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Abstract 
Even though wavelet-based video compression has been an area of research for 
more than a decade, motion estimation and compensation has been considered 
complex and inefficient until recently. We have carried out a thorough investigation 
of existing research work in this field, and found that fundamental problem with 
wavelet-based temporal removal while obtaining highly scalability (the wavelet-
properties of multiresolution structure in combination with embedded coding), has 
been solved by performing motion compensated temporal filtering within the wavelet 
domain of a overcomplete three-dimensional lifting-based wavelet transform, and 
that wavelet-based video CODECs now can compete with DCT-based video CODERS. 
In addition we have designed and implemented a video compression prototype 
founded on the Java Media Framework API and a DCT- and DWT-based still-image 
compression application developed by four engineer students in a previous project. 
We carefully planned a stepwise implementation progress, to help us making the 
prototype extendable. The entire plan has not been implemented. However, this was 
never the intention. We wanted to make a foundation that could be utilized in future 
studies, both for our one interest and others. Only a so-called intra-frame CODEC 
has been implemented, and has a lot of potential for further development.  
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1 Introduction 
Television and telephones have had a huge impact on the life of people in the 
western world after being introduced about a century ago. The development has 
been amazing; from black-white poor-resolution TV to high-quality interlaced colour 
TV, from old-fashion telephones to tiny wireless (mobile) phones. And now the world 
goes digital, and that is changing our life again.  
 
We have already seen signs of ‘everyday digitalization’; video are stored on DVD’s, 
The ‘Star Wars’ film shot in 2000 was the first motion picture to be shot digitally in 
2000, and digital cameras has become public property. TV will be broadcasted 
digitally within few years [1] and the digitalization of cinema is on its way [2]. 
Imagine the crystal-clear TV screens, the increased interaction possibilities, the 
freedom to choose, and the foundation for new mind-blowing inventions. 
 
Mobile operators have had visions of consumers watching video and TV-clips on 
mobile phones for years. Japan and Korea have already taken the first steps, by 
introducing third-generation (3G) mobile systems back in 2002. All 3G handsets sold 
by Japan's largest mobile operator (NTT DoCoMo Inc. (DCM)) are video enabled. 
Handsets with two cameras are being sold, which in addition to being used as a 
video-phone can be utilized as a video-camera that allows hours of video recording if 
combined with memory cards. More than 200 000 was sold in a couple of weeks. 
Everyday we see the development and improvement of technology. 10 years from 
now the whole world surrounding the 3G mobile videophone will be totally different 
(by then, we will be calling it 4G, though). 
 
However, the mobile operators dream can not yet be fulfilled. Considering the limited 
maximum available bandwidth of 3G mobile systems, and that an uncompressed 
“television-quality” digital video signal requires a transmission capacity of 216 Mb for 
one second of video, it is evident that something has to be done. Even with the high 
quality video coders of today, this can not be done in a high-quality fashion. Even 
though JVT (Joint Video Team) recently released a new video coding standard which 
perform superior compared to its predecessors, new visions, new creative inventions 
and consumer-created request for enhanced quality will continue the request for 
improved compression algorithms. 
 
So, high compression ratio of video is crucial for today’s limited bandwidth, storage 
and processor capacity, especially in handheld wireless communication devices such 
as mobile phones and PDA’s. Moving Pictures Experts Group (MPEG) and 
International Telecommunication Union (ITU) have standardized the most widely 
used video CODECs, like MPEG-4 (MPEG) and H263 (ITU). Their standards*1 are 
based on Discrete Cosine Transform (DCT). DCT is the most popular transform for 
video coding applications, but there are problems which reduces visual quality at 
high compression ratio when using DCT for image and video transform coding. 
Preliminary surveys and existing research indicates that wavelet, a relatively new 
mathematical field, is a powerful tool in the world of digital image processing. It is 
shown that wavelet can reduce problems like blocking artifacts caused by DCT in still 
image compression, and in fact, the most recent still image compression standard 
from Joint Pictures Expert Group (JPEG), JPEG2000 is based on Discrete Wavelet 
Transform (DWT). 

 
1 All recent published standards, except MPEG-4 which provides an alternative set of wavelet-based tools 
to code static texture. 
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1.1 Problem Definition and Motivation 
The goal of this master thesis is to do a literature survey and if time permits to 
develop a software video codec prototype based on wavelet. The prototype should 
consider advantages and disadvantages of the previous study. This thesis should 
focus on temporal redundancy removal (motion estimation and compensation) and 
transform coding. These are the main stages of a video compression process that 
may benefit from using wavelets. The literature survey should consider if recent 
research has found ways to compress video signals using wavelets which results in 
’pleasing’ visual quality at high compression ratio, and whether this outcome can 
match or even outperform existing video CODECs. In addition the survey should aim 
to give an impression whether wavelet based video compression is an active field of 
research. If time permits, real-time processing and computational complexity are 
important issues that should be discussed in the literature survey. 

1.2 Preliminary Survey of Previous Work 
In order to gain competence in the field of video compression and wavelet transform, 
we have performed a preliminary literature study. The most important has resulted 
in chapter 3 Fundamentals of Video compression and chapter 4. 
 
“In our search, we discovered the following: 
Wavelets aren’t nearly so promising for use in inter-frame CODECs, because 
wavelets actually make temporal compression more difficult than DCT. 
Wavelet compression is processor intensive, and so is considered better suited to still 
images than video.” [5] 
 
“Because of its good performance in compressing images, the DWT is used in the 
new JPEG-2000 still image compression standard and is incorporated as a still image 
compression tool in MPEG-4. However, wavelet techniques have not yet gained 
widespread support for motion video compression because there is not an easy way 
to extend wavelet compression in the temporal domain. Block-based transforms such 
as the DCT work well with block-based motion estimation and compensation, 
whereas efficient, computationally motion-compensation methods suitable for 
wavelet-based compression have not yet been demonstrated. Hence, the DCT is still 
the most popular transform for video coding applications.”[6]  
 
“At the time of writing, wavelet compression has made very little impact compared to 
DCT-based compression. There are numbers of reasons for this. Wavelets have been 
less successful than DCT-based system in achieving good efficiency at the near-
transparent compression ratios. Also, once DCT was adopted by MPEG, most 
development effort went into producing integrated circuits for MPEG – that is, DCT. 
Until recently, little specialist silicon was available for wavelet compression. However, 
this is changing, and now that wavelet compression has been adopted in MPEG-4 (for 
static textures) and in JPEG2000, wavelet implementations are likely to become 
much more common.” [7].  
 
This triggered us to investigate what research work has been done in this field, and 
has resulted in part 2. In addition we wanted to investigate use of phase correlated 
ME/MC algorithms. 
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1.3 Prototype 
We have implemented a video compression prototype founded on a DCT- and DWT-
based still-image compression application developed by four engineer students in a 
previous project. We have incorporated the DWT-based compression algorithms in 
our prototype, by tearing application apart, and reconstructing the interesting parts 
inside an adapted Java Media Framework API (JMF API 2.1.1). We have designed a 
highly extendable prototype considering the advantages and disadvantages of the 
research study presented in Part 2. We carefully planned a stepwise implementation 
progress, to help us make sure making the prototype extendable. Having mainly 
focused on doing a thorough design work and a literature study, the entire plan has 
not been implemented. However, this was never the intention. We wanted to make a 
foundation that could be utilized in future studies, both for our one interest and 
others. 
 
The current implementation contains a framework with support for opening and 
playing video sequences of those content types supported by the JMF API, including 
quicktime (*.mov) and msvideo (*.avi). Capturing video clips from a web camera is 
also supported, the captured sequence can either be rendered direct to screen, or 
stored to a ‘quicktime’ or ‘avi’ file. Our implementation does not currently support 
encoding the captured video directly with our encoder; it has to be intermediately 
stored to a file. We have implemented a so-called intra-frame CODEC (no attempt is 
done to remove temporal redundancy), the MDWT (Motion DWT) CODEC. It includes 
a MDWT encoder and decoder; this is where the DWT compression algorithms have 
been exploited. In addition, we have implemented a MDWT file format and a 
multiplexer/demultiplexer to handle writing and reading this format. Initially we 
implemented support for sound tracks in this multiplexer/demultiplexer, but this was 
removed in order to more correctly estimate the real compression performance of 
our CODEC. 
 
Experimental testing has showed that our MDWT CODEC can yield a compression 
rate of 13:1 in a small resolution video clip, with good visual quality on single 
frames. The major problem of our CODEC is as initially concerned, the 
computationally complexity. Small-resolution video becomes very jerky, while larger-
resolution video clips are considerably worse, maybe able to show one frames pr 
second. This is due to the combination of the computationally complexity of the 
implemented DWT and the CODEC, the ‘slow nature’ of the Java programming 
language, and most-likely and inefficient method used to draw and represent the 
frames. 

2 Methodology 

2.1 Literature References 
Agder University College have access to the IEEE database, and we have used it 
comprehensively to find research papers. 
  
We have tried to avoid using web sites as reference, in the cases we have used a 
web site as a reference, and this is sites which are commonly accepted and/or 
formal/official business sites. 
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2.2 Test Methods 
There is no easy way to get an absolute objective measure of image or video quality. 
The best test method is still to look at the image or video sequence and determine 
by a subjective visual test whether the image looks good to you or not. It is easy to 
understand that this form of testing is highly subjective in that different people can 
have different opinion whether the image looks good or not. This has been a 
problematic challenge for researchers who of course want an absolute measure of 
their work, but no obvious solution has yet been presented. 
 
There is one measure which has gained widespread popularity among image and 
video community, and that is Peak Signal to Noise Ratio (PSNR). This measures the 
difference between the original image and the compressed image. The problem with 
this quality measure is that it is not always given that a higher PSNR value is 
analogous with better visual quality. 

2.3 Other issues 
Unfortunately, we did not manage to complete all our intended work on time. The 
missing parts are mainly found in Part 4, we have not been able to document all the 
performed tests, comparisons and discussions. Another part that suffers from this is 
the references. 

3 Fundamentals of Video Compression 
The purpose of this chapter is to describe some basic concepts of image- and video 
compression to give an overview of the most common topics in modern video coding. 
Firstly we establish some concepts and terminology relating to digital video, then we 
take a look at the processes in a typical video CODEC architecture, before examining 
how to compress the different types of redundancies in a video sequence. The last 
section in this chapter gives a brief overview of video coding standards, and the 
standardization organisations these standards emerge from.   
 
Note, in literature there are arguments about the semantics of compression, we have 
used ‘compression’ to cover all techniques that reduce data. We will introduce some 
basic concepts and some of the most popular algorithms used in modern video 
coders. 

3.1 Introduction 
An uncompressed 2-hour movie requires more than 194 GB of storage, which is 
equivalent to 42 DVDs or 304 CD-ROMs [2]. A “television-quality” digital video signal 
requires 216 Mb of storage or transmission capacity for one second of video [6]. Or 
consider another example, if you transmit a one minute uncompressed video clip 
(640 x 480, 30 frames/sec, 24 bpp) using a 28.8K modem, it would take you 5 days 
and 8 hours.  
 
These examples illustrate the need for compression. The massive improvement of 
video compression techniques in early nineties lead to increased use of digital video, 
and introduction to several new areas. As it for example is introduced in 
communication devices like mobile phones, witch offers low bit rate and less 
computational power, the demand for even further improved compression techniques 
increases. Compression (coding) is the science of reducing the amount of data used 
to convey information [7]. It relies on the fact that information exhibits order and 
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patterning, and if this order and patterning can be extracted, the essence of the 
information can often be represented using less data than for the original. We can 
then reconstruct the original, or a close approximation of it. With good video 
compression algorithms, the 2-hour movie can be compressed and stored on 2-3 CD-
ROMS (including audio), without noticeable difference in visual quality. 

3.2 Digital Video 
Digital video is probably the most important visual source nowadays. The numerous 
applications available have made it an integral part of the everyday life for many of 
us. It is implemented in many aspects of business, education and entertainment, 
from digital TV to web-based video news.  
 

 
Figure 3.1 Digital video 
 
A video image (frame) is a projection of a 3-D scene onto a 2-D plane, see Figure 
3.2. A still-image can be seen a ‘snapshot’ of the 2-D representation at a particular 
instant in time, whereas a video sequence represents the scene over a period of 
time, containing a sequence of still-images (frames). The video sequence is 
represented as a signal in a discrete form. As illustrated in Figure 3.3, it is sampled 
both spatially (typically on a rectangular grid in the video image plane) and 
temporally (typically as a series of frames sampled at regular intervals in time). 
 

 
Figure 3.2 Projection of 3-D scene onto a video 
image 

 
Figure 3.3 Spatial and temporal sampling

Each spatio-temporal sample, also known as a picture element or pixel (pel), is 
represented digitally as one or more numbers that describe the brightness 
(luminance) and colour of the sample. The visual quality of the image is influenced 
by the number of sampling points. More sampling points (a higher sampling 
resolution) give a ‘finer’ representation of the image, but requires higher storage 
capacity. A higher temporal sampling rate (frame rate) gives a ‘smoother’ 
appearance to motion in the video scene but requires more samples to be captured 
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and stored. The way the sampling is performed is crucial for correct representation 
and reconstruction of the video signal. A lot of research and theories is presented in 
this field, this is beyond the scope of this thesis, some fundamental sampling theory 
is presented in [7, 8]. 
 
