
Using Ericsson NorARC’s frameworks as
test bed for dynamic change of behavior

based on CompositeStates

by

Arne Wiklund

Master Thesis in
Information and Communication Technology

Agder University College

Grimstad, May 26, 2003

Abstract

Frameworks are a widely usedre-usetechnique in the object-oriented community
today. A framework re-uses both code and design and makes it easier to develop
new components. Ericsson NorARC (Norwegian Applied Research Center) has
developed a set of frameworks; JavaFrame, ActorFrame and ServiceFrame to aid
advance service development. JavaFrame is a modeling kit for Java with good sup-
port for state machines. ActorFrame is a framework emphasizing the actor and role
notion. ServiceFrame emphasize the modeling of service functionality.

UML is today’s de facto standard for visualizing, specifying, constructing and doc-
umenting software systems. Modeling software in advance of making them is just
as essential as having a blueprint of any large building construction. Failing to
generate unambiguous models and lack of support for component-based modeling
has impelled a demand for revision of today’s UML standard.

This thesis evaluates the NorARC service creation environment, and especially
JavaFrame and ActorFrame, with a view to dynamic service behavior update. More
specified, if and how a state machine’s state space (composite state) can be altered
during run-time (i.e. dynamically changing its behavior). Further, the thesis evalu-
ates the possibility of showing this dynamic substitution and behavioral change in
UML 2.0.

Based on the guidelines and patterns from JavaFrame and ActorFrame, as well as
a thorough inspection of the UML 2.0 proposal, state machines and asynchronous
communications, some conceptual ideas has been developed. These range from
state machine equivalence to 1:1 UML 2.0 modeling. A prototype is made demon-
strating some of these concepts.

Through this thesis project, we have discovered that the NorARC service creation
environment is, at present state, probably not the ideal framework for run-time
behavioral update trough CompositeStates. Further, we have discovered that it is
possible to model run-time introduction of composite state, using interaction di-
agrams in UML 2.0. On the other hand, no solution to modeling such dynamic
change of behavior is found, neither with UML 1.4, 1.5 nor the proposed UML 2.0
standard.

Preface

This thesis was written as a part of the Norwegian Master degree in Information
and Communication Technology. The work was carried out between January 2003
and May 2003, at Agder University College. No external company was involved
in this thesis, but the thesis project is related to theTeleservice labin Grimstad.

I would like to thank my supervisors, Fritjof B. Engelhardtsen and Jan P. Nytun
at Agder University College. I would also like to thank Stein Bergsmark (Direc-
tor of Study, Master of Science Study, Agder University College) for his valuable
counselling during this thesis project.

Grimstad, May 2003

Arne Wiklund

I

Table of Contents

Preface I

Table of Contents II

List of Figures V

1 Introduction 1
1.1 Background. 1
1.2 Ericsson NorARC’s Framework. 2
1.3 UML 2.0 . 3
1.4 Thesis Definition . 4
1.5 Work Description. 4
1.6 Report Outline . 5

2 State Machines and Asynchronous Communication 6
2.1 Introduction. 6
2.2 Finite State Machines (FSM). 6

2.2.1 What is a State Machine?. 6
2.2.2 CFSM. 7

2.3 Concurrent Programming. 8
2.4 The Actor Based Approach. 9
2.5 Summary . 9

3 NorARC’s Service Creation Environment 10
3.1 Introduction. 10
3.2 JavaFrame. 10

3.2.1 Active Objects and Composites. 12
3.2.2 State Machines and CompositeStates. 12
3.2.3 Mediators. 14
3.2.4 The Trace File . 15

3.3 ActorFrame. 15
3.4 ServiceFrame. 17
3.5 Summary . 18

II

4 UML 2.0 19
4.1 Introduction. 19
4.2 Components and Composite Structure. 19
4.3 State Machines. 21

4.3.1 ConnectionPointReference. 21
4.3.2 FinalState. 22
4.3.3 State . 22
4.3.4 State Machines. 23
4.3.5 Transition. 24

4.4 Interaction Diagrams. 25
4.5 Summary . 26

5 Patterns, Methods and Architecture 27
5.1 Introduction. 27

5.1.1 Dynamic Java. 27
5.2 JavaFrame Guidelines and Patterns. 28
5.3 The Architecture Provided by the Framework. 30
5.4 Summary . 33

6 A Conceptual Approach 34
6.1 Introduction. 34
6.2 State Machine Equivalence. 34
6.3 The CompositeState. 35
6.4 Modelling UML 1:1. 35
6.5 Summary . 37

7 The Prototype 38
7.1 Introduction. 38
7.2 The State Machine. 38
7.3 Architecture and Design. 39

7.3.1 The Initial State Machine. 39
7.3.2 The Extended State Machine. 42

7.4 Implementation. 43
7.4.1 The Actor’s Deployment Descriptors. 43
7.4.2 CarDriver. 45
7.4.3 CarControl . 48
7.4.4 CarMovingCS . 49
7.4.5 ExtendedCarMovingCS. 50
7.4.6 CarMovingBackwardCS. 51

7.5 UML . 52
7.6 Summary . 53

III

8 Results 54
8.1 Introduction. 54
8.2 Logical vs Physical Execution. 54
8.3 UML . 55
8.4 Summary . 56

9 Discussion 57
9.1 Introduction. 57
9.2 Dynamic change of state machine behavior in JavaFrame and Ac-

torFrame. 57
9.3 Run-time CompositeState replacement. 58
9.4 The Prototype. 59
9.5 State Machines Communicating Asynchronously. 59
9.6 UML 2.0 . 59
9.7 Future work. 60
9.8 Summary . 60

10 Conclusion 62

Bibliography 64

Appendix A - Java Source Code CD-ROM

Appendix B - Deployment Descriptors CD-ROM

Appendix C - Trace File CD-ROM

IV

List of Figures

2.1 State chart of an electrical light bowl switch.. 7

3.1 The NorARC Stack. 10
3.2 JavaFrame classes and run-time system.. 11
3.3 JavaFrame - alternative modeling notation.. 11
3.4 Active object model. 12
3.5 CompositeStates.. 13
3.6 Different type of mediators.. 14
3.7 The use of mediators. 15
3.8 The logic execution trace.. 15
3.9 A play and its participating actors.. 16
3.10 Class structure for ActorFrame. 16

4.1 Black-box or external view notation of a component.. 20
4.2 An internal or white-box view.. 20
4.3 Dependencies in the CompositeStructure package.. 21
4.4 The state machine class structure.. 22
4.5 Composite state with entry and exit points.. 22
4.6 A transition example with incoming and outgoing messages. . . 24
4.7 Sequence diagram. 25
4.8 Communication diagram. 26

5.1 JavaFrame framework/Modelliong Development Kit. 28
5.2 Conceptual model of ActiveObject. 30
5.3 Message conceptual model. 30
5.4 Scheduler conceptual model. 31
5.5 State conceptual model. 31
5.6 The Actor base behavior. 31
5.7 Non-restrict layering . 32
5.8 Conceptual design - Application and ActorFrame. 32
5.9 Conceptual design - Application and JavaFrame. 33

6.1 Conceptual class diagram. 36
6.2 Conceptual class diagram. 37

V

6.3 Conceptual communication diagram. 37

7.1 The initial state machine. 39
7.2 The driver state machine. 40
7.3 UML diagram 1. 41
7.4 UML diagram 2. 42
7.5 UML diagram 3. 43
7.6 StateGraph of the initial composite state. 43
7.7 The extending composite state chart. 44
7.8 State graph of the extended composite states.. 44
7.9 Code for the RootActor deployment descriptor. 45
7.10 The deployment descriptor for the CarDriver. 45
7.11 Implementation of CarDriverSM. 45
7.12 Implementation of CarDriverCS. 46
7.13 Implementation of CarDriverCS.sendRoleRequest. 46
7.14 Implementation of CarDriverCS.treatRoleConfirm. 46
7.15 Implementation the Stop state. 47
7.16 Implementation of the class CarControlSM. 48
7.17 State and Composite State Declaration for CarControlCS. 48
7.18 Implementation of outOfInnerCompositeState. 48
7.19 Implementation of treatEnterState in CarControlCS class.. 49
7.20 Implementation of the CompositeState update procedure. 49
7.21 Extract of the enterState method from the class CarMovingCS.. . 50
7.22 Recursively calling outofInnerCompositeState. 50
7.23 ExtendedCarMovingCS constructor.. 51
7.24 Recursively calling the method outofInnerCompositeState. . . . 52
7.25 The prototype update sequence diagram. 52
7.26 The prototype communication diagram.. 53

8.1 Parts of the trace file. 55

VI

Chapter 1

Introduction

1.1 Background

Standing with a mobile terminal in your hand, wondering if it works as you try
to pay a bill, or waiting for a location update for your child’s whereabouts, the
mobile terminal gives people in the21st century a whole new set of applications,
which they did not have before, whenall you could do was make a call. This
gadget evolution poses new possibilities as well as new problems for software and
hardware developers within tele and data communication.

Nowadays, value added services within the mobile network are widely used both
as entertainment and as substitute for daily functions (e.g. ordering tickets by Short
Messages Service, SMS). These services are often modelled by state based behav-
ior. There may be several hundred thousand people using a particular service at a
given time. Problems arise when updating or changing the service by altering the
behavior of the service. By shutting down the service, all subscribers will lose the
possibility to use the service might find that unacceptable when using the mobile
to pay a bill. A way to solve this problem could be to update the service while
running (i.e. changing the state machine behavior in run-time). Other problem
could be in mobile terminal itself. Although today’s terminals have undergone a
massive increase in both processing power and memory, there are still processes
that are too CPU1 demanding for the mobile to process adequately. Even when
introducing new and more powerful mobile terminals the problem with older ter-
minals are still not solved. One could, after figuring out the processing power of
a terminal, dynamically change the state machine of the service making it suitable
for the terminal to process. Parts of the service might run in the service network,
relieving the terminals processing unit. Vice versa, if the subscriber during the use
of service, for instance a game, replaces the terminal with one more powerful, the

1Central Processing Unit

1

service could initiate a dynamic update, pushing more of the workload from the
service network to the mobile terminal.

The rest of the chapter will give an overview of the technologies that are used as
the foundation of the work related to this thesis. There will be an introduction to
the Ericsson NorARC service creation environment and UML 2.0.

1.2 Ericsson NorARC’s Framework

The wordframeworkis widely used and its definition has varied a lot due to the
fact that the concept of framework is difficult to define. Some definitions describe
the structure of the framework and others describe the purpose. Frameworks are
object oriented re-use technique in particular, and in general look like any other
reuse technique [7].

As seen with several other frameworks e.g. AWT2 and beans3, frameworks are
important when it comes to component development.The ideal reuse technology
provides components that can be easily connected to make a new system[7]. But
frameworks are more powerful than any other regular components architecture. As
such, it requires more effort to understand and utilize them.

Ericsson NorARC’s (Norwegian Applied Research Center) framework is a frame-
work stack assembled by three distinct frameworks; ServiceFrame, ActorFrame
and JavaFrame, which are all tools for design, verification, deployment, manage-
ment, and testing services. These are the core concept of most frameworks, pro-
viding a standard way to handle different aspects of component development. The
NorARC framework is meant to deal with complex systems within telecommuni-
cation and Internet services; scenarios that are described in the Introduction. Ser-
viceFrame [1], the top layer in the framework supports the creation, deployment
and execution of the service. The ActorFrame [1],[3] is like ServiceFrame imple-
mented using JavaFrame, and ActorFrame deals with the Actor and Role concept
of a service. Finally, JavaFrame [3] is the core of the framework with regards to
state machines and asynchronous communication. It is a MDK4 for large, com-
plex real time systems, whit an emphasis on the Active Object asynchronous com-
munication concept. Like most frameworks, the NorARC framework is currently
language specific regarding component development within the framework. All
three layers of the framework, Service-, Actor- and JavaFrame are implemented by
using Java [5]. Hence, all components developed within the NorARC framework
must be done so using Java as programming language. The use of specialized me-
diators that make use of communication middleware standards like CORBA5 and
RMI6 enables NorARC services to communicate with applications made in other
frameworks and languages.

2Advance Window Toolkit
3Javabeans, www.java.sun.com
4Modelling Development Kit
5Common Object Request Broker Architecture, www.corba.org
6Remote Method Invocation, www.java.sun.com

2

1.3 UML 2.0

In general, UML7 is a visual language for specifying, constructing and document-
ing software systems. UML is an open standard, which has been accepted as a
common modeling language throughout the software and system industry, and is
treated as today’s de facto standard for specifying software architecture. OMG8 is
the body responsible for the standardization of UML, which started with UML 1.1
in 1997. At the beginning of this project UML 1.4 [21] was the current standard
but UML 2.0 [4] was planned to be standarized during the timescale of this thesis
project. March 2003, UML 1.5 [22] was released, but had only small changes from
version 1.4. The UML 2.0 upgrading is due to the fact that version 1.x has lots of
shortcomings (e.g. non-standard implementation, exaggerated complexity, impre-
cise semantics etc [8],[23],[24]). One inadequate part of UML 1.x often mentioned
is the insufficient support for component-based development. To cope with these
drawbacks UML 1.x has been used in a non-standard way. Other tools like SDL9,
ROOM10 and MSC11 have been used together with UML 1.x to achieve the goal.

The basic improvements from version 1.x to 2.0 are:

• better support for component-based software development.

• better alignment of other widely used standards like, XML/XMI and SDL.

• improved support for composite state machines.

OMG has issued 4 RFP12 for UML 2.0. The first is an Infrastructure RFP, which
deals with restructuring the basic constructs and improving customizability. The
second RFP is the Superstructure, which concerns components, activities and in-
teractions. The third document is the OCL13 and concerns increasing the precision
and expressive power of the constraint language of UML. The last RFP is the Dia-
gram Interchange, which discusses the model diagram interchangeability between
different UML tools. When comparing these four RFP’s with UML 1.x’s one RFP,
some claim that this may result in an awkward and big specification, and that UML
2.0 will suffer fromsecond-language syndrome[8]. Hopefully, OMG and its UML
consortium will use architectural moderation to prevail UML 2.0 to be a design-
by-committee compromise.

