4.5 and newer.

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 15

? May 2003 – Ørjan Stallemo and Kristian Vatne

3.3 XML compression

3.3.1 Introduction
In the wake of XML's success, a new category of compressors has arisen to deal with XML's
verbosity. These are often referred to as “XML compress ors”.

XML compressors apply different techniques to in order to achieve the best compression. These
techniques rearrange and code the different parts of the document. Common for all XML
compressors, however, are the use of traditional text compressors in order to compress the actual
data.

This section explains the most prominent techniques, and finish by giving an overview of which
techniques the different XML compressors implements. Description of the implementations can
be found in Appendix A.

3.3.2 Separating the document parts
XML documents consist of the element, attributes and contents as shown in section 2.2.
Similarities are often found amongst the elements and amongst the attributes, and can be used to
improve compression ratio. So in order to take advantage of the similarities, the XML documents
are parsed, and the elements, attributes, content and document structure are separated from each
other before they are compressed.

This example shows how XMill works:
<el att=”123”>abc</el> = [el,att];[123,abc];[S0 S1 T X T X]

“[S0 S1 T X T X]” represents the document structure.

3.3.3 Grouping related data
Once the attributes and content have been separated from the rest of the document, it can be
grouped in different containers. Each container holds the data from o ne type of element.

Figure 3.2 XML document, example of a section.

As seen in the example in Figure 3.2, grouping all data from <name> and <number> separately
will increase the chances of finding similarities when compressed.

3.3.4 DTD/Schema awareness
We divide XML compressors into two main groups, dependent upon whether or not they are
DTD/Schema aware. This technique offers great advantages, and great drawbacks.

<student>
 <name>John Doe</name>
 <number type=”int”>123456</number>
</student>
<student>
 <name>Jane Doe</name>
 <number type=”int”>123457</number>
</student>

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 16

? May 2003 – Ørjan Stallemo and Kristian Vatne

Section 2.2 outlines what a DTD and a Schema is. The compressor can utilize the knowledge
from a DTD or Schema about a XML document to improve compression:

? If element A has X sub elements, then the sub elements can be coded as a list of log2 X
bit. No need to code the entire sub element as the decompressor also has the list of sub
elements.

? Schemas provide the data type for the document parts (e .g. a specific content are only
dates). The already grouped items, see the previous section, can be compres sed with a
compressor specialized for dates.

The potential gain in compression ratio from using the DTD/Schema is great. XML’s verbosity
lies mainly in the tags rapped around the attributes. When coding the tag elements with only a
few bits, this verbosity is reduced noticeably.

The major drawback with this technique is the fact that the decompressor also needs access to
the DTD or Schema. Without this, it is impossible to decompress. This limits the use of the
XML compressors that utilizes this technique.

It can, however, be argued that most use of XML documents that need compression often have
permanent sender/receiver and follow certain DTDs/Schemas.

3.3.5 Concurrent compression
In cases where multiple XML documents are compressed simultaneously, similaritie s between the
documents can be used to improve the compression ratio. The more similarities, the more
compression ratio improves.

A precondition for decompression XML documents compressed with concurrent compression is
that all documents are received before decompression. This limits the range of use.

3.3.6 Implementations overview
Description of the XML compressors can in found in Appendix – A

Table 3.2 shows what techniques some of the XML compressors have implemented.

Table 3.1 XML compressors and implemented technique.

X=Yes

XML compressor \
technique

Separating
docum

ent parts

G
roup related

item
s

D
TD

 / Schem
a

aw
areness

Concurrent
com

pression

XMill X X
XMLPPM X X
Millau X X X
XComprez X X X
XML-XPress X X X X

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 17

? May 2003 – Ørjan Stallemo and Kristian Vatne

4 Streaming

4.1 Overview
Not all sections in this chapter are actually about streaming, only related. This chapter spans over
several issues concerning streaming: definition, data retrieving, alternatives to streaming, transport
layer protocols and technologies that potentially can be used for streaming SOAP.

The first section defines how the terms “streaming” and “chunking” is used in this thesis. Then
there is a section on strategies on retrieving data from a database. The two sections after that are
related to SOAP. One is about a transport layer protocols and an application layer protocol that
can be used to stream SOAP, and the second is about technologies that can be combined with
SOAP and potentially provide streaming capability.

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 18

? May 2003 – Ørjan Stallemo and Kristian Vatne

4.2 Defining the term “streaming” in this thesis

4.2.1 What we mean by “streaming”
A variety of definitions of the term “streaming” exists. The term is used in scenarios from water
to electricity and data. Common for them is that something flows, or streams, from one end to
another.

In the world of computers, streaming refers to the flow of data from one end to another. One of
the everyday areas where streaming is commonly used, is streaming video and/or sound (e.g.
watching the news over the Internet). It is referred to as streaming because the viewer can watch
the start of the show while the rest is being downloaded.

Our definition of streaming, or what we refer to as streaming in this thesis, has the following
criteria: the transfer must begin immediately without having to construct the data in memory first.
Thus, our definition of streaming includes requirements for the server side, but not for the client
side. Being able to process the beginning of the response before the entire response is received is
not required.

If for example a SOAP server receives a request for large amounts of data, builds up the response
in memory and then transfers it to the client, this is not considered streaming.

4.2.2 What we mean by “chunking”
In a sense, all transfer of data on the Internet is chunking. All data on the Internet are transferred
in packages, so a constant stream of data is a constant stream of packages. And, therefore
chunking.

Our definition of chunking, or what we refer to as chunking in this thesis, has the following
criteria: making a conscious choice on the size data, and transferring it.

Collecting 10 lines from a database, putting them in an XML document and transferring them.
Or collecting 1000 lines form a database, putting them in an XML document and transferring 1
KB of that document in one chunk.

Collecting 1000 lines from a database, putting them in an XML document and transferring them
is not considered chunking, even if the underlying protocols transfers the document in chunks of
1 KB.

Here are some example scenarios where chunking data can be useful:

? If larger amounts then the protocol supports are to be transferred.
? In systems with limited resources or extensive usage, chunking can provide a way to use

the resources more efficiently (e.g. chunking data to fit the transportation layer).
? With unknown amounts of data, chunking allows for more streamlined processing.

4.2.3 Defining XML streaming
The term “XML streaming” is in this thesis used to describe the process of streaming an XML
document from a server side to a client side. It involves no criteria for processing the XML real -
time, as it is received.

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 19

? May 2003 – Ørjan Stallemo and Kristian Vatne

4.3 Streaming from database

4.3.1 Introduction
Retrieving large amount of data from a database, can strain the server resources unnecessary,
especially if several clients are connec ted at the same time. It is therefore important to keep
memory usage as low as possible. Streaming from the database reduces this problem.

This section covers two strategies to fetch data from a Structured Query Language (SQL)
database, either by fetching all at once or by fetching one row at the time to create a stream of
rows from the database.

4.3.2 Accessing data from database
One strategy when accessing data from a SQL database is to store the data in a dataset. The
dataset is an in-memory cache of records that you can work with while disconnected from the
database. This means that large amount of data is placed in memory.

Another strategy is to access the database directly to avoid this memory build up. The data is
streamed from the database, and only a small amount is in memory at one time.

An example of how these strategies are used is in ADO.NET in the .NET Framework. The two
central components in ADO.NET are the DataSet and the .NET data provider, see Figure 4.1.
The DataSet and DataAdapter allow you to create a client side cache of a related record set. It is
the DataAdapter who takes care of updates against the database.

The .NET Data Provider is design for data manipulation and forward only, read only access to
data. Use of the DataReader provides access to this stream directly without the use of a DataSet.

Figure 4.1 DataSet and DataReader overview.

The SqlDataReader provides a non buffered stream of data from a SQL database. This means
that only one row is in memory at one time and this reduces system overhead and may increase
application performance. Since the data is not cached in memory this method is a good choice
when retrieving large amount of data from a database.

.NET Data Provider DataSet

DataReader DataAdapter DataTable
Collection

Database

Client

Client

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 20

? May 2003 – Ørjan Stallemo and Kristian Vatne

4.4 Protocols used for streaming

4.4.1 Transmission Control Protocol (TCP)
All hosts on the Internet are identified by an Internet Protocol (IP) address. And the most
common way of communicating on top of IP is trough either TCP or User Dat agram Protocol
(UDP). These relate to the Open Systems Interconnection (OSI) model in the following way:

Figure 4.2 The OSI model

TCP/IP connections are identified by IP and port number for both peers. A port is number from
0 to 65535 which identify a TCP connection. The number relates to the size of the address field
in TCP.

In general, UDP is used for communication where timing is essential and 0 % loss is not required
(e.g. video streaming and online gaming). TCP is in general used when reliability and 0 % loss is
essential. In this thesis, TCP is used as 100 % reliability is necessary.

For more information on this, please see TCP specification [41].

4.4.2 Hypertext Transfer Protocol (HTTP)
RFC 2616 “Hypertext Transfer Protocol -- HTTP/1.1” [23] defines the HTTP protocol.

HTTP is a client to server protocol with which two machines can communicate over a TCP/IP
connection. A server listens on a specified port, usually 80, for HTTP r equests. The client
initiates the connection and sends a request, and the server then responds.

Figure 4.3 HTTP request/response example.

7 Application

6 Presentation

5 Session

4 Transport

3 Network

2 Data Link

1 Physical

TCP, UDP

IP

Application

Data Transport

GET / HTTP/1.1
Host: www.google.com

HTTP/1.1 200 OK
Content-Length: 3059
Server: GWS/2.0
Date: Sat, 11 Jan 2003 02:44:04 GMT
Content-Type: text/html
… ..

Response Request

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 21

? May 2003 – Ørjan Stallemo and Kristian Vatne

“GET” is used for retrieving information.

“200 OK” means the request was received, understood and accepted.

It is fully possible to stream the HTTP response. If for example the response includes data
retrieved from one or more databases, the start of the message can be transferred before the rest
is retrieved.

It is also possible to traditional video and sound streaming, not the kind of streaming we defined
for this thesis, over HTTP. QuickTime from Apple does this by putting a new protocol on top of
HTTP.

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 22

? May 2003 – Ørjan Stallemo and Kristian Vatne

4.5 Alternative transfer technologies

4.5.1 Multipurpose Internet Mail Extensions (MIME)
MIME is a specification for formatting non-ASCII messages so they can be sent over the
Internet. It was developed to widen the range of use for Email. MIME is now specified in RFCs
2045 [12], 2046 [13], 2047 [14], 2048 [15] and 2049 [16].

The material presented here is a short summary of the part of MIME that is relevant to this
thesis, please refer to the RFCs for more details.

The MIME header has five fields defined: MIME -Version, Content-Type, Content-Transfer-
Encoding, optional Content-ID and optional Content-Description.

Figure 4.4 Example Email

A single MIME message is in Figure 4.4 used for the purpose of transferring an Email without
any attachments. The optional headers Content-ID and Content-Description have been dropped.

Figure 4.5 Multipart message example.

Multiple MIME messages are used to send an Email with “Some song” as attachment. Each
MIME message is separated by a boundary, with “--“ in front of them. “--“ also appears at the
end of the last message.

4.5.2 Direct Internet Message Encapsulation (DIME)
DIME is a lightweight binary message format for sending and receiving messages. Although
SOAP is the primary reason for creating DIME, it is not required that DIME is used with SOAP.

From: Ørjan Stallemo <ostallem@siving.hia.no>
To: kvatne@siving.hia.no
Subject: mail test
MIME-Version: 1.0
Content-Type: text/plain; charset=ISO-8859-1
Content-Transfer-Encoding: quoted-printable

This is the actual message

From: Kristian Vatne < kvatne@siving.hia.no >
To: ostallem@siving.hia.no
Subject: mail test 2
MIME-Version: 1.0
Content-Type: multipart/mixed; boundary="*****"
--*****
Content-Type: text/enriched; charset="us-ascii"

This is the actual message
--*****
Content-type: audio/basic
Content-transfer-encoding: base64
Content-description: Some song

(Some song in an audio format)
--*****--

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 23

? May 2003 – Ørjan Stallemo and Kristian Vatne

DIME has no current specification. The last was an Internet -Draft published by IETF called
Direct Internet Message Encapsulation (DIME). It expired in December 2002. As of May 2003, a
local copy can be attained from Microsoft [11].

Summary of the relevant aspects of DIME messages:

? DIME is a specification for including multiple binary records within a single package.
? DIME has no restriction on the size or format of the data: they may vary from record to

record within the same message.
? DIME does not need to know the length of the total data before sending.
? DIME can utilize chunking to deal with large amount of data, or to better deal with

unknown amounts of data.

As explained in section 4.2.2, chunking allows for data to be divided into smaller parts. This
ability is native in DIME.

Figure 4.6 DIME Record Format.

Figure 4.6 gives an overview of the anatomy of a DIME record: it consists of predefined fields
with constant lengths. The figure does not show all fields specified in DIME, only the relevant
ones. Following that is a principle schematic of a DIME message in Figure 4.7.