A video usually comes in colours; while a monochrome (‘grey scale’) video image 
may be represented using just one number per pixel, indicating the brightness or 
luminance of each sample position, representing colour requires multiple numbers 
per sample. There are several alternative systems for representing colour, each of 
which is known as a colour space. The most common colour spaces for digital image 
and video representation are RGB (red/green/blue) and YCrCb (luminance/red 
chrominance/blue chrominance).  

3.3 What is a Video CODEC? 
“A program or a device that compresses a signal is an encoder and a device or 
program that decompresses a signal is a decoder. An enCOder/DECoder pair is a 
CODEC” [6, p. 28].  
 

 
Figure 3.4 Architecture of a typical video encoder 
 
The information in a digital video is highly correlated and redundant. As illustrated in 
Figure 3.4, the aim of a (lossy) video CODEC is to decrease this information by 
removing the information which cannot be perceived by our visual system. There are 
several solutions to reduce redundancies and irrelevant information, and in the 
following sections we will depict some of them. But first we want to establish some 
common terminology: 
 
Lossless vs. Lossy compression 
In lossless compression schemes, the reconstructed signal, after compression, is 
numerically identical to the original image. It is typical to remove statistical 
redundancy; an example of a typical lossless compression algorithm is implemented 
by the widely used winzip application. Lossless compression will rarely provide 
sufficient compression ratios for digital video, when used in systems or applications 
with limited bandwidth. Compression schemes that remove data from the original 
signal are generally referred to as lossy compression schemes. In this thesis we will 
mainly consentrate on lossy compression techniques. 
 
Intra-frame vs. Inter-frame 
In intra-frame compression each frame in a moving image sequence is processed 
without any consideration for previous or future frames, as opposed to inter-frame 
compression where sequences of frames are processed, typically encoding only the 
differences between frames. In an intra-frame video CODEC, like e.g. MotionJPEG, 
spatial redundancies are usually removed, by using an image compression algorithm 
on every frame in the video sequence. In an inter-frame video CODEC, like e.g. 
H.263+ or MPEG-4, it is typical to remove both spatial and temporal redundancies, 
by combining a spatial (image) compression technique with a motion estimation and 
compensation (ME/MC) algorithm to remove the temporal redundancies. 
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3.4 Removal of Spectral Redundancy 

 
Figure 3.5 'Roadmap' - A typical video coder 
 
The input for video compression schemes is usually a full colour video signal in RGB 
colour space. The pixels in the RGB space are represented by three numbers, 
indicating the relative proportions of red, green and blue (the three primary colours 
of light). RGB systems usually represent each of these three components with the 
same precision which means that all three colours are treated as equally important. 
The luminance is also present in all of these three colour components, and is 
therefore redundant. YCrCb on the other hand, is a more efficient colour space, 
because it has the property of separate luminance (Y) and colour (CrCb) parts. For 
every pixel in a colour image there is one luminance (Y), and two chrominance (Cr 
and Cb) components. Because the Human Visual System (HVS) is more sensitive to 
luminance than colour, some of the colour information can be removed without 
affecting visual quality. Since Cr and Cb are redundant, these signals can be 
downsampled. This implies that we can eliminate spectral redundancy in an image or 
video by converting the RGB colour space into YCrCb space. In 4:2:2 YCrCb systems, 
downsampling are applied only in horizontal direction, giving a 3:2 compression 
ratio. Whereas in 4:1:1 YCrCb conversion, Cr and Cb signals are downsampled in 
both horizontal and vertical directions and a 2:1 compression ratio is achieved. 

3.5 Removal of Spatial Redundancy 

 
Figure 3.6 'Roadmap' - A typical video coder 
 
Besides spectral redundancy, image- and video signals also have spatial information 
we can not perceive. It is very hard to determine which pixels to remove in order to 
do a compression on the signal without affecting visual quality too much. If we think 
of the pixels as energy, this energy tends to be evenly distributed all over the image, 
and it is therefore hard to compact the information without doing some manipulation 
first. A solution is to transform the image into a different representation. 

3.5.1 Transform Coding 
A good transformation should be able to represent the signal with a few significant 
values, or compact the energy of the image. The most widely used transform method 
in modern image- and video coding algorithm is the Discrete Cosine Transform 
(DCT). Until recently, DCT was thought of as the best transform method in image 
coders. But when JPEG introduced their newest still-image compression standard, 
JPEG2000, it was based on another transform which outperformed the DCT [9], the 
Discrete Wavelet Transform (DWT). The DWT is presented in chapter 4 Fundamentals 
of Wavelets. 
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Both DCT and DWT transform the image to get decorrelated values. The aim is to 
localize signal energy at different frequencies. This is done by separating the lower 
spatial frequencies in the spatial domain from the higher ones, and representing 
them as coefficients. The lower frequencies are more visible to the human eye, and 
are the largest “building blocks” of an image, while higher frequencies add more 
details. Given the fact that the HVS is less sensitive to higher spatial frequencies, 
these high spatial frequency coefficients can be removed without considerably 
affecting image quality. 

3.5.2 The Discrete Cosine Transform (DCT) 
The Discrete Cosine Transform (DCT) is most widely used to perform transform 
coding in video compression algorithms. Even though other transforms as the 
Karhunen-Loeve Transform (KLT) has been known to outperform the DCT regarding 
compression performance, the simplicity and computational efficiency of the DCT has 
made it the first choice. The DCT has been around for well over a decade. The basic 
idea behind DCT was developed by Joseph Fourier a couple of centuries ago. (Some 
basics of Fourier are presented in section 4.3 ‘.) Fourier has to be applied to 
continuous, periodic signals while digital signals are discrete. The Discrete Fourier 
Transform (DFT) was developed to overcome this obstacle, and later a fast and more 
efficient implementation of this transform was developed, known as the Fast Fourier 
Transform (FFT). In 
 and Figure 3.8 we can see that cosine is symmetric and sine is asymmetric about 
their origin. This means that a signal containing both sine and cosine signals is 
asymmetric, but it can be made symmetric by using mirroring. Since the signal is 
symmetric, it can be represented only by cosines. So, as opposed to Fourier which 
needs both sines and cosines to represent a given signal, the DCT is only based on 
cosines which makes it less complex and very efficient. 
 

       
Figure 3.7 Cosine Wave 
 

  
Figure 3.8 Sine wave

When an image or a frame is transformed by DCT, it is first divided into blocks, 
typically of size 8 x 8 pixels. These pixels are transformed separately, i.e. without 
any influence from the other surrounding blocks. The top left coefficient in each block 
is called the DC coefficient, and is the average value of the block. Since this is the 
most important coefficient in the block and has the lowest frequency, it should be 
coded without any loss. The rightmost coefficients in the block are the ones with 
highest horizontal frequency, while the coefficients at the bottom have the highest 
vertical frequency. This implies that the coefficient in the bottom right corner has the 
highest frequencies of all the coefficients. 

3.5.3 Quantization 
By performing a transform the image is not compressed in any way, actually it 
makes the file size larger [6, p. 43]. The image is only represented in a different 
domain where the image data is separated into components of varying importance. It 
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is during the quantisation process that the image is compressed, and the first step of 
this process is to divide each of the coefficients by an integer. The smallest or most 
insignificant coefficients, usually the high frequency values, are mapped to zero. By 
doing this, we remove information from the image, so the compression is irreversible 
(lossy).  
 
Soft quantization only maps the smallest coefficients to zero, while coarse 
quantization maps larger, and therefore more coefficients to zero. This implies that 
coarse quantization usually gives higher compression at the expense of loss in image 
quality. In the coefficient matrix, the lower spatial frequencies are represented in the 
top left, and the higher frequencies in the low right. The quantized coefficients can 
be represented in different patterns. The aim of these patterns is to get long 
consecutive streams with zeroes (or other values), so the benefit of a statistical 
compression algorithm, known as Run-Length Encoding (RLE), can be as effective as 
possible. Since the output coefficients vary depending of type of source and the 
transform used, the optimal pattern also varies. The zigzag-pattern illustrated in 
Figure 3.9 is the most used for the DCT. 
 

 
Figure 3.9 Zig-zag scan of coefficients 
   

3.6 Removal of Temporal Redundancy 

 
Figure 3.10 'Roadmap' - A typical video coder 
 
Spatial compression is important, but spatial compression alone does not get us even 
close to common compression goals. A video signal is typically sampled with a rate of 
15-30 frames second. This makes the subsequent frames in a video sequence usually 
appear almost identical. In most cases, only small portions of the scene change from 
frame to frame. For example, the four first frames of the sequence “Foreman” 
(Figure 3.11) contains minor movement, but even in the high-motion sequence 
“Football” (Figure 3.12), where the players are running and diving, the changes from 
frame to frame is minor. 
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Figure 3.11 First four frames of the "Foreman" sequence. 
 

 
Figure 3.12 First four frames of the "Football" sequence. 
 
Especially, the background information will be similar, if the camera movements and 
illumination changes are insignificant. This causes a temporal redundancy between 
frames. In order to remove this redundancy, modern video coders employ motion 
estimation and motion compensation (ME/MC). Another approach is to utilize a 
three-dimensional transform which is applied in both time and spatial domain, 
instead of a two-dimensional transform combined with a ME/MC technique [6].  

3.6.1 Three-dimensional tranform coding 
Since a video sequence consists of a sequence of two-dimensional images, existing in 
three dimensions, our intuitive idea would be to extend the tools we been using from 
two-dimensions to three.  Both the DCT and the DWT can be defined for three 
dimensions, just as they can for one or two. In fact, this approach works for video 
sequences that are soft and have only very slow motion [7], like for example in a 
video conferencing sequence. Unfortunately, this is not how motion in a video scene 
usually appears. Fast motion creates temporal aliasing and, if the spatial edge is 
sharp, temporal aliasing is created even by slow motion. The fundamental problem 
is, of course, that the temporal sampling rate of today’s video systems is too slow. If 
an object moves significantly between two samples, we have no information about 
what happened between the two samples. In fact, we do not even know for sure that 
it is the same object... (Nyquist’s sampling theorem).  
 
Hence, the favoured approach in modern video coders for removing temporal 
redundancy is using a ME/MC algorithm combined with a 2-D transform. 

3.6.2 Motion Estimation (ME) and Compensation (MC) 
“The motion estimation and compensation functions have many implications for 
CODEC performance. Key performance issues include: 
• Coding performance (how efficient is the algorithm at minimising the residual 

frame?) 
• Complexity (does the algorithm make effective use of computation resources, 

how easy is it to implement in software or hardware?) 
• Storage and/or delay (does the algorithm introduce extra delay and/or require 

storage of multiple frames?) 
• ‘Side’ information (how much extra information, e.g. motion vectors, needs to be 

transmitted to the decoder?) 
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• Error resilience (how does the decoder perform when errors occur during 
transmission?) 

These issues are interrelated and potentially contradictory (e.g. better coding 
performance may lead to increased complexity and delay and poor error resilience).“ 
[6, p. 93] 
 
The basic idea of ME/MC is simple: Find out if and where parts of the previous frame 
have moved to in the new frame. If the CODEC knows this, it can use the previous 
information to predict the new frame, and so will need less information. In practice, 
doing this right is very complicated, and motion search algorithms are of a major 
focus of ongoing compression research. 
 
We can split ME/MC into two main functions: 
1. Motion estimation: create a prediction of the current frame based on one or more 

frames 
2. Motion compensation: subtract the prediction from the current frame to produce 

a ‘residual frame’. 
The motion estimation is the key to this approach, the more accurate the estimation 
is the less data will the residual frame contain, hence the video can be compressed 
to a smaller size, and less data has to be transmitted. In addition to transmitting the 
residual frame, we also have to transmit a set of motion vectors which describe the 
scene motion as observed at the encoder (for example the location of the ‘best’ 
match). But this information is usually considerably less than an intra-frame coded 
frame. In order to decode the frame, the compensation process is ‘reversed’ and the 
prediction is added to the decoded residual frame (reconstruction). 
 

 
Figure 3.13 Predicted motion vectors for frame 2 of the ‘Foreman’ sequence 
 
A very simple method of inter-frame encoding is to subtract the value of the previous 
frame (Figure 3.14 a). For video where the camera is not moving at all, this can yield 
substantial savings. However, only a little camera motion can throw everything off. 
Changes in one frame to the next are usually due to movement in the video scene, 
and if we can estimate this movement accurately, and then compensate for it, a 
significantly better prediction can be achieved (Figure 3.14 b).  
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Figure 3.14 Residual frame examples from VCDemo 
 
A number of ME algorithms have been developed in order to provide efficient 
prediction of scene motion between frames. ME schemes can generally be 
categorized as feature matching or region matching. Feature-matching ME is based 
on tracking specific image features (e.g., edges); however, the region-tracking 
methods are used almost exclusively in modern coders. We will briefly explain the 
main idea behind the most commonly ME/MC algorithm, block matching algorithm, 
and a ME/MC algorithm that is known to determine motion more accurately. Other 
commenly used ME/MC algorithms is optical flow methods (OFE) and pel-recursive 
methods. 

3.6.3 Block matching algorithm (BMA) 
The most widely used region-tracking technique is block matching, illustrated in 
Figure 3.15, in which the current image is divided into small blocks. The previous 
frame, called the reference frame, is searched for the best matching block for a given 
block in the current frame, and the resulting motion vector, indicates the position of 
the best-matching block.  
 