It is important to notice that the termcomposite staterelated to this thesis is used
in two different manners:

• When talking about composite states in general, and especially in relation to
UML, composite stateis used.

• Since JavaFrame’s composite state notion is captured in the classCompos-
iteState, this notation is used whenever talking about composite states in
relation to both JavaFrame and ActorFrame.

7Unified Modelling Language
8Object Management Group
9Specification and Design Language

10Real-Time Object Oriented Modelling Language
11Message Sequence Chart
12Request For Proposal
13Object Constraint Language

3

1.4 Thesis Definition

The thesis will use the NorARC frameworks to test the feasibility of a dynamic
change in the behavior of CompositeStates. The final definition of the project is:

The student will evaluate the UML 2.0 Run-time Enviroment/Service
Creation Technology from NorARC with regards to dynamic change
of behavior during run-time. CompositeStates may contain an inner
state space composed of CompositeStates. The goal is to get a better
understanding of how these inner CompositeStates may be candidates
for on-line replacement and thereby changes in behavior (state space)
during run-time.

The thesis title is:

Using Ericsson NorARC’s frameworks as test bed for dynamic change
of behavior based on CompositeStates.

In addition the project will consider another objective:

If possible, evaluate how on-line replacement of JavaFrames Compos-
iteStates can be used to change parts of the state space during run-time
and how this can be described using UML 2.0.

and finally:

If possible, a prototype will be made, demonstrating some of the con-
cepts involved.

1.5 Work Description

The notion three zeroes[6] is a technique introduced to aid server developers
and administrators in their struggle for 100 percent server and service availabil-
ity. Three zeroes includes:

• Zero development

• Zero deployment

• Zero administration

Zero development does not meanNodevelopment, but to develop in a way that en-
ables the code to be reused, preferably as components. Zero deployment is a strug-
gle to minimize the time and work used to push out new developments. There are
several ways to this, and by developing components that are deployment-friendly
much is achieved. Zero administration signifies how to reduce time and effort to
maintain and administer a system. The NorARC frameworks are good candidates
for all of these aspects, building on well proved techniques and patterns. Some
aspects within development and deployment will be investigated through the fol-
lowing questions, which are fundamental for this project:

4

• Are JavaFrame based and ActorFrame based applications, candidates for dy-
namic change in run-time, by introducing new classes?

• Are JavaFrame based and ActorFrame based applications, candidates for dy-
namic change on regards to the state machine behavior (i.e. without ending
a play or introducing a new actor or child actor)?

• Are CompositeStates candidates for run-time replacement in applications
based on both JavaFrame and ActorFrame (i.e. without ending a play or
introducing a new actor or child actor)?

Further, some other relevant questions are also addressed:

• How can all this be modelled by using UML 2.0?

• Does run-time replacement of composite state violate good programming
practice within asynchronous communicating state machines?

The answers to the above questions, apart from the two last, are based on two
concepts, Java and the NorARC framework. Firstly, the possibilities for intro-
ducing and changing components run-time to a Java program will be evaluated.
Java is a widely known programming language, thus it will not be described as
a language, but only the parts with regards to dynamic change are discussed and
described. Secondly, the NorARC framework and especially CompositeStates will
be analyzed with regards to dynamic change of behavior. Thirdly, UML 2.0 will
be evaluated as the candidate to formally describe the CompositeState substitution,
and the dynamic change of behavior. In this thesis,dynamic change of behavior
implies changing the static structure of a state machine, providing new behavior.
This is in contrast to what is normally understood by this expression in the context
of UML, and especially interaction diagrams [19],[20]. UML is language indepen-
dent and shall describe concepts only, not any language features.

In this thesis a prototype, in which a dynamic change of behavior in a state machine
occur, is made with the framework of NorARC, but without making any modifica-
tion to either Java- or ActorFrame. Suggestions of changes and modifications to
both are specified for future work.

1.6 Report Outline

The remaining part of the report, describes the technologies described above. Chap-
ter 2 will elucidate some basic topics regarding both services and the NorARC
frameworks, namely state machines and asynchronous communication. Chapter
3 describes the NorARC framework as a whole, and then each of the three dis-
tinct parts of it. In Chapter 4, the parts of the UML 2.0 proposal relevant to this
project, are described, followed by patterns, methods and architecture relevant for
this thesis in Chapter 5. Based on the five first Chapters, Chapter 6 presents some
conceptual solutions to problems related this thesis. The prototype, with its design
and implementation, inter alia, is described in Chapter 7, and finally the last three
Chapters, 8, 9 and 10, presents Results, Discussion and Conclusion.

5

Chapter 2

State Machines and
Asynchronous Communication

2.1 Introduction

State machines are important mechanisms of service creation within the NorARC
service creation environment and programming in general. Shown later, both state
machines and asynchronous communication are crucial parts of the actor notion.
To get a better understanding of these concepts, this chapter introduces and dis-
cusses their most important aspects in relation to this thesis subject. First, finite
and communicating state machines are debated, followed by some important is-
sues regarded concurrent programming. Then, the actor based approach shows
how all this can be fitted together.

2.2 Finite State Machines (FSM)

FSM is a technique that allows simple and accurate design of sequential logic and
control function. Designing systems using state machines enables you to make the
design more sophisticated and with more ease than normal. Also, by designing
state machines with a formal notation, one can formally verify their behavior, even
with mathematics.

2.2.1 What is a State Machine?

A basic concept of FSM is that a system can only be in a finite number of states
(e.g. an electrical light switch can be eitheron or off, indicating two states). A
more complex example is a microwave, which has more states than a light bowl
switch and have states not visualized for the user. A state machine can only be in
one state at a given point in time. Naturally one can switch back and forth between
two states, like rapidly switching a light switch, but at any given point in time the
state machine is at most in one state. This can be shown in a state diagram of
the electrical light bowl switch in Figure 2.1. If the switch is in the stateoff, one
can cause the light to switchon by pushing the switch, which is an input to the

6

Figure 2.1: State chart of an electrical light bowl switch.

state machine, and vice versa if the current state of the state machine initially was
on. This is very simple and also very fundamental concepts for state machines. A
state machine must, based on its current state, evaluate the input to give the correct
output, or move to a new state. Electrical light switches are easily understood state
machines because the stateson andoff are visually understandable. Most state
machines do not have any visual interfaces to their inner states, and most have more
than two states. The input and output are also often too complex to understand by
mere a visual examination. The input is often what drives the state machine to
a new state, either by just ’waiting’ for some external event to come along, or by
actively look for external events, that are significant to its current state and previous
input. Each state in a FSM has a set of one or more transition rules. That is a rule
for what state to enter next given the current state and current inputs. If several
rules are executable the, FSM is said to be non-deterministic. Some definitions of
state machines are:

• a state is said to be transient if once left there is no way back to that state.

• a state is said to be a sink state if once entered then there is no way out of
this state.

Each bubble in the state chart represents a state. As shown above there is a finite
and rather small number of states, and all states are known in advance. This project
will deal with state machines that have the possibility to change some of its states,
by replacing them with sub machines or composite states. But first lets look at
communicating FSM, CFSM.

2.2.2 CFSM

Communicating FSM models are extensions of FSMs. This allows communication
and synchronization among FSMs. There are several synchronization paradigms,
but that is a subject outside the scope of this project. CFSM is communicating
by connecting the output from one machine to the input of another FSM. As a
particular case an FSM can communicate with itself by a suitable feedback from
its output to its input. The CFSM must execute two-step algorithm:

1. Inspect the input signal and select a transition rule.

7

2. Change its control state and update its output signal.

CFSMs can be either tightly or loose coupled. Tightly coupled CFSMs use syn-
chronous communication or rendezvous channels to communicate. This means
that two CFSMs must be at a given point of execution, in order to send and receive
signals. For example, the sending CFSM must be at its sending point of execution,
and simultaneously the receiving CFSM must be at its receiving point of execution
in order for the information to be exchanged. If either of them reaches a sending
or receiving point of execution, it must wait at this point until its opponent reaches
the antagonism point of execution. If one CFSM waits atsend, the other CFSM
must reachreceive, or vice versa, in order to have a communication. A less tightly
coupled system is CFSMs, which use asynchronous message passing. The CFSM
are then coupled via FIFO message queues. This means, that a CFSM may send a
message to another CFSM and thenmove on(e.g. entering a new state or executing
new statements without waiting for the opponent to read the message). This way
of parallel computing makes the system more modular.

2.3 Concurrent Programming

When dealing with real world problems, like the one mentioned in Introduction,
real-time software design is of utter importance, since a failure of the system may
have catastrophic consequences. On the other hand, real-time systems are com-
plex to design and verify since they are models of the physical world, which usu-
ally behaves in a non-deterministic manner. Therefore, one major concern when
designing real-time systems, are management of concurrency. Concurrent activi-
ties in large systems are often managed by creating application-controlled context
switching [11] at times when there is little or no context that needs to be saved. As
shown in the chapter 3, active objects abstraction is an example of such application-
specific concurrency management.

There are two ways of performing communication, either shared data or message
passing.

Shared data Using shared data, two or more threads can communicate by access-
ing the same data. To prevent inconsistent updates, critical sessions and
mutual exclusion are used. In order to use shared data amongst threads or
processes, they must share the same memory. This way of synchronizing
data is simple but may be difficult to understand and maintain, and is there-
fore often erroneous. There may also be times when shared memory is not
acceptable, both due to complexity issues as well as performance issues.

Message PassingMessage passing can be divided into synchronous and asyn-
chronous communication. Both these forms of communication uses the en-
capsulation synchronization mechanism, where the shared data is encapsu-
lated as private data, only accessible through operation invocation.

Further, when discussing concurrency there are two types of design paradigms
that need to be mentioned, time-driven and event-driven [11]. The former style
is widely used within the producer-consumer relationship, feedback control loop

8

and digital signal processing. The latter is widely used with large complex system
and when unpredictable asynchronous events occur. This often involves queuing
messages for future processing while working on the current task. The combina-
tion of event-driven software design and object-orientation makes the active object
concurrency abstraction suitable for representing finite state machines, because the
FSM specification gives a behavioral specification of the active object [11].

2.4 The Actor Based Approach

Picture all the advantages of concurrent communication mentioned above assem-
bled into one notion, and you have the outline for an actor. One definition of an
actor isall computation in terms of various patterns and idioms of message passing
among entities[12]. Another similar definition isautonomous objects: ... objects
in that they encapsulate data, methods and an interface ... autonomous in that
they encapsulate a thread of control ... interact with their external environment by
sending and receiving messages[13]. The actor notion provides us with an easy
model for making communicating components. Asynchronous communication is
a rudimentary form of communication, for which other communication abstraction
may be implemented. Hence, asynchronous communication is an important part of
the actor model and actor languages. This is embodied in the actor model kernel
implementation guidelines [13]:

• messages needs to be buffered at their destination.

• the communication must be ’non-blocking’.

• provide scheduling algorithm that ensures application-controlled context switch-
ing to optimize processor utilization.

Another issue worth mentioning when talking about actor communication, is that
an actor message recipients are specified using a location-independent email ad-
dress, maintained in a name table. This lightens the actor migration.

By using actor languages one may build a complex system at a higher level of
abstraction, because it is possible to hide unnecessary architectural details. More
information of the notion of actors is presented in chapter 3.

2.5 Summary

This chapter has demonstrated which aspects are involved when dealing with con-
current communicating components, especially concurrent communicating state
machines in large complex systems. It has been shown that there are paradigms
suitable for such software development (e.g. actors). By leaning to the actor ap-
proach one can create application at a higher level off abstraction, leaving out ar-
chitectural details. The next chapter will show how Ericsson has implemented a
framework to use the actor notion to cope with such large complex software sys-
tems.

9

Chapter 3

NorARC’s Service Creation
Environment

3.1 Introduction

Ericsson NorARC service creation environment was made to cope with large, com-
plex software systems and service creation within the telecommunication domain.
This work can be tedious and expensive when done in anold-fashionedmanner.
By making a new service creation environment, Ericsson could fragment the work
involved in creation of services, making each service modular. This is both direct
and indirect cost effective. By reusing modules, one gets an direct cost reduce,
and by making projects simpler and more surveyable, one has a indirect cost re-
duce. The service creation environment from NorARC consists of the frameworks,
JavaFrame, ActorFrame and ServiceFrame. This chapter gives an outline of each
part of the framework stack, which is shown in Figure 3.1.

Figure 3.1: The NorARC Stack

3.2 JavaFrame

JavaFrame was introduced to fill the gap between modeling tools with good support
of modeling system structure, like ROOM or SDL and modeling tools for good
support for Java, like UML. Therefore, JavaFrame can be seen as a convergence

10

of ROOM/SDL, UML and Java, which benefits from ROOM/SDL modeling, and
the support of 1:1 relationship between model and Java from UML. By this, one
can model the system structure in a way that makes it possible to analyze, but still
implement it using Java. JavaFrame can be viewed in two different ways [3]:an
advanced API or a specialized language with support for modelling concepts.As
an API1, JavaFrame can be seen as an extension to the JSDK2 package already
available by SUN3. By using the standard Java packages, classes from JavaFrame
and user-defined classes, one can make JavaFrame applications, just as any other
Java extension, as shown in Figure 3.2.

Figure 3.2: JavaFrame classes and run-time system.

When observing JavaFrame as a language with support for modeling concepts,
Figure 3.3 can be a good help. Starting at the far left side, UML 1.4 is used with
regards to JavaFrame, a common model approach when using java extension. The
next modeling and transformation is done with a JavaFrame profile. Neither of
these approaches makes a 1:1 mapping between model and code because the trans-
formation is done in a JavaFrame specific way. To have a 1:1 mapping, one needs a
UML like modeling language specific for JavaFrame. The difference between this
model and the former is that the modeling language is JavaFrame specific, not the
mapping. Also, when using JavaFrame for modeling purposes, classes that are in-
troduced for implementation purposes only, are not graphically presented, making
the system structure more obvious [3].