MB ME CF ID Length

Type Length Type Name Format

Data Length

ID

Type

Data

Padding to the nearest 32bit boundary

MB = Message Begin
ME = Message End
CF = Chunked Flag

Type Name Format can
be text/html or URI or
chunked data

Padding to the nearest 32bit boundary

Padding to the nearest 32bit boundary

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 24

? May 2003 – Ørjan Stallemo and Kristian Vatne

Figure 4.7 Principle schematic of a DIME message.

4.5.3 Blocks Extensible Exchange Protocol (BEEP)

4.5.3.1 Introduction
BEEP is considered a framework, and takes care of connection, authentication and packaging on
top of the transport layer. Though it is not necessary to map it onto TCP, it is common.

The “Blocks Extensible Exchange Protocol Core” is specified in RFC 3080 [7]. RFC 3081 [8]
defines how to map BEEP onto TCP. For more articles and projects on BEEP, please see
beepcore.org [42].

Figure 4.8 BEEP session principle.

BEEP is a peer-to-peer protocol, meaning there are no traditional client and server. One side sets
up the connection, and requests for more channels. If the host at the other side supports the
profile requested for, a channel may be set up.

Profiles define how messages are exchanged between the peers. This includes encryption,
authentication and other exchange rules.

Session

Channel 0

Channel 1

Channel n

(one IP connection)
 (management profile)

(SOAP profile)

(telnet profile)

DIME message

Record 1

Record 2

Record 3

Message Begin

Message End

Transport protocol (TCP or H
TTP)

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 25

? May 2003 – Ørjan Stallemo and Kristian Vatne

5 Feasibility study

5.1 Overview
This chapter is a feasibility study of strategies for overcoming the problem with excessive strain
on server resources when transferring large XML objects over SOAP.

The first section outlines solutions to the problem that does not involve streaming, but looking at
message patterns and alternative transport means, the next is about combining SOAP with the
technologies described in section 4.5, and the last section looks at the why SOAP does not
support streaming.

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 26

? May 2003 – Ørjan Stallemo and Kristian Vatne

5.2 Alternatives to streaming SOAP

5.2.1 Sending a URI
Perhaps the simplest way of transferring a large XML document with SOAP would be to respond
with an URI to where the serialized XML document can be retrieved, and a description of the
transfer medium. The medium could be anything from HTTP, File Transfer Protocol (FTP) or
even a TCP socket.

Figure 5.1 Sequence chart for sending an URI and medium type with SOAP.

This approach solves the memory problem on the server side, but it does not really use SOAP
the way it was intended in this thesis. It sidesteps the use of SOAP on the difficult part entirely by
only using SOAP to set up the connection, and using another medium to transfer the data.

5.2.2 Single request, multiple responses
Section 2.4.2 states that SOAP does not necessarily have to be transported on top of HTTP,
which is limited to a request/response message pattern. A possible solution to the problem of
transferring large XML documents could be to use a Request/N-Response pattern, and divide
the data over several SOAP message.

Transfer the serialized XML document on TCP

Connect to the socket

Respond with an URI and TCP socket as medium, using SOAP

Request data, using SOAP

Client Server

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 27

? May 2003 – Ørjan Stallemo and Kristian Vatne

Figure 5.2 Sequence chart for Request/N-Response communication with SOAP.

The XML document parts could either be sent as part of the primary SOAP message, or as an
attachment using for example MIME or DIME. See section 5.3.1 and 5.3.2 for details.

As HTTP does not support this type of message pattern, another transfer protocol must be used.
Potential protocols for this sort of message pattern are DIME and BEEP. These are described in
use with SOAP in section 5.3.2 and 5.3.3.

5.2.3 Multiple requests, multiple responses
Sending multiple requests and receiving multiple responses, or an N-Request/N-Response
message pattern, is also a possible way of overcoming the streaming problem.

Figure 5.3 Sequence chart for N-Request/N-Response communication with SOAP.

In a message pattern like this, normal SOAP semantics can be used. There is no need for
additional technologies to overcome problems with large amounts of data.

Response N, using SOAP

Request N, using SOAP

Response 0, using SOAP

Request 0, using SOAP

Client Server

… ..

Response N, using SOAP

Response 0, using SOAP

Request data, using SOAP

Client Server

… ..

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 28

? May 2003 – Ørjan Stallemo and Kristian Vatne

5.3 Combining SOAP with alternative technologies

5.3.1 SOAP Messages with Attachments (SwA)
SwA defines how a SOAP message can be carried in a MIME multipart/related message, and still
abide the rules for SOAP messaging. This section sums up the aspects that are relevant to this
thesis. The specification is a submission to W3C called “SOAP Messages with Attachments” [10].

MIME Multipart/Related (RFC 2387 [17]) remains semantically similar to a SOAP protocol
binding so the SOAP message is unaware that it is being capsulated. SOAP processors receiving a
MIME Multipart/Related with a SOAP message in the root part will process the message
according to the SOAP specification [3].

A multipart format named “SOAP Message Package” has been defined. These are constructed
using the Multipart/Related media type, and follows these rules:

? The primary SOAP message is carried in the root body part of the multipart/related
structure.

? MIME attachments are referenced inside the SOAP message using SOAP references.
? Referenced MIME attachments must contain eithe r a matching Content-ID header or a

matching Content-Location header.

SOAP References to Attachments specifies how the primary SOAP message must refer to other
entities in the message package. This is done by using existing mechanisms in SOAP and MIME.

The HTTP binding for SwA describes the relationship between HTTP headers and the MIME
headers, not whether or not an asynchronous messaging or a synchronous request/response
interaction pattern should be used.

5.3.2 SOAP and DIME
This section describes the relevant rules for how to encapsulate SOAP in DIME. Please see
section 4.5.2 for more details on DIME, including specification.

In the article “Sending Files, Attachments, and SOAP Messages Via Direct Internet Message
Encapsulation” [21], Jeannine Hall Gailey lists a number of things to keep in mind when using
DIME with SOAP:

? The first DIME record contains the primary SOAP message. Additional SOAP
attachments are included in subsequent record payloads.

? The primary SOAP message may cross-reference any subsequent attachments by a
Universal Unique Identifier (UUID) or any form of URI. This UUID is indicated by the
href attribute and is used to match the ID field of the corresponding DIME record.

? When cross-refer-encing attachments, relative URI references should be converted to
absolute URI references.

? When binding DIME messages to HTTP, the HTTP Content -type header field must
specify "application/dime" instead of the usual "application/soap+xml" or "text/xml"
defined respectively by the SOAP 1.2 and SOAP 1.1 protocols.

? For DIME attachments that are signed or encrypted, security information about the
attachment should be included in the header of the primary SOAP message.

Figure 5.4 shows a DIME message encapsulation a SOAP message and attachments. The DIME
message can be sent either on top of TCP or on HTTP.

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 29

? May 2003 – Ørjan Stallemo and Kristian Vatne

Figure 5.4 SOAP encapsulated in a DIME message.

5.3.3 SOAP and BEEP
RFC 3288 “Using the Simple Object Access Protocol (SOAP) in Blocks Ex tensible Exchange
Protocol (BEEP)” [9], specifies how to use SOAP with BEEP.

From section 4.5.2 we know that BEEP sits on top of the transport layer, much like DIME. This
relates nicely to what is described in section 2.4.2: that SOAP is most commonly but not
necessarily used with HTTP.

The BEEP profile for SOAP is identified as “http://clipcode.org/beep/soap” [43]. The side of the
peer that acts like a server identifies the “virtual host” through the serverN ame attribute. So the
request to start a SOAP channel could look like the message in Figure 5.5.

Figure 5.5 Message to start a SOAP profile channel in BEEP example.

Furthermore, the BEEP profile for SOAP defines the use of envelopes encoded as UTF -8 using
the media type application/xml. And in case of attachments, MIME is used.

DIME message

Record 1

Record 2

Record 3

Message Begin

Message End

Primary SOAP Message

SOAP Attachment

SOAP Attachment

<start number='1' serverName='stockquoteserver.com'>
<profile uri='http://clipcode.org/beep/soap' />

<![CDATA[<bootmsg resource='/StockQuote' />]]>
</profile>

</start>

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 30

? May 2003 – Ørjan Stallemo and Kristian Vatne

5.4 The underlying problem

5.4.1 Why wont SOAP stream
From section 2.4.2, we know that the most common way of transferring SOAP message is on top
of HTTP. We start by looking at streaming SOAP over HTTP.

We have the following two facts:

? A HTTP response with fault code 2XX (e.g. 200) indicates that a request was
successfully received, understood and accepted.

? SOAP specification, see section 24.4, states that a server must issue a HTTP fault code
“500 Internal Server Error” if an error occurs during the processing of a request.

This means that while it is possible to start streaming the start of the response while the server is
still processing the rest of the response, the SOAP specification does not allow this.

It is of course entirely possible to simply ignore this issue, and make an implementation that
replies “200 OK” in accordance to HTTP but not to SOAP. We have not been able to locate any
implementation that does this, but the issue has been raised by Andy Neilson on the W3C’s
discussion boards [22].

The HTTP binding is the only binding described in the SOAP specification, so this li mitation
only applies to HTTP. If bindings to another transfer protocol could be specified and agreed
upon, there is no theoretical hindrance to achieving streaming with SOAP.

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 31

? May 2003 – Ørjan Stallemo and Kristian Vatne

5.4.2 Protocol overview

Figure 5.6 Protocol layers and supported technologies overview.

Figure 5.6 shows an overview of some of the possible protocols SOAP can be transferred on top
of, and whether or not they support streaming or Request/N-Response. This overview is purely
theoretical, so implementations many not support streaming or Request/N-Response even if it is
possible.

TCP SOAP

DIME

BEEP

Serialized XML

HTTP

SwA

DIME

SOAP

SOAP

SOAP

Serialized XML

SOAP

Serialized XML

Stream? Request/N-Response?

No
No support in SOAP

No
No support in HTTP

No
No support in SOAP

No
No support in HTTP

No
No support in SOAP

No
No support in HTTP

Yes Yes

Yes

Yes

Yes Yes

Yes

Yes

Yes Yes

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 32

? May 2003 – Ørjan Stallemo and Kristian Vatne

6 Applications and adaptations for testing

6.1 Overview
This chapter is intended to provide information about the testing and implementation in th is
thesis, so others can reproduce our results. It also serves a way of showing the adaptations made
when going from theory to testing.

The first part gives a short introduction to the software solutions we used. After that is a part on
the software we wrote in other to conduct the testing in the next chapter. The last part is about
the XML format and database we have used for testing, and some limitations in the development
environment.

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 33

? May 2003 – Ørjan Stallemo and Kristian Vatne

6.2 Software solutions

6.2.1 Visual Studio .NET
The decision to use Visual Studio .NET as the development environment in this thesis was made
based on what Sense Technology used. The decision was not forced on us, but we felt it natural
to adopt the development tool Sense Technology used.

During the time spent on this thesis, Microsoft has launched the new Visual Studio .NET 2003.
But, in the starting phase of the thesis, Visual Studio .NET was the newest addition to
Microsoft’s developer platform.

Visual Studio .NET was the first development environment from Microsoft build up around the
use of XML Web services. In this aspect it was a major improvement to its predecessor, Visual
Studio 6.0.

For product information on Visual Studio .NET, see the product page [44].

6.2.2 XML Web Services downloads

6.2.2.1 Introduction
A handful of XML Web Services downloads are available for Visual Studio .NET. The purposes
of these are to add features, help and validation functionality.

For this thesis, we installed SOAP Toolkit 3.0 and Web Services Enhancements (WSE) 1.0
Service Pack 1.

6.2.2.2 SOAP Toolkit
The SOAP Toolkit was developed to allow a programmer to add XML Web Service functionality
to existing Component Object Model (COM) applications and components. The current release
is version 3.

SOAP Toolkit 3.0 also includes a “Trace Utility” application, used to trace SOAP messages sent
over HTTP. SOAP messages are sent through this application, and then passed on towards the
final destination.

6.2.2.3 Web Services Enhancements (WSE)

WSE extends the functionality of web services for Visual Studio .NET and the .NET framewo rk.
This includes security, scalability, performance enhancements and more. Features that gain wide
acceptance will be absorbed into the .NET framework.

Functionality in WSE 1.0 is based on WS-Security, WS-Routing, WS-Attachments, and DIME
specifications.

The current release is WSE 1.0 Service Pack 1.

6.2.3 Microsoft SQL Server™ 2000
We have chosen to use Microsoft SQL Server 2000 because the Microsoft Windows ActiveX
prototype implementation of the WITSML API 1.1.0A uses this server. WITSML API 1.2, who

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 34

? May 2003 – Ørjan Stallemo and Kristian Vatne

is the current version, does not have a prototype implementation but since we are working on the
windows platform we found it suitable to use the SQL server from Microsoft.