 
Figure 3.15 The block matching algorithm 
 
The difficult bit is to find the best matching block. Before starting to search we have 
to establish some concepts: 
 
Matching criteria  
The ME scheme have to know what criteria to search for. Most ME schemes look for a 
minimum mean square error (MSE) between blocks. Other commonly used matching 
criterion for is the slightly less complex mean absolute error (MAE) or for even more 
simplified comparison, the sum of absolute errors (SAE) [6].  
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Optimal block size 
It is also important to consider the effect of the block size that we attempt to match. 
For example, if the moving object is large and the block is large, it is harder to find a 
predictor block that matches reasonably well; we may find a wrong motion vector or 
maybe no acceptable match at all. If we on the other hand use a very small block, 
many more motion vectors must be coded. It is also very likely that many matches 
will be found; most of these will not be related to real motion within the image, only 
other areas that happen to be a similar patch of image. It has been shown that 
16x16 is the first easy-to-use size for the DCT [7].  
 
Search window 
Theoretical it is necessary to compare the current block with every possible region of 
the reference frame, but this is usually very computationally intensive. In practice, a 
good match can usually be found in the immediate neighbourhood. Hence the search 
for a matching region is usually limited to a ‘search window’. 
 
Table 3.1 Block-matching search algorithms. Based on [6] 
Search algorithm Manner of operation Performance 
Full-search block matching Every block within the search 

window is tested against the 
block it is desired to match. 

Computationally intensive, 
particularly for large search 
windows, but usually finds the 
best match. 

Fast-search Usually search a few points 
within the search window to find 
minimum SAE, thereafter 
search within a local area for 
the best mach. 
 
Many alternative ‘fast search’ 
algorithms have been developed 
- n-step search 
- Logarithmic search 
- Cross search 
- One-at-a-Time search 
- Nearest Neighbours search 

Aims to reduce number of 
comparison operations, but 
gives usually poorer 
compression performance 
than full-search. 
 
Nearest-neighbours search is 
reported to perform almost as 
well as full search, with a very 
much reduced complexity. 

Hierarchical search Search the image in a coarse to 
fine fashion. Usually starts with 
a coarsely subsampled version 
of the image, followed by 
successively higher-resolution 
versions until the full image 
resolution is reached.  
 
Can perform a fast- or full-
search at each level. Complexity 
by performing full-search at 
highest level is relatively low 
because groups of pixels are 
compared, not every pixel. 

Can give a good compromise 
between performance and 
complexity and is well suited 
to hardware implementations 

3.6.4 Phase Correlation 
Motion estimation does not necessarily identify ‘true’ motion; it is rather an attempt 
to find a matching region in the reference frame that minimises the energy of the 
difference block. Unlike the BMA method, which searches the blocks from luminance 
matches, the phase correlation method measures the movement between the two 
fields directly from their phases. Phase Correlation is a means of determining very 
accurately the components of motion in an image sequence, by studying the 
amplitude and phase of each frequency in the image. This is done by transforming 
adjacent blocks into the frequency domain and then subtracts the transforms. The 
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result mainly consists of frequencies were there were a significant phase shift 
between fields (assuming similar frequency content). After normalizing these 
frequencies, they are passed to an inverse transform, which generates a new value 
to each pixel. These values represents a spatial surface (called a correlation surface), 
which displays amplitude peaks corresponding to the movement of each object. The 
position of the peak gives an accurate measure of the direction and speed of motion. 
Phase Correlation can be employed on the whole frame, but because of the 
computational complexity, a the frame is usually divided into blocks, as similar to the 
BMA.  [7] 
 
Unfortunately, when using the Fourier transform or the discrete cosine transform 
(DCT) in phase correlation, all precision in the spatial domain is lost. Phase 
correlation will very accurately find the amplitude and direction of each motion 
component in the image, but we do not longer no where in the image the motion 
occurs. There are ways to calculate this by an offsetting and subtracting technique, 
but it makes phase correlation a computational complex way to estimate motion. 
Recognising that wavelets as apposed to Fourier, gives both frequency and location 
information, we consider this a very interesting approach for wavelet-based ME. 

3.6.5 Enhancements to the motion model 
Sub-pixel motion estimation 
Sub-pixel ME gives better block matching performance at the expense of increased 
computationally complexity. Most recent ME algorithms offers sub-pixel accuracy, 
this is done by interpolating the original pixels to form a higher-resolution 
interpolated region. Figure 3.16 shows an example of half-pixel. Black pixels are 
original integer pixel positions. Light grey pixels are formed by linear interpolation 
between pairs of integer pixels. Dark grey pixels are interpolated between four 
integer pixels. 

 

 
Figure 3.16 Half-pixel interpolation 
 
Choice of reference frames 
ME algorithms can predict the current frame by using ‘older’ encoded frames 
(forward prediction), ‘future’ frames (backward prediction), or by choosing the frame 
that gives best measure (e.g. SAE) of ‘older’ and ‘future’ frames (bidirectional 
frames). Some algorithms also have an option to use multiple reference frames to 
perform the prediction, e.g. MPEG-1 and MPEG-2. The choice of reference frame has 
influence on the compression performance of the ME algorithm.  
 
There are a number of other advanced ways in which the motion model may be 
enhanced. Several of these methods are known as rather computational complex, 
but as technology performance is constantly improved, several of these techniques 
are focus areas in recent research work: 
Overlapped Block Motion Compensation (OBMC) 
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OBMC is among others used in the H.263 standard. OBMC is a way to reduce 
blocking artifacts introduced by for example the BMA method. 
 
Vectors that can point outside the reference picture 
Variable block sizes 
Complex Motion Models 
 Picture warping 
 Mesh-based motion compensation 
 Object-based coding> 

3.7 Removal of Statistical Redundancy 

 
Figure 3.17 'Roadmap' - A typical video coder 
 
Although the above redundancies are exploited, there is still redundancy in the 
compressed signal. This is due to the statistical properties of the video signals. In 
order to reduce these redundancies, some statistical lossless coding schemes are 
used. Run-length coding, Huffman coding and Arithmetic coding are examples of 
lossless coding techniques used to eliminate these statistical redundancies [12, 13]. 

3.7.1 Entropy Encoding 
Entropy is a measure of disorder, or unpredictability, and the though is that if a 
message is totally predictable, no information needs to be transmitted [7]. The 
concept of entropy encoding is to represent frequently occurring values using short 
symbols (hence using a small number of bits), and representing infrequently 
occurring values with longer symbols. The Morse alphabet is probably the most well 
known entropy coder, where the most frequently used letters in the English alphabet 
is assigned the shortest Morse codes, and the least frequent letters are assigned the 
longest codes. A variety of different entropy coders exists, the most popular used in 
video coding standards are Huffman coding and arithmetic coding (e.g. JPEG2000). 
We will only give a brief description of the popular Huffman coding scheme in this 
section, but arithmetic coding can more closely approach the theoretical maximum 
compression [13]. Entropy encoders are usually applied as the last step in the 
compression process.  
 
In a typical transform-based video CODEC, the data to be entropy encoded falls into 
three main categories: transform coefficients, motion vectors and ‘side’ information 
(headers, synchronisation markers, etc). Frames, residual frames (after ME/MC) and 
motion vectors usually have different data structures, and can therefore benefit from 
being coded with differential quantization tables, zigzag-patterns and entropy coding 
tables (e.g. pre-generated Huffman tables).  

3.7.2 Run-Length Encoding (RLE) 
Data streams often contain long sequences with adjacent values. If such a stream 
contains, let’s say one thousand consecutive zeros, this large section of similar bits 
could be represented in a much smaller binary sequence like ‘1000’. This is usually 
listed as pairs, for example like (0, 1000). Transform-based video CODECs have 
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usually high benefit of RLE, because the quantization process mostly produces zeros 
in the higher frequency coefficients, and when coding them with for example the 
zigzag-pattern, we get lots of consecutive zeros. RLE can then compress the stream 
without loss of information.   

3.7.3 Huffman Coding 
Huffman coding relies heavily upon accurate knowledge of signal statistics. The 
symbol with the highest probability is assigned the shortest code and the symbol 
with the lowest probability is represented with the longest code. To be able to decode 
this Huffman coded data file, the decoder must gain knowledge about which symbols 
are represented with which codes. This information is the code tree, or look-up table 
and it needs to be transmitted to the decoder prior to sending the encoded data. 
Huffman coding is very popular because of its effectivity and simplicity.  

3.8 Video Coding Standards 
ITU-T VCEG (International Telecommunications Union Video Coding Experts Group) 
and ISO/IEC MPEG (Moving Picture Experts Group)have been the leading 
standardization groups on video CODECs for well over a decade. Their main goal is to 
make good standards, which again helps to build a bridge between hardware and 
software manufacturers to allow compatibility between different systems. This 
enables a video format to be played in different types of video applications. 
 
ITU’s first standard, H.261 was developed to give good visual quality at low bit rates. 
MPEG-1 on the other hand was designed to give high quality at high bit rates.  
Table 3.2 shows the most important standards released by these groups. 
 
Table 3.2 Video compression standards 

Standard 
(ITU) 

Bit rates Usage  
Standard 
(MPEG) 

Bit rates Usage 

H.261 (1990) 64 Kbps 
Video telephony 

over ISDN 
MPEG-1 
(1993) 

1.4 Mbps 
Audio video 

compression for 
CD-storage 

H.263 (1995) 

20-30 
Kbps to 
several 
Mbps 

Video telephony 
over packet and 
circuit switched 

networks 

MPEG-2 
(1995) 

Typically 
more than 
3 – 5 Mbps 

Compression for 
storage and 
broadcast 

applications 

H.263+ (1998) 
H.263++ 
(2001) 

20-30 
Kbps to 
several 
Mbps 

Extensions to 
H.263, with 
improved 

compression 
performance 

 

MPEG-4 
(1998) 

20-30 Kbps 
to high bit 

rates 

Transport for 
multimedia 
terminals 

Joint Video Team (JVT) 
(Merging of ITU and MPEG - December 2001) 

Standard 
(JVT) 

Bit rates Usage 

H264/MPEG4-
AVC 

(2001) 

From < 20 
kbps to 
high bit 
rates 

Video communication over low to high bit rates. 

 
Following the development, it is clear that the latest standards emerged from ITU 
and MPEG cover a broader range of video qualities and operating at a wider bit 
range. Both H.263 and MPEG-4 cover transmission speeds from the very low 20 Kbps 
to very high bit rates well above 1 Mbps.  
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In December 2001, the ITU-T VCEG and ISO/IEC MPEG formed the Joint Video Team 
(JVT) to establish a joint standard, H.264/MPEG4-AVC (similar to H.262/MPEG-2 
video). This new standard is based on hybrid video coding and similar in spirit to 
earlier standards, but offers new key features as enhanced motion compensation, 
small blocks for transform coding, improved deblocking filter and enhanced entropy 
coding. Early indications give reasons to believe that this standard is superior to its 
predecessors, bit rate savings around 50 % against any other standard for the same 
perceptual quality has been reported. [6] 
 
Most of the H.26x and MPEG standards are based on a hybrid-coding architecture, 
which features ME/MC followed by a DCT. Even if MPEG-4 has implemented a 
wavelet-based still image “texture” coder, we have yet to see a standardized video 
CODEC based on the DWT.  

4 Fundamentals of Wavelets 
The purpose of this chapter is to provide an easy introduction to the discrete wavelet 
transform (DWT), and some of the essential properties that seems to make wavelets 
appropriate for image- and video compression.  
 
We have chosen to present the DWT as filter theory, because this is the most 
common way to represent wavelet in the field of video compression (and other signal 
processing communities). We will thank [6,7,8,14,15] for some good wavelet 
introductions, and credit especially [6,7,8] for some ideas and figures provided in 
this wavelet introduction. The mathematical derivation of wavelets is well beyond the 
scope of this thesis, but if you want a more fundamental understanding of wavelets, 
we strongly recommend you to read some essential mathematics. Many literature 
sources cover the subject in detail, we recommend [8], [15], which provides some 
fundamental mathematics of wavelets, and in addition introduces some basic 
mathematical structures that underlay the wavelet transform. If you like further 
information it is provide in for example [16] and [17]. 

4.1 Introduction 
Wavelets are a mathematical procedure used in numerous types of applications, in a 
large variety of areas. Wavelets arises from a constellation of related concepts 
developed over a period of nearly two centuries, repeatedly rediscovered by 
scientists who wanted to solve technical problems in their various disciplines. Signal 
processors were seeking a way to transmit clear messages over telephone wires. Oil 
prospectors wanted a better way to interpret seismic traces. Yet “wavelets” did not 
become a household word among scientists until the theory was liberated from the 
diverse applications in which it arose and was synthesized into a purely mathematical 
theory. This synthesis, in turn, opened scientists’ eyes to new applications. Today, 
for example, wavelets are not only the workhorse in computer imaging and 
animation; they also are used by the FBI to encode its data base of 30 million 
fingerprints. In the future, scientists may put wavelet analysis to work diagnosing 
breast cancer; looking for heart abnormalities, or predicting the weather. [18] 

4.2 Wavelets from a Historical Perspective 
“Wavelets have had an unusual scientific history, marked by many independent 
discoveries and rediscoveries. The most rapid progress has come since the early 
1980s, when a coherent mathematical theory of wavelets finally emerged.” [18] 
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In an article [18] written by science writer Dana Mackenzie, with the assistance of 
several leading wavelets experts, including Drs. Ingrid Daubechies, Stèphane Mallat 
and Yves Meyer, we found a concise wavelet history timeline representation, which 
we really enjoyed. This is presented in Figure 4.1 and Figure 4.2. If you prefer a 
more detailed history, we can especially recommend [17, chapter 2], which provides 
a really thorough history guide and examination of the discovered wavelets. 
 