Figure 3.3: JavaFrame - alternative modeling notation.

1Application Programming Interface
2Java System Development Kit
3www.sun.com

11

3.2.1 Active Objects and Composites

In addition to state machines and mediators, active objects and composites rep-
resents the backbones of JavaFrame. Active objects are described as anabstract
class representing the notion of something that acts on its own, sending and receiv-
ing messages through its associated mediators[3]. The interaction between active
objects is done asynchronously, because this is generally known as a well-proven
concept and has advantages over synchronized message passing (e.g. the parties
can handle messages in individual pace). A conceptual model is given in Figure
3.4.

Figure 3.4: Active object model.

The model in Figure 3.4 shows two things:

• There may be substructures of interacting active objects making the model
scalable.

• The communication between active objectsappears to be the same regard-
less of whether it is a Composite or a single StateMachine[3].This transpar-
ent communication is possible due to the mediators, which is explained later
in this chapter.

By using Java to define JavaFrame, Ericsson made it possible to make a structure
of a composites superclass and for the transitions of a state machines superclass to
be inherited to child classes. Also, there may be several composite objects of the
same class. This introduces the possibility for a class to be re-entrant, which leads
us to the next element; state machines.

3.2.2 State Machines and CompositeStates

JavaFrame specific state machines are said to be re-entrant, meaning thatmany
states machines refer to the same state machine structure[3]. This means, that if
the source state machine structure changes, all state machines built on this struc-
ture also changes. Each state machine has a set of State objects whose structure
is separated from the state machine. It is important to grasp this concept, because
in order to dynamically change the behavior of a state machine, we need to al-
ter/reorder the set of States. If the States are to tightly coupled to the state machine,
any dynamically change in the set of states would make it necessary to change the
state machine, any update will effect all the state machines at the same time4.

4state machine objects made from the same class

12

The JavaFrame complexity does not stop with the state machines being re-entrant.
State machines also have CompositeStates, a state with inner or internal states as
shown in Figure 3.5. A CompositeState may also contain CompositeStates making
a nested structure of CompositeStates.

Figure 3.5: CompositeStates.

Since state machines can send and receive messages in an asynchronous fashion, a
message queue is implemented for each state machine and managed by a scheduler.
The scheduler serves the state machines in a round-robin fashion.

CompositeStates are states with inner states, either new CompositeStates or atomic
states. Thus, a state structure can be hierarchically and arbitrary deep, ending in
an atomic state. To enter and exit CompositeState, entry and exit point respec-
tively are used. They are given an identity of the type integer. The CompositeState
contains all definitions of its inner states, and all the actions related to the transi-
tions between the inner states and their entry and exit points. To manage this, the
following inherited methods can be used:

protected final void exitState(int exitNr,StateMachine curfsm) used when leav-
ing the CompositeState through a given exit point.

protected final void sameState(StateMachine curfsm)The CompositeState stays
in the current leaf state.

protected final void save(Message sig, StateMachine curfsm)The receiving mes-
sage is not consumed at the moment or in this state and is saved for later
execution.

protected final void output(Message sig, Mediator receiver, StateMachine curfsm)
Sends a given message to a given local mediator.

public void enterState(int enterNr, StateMachine curfsm) Used to enter Com-
positeStates, that have more than a default entry point. If a default port is
used, the integer is not a part of the method signature.

protected boolean execTrans(Message sig, State st, StateMachine curfsm)This
function is called (but not by the user code) to execute a transition. If the
transition is executed or saved, this method returns true.

13

protected void outofInnerCompositeState(CompositeState cs, int exNo, StateMachine curfsm)
This method is used if the CompositeState has an inner CompositeState, and
this inner CompositeState should be exited trough one of its exit points. The
index of the exit point is linked to an inner atomic or a new CompositeState,
the exit point of the current CompositeState or the entry point of another
inner CompositeState.

3.2.3 Mediators

Mediators are a very important concept in JavaFrame. In order for large software
projects to evolve, the need for component independence is crucial. Mediators are
the components that make this happened in JavaFrame. It is the glue that makes
the system a whole.Mediators are objects that represents interaction interface
between Active Objects[3]. Mediators comes in different forms, all inherited by
the superclass Mediator. Figure 3.6 shows some of the mediators implemented in
JavaFrame.

Figure 3.6: Different type of mediators.

By having different types of mediators, a developer do not need to know what is
outside his scope, he only need to know what mediator to connect to, and each state
machine only addresses its innermost mediators. Some Mediator description from
[3]:

• RouterMediator has the possibility to route the message to the appropriate
next mediator, this is made possible by using routing databases.

• MulticastMediator can replicate a message and send it to several different
mediators.

• ProtocolMediator makes the application independent of communication en-
vironment by hiding the lower levels of protocols.

• EdgeMediators makes it possible for a JavaFrame architecture to communi-
cate with exterior systems.

A StateMachine discerns between an inward and an outward mediator, so no mes-
sage can be sent in to an outwards mediator and the StateMachine cannot send
messages to an outward mediator and every StateMachine or Active Object knows
which Mediator it communicates through. Figure 3.7 shows the use of mediators.
Different color, white and light grey, discern between inward and outward media-
tors.

14

Figure 3.7: The use of mediators

3.2.4 The Trace File

JavaFrame is supported by a trace system. This makes it possible to trace the
execution of various state machines, their transitions and messages that are sent
and received. When the code is executed, the logic can be followed by using the
supporting trace observation tool as the example in Figure 3.8 shows. This trace
system is also available from both Actor- and ServiceFrame. Each framework
has an extension special for that framework, like ServiceFrame has extension for
tracingroles involved in a play[1].

Figure 3.8: The logic execution trace.

3.3 ActorFrame

In general, actors are computational agents, which act according to a certain be-
havior as response to incoming communication. When considering the NorARC
ActorFrame,an Actor is a (composite) object having a state machine (ActorSM)
and an optional inner structure of Actors[1]. As shown earlier, ActorFrame resides
between JavaFrame and ServiceFrame, and here the actor is the core component.
Historically the actor notion was introduced based on the perception that VLSI5

would lead to the widespread availability of computers with very large number of
relatively small processors. Today’s telecom network can be seen as such, with lots
of interacting processors in form of mobile phones, PDA’s, etc. An actor can be
seen as a autonomous component, with the ability to play roles. Different roles are
played by different inner actors, all managed by a management functionality. The
available roles and their rule of conduct are provided by a deployment descriptor.
The term play is used for adynamic structure of interacting actors performing ac-

5Very Large Scale Integration

15

cording to role types[1]. This term is used both in ActorFrame and ServiceFrame
and has the same signification. Figure 3.9 shows a play and the actors associated
through roles.

Figure 3.9: A play and its participating actors.

An actor has a recursive structure, meaning that it can contain instances of its
own type, so-called inner actors. These inner actors lifecycle are handled by the
outer actors default behavior. The ActorFrame is a framework that uses JavaFrame
to create an environment for development and testing of actors. It supports con-
current computation processing, process movement between actors and dynamic
reconfiguration [10].

The Actor concept mapped down to classes are shown in Figure 3.10, and the
following description is from [14].

Figure 3.10: Class structure for ActorFrame

• ActorSM - is the base for all further role definition in ServiceFrame. It con-
tains variables for managing sub-roles and lifecycle management.

• ActorContext - holds the reference to the surroundings.

• Play - detonates the association between Actors taking part in a play.

• ActorDD - holds the definition of the Actor Deployment Descriptor file.

• ActorAddress - holds the unique entity of the Actor.

16

• ActorOutMediator - the output port of all messages from this Actor.

• ActorRouterMediator - contains the routing algorithm. This routs the mes-
sages to its belonging Actor or one of its child’s.

• CompositeState - this is the basic class for defining transitions and states.
This is the core object of this project.

• ActorCS - Contains the logic and sub states for managing sub-roles and life-
cycle management.

• CSPlayingBase - The basic for defining the virtual Playing state.

• CSBase - basis for all new states.

3.4 ServiceFrame

ServiceFrame is the topmost level of the NorARC framework, and it is an ap-
plication of ActorFrame with generic support for actors, plays and roles [3]. Ser-
viceFrame was introduced to relieve service designers from the problems involving
creation, deployment and execution of services. ServiceFrame has 5 core elements:

1. Conceptual abstractionis generally to separate the functionality from the
implementation. This conceptual abstraction is made by introducing com-
municating state machines by using JavaFrame. Furthermore, as stated in
the section about JavaFrame, the state machines communicate in an asyn-
chronous manner to further ease the burden for the service modeler or de-
signer.

2. Environment mirroring. ServiceFrame is not designed for a particular set of
services, but by using general patterns, it support a wide range of services to
be rapidly provided.

3. Role modeling. A service is a set of actors playing different roles, and each
actor can play several roles, and a role can be played by several actors.
With ServiceFrame, this actor concept is separated from the role concepts
to achievebetter modularity and reusability as opposed to traditional Actor
oriented design[3].

4. Service centered architecture, in contrast to network centered, is an architec-
ture, which emphasizes the services [18], and has no specific type-of-service
feature. It is also, as far as possible, independent of the underlying network
architecture.

5. Frameworks and patterns.Both ServiceFrame and ActorFrame are built on
the JavaFrame framework, which is implemented using well-known working
patterns. This use of patterns in JavaFrame influences both ActorFrame and
ServiceFrame.

17

3.5 Summary

It has through this chapter been shown that Ericssons NorARC framework is an
ideal framework for service creation. By use of JavaFrame and ActorFrame, the
ServiceFrame is completely independent of today’s technology regarding the com-
munication and service aspect. All frameworks are built on well proven techniques
and patterns that aid application and service creation. By using non-strict archi-
tectural layering the NorARC framework may be hard to learn, but when master-
ing the framework, application and service development are easily done. In lack
of good tools for modeling these frameworks, Ericsson has combined techniques
from different modeling environment to aid their modeling. Ideally, all this should
be modelled in one environment, UML 2.0.

18

Chapter 4

UML 2.0

4.1 Introduction

This chapter embroiders some aspects of the UML 2.0 superstructure. Since UML
2.0 is used as a modeling language, and since the NorARC system is based on
expectation of what UML 2.0 will be, some basic understanding of UML 2.0 is
needed, especially within the subjects’ components and state machines. The infor-
mation in this chapter is an extract of the superstructure released from OMG. At
the time of writing, the superstructure has not yet been standardized and may not
be standardized before after the end of this project.

4.2 Components and Composite Structure

A component within the UML 2.0 notion can be considered as an autonomous unit
within a system, which provides and requests interfaces to communicate with its
environment. UML 2.0 introduces components as an aid for defining software of
arbitrary size and complexity. By using components, the software development is
meant to be more modular and reusable. UML 2.0’s component package supports
both logical and physical components. UML 2.0 Components has two packages,
the BasicComponents and the PackingComponents, the former packagefocuses on
defining a component as an executable element in a system[4] and the latterfocuses
on defining component as a coherent group of elements as part of the development
process[4]. Components can be seen as a type of composite structure. Interfaces
play an important role within component-design, and UML 2.0 has pursued this by
introducingprovided interfacesand required interfaces. These former interfaces
are the kind of interface known from UML 1.x, which may be implemented and
realized by a classifier (e.g. component). The latter interface represents the set
of interfaces required from other components, in order to fully provide its func-
tionality or function properly. Through interfaces a component can also provide
and require ports, and this way a component can specify the service provided or
required by aspecifier(e.g. component), to its surrounding environment. The
encapsulation of a components inner structure makes it easier to substitute a com-
ponent in both design time and run-time, as long as the replacing component offers
equivalent functionality through its port definitions. These public properties are

19

only visualized as an external view through the ports. The internal view, or private
properties, shows how the external behavior is realized internally. The external and
internal view of a component is shown in Figure 4.1 and 4.2, respectively.

Figure 4.1: Black-box or external view notation of a component.

Figure 4.2: An internal or white-box view.

The connection between ports from different components are realized withcon-
nectors. There are two kind of connectors,delegation connectorand assembly
connector. Delegation connectors link the external part of the component to the
internal realization of that behavior by the component’s part. The link in Figure
4.2 labelled<<delegate>> is such a connector. Assembly connectors link the
connection between two components antagonizing ports or interface (e.g. a pro-
viding and requiring port or interface). The notationball-and-socketshown as link
from Order to Customer labelledPersonin Figure 4.2 is a assembly connector.

Figure 4.3 shows the subpackage dependencies ofcomposite structure. Some of
these subpackages are described in the rest of this section.

The Port subpackage provides mechanism for encapsulation a classifier from its en-
vironment. Through ports it is possible to hide the inner structure and functionality
of the classifier, and at the same time provide an interface for public functional-
ity, and creation of classifiers whiteout knowledge of the environment it will be
embedded in.

Collaborationallows us to describe only the relevant aspects of the cooperation
of a set of instances by identifying the specific role that the instance will play[4].

20

Figure 4.3: Dependencies in the CompositeStructure package.

Further, [4] states that by using interfaces one isallowed to external observe the
properties of an instance to be specified without determining the classifier that will
eventually be used to specify this instance.

The StructuredClasses subpackage supports modeling classes with an internal hier-
archical structure, encapsulated via ports. Although very similar to BasicCompo-
nents from the Component package, the modularity of components is never men-
tioned in the context of structure classes.

4.3 State Machines

The state machine notion is a convenient way to define the lifecycle of object, and
UML 2.0 defines two different kinds of state machines;behavioral state machines
andprotocol state machines. A behavioral state machine describes the behavior of
various elements (e.g. classes), while the latter kind of state machine express usage
protocols, legal transitions that a classifier1 can trigger. Figure 4.4 shows the state
machine class structure. The following will describe some of the elements from
the state machine model from Figure 4.4.

4.3.1 ConnectionPointReference

A connection point reference is used to represent an entry or exit point in a sub
state machine or composite state. These points are source or targets of transitions
in order to leave or enter sub state machines. A connection point reference for
entry points are visualized by placing a circle on the border of the composite state.
For an exit point, the connection point reference is an encircled cross on the border
of a composite state or submachine state. Figure 4.5 shows a composite state with
an entry and exit point.