6.2.4 MemBoost
In order to conduct fair testing, all tests preformed had approximately the same available free
memory. This was done by clearing the system for all memory not currently in use.

The MemBoost application by Dhruv Matani takes care of this. For more information, see the
product page [45].

6.2.5 Windows XP Performance Monitor
We needed a tool to measure the performance of the computer whil e our tests were running.
Since we were working in a Windows XP environment we decided to use Performance Monitor
(Perfmon). The Performance Monitor is Microsoft’s primary tool for measuring and monitoring
system performance.

The tool supports automatic collection of performance data from a local or remote computer.
This data can be viewed using System Monitor, or exported for further analyzes.

Figure 6.1 Perfmon application screenshot.

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 35

? May 2003 – Ørjan Stallemo and Kristian Vatne

6.3 Test applications

6.3.1 Introduction
This section describes the applications that were made in order to conduct the tests presented in
chapter 7. All applications are programmed in Visual Studio.NET with the programming
language C#. Screenshots and the source code for each applic ation are presented in Appendix B.

6.3.2 Compression tester
The purpose of Compression tester is to make the testing of the compression applications more
dynamic and easier to conduct.

? Graphical User Interface (GUI) that incorporates the “command line” compres sion
applications.

? Measures the time it takes to compress the files, and outputs in .txt files.
? Can do multiple compressions.

6.3.3 Generator
Generator is used to fill the database “XMLLog” with test data. Each time the program is
executed, about 7500 rows are added. The format of these rows is explained in section 6.4.2.

6.3.4 Database stream tester
Database stream tester was made to test strategies data retrieving from database. The application
has a GUI interface and the main features are:

? Possible to choose between two methods to fetch data, SqlDataReader that streams data
and DataSet that reads all at once.

? Writes the database data in a file for verification.

6.3.5 SOAP N-Request tester
The SOAP N-Request tester has both a client and a server application. The purpose for this
program is to test SOAP over a network. Another aspect is to test if SOAP performs better if a
large data request is divided into multiple Request/Responses.

The server side is a WebService that returns a DataSet with the requested data.

The client side of the application has a GUI interface and the main features are:

? Can choose the interval of rows to fetch, and how many rows fetch in one call.
? Outputs XML object to file for verification.

6.3.6 DIME tester
The DIME tester application also has a server and a client. The purpose of this application is to
test DIME streaming from a server to a client over TCP.

The features on the server side are:

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 36

? May 2003 – Ørjan Stallemo and Kristian Vatne

? GUI to display debug information.
? Streams response back to the client as a DIME message divided into chunks of 4096

byte.

The client side has a GUI interface and the following features:

? Can choose the interval of rows to fetch.
? Outputs the data in file for verification

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 37

? May 2003 – Ørjan Stallemo and Kristian Vatne

6.4 Adaptations to this thesis

6.4.1 XML structure
We constructed our own XML document format. It resembles some of the WITSML structures
in that it has several elements and a few of them have large amounts of content. We felt that
testing the principles were important, and not necessarily actual WITSML.

From Figure 6.2 we see that every “log” element has three children: ID, TIMEDATE and
LOGDATA. The LOGDATA consist of 50 comma separated numbers of 5 digits and 6
decimals digits.

Figure 6.2 Self made XML format example.

6.4.2 Database XMLLog
Based on the XML format we decided on, we constructed a database as shown in Table 6.6. And
we then used the Generator application to fill the database with 15000 rows of test data.

Table 6.1 Columns in table “log” from XMLLog database.

6.4.3 Limitations in Visual Studio .NET
Figure 5.6 in section 5.4.2 shows an overview of the theoretical possibilities for supporting
streaming and Request/N-Response for different transport protocols. As we mentioned, this did
not necessarily mean they where implemented. This is the case for Microsoft Visual Studio .NET.

ASP.NET WebMethods does not support streaming. Furthermore, every WebMethod ends with
a “return” call, similar to a standard HTTP model. This excludes the Request/N-Response
message pattern.

But it is possible to chunk a response back to the client. The problem is: SOAP extensions are
disabled for the web service method when this option is utilized. Since the Sitecom System uses
SOAP, this option could not be used.

<xml>
 <Log>
 <ID>1</ID>
 <TIMEDATE>01.01.2003 01:00:00</TIMEDATE>
 <LOGDATA>91001.492425,… ..,50709.751110</LOGDATA>
 </Log>
 <log>
 <ID>2</ID>
 <TIMEDATE>01.01.2003 02:00:00</TIMEDATE>
 <LOGDATA>45671.4598425,… ..,24729.349870</LOGDATA>
 </Log>
</xml>

Name DataType Size Nulls Id
ID int 4 X
TIMEDATE datetime 8 X
LOGDATA text 16 X

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 38

? May 2003 – Ørjan Stallemo and Kristian Vatne

An overview of streaming and Request/N-Response features supported in Visual Studio.NET,
similar to Figure 5.6 in section 5.4.2, is shown in Figure 6.9. Note that BEEP is not implemented
at all.

Figure 6.3 Protocol layer overview and supported technologies in Visual Studio .NET.

TCP SOAP

DIME

Serialized XML

HTTP

SwA

DIME

SOAP

SOAP

SOAP

Serialized XML

Stream? Request/N-Response?

No
No support in SOAP

No
No support in HTTP

No
No support in SOAP

No
No support in HTTP

No
No support in SOAP

No
No support in HTTP

Yes Yes

Yes

Yes

No
No support in VS.NET

No
No support in VS.NET

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 39

? May 2003 – Ørjan Stallemo and Kristian Vatne

7 Testing

7.1 Overview
This chapter gives a detailed description of the various tests conducted. The description includes
objective of the test, assumptions, limitations and a testbed description.

The test conducted first was a compression test of various compressors, then a test on methods
for extracting data from a database, and finally a test on requesting data over network.

The last test part proceed in the following way: First is a test to determine what number of rows
to retrieve for making N-Request/N-Response message pattern most effective. This result is used
in SOAP N-Request/N-Response for the duration of the testing. The second and third tests test
server performance for SOAP N-Request/N-Response versus DIME, with multiple clients
connecting. The forth measures time used for DIME, SOAP N -Request/N-Response and SOAP
when fetching data from a varying number of rows in our database.

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 40

? May 2003 – Ørjan Stallemo and Kristian Vatne

7.2 Compression testing

7.2.1 Test objectives
To test compression of XML documents we picked a handful of different techniques. These are
represented by third party implementations, in for m of .exe files.

The way we see it there are two important aspects to compression, compression ratio and time
used. As for time used, both compression and decompression are important.

From reading other compression tests [46] in the references, we have c oncluded that the size of
the data to be compressed is the key factor to affect the outcome. Some techniques may perform
very well on small amounts of data, and bad on large amounts. A relatively wide range of
document sizes will therefore be tested.

The techniques, data and amounts of data in our tests have been chosen based on what is most
relevant to the Sitecom project.

We expect that no technique will be superior to all the others in all aspects. Hopefully one will
stand out as logical choice and the overall best technique.

7.2.2 Assumptions and limitations
The composition of techniques used for testing has been chosen based on two criteria:

? A widest possible range of techniques usable in one single environment
? Possible future use in Sitecom

To ensure fair testing we wanted all tests to be conducted in the same environment, even if it
meant excluding some of the techniques. The environment which gave us the widest range of
techniques was “command line” tools for MS Windows. GNU/Linux and .NET components
where also considered.

Section 3.3.6 describes the most powerful tool for compressing XML documents: DTD/Schema
awareness. Although the benefits are great, we do not recommend the use of this technique. In
an environment where streaming and chunking are possible solutions to overcome large
documents, committing to a DTD or Schema is not recommended.

Most of the techniques have one or more parameter options to help increase the performance.
Utilizing all these options would be too time-consuming. And utilizing for one or two of the
techniques would make it an uneven test. Regrettably, we therefore had to disregard all options.

7.2.3 The techniques
Based on the criterions above, we chose the following two text compressors and two specialized
XLM compressors to test:

? bzip2 [38].
? Deflate64 in form of PKZIP implemented by PKWARE [39].
? XMill [40].
? XMLPPM [6].

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 41

? May 2003 – Ørjan Stallemo and Kristian Vatne

7.2.4 Testbed description
To test compression, we use the application “Compression tester”, described in section 6.3.1.
This application does not perform any compression, it calls other applications that does the
actual compression, and measures the time.

Figure 7.1 Compression tests overview.

The size of the XML document is recorded before compression, in compressed form and after
decompression.

During testing, all processes not needed to complete the tests we re shutdown, so all techniques
would have the same CPU/memory available for the tests. Despite this, all tests were conducted
20 times, and an average was calculated. This was done to account for caching and unforeseen
events that might use CPU power or memory.

XML flies Compressors

Compressed files

Time
measured

Decompressors Time
measured

Decompressed files

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 42

? May 2003 – Ørjan Stallemo and Kristian Vatne

7.3 Database streaming

7.3.1 Test objectives
To test if streaming from a database helps on reducing CPU and memory use on the server, we
have picked two methods, SqlDataReader and DataSet in Visual Studio .NET, for testing.
SqlDataReader stream one row at the time from the database and the DataSet fetch all at once.

The two tings we look for in this test are CPU and memory use. To ease strain on server, these
must be as low as possible. This is just a simple test to see how these two methods differ, and we
expect that SqlDataReader will be better both in CPU and memory use.

7.3.2 Assumptions and limitations
In these two test methods for fetching data from a database is used to see the difference between
streaming and fetching multiple rows. We will not suggest that these are the two best methods,
but we can suggest whether streaming has potential.

We chose to test these methods because they were integrated in the Visual Studio .NET
environment and were easy to combine with our Microsoft SQL Server 2000.

7.3.3 Testbed description
To test streaming from a database, we use the application “Database stream tester”, described in
Section 6.3.4 and the measuring tool “Perfmon”, described in Section 6.2.5.

Figure 7.2 Database streaming test overview.

The application fetches the two columns “ID” and “LOGDATA” for all the rows in the
database and then writes them to a file. Perfmon monitor CPU/memory usage during the testing.

During testing, all processes not needed to complete the tests were shutdown, so both methods
would have the same CPU/memory available for the test.

SqlDataReader

DataSet

Database

Testing Database

File

Perfmon

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 43

? May 2003 – Ørjan Stallemo and Kristian Vatne

7.4 Data request over network

7.4.1 Test objectives
To test streaming of data over a network, we have chosen a streaming technique and ordinary
SOAP. They will be compared to see how much streaming helps to reduce strain on server.

To test streaming of data we chose to use DIME over the network and SqlDataReader from the
database. And when SOAP and DataSet is used, the client can either fetch all the data at once or
split it into multiple requests/responses.

The primary reason we chose DIME to test streaming is that it is a new technology that
potentially can be used with SOAP for streaming. This it not the case in ASP.NET WebMethod
at this time, but we can implement streaming data with DIME alone.

The three tings we looked for to find the best performance in these tests are CPU, memory use
and time measured. To ease strain on server resources, CPU load and memory usage must be as
low as possible. It is preferred that the process time on server is short. We also want to find the
approximate amount of data to fetch in one SOAP request to achieve best performance.

We expect that streaming will be more CPU and memory efficient, but it will be interes ting to see
how well SOAP performs, especially when we split the data fetch into multiple calls. We expect
less strain on server resources, and increased processing time.

7.4.2 Assumptions and limitations
The methods for testing have been chosen on these criteri a:

? The method is possible to implement in Visual Studio.NET.
? One streaming method to compare with SOAP.
? One implementation of SOAP.

To ensure fair testing all the tests were conducted with the same available server resources. This
was done by closing all processes on the server machine that was not necessary to conduct the
tests. We also ran the memory manager tool MemBoost, see Section 6.2.4, between every test to
ensure that approximately the same amount of memory was available for each test.

7.4.3 Testbed description

7.4.3.1 Introduction

To test the SOAP and DIME streaming method we used the two applications “SOAP N-Request
tester” described in section 6.3.5 and “DIME tester” described in section 6.3.6. To measure the
performance we used Perfmon, described in section 6.2.5.

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 44

? May 2003 – Ørjan Stallemo and Kristian Vatne

Figure 7.3 SOAP and DIME test overview.

We divided our test into four separate tests:

? SOAP N-Request.
? SOAP N-Request for 1-5 clients.
? DIME for 1-5 clients.
? Time test for SOAP, SOAP N-Request and DIME.

Perfmon logs counters on the server side during the testing. There are four counters and the
logging occurs every 5 seconds. The counters are shown in Table 7.1.

Table 7.1 Performance counters.

In the last test a different approach was chosen, as this test focus only on the time measured. To
ensure a more accurate time the measuring tool on the server side sampled the time with an
interval of one second. To compensate for the extra workload this puts on the server only the
“Process/Processor time in percent” counter was used in this test.