 
Figure 4.1 Wavelet history: Timeline 1807 – 1984 [18] 
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Figure 4.2 Wavelet history: Timeline 1985 – 1999 [18] 

4.3 ‘Fourier vs. Wavelet 
The most successful compression systems are based on transforms that move 
between the time or space domain and the frequency or spatial frequency domain. 
The fundamental building block for all such transform is the Fourier theorem, which 
states that any periodic function may be represented by an infinite sum of cosine and 
sine waves with different frequencies. This was revealed in 1807 (published 16 years 
later) by Joseph Fourier, who without knowing it discovered a new functional 
universe. [15] 
  
Even though the Fourier transformation probably is the most commonly used, it has 
some severe limitations which makes it inadequate for some purposes. When 
transforming a signal with the Fourier transformation, the time information will 
become unavailable. Because the Fourier transformation is defined as an integral 
from -8 to 8, a frequency component will affect the transformation equally regardless 
of where it occurs in the signal being transformed. Since most signals in practice are 
non-stationary, it is often more interesting to find where a frequency occurs, than 
finding the value of it. Several solutions have been developed to overcome this 
problem, the most known is maybe the modified version of the Fourier 
transformation, known as the Short Term Fourier transformation (STFT). The basic 
idea of the STFT is that it assumes that for some interval, the frequency of the signal 
does not change. It then applies the ordinary Fourier transformation to that interval. 
This interval is shifted to the right and the same procedure is repeated. In order to 
find the accurate location of a frequency, the interval has to be quite small, but the 
smaller it gets, the less accurate can we distinguish the different frequencies. This is 
a result of Heisenberg’s uncertainty principle, and is impossible to solve. What we 
can do is to improve this technique by varying the interval. This is also basically the 
same way as the wavelet transformation works. 
 
 and Figure 4.4 illustrates that wavelets basis-functions possess the ability of 
localizing frequencies, as opposed to the Fourier transform. 
 

 
Figure 4.3 Fourier basis functions 
 

 
Figure 4.4 Wavelet basis functions 
 

The other fundamental difference between wavelets and conventional transform 
techniques such as the Fourier transform and the DCT is that they search for 
similarities between a fixed basis function (sine or cosine) and the original signal, 
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while the wavelet transform have a huge number of basis functions that can be used, 
as long as they satisfy certain mathematical criteria. 

4.4 Wavelets Concept 
There are two ways to determine the wavelet transform. Most transforms have only 
one way, a formula. For example, with the following formula, we can calculate 
wavelet coefficients, W(a,b), which gives us information about details from a signal 
[15]. The signal is represented by the function f(x) in Equation 4.1 and Equation 4.2. 
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Equation 4.1 Calculate wavelet coefficients with the Continuous Wavelet Transform 
 
The basic function ψ is usually called the mother wavelet: 
 

⎟
⎠
⎞

⎜
⎝
⎛ −

=
a

bx
a

xba ψψ 1)(,
 

Equation 4.2 Mother wavelet 
 
In this chapter we will not concentrate on this formula, we will rather try to 
understand wavelet as the concept of filters, which is the way the wavelet transform 
is calculated in practice [8].  
 
A wavelet can be used to ‘pick out’ details from a signal by multiplying it with the 
signal. The product would contain asymmetric information where the original signal 
had frequency content similar to that of the wavelet. Just as with the Fourier 
transform, integrating the result we get would give us a nonzero coefficient. (These 
are the same coefficients we find with Equation 4.1 for continuous wavelet 
transforms.) It is obvious that this result is depended on where on the signal the 
wavelet is placed. To get information on the whole signal, we have to ”walk” the 
wavelet across the signal being transformed, this process is known as convolution 
[7]. 
 
In compression we are not dealing with analogue signals, but with a sequence of 
digital samples. The wavelet shown in would look more like Figure 4.6, where it is 
represented as a sequence of 13 sample values, six on each side of the origin. 
 

 
Figure 4.5 Wavelet can be viewed as a 
burst of energy with dominant frequency 
 

 
Figure 4.6 The discrete version of figure 1.3 
 

In Figure 4.7 the wavelet is moved along, one sample at the time, and the 
convolution product is evaluated for each position. For simplicity, the wavelet is only 
represented by the five samples, W-2 to W2. 
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Figure 4.7 (a) Convolving a five-sample wavelet, W, with the samples of a signal, S. The 
wavelet is operating on S7. [7, slightly modified]  
 

 
Figure 4.6 (b) The wavelet is moved along to next signal sample, S8. [7, slightly modified] 
 
In Figure 4.7 (a) the wavelet is operating on sample S7, the output of the convolution 
is a new value S7’, calculated in Equation 4.3 
 

 
Equation 4.3 Calculate coefficients using convolution 
 
As shown in Figure 4.8 we have to create additional samples at the edges to 
convolve the wavelet over the whole sample set. In the example, only two additional 
samples are needed at each end. The signal is typically extended by ‘reflecting’ the 
edge samples far enough to accommodate the wavelet [7]. At the left-hand side we 
create S-1 = S0 and S-2 = S1. The idea of moving a wavelet over the image and 
picking out details shows us how wavelets can give both frequency and location 
information. 
 

 
Figure 4.8 Additional samples must be created at the edges. 

4.5 Wavelets as Filters 
The convolution process just described can be represented as a digital filter, as 
shown in Figure 4.9. 
 
In this classical representation of a filter, the signal samples, S, are input 
sequentially to the left-hand side and pass through four delays (‘T’) equal to the 
sample interval. When sample S7 is at the centre of the filter, the output, ‘S7’, is the 
same as shown in Equation 4.3. The impulse response of the filter is the wavelet 
shape shown in [7]. 
 

 
Figure 4.9 The five-sample wavelet shown as a five-tap filter [7]. 
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Viewing wavelet as filters, introduces another point – a wavelet is actually two 
complementary functions, or two complementary filters. Although there are a great 
number of complexities in the design and implementation of wavelet and scaling 
functions, the concept of fractional compression is quite simple. We filter the signal 
by convolving it with the wavelet, which extracts the high-frequency detail of the 
signal, behaving like a high-pass filter. The signal is also convolved with the 
complementary scaling function that removes the high frequencies [7]. One is known 
as the wavelet (or as the wavelet filter/band-pass filter), the other as the scaling 
function. and Figure 4.10 shows some examples of scaling functions and wavelets 
from the biorthogonal Deslauriers-Dubuc family. From left to right: (2,2), (4,2), (6,2) 
and (2,4). The first number is the number of vanishing moments of the analyzing 
wavelet (the wavelet that decomposes a signal) and the second number is the 
number of vanishing moments of the synthesizing wavelet (the wavelet that 
reconstructs the signal). Note that with increasing number of vanishing moments the 
wavelet becomes smoother or more regular. The same is true for the scaling 
function. Note also that the shape of these wavelets is not the rule. Although there 
are many wavelets that look like this, there are also many wavelets that look 
completely different. [19]

 
Figure 4.10 Some scaling functions from 
the biorthogonal Deslauriers-Dubuc family. 
a (2,2), b (4,2), c (6,2) and d (2,4). [19] 
 

 
 
Figure 4.11  Some wavelets from the 
biorthogonal Deslauriers-Dubuc family. a 
(2,2), b (4,2), c (6,2) and d (2,4). [19] 

The signal is split into two parts, one resulting sub-band which contains high 
frequency information and one which contains low frequency information. Figure 4.12 
shows this decomposition process. So, say the signal represents an image, then as 
the high frequencies represents the fine details in an image, we now have a set of 
wavelet coefficients representing the fine detail of the image, H, and an image from 
which the fine detail has been removed, L. 
 

 
Figure 4.12 The first stage of the wavelet transform 
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Because of the bandwith restrictions, the sampling density may be halved [7]. Figure 
4.13 shows the same first stage of the wavelet transform as Figure 4.12, but here 
the downsampling operation is visible. It is represented by the symbol (↓2). This 
means that we downsample by two, we throw away every other sample2. We keep 
the 1st, 3rd, 5th... samples and throw away the 2nd, 4th, 6th... samples, say. [8] 
Therefore if our signal includes 1024 samples, then the sub-band H contains 512 
samples, as do L. Because of this downsampling operation, the DWT is called a 
(maximally) decimated or complete transform. 
  

 
Figure 4.13 The first level of the DWT, including downsampling by 2 
 
The decomposition process may be repeated for the low frequency band, L. The high-
frequency part, H, represent half of the transform, it contains the smallest details we 
are interested in and we could stop here. However, the low-frequency band, L, still 
contains some details and therefore we can split it again by repeating the filter-
downsample operation. Figure 4.14 shows what this means. In this figure we have 
labelled the first-stage sub-band H9 and L9. This is simply because in our example 
they contain 512 samples and 29 = 512. Similarly, the second filter-downsample 
sub-bands are labelled H8 and L8 because it contains 28 = 256 samples. The 256 H8 
samples represent an additional one-fourth of the transform. Repeating the filter-
downsample operation once again on the sub-band L8, generates H7 and L7, each 
containing 27 = 128 terms. 
 

 
Figure 4.14 A two level wavelet transform 
 
This process may be repeated further if desired, until, in the limit, the sub-band that 
contains the low-frequencies, contains only 1 sample (L0, which is equivalent to the 
‘DC’-coefficient (section 3.5.2) or the average value of the entire image). 

4.6 The Wavelet Transform in Two Dimensions 
An image is a two-dimensional signal. So how do we apply a wavelet transform to a 
two-dimensional image? It is possible to construct two-dimensional wavelets, but the 
transform is separable, so generally the two-dimensional image is handled by 

                                          
2 Downsampling will not be explained in further detail in this thesis. A more thorough explanation can be found in [3], 
chapter 17 (about Quadrature Mirror Filters, page 280-281). 
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applying the wavelet and scaling functions in both the horizontal and vertical 
directions. The image is split in two parts, high frequency and low frequency 
operating, say in the horizontal direction first. The two resulting subimages contain 
both high- and low-frequency vertical information. Each of the subimages is now 
convolved with the wavelet and the scaling function vertically, each producing two 
new separations. The process is shown in Figure 4.15.  
 

 
Figure 4.15 Division of the image into four subimages [7, 8] 
 
After this process, we have four subimages. The downsampling process is not visible 
in this figure, but it has been applied, both horizontally and vertically in the same 
way as in Figure 4.13. Each subimage will therefore have one quarter of the samples 
of pixels of the original. 
 
So, we have seen that a single-stage wavelet transformation consists of a filtering 
operation that can decompose a two-dimensional signal into four frequency bands.  
 
Figure 4.16 show the result of a transformation on an image, (a) is the original 
image, and (b) shows the result of a single-stage wavelet transform. The top-left 
corner (LL) is the original image, low-pass filtered with the scaling function and 
subsampled in the horizontal and vertical dimensions. The bottom-left corner, LH, 
contains residual horizontal frequencies. The top-right corner consists of the residual 
vertical frequencies, HL, (for example the vertical bars in the background are visible 
here) whilst the bottom-right corner contains residual diagonal frequencies, HH.  
 
As shown in Figure 4.14 we can repeat the decomposition process for the low 
frequency band. For a two-dimensional signal we decompose the LL component to 
produce another set of four sub-bands: a new LL band that is a further subsampled 
version of the original image, plus three more residual frequency bands. Repeating 
the decomposition three times gives the wavelet representation shown in Figure 4.16 
(c). The small image in the top left is the low-pass filtered original and the remaining 
squares contain progressively higher-frequency residual components. Each sample in 
(b) and (c) represents a wavelet transform coefficient. 
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Figure 4.16 (a) The original image (Lena) [15] 
 

    
Figure 4.15 (b) A single pass of the transform, showing the three sets of coefficients, and the 
residual filtered image. [7, 15] 
 

     
Figure 4.15 (c) The example shows three iterations and the resulting ten subbands. [7, 15] 
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4.7 Inverting the Wavelet Transform 
A critical feature in compression is the possibility to reconstruct the signal perfectly. 
A wavelet algorithm has perfect reconstruction when the transformed signal yields 
exactly the original signal after transforming it back to the original domain (usually 
after performing some operation on it) by applying an inverse wavelet transform. 
This process is also known as a synthesis, which is the inversion of an analysis (the 
forward transform process). This means that the transform has to be invertible. 
The construction of high-pass and low-pass reconstruction filters is highly complex, 
and is only comprehensible in the context of the Fourier transform. We will settle 
with stating that the DWT is invertible when certain mathematical conditions are 
fulfilled. Haar is the simplest wavelet filter that shows perfect reconstruction. 
 
To find the inverse transform, the decomposition process is reversed, as represented 
in Figure 4.17. This shows a one-dimensional signal, but this process can easily be 
generalized into the case of two-dimensional signals. This process continues until the 
last output is the original signal. Note that if no data processing is done, the 
transform – inverse transform process is lossless 
 

 
Figure 4.17 The first two levels of the inverse transform. 
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Part 2 Trends in Wavelet-Based Video Compression 
Research 
 

5 Introduction 
Until recently, the trend in wavelet video compression research have been to use 
wavelet to the transform coding but not to use wavelets qualities in Moton 
Compensated Prediction, but researchers have started to focus more on the latter 
approach. 
 