1A collection of instances that have something in common.

21

Figure 4.4: The state machine class structure.

Figure 4.5: Composite state with entry and exit points.

4.3.2 FinalState

A final state is a special kind of state, which indicates that the enclosed region is
completed.If the enclosing region is directly contained in the state machine and
all other regions in the state machine also are completed, than it means that the
entire state machine is completed[4].

4.3.3 State

A state in a behavioral state machine is a situation during which some invariant
condition holds. One distinguishes between three kinds of states.

• Simple state

• Composite state

22

• Submachine state

A simple state does not have sub states or submachine state machine. During
execution, a state can be either active or inactive, and in a non-hierarchical state
machine only one state can be active at the same time. An inactive state may
become active if one of the transition rules applies, and it may become inactive by
a new or the same transition. As long as a state has the Boolean value ofisFinal set
to false, the state may be redefined by extending the state. A state can be extended
by adding composite states and a composite state can be extended by adding new
state or new inner composite states.

Composite states contains sub states, either atomic sub states called direct sub
states, or an indirect sub states, sub states with inner sub states. Composite states
may also contain one or more regions. If it contains more than one region, the
regions must be orthogonal in relation to each other.

Stated earlier, non-hierarchical state machines can only have one state active at a
time. Hierarchical state machines can have several active states at a time, and also
several atomic states active at a time. First, if a sub state is active, then its parent
state is also active. Second, if an orthogonal region is entered, each of its orthog-
onal regions are also entered, subsequently one atomic state in each orthogonal
region can be active at the same time.

A semantically equivalent to composite state is sub state machine. The main dif-
ference is that a there are defined entry and exit points for entering and exiting the
sub state composite.

4.3.4 State Machines

UML defines state machines as objects that can be used to express the behavior
of a system or parts of a system. It can be seen as a graph with each state as a
node, and with the possibility to move from one node to another by transitions that
can be triggered according to transitions rules. When traversing from one node to
another the state machine executes a set of activities specified within each state.
As an example, consider the soda machine that accepts coins, and after collecting
a given amount, releases a soda. When inserting the last dime, the state machine
moves from a given state to the staterelease soda. Activities associated with this
transition are in the simplest form, the action of releasing a soda to the customer.
Each instance of a state machine has its own event queue, which holds instance
events relevant for the state machine. The order of handling events in the queue is
not defined, leaving open the possibility to use different scheduling schemes.

Event processing is based on therun-to-completionassumption, which means that
an event can only be dequeued or dispatched if the processing of the previous
current event is fully completed[4]. Like the NorARC framework shows, one way
to implement run-to-completion, is to let an event-loop run in its own thread and
read events from the queue. This is exactly what the scheduler class in the NorARC
framework does, handling the event queues for every instance of the state machine
by running its own thread.

Like states, composite states and sub states, state machines can be extended or
redefined by adding new states, composite states, regions, transitions may be have

23

its target replaced etc.

4.3.5 Transition

A direct relationship between a two vertexes2, source vertex and destination vertex
is called a transition. Transitions are split into four groups:

• high-level (group) transitions, orients from a the composite state themselves
reflecting the exiting of the composite state.

• compound transitions, made up by one or more transitions and orients from
several states with one or more states as target. Both the source and the target
may be the same state or set of states, called self-transition.

• internal transitions, executes without exiting or re-entering the state in which
it’s defined.

• completion transition, a transition where the source is a composite state, sub
state machine state or an exit point and without an explicit trigger. This
transition will generate acompletion eventwhich is an implicit trigger for
completion trigger.

Transitions are visualized by a solid line connecting two vertexes and separate the
source and the target vertex, by placing an arrow at the target end of the line. For the
furtherance of understanding the model, it is possible for the line to be labelled with
a trigger-signature, guard-constraint and activity-expression as shown in figure 4.6.

Figure 4.6: A transition example with incoming and outgoing messages

The trigger-signature is a list of one or more names of triggering events, of the
form, attribute-nameor attribute-name : type-name.

A guard-constraint is a Boolean expression based on a formal constraint language
like OCL3 written in terms of parameters of the triggering event and attributes and
link of the context object.

Activity-expression is used to describe actions that executes when the transition
fires. There may be a sequence of distinct actions and also actions that generates
events, like sending signals or invoking operations.

2A vertex is an abstraction of a node in a statechart graph.
3Object Constraint Language, www.ibm.com

24

4.4 Interaction Diagrams

Interaction diagrams comes in different variants, like sequence diagrams, com-
munication diagrams and activity diagrams. The most common diagram is the
sequence diagram. Sequence diagrams are used to show associated messages, ar-
ranged in a time sequence. Figure 4.7 shows that while a sequence diagram look

Figure 4.7: Sequence diagram

much like the same as in UML 1.x, there are some apparent differences. The out-
ermost frame with the compartment labelledSD exampleis the operator for the
interaction fragment. The operatorSDnames the fragment or sequence diagram.
Listed comes all alternative operators:

sd - named sequence diagram or fragment.

ref - reference to interaction fragment.

loop - repeat interaction fragment.

alt - selection.

par - concurrent section.

seq - partial ordering.

strict - strict ordering.

assert - required.

opt - optional.

neg - negative specification.

break - breaking scenario

consider - consider messages within this fragment, example,sd M consider{t,r},
which means that messages t and r should be considered in the fragment M.

ignore - messages are ignored within this fragment.

25

region - critical region.

Figure 4.8 shows a guard in the lifeline ofC3, denoted[x >0]. It this guard stands
then the upper part of thealt fragment is executed. Otherwise, the lower part,
separated by the dashed horizontal line, theoperand separatoris executed. This
new notation for sequence diagrams improves the diagrams scalability and ability
to specify behavior.

Communication Diagrams focus on the interaction between Lifelines where the
architecture of the internal structure and how this corresponds with the message
passing is central[4]. These diagrams corresponds to simple sequence diagrams
that do not use structuring mechanisms. Non-arrowed lines are used as notation
of messages while the sequence of messages is shown by a sequence numbering
scheme.

Figure 4.8: Communication diagram

4.5 Summary

This chapter has focused on some important aspects of the proposed UML 2.0 stan-
dard. The structure of both components and composites are described along with
state machines and how they are modelled in UML 2.0. Changes in the diagrams
needed for this thesis, along with introduction of a new diagram, communication
diagram were also provided. The final UML 2.0 specification may diverse from
the proposal as the work of the specification progresses.

26

Chapter 5

Patterns, Methods and
Architecture

5.1 Introduction

Through Chapter 3 and 4, the manner of operation for both the NorARC’s frame-
work and UML 2.0 is shown. This chapter will show mainly what techniques in
general can be used to accomplish the goal of the thesis definition. Since the No-
rARC framework entirely is based on Java, the first part of this chapter will be
dedicated to Java and how Java as a programming language in general can be used
to accomplish the goal. Further, JavaFrame and ActorFrame are discussed on re-
gards of a conceptual solution. Finally, the methods of UML on regards of dynamic
changes during runtime are discussed, but first, dynamic Java.

5.1.1 Dynamic Java

Java is a well known programming language, hence only a small part of Java is
discussed here. Java is a dynamically linked system. This means that instead of
linking a complete program before execution, the JVM1 links classes and interfaces
on demand during execution if they are required. The JVM links the required com-
ponents by using the bootstrap classloader to load the binary represented classes
and/or interfaces. When loaded into memory, classes and interfaces will be verified
and prepared in order to be used in the program. These parts consist of checking
the byte code for inconsistency and making appurtenant tables and variables re-
spectively.

As an extension to dynamic linking comes run-time loading. Unlike traditional
Java programming, run-time loading take the advantages from dynamic linking to
load a class while the program is running, using the standard or a custom class
loader. By this approach, a Java program can be changed or extended during run-
time, with classes that did not exist when the program first was executed. This is a
technique often used in Java, especially when loading drivers for databases.

The latter method to introduce new classes or interface to a Java program already

1Java Virtual Machine

27

running has a drawback. The class or interface introduced at run-time must be pre
compiled in order to load it. A class loader, which the name implies loads classes
with the extension*.class. A regular Java file has the extension *.java and only
after compilation to byte code there will be made a *.class file. To make a Java
program fully generic it should have the possibility to load files not yet compiled
to byte code. In other words, let the program itself compile the code before loading
it. It is possible to make CompilerClassLoaders [6] that has the possibility to both
compile and load classes and interfaces. This could make it possible to introduce
*.java files not yet compiled to a Java program currently running. This approach
is not recommended because first it is a violation [6] of the JDK’s2 licensing
scheme, so an approval from Sun is needed. Second, by making it possible for a
Java program to compile a*.java file run-time, one forces the target system running
the Java program to have parts of the JDK in the CLASSPATH, or else a run-time
error will occur. Regularly, only JRE3 is required for the target system to run
a Java program. Therefore, the methods used in this project will not enforce the
target system to implement further parts of Java than normally used to run Java
programs. In other words, only run-time loading of pre-compiled classes will be
used.

Since the NorARC framework is assembled by three distinct frameworks, which
can be viewed as levels of abstractions, methods from both Java- and ActorFrame
are here described. Shown from the NorARC stack in chapter 2, JavaFrame is, next
to Java, the lowest level of abstraction. Methods from that part will be describes in
the following section.

5.2 JavaFrame Guidelines and Patterns

Stated earlier, JavaFrame can be seen as a Modelling Development Kit or MDK.
Technically this is just a framework with appurtenant tools and guidelines, which
can be exemplified by Figure 5.1. A framework is a form of design reuse or
domain-specific architecture [7]. The goal is to reuse high level design described
by both code and design or components and patterns.

Figure 5.1: JavaFrame framework/Modelliong Development Kit

As a further consequence from the statements above, [9] states thata JavaFrame

2Java Development Kit
3Java Run-time Environment

28

system should be described graphically as well as textually.Textually this is done
in Java and graphically notation is done in UML 2.0 with a 1:1 relation ship be-
tween the textual and graphical notation.

Since JavaFrame is ultimately implemented by Java, one could make a program
in any manner according to Java guidelines. However, in order to reap maximum
benefit from JavaFrame, there are guidelines for JavaFrame both as a MDK and
as a framework. A violation of these principles may make analysis difficult, and
dependability can not be guaranteed. Some of the modeling guidelines from [9]
are presented below:

• Every active object will communicate only through its own mediators.

• Every state machine will only address its own innermost mediators.

• A composite will contain other active objects, and the containment is defined
through the communication structure of the mediator connections.

• Whenever an active object is going to be created, it is assumed that mediators
already exist. They are parameters to the constructor.

Further, for state machines the following invariants must hold:

• All state machines of a specific extended class are reentrant in that they refer
to the same state structure.

• All dynamic variables are local to the state machine.

• Every transition should end in an operation that defines the next state.

• At any point in time a state machine is associated with either zero or one
scheduler.

The above guidelines are added to the framework as seen in Figure 5.1. When
modeling in the framework itself the following set of templates of patterns that
should4 be used.

Figure 5.2, the extended active object model, is one of the patterns that ensure a
correct use of the JavaFrame framework. It shows, that an active object can be a
composite or a state machine, further it shows that a composite can contain active
objects. As the atomic part, a composite sooner or later contains a state machine.
The possibility of nested composites is an important feature when evaluating if the
composite is a candidate for real time replacement or not.

Shown in Figure 5.3 is the conceptual model of messages. Messages are the input
stimuli to a state machine, which behaves in a reactive manner. To each state ma-
chine, there is a message queue, not shown here, which enables state machines to
react in an asynchronous manner. The only message predefined, is the TimerMsg,
which trigger a transition after a time period. Each state machine can be connected
to zero or one scheduler, and each scheduler schedules a set of state machines. Fig-
ure 5.4 is a conceptual model of such a scheduler and its associated state machine.
The JavaFrame framework has hidden a lot of the underlying actions around the

4read must

29

Figure 5.2: Conceptual model of ActiveObject

Figure 5.3: Message conceptual model

scheduler, amongst it the synchronization, thread and trace scheme. When talk-
ing about threads [9], also states that introducing user-specified threads should be
avoided. JavaFrame also have patterns for the use of states contra composite state
and state machines, shown in Figure 5.5. This shows that a state machine has a
current state which is associated with a state space or composite state. The main
issue in this project is to evaluate if this composite state is a candidate for run-
time replacement. Based on the forgoing, the big outline methods of developing
in JavaFrame is to first model the JavaFrame application system, second to model
transformation to Java and last fill in the details before tuning the system.

5.3 The Architecture Provided by the Framework

The architecture of component-based systems is significantly more demanding than
that of traditional monolithic solutions [15]. Therefore, this section will describe
the architecture of the framework used in this project, the Java- and ActorFrame
framework. Since these frameworks are used in the prototype, and therefore the
same architecture, no architecturally solution is presented later on.

By mere looking at Figure 3.1 one could easily misinterpret that this is the architec-

30

Figure 5.4: Scheduler conceptual model

Figure 5.5: State conceptual model

tural structure, but that is not the case. It is true that the framework has a stratified
layering architecture but it is a little bit more complicated.

First of all, the NorARC framework has a white-box architecture, meaning that
using it requires knowledge of the superclass implementation, due to class and in-
heritance concentration. As to contrast to inheritance and the white-box approach,
is the black-box approach, where interfaces are more common. To exemplify the
white-box approach lets look at the following; to take advantage or make use of
the actor layer, the application classes must inherit from some base actor classes
shown in Figure 5.6. To do this, the programmer must acquire knowledge of the
superclasses implementation prior to using them. This approach is worth mention-
ing since it affects the architecture of the framework. Another fundamental impact

Figure 5.6: The Actor base behavior

31

on the architecture is, if the layering is strict or non-strict.

Strict layering imposes that the implementation of one layer should only be based
on the operation of the layer immediately below. Figure 3.1 shows an example of
this approach, although that is not the intent of the figure. This is called the onion
model [15], emphasizing the distinct layer approach. The upside of this approach
is that each layer can be understood incrementally, learning it layer by layer. The
downside is that this architecture is hard to extend, and may suffer performance
penalties.