7.4.3.2 SOAP N-Request
The first test we conducted was SOAP with multiple request/response to find what number of
rows to fetch in one call.

The “SOAP N-Request tester” application client uses the web service on the server to fetch all
rows in the database “XMLLog”. SOAP is used in this transaction. The server uses DataSet to
fetch data from “XMLLog”. All the data is generated on the server before it is return to the
client. The client can choose what number of rows to fetch in one call.

Server Client

XMLLog File

SOAP or DIME

Perfmon

Performance object: Counters:
Memory Available Bytes
Process % Processor Time

Working Set
Processor % Processor Time

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 45

? May 2003 – Ørjan Stallemo and Kristian Vatne

Figure 7.4 SOAP with N- Request/N-Response overview.

7.4.3.3 SOAP N-Request for 1-5 clients
This test was conducted to evaluate the performance of N -Request/N-Response calls using
SOAP with multiple clients. From 1 to 5 clients was connected to the server at simultaneously.
Based on a review of the results from the above test, see section 8.4.3, we decided to fetch 1000
rows in each call.

The “SOAP N-Request tester” application is also used for this test.

7.4.3.4 DIME for 1-5 clients
A similar test as the above was conducted on DIME streaming using the application “DIME
tester”. This was done to be able to compare the performance to SOAP vs. streaming DIME.
From 1 to 5 clients was connected at the same time.

Figure 7.5 DIME streaming test overview.

Connects to socket

Server Client

End of. DIME stream

Starts the fetch of
all the rows in the
database

Receives the
DIME stream and
write it to a file.

Streams the data
from the database
and writes into a
DIME stream.

Start of DIME stream

Request for n-rows

Server Client

Response with n-rows

Request for n-rows

Response with n-rows

Sets the number
of rows to fetch
and the number of
rows in one
request/response

Receives the
responses and
write them to a
file.

Fetches the
number of rows
requested from
the database and
send a response.

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 46

? May 2003 – Ørjan Stallemo and Kristian Vatne

The application “DIME tester” client connects to a TCP socket on the server and use DIME to
fetch the data from the database. On the server side the application uses SqlDataReader to create
a stream of data from “XMLLog”. This stream is wrapped in XML tags, and transferred via
DIME messages split into chunks of size 4096 byte. Chunks are generated dynamically as the
data is retrieved from the database and then streamed continuously back to the client.

7.4.3.5 Time test for SOAP, SOAP N-Request and DIME
The time test was done with the same applications as the other tests. The time the server
application used to process the request from the client was measured when retrieving 1, 1000,
5000, 10000 and 15000 rows from the server. This was done with ordinary SOAP, SOAP N-
Request with 1000 rows in each request and DIME.

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 47

? May 2003 – Ørjan Stallemo and Kristian Vatne

8 Test results

8.1 Overview
Presented in this chapter are the results from the test conducted. The results are in form of
graphs, and the actual numbers can be found in the appendices.

The results are presented in the same sequence as the test: compression, data retrieving from
database and finally data request over network. The parts include preliminary testing and actual
results. Also an introduction and post testing where that is necessary.

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 48

? May 2003 – Ørjan Stallemo and Kristian Vatne

8.2 Compression test results

8.2.1 Introduction
The results from time measurements presented here are the average of 20 similar tests. All results
from the compression tests can be found in Appendix C.

No variation was found in the size of the compressed and decompressed files when multiple tests
were conducted on the same file with the same technique. This was true for all techniques.

8.2.2 Preliminary testing

8.2.2.1 Introduction

Preliminary testing was done to make sure the compression worked as we expected it would. It
came as a natural part of setting up the “Compression tester” application, described in section
6.3.2. These tests gave us some rather unexpected results: XMill and XMLPPM had difficulties
compressing some of the XML documents.

8.2.2.2 XML validation in XMill
XMill performs a XML validation as it compresses the documents. It is our belief that this
validation does not work as intended. Here is an example of an error:

Figure 8.1 Section of the XML document that XMill reported error on.

Figure 8.2 XMill’s error message.

XMill reports error on the ‘/’ between Australia and Oceania. According to the XML
specification [5], there are no rules against using this character in attribute values.

8.2.2.3 ISO Latin-1 character set with XMLPPM
Another bug, or rather a lack of feature, was found in XMLPPM. American National Standards
Institute (ANSI) character set spans over 256 characters. 0-127 are the same as ASCII character
set, and 128-255 are similar to ISO Latin-1 character set. XMLPPM would not compress
documents containing characters 128-255 from the ANSI character set (e.g. ‘æ’, ‘ü’ and ‘®’).

8.2.2.4 Conclusion
Despite the obvious faults to XMill and XMLPPM, we still decided to go along with the testing
as planed. We felt that the performance testing of the XML compressors where the key issue.
And that the results would not be compromised by adapting the documents. Before a
compression standard could be used in Sitecom, it would have to be tested thoroughly. Faults like
these can be corrected.

So the following adaptations were made:

Parse error in line 10:
Symbol ‘>’ expected after ‘/’ tag!

<continent id='f0_124'
 name='Australia/Oceania'/>

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 49

? May 2003 – Ørjan Stallemo and Kristian Vatne

? ‘/’ character in the attribute name or value where removed.
? ISO Latin-1 character set characters have been removed.

8.2.3 Test files
The XML used for testing come from 2 categories. The first is WITSML API example files, and
the second is test files generated from our database. The four smallest come from WITSML, and
the six largest we generated. All files resemble files that are used in the Sitecom system.

The files were selected and generated exclusively based on theirs size. We wanted to have spread
variety of different sized files.

Table 8.1 List of the files used for compression testing.

 XML document: original size (byte):
capClient 405
wellbore_no_xsl 2642
mudLog_no_xsl 7392
rig_no_xsl 14782
SOAPtest0 34738
SOAPtest1 101838
SOAPtest2 505743
SOAPtest3 1004172
SOAPtest4 2001975
SOAPtest5 2995965

8.2.4 Compression results
Figure 8.3 shows the size in percentage of the original files. XMLPPM start out best on smaller
files, and XMill and PKZip does best on larger files.

Compression ratio

0,0

10,0

20,0

30,0

40,0

50,0

60,0

70,0

80,0

40
5

26
42

73
92

14
78

2
34

73
8

10
18

38

50
57

43

10
04

17
2

20
01

97
5

29
95

96
5

Bytes size of original file

%
 o

f o
ri

gi
na

l f
ile

 a
ft

er
 c

om
pr

es
si

on

Bzip2

PKZip

XMill

XMLPPM

Figure 8.3 Compression ratio versus file size.

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 50

? May 2003 – Ørjan Stallemo and Kristian Vatne

Figure 8.4 shows time measured for compression on a logarithmic scale. bzip2 does best on
smaller files, and XMill on larger files.

Compression time

0,01

0,10

1,00

10,00

40
5

26
42

73
92

14
78

2
34

73
8

10
18

38

50
57

43

10
04

17
2

20
01

97
5

29
95

96
5

Byte size of original file

S
ec

on
ds

 (l
og

)

Bzip2

PKZip

XMill

XMLPPM

Figure 8.4 Compression time versus file size.

8.2.5 Decompression results
Figure 8.5 shows the size of the decompressed files in percentage, compared to the original file.
XMLPMM does not reproduce the same files as the or iginal.

Decompression ratio

95,0

97,5

100,0

102,5

105,0

40
5

26
42

73
92

14
78

2
34

73
8

10
18

38

50
57

43

10
04

17
2

20
01

97
5

29
95

96
5

Bytes size of original file

%
 o

f o
ri

gi
na

l f
ile

 a
ft

er
 d

ec
om

pr
es

si
on

Bzip2

PKZip

XMill

XMLPPM

Figure 8.5 Decompression ratio versus file size.

Figure 8.6 shows the time measured for decompression on a logarithmic scale. The graph is very
similar to Figure 8.4.

DeCompression time

0,01

0,10

1,00

10,00

40
5

26
42

73
92

14
78

2
34

73
8

10
18

38

50
57

43

10
04

17
2

20
01

97
5

29
95

96
5

Byte size of original file

S
ec

on
ds

 (l
og

)

Bzip2

PKZip

XMill

XMLPMM

Figure 8.6 Decompression time versus file size.

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 51

? May 2003 – Ørjan Stallemo and Kristian Vatne

8.2.6 Post testing
The test results from decompression were not quite what we expected. Further examination was
needed to give us the answers to the deviance between the original and the decompressed
document for XMLPPM.

XMLPPM outputs documents with code set “ANSI” and file type “PC”. All of the original files
we use for testing had code set “ANSI” and file type “UNIX”. The difference between t hem is
the way linefeed is coded. This cause a 0.7 % deviation is size.

Furthermore, we see that PKZip never compress in less than 0.6 seconds, while the others
compress the smaller files in 0.04-0.06 seconds. We suspect that this is related to the fact that
PKZip checks for license key every time it executes. Preventing this was not possible.

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 52

? May 2003 – Ørjan Stallemo and Kristian Vatne

8.3 Database streaming results

8.3.1 Preliminary testing
Preliminary testing was done while the program was created. This was done to make sure that all
worked in accordance with the test scenario.

One thing we found out was that the data is cached in memory when using dataset. This means
that when we had done one test against the server we had to restart the client. If we did not the
server would just use the dataset cached in memory to return the data.

8.3.2 Results
Figure 8.7 shows the applications CPU use on server. The values rise when the strain on server
increases. SqlDataReader does not exceed 40 % while DataSet reaches 100 % in a short period.

Process CPU

0,00

20,00

40,00

60,00

80,00

100,00

120,00

0 4 8 12 16 20 24 28 32 36

Time in seconds

P
ro

ce
ss

or
 ti

m
e

in
 %

DataSet

SqlDataReader

Figure 8.7 The process processor usage.

Figure 8.8 shows total CPU usage on server. SqlDataReader reaches 60 % and DataSet reaches
100 %.

Total CPU usage

0

20

40

60

80

100

120

0 4 8 12 16 20 24 28 32 36

Time in seconds

P
ro

ce
ss

or
 ti

m
e

in
 %

DataSet

SqlDataReader

Figure 8.8 The total CPU usage.

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 53

? May 2003 – Ørjan Stallemo and Kristian Vatne

To illustrate memory use, Figure 8.9 shows the total available memory during the test. The cure
drops when the application uses memory.

Total Memory

0

50000000

100000000

150000000

200000000

0 4 8 12 16 20 24 28 32 36

Time in seconds

B
yt

e DataSet

SqlDataReader

Figure 8.9 Available bytes per second.

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 54

? May 2003 – Ørjan Stallemo and Kristian Vatne

8.4 Data request over network results

8.4.1 Introduction
The results from the measurements performed by Perfmon are presented here. All the test values
can be found in Appendix C.

The graphs of test results in sections 8.4.2, 8.4.3 and 8.4.4 have curve named “15000 rows”,
“5000 rows” etc. This represents how many rows are fetched in one call with “SOAP N-Request
tester”.

8.4.2 Preliminary testing
Preliminary testing was done during and after setting up the diffe rent applications. It was done to
make sure that the applications worked according to our expectations.

The peak on CPU usage, at the start of each curve in the “SOAP N-Request” test, is caused by
the WebService being compiled and made ready to processing . This happens when the client
makes the first request to the server. And it does not recur with multiple requests since the web
service are already up and running when new requests are made.

When testing several clients simultaneously against the server using the DIME tester application,
it timed out. The SqlDataReader SqlCommand generated the timeout and to compensate for this
we expanded the timeout from 30 to 120 seconds.

As seen in Figure 8.10, the level of available memory at the start of each test varies. For example
5000 rows start with over 80 MB free memory, and 15000 starts with less than 60 MB. This was
solved by restarting each application between every test and run the memory manager
MemBoost.

Total Memory

0

20000000

40000000

60000000

80000000

100000000

0 15 30 45 60 75 90 10
5

Time in seconds

A
va

ila
bl

e
B

yt
es

15000 rows

5000 rows

1000 rows

100 rows

10 rows

Figure 8.10 Available bytes in SOAP tests.

8.4.3 SOAP N-Request test
The client requests all rows in the database from the server. The number of call to the server
depends on how many rows are fetched each call. If 100 rows are fetched in one call, the client
must make 150 calls to get all the data since there are 15000 rows all in all.

Figure 8.11 shows the applications CPU use on the server. The results show that CPU usage in
percentage is higher when retrieving large amount of data in one call.

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 55

? May 2003 – Ørjan Stallemo and Kristian Vatne

Process CPU usage

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 10
0

Time in seconds

P
ro

ce
ss

or
 ti

m
e

in
 % 15000 rows

5000 rows

1000 rows

100 rows

10 rows

Figure 8.11 CPU usage for the web service “SOAP N-Request tester”.