Even if wavelet in video compression lately have been a common research topic, 
most video compression tools available is based on DCT. If you do a quick search on 
the internet, some wavelet based video compression tools are available though, but 
the tools publicly available are only intra-frame based. Very few, if none, present a 
commercially available product based on inter-frame video compression, even if this 
has been a research topic for a decade now. 
 
The motivation for this work is therefore to establish whether wavelet based video 
coding have the potential of producing the same good results as wavelet in still 
image coding has proven to do. 

5.1 Existing Wavelet-Based Video CODECs  
There are no standardized video CODECs today that use wavelet based transform 
coding, but some implementations with wavelets exist. Some companies have 
developed wavelet based video compression products. The initial use of wavelet in 
video was with the old IMMIX Cube NLE systems, which used wavelet to provide 
better video quality at lower bit rates than the competing Motion-JPEG, but due to 
some other problems with the IMMIX, it lost the battle against M-JPEG. But wavelets 
did not loose though, and it is implemented as the chosen transform coder in Motion-
JPEG2000, the video extension of JPEG-2000. Some other video CODECs that have 
implemented wavelets are Indeo v4 and v5. Aware has also made a software video 
codec, and as for the aforementioned CODECs, it only makes use of intra-frame 
compression, and a good inter-frame wavelet compression CODECs are still to be 
presented to the public. 

5.2 Who Does What with Wavelet 
Scientists from all parts of the world are researching on wavelets. Some are working 
independently, using their spare time and out of passion for this exciting field of 
research, whilst others are doing their research related to universities, corporate 
research labs or special interest organisations. The interest is huge, and the number 
of papers/research works is enormous. 
 
MPEG and ITU-T decided to work together in JVT in 2001. They are currently working 
on the H26L standard, where the video compression algorithm will be founded on 
DCT. This does not mean that they have abandon wavelet totally. Both ITU-T and 
especially MPEG have done comprehensive research on wavelets in the field of video 
coding, but they have not yet chosen to implement it in their video coders. Bla Bla, 
say something about this... 
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When searching for papers in the field of wavelet and video compression, several 
other groups and research facilities have presented their work, especially in the IEEE 
database. Large companies like Sharp Labs, Philips, Sony, Digital Cinema and 
Microsoft are companies that we see have been very active in this field. This can give 
an indication that wavelet seems promising for commercial use, and that it is 
probable that support for wavelets based image and video coding will be 
incorporated in future hardware and software components. 
 
Mobile phone companies like Nokia and Sony-Ericsson also seem to have taken 
interest in wavelets research, and assuming that this is a field that would benefit 
greatly of wavelets good compression properties, it will be exiting to follow the 
development of a possible wavelet CODEC inside a handheld device like a mobile 
camera phone. 

5.3 What to Look for 
There are a large amount of papers out there, so obviously just picking papers on 
luck will not be any good. We therefore had to start off by doing a wide search for 
wavelet and video compression, mainly this search was done by using the IEEE 
Explore database searching tool available from the IEEE web site. It is crucial that 
the gathered information is scientifically acknowledged in order to establish a well 
founded conclusion. We soon got an overview of what seemed to be the most 
respected researchers in our field of interest, and used this as our foundation for our 
future research. 

6 Discrete Wavelet-based Transforms 
In this chapter we first introduce the wavelet domain, and then depict a fast and 
efficient way to construct wavelets, called the lifting scheme. In the following we 
describe three different wavelet transforms; the three-dimensional DWT, the dual-
tree complex DWT, and the overcomplete DWT.  
 

 
Figure 6.1 ‘Roadmap’ – Architecture of a typical wavelet-based video coder 
 
Note that when mentioning the classical, standard, or conventional DWT we refer to 
the convolution-based DWT as it is illustrated in chapter <2.x>. 
 
We have been given the dual-tree complex DWT slightly more interest than the 
practical use in video coding justifies, because of its special nature, and the benefit it 
may have for other areas, like (medical) image processing. If interested in more 
information of the DT CWT and its applications, we recommend [20]. 

6.1 The Wavelet Domain 
A huge amount of techniques takes place in the wavelet domain. Doing something in 
the wavelet domain, wavelet space, band-to-band, or in-band simply means that the 
process are performed after a wavelet transform is executed. As illustrated in Figure 
6.1, state of the art wavelet-based video CODECs usually perform in-band ME/MC. 
When using a 3-D transform, doing something in the wavelet domain, means 
performing the algorithm after all three decomposition has been done. 
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Many techniques performed in wavelet domain do not depend on one specific wavelet 
transform, but rather of certain properties that the transform adds to the domain. 
Therefore, research papers presenting i.e. a new ME/MC algorithm or a new 
quantisation scheme, seldom mentions which wavelet transform is used, how it is 
constructed, or what type of wavelet filter the transform use. We will now briefly 
present some of the filters and transforms used in wavelet-based video coding. 
 
One of the most favoured wavelet filters in image- and video coding when using the 
standard DWT is the biorthogonal Cohen–Daubechies–Feaueveau 9/7 filter (also 
called the ‘9/7 filter’ and ‘Daubechies’s 9-7 filter’) [21], because of its good energy 
compaction properties. This filter is for example used in the JPEG2000 standard. 
Another popular filter in image compression is the Antonini (7,9) tap filter [22]. This 
is the filter that was used in the FBI fingerprint compression system. A third filter 
set, which is defined by the JPEG2000 standard, is the 5/3 integer transform [23], 
this is constructed by a lifting scheme, and was first proposed for image compression 
by Le Gall and Tabatai [24]. Figure 6.2 shows the wavelet and scaling functions 
associated with the 5/3 and 9/7 transforms defined by JPEG2000. As a digression, 
we will mention section 7.5 which briefly present a paper which discusses wavelet 
filters, and a way to choses wavelet filters adaptively depending on the statistical 
nature of the image being coded. 
 

 
Figure 6.2 Synthesis scaling and wavelet functions, 5/3 and 9/7 subband filter sets 
 
The classical DWT is, as we saw in <2.x Fundamentals of DWT>, based on 
convolution. However, there exist other ways to construct the same wavelets. In 
section 6.2 we depict a less computational complex way to calculate the wavelet 
transform, the lifting scheme. It seems that the use of lifting to perform the DWT has 
gained increased popularity in the image- and video compression community. As an 
example, lifting scheme wavelets form the basis of the JPEG2000 image compression 
standard. 
 
A large number of recent developed ME/MC algorithms depend on a so-called shift 
invariant WT. The standard DWT is shift variant, therefore we have presented two 
different shift invariant wavelet transforms, a complex WT and an overcomplete WT, 
which in addition to shift invariance offers the important property of perfect 
reconstruction. As a digression, in the section depicting the overcomplete WT, we 
mention a transform called the Complete-to-Overcomplete DWT (CODWT) [25], this 
transform can be calculated in to ways; one using convolution and another using 
lifting.  
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All the transforms mentioned until now are two-dimensional (to be specific, they are 
separable, using one-dimensional WT in two directions). It is also possible to perform 
multiple-dimensional transform (also separable, using one-dimensional WT in 
multiple directions). The three-dimensional transform removes both spatial and 
temporal redundancies, and has been researched in a lot of papers; some are 
mentioned in section 6.3. 

6.2 The Fast Lifting Wavelet Transform (The Lifting Scheme) 
The original lifting scheme was introduced by Wim Sweldens in mid-nineties, and is a 
general framework to design biorthogonal wavelet filters which can be used in all 
types of discrete wavelet transforms. As opposed to classical constructions, the lifting 
scheme is not based on the Fourier Transform. This makes it possible to construct 
second generation wavelets; wavelets which are not necessarily translates and 
dilates of the mother wavelet. However, this scheme will never come up with 
wavelets that could not be found by [27]. These second generation wavelets can be 
used on places where no Fourier transform is available; for example on bounded 
domains in applications such as data segmentation, to analyze data that live on 
curves or surfaces, or for adapting to irregularly sampled data [33].  
 
The main advantages lifting offers wavelet-based video CODECs is the reduction of 
computationally complexity. It allows a faster implementation and a fully in-place 
calculation of the wavelet transform. The latter removes the need for auxiliary 
memory in order to store temporary data during the calculation. In [34] it is proven 
that for long filters, the lifting scheme cuts computation complexity in half, compared 
to the standard iterated FIR filter bank algorithm (the classical DWT). This type of 
wavelet transform is already much more efficient than the Fast Fourier Transform 
(FFT), and lifting speeds things up with another factor of two, due to the fact that the 
lifting scheme makes optimal use of similarities between the odd and even values, or 
high and low pass filter. 
 
For classical wavelet transforms one have to use the Fourier transform to see that an 
inverse wavelet transform yields exactly the original signal [33]. But by using lifting, 
it is easy to see that a given wavelet filter could be perfectly reconstructed by 
undoing the operations of the forward transform. As seen in Figure 6.4 the inverse 
wavelet transform is just a mirror of the forward transform in Figure 6.3. 
 

 
Figure 6.3 Lifting scheme forward WT 
 

 
Figure 6.4 Lifting scheme inverse WT 

The original lifting scheme has been further developed, and several different lifting 
schemes now exists. They will not be described here, but as an example, integer 
lifting [Cal96], [Uyt97b] and multidimensional lifting [Kov97], [Uyt97a] are to quite 
recent and interesting developments. 
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6.2.1 Constructing wavelets with the lifting scheme 
The name ‘lifting’ comes from the way the wavelet is constructed, it starts with a 
simple wavelet, often called the ‘Lazy wavelet’, which does not do anything, however 
it has the formal properties of a wavelet. Then the lifting scheme gradually builds a 
new wavelet by adding in new basis functions, improving the properties of the ‘Lazy 
wavelet’. We will now briefly explain how the basic idea of the lifting scheme works 
in practise by using an example. Since the inverse transform can be found by 
reversing the forward transform, and simply change each ‘+’ into a ‘-’ and vice 
versa, we concentrate on explaining the forward process. 
 
The lifting process starts with splitting the even (a) and odd (b) samples, followed by 
two steps, a predict and an update step as illustrated in Figure 6.5. 
 

 
Figure 6.5 Forward steps [15] 
  
 

 
Figure 6.6 Inverse steps [15] 

• We start by splitting the two samples in Figure 6.5, the odd sample is the green 
9, and the even sample is the peach-coloured 7.  

• Then we predict the new even sample by subtracting the original even from the 
original odd, 7-9=-2. 

• We directly update the odd sample, by adding half the new predicted even 
sample to the original odd, 9+(-2/2)=8. 

• As illustrated in Figure 6.6, to get back to our original values, the process is 
simply inverted. 

 
In Figure 6.7 and Figure 6.8 we see the lifting scheme working on 8 samples in 
several levels. The updated odd (green) samples are used as the input for the next 
level. These are split, predicted an updated as in the first pass. This process can 
continue until we in the end has one single odd element left. 
 

 
Figure 6.7 Predicting and updating coefficients in 3 levels [15] 
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Figure 6.8 Split, Predict, and Update in 2 levels [15, modified] 

6.3 Three-Dimensional Wavelet Transform (3-D DWT) 
Karlsson and Vetterli first proposed the use of a separable three-dimensional (3-D) 
discrete wavelet transform (DWT) for video compression.  

6.3.1 3-D SPIHT (Set Partitioning In Hierarchical Trees) 
Pearlman and Kim have extended the popular 2-D SPIHT image coder (described in 
section 7.3) to a 3-D video coder [35]. 3-D SPIHT, among others [36][37], performs 
quite well because the energy between frames is compacted by a wavelet transform, 
which in turn can be quantized and entropy coded in order to obtain good 
compression ratios. This is a more natural way of removing temporal redundancy.  
 
Typically a three level three-dimensional wavelet decomposition (like the one shown 
in  i) with the 9/7 biorthogonal wavelet filters is performed on a Group of Frames 
(GOF) of size 16, as shown in Figure 6.10. First the GOF is temporally transformed 
(1-D) followed by a spatial domain transform (2-D). The temporal transform could be 
done by applying the wavelet filter to all the frames in the video sequence, but this 
obviously would result in large delays because all the frames have to be traversed 
before any transmission could begin. Also a lot of memory is needed when 
transforming large video sequences, possibly containing millions of frames. Therefore 
the frames are divided into group of typically 16 frames, in order to be able to do an 
effective temporal transformation in systems with limited amount of memory. 
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Figure 6.9 3-D Wavelet Decomposition [35] 
 

 
Figure 6.10 Temporal decomposition of a 
group of frames (GOF) [35] 
 

As for 2-D SPIHT, 3-D SPIHT also produces an embedded bit stream, in order to 
provide a progressive video transmission, which makes it very scalable and also 
being able to choose an appropriate video quality. 3-D SPIHT supports separation of 
colour and luminance, which again stresses that the coding is very scalable in that 
both colour and luminance (monochrome) video can separately be extracted from 
the same bit stream. If a system has a limited bandwidth, it is possible to obtain a 
better resolution level, by using the luminance components only. As for 2-D SPIHT, 
the main feature of 3-D SPIHT is its speed and simplicity. 