The framework provided by NorARC use the non-restrict architectural approach.
This means, that one layer can access methods from any of the lower layers.

Figure 5.7: Non-restrict layering

There are of course both upsides and downsides with this architectural approach,
like loosing the benefit of slicing layers in obvious ways done in strict-layering.
The gain however, is that it solves extensibility and performance problems by elim-
inating intermediate layers where useful.

The system architecture, built on several micro architectures patterns, is a mean
to capture an overall generic approach, which makes it more likely that a concrete
system following that architecture will be more understandable. The overall archi-
tecture of the ActorFrame and JavaFrame visualized by Figure 5.7 can be mapped
to the following conceptual design approach. Given the framework, the archi-

Figure 5.8: Conceptual design - Application and ActorFrame

tecture and overall design are also given for an application based on that frame-
work. Therefore, the above architecture and conceptual design are the base for the
prototype described in chapter 7. Figure 5.8 shows an application based on Ac-
torFrame, which uses JavaFrame. In Figure 5.9, the application is based solely on
JavaFrame. Either way, the application has the same base architecture as the given
framework(s).

32

Figure 5.9: Conceptual design - Application and JavaFrame

5.4 Summary

When using the Java- and ActorFrame frameworks to develop applications, it is
important learn and understand how these frameworks work. Violating their guide-
lines and patterns may cause the application to crash the target system. Although
the NorARC frameworks has non-strict layering, and therefore are harder to learn,
this approach has its advantages, like faster execution due to layering bypass.

An adequate Java approach also was presented in this chapter. Even though run-
time compilation are dissuaded, introduction of pre-compiled Java class files still
is possible.

33

Chapter 6

A Conceptual Approach

6.1 Introduction

This chapter will present some conceptual solutions related to the problems of this
thesis. The solutions are based on the information given in the previous 5 chapters.
Some of these solutions are demonstrated in the prototype.

6.2 State Machine Equivalence

Generally, in order to replace parts of state machines, one must ensure that the
new state space neither introduces deadlocks or nondeterministic behavior to the
given state machine, nor, when communicating with other state machines, causes
the other state machine enter a deadlock or behave in nondeterministic manner. To
address the latter problem first, let us consider two asynchronous communicating
state machines A, and B. Lets assume that these state machines have formally been
verified not to enter deadlocks. If reconfiguring state machine A, by altering its
behavior, the formal verification has no value, unless the sequences of messages
expected and provided remains the same. This consents to theobserver equiva-
lencenotion of [16]. Usingτ as a notation for internal actions does not represent
communication, one can by [16] verify that a state machine is observer equivalent.
Further, Robin Milner in [16] uses the notionbisimulationwhen an actor can not
distinguish between two state machines by mere interacting with them. State ma-
chine or actor B, in the example, can not distinguish between theold and thenew
state machine by just interacting with it. Hence, no deadlock or nondeterministic
behavior will occur as a result of the substitution. Bisimulation can be divided
into strong and weak types of bisimulation, where strong is the hardest to prove
and verify. Observer equivalent state machines are at least weak bisimulated but
may prove to be strong bisimulated. Due to the time scope of this thesis, observer
equivalence and weak bisimulation are an adequate approach.

One could argue that one of the state machines could be programmed to handle
several different sets of message sequences, and therefore the other state machine
also can alter its sequence of messages without introducing erroneous behavior.
That is correct, but it is still bismulation. If an actor can handle several sets of
message sequences, then a new behavior of the communicating actor must provide

34

one of the expected sequences, or else a deadlock may occur. If one wants to
change one of the communicating state machines in a manner, which causes it to
produce and expect messages in a sequence that the other state machine has not
foreseen, the other state machine needs to be updated too.

The first of the problems introduced in this section was how to avoid altering a
state machine that causes it to enter a deadlock or causing nondeterministic be-
havior, which may happen because a guard never becomes true, or entering a state
not accounted for. Using Spin1 or some other formal tools, one can verify that
situations like these do not happen.

6.3 The CompositeState

When altering the behavior of a state machine by substituting its inner composite
state(s), this will in principal work as long as the composite states are equivalent.
When using the NorARC creation environment, this is not the whole truth. Since
entering and exiting a CompositeState happens through its entry and exit points,
these points must be considered also. The best approach is if the substituting Com-
positeState has equivalent exit and entry points as the original. Only if the parent
CompositeState also is substituted, changes to the entry and exit points are recom-
mended.

When receiving an update message, a state machine may be in a non-suitable state
for updates. In these cases there are some rules of thumb. First, let us consider the
cases when the adversary state machine is aware of the update, and maybe counting
on it. In such cases it is of utterly importance to reach a state safe for updating
as soon as possible. This may be by leaving the current state abruptly, saving
the status quo and executing the update. If possible, maybe entering the previous
state after the update and continue from that point on. A state safe for updating
may be several different states, but it may require a specified state (e.g. update),
that is particularly constructed for such a task. It may include initializing some
data or variables local to a state machine or the composite state. If the opponent
state machine is not aware of updates, has no information about it, and will not
receive any kind of information when updates takes place or finishes, another way
of updating will be more appropriate. By saving the update message, the state
machine can wait until it transits to a state safe for updating. By this approach,
the expected sequence of messages can be maintained. In both cases, messages
received while updating the state machine should be saved for later execution or at
least for later evaluation.

6.4 Modelling UML 1:1

By using UML, one tries to achieve 1:1 relation between the model and the code.
This section explains how the conceptual solutions regarding this thesis may be in
UML 2.0.

Through the vast of papers and books on the subject of UML, there has not been

1http://www.spinroot.com

35

found2 any good solution to neither of the UML objectives; modeling the Com-
positeState run-time replacement and dynamic change of behavior. The rest of this
section presents a possible solution to the first UML objective, and then dwell upon
the second.

To model any run-time replacement, let us first consider a common class model,
which the name implies, models the classes involved. The purpose is to show that
two classes may be present in the same class diagram, but not associated with the
run-time environment at the same time. Let us consider an example: Figure 6.1

Figure 6.1: Conceptual class diagram

shows a class diagram with four classes, A, B, C and D. Class A has an association
to B named b, which is private. The classes C and D inherit from B, meaning that
b may also point to C or D. To make sure that b is only associated with one of
the classes C and D an OCL expression is made. This states that b can only be
associated with either C or D at a given time.

By using sequence diagrams one can further explain this. The sequence diagram, in
Figure 6.2, shows object a as an instance of class A. It has an association to object
b, which is an instance of class C. At some point in time, objecta creates a new
object based on class D. The object reference is the same as the one associated with
the instance of class C, therefore that object cease to exist, as the object reference
is now associated with the object of class D.

The final diagram used to explain of the modeling, is the communication diagram.
Communication diagram shows the use of thebecomeflow. Figure 6.3 shows the
transformation from one value of an object to another, in this case by replacing the
variable b. Thebecomeflow relationship indicates, that the instance of A has, at a
different point in time, a new value for the association b (i.e. object b as an instance
of D).

Regarding the second UML objective, modeling dynamic change of behavior, there

2This does not mean that it do not exist

36

Figure 6.2: Conceptual class diagram

Figure 6.3: Conceptual communication diagram

is not found any solution. It may even be impossible to model such behavior in a
1:1 relation in UML at all. The reason for this may be that UML is a modeling
language, optimized to visualize static structured system design and requirement
definitions. This is a great contrast to the dynamic change of structure that is caused
by run-time CompositeState substitution. It is possible to extend UML to be appli-
cable at certain domains by using profiles or UML extensions, but this may at best
help in simplified situations.

6.5 Summary

This chapter has presented some conceptual solutions to problems related to this
thesis. The most crucial aspect is avoiding errors when substituting the composite
state. This can be done by applying the rules of bisimulation and equivalence to
the composite states. Further, the guidelines concerning states safe for updating
are provided. Finally, it is shown how to use UML to create a 1:1 relation between
the code and the model. Although this is not possible when modeling change
of behavior over a time period, the actual run-time introduction of new classes
are shown. Some of the conceptual solutions are demonstrated in the prototype,
described in the following chapter.

37

Chapter 7

The Prototype

7.1 Introduction

This chapter will describe the prototype which is a product of this thesis project.
The prototype demonstrates some of the concepts involved with regards to us-
ing NorARC frameworks for dynamic change of behavior during run-time (i.e.
to show how replacement of inner CompositesState is possible using Actor- and
JavaFrame). This will provide the state machine owning the CompositeState with
new behavior. Shown in chapter 6, the architecture is given based on the frame-
work, and so is the conceptual design, and methods used to achieve the generic goal
through Java. Section 7.2 describes the initial state machine that was the founda-
tion for the work around change of behavior. The rest of the chapter will describe
the design and implementation of a new composite state that will alter the behavior
of the state machine.

7.2 The State Machine

In order to have a state machine, which behavior should be changed, an initial state
machine must be made. The initial state machine then must be extended by new
CompositeStates providing new behavior.

The outline for the state machine is the following; the state machine shall illustrate
a car that has the possibility to drive and stop, based on some inputs. The envi-
ronment of the input with regards to aplay is not addresses here, since it can vary
a lot from another state machine to a graphical user interface. Nevertheless, the
principal of dynamic change of behavior of a state machine is the same whatever
the stimuli source, although different stimuli sources may introduce different ways
to inform the source, assuming that there has been a change.

Further, the notion drive can be divided into driving forward and driving backward,
indicating that the drive state should be a CompositeState with forward and back-
ward as inner states. This behavior will be changed, providing new behavior with
regards to driving backwards. This new behavior is represented by internal state
changing, and the CarDriver actor shall not be affected by the change.

38

7.3 Architecture and Design

Given the framework, the architecture and the design for the overall application
are given, on the other hand, JavaFrame guidelines restricts the architecture and
design of the state machine. The architecture of the prototype is fairly simple.
It is a deterministic state machine and it has some atomic states and at least one
composite state. Further, for the simplicity there should be no sink or transient
states.

7.3.1 The Initial State Machine

Based on the information given in the previous section, one can already picture
in mind the design of the state machine. Chapter 6 explained that there may be
states safe for updating, either explicit states or implicit states. The prototype has
an explicit update state, for which the state machine has to enter to update its Com-
positeState. The following figure is a visualization of the state machine described
by the English-language.

Figure 7.1: The initial state machine

Figure 7.1 shows a simple car represented by a state diagram. This diagram shows
the basic outline of the car; it can be in the state move, stopped, or updating. The
CompositeState, carMovingCS has, some inner states, indicating that the car can
move forward or backward by the states, carMovingForward and carMovingBack-
ward. The messages attached to the lines, connecting the states together, shows
what input message that triggers the transition, and what message, if any, is sent
when entering a new state. All this can be used to create the state encoding or
transition table.

39

Current State In Out Next State
Idle - - CarStopped

CarStopped UpdateMsg - Updating
CarStopped ForwardMsg - carMovingForward
CarStopped BackwardMsg - carMovingBackward
CarStopped StopMsg - CarStopped
Updating TimerMsg UpdateOKMsg CarStopped

carMovingForward ForwardMsg - carMovingForward
carMovingForward BackwardMsg - carMovingBack
carMovingForward TimerMsg StopMsg CarStopped

carMovingBackward BackwardMsg - carMovingBackward
carMovingBackward ForwardMsg - carMovingBack
carMovingBackward TimerMsg StopMsg CarStopped

Further, the state diagram also shows the entry and exit points with their respective
indexes for the CompositeState. Shown in chapter 4, these indexes are important
with regards to indicating which entry or exit point to use, because the entry/exit
point leads directly to a new state. A failure to use the right index may cause the
state machine to enter the wrong state, causing nondeterministic behavior.

Now, this state machine has to communicate with another state machine, the CarDriver
state machine. This state machine shall represent the opposite party to the Car-
Control state machine in theplay. The CarDriver state machine, herby called
carDriverCS, serves as a GUI proxy, simulates an actual user. In the case of the pro-
totype, the carDriverCS initializes the update, therefore entering an update state.
Hence, to get out of this state, it needs to get a message indicating that the update
went well, shown by theupdateOKMsgin Figure 7.2. When updating the car state
machine, the carDriverCS can still use it without any modifications, cause the old
and the new state machine for the CarControl areweak bisimulatedandobserver
equivalent. The carDriverCS represents the basic states of the car only, stopped,

Figure 7.2: The driver state machine

40

updating and driving forward and backward. The basic idea is to update the car
state machine without any modification to the carDriverCS, and that it shall func-
tion properly after the update (i.e. without introducing deadlock or malfunction
behavior).

Putting it all togheter in a UML class diagram it looks like this:

Figure 7.3: UML diagram 1

As seen in the diagram 1, Figure 7.3, when using a framework one can make a
relative large and complex application with only a few classes. Further, when
dominating the framework, an application is made in a short time.

The basic classes for each actor in the play are the state machine and outermost
CompositeState. These are for the car CarControlSM and CarControlCS and for
the driver CarDriverSM and CarDriverCS. Further, the CarControlCS has an inner
composite CarMovingCS. Each composite has a set of messages available and the
states are shown in earlier diagrams. Usually, the connection between the state
machine and the outermost CompositeState is handled by the framework but when
having updating the state machine, in order to have inner updated CompositeState
refereing the outermost composite there must be an explicit connection between
the state machine and outermost composite.

UML diagram 2 in Figure 7.4 shows the relation between the CompositeState Car-

41

Figure 7.4: UML diagram 2

ControlCS and its inner states. The use of OCL shows that only one of the two
inner CompositeStates can be associated with the CarControlCS at a given time.
UML diagram 3, shown in Figure 7.5, show the same relation, save the OCL ex-
pression, between the ExtendedCarControlCS and its inner CompositeState.