Figure 8.12 shows the applications memory use on server. The curves show the values of the
process “Working Set” counter. Retrieving from 10 to 100 rows in one call performs almost
similar with approximately 20 MB reserved in memory. 100 rows uses 22,4 MB, 1000 rows uses
32,7 MB, 5000 rows uses 71,5 MB and 15000 uses 130.6 MB.

Process used memory

0

20000000

40000000

60000000

80000000

100000000

120000000

140000000

0 15 30 45 60 75 90

Time in seconds

by
te

15000 rows

5000 rows

1000 rows

100 rows

10 rows

Figure 8.12 Memory reserved for the web service “SOAP N-Request tester”.

To illustrate total memory use, Figure 8.13 shows the total available memory during the test. The
cure drops when the application uses memory.

Total free memory

0

50000000

100000000

150000000

200000000

250000000

0 15 30 45 60 75 90

Time in seconds

by
te

15000 rows

5000 rows

1000 rows

100 rows

10 rows

Figure 8.13 Total free memory on the server.

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 56

? May 2003 – Ørjan Stallemo and Kristian Vatne

8.4.4 SOAP N-Request for 1-5 clients test
The client asks for the entire database and fetches 1000 rows for each call. Figure 8.14 shows
CPU and Figure 8.15 shows process memory for 1-5 clients.

Process CPU usage

0
10
20
30
40
50
60
70
80
90

0 15 30 45 60 75 90 10
5

12
0

Time in seconds

P
ro

ce
ss

or
 ti

m
e

in
 %

1 client

3 clients

5 clients

Figure 8.14 CPU usage for the web service “SOAP n-request tester”.

Process used memory

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

0 15 30 45 60 75 90 10
5

12
0

Time in seconds

by
te

1 client

3 clients

5 clients

Figure 8.15 Memory reserved for the web service “SOAP n-request tester”.

8.4.5 DIME for 1-5 clients test
The client gets all the data in the database “XMLLog”. Figure 8.16 shows CPU and Figure 8.17
shows process memory use with different number of clients.

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 57

? May 2003 – Ørjan Stallemo and Kristian Vatne

Process CPU usage

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

0 10 20 30 40 50 60 70 80 90

Time in seconds

P
ro

ce
ss

or
 ti

m
e

in
 %

1 client

3 clients

5 clients

Figure 8.16 CPU usage for “DIME tester” application.

Process used memory

0
2000000
4000000
6000000
8000000

10000000
12000000
14000000
16000000
18000000

0 10 20 30 40 50 60 70 80 90

Time in seconds

by
te

1 client

3 clients

5 clients

Figure 8.17 Memory reserved for the “DIME tester” application.

8.4.6 Time measure for server process
The test shows how much time the server used to process the clients request. Different number
of rows is retrieved from the server and transmitted back to the client.

Server Time

0

10

20

30

40

50

1 1000 5000 10000 15000

Rows requested

Ti
m

e
in

 s
ec

on
ds

DIME

SOAP

SOAP N-Request

Figure 8.18 Time on server for different number of rows requested.

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 58

? May 2003 – Ørjan Stallemo and Kristian Vatne

9 Discussion

9.1 Overview
In this chapter we discuss the test results from the last chapter, feasibility study from chapter 5
and the theory from chapters 2, 3 and 4. What we present here are our views and thoughts.

We first discuss compression, second is data retrieving from database, third is requesting data
over network, and then we discuss the feasibility study. Last are some thoughts on future work
on the subjects discussed in this thesis.

In our discussion, we consider only subjects directly at hand. Issues like security, implementation
difficulties and costs are not considered as we have no basis for discussing it.

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 59

? May 2003 – Ørjan Stallemo and Kristian Vatne

9.2 Compression
There is no clear winner in this test. But we see striking resemblance between the compression
ratio of bzip2 and XMLPPM, and PKZip and XMill, especially on the larger files. XMLPPM
performs best on the smaller files, and XMill and PKZip perform best on the larger files. bzip2
performs second best of the smaller files, and slightly worse than XMill on the larger. The point
where XMill and PKZip outperform XMLPPM and bzip2 seem to be at about 20 KB. Test files
closest to that point are 14 KB and 34 KB, so deciding on the exact size if difficult.

On time measured for compression, bzip2 performs best on the smaller files, while XMill
performs best on the larger files. We also note that in part bzip2, but especially XMLPPM,
performs badly on the larger files. XMLPPM performs nearly 18 times worse than PKZip on the
2.9 MB file. The results from decompression time are very similar to measurement on
compression time, and no further interpretation is needed there.

As we mentioned in section 8.2.6, we suspect that PKZip is slowed down by a license key check.
Evaluation its performance is therefore very difficult. We do however register that the time
measured for compression is very constant for smaller files, and seem to climb at a lower rate
then the rest of the techniques for lager files.

PKZip use the Deflate64 method, and XMill use Gzip for text compression, which use the
Deflate method. See section 3.2.6 and 3.2.7 for a description. Comparing the compression ratios
for theses techniques, we see that PKZip does a bit better at smaller files but they perform almost
identical on files larger than 14 KB. We know that Deflate64 compresses better then Deflate, yet
XMill compress almost equally good as PKZip. This indicates that specialized XML compression
has some effect.

Furthermore we observe that our initial expectances were correct: there is no clear winner. While
XMLPPM and bzip2 perform well on smaller files, XMill and PKZip do better at larger files.

For future usage in Sitecom we recommend the use of bzip2 for the following reasons: It is most
likely that future versions will include either chunking or streaming feature, or both. In case of
chunking, the sizes will probably not exceed 100 KB. In case of streaming, it is important that the
compressor can handle pieces of a serialized XML document. The specialized XML compressors
require an intact and complete document.

We do, however, recognize the potential in specialized XML compression, and recommend that
Sense Technology keep them in mind.

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 60

? May 2003 – Ørjan Stallemo and Kristian Vatne

9.3 Database streaming
SqlDataReader is the best method for minimize the CPU usage on server. We see that
SqlDataReader does not exceed 40 % while DataSet reaches 100 % in a short period. When
considering the total CPU usage on the server, SqlDataReader reaches 60 %. This is quite a high
number, but it still outperforms DataSet’s 100 %.

On the memory usage, SqlDataReader performs better than DataSet. The graph for total
available memory on the server shows that DataSet consumes twice as much memory as
SqlDataReader.

As mentioned in section 4.3.2, SqlDataReader provides a stream of data from a data source. And
since the data is not built in memory, this helps reduce memory usage on server. So in accordance
with both theory and our test results, the SqlDataReader method is a good choice for retrieving
large amount of data from a SQL database.

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 61

? May 2003 – Ørjan Stallemo and Kristian Vatne

9.4 Data request over network
We first tested SOAP to find out what number of rows, or amount of data, is most efficient to
retrieve in one call. The results show that CPU usage in percentage increases with increasing
amounts of data retrieved in one call. When 15000 rows are retrieved in one call, we see the
processor time increases significantly. The differences between 10 to 1000 rows are minor.

It was expected that fetching the data would be more time consuming when fetching a small
number of rows in one call. And that tendency is clear. The reason 1000 and 5000 rows use
approximately the same amount of time might be that the counters are sampled only once every 5
second.

When it comes to memory use, retrieving 10 and 100 rows performs almost similarly well, with
approximately 20 MB reserved memory. The memory usage increases with increased number of
rows fetched in one call. But the total available memory on the server does not differ much from
10 to 1000 rows.

To find the number of rows to retrieve in one call we looked at CPU, memory and time used.
Performance is best for both CPU and memory with small data amounts. But the time saved by
increasing the amount of data is also important. So when considering all three variables we
decided that 1000 rows was the best amount of data to transfer in on call.

We then tested both SOAP and DIME streaming with 1 to 5 clients. When using SOAP we
retrieve the entire database but split the call into multiple request -response calls, were 1000 rows
is retrieved in one call. The CPU usage for DIME is steady at about 60 % for 3 -5 clients, while
the SOAP graphs are spiky and vary between 45-75 %. For 1 client, DIME is steady at 45 %, and
SOAP relatively steady at about 35 %.

On memory use, DIME performs considerably better than SOAP. DIME uses approximately 16
MB of memory, independent of the number of clients. The memory use for SOAP increases
steadily from approximately 30 MB for 1client to 65 MB for 5 clients. This indicates that the use
of memory will increase for a SOAP implementation if more clients are connected at the same
time.

Time measurement tests show that regardless of the amount of data fetched , DIME use less time
processing the request. It also shows, as we predicted, that SOAP N-Request was the most time
consuming method. With increasing amounts of data fetched from server, time measured for
SOAP N-Request increase more rapidly then the other methods.

As mention in section 8.4.2, the peak in CPU usage at the start of each curve in the SOAP test, is
caused by the WebService being compiled and made ready to process. This disfavors SOAP as
this is not the case for DIME.

There is not much difference in CPU usage for SOAP and DIME. And if we disregard the CPU
usage spike at the start of the SOAP curves, time used for SOAP and DIME is almost equal. We
therefore conclude that there are no significant differences in CPU and time usage between
SOAP and DIME, except from the fact that DIME has steady CPU usage while SOAP is spikier.

We also conclude, based on both theory and testing, that the significant difference in server
resource strain between SOAP and DIME lies in the memory usage. This becomes very apparent
when multiple requests are being processed.

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 62

? May 2003 – Ørjan Stallemo and Kristian Vatne

9.5 Feasibility discussion

9.5.1 Alternatives to streaming
As we mentioned in section 5.2.1, sending an URI to where a serialized XML document can be
retrieved sidesteps the entire problem this part of the thesis focuses on. SOAP is not used for
streaming, simply for setting up the connection. This solution requires the client to handle
procedures deviating from standard SOAP: the client must be programmed to handle this
specific scenario. In a distributed environment with open standards, this is unacceptable.

A single request multiple response message pattern seems to be the best alternative for streaming.
Sending multiple responses allows the reply to be divided into several parts, and therefore limits
the amount you have to build in memory. As HTTP does not support this message pattern, an
alternative protocol must be agreed upon and development tools must include support for this
protocol.

Multiple requests multiple responses is another feasible alternative. As in the “sending an URI”
alternative, this requires the client to have software especially written f or this purpose. And it is
therefore not a recommended solution. In its simplest form, the users can agree to not request
large amounts of data. This is perhaps the best short term solution to the problem.

9.5.2 Alternative transfer technologies
Combining SOAP with different alternative transfer technologies include different commitments
and rewards.

SwA use the most common protocol for transferring SOAP messages: HTTP. It encapsulates the
messages in a MIME multipart/relates messages. SwA was defined to allow SOAP to transfer
non XML data (e.g. pictures and sound) and therefore does not offer any improvements or
solutions to the streaming problem.

DIME offers both an alternative session layer to HTTP, and a way of transferring attachments
with SOAP. As mentioned, even though Visual Studio.NET does not support it, DIME on top
of TCP can provide streaming capability as well as N-Responses. Furthermore it supports
chunking, which can be useful in some scenarios. See section 4.5.2.

BEEP substitutes HTTP, and can potentially enable both streaming and N-Response capability.
As with SwA, it uses MIME for transferring attachments.

The main difference between DIME and MIME is that MIME use text to specify and separate
message parts, while DIME use predefined headers which specifies the message. We recommend
that DIME be used in the future for the following reasons: Predefined headers are much more
suitable for streaming than text recognition. It allows for faster parsing with less memory use, and
avoids tricky situations where the string boundaries can be used illegally as normal text, especially
since SOAP intermediaries may process and change the message. This helps reduce the risk of
interoperability between implementations.

9.5.3 SOAP 1.2
As mentioned in section 2.4.5, a general attachment feature has been specified for SOAP 1.2, but
to no specific technology. At least by W3C. With SOAP 1.2, a possibility for streaming SOAP
opens up. DIME and MIME are potential technologies for dealing with attachments.

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 63

? May 2003 – Ørjan Stallemo and Kristian Vatne

9.6 Future work
The problem with strain on server resources when transferring large XML object s with SOAP
has several feasible solutions. They do, however, require coordinated effort. The hard issues to
tackle are not technological, but strategic. All, or at least a large majority, of vendors must agree
upon a new standard.

Vendors must agree upon one of two possible solutions:

? Either sorting out the protocol bindings in SOAP 1.1. This can include rewriting the
HTTP binding or replacing HTTP with another protocol as default for WebServices.

? Or supporting the streaming option in SOAP 1.2.

Replacing the default protocol binding for SOAP 1.1 opens for possibilities of both streaming
and Request/N-Response MEP.

In this thesis, we used Microsoft’s ASP.NET WebMethods. This environment does not support
streaming or Request/N-Response MEP whatsoever. To solve the server resource strain for this
environment, Microsoft must include support for these features in future releases.

Our belief is that the problem will be resolved with SOAP 1.2. Not resolving this problem will
exclude too many possible users. This includes not only users with need to build multiple 50 -100
MB XML documents on servers, but also systems with very limited resources such as Pocket PC
and Personal Digital Assistant (PDA).