6.3.2 Lifting-based Invertible Motion Adaptive Transform (LIMAT) 
LIMAT was introduced by Secker and Taubman in [38]. Taubman is an authority on 
use of the wavelet transform in highly scalable image- and video compression, and 
has presented several research papers in this field, including EBCOT [39] which is 
the core of the JPEG2000 image compression standard. 
 
LIMAT is a framework for constructing three-dimensional transforms, based on any 
temporal wavelet kernel and motion model, while retaining perfect reconstruction. 
This invertibililty property is inherited from a lifting realization of the three-
dimensional DWT, in which each lifting step is compensated for the estimated scene 
motion. Incorporation of sophisticated motion models allows the transform to adapt 
to complex motion, which is demonstrated in [38] with a deformable mesh motion 
model. The LIMAT framework can be used with any temporal wavelet kernels, 
consistently superior performance is observed in [38] with the 5/3 wavelet as 
compared to Haar. This differs from evidence reported in the context of block-based 
and framewarping approaches [39, 40].  
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Figure 6.11 a) Lifting representation for the Haar temporal transform, b) same, but with motion 
compensated lifting steps 
 
The 3-D-DWT is essentially applied in a separable fashion along the displaced blocks, 
but the effects of expansion and contraction in the motion field are observed by the 
appearance of “disconnected” pixels between the blocks. For the transform to remain 
invertible, these disconnected pixels must be treated differently, which seriously 
affects coding efficiency. In addition, perfect reconstruction is only possible with 
integer block displacements, although extensions to half-pixel accuracy have been 
demonstrated. These methods invariably involve block-based motion models, which 
cannot capture expansive or contractive motion.  
 
Deformable meshes can improve motion compensation by tracking expansions and 
contractions, while maintaining a continuous motion field. More importantly, only 
continuous motion mappings allow us to understand the proposed transform as truly 
applying the temporal DWT along a set of motion trajectories. Experimental results in 
[38] reveal that this is particularly desirable for compression performance. However, 
without motion compensation, temporal filtering produces visually disturbing 
ghosting artefacts in the low-pass temporal subband. This is clearly undesirable 
where temporal scalability is of interest. The challenge therefore lies in finding a way 
to effectively exploit motion within the spatio-temporal transform 

6.4 The Dual-Tree Complex Wavelet Transform (DT CWT) 
Magarey and Kingsbury developed a motion estimation algorithm, using a 2-D DWT 
which is based on a complex-valued pair of 4-tap FIR filters with Gabor-like 
characteristics [41, 42, 43]. The aim of this work was to identify true motion as far 
as possible, using a hierarchical and phase-based approach. This ME algorithm is 
further depicted in a later section <>, but the complex-valued DWT they discovered 
are the subject of this section.  
 
Magarey and Kingsbury was motivated by Fleet and Jepson [44] to use the efficiency 
of the DWT subband decomposition with complex-valued (Gabor-like) basis filters to 
provide the phase information required for their ME algorithm. “The desirable 
property of Gabor filters is that they are optimally localised in both spatial and spatial 
frequency domains [45].” [43, III section B.3] The 2-D CWT is implemented 
separably, so that only 1-d convolutions and downsampling are required. “The 2-D 
CWT may be thought of as producing a pyramid of complex subimages. At each 
level, the coefficients are formed by orientationally selective filtering of overlapping 
circular regions. There are six evenly spaced orientational subimages at each 
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pyramid level. Note that such directional filters are not obtainable by a separable 
DWT using a real filter pair, because its separable filters cannot distinguish between 
edge features on opposing diagonals (further explained in section 3.4.2 b)). Complex 
coefficients make this selectivity possible.” [43, III section B.2, slightly modified]  

6.4.1 The Dual-Tree Implementation 
The work with complex wavelets for motion estimation [41, 42, 43] showed that 
complex wavelets could provide approximate shift invariance and good directional 
selectivity. Unfortunately they were unable to obtain perfect reconstruction and good 
frequency characteristics when using short support complex FIR-filters in a single 
tree (e.g. Figure 6.12 Tree a). However, Kingsbury et. al. further develop the 
complex wavelet transform, and introduce the Dual-Tree implementation of a 
Complex Wavelet Transform (DT CWT) in [46-50].  
 
The dual filter tree implementation is based on the idea that it is possible to achieve 
approximate shift invariance with a real DWT, by doubling the sampling rate at each 
level of the tree (but only if the samples are evenly spaced). The dual filter tree 
comprises two trees of real filters, a and b, which produce the real and imaginary 
parts of the complex coefficients. The key to successful operation of the DT CWT lies 
in the differences between the filters in the two trees. It is crucial that level 1 
downsamplers in tree b picks the opposite samples to those in tree a, and at each 
level in both trees an additional delay difference is needed to obtain the correct total 
delay difference so that optimal shift invariance is achieved [48]. To invert the 
transform, perfect reconstruction filters are applied in the usual way to invert each 
tree separately and finally average the two results. 
 
In the first form of the DT CWT [46, 47, 48] this was achieved by a simple delay of 
one sample between the filters at level 1, and then, for subsequent levels, alternate 
odd-length and even-length biorthogonal linear-phase filters were used to achieve 
the correct relative signal delays. But later Kingsbury et. al. discovered certain 
problems with the odd/even filter approach, and to overcome them, the Q-shift 
version of the DT CWT, with improved orthogonality and symmetry properties, was 
proposed in [49, 50]. This is seen in Figure 6.12. All the filters beyond level 1 are 
even length, but they are no longer strictly linear phase. Figures in brackets indicate 
the delay for each filter, where q = ¼ sample periods.  
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Figure 6.12 Dual tree of real filters for the Q-shift CWT [49] 
 
In the Q-shift version, the filter coefficients are no longer symmetric, which makes it 
possible to design the perfect-reconstruction filter sets to be of even-length, shorter 
and orthonormal (like Daubechies filters) beyond level 1 so that filters in the two 
trees are just the time-reverse of each other, as are the analysis and reconstruction 
filters. They are designed with the additional constraint that the filter group delay 
should be approximately one quarter of the sample period. All this leads to a 
transform, where all filters beyond level 1 are derived from the same orthonormal 
prototype set, and in which the two trees are very closely matched and have a more 
symmetric sub-sampling structure. 

6.4.2 Key features 
The key features of the DT CWT [50] may be summarised as: 

a) Approximate shift invariance; 
b) Good directional selectivity in 2-dimensions (2-D) with Gabor-like filters (also 

true for higher dimensionality, m-D) 
c) Perfect reconstruction using short linear-phase filters; 
d) Limited redundancy, independent of the number of scales, 2:1 for 1-D (2m:1 

for m-D) 
e) Efficient order-N computation - only twice the simple DWT for 1-D (2m times 

for m-D) 
 
a) Approximate shift invariance 
(The importance of shift invariance in wavelet-based video CODECs is explained in 
section 8.3.1 Shift Dependence.) The good shift invariance of the DT CWT is 
demonstrated in Figure 6.13, where it is compared with a standard DWT based on 
the (9,7) filters. Wavelet and scaling function components of 16 shifted step 
functions (top), for the Q-shift DT CWT (a) and real DWT (b), at levels 1 to 4 is seen. 
If there is good shift invariance, all components at a given level should be similar in 
shape, as in (a). 
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Figure 6.13 Wavelet and scaling function components of 16 shifted step functions for the Q-
shift DT CWT (a) and real DWT (b) [49] 
 
b) Good directional selectivity 
Good directional selectivity is believed to be an important feature for many 
applications, including motion estimation and compensation, denoising, and edge 
enhancement. As an example, as shown in [47], the DT-CWT can outperform 
overcomplete real wavelet transforms because the improved directional selectivity 
provides better denoising near non-vertical and non-horizontal edges or lines. 
 
In the standard DWT, separable filtering of the rows and columns of an image 
produces four subimages at each level, as we saw in <figure x.9, chapter x Wavelet 
fundamentals>. The LH and HL subimages can select mainly horizontal or vertical 
edges respectively, but the HH subimage contains components from diagonal 
features of either orientation. One way of explaining the poor selectivity of the 
standard DWT is that horizontal wavelet filters (real high-pass row filters) select both 
positive and negative horizontal high frequencies, while vertical wavelet filters (real 
high-pass column filters) select both positive and negative vertical high frequencies. 
Hence the combined HH filter must have passbands in all four quadrants of the 2-D 
frequency plane. On the other hand, a directionally selective filter for diagonal 
features with positive gradient must have passbands only in quadrants 2 and 4 of the 
frequency plane, while a filter for diagonals with negative gradient must have 
passbands only in quadrants 1 and 3. The poor directional properties of real 
separable filters make it difficult to generate passbands or directionally selective 
algorithms, based on the separable DWT. [51, section 4, slightly modified] 
 
The DT CWT has much better directional resolution than a standard DWT, despite 
being implemented separably, as it possesses six directional subbands rather than 
three (for images) [52]. This is because the complex filters are able to separate 
positive and negative frequencies in 1-D, and hence separate adjacent quadrants in 
m-D frequency space. 
 
Another approach both to shift invariance and to directional selectivity was pioneered 
by Simoncelli et al. [53], and was based on Laplacian pyramids and steerable filters, 
designed in the frequency domain. 
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c) Perfect reconstrution is critical in compression to reconstruct the signal, as 
explained in 4.7. 
 
d) and e) leads to lower algorithm complexity and increased speed. [50] 

6.4.3 Applications 
“The shift invariant and directionally selective features of the DT CWT are believed to 
increase flexibility for spatially adaptive filtering of multidimensional signals without 
needing to worry about introduction of undesirable aliasing artifacts”. [50, section 9, 
slightly modified]  
 
The DT CWT is used in a variety of applications, such as motion estimation and 
compensation [41, 42, 43] (CWT), denoising and deconvolution [54, 55, 56], texture 
analysis and synthesis [57, 58, 59], segmentation and classification [60, 61, 62] and 
watermarking [63, 64]. Mostly, the main signals are images, but the DT CWT is also 
believed to be useful for video sequences and general 3-D datasets, such as medical 
scans and geological seismic data [50].  

6.5 The Overcomplete Discrete Wavelet Transform (ODWT) 
The Overcomplete DWT (ODWT) has a long history of development, and has been 
given several names, e.g the “undecimated DWT”, the “redundant DWT” and the 
algorithme à trous. 
 
The ODWT removes the downsampling operation from the traditional DWT presented 
in <fundamental of wavelet>, to produce an overcomplete representation. It can be 
considered as an approximation to the shift invariant continuous wavelet transform. 
(The importance of shift invariance in wavelet-based video CODECs is explained in 
section 8.3.1 Shift Dependence.) The downsampling and upsampling of coefficients is 
eliminated, and at each level, the number of output coefficients doubles that of the 
input. The wavelet and scaling filters are upsampled to fit the increasing data length.  
 
The ODWT has been implemented in several ways. [65, section 5.5.2, ---23--- , 66] 
presents some classical and direct implementations of the algorithme à trous, where 
the filter-upsampling procedure inserts “holes” - “trous” in french - between the filter 
taps. The implementation in [66] results in subbands that are exactly the same size 
as the original signal. The advantage of this is that each coefficient is located within 
its subband in its spatially correct position. By appropriately downsampling each 
subband, it is possible to produce exactly the same coefficients as the conventional 
DWT. The output coefficients of the ODWT can also be represented in many ways. A 
popular scheme is to use a “coefficient tree”. This tree representation is created by 
employing filtering and downsampling as in the usual critically sampled DWT; 
however, all phases of downsampled coefficients are retained and arranged as 
children of the decomposed signal. The process is repeated on the lowpass bands of 
all nodes to achieve multiple decomposition scales.  

6.5.1 ODWT in video coders 
The classical construction of the ODWT is trivial by using for example an “à trous” 
algorithm [55] or the LBS algorithm [68, 69]. However, in wavelet-based coding 
systems, the CODEC always processes the critically-sampled DWT subbands. Hence, 
the inverse DWT has to be performed first in order to reconstruct the input signal, 
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and then followed by the ODWT [26] [15]. For example, in the LBS approach [68, 
69], phase shifting is implemented by an inverse transform, shifting in the spatial 
domain (i.e., with low band) and then performing a forward overcomplete transform. 
 
Andreopoulos et. al., “complete-to-overcomplete DWT (CODWT)” [26] and Xin Li et. 
al., “performing phase shifting in the wavelet domain” [] have independently 
proposed similar direct solutions, which are much more computational effective than 
the conventional approach used of Kim and Park [68, 69]. The main idea behind 
these approaches is to produce the ODWT directly from the DWT. Specifically, the 
computation of the input signal is not required, and as a result, the minimum 
number of downsampling operations is performed and the use of upsampling is 
avoided. In addition, Andreopoulos et. al proposes in [26] an efficient scheme for the 
transform-calculation of the CODWT, testing both a convolution and a lifting based 
implementation. 
 
The possible applications for the techniques briefly presented in this section are i.e. 
image- and video coding and compressed domain processing. The shift invariance 
and perfect reconstruction properties of the ODWT makes it very interesting for 
these applications, and it has recently been utilized by a large number of wavelet-
based image- and video coding systems [1-16]. 

7 Wavelet-based Spatial Compression 
In this chapter we will discuss how to remove spatial redundant data in digital 
image- and video signals using wavelet-based algorithms. Given that spatial 
compression can be performed by using the same approaches as in still image 
compression, we will therefore depict some state of the art wavelet-based still image 
algorithms and coders. 
 