7.3.2 The Extended State Machine

Introducing the extended state machine shall not lead to any necessary changes
to the driver state machine. This means, that the input and output messages must
remain the same, and that no new entry or exit points can be introduced to the
CompositeState that is not present in the substituting CompositeState. Surely, the
extended CompositeState may send internal messages and have internal transition
that the driver state machine is not affected by. Further, if a CompositeState, with
inner CompositeStates, are replaced, one may alter the inner CompositeStates exit
and entry points, since their parent CompositeState is being replaced too.

The purpose of the extended state machine is to replace a CompositeCtate from the
initial state machine. Further, if the replacing CompositeState has inner Compos-
iteStates, this will be a manifestation that one may introduce an arbitrary number
of recursively inner CompositeStates. Therefore, the CompositeState replacing the
CarMoving CompositeState from the initial state machine has an inner Compos-
iteState. This state will replace the driving backwards state from the initial state
machine. Figure 7.7 shows the state chart of the new composite state.

By comparing the CarMovingCS CompositeState of the initial state machine with
the ExtendingCarMovingCS CompositeState, and by viewing the state graph from
Figure 7.6 and Figure 7.8, it is clear that the CompositeStates areequivalent.
Therefore, the CarMovingCS may be substituted by ExtendedCarMovingCS with-
out the CarDriver actor being affected. Instead of using the formal approach from
[16] to verify the principals and foundation of an application, some may take the
shortcut and just test the application to see if it works. This is a bad approach, and

42

Figure 7.5: UML diagram 3

Figure 7.6: StateGraph of the initial composite state

may at best lead a developer to the same conclusion as Dijkstra, who said:Program
testing can be used to show presence of bugs, but never show their absence[17].

7.4 Implementation

This section shows the important implementation issues, but not all the code nec-
essary, to implement the whole application. The complete code is to be found in
the appendix.

7.4.1 The Actor’s Deployment Descriptors

First, let us look at the associated deployment descriptors. The framework has
an actor that is controlled completely by the framework, and that is called the
RootActor. This actor servers as the main actor, and all other actors implemented
by the programmer are actually children if this actor. The RootActor must know the
name of the play, the roles associated with the play, and how many instances there

43

Figure 7.7: The extending composite state chart

Figure 7.8: State graph of the extended composite states.

may be of each role. Further, the RootActor must know which child actor will serve
as the initializing actor, plus its identification. Finally, the deployment descriptor
must hold information about which class serves as the RootActor, and where to
find its state machine and outermost composite state. This is the basic information
the RootActor needs to know, although more information may be added optionally.

Before looking at the actual code for the implementation let us look at the other
appurtenant deployment descriptors. As indicating by the RootActor deployment
descriptor, there are two other actors, the CarControlCS and the CarDriver, which
is the initializing actor. Like the RootActor deployment descriptor, the deployment
descriptor for the CarControlCS and CarDriver, must tell the framework where to
find their state machine and their outermost CompositeState. Besides, the only
information an actor’s descriptor needs to know, is which actors, and how many of
that kind, are associated with the given play. Figure 7.9 and 7.10 shows parts of
the deployment descriptor for the RootActor and the CarDriver actor.

This can informally be described by the following: The RootActor, fully controlled

44

<ActorTypeName>RootActor</ActorTypeName>
<ActorClassName>se.ericsson.eto.norarc.actorframe.actor.ActorSM

</ActorClassName>
<ActorBehaviorClassName>se.ericsson.eto.norarc.actorframe.actor.

PlayingBaseCS</ActorBehaviorClassName>
<Role>

<ActorTypeName>CarDriver</ActorTypeName>
<maxCardinality>1</maxCardinality>

</Role>
<Role>

<ActorTypeName>CarControlCS</ActorTypeName>
<maxCardinality>1</maxCardinality>

</Role>
<InitialRole>

<identification>Hansen</identification>
<ActorTypeName>CarDriver</ActorTypeName>

</InitialRole>

Figure 7.9: Code for the RootActor deployment descriptor

<Association>
<ActorTypeName>CarControlCS</ActorTypeName>
<maxCardinality>1</maxCardinality>

</Association>

Figure 7.10: The deployment descriptor for the CarDriver

by the framework, has some child actors, the CarControlCS and CarDriver. The
RootActor uses one of the child actors to initialize a play not yet named. The ini-
tializing actor, CarDriver, is given an identification, Hansen. Behind the scene, the
RootActorasksthe CarDriver actor if it can play the CarDriver role. When con-
firmed, the CarDriver must response byaskingthe CarDriverCS if it can play the
role CarDriverCS. This is done by sending a RoleRequest message to the CarCon-
trolCS actor. Doing this, the programmer gives the CarDriverCS an identification,
like Hansenwas given to CarDriver.

7.4.2 CarDriver

Given the actor’s deployment descriptors, let us look at some code implementation.
The class file of CarDriverSM is shown in figure 7.11, and it is a rather small
class. This is due to the inheritance from ActorSM and that there are no local
variables, specific for the actor, present. Much of the functionality also are hidden
by the framework of ActorFrame and partially JavaFrame (e.g. the scheduling, the
mediator binding, the role creation, association and confirmation). Also, some is
handled by the appurtenant outermost CompositeState, CarDriverCS.

import se.ericsson.eto.norarc.actorframe.actor.ActorSM;
public class CarDriverSM extends ActorSM{
}

Figure 7.11: Implementation of CarDriverSM

The first method called at the CarDriverCS, save the constructor, is the treatEnter-
State.

45

protected void treatEnterState(ActorSM asm) {
sendRoleRequest("Car", "CarControlCS", new Play("theDrive"),

asm, new Hashtable(), "carCon");
idle.enterState(asm);
}

Figure 7.12: Implementation of CarDriverCS

The treatEnterState method, showed in Figure 7.12, gives the programmer oppor-
tunity to redefine the actors behavior when entering the first state, which is idle.
In this prototype, this method used to send the request for a play and a role to the
participating actor, the CarControl. This is where the play is created, and where the
CarDriver actorasksthe CarControlCS to play the role CarControlCS in the play
theDrive. The CarControlCS is also given an identification,Car like the CarDriver
was given the identificationHansen. The treatEnterState also tells the participating
actor which state machine to use, and what the connection will be labelled (i.e. car-
Con). There are several possible signatures to use, but the signature used is based
on the one shown in figure 7.13.

public boolean sendRoleRequest(ActorAddress actorID,
String roleType, Play play, ActorSM curfsm,
Hashtable requestCredentials, String connectionID)

Figure 7.13: Implementation of CarDriverCS.sendRoleRequest

After executing the method treatEnterState, the state machine waits for a confirma-
tion on the request message. The actions with regards to the actor and play, and
messages sent back and forth to initialize a play, happen all behind the scene. Nev-
ertheless, the programmer must understand what is happening and when, to fully
utilize the framework, and make an application that works in accordance with the
framework’s specification. The possibility to redefine the actor’s behavior when re-
ceiving the RoleConfirmMsg from the corresponding actor is treated in the method
treatRoleConfirm in figure 7.14.

public boolean treatRoleConfirm(RoleConfirmMsg sig, State st,
ActorSM asm){
CarDriverSM psm = (CarDriverSM)asm;
TimerMsg t = new TimerMsg(2000,psm);
t.startTimer();
stopped.enterState(psm);
return true;

}

Figure 7.14: Implementation of CarDriverCS.treatRoleConfirm

The last method of the CarDriverCS class is the execTrans, which is the state ma-
chines main1 method. This method handles all the transitions and is never called
by the user but is always executed by the framework. It is, however the developer
who decides what will happen in this method and what to be executed for each state
and within each transition. Since the framework handles many internal messages,
execTrans must first check if the messages can be handled by the framework. This

1not to be confused with the Java main method

46

is done by calling the super’s2 execTrans method. If the superclass can handel the
incoming message the execTrans of the current class returntrue, and the method
returns. If not, the message must be handled in the method execTrans. The code
for the implementation is too long to include here, but the code from the appendix
will show that each state in the composite state is represented withif statements.
Further, signatures that shall trigger in each state, are represented with new inner
if statements. As an example, let us consider the stop state of the CarDriverSM,
shown in figure 7.15.

}else if(st == stopped){
if(sig instanceof TimerMsg){

counter ++;
if(counter != 4){

if (forward) {
forward = false;

sendMessage(psm.context.getConnection("carCon"),
new ForwardMsg(), psm);

drivingForward.enterState(psm);
}
else {

forward = true;
sendMessage(psm.context.getConnection("carCon"),

new BackwardMsg(),psm);
drivingBackward.enterState(psm);

}
}else{

sendMessage(psm.context.getConnection("carCon"),
new UpdateMsg(),psm);

updating.enterState(psm);
}

return true;
}

Figure 7.15: Implementation the Stop state

This is the state that simulates a user that has three options; to drive forward, back-
ward or update. When in the state stopped, the only message that may trigger a
transition to a new state is the message TimerMsg. When receiving the TimerMsg
messages, a simple check is implemented to make the car drive in the opposite di-
rection or to update the CarControlSM. When transiting from one state to another,
a message is sent to the other actor by the method sendMessage. To ensure that the
right actor receives the message, each connection has a name, and in this case the
connection name iscarConset in the treatEnterState method.

One could argue that the Boolean guard, used in the state chart, represents a state
and should be treated as one instead of a Boolean guard, but this implementation
represents a user that has a kind of random behavior. Further, the state machine of
the CarDriverSM shall represent the basic state machine of the CarControlSM, so
by introducing new states to the CarDriverSM just to represent a Boolean guard,
not present at the CarControlSM, would make the state machines look very dif-
ferent. This can also be applied to the CarControlCS’s explicit update state. In
the case of the prototype, the update can be seen as an atomic action and there-
fore does not need an explicit state. But since this thesis is concerned with asyn-
chronous communication, which is not the actual case of the prototype, explicit
states are used to show how this would be implemented in an actual asynchronous
environment, and where the update state must be more than an atomic action.

2the class, that this class is inherited from

47

7.4.3 CarControl

Like the state machine for the CarDriver, the CarControl state machine implemen-
tation, in Figure 7.16, is very small. As shown in the UML diagram from figure
7.3, it has only one association. The rest of the functionality is inherited from
ActorFrame’s ActorSM.

public class CarControlSM extends ActorSM{
public CarControlCS carControlCS;
}

Figure 7.16: Implementation of the class CarControlSM

The CarControlCS is the CarControlSM’s outermost CompositeState. All though
very similar to the CarDriverCS with regards to configuration there are, due to the
composites, inner CompositeState, some additional functions. Also, the code for
replacing a CompositeState is implemented.

Figure 7.17 shows that in addition to the normal state, CarControlCS also has a
composite state, carMovingCS, which includes the states for driving forward and
backward.

State carStopped = new State ("carStopped");
State update = new State ("update");
public CompositeState carMovingCS = new CarMovingCS();

Figure 7.17: State and Composite State Declaration for CarControlCS

One of the methods needed in the CarControlCS is outOfInnerCompositeState, it
ensures that the inner composite is exited the right way.

public void outofInnerCompositeState(CompositeState sc, int exitNr,
StateMachine curfsm) {

CarControlSM ccsm = (CarControlSM)curfsm;
if(sc instanceof CompositeState && exitNr ==0){

sendMessage(ccsm.context.getConnection("carCon"),new StoppMsg(),
ccsm);

carStopped.enterState(curfsm);
System.out.println("Car Stopped");

}
}

Figure 7.18: Implementation of outOfInnerCompositeState

As seen form line four in Figure 7.18, the right exit point must be verified and
as shown in the state chart in figure 7.1. There only shall exist one exit point,
labelled0. Then, we need to cast the incoming state machine to the right kind,
a CarControlSM, shown in line five in the figure. Last, the proper action for this
transition shall be executed. In this case, sending a StoppMsg message to the
associated actor and then enter the carStopped state.

The treatEnterState method implemented in the CarControlCS has an important
statement with regards to the CompositeState replacement, but it only makes sense
if the new CompositeState has an inner CompositeState.

48

public void treatEnterState(ActorSM asm){
CarControlSM tmp = (CarControlSM)asm;
tmp.carControlCS = this;
.
.

}

Figure 7.19: Implementation of treatEnterState in CarControlCS class.

Figure 7.19 show an explicit assignment of the state machines outermost Compos-
iteState. This gives in relation to the CarControlSM declaration in the CarCon-
trolSM the possibility to recursively refer a CompositeState by the state machine.
The framework does not explicit make this possible, when in run-time introducing a
CompositeState with an inner CompositeState. This will additionally be described
later, when the implementation of the extended CompositeState is introduced.

The last significant thing about the implementation of the CarControlCS class is
the possibility to update the state machine at run-time. This update is triggered by
an UpdateMsg message.

else if(sig instanceof UpdateMsg){
try{

Class cls = Class.forName("example.CarControl.CarControlCS.
ExtendedCarMovingCS");

Object obj = cls.newInstance();
carMovingCS = (CompositeState)obj;
.
.
update.enterState(psm);
.
.
}

}

Figure 7.20: Implementation of the CompositeState update procedure

By using Java, figure 7.20 shows the general way of introducing a pre-compiled
class to a program already running. First the class is loaded, and then an object is
created based on that class. Third, the object must be cast to the right type, which
in this case is the CompositeState class that the CarMovingCS class is based on.
One cannot cast the object through a CarMovingCS because that would lead to a
compile time error in Java. To make this work one must cast it through a class that
is common for both the CarMovingCS and ExtendedCarMovingCS, which is the
CompositeState class.

In this prototype the path of the compiled class is not dynamic due to the fact that its
path is written in the code. There are however possible to bundle this information
in the update message by introducing a variable. By this approach, the application
is more dynamic and may handle changes in a better fashion.

7.4.4 CarMovingCS

The first of the three inner composite state used by the prototype is the CarMov-
ingCS composite state. It holds the states for driving forward and backward. Since
it does not contain any inner composite sates, there are only two methods imple-

49

mented in the class; the execTrans, which must be implemented by all composite
states, and enterState, which must be implemented in all inner CompositeStates.
Shown by the state chart, and Figure 7.21, the enterState can handle two entry
points, the0 and1, which leads to the states carMovingForward and carMoving-
Backward, respectively.

public void enterState(int nr, StateMachine curfsm){
CarControlSM ccsm = (CarControlSM) curfsm;
if (nr == 0){

TimerMsg t = new TimerMsg(2000,ccsm);
t.startTimer();
System.out.println("Car is moving forward");
carMovingForward.enterState(curfsm);

.