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 64

? May 2003 – Ørjan Stallemo and Kristian Vatne

10 Conclusion
In SOAP, the entire XML object is generated on the server before it is returned to the client.
This puts unnecessary strain on server systems in terms of both memory and CPU. This thesis
deals with compression and streaming of large XML documents, including a feasibility study on
why SOAP does not allow streaming, possible solutions to the problem and outlining alternative
transfer methods. Furthermore, compression techniques for a streaming SOAP environment
were evaluated, as well as performance of streaming versus alternative transfer methods.

Testing gave no overall compression technique winner , but the specialized XML compressors
perform slightly better than the traditional text compressors. Despite this, we recommend bzip2
for use in a streaming SOAP environment. This is due to the fact that the gain in using
specialized XML compressors does not outweigh text compressors’ ability to handle chunks and
streams where as XML compressors can only compress intact documents.

Further testing showed that dividing a SOAP request into multiple requests eased server strain,
but increased the time used to conduct the transfer. SOAP N-Request/N-Response and DIME
were further tested to shed light on the difference in performance between a streaming technique
and the alternative transfer method. As predicted, streaming causes less strain on server
resources, in particular memory usage. This became especially apparent with multiple clients
connecting.

The feasibility study concluded that SOAP itsel f allows streaming of responses, but the HTTP
binding does not. SOAP’s HTTP binding specifies the issue of a HTTP fault code in case of a
SOAP processing error, meaning the processing must be completed before a HTTP code legally
can be issued.

The study further concluded that there are a few possible solutions to overcoming the server
resource problem. A single request with a multiple response pattern is one alternative to
streaming. But as HTTP does not allow this, multiple requests multiple response is the best short
term alternative. To achieve streaming or single request multiple response message pattern,
SOAP must be fitted on top of another protocol than HTTP. BEEP and DIME were
considered, and DIME was recommended since a binary format is better suit ed for streaming.

The hard issues to tackle, in order to solve the problem of server resource strain due to SOAP
lack of streaming capability, are not technological but strategic. Future work includes vendors
agreeing upon a standard. This can either be rewriting the HTTP binding, replacing HTTP with
another protocol as default for WebServices or support the streaming option in SOAP 1.2.

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 65

? May 2003 – Ørjan Stallemo and Kristian Vatne

11 Abbreviations
ADO: ActiveX Data Object
BEEP: Blocks Extensible Exchange Protocol
BWT: Burrows-Wheeler Transform
COM: Component Object Model
CPU: Central processing Unit
DIME: Direct Internet Message Encapsulation
DTD: Document Type Definition
GUI: Graphical User Interface
HTTP: Hyper Text Transfer Protocol
ICT: Information and Communication Technology
IEEE: Institute of Electrical & Electronics Engineers
IETF: The Internet Engineering Task Force
IP: Internet Protocol
LZ77: Lempel-Ziv 1977
MB: Mega Bytes
MEP: Message Exchange Pattern
MIME: Multipurpose Internet Mail Extensions
MSDN: Microsoft Developer Network
OS: Operating System
OSI: Open Systems Interconnection
PDA: Personal Digital Assistant
Perfmon: Performance Monitor
PPM: Prediction by Partial Match
RAM: Random Access Memory
RFC: Request For Comment
RPC: Remote Procedure Call
SOAP: Simple Object Access Protocol
SQL: Structured Query Language
SwA: SOAP Messages with Attachments
TCP: Transmission Control Protocol
TV: Tele Vision
UPD: User Datagram Protocol
URI: Uniform Resource Identifier
UUID: Universal Unique Identifier
WITSML: Wellsite Information Transfer Standard Markup Language
WSE: Web Services Enhancements
W3C: World Wide Web Consortium

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 66

? May 2003 – Ørjan Stallemo and Kristian Vatne

12 References
All the hyperlinks pointing to references are valid as of May 2003.

[1] The Internet Engineering Task Force

http://www.ietf.org

[2] World Wide Web Consortium

http://w3.org

[3] The W3C

Simple Object Access Protocol (SOAP) 1.1, W3C Note, May 2000
http://www.w3.org/TR/SOAP/

[4] The WITSML project

http://www.witsml.org/

[5] The W3C

Extensible Markup Language (XML) 1.0 (Second Edition), W3C Recommendation,
October 2000
http://www.w3.org/TR/REC-xml

[6] XMLPPM: XML-Conscious PPM Compression

http://www.cs.cornell.edu/people/jcheney/xmlppm/xmlppm.html

[7] The IETF

The Blocks Extensible Exchange Protocol Core, RFC3080, March 2001
http://www.ietf.org/rfc/rfc3080.txt

[8] The IETF

Mapping the BEEP Core onto TCP, RFC3081, March 2001
http://www.ietf.org/rfc/rfc3081.txt

[9] The IETF

Using the Simple Object Access Protocol (SOAP) in Blocks Extensible Exchange
Protocol (BEEP), RFC3288, June 2002
http://www.ietf.org/rfc/rfc3288.txt

[10] The W3C

SOAP Messages with Attachments, W3C Note, December 2000
http://www.w3.org/TR/SOAP-attachments

[11] MSDN

Direct Internet Message Encapsulation (DIME), Internet Draft, June 2002
Expired
http://msdn.microsoft.com/library/en-us/dnglobspec/html/draft-nielsen-dime-02.txt

[12] The IETF

Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet
Message Bodies, RFC2045, November 1996
http://www.ietf.org/rfc/rfc2045.txt

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 67

? May 2003 – Ørjan Stallemo and Kristian Vatne

[13] The IETF
Multipurpose Internet Mail Extensions (MIME) Part One: Media Types,
RCF2046, November 1996
http://www.ietf.org/rfc/rfc2046.txt

[14] The IETF

Multipurpose Internet Mail Extensions (MIME) Part One: Message Header
Extensions for Non-ASCII Text, RFC2047, November 1996
http://www.ietf.org/rfc/rfc2047.txt

[15] The IETF

Multipurpose Internet Mail Extensions (MIME) Part One: Registration
Procedures, RFC2048, November 1996
http://www.ietf.org/rfc/rfc2048.txt

[16] The IETF

Multipurpose Internet Mail Extensions (MIME) Part One: Conformance Criteria
and Examples, RFC2049, November 1996
http://www.ietf.org/rfc/rfc2049.txt

[17] The IETF

The MIME Multipart/Related Content-type, RFC2387, August 1998
http://www.ietf.org/rfc/rfc2387.txt

[18] MSDN

Using Web Services Enhancements to Send SOAP Messages with Attachments,
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnwebsrv/html/wsedime.asp

[19] Rich Salz

Beep BEEP!
http://www.xml.com/pub/a/2002/10/16/ends.html

[20] Paul Krill

SOAP 1.2 spec takes next step
http://www.infoworld.com/article/02/12/19/021219hnsoapadvance_1.html

[21] Jeannine Hall Gailey

Sending Files, Attachments, and SOAP Messages Via Direct Internet Message
Encapsulation, MSDN
http://msdn.microsoft.com/msdnmag/issues/02/12/DIME/default.aspx

[22] Andy Neilson

W3C’s discussion boards
http://lists.w3.org/Archives/Public/xml-dist-app/2000Dec/0197.html

[23] The IETF

Hypertext Transfer Protocol -- HTTP/1.1, RFC2616, June 1999
http://www.ietf.org/rfc/rfc2616.txt

[24] Datacompression.info

http://datacompression.info/

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 68

? May 2003 – Ørjan Stallemo and Kristian Vatne

[25] J. Ziv and A. Lempel
A Universal Algorithm for Sequential Data Compression, IEEE Transactions on
Information Theory, Vol 23, pages 337-343, May 1977.

[26] D.A.Huffman.

A method for construction of minimum-redundancy codes, Proceeding of the IRE,
Volume 40, Number 9, September 1952, pages 1098-1101

[27] M. Burrows and D.J. Wheeler.

A block-sorting lossless data compression algorithm, Technical report, Digital
Equipment Corporation, Palo Alto, California, 1994.

[28] PKWARE Inc

http://www.pkware.com/

[29] Dmitry Shkarin

PPM: one step to practicality, Data Compression Conference, 2002

[30] James Snell, Doug Tidwell and Pavel Kulchenko

Programming Web Services with SOAP, Published by O’Reilly & Associates Inc.
January 2002. ISBN 0-596-00095-2

[31] Mark Nelson, Jean-Loup Gailly

The Data compression book, Published by M&T Books. 1996. ISBN 1-55851-434-1

[32] Elliotte Rusty Harold

XML Bible, 2nd Edition, Published by Hungry Minds, Inc. 2001. ISBN 0-7645-4760-7

[33] The W3C

SOAP Version 1.2 Part 0: Primer, W3C Proposed Recommendation, May 2003
http://www.w3.org/TR/soap12-part0/

[34] The W3C

SOAP Version 1.2 Part 1: Messaging Framework, W3C Proposed Recommendation,
May 2003
http://www.w3.org/TR/soap12-part1/

[35] The W3C

SOAP Version 1.2 Part 2: Adjuncts, W3C Proposed Recommendation, May 2003
http://www.w3.org/TR/soap12-part2/

[36] The W3C

SOAP 1.2 Attachment Feature, W3C Working Draft, September 2002
http://www.w3.org/TR/soap12-af/

[37] The IETF

DEFLATE Compressed Data Format Specification version 1.3, RFC1951, May
1996
http://www.ietf.org/rfc/rfc1951.txt

[38] The bzip2 and libbzip2 official home page

http://sources.redhat.com/bzip2/

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 69

? May 2003 – Ørjan Stallemo and Kristian Vatne

[39] PKWARE Inc
http://www.pkware.com

[40] XMill An Efficient Compressor for XML

http://www.research.att.com/sw/tools/xmill/

[41] The IETF
 Transmission control protocol, RFC0793, September 1981

http://ietf.org/rfc/rfc0793.txt

[42] beepcore.org
 http://beepcore.org/

[43] The SOAP Profile
 http://www.clipcode.org/beep/soap/

[44] Microsoft® Visual Studio®
 http://msdn.microsoft.com/vstudio/

[45] MemBoost
 http://www.memboost.50g.com/

[46] Neel Sundaresan and Reshad Moussa

Algorithms and Programming Models for Efficient Representation of XML for
Internet Applications
http://www10.org/cdrom/papers/542/

[47] Schema for the SOAP/1.1 envelope
 http://schemas.xmlsoap.org/soap/envelope/

[48] Schema for the SOAP/1.1 encoding
 http://schemas.xmlsoap.org/soap/encoding/

[49] J. G. Cleary and I. H. Witten.

Data compression using adaptive coding and partial string matching.
IEEE Trans. Comm., COM-32(4):396-402, 1984.

[50] Johan Jeuring and Paul Hagg.
Generic Programming for XML Tools. Utrecht University. Technical report UU-CS-
2002-023. 2002.

[51] XComprez - A compressor for XML documents
 http://www.cs.uu.nl/research/projects/generic-haskell/xmltools/XComprez

[52] Hartmut Liefke, Dan Suciu

XMILL: An Efficient Compressor for XML Data. SIGMOD Conference 2000: 153-
164.

[53] Intelligent Compression Technologies.

http://www.ictcompress.com/

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) 70

? May 2003 – Ørjan Stallemo and Kristian Vatne

13 Appendices
Appendix A – XML compressors

Appendix B – Test applications

Appendix C – Test results

Appendix D – Source code. CD on the back cover.

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) A-1

? May 2003 – Ørjan Stallemo and Kristian Vatne

Appendix A - XML compressors

A.1 - Millau

Introduction

The Wireless Application Protocol (WAP) defines a format to reduce the transmission size of
XML documents with no loss of functionality or semantic information. In the paper “Algorithms
and Programming Models for Efficient Representation of XML for Internet Applications” [46],
they describe Millau who extends this format, and also improve on the compression algorithm. It
separates structure compression from text compression. It also takes advantage of the schema
and data type information, to achieve better compression on XML documents. To work well with
the XML standards, it defines APIs equivalent to the tree model of the Document Object Model
(DOM) and the event and streaming model of the Simple API for XML (SAX), to work with
encoded XML documents.

Architecture

Millau starts with a wide implementation of WAP Binary Extended Markup Language
(WBXML), and extends it with separation of structure and content. Then it encodes the structure
part using the WBXML encoding and the content using standard text compression techniques.

The WBXML content encodes the tag names and the attributes names and values with tokens (a
token is a single byte). These tokens are split into a set of overlapping “code spaces”. There are
two classifications of tokens, global tokens and application tokens. Global tokens are assigned a
fixed set of codes in all contexts and are precise in all situations. Application tokens have a
context-dependent meaning and are split into two overlapping “code spaces”, the “tag code
space” and the “attribute code space”.