 
Figure 7.1 ’Roadmap’ - Architecture of typical image- and video coders  

7.1 Prosperity of Wavelet-based Image Coders 
Over the past few years, a variety of novel and sophisticated wavelet-based image 
coding schemes have been developed. These include EZW[23], SPIHT[22], SFQ[32], 
CREW[2], EPWIC[4], EBCOT[25], SR[26], Second Generation Image Coding[11], 
Image Coding using Wavelet Packets[8], Wavelet Image Coding using VQ[12], and 
Lossless Image Compression using Integer Lifting[5]. This list is by no means 
exhaustive and many more such innovative techniques are being developed as this 
article is written. We will briefly discuss a few of these interesting algorithms here.> 
 
<Modern embedded image coders are essentially built upon three major 
components: a wavelet transform, successive-approximation quantization, and 
significance-map encoding. Below, we overview these components and describe how 
each are implemented within several prominent algorithms, including the recent 
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JPEG-2000 standard [1; 2]. Technique (SPIHT[4]) and a conditional-coding 
technique (JPEG-2000 [1]), as well as three other techniques based on other forms 
of significance map coding (WDR [7], SPECK [8; 9], and tarp [10]).  All coders use a 
5-stage wavelet decomposition with the popular 9-7 wavelet filters from [27].> 
 

 

7.2 Embedded Zero-tree Wavelet (EZW) Compression 
Lewis and Knowles [29] in 1992 were the first to introduce a tree-like data structure 
to represent the wavelet coefficients in the <octave-band wavelet decomposition> 
subbands. Later, in 1993 Shapiro [28] called this structure ‘zerotree’ of wavelet 
coefficients, and presented a elegant algorithm called ‘Embedded Zerotree Wavelet’ 
(EZW) algorithm. 
 
The EZW is known to be a very simple and computationally effective algorithm [23]. 
As illustrated in Figure 7.2, every coefficient in the lower frequency band has several 
corresponding child coefficients in the higher frequency bands. The idea behind this 
approach is that if a parent coefficient is insignificant, then it is very likely that all its 
child coefficients are insignificant too. This makes it computationally effective, 
because it is not necessary to use a complex verification algorithm to check the 
significance of the child coefficients, if the parent coefficient is insignificant, we 
simply set it and its children to zero. 
  

 
Figure 7.2 Relationship between parent-child regions in (2-D) DWT sub bands 
 
Many insignificant coefficients at higher frequency subbands (finer resolutions) can 
be discarded, because the tree grows as powers of four. The EZW algorithm encodes 
the tree structure so obtained. This results in bits that are generated in order of 
importance, producing an embedded bit stream. The main advantage of this coding 
is that the encoder can terminate the encoding at any point, thereby allowing a 
target bit rate to be met exactly. Similarly, the decoder can also stop decoding at 
any point, because the image can be reconstructed before all the bits are 
transceived. However, the quality of the image increases as further bits are received, 
as illustrated in Figure 7.3. 
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Figure 7.3 Non-embedded vs. embedded bit stream 
 

7.3 Set Partitioning In Hierarchical Trees (SPIHT)  
Many enhancements have been made to make the EZW algorithm more robust and 
efficient. One very popular and improved variation of the EZW is the SPIHT algorithm 
introduced by [35] in 1994. 
 
In [35], the principles of EZW are explained in an alternative way, and can be 
summarized by the following three key concepts: 
• partial ordering by magnitude of the transformed coefficients with a set 

partitioning sorting algorithm,  
• ordered bitplane transmission of refinement bits,  
• and exploitation of self-similarity of the image wavelet transform across different 

scales of an image  
 
SPIHT offers a more effective implementation of the modified EZW algorithm based 
on set partitioning in hierarchical trees. The way coefficients are divided into subsets 
and thereafter partitioned has been improved, so it is even more likely that the most 
significant information will be conveyed first. For an image bit stream to be fully 
embedded, it is crucial that the most significant information is transferred first, i.e. 
the information that reduces the image distortion most, has to be assigned the first 
position in the transfer queue. The significance of the information is determined by a 
calculation of the mean square error (MSE) distortion measure.  
 
SPIHT also includes a scheme for progressive transmission of the coefficient values 
that sorts the bits within each coefficient within each subband by magnitude, so the 
most significant bits in the most significant subband are transmitted first. This 
implies that even if a coefficient in a subband is more significant than another 
coefficient in the same subband, it is not given that all the bits in that coefficient is 
more important than every bit in the least significant. As illustrated in  
Table 7.1 the most significant bits are transferred first as indicated by the horizontal 
arrows. The most significant coefficient in this example is ci, followed by cj, ck, cl, 
cm... The bits in each coefficient are ordered after significance vertically. First all the 
most significant bits (msb) with significance 5 is transferred, then all the bits with 
significance 5, etc. Notice how the most significant bits (msb) in coefficient, ck, are 
transferred before the least significant bits (lsb) in coefficient, ci. 
 
Table 7.1 Coefficients ordered by magnitude 
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We will also mention another popular coding scheme Pearlman has been involved 
with, Set-Partitioning Embedded block Coder (SPECK), which uses quad-trees instead 
of zero-trees in the significance coding process [29][30]. Independent tests [31] 
have shown that this scheme offers approximately the same results as SPIHT.  

7.4 EBCOT Coder in JPEG2000 
JPEG2000 is the latest image compression standard to emerge from the Joint 
Photographic Experts Group (JPEG), and is the leading image compression standard 
for photografic pictures. JPEG2000 supports both lossy and lossless compression. 
Central to this standard is the concept of scalability, which enables image 
components to be accessed at the resolution, quality, and spatial region of interest. 
An example of ROI coding can be seen in Figure 7.4, notice how the rectangular ROI 
in the facial region is well preserved at the expense of the background. [24] All these 
features derive from a single wavelet-based algorithm, Embedded Block Coding with 
Optimized Truncation (EBCOT) [71] 

 
Figure 7.4 Example of ROI coding at 0.125 b/pixel [24] 
 
The EBCOT algorithm was introduced by Taubman in [71], and is related in various 
degrees to earlier work on scalable image compression; including the EZW algorithm, 
SPIHT algorithm, and Taubman and Zakhor's LZC (Layered Zero Coding) algorithm 
[71]. The key advantage of the EBCOT algorithm is as for SPITH, ‘resolution’ and 
‘distortion’ scalability, provided by the multiresolutional wavelet transform and the 
embedded block coding. However, the EBCOT algorithm uses a more sophisticated 
approach for significance propagation of bits than the SPIHT algorithm. It takes 
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advantage of the fact that neighbouring pixels in images tend to be very similar to 
each other, by changing insignificant coefficients to be significant, if having at least 
one significant neighbouring coefficient.  
 
The wavelet transform used in EBCOT is implemented both convolution-based and 
lifting-based. Lifting plays a central role, because it enables both state-of-the-art 
lossy compression and near state-of-the-art lossless compression. In EBCOT a 
‘reversible’ transform is defined by exploiting an important property of the lifting 
structure; lifting filters may be modified in any desired manner without compomising 
invertibility. In this transform, the 5/3 integer transform, the output of each filter is 
rounded to an integer [75, 76]. In conjunction with the embedded quantization and 
coding strategies, this makes it possible to produce an efficient losslessly 
compressed representation of the image, which embeds any number of efficient lossy 
compressed representations. 
 
It is shown that JPEG2000 perform fairly close to SPIHT and SPECK, with a slight 
advantage of rate-distortion performance [31]. However, these other 
implementations do not offer the same variety of features as JPEG2000. <tregere 
enn baseline JPEG> 

7.5 Adaptive Wavelet Coding of Multimedia Images 
Contrary to the previous algorithms presented, the algorithms mentioned here 
concentrate on the wavelet filter, not quantization and context modeling of the 
transform coefficients. 
 
[77] has experimented with a variety of wavelets to compress images of different 
types. It states that the performance of lossless coders is image dependent, and that 
the wavelet filter should be chosen adaptively depending on the statistical nature of 
the image being coded. They argue the importance of using good wavelet filters, 
since this may increase performance, even when using sophisticated quantization 
algorithms. Their results shows that while some wavelet filters perform better than 
others, no specific wavelet filter performs better than others on all images. Similar 
results have also been observed in the context of lossless compression using various 
integer-to-integer wavelet transforms. 

8 Wavelet-based Temporal Compression 
In this chapter we investigate research work done in the field of wavelet-based 
temporal redundancy removal. Initially we briefly explore the development in this 
field, and take a look at some reasons why wavelet-based representation has not 
achieved the same success in the area of video coding as for image coding.  

 
Figure 8.1 'Roadmap' - Architecture of a typical wavelet-based video CODEC 

8.1 Prosperity of Wavelet-based ME/MC algorithms in Video 
Coders 

MCP effectively exploits the redundancy in the temporal domain 
+ 
WT effectively exploits the redundancy in the spatial domain 
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= 
Consequently, a tantalizing question is how do we put ME/MC and WT together and 
make them work for videocoding? 
 
Previous works of wavelet coding: 
3D Wavelet-transform Coding (Ohm’ 1994) 
3D Subband Coding (Taubman and Zakhor ‘1994) 
MC 3D Subband Coding (Choi and Woods ‘1999) 
3D-SPIHT (Kim, Xiong and Pearlman ‘2000) 
3D-ESCOT (Xu et al ‘2001) 
Invertible MC 3D-WT (Hsiang and Woods ‘2001) 

8.2 Wavelet-based Motion Estimation and Compensation in 
Spatial Domain 

Most existing video coding standards (including MPEG and H.26x series) share a 
similar structure: motion compensated prediction (MCP) is first performed in the 
spatial domain and then motion-compensated residues are compressed by DCT-
based coders. The most straightforward way to replace the DCT with a DWT in a 
typical video coder would be to perform ME/MC in the spatial domain and to calculate 
a DWT on the resulting residual image, as in [78-80].  
 

 
Figure 8.2 ME/MC in spatial domain 
 
However, it has been shown (e.g. [73, 74]) that this simple approach has certain 
drawbacks. Conventional block-wise motion compensation does not fit to wavelet 
transform coding, due to blocking artifacts which are made worse when the DWT is 
deployed as is usual as a full-frame transform. It has been proposed [79, 80, 81] to 
use overlapped block motion compensation (OBMC) in the spatial domain before the 
DWT, to reduce these blocking artifacts. 
 
Moreover, when trying to preserve the multi-resolutional structure of each frame and 
obtain the scalability that the wavelet transform provides, another issue become 
apparent. It seems that when the decoder operates at a lower resolution, drifting 
becomes a serious problem, since motion compensated prediction assumes the 
knowledge of the previous frame at the full resolution. 
 
Another drawback with this approach is that the wavelet basis is not suitable for 
representing the predicted residual image [29]. The main benefit of good transform 
coding is that the image energy becomes highly compacted, with a large portion of 
information represented in the lower frequency areas. But if we have two almost 
identical frames, and the one is subtracted from the other, the residue image does 
not have the same properties as a normal image. Most of the low frequency 
information is gone, and it is therefore hard to say what information to remove in 
order to obtain good visual quality. At the same time, significant coefficients are 
most likely scattered around, and not concentrated around the top left corner of the 
matrix, which makes it hard to perform efficient entropy coding prior to transmission. 
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8.3 Motion Estimation and Compensation in Wavelet Domain 
An alternative paradigm would be to perform ME/MC after a wavelet transform is 
applied to all frames.  
 

 
Figure 8.3 ME/MC in Wavelet Domain 
 
This concept eliminates the inefficiency due to high-frequency blocking artifacts. 
More important, perhaps, is that resolution-scalable coding without drift becomes 
possible. However, it has been shown that this approach also leads to inefficient 
coding. Due to frequency aliasing effect introduced by the down-sampling operation3 
ME/MC in the wavelet domain has been considered complex and inefficient until 
recently. This aliasing effect, also commonly known as shift variance, is explored in 
the following section. 

8.3.1 Shift Dependence 
We recall that in compression it is critical that the wavelet algorithm used can be 
reconstructed perfectly, as seen in Figure 8.4. 
.  

 
Figure 8.4 a) Four level binary wavelet tree. b) The filter bank, used to achieve perfect 
reconstruction from an inverse tree 
 
In Figure 8.5, we see that there is a strong similarity between the shapes of the 
various wavelets; due to the fact that perfect reconstruction constrains each filter in 
Figure 8.4 to be approximately a half-band filter [31]. This causes aliasing and 
results in severe shift dependence of the wavelet transform [2, <Andreopolus>, 31]. 
  

                                          
3 Se chapter x.x and evt. appendix hvis jeg lager det 
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Figure 8.5 Comparison of some common wavelets [20]. 
 
Shift variance is a disadvantage of discrete wavelets: the resulting wavelet transform 
is no longer shift invariant, which means that the wavelet transforms of a signal and 
of a time-shifted version of the same signal are not simply shifted versions of each 
other, as demonstrated in Figure 8.6 and Figure 8.7. In the first figure we see a 
signal and a one sample shifted version of the signal. A 1-D DWT, using the 9/7 filter 
[14], is performed on both, and the resulting coefficients are displayed in Figure 8.7. 
It is easy to determine the “motion” of the signal waveform when comparing the 
original signal with its shifted version, but in the wavelet domain we can see that 
although there is still some correlation between low-band outputs, the high-band 
signals are completely dissimilar. Because the signals represented in wavelet domain 
suffer from the shift-variant characteristic of the DWT, it is not possible to obtain 
accurate motion vectors for ME using either the low-band or high-band signals in the 
DWT domain. 