.

Figure 7.21: Extract of the enterState method from the class CarMovingCS.

The execTrans method, that handles the transitions and incoming messages for
the CarMovingCS, has only two states to handle. However, an exceptional fea-
ture with inner CompositeStates, is that they must call the state machines outer-
most CompositeState through the state machine, and then recursively call all inner
CompositeStates until it reaches its parent CompositeState, to call its outofInner-
CompositeState. Only by doing this, it can exit the current CompositeState, and
transit to its parent CompositeState. Although the prototype initially has two levels
in its CompositState hierarchy, the procedure must still be executed. This shows
the way an inner CompositeState refers its parent, by calling the state machine and
moving down the hierarchy. This is the reason for the declaration of the outermost
CompositeState in the state machine CarControlSM. The Java code that makes this
happen is shown in figure 7.22.

protected boolean execTrans(Message message, State state,
StateMachine stateMachine){

CarControlSM asm = (CarControlSM)stateMachine;
if(state == carMovingForward){

if(message instanceof TimerMsg){
asm.carControlCS.outofInnerCompositeState(this, 0, asm);
return true;

.

.

Figure 7.22: Recursively calling outofInnerCompositeState

7.4.5 ExtendedCarMovingCS

The ExtendedCarMovingCS class is the CompositeState, which shall substitute the
original CarMovingCS CompositeState. This class can be seen as a mixture of Car-
ControlCS and CarMovingCS, since it is both an inner and parent CompositeState.
Therefore, it has the method enterState like CarMovingCS and outofInnerCompos-
iteState method like CarControlCS class. Also, like the CompositeState CarMov-
ingCS, the ExtendedCarMovingCS have two enter points and one exit point. Fur-
ther, the ExtendedCarMovingCS’s inner CompositeState classes must be loaded
at run-time, by the class ExtendedCarMovingCS, since this class is introduced at

50

run-time. In the prototype this is done in the constructor, as shown in Figure 7.23.

public ExtendedCarMovingCS(){
try{

Class cls = Class.forName("example.CarControl.CarControlCS.
CarMovingBackwardCS");

Object obj = cls.newInstance();
carMovingBackwardsCS = (CarMovingBackwardCS)obj;
.
.

Figure 7.23: ExtendedCarMovingCS constructor.

Finally, like all CompositeStates, the ExtendedCarmovingCS class has the exec-
Trans method implemented. This method has only one state to handle, the car-
movingForward state. This may seem a bit odd, but it is actually right. Any other
state will be handled by its parent or child composite state. When entering or ex-
iting a CompositeState by the wrong reference point identification, the application
will terminate or transiting to a wrong state, causing the program to crash or be-
have in a nondeterministic way. Therefore, when programming one must check if
the identification used, when entering or exiting a CompositeState is valid and the
right index for action we want, since a valid but wrong id may lead to faulty or
nondeterministic behavior.

7.4.6 CarMovingBackwardCS

CarMovingBackwardCS is the final of the classes implemented in the prototype.
It holds the states for all actions concerning the car moving backwards. It has
the execTrans method, since it is a CompositeState, and the enterState, since it
is an inner CompositeState. All these methods have been thoroughly explained
through the other classes and there is noting new concerning the implementation
of these methods in the CarMovingBackwardCS class, save one. When replac-
ing the CarMovingCS class with ExtendedCarMovingCS, some object casting is
necessary for some function invocation to work. When calling the parent com-
posite state’s outofInnerCompositeState method, this method must be called based
on the appurtenant state machine described earlier. But now the CarMovingCS
class, as an object, is no longer present, since the pointer now refers to an object of
the class ExtendedCarMovingCS. However, to make this work, one must refer the
object based on the carMovingCS pointer and cast it through an ExtendedCarMov-
ingCS class, which actually is the class, that the current object is built upon. Only
by doing this, one can invoke the CarMovingBackwardCS object’s parent method
outofInnerCompositeState. The actual code for this is shown in Figure 7.24.

It is worth mentioning, that in each custom state, in both the CarDriverCS and Car-
ControlCS, print line commands are added to inform the programmer of the current
state. This is, in addition to the trace file, a mechanism for a simple verification of
the programs execution. This ends the implementation of the prototype.

51

protected boolean execTrans(Message message, State state,
StateMachine stateMachine){

CarControlSM asm = (CarControlSM)stateMachine;
.
.
((ExtendedCarMovingCS)asm.carControlCS.carMovingCS).

outofInnerCompositeState(this,0,asm);
.
.

Figure 7.24: Recursively calling the method outofInnerCompositeState

7.5 UML

The remaining UML diagram of the prototype is shown in this section. These are
coherent with the suggested approach from chapter 6. The sequence diagram, pre-
sented in Figure 7.25, shows the replacement of a composite state. This is triggered
by the UpdateMsg message from the driver actor, Hansen. The actual termina-
tion of theold CompositeState is undetermined, because this is controlled by the
garbage collection of the JVM. But as far as the program, this object ceases to exist,
when the carControlCS has altered its association to the new composite state. The
sequence diagram hides all the underlying classes related to both JavaFrame and
ActorFrame (e.g scheduler). Hence, some of the communications lines in Figure
7.25 shows the logical and not the actual path of communication.

Figure 7.25: The prototype update sequence diagram

When observing the communication diagram, in Figure 7.26, one notices the same
model structure as in chapter 6. Thebecomeflow used in an interaction shows the
target object, in the case CarControlCS, representing a new version of the source

52

object and thereafter replaces it. The new version has its carMovingCS association
sat to the composite state extendedCarMovingCS instead of the previous one.

Figure 7.26: The prototype communication diagram.

7.6 Summary

This chapter has in many details shown the outline of the prototype, the architecture
and design and the crucial parts of the implementation. In lieu of capturing a full
formal specification of the prototype, as an application, important properties have
been verified by abstracting away details of the program. Also, the most impor-
tant UML models are included and explained to further substantiate the prototype.
Chapter 8 deals with some of the results related to the prototype.

53

Chapter 8

Results

8.1 Introduction

This chapter is concerned with the results of the prototype made by using JavaFrame
and ActorFrame frameworks. These results are important when evaluating if the
prototype behaved in a manner that consents to the intentions and guidelines of
the frameworks. The application trace will be evaluated to verify that the logical
execution is correct. Further, some results of the UML modeling are addressed.

8.2 Logical vs Physical Execution

The first thing to notice of the prototype is that it runs with no deadlocks or execu-
tion errors. This gives the first indication that it, as a Java application it works fine.
Further, one can, by examining the results of the trace file in Figure 8.1, confirm
that there are no state deadlocks in the program, neither before nor after the com-
posite state substitution. Earlier in the thesis these was mentioned a trace obser-
vation tool that interprets the actual trace file. This tool, JFTrace, is implemented
using JSDK 1.3 in contrast to JSDK 1.4, which is the current Java development
standard. By running JFTrace with the JVM appurtenant to JSDK 1.4, JFTrace
made the JVM crash. Hence, the trace file needs to be examined manually, which
is a bit more cumbersome than using a trace tool. The print line commands and
trace file further shows that the replacement went well.

The included part of the trace file shows that the car, before the update transits
between the states carMovingForward, carMowingBackward, and carStopped. Af-
ter the update, the composite state carDrivingBackwardCS also includes the states
initialize and deInitialize before and after the actual drivingBackward state. This
shows, that the CompositeState replacement went well, and that the carDriver ac-
tor is not affected by the update. This is the logical resemblance of the sequence
model presented in Chapter 7.

First of all, this shows that it is quite possible for an application, seen as a mere
Java application built on the Java- and ActorFrame, to have run-time updates or
replacements. Second, by examining the whole trace file, one can see that the
dynamic substitution of the composite state is possible without violating any of the

54

frameworks guidelines or patterns, indicating that this run-time update is possible
when observing the application from a JavaFrame or ActorFrame viewpoint.

<StateMachine>Car</StateMachine>
<State>carMovingBackwardˆexample.CarControl.CarControlCS

.CarMovingCS@181edf4ˆplaying</State>
<Trigger>TimerMsg@d19bc8:</Trigger>

<StateMachine>Car</StateMachine>
<State>carStoppedˆplaying</State>
<Trigger>ForwardMsg@1551f60:recieverRole :Car:CarControlCS,

senderRole :RootActor/Hansen:CarDriver, </Trigger>

<StateMachine>Car</StateMachine>
<State>carMovingForwardˆexample.CarControl.CarControlCS

.CarMovingCS@181edf4ˆplaying</State>
<Trigger>TimerMsg@17ee8b8:</Trigger>

<StateMachine>Car</StateMachine>
<State>carStoppedˆplaying</State>
<Trigger>UpdateMsg@1995d80:recieverRole :Car:CarControlCS,

senderRole :RootActor/Hansen:CarDriver, </Trigger>

<StateMachine>Car</StateMachine>
<State>updateˆplaying</State>
<Trigger>TimerMsg@ce5b1c:</Trigger>

<StateMachine>Car</StateMachine>
<State>carStoppedˆplaying</State>
<Trigger>BackwardMsg@6e293a:recieverRole :Car:CarControlCS,

senderRole :RootActor/Hansen:CarDriver, </Trigger>

<StateMachine>Car</StateMachine>
<State>initializeForDrivingBackwardsˆexample.CarControl

.CarControlCS.CarMovingBackwardCS@105738</State>
<Trigger>TimerMsg@54a328:</Trigger>

<StateMachine>Car</StateMachine>
<State>deInitializeAfterDrivingBackwardˆexample.CarControl

.CarControlCS.CarMovingBackwardCS@105738</State>
<Trigger>TimerMsg@1e8a1f6:</Trigger>

<StateMachine>Car</StateMachine>
<State>carStoppedˆplaying</State>
<Trigger>ForwardMsg@6025e7:recieverRole :Car:CarControlCS,

senderRole :RootActor/Hansen:CarDriver, </Trigger>

<StateMachine>Car</StateMachine>
<State>carMovingForward</State>
<Trigger>TimerMsg@587c94:</Trigger>

Figure 8.1: Parts of the trace file

8.3 UML

Although UML 2.0 is not finally specified, there are through the proposal strong
indications of how it will end up. Through the proposal, some models and diagrams
are made, to show some aspects involved in this thesis. By using class diagrams
in relation to both sequence and communication diagrams, it is possible to show
how run-rime substitutions of objects are possible. The class diagram shows how
several classes are related to a composite state, but only one of them are present
at a given time, described by OCL. When using sequence diagram, the lifespan

55

of each object are shown. Hence, one can see that the two inner composite state
involved with the update never exist as associated objects at the same time1. The
communication diagram in chapter 7 shows how carControlCS flows from a state,
where it is associated with carMovingCS, to a state where it is associated with
extendedCarControlCS. The use ofbecomesspecifies how carControlCS at a later
point in time is the same as the source but has new associations. On the other hand,
there are found no way to unambiguously model the change of behavior over a
time.

8.4 Summary

This chapter has focused on the result of the prototype, demonstrating some of the
proposed solutions. Section 8.2 shows, through the trace file, that the logical and
physical execution of the prototype is the same, even when substituting the state
machines inner CompositeState. This aids the conceptual solution, which states
that by employing the bisimulation, contemplate the use of reference points, the
run-time substitution of composite states are possible.

The results of the UML modeling regarding the prototype also have given some
results. The UML diagrams shows that it is possible to model the run-time Com-
positeState class substitution, but no solution of modeling change of behavior over
timer, in a 1:1 manner, is made.

1Due to garbage collection they may reside in memory at the same time

56

Chapter 9

Discussion

9.1 Introduction

This thesis started by presenting the three frameworks of NorARC’s compound
service creation framework. Further, the focus was adjusted to only include the
JavaFrame and ActorFrame layer of the framework. Since some fundamental as-
pects of both of these frameworks are state machines and asynchronous commu-
nication, Chapter 2 presented some basic understanding of these. Finally, relevant
parts of the proposed UML 2.0 specification were introduced and discussed.

The purpose of the work has been to find out if and how well the NorARC frame-
works are suited for run-time behavioral change of state machines, and how inner
composite states may be candidates for run-time substitution. All this should also
be adequately modelled by using the new UML2.0 proposal.

The following issues will be discussed in this chapter:

• Dynamic change of state machine behavior in JavaFrame and ActorFrame.

• Composite states being a candidate for run-time replacement.

• Using UML2.0 to describe such replacement.

• The composite state replacements impact on state machines asynchronous
communication and message sequence.

9.2 Dynamic change of state machine behavior in JavaFrame
and ActorFrame

JavaFrame and ActorFrame are both ultimately implemented by Java, which, as
shown in Chapter 5.1, handles dynamic changes. Hence only extraordinary im-
plementation of the frameworks would prevent any dynamic changes. Since the
implementation does not prevent this, the focus is concentrated on the frameworks
guidelines and patterns.

An application depicts the architecture and design of the framework, on which
the application is built. As shown in Chapter 5.2 and 5.3, neither JavaFrame nor

57

ActorFrame have a kind of architecture, design or even guidelines that prevents
dynamic changes of their state machines. On the other hand, there are no properties
in the frameworks that actively support that either. One way for the framework to
active support state machine behavior changes, was to let the framework handle the
update-message, like it handles the messages associated with a play. This way the
framework itself could handle the update, making a standard way of introducing
new CompositeStates at run-time.

9.3 Run-time CompositeState replacement

One of the main purposes of this project was to get a better understanding of how
to introduce or replace a CompositeState during run-time. The prototype proves
that this is possible. However, to introduce a CompositeState at run-time, many
things need to be accounted for.