The tag code space represents specific tag names. The attribute code space is split into two
numeric ranges representing attribute prefixes and attribute values. The Attribute Start token
(with a value less than 128) indicates the start of an attribute and may optionally specify the
beginning of the attribute value. The Attribute Value token (with a value of 128 or greater)
represents a well-known string present in an attribute value. Unknown attribute values are
encoded with string, entity or extension codes.

In the Millau format on the other hand, an Attribute Start token is followed by a single Attribute
Value token, string, entity, or extension token. So there is no need to split the attribute token
numeric range into two ranges (less than 128 and 128 or greater). Because each time the parser
encounters an Attribute Start token followed by a non-reserved token, it knows that this non-
reserved token is an Attribute Value token, and that it can be followed only by an end token or
another attribute start token. Thus, instead of two overlapping code spaces, we have three
overlapping code spaces:

? Tag code space as defined in the WAP specification.
? Attribute start code space where each page contains 256 tokens.
? Attribute value code space where each page contains 256 tokens.

In WBXML format, character data is not compressed. It is transmitted as strings inline, or as a
reference in a string table which is transmitted at the beginning of the document. In Millau,
character data can be transmitted on a separate stream. This allows separation of the content
from the structure so that a browser can separately download the structure and the content or
just a part of each. This further allows compression of the character data using traditional
compression algorithms like deflate. In the structure stream, character data is indicated by a
special global token (STR or STR_ZIP) which indicates to the Millau parser that it must switch

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) A-2

? May 2003 – Ørjan Stallemo and Kristian Vatne

from the structure stream to the content stream if the user is interested in content and whether
the content is compressed (STR) or uncompressed (STR_ZIP). Optionally, the length of the
content is encoded as an integer in the structure stream right after the global token (STR_L or
STR_ZIP_L). If the length is not indicated, the strings contained in the structure must terminate
with an end of string character or a null character.

Conclusion

Millau is design as a binary XML compression method that is schema aware, and is very good for
compressing XML documents less than 5kByte.

The biggest drawback is that it does not perform as good as traditional text-compression
algorithms for large XML files.

A.2 - XComprez

Introduction

XComprez was developed by Johan Jeuring and Paul Hagg at Utrecht University. Their paper ,
"Generic Programming for XML Tools" [50], shows how generic programming can be used
when writing XML tools, and the benefits this gives.

The program is open source, and can be downloaded at [51]. It does require some additional
software to be installed, these are also open source.

Architecture

XComprez distinguishes between four different components:

? A component that translates a DTD to a data type: the data type is obtained from a
DTD, together with functions for reading and writing valid XML documents to and
from a value of the generated data type.

? A component that separates a value of any data type into its structure and its contents:

The content is obtained by extracting all PCData and all CData from the document. The
content of a value of a data type is obtained by extracting all strings from the value. And
the path to the string through constructor and record label names is also recorded. The
structure from an XML document is obtained by removing all PCData and CData from
the document. The structure of a value of a data type is obtained by replacing all strings
by units. This obtains a value of a new data type, in which occurrences of the type Strin g
have been replaced.

? A component that encodes the structure replacing constructors by bits: If “n” is the

number of constructors of a data type. Then a list of log2 n bit represents a specific
constructor.

? A component for compressing the contents: At the current stage XComprez uses a zip

variant for compressing the content.

A preliminary version has also been released, which analyzes some documents that are valid to
the DTD, count the number of different elements and apply Huffman coding. This can furth er
improve the compressing.

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) A-3

? May 2003 – Ørjan Stallemo and Kristian Vatne

Conclusion

XComprez is an overall strong compressor. It has no specific scenario where it is especially
strong.

XComprez assumes that the input document is valid according to a given DTD. Knowledge
about the DTD is used to enhance and speed up the compression. But it also limits compression
to files with a valid DTD. This goes for both the compressor and the decompressor.

A.3 - XMill

Introduction

XMill and XDemill are XML compression and decompression tools developed by Dan Suciu and
Hartmut Liefke and described in the paper “XMill: an efficient Compressor for XML Data” [52].
The tools are not based on a new compression algorithm, but rather propose design an
architecture which leverages existing compression algorithms and tools to compress XML data.

Architecture

XMill is based on Gzip in addition to a few simple data type specific compressors. The XMill
compressor applies three principles to compress XML data:

? Separate structure from data: The structure consists of XML tags and attributes: it forms
a tree. The data consists of a sequence of items (strings) representing element contents
and attributes values. The structure and the data are compressed separately.

? Group data items with related meaning: Data items are grouped into containers, and

each container is compressed separately. For example, all <name> data items form one
container, while all <phone> items form a second container. This is a generalization of a
well-known principle in relational databases: column­ wise compression is better than
row-wise compression.

? Apply different compressors to different containers: Some data items are text, others are

numbers, while others may be DNA sequences. XMill applies different specialized
compressors (semantic compressors) to different containers.

The XML file is parsed by a SAX parser that sends tokens to the path processor. Every XML
token is assigned to a container. Tags and attributes, forming the XML structure, are sent to the
structure container. Data values are sent to various data containers, according to the container
expressions, and containers are compressed independently. Before entering the container, a data
value may be compressed with an additional semantic compressor.

The core of XMill is the path processor that determines how to map data values to containers.
The user can control this mapping by providing a series of container expressions on the
command line. Containers are kept in a main memory window of fixed size (the default is 8 MB).
When the window is filled, all containers are compressed with Gzip, stored on disk, and the
compression resumes. In effect this splits the input file into blocks that are compressed
independently.

Users can associate semantic compressors with containers. A few atomic semantic compressors
are predefined in XMill, like binary encoding of integers, differential compressors, etc. The
decompressor XDemill is simpler. After loading and unzipping the containers, the decompressor

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) A-4

? May 2003 – Ørjan Stallemo and Kristian Vatne

parses the structure container, invokes the cor responding semantic decompressor for the data
item and generates the output.

Conclusion

A limitation of XMill is that it only achieves greater compression ratios than traditional text-
compression methods if dealing with data larger than approximately 20,000 bytes. But users with
detailed XML knowledge can define their own compressors (for specific containers) and
algorithm to improve performance, based on DTD conventions or XML-schema rules.

A second major limitation of XMill is that it is not designed to work with a query processor,
hence integration of XMill’s decompressor and a DB query engine.

A.4 - XMLPPM

Introduction

XMLPPM is a data compression program that compresses XML. It is a combination of the well-
known Prediction by Partial Match (PPM) algorithm [49] for text compression, and an approach
to modeling tree-structured data called Multiplexed Hierarchical Modeling (MHM). The
XMLPPM source code is part of a project at Sourceforge on XML compression.

Architecture

XMLPPM is based on MHM and PPM modeling. The technique employs two basic ideas.
Multiplexing several text compression models based on XML's syntactic structure (one model for
element structure, one for attributes, and so on), and injecting hierarchical element structure
symbols into the multiplexed models.

PPM models maintain statistics concerning which symbols have been seen in which contexts of
preceding symbols. For each symbol, the model is used to estimate a probability range. This
probability range is used to transmit the symbol using arithmetic coding. Then, the model is
updated to indicate the symbol has been seen in the context. Probability estimation works as
follows: If the symbol has been seen in the longest matching context, then the probability is the
relative frequency in the context. Otherwise, an “escape symbol” is encoded, and the next longest
context is tried, and so on. The decoder maintains the same model and uses symbols seen so far
and escapes symbols to decode incoming symbols and update its model.

If neighboring symbols from different syntactic classes are drawn from distinct independent
sources, the multiplexed models adapt to these distributions better than a single model can and
prediction improves. However, sometimes symbols are strongly correlated with ne arby symbols
in different syntactic classes. In this case, multiplexing harms compression by breaking up
dependences.

A common case for these dependencies is for the enclosing element tag to be strongly correlated
with enclosed data. MHM exploits this by injecting the enclosing tag symbol into the element,
attribute, or string model immediately before an element, attribute, or string is encoded.
“Injecting” a symbol means telling the model that it has been seen but not explicitly encoding or
decoding it.

Conclusion

The XMLPPM compress quite well on structured data, but is slow.

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) A-5

? May 2003 – Ørjan Stallemo and Kristian Vatne

The MHM model is limited to one level of hierarchical context. More element context helps
considerably in compressing structured data, but is harmful in compressing textual data and is
slow. Furthermore, compressing structured data well required using the considerably slower
PPM*.

A.5 - XML-XPress

Introduction

XML-XPress™ is a part of Intelligent Compression Technologies’ (ICT) “XPress™ Suite of
Compression Engines”, which includes tools for compressing .doc files, .xml files, etc. A limited
version of XML-XPress™ is available for free at the company’s web site [53].

As XML-XPress is a commercial product, the technical information released about its
compression techniques is limited to what is used for promotion.

Architecture

XML-XPress is a schema specific XML coder, meaning it utilizes its knowledge about a specific
XML document to improve the compression of that document. A DTD or schema can define
the structure of an XML document. When the schema is known, XML tags can be encoded very
efficiency.

For example, if an element contains two sub-elements (A and B), the decoder can reconstruct the
tags without needing any information from the encoded file: it knows exactly wher e the start and
end tags of both elements A and B will be located.

Also, only a binary decision needs to be included in the encoded file to determine which of A or
B is present.

XML-XPress can further take advantage of sample documents. The encoding of a binary decision
such as (A and B) can be done more efficiently when the compression knows the average
frequency at which the two options occur in a specific context.

Schemas also provide information about the data types of the different element data. Th is
information allows specific compression routines for the different element data.

XML-XPress use Schema Model Files (SMF). Information from a schema or DTD together with
sample XML files are used to generate the SMF. This is done by ICT.

Conclusion

XML-XPress is an overall strong compressor. It has no specific scenario where it is especially
strong.

It is schema specific and this makes it a very effective and fast compressor, but it has its
disadvantages. Prior to communication, both the compressor and decompressor need the SMF
for every type of XML file.

In the absence of such a SMF, XML-XPress resorts to using a general-purpose encoder, and the
outstanding compression performance is lost.

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) B-1

? May 2003 – Ørjan Stallemo and Kristian Vatne

Appendix B - Test applications

This appendix describes the applications used for testing. The source code can be found in
Appendix D on a CD at the back cover.

B.1 - Compression tester

Compression tester is used to manage the compressors. The compressors were all command line
tools, so making an application to manage them saved us from a lot of unnecessary work. The
time measurement would be really difficult without this application.

Figure B-1 Screenshot of Compression tester

B.2 - Generator

Generator is used to fill the test database “XMLLog” with approximately 7500 rows of data each
time it is executed. Values for the attribute “TIMEDATE” is generated by setting in the date and
hour for every day in 2003. “LOGDATA” values are generated randomly.

Figure B-2 Screenshot of Generator

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) B-2

? May 2003 – Ørjan Stallemo and Kristian Vatne

B.3 - Database stream tester

Database stream tester is used to test streaming from a database. It is possible to choose two
different methods for fetching the entire database. DataSet who builds the data in memory before
it is written to a file, and SqlDataReader who generates a stream of rows that is written to a file.

Figure B-3 Screenshot of Database stream tester

B.4 - SOAP N-Request tester

SOAP N-Request tester is used to test SOAP over a network. The client connects to a
WebService on the server and requires a number of rows. The WebService fetches data from the
database and puts it in a dataset, which is sent back to the client.

Figure B-4 Screenshot of SOAP N-Request tester

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) B-3

? May 2003 – Ørjan Stallemo and Kristian Vatne

B.5 - DIME tester

DIME tester is used to test DIME over a network. The client connects to a TCP listener on
server and requests a number of rows from the database. The server fetches them in a
SqlDataReader stream, which is streamed back to the client in a chunked DIME message.