One main thing, when substituting a CompositeState, is whether the new Com-
positeState is equal to the old. This was presented in chapter 6 as bisimulation.
Bisimulation was used to see if two state machines were equal when viewed as a
black-box, or if an actor, by merely interacting with it, could tell the difference of
two state machines. In relation to bisimulation, composite states in general, can
be seen as a state machine. Hence it is possible to employ the properties of bisim-
ulation to composite states. Any two CompositeStates, that are bisimulated, even
weak bisimulated or observer equivalent, can in the case of Javaframe and Actor-
frame be substituted with one another. This is because they expect and produce the
same sequence of messages and have the same communication.

When dealing with bisimulation, exit and entry points are not included. Therefore,
reference points must be treated separately. Exit and entry points are important
parts of a CompositeState, and must be handled the right way in order for a Com-
positeState substitution to work properly. There are some basic rules considering
these aspects when substituting a CompositeState. Obeying these will make the
substitution easier.

Do not introduce new entry points By introducing new entry points the imple-
mentation of the original composite running the update will be awkward and
will not follow good programming practice. Though it is possible it is not
recommended.

Do not introduce new exit points It is actually easier to implement new exit points
then entry points due to the method outofInnerComposteState, but there is
a great potential to ruin the possibility of bisimulation and equivalence by
doing this. Further, since new exit points must be implementation in the out-
ofInnerCompositeState method and this is done at the implementation time
of the original application, new exit points must be accounted for at this time,
complicating the design of a new CompositeState.

Deleting entry and exit points It is possible to remove entry and exit points in
substituting CompositeStates. These always indicates the new state of either
the inner or parent CompositeState, this may alter the message sequence and
thereby ruin the bisimulation of the CompositeStates.

58

According to the items regarding introduction of new exit and entry points, substi-
tuting an atomic state with a CompositeState in run-time is not advisable, unless
one also replaces the CompositeState containing the atomic state, which is done in
the prototype.

9.4 The Prototype

Making any application in any framework, assumes some knowledge of the func-
tionality of the framework and how to deal with this functionality. Pushing the en-
velope and making an application on the edge of what a framework was intended
for, requires a firm understanding of the framework and its design. The proto-
type of this thesis is such an application, introducing new components at run-time,
dynamically changing the behavior of a state machine. The prototype run-time
CompositeState replacement shows some important aspects of JavaFrame and Ac-
torFrame:

• The prototype shows first of all that it is possible to introduce new Compos-
iteStates during run-time and by doing that gives the state machine possible
new behavior.

• The recursive introduction of CompositeStates, shows that it is possible to
introduce an arbitrary number of recursive inner CompositeStates, even in a
hierarchical manner.

• By applying the rules of weak bisimulation and observer equivalence, no
action need to be taken on behalf of participating actors if a state machine is
dynamically updated.

9.5 State Machines Communicating Asynchronously

One of the most difficult issues regarding asynchronous communication and state
machines is that the state machines may be in different states when sending and
receiving messages. Some of these issues are treated by the framework, like the
message queue, but the programmer still must ensure that the state machines do
not enter a deadlock, due to both waiting for the opponent state machine to send
a message. Timer messages may in some cases be used to inform the system of
such behavior, forcing the application to take some form of action to recover. A
good way to prevent this, is by verify the safety and liveliness properties of the
communicating state machine designs in a formal tool like Spin. This can be cum-
bersome and time consuming, and therefore timer messages where mostly used in
the prototype.

9.6 UML 2.0

Due to the fact that UML 2.0 specification was not done either at the start or at the
end of this project, the UML modeling part of the thesis project brought a lot of

59

intricate problems. This was further implicated by the fact that the NorARC frame-
works are modelled based on a mixture several different techniques, like UML 1.4,
ROOM, UML-RT[2] and an assumption of what UML 2.0 would bring. Based on
the assumption that UML2.0 final specification would not deviate from the pro-
posed specification, it would be possible to model applications and run-time re-
placement made based on the NorARC frameworks, especially when the goal of
UML 2.0 is to cope with component based development.

One part that proved difficult was to model the change of behavior over time. A
provisional solution that may be used in some cases is to use UML extensions or
profiles. This has not been proven or tried in the thesis and is just a supposition.

9.7 Future work

Several issues in this thesis could be subject to further work, some of which are
outlined below:

• Some of the messages, especially those regarding initialization and ending
a play, are handled by the framework itself. One direction of future work
could be to investigate how update messages also could be handled by the
framework, making a way for a programmer to implement any updates. This
could also include the construction of the update message and inner struc-
ture for holding crucial information regarding the update (i.e. which class
that should be introduced, the location of the class file etc). This should
also include how this can be done in a more dynamically way than in the
prototype.

• Future work may be to see if any changes in the underlying framework could
ease the introduction of new entry or exit points of a composite state, and also
removing such points from a composite state. A successful approach could
also make it easier to replace an atomic with a composite state.

• When the final UML 2.0 specification is released, one could revisit both
this thesis and the UML specification for all the sub layers of the NorARC
framework to make the models consistence to the UML 2.0 specification.

9.8 Summary

The previous discussion is summarized below:

• Neither JavaFrame nor ActorFrame, either prevents or actively, support dy-
namic change of the state machines behavior.

• When substituting a CompositeState, one must ensure that the substituting
CompositeState is at least weak bisimulated and observer equivalent to the
old CompositeState.

• Even though the CompositeStates are both bisimulated and observer equiv-
alent, all exit and entry points must be handled in the right way for the new
state machine to work properly.

60

• It is important to verify the new message sequence of the state machine after
the CompositeState replacement. This is tightly coupled to the bisimulation
aspect.

• UML may be used to model run-time class replacement, but cannot at this
point model dynamic change of behavior, in the sense described in Chapter
1.

61

Chapter 10

Conclusion

This thesis has evaluated the NorARC service creation environment and especially
the frameworks JavaFrame and ActorFrame with respect to dynamic change of
behavior during run-time. A good approach for dynamic update of state machines
within the service creation environment may reduce the downtime and ease the
development of services in the mobile network.

The thesis started out by explaining some of the core aspects regarding the frame-
work (i.e. state machines and asynchronous communication). Thereafter, JavaFrame
and ActorFrame were described in detail, revealing the inner functionality of the
frameworks, their patterns of design and development guidelines. These patterns
are modelled based on an anticipation of the UML2.0 final specification not yet
published. Therefore, vital aspects related to the thesis and frameworks from the
UML2.0 proposal were introduced in Chapter 4. All this culminates in a prototype,
which shows the principals and usefulness of the thesis ideas.

Although the prototype proved that run-time changes of state machine behavior are
possible, it also showed that there are several pitfalls that must be avoided. These
can be divided into three groups.

JavaFrame issuesWhen altering a state machines behavior by substituting its
CompositeState using JavaFrame, there may be some problems. The issues
are not related to pattern or design flaws, but rather how JavaFrame is imple-
mented. Enforcing a substitution that has an impact on how JavaFrame is im-
plemented, violatesgoodprogramming practice. Introduction and removal
of reference points are in fact a situations where both the implementation
and good programming practice are affected. The JavaFrame implementa-
tion makes it difficult to introduce or remove new reference points. Eluding
these implementation issues often violates good programming practice.

ActorFrame issues There are not many problems related to the ActorFrame frame-
work. At this level of abstraction problems tend to be less related to program-
ming. Who shall initialize the update? How, if at all, does one inform the
affected actors about updates? These questions must be answered on a case
to case basis, because they are tightly coupled to the type of service, type of
update and type of actors involved.

General State machine and asynchronous issuesAsynchronous communication

62

and communicating state machines have, by nature, a lot of pitfalls. Al-
though some of these aspects are hidden by the framework (e.g. message
queuing), some crucial aspects are still left for the application designer to
work out. These are problems like substitution of non-equal state machines
deadlocks and nondeterministic behavior, which always are present when
dealing with state machines. These may even seem irrelevant for developers
well versed in state machines and asynchronous communication, and famil-
iar with formal tools for verifying such.

We have, through this thesis project, shown that the use of NorARC service cre-
ation environmentas is, makes it possible to replace some CompositeStates within
the state machine. In such cases, the composite states are ideal candidates for
changing state machine’s behavior. The frameworks, and mostly the JavaFrame
framework, may need some changes concerning the implementation, especially re-
garding reference points, before being an overall ideal candidate for such run-time
CompositeState replacement.

Further, we have shown that by the proposed UML 2.0 specification it is possible,
with class, sequence, and communication diagrams, to describe the introduction of
new classes in run-time (e.g. CompositeState classes). On the other hand, we have
not found any good approach to model the dynamic change of behavior over time.
The introduction of new classes in run-time may indicate that the behavior may
changed, but not in a 1:1 relation.

63

Bibliography

[1] Bræk, R., Husa, K.E., Melbye, G.
ServiceFrame Whitepaper
URL: http://www.item.ntnu.no/lab/nettint1/ServiceFrame/ServiceFrame.html(visited
February 2003)
Ericsson, Asker NORWAY

[2] Loyns, A.
UML for Real-Time Overview
ObjectTime white paper
http://www.rational.com/media/whitepapers/umlrtoverview.pdf (visited Jan-
uary 2002) April 1998.

[3] Haugen, Ø., Møller-Perdersen, B.
JavaFrame:Framework for Java Enabled Modelling
Ericsson Research NorARC - Applied Research Center, Ericsson Norway

[4] U2 Partners, Proposals for UML 2.0
Superstructure and Infrastructure, Available
from http://www.u2-partners.org

[5] JavaTM2
http://java.sun.com/

[6] Nedward, T.
Server-based Java Programming
Manning, 2000

[7] Johnson, R.
How Framworks compare to other object-oriented reuse techniques.
Communication of the ACM
October 1997 /Vol.40, No.10
Pages:39-42

[8] Kobryn, C.
Will UML 2.0 Be Agile of Awkward?
Communication of the ACM
January 2002
Vol. 45, No. 1

[9] Haugen, B.
JavaFrame 2.5 Modeling Guidelines
March, 2002
Rev FJ2.5

64

[10] Agha, G.
An overview of Actor Languages
MIT, June 1986

[11] Saksena, M., Selic, B.
Real-Time Software Design - State of the Art and Furute Challenges
IEEE Canadian Review - Summer
t 1999

[12] Tomlinson, C., Scheevel, M.
Object-Oriented Concepts, Databases and Applications
Concurrent Object-Oriented Programming Languages
Pages 79-120
Addison-Wesley and ACM Press Frontier Series, September 1989

[13] Agha, G., Kim, W.,
Actors: a Unifying Model for Paralell and Distributed Computing
URL: http://yangtze.cs.uiuc.edu/Papers/Overview.html (visited February
2003)

[14] Husa, K.E.
Serviceframe software architecture document
URL:http://www.item.ntnu.no/lab/nettint1/ServiceFrame/ServiceFrame.html
(visited February 2003)
NorARC - Applied Reasearch Center, Ericsson, Norway

[15] Szyperski, C., Gruntz, D., Murer, D.
Component Software, Beyond Object-Oriented Programming, sec.ed.
Addison-Wesley

[16] Milner, R.
Communication and Concurrency
Prentice Hall International
1989

[17] Dahl, O.J., Dijkstra, E.W., Hoare, C.A
”Notes on Structured Programming”, Structured Programming
Academic Press, London (1972)
pp. 182

[18] Sanders, R.T.
Service-Centered Approach to Telecom Service Development
Norwegian Univercity of Science and Technology (NTNU)
Proceedings of EUNICE2002

[19] Douglass, B.P.
Modelling Behavior with UML Interaction and Statecharts
URL: http://www.omg.org/news/meetings/workshops/RT2002WorkshopPresentations/(visited
Mars 2003)

[20] Martin, R.C.
UML Toturial: Finite State Machines
Enginering Notebook Column
C++ Report, June 1998

65

[21] OMG Unified Modellig Language Specification
Version 1.4
September 2001
URL: http://www.omg.org/cgi-bin/doc?formal/01-09-67 (vistited February
2003)

[22] OMG Unified Modellig Language Specification
Version 1.5
Mars 2003
URL: http://www.omg.org/technology/documents/formal/uml.htm (visited
April 2003)

[23] Björkander, M., Kobryn, C.
Taking the Next Step with UML 2.0
Elektronik i Norden
July 2002

[24] Björkander, M., Kobryn, C.
Unified Modeling Language is taking the next step
Embedded Control Europe (ECE)
May 2002

66

	Preface
	Table of Contents
	List of Figures
	Introduction
	Background
	Ericsson NorARC's Framework
	UML 2.0
	Thesis Definition
	Work Description
	Report Outline

	State Machines and Asynchronous Communication
	Introduction
	Finite State Machines (FSM)
	What is a State Machine?
	CFSM

	Concurrent Programming
	The Actor Based Approach
	Summary

	NorARC's Service Creation Environment
	Introduction
	JavaFrame
	Active Objects and Composites
	State Machines and CompositeStates
	Mediators
	The Trace File

	ActorFrame
	ServiceFrame
	Summary

	UML 2.0
	Introduction
	Components and Composite Structure
	State Machines
	ConnectionPointReference
	FinalState
	State
	State Machines
	Transition

	Interaction Diagrams
	Summary

	Patterns, Methods and Architecture
	Introduction
	Dynamic Java

	JavaFrame Guidelines and Patterns
	The Architecture Provided by the Framework
	Summary

	A Conceptual Approach
	Introduction
	State Machine Equivalence
	The CompositeState
	Modelling UML 1:1
	Summary

	The Prototype
	Introduction
	The State Machine
	Architecture and Design
	The Initial State Machine
	The Extended State Machine

	Implementation
	The Actor's Deployment Descriptors
	CarDriver
	CarControl
	CarMovingCS
	ExtendedCarMovingCS
	CarMovingBackwardCS

	UML
	Summary

	Results
	Introduction
	Logical vs Physical Execution
	UML
	Summary

	Discussion
	Introduction
	Dynamic change of state machine behavior in JavaFrame and ActorFrame
	Run-time CompositeState replacement
	The Prototype
	State Machines Communicating Asynchronously
	UML 2.0
	Future work
	Summary

	Conclusion
	Bibliography
	Appendix A - Java Source Code
	Appendix B - Deployment Descriptors
	Appendix C - Trace File