Figure B-5 Screenshot of DIME tester

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) C-1

? May 2003 – Ørjan Stallemo and Kristian Vatne

Appendix C - Test results

C.1 - Compression test

C.1.1 Compression results

Compression size in bytes

 XML document
original
size bzip2 PKZip XMill XMLPPM

capClient 405 268 378 293 200
wellbore_no_xsl 2642 734 793 791 607
mudLog_no_xsl 7392 1923 2094 2454 1765
rig_no_xsl 14782 3216 3579 4250 2905
SOAPtest0 34738 11370 9597 9515 10860
SOAPtest1 101838 31034 25377 25196 31202
SOAPtest2 505743 148272 121431 119969 175337
SOAPtest3 1004172 299437 251545 248357 375264
SOAPtest4 2001975 630952 553118 546403 774608
SOAPtest5 2995965 987183 907145 895423 1167435

Compression size in %
 XML document bzip2 % PKZip % XMill % XMLPPM %
capClient 66,2 93,3 72,3 49,4
wellbore_no_xsl 27,8 30,0 29,9 23,0
mudLog_no_xsl 26,0 28,3 33,2 23,9
rig_no_xsl 21,8 24,2 28,8 19,7
opsReport_no_xsl 32,7 27,6 27,4 31,3
SOAPtest1 30,5 24,9 24,7 30,6
SOAPtest2 29,3 24,0 23,7 34,7
SOAPtest3 29,8 25,0 24,7 37,4
SOAPtest4 31,5 27,6 27,3 38,7
SOAPtest5 33,0 30,3 29,9 39,0

Compression time in seconds

original
size bzip2 PKZip XMill XMLPPM

capClient 405 0,06 0,67 0,06 0,07
wellbore_no_xsl 2642 0,04 0,64 0,05 0,06
mudLog_no_xsl 7392 0,04 0,77 0,05 0,11
rig_no_xsl 14782 0,10 0,67 0,06 0,16
SOAPtest0 34738 0,12 0,67 0,12 0,41
SOAPtest1 101838 0,33 0,70 0,11 0,90
SOAPtest2 505743 1,40 0,84 0,41 4,83
SOAPtest3 1004172 2,74 1,06 0,72 10,26
SOAPtest4 2001975 5,04 1,46 1,28 22,34
SOAPtest5 2995965 7,22 1,98 2,28 35,54

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) C-2

? May 2003 – Ørjan Stallemo and Kristian Vatne

C.1.2 Decompression results

Decompression size in bytes

original
size bzip2 PKZip XMill XMLPPM

capClient 405 405 405 405 405
wellbore_no_xsl 2642 2642 2642 2642 2642
mudLog_no_xsl 7392 7392 7392 7392 7392
rig_no_xsl 14782 14782 14782 14782 14801
SOAPtest0 34738 34738 34738 34738 34969
SOAPtest1 101838 101838 101838 101838 102514
SOAPtest2 505743 505743 505743 505743 509094
SOAPtest3 1004172 1004172 1004172 1004172 1010823
SOAPtest4 2001975 2001975 2001975 2001975 2015226
SOAPtest5 2995965 2995965 2995965 2995965 2995965

Decompression size in %
 bzip2 % PKZip % XMill % XMLPPM %
capClient 100,0 100,0 100,0 100,0
wellbore_no_xsl 100,0 100,0 100,0 100,0
mudLog_no_xsl 100,0 100,0 100,0 100,0
rig_no_xsl 100,0 100,0 100,0 100,1
opsReport_no_xsl 100,0 100,0 100,0 100,7
SOAPtest1 100,0 100,0 100,0 100,7
SOAPtest2 100,0 100,0 100,0 100,7
SOAPtest3 100,0 100,0 100,0 100,7
SOAPtest4 100,0 100,0 100,0 100,7
SOAPtest5 100,0 100,0 100,0 100,0

Decompression time in seconds

original
size bzip2 PKZip XMill XMLPPM

capClient 405 0,07 0,60 0,07 0,05
wellbore_no_xsl 2642 0,04 0,64 0,05 0,05
mudLog_no_xsl 7392 0,06 0,61 0,08 0,11
rig_no_xsl 14782 0,06 0,66 0,06 0,13
SOAPtest0 34738 0,08 0,66 0,07 0,32
SOAPtest1 101838 0,13 0,62 0,08 0,94
SOAPtest2 505743 0,50 0,64 0,10 4,75
SOAPtest3 1004172 0,73 0,78 0,17 9,99
SOAPtest4 2001975 1,35 0,84 0,29 21,82
SOAPtest5 2995965 1,96 1,00 0,49 35,10

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) C-3

? May 2003 – Ørjan Stallemo and Kristian Vatne

C.2 - Database streaming results

Process CPU usage
Time DataSet SqlDataReader

0 0,00 0,00
2 0,00 0,00
4 0,00 0,00
6 0,00 1,00
8 2,00 4,50

10 4,50 4,02
12 2,51 22,11
14 7,54 36,68
16 16,50 7,50
18 37,50 21,00
20 9,00 29,50
22 15,00 24,50
24 47,00 39,50
26 30,15 32,66
28 71,86 18,09
30 99,50 0,50
32 32,00 0,50
34 0,00 0,00
36 0,00 0,00
38 0,00

Total CPU usage
Time DataSet SqlDataReader

0 99,99998 99,99998
2 2,5 2,512563
4 1 0
6 1,5 1,5
8 4 7

10 10 8,040201
12 4,020101 33,16583
14 17,58794 49,24623
16 28 23
18 46 24
20 20 58
22 18 44,5
24 80 60
26 57,78894 54,77387
28 84,92462 37,68844
30 100 2,5
32 34 6
34 2,5 2
36 4,5 0
38 1

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) C-4

? May 2003 – Ørjan Stallemo and Kristian Vatne

Total Memory usage
Time DataSet SqlDataReader

0 178757632 178876416
2 178667520 178839552
4 178683904 178835456
6 178659328 178855936
8 178597888 177491968

10 176164864 175693824
12 174985216 173854720
14 173379584 169885696
16 171589632 167968768
18 169197568 166637568
20 167968768 161030144
22 166764544 158076928
24 148070400 152502272
26 139214848 148705280
28 128475136 146968576
30 121131008 148267008
32 121143296 149159936
34 122966016 149975040
36 124370944 150499328
38 125452288

C.3 - Data request over network test

C.3.1 SOAP N-Request results

CPU usage for the web service “SOAP N-Request tester”
Time 15000 rows 5000 rows 1000 rows 100 rows 10 rows

0 0 0 0 0 0
5 0 0 0 0 0

10 0 0 0 0 0
15 8,032129 2 2,204409 11,82365 1,2
20 56,91383 38,07615 71,6 78,2 24,4489
25 28,05611 55,4 31,66333 17,03407 68,2
30 18,63727 16,43287 7,6 10,62124 16,43287
35 5,8 5,01002 32,66533 25,4509 13,42685
40 19,23848 32,4 37,6 37,87575 20,64128
45 65,53106 36,07214 30,2 36,07214 30,46092
50 96,39279 42,68537 30,26052 36,87375 32,06413
55 6,412826 17,83567 34 38,07615 37,4
60 2,4 57,11423 22 41,2 34,66934
65 0,200401 0 0 32,86573 31,2
70 1,4 0 0 32,2
75 0 30,86172
80 33
85 34,8
90 25,4509

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) C-5

? May 2003 – Ørjan Stallemo and Kristian Vatne

The amount of memory reserved for the web service “SOAP N -Request tester”
Time 15000 rows 5000 rows 1000 rows 100 rows 10 rows

0 0 0 0 0 0
5 0 0 0 0 0

10 0 0 0 0 0
15 8331264 57344 1351680 10534912 57344
20 16433152 15200256 18452480 17551360 14151680
25 17883136 17809408 18849792 19877888 18944000
30 20475904 20365312 20258816 21082112 21397504
35 24117248 20766720 31133696 22364160 20996096
40 36306944 44015616 31797248 22364160 22347776
45 79355904 64348160 31903744 22364160 22347776
50 1,31E+08 71507968 31698944 22757376 21635072
55 1,3E+08 65564672 32280576 22364160 21843968
60 1,22E+08 64552960 32747520 22364160 20701184
65 1,22E+08 64552960 32747520 22364160 21524480
70 1,22E+08 64552960 22364160 21716992
75 22364160 21594112
80 21737472
85 21848064
90 21995520
95 21995520

100 21995520

Total free memory on the server
Time 15000 rows 5000 rows 1000 rows 100 rows 10 rows

0 182636544 193212416 192507904 191270912 187707392
5 183545856 192409600 191447040 189878272 187707392

10 181653504 190541824 189919232 188407808 185610240
15 176734208 184135680 189300736 181293056 185524224
20 168583168 178515968 174673920 174018560 174874624
25 165793792 174829568 174194688 171663360 169218048
30 164044800 173051904 170979328 167747584 167272448
35 155869184 170274816 156508160 164319232 165359616
40 135204864 142209024 153096192 161923072 160509952
45 89268224 118845440 150290432 159444992 156889088
50 34295808 107134976 147918848 156676096 153919488
55 27320320 111677440 145510400 154685440 149897216
60 35332096 108806144 143630336 153309184 147136512
65 35024896 108847104 143650816 151261184 142848000
70 35590144 109379584 151961600 139915264
75 152006656 136220672
80 132272128
85 128241664
90 125353984

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) C-6

? May 2003 – Ørjan Stallemo and Kristian Vatne

C.3.2 SOAP N-Request 1-5 clients results

CPU usage for the web service “SOAP n-request tester”
Time 1 client 2 clients 3 clients 4 clients 5 clients

5
10
15 1,40562249 1,40280561 1,60320641 1,80360721 1,00200401
20 13,6 21,8436874 37,4 54,9098196 15,0300601
25 76,753507 72,9458918 57,5150301 45,0901804 73,4
30 15,4308617 17,6 20,240481 16,4 24,4488978
35 8,61723447 38,2765531 44,6 55,9118236 18,0360721
40 12,8256513 48,0961924 29,258517 34,8 56,3126253
45 20,0400802 55,511022 34,0681363 72,3446894 10,2
50 34,0681363 62,1242485 36,4729459 60,5210421 75,3507014
55 32,8657315 67,9358717 73,747495 67,5350701 53
60 24,6492986 65,9318637 68,9378758 60,3206413 71,743487
65 35,6 31,2625251 56,9138277 66,9338677 67,1342685
70 23 0 41,6833667 66,9338677 49,6993988
75 0 62,9258517 58,9178357 72,3446894
80 64,1282565 51,503006 48,0961924
85 38,8777555 66,1322645 74,5490982
90 0 59,3186373 57,7154309
95 18,4368737 70,2

100 0 49,2985972
105 0 60,1202405
110 52,2
115 32,6653307

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) C-7

? May 2003 – Ørjan Stallemo and Kristian Vatne

The amount of memory reserved for the web service “SOAP n-request tester”
Time 1 client 2 clients 3 clients 4 clients 5 clients

0
5

10
15 57344 57344 57344 372736 57344
20 11427840 14012416 15249408 16658432 12095488
25 17649664 17776640 18460672 18677760 18055168
30 19439616 20348928 21233664 21098496 20148224
35 20779008 34504704 42287104 47878144 29130752
40 25878528 43556864 43855872 56832000 54665216
45 31531008 43012096 47644672 55296000 62136320
50 30380032 41463808 47845376 56598528 61792256
55 32792576 41168896 47157248 54398976 64729088
60 32280576 45297664 45764608 53895168 65519616
65 30416896 41127936 43405312 55296000 60805120
70 30425088 41127936 45465600 52998144 65904640
75 30425088 47681536 53059584 62730240
80 45473792 56795136 61571072
85 43413504 57802752 61132800
90 43413504 56188928 63250432
95 56602624 60825600

100 56602624 60772352
105 56602624 60772352
110 64659456
115 62398464

C.3.3 DIME 1-5 clients results

CPU usage for “DIME tester” application.
Time 1 client 2 clients 3 clients 4 clients 5 clients

0 0,00 0,00 0,00 0,00 0,00
5 0,00 0,00 0,00 0,00 0,00

10 0,00 0,00 0,00 0,00 0,00
15 10,60 11,22 8,02 6,61 11,02
20 24,85 22,04 22,80 11,60 30,20
25 42,60 39,00 47,29 36,87 50,00
30 45,29 49,60 50,90 51,00 61,92
35 42,89 52,30 51,10 50,20 53,91
40 0,00 51,10 57,31 60,12 57,60
45 0,00 50,90 50,90 57,20 56,51
50 21,24 63,80 58,20 55,31
55 0,00 54,11 57,72 59,52
60 40,28 58,32 56,51
65 0,00 59,20 59,92
70 56,31 59,52
75 41,60 61,32
80 0,00 59,32
85 16,83

An evaluation of compression and streaming techniques for efficient transfer of XML documents
 with Simple Object Access Protocol (SOAP) C-8

? May 2003 – Ørjan Stallemo and Kristian Vatne

The amount of memory reserved for the “DIME tester” application.
Time 1 client 2 clients 3 clients 4 clients 5 clients

0 9732096 9539584 9744384 9719808 9703424
5 9732096 9539584 9744384 9719808 9703424

10 9732096 9539584 9744384 9719808 9703424
15 13127680 12988416 12091392 10842112 13185024
20 15945728 15724544 15839232 13860864 16097280
25 15945728 15740928 15855616 16080896 16105472
30 15945728 15740928 15855616 16080896 16109568
35 15986688 15740928 15855616 16080896 16109568
40 16003072 15740928 15855616 16080896 16109568
45 16003072 15745024 15855616 16080896 16109568
50 15855616 15855616 16080896 16109568
55 15855616 15855616 16080896 15474688
60 15859712 16080896 15478784
65 15859712 16080896 15478784
70 16080896 15482880
75 16068608 15482880
80 16068608 15491072
85 15462400
90 15462400

C.3.4 Time measured for DIME, SOAP and SOAP N-Request

Time on server for different number of rows requested.
Rows
requested DIME SOAP

SOAP N-
Request

1 8 17 18
1000 10 19 20
5000 14 23 28

10000 18 26 37
15000 22 32 46