 
Figure 8.6 Original signal and shifted version 

 
Figure 8.7 Wavelet domain representation 

 
So why does this happen? “When we analyse the Fourier spectrum of a signal, it is 
expected that the energy in each frequency bin is invariant to any shifts of the input 
in time or space. But when using the DWT to analyse signals - even though they 
have perfect reconstruction properties, they do not provide energy shift invariance 
separately at each level. The energy distribution between the various wavelet levels 
depends critically on the position of key features of the signal. Ideally we would like 
it to depend on just the features themselves. ” [31, section 2.3, some modifications] 
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Figure 8.8 illustrate this significant drawback with another example. In (a) we see 
the resulting signal, analysed with a 4-level DWT using Antonini (7,9)-tap filters 
assuming that the wavelet coefficients are computed at full input sampling rate. In 
practice, the samples are yielded as in (b) (1/16 of the sampling rate). If we time-
shift the input step, we obtain the samples shown in (c), these are the ones 
represented as circles in (a). If we compare the total energy of the samples in Figure 
8.8 (b) with the total energy of the samples in (c), we see that the energy variation 
is considerably larger.  
 

 
Figure 8.8 Step response of level-4 Antonini wavelet (wavelet domain representation) 
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Because of this shift dependence, caused by aliasing due to downsampling at each 
wavelet level, conventional DWTs are unlikely to give consistent results when used to 
detect key features in images, or to obtain accurate motion vectors for ME. 
 
Recently, there have been several successfully attempt to overcome the shift 
variance of DWT in motion estimation. In chapter 6.4 and 6.5 we took a glance at 
two shift invariant wavelet transforms, the DT CWT and the ODWT, which has been 
essential in this development. 

8.4 Motion-Compensated Temporal Filtering (MCTF) 
Girod identified that even if a three-dimensional transform is used to perform spatial 
and temporal compression in natural video sequences, motion compensation is an 
essential step for efficient decorrelation of the video information along the temporal 
axis [7 i Andreopoulous]. Moreover, without motion compensation, three-
dimensional transforms introduce visually disturbing ghosting artefacts in the low-
pass temporal subband [TAUBMAN-LIMAT]. The challenge therefore lies in finding a 
way to effectively exploit motion within the spatio-temporal transform. 
 
A number of pioneering works effectively incorporated motion compensated steps in 
the temporal transform [8] [9], leading to a class of algorithms that perform motion-
compensated temporal filtering (MCTF). MCTF is usually performed in the temporal 
domain prior to the spatial DWT, quantization and coding [8-11]. 
 

 
Figure 8.9 MCTF incorporated in a three-dimensional wavelet transform 
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9 Foundation 

9 Foundation 
We have implemented a video compression prototype founded on a DCT- and DWT-
based still-image compression application developed by four engineer students in a 
previous project. We have incorporated the DWT-based compression algorithms in 
our prototype, by tearing application apart, and reconstructing the interesting parts 
inside an adapted Java Media Framework API (JMF API 2.1.1). We have designed a 
highly extendable prototype considering the advantages and disadvantages of the 
research study presented in Part 2. We carefully planned a stepwise implementation 
progress, to help us make sure making the prototype extendable. Having mainly 
focused on doing a thorough design work and a literature study, the entire plan has 
not been implemented. However, this was never the intention. We wanted to make a 
foundation that could be utilized in future studies, both for our one interest and 
others. 

9.1 The Java Programming Language 
We have chosen to implement our prototype in the Java programming language. 
Java is not the obvious first choice when building a video CODEC, so in this part we 
try to explain our choice. The Java programming language has some evident 
strengths and drawbacks. One of its main features is platform independence [1], but 
the price is relatively slow execution [2]. Several projects at Agder University College 
using Java combined with wavelets for image processing experienced that this 
combination resulted in long execution time, including Geir Broms Fløystad, who 
worked with [15]. So when having to combine this with the high computational 
complexity of a video CODEC application, we where quite concerned about the result. 
 
Our initial choice when we started to plan this CODEC was to use C or C++, but a 
few reasons made us change our minds; Firstly, having some experience with an 
early version of an additional API for Java, Java Media Framework (JMF) from Sun 
[4], made us believe that this API might give us a headstart when building the 
different parts of the CODEC. A brief study confirmed that this API had gone trough 
major development the last couple of years [5, 6], and it seemed really interesting 
for our purpose. Secondly, our mentor, Per H. Hogstad, had access to several 
wavelet applications implemented in Java. Some of these applications were 
implemented by his students, and they could offer a variety of wavelet filters and 
useful functions. Among these applications was a still-image compression application 
using DCT and DWT, developed at Agder University College in 2001 by four engineer 
students [11]. This project achieved really good results, and we decided to take a 
closer look at it.  
 
So, considering these advantages we started leaning towards using Java. But we 
where still concerned for the performance of the CODEC. We continued our 
investigation and found that a common solution for high-performance JVMs (Java 
Virtual Machine) is to use dynamic translation or just-in-time (JIT) compilers. These 
generate machine code on the fly for a method if it been called enough times, and 
future calls to the method execute the machine code directly. We also found 
compilers which can compile Java source code directly to native machine code. As an 
example, GNU () has an ongoing project, GCJ (the GNU Compiler for the Java 
language), to develop a compiler for the Java programming language. It makes it 
possible to compile Java source code directly to native machine code [8]. 
Unfortunately, the GCJ runtime, libgcj, which among other provides the core class 
libraries, does not support all the Java APIs we have need for. In addition we also 
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feel it is too experimental for our project; we would not risk having the kinds of 
problems it could give us.  
 
Finally, we found that it is possible to make call to libraries written in another 
language inside Java, by declaring some Java methods to be native. This makes it 
possible to do ‘low-level performance hacks’ for more efficient coding. In 1997, Sun 
released the Java Native Interface (JNI), which is a standard for writing native 
methods in either C or C++. The main goal of JNI is portability in the sense that 
native methods written for one Java implementation should work with another Java 
implementation, without recompiling. [8] claim that JNI is very slow because 
everything is done indirectly using a table of functions to ensure JNI's portability. But 
studying JMF source code we found that encoding/decoding is done via native 
methods, which should indicate that it is fast enough for our purpose. 
  
Finding that there exist several solutions to improve Java’s ‘speed performance’; we 
decided to start programming in Java. 

9.2 Java Media Framework (JMF)  
It is obvious that in order to implement and test a video CODEC it is necessary to be 
able to open and play movie clips. This would certainly be a time-consuming task to 
implement from the start. From our early experience with JMF 1.1 API, we knew it 
enabled us to present movie clips and other time-based media in an easy way. But 
we had no idea of how much processing it allowed us to do on the media. Seem to 
remember that back in 1999, Sun were working on an extension of the framework, 
launching a beta version just around the time when finishing that previous work. We 
took a dive into the Java Media Framework API. 
 
The Java Media Framework (JMF) is an extension to the Java 2 APIs, and has to be 
installed separately <skriv om dette litt!> [6]. It was released by Sun in 199x, and 
made it possible to present multimedia in Java applications and applets. x years 
later, a major improvement was released, the JMF 2.0 API, which provides support 
for capturing and storing media data, controlling the type of processing that is 
performed during playback, and enables custom processing on media streams. [5] 
 
JMF is design so it can decide at runtime what code to use to handle a given format, 
multiplex scheme, and encoding. This is done by carefully parcelling out 
responsibility for format handling, demultiplexing, decoding, and rendering into 
different classes, then using reflection to discover what kinds of handlers are 
available. 

9.3 The Still-Image Compression Application 
In 2001 four engineer students at Agder University College developed a still-image 
compression application4 as part of their finishing project to complete a 3-year 
college program [11]. The aim of the project was to explore different still-image 
compression techniques.  
 

 
4 We have made an effort to explain the key aspects of the implementation of this application. This is 
because we for the time being re-use the DWT compression process (a future goal would be to enhance 
these according to our literature study), and therefore the concepts described here also holds for our 
prototype. In addition, since [11] is written in Norwegian and may be hard to acquire, we want to provide 
the necessary information for possible readers that do not speak Norwegian. 



9 Foundation 

The image CODEC was based on two different transforms; DCT (Discrete Cosine 
Transform) and DWT (Discrete Wavelet Transform). In addition to the transform 
algorithms, several other compression algorithms, including Traverse coding, RLE 
(Run Length Encoding), and Huffman, was implemented. Some conceptual class-
diagram constructed to get better understanding of the program was made and has 
been provided in Figure 9.2 and Figure 9.3.  
 
In this section we will take a brief walk-through of the processes and algorithms 
which are essential to us. As we are concentrating on wavelets in this thesis, we will 
only implement the DWT transform. Figure 9.1  shows a schematic representation of 
the encoding process. To decode an image compressed by this application, this 
process is reversed. In the still-image compression application, all the separate 
processes, except the DWT, are optional.  
 

 
Figure 9.1 DWT from file to file [11] 
 
Figure 9.4 is a conceptualized sequence diagram, showing the most important 
classes, methods and messages when the encoding process represented in Figure 
9.1 is executed. This process is started when the user click the ’Kompress’ button in 
the DWT-option dialog in the still-image application, making call to the 
DWTCodec.Compress(...) method. 

9.3.1 Converting colour space from RGB to YCbCr 
The conversion from RGB to YCbCr is done by going through every pixel in the 
image, and converting the three elements between R, G and B; and Y, Cb and Cr, by 
using the following equations: 
<sjekk at formlene er riktige, s. 79> 
From RGB to YcbCr: 
Y   = 0.301 * R + 0.586 * G + 0.113 * B 
Cb = -0.172 * R – 0.340f * G + 0.512 * B +128 
Cr  = 0.512f * R – 0.430 * G – 0.08 * B + 128 
 
From YcbCr to RGB: 
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R = Y+ 1.371 * (Cr -128) 
G = Y – 0.698 * (Cr -128) – 0.336f *(Cb-128) 
B = Y + 1.732 * (Cb-128) 
 
In the application, the colour space conversion is implemented in the static methods 
Codec.RGB2YCbCr and Codec.YCbCr2RGB. 
 



9 Foundation 

 
Figure 9.2 Conceptual Classdiagram of the still-image application 
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Figure 9.3 Conceptual Classdiagram of the still-image application 
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Figure 9.4 Sequence diagram: Compressing an image and writing to file 
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9.3.2 Transforming and quantizing the image 
The transformation is separable and uses a 1-D DWT, first one step for all the rows 
and then one step for all the columns. The function performing the actual DWT, 
DWTCodec.fdwt_2d(...), is based on the equations <xx> and <yy>, and uses 
periodic convolution, and padding with the second last value when transforming an 
odd number of values. The result is divided into four tables, containing the frequency 
bands LL, HL, LH and HH. The method, idwt_2d, which is performing the inverse 
transform joins these tables and removes any padding.  
<sett inn formlene på side 83> 
 
As seen in Figure 9.4 the call to DWTCodec.fdwt_2d(...) is executed from the 
DWTCodec.RecurCompStep(...) method. The main purpose of RecurCompStep is to 
make sure that the transformation is performed using the selected decomposition. 
The only decomposition implemented in this application, is ‘mallat’, seen in Figure 
9.5. The decomposition is represented by a class called ’Dekomp’, which contains a 
vector, with a ’DekompEntry’ for each subband. The ’DekompEntry’ class has to 
attributes, one containing the subband which is represented, and one relative 
quantization coefficient. It is the ’Dekomp’ class which is used to control the 
RecurCompStep. In addition, this class has a method for controlling how many levels 
to transform the subbands, and how the subbands should be quantified. 
 

 
Figure 9.5 Mallat decomposition – from JPEG2000 
 
After the image has been transformed, all the images coefficients are quantified by 
multiplying each coefficient by a quantizing factor, and then rounded to an integer. 
The quantizing factors can vary for each colour components, and can be set by the 
user. When decoding the image, all the coefficients are scaled with the same factors. 
The quantization and scaling are performed by the DWTCodec.Kvantiser(...) and 
DWTCodec.Scale(...) 
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9.3.3 Entropy encoding 
Three types of lossless coding are implemented in this application; Traverse coding 
using sign bit, RLE 8/16 and Huffman. 
 
After transformation the values are represented by integers (4 bytes), even though 
most values are small enough to be represented by one byte the largest values are 
not. In later processes, it is easier to deal with single bytes, so tables with integers 
are therefore converted to four times as large tables containing bytes. The usual way 
to do this, is to read one and one integer into four and four bytes, but since most 
values only uses one byte, a lot of them will have three consecutive zeroes followed 
by a non-zero value. 3 bytes is not enough to get significant profit from RLE. But in 
the traverse coding, which was developed by the programmers [11] by studying the 
data structure during the compression process, structures the values by first reading 
the least significant byte, then the second least significant, etc. Then at the end of 
the byte table, we get long sequences with consecutive zeros, only interrupted by 
values so large that they have to use the most significant bytes. For negative values 
a sign bit is used, because negative values are coded with twos complement (-1 is 
coded as FF FF FF FF). Not by using the most significant bit, as most usually, but by 
using the least significant bit to indicate negativity when sat to 1. 
 
The traverse coding is followed by RLE 8/16 (if it is selected by the user). This 
implementation uses 8 or 8/16 bit to store the sequences, and it is adjusted to this 
application, only compressing sequences of consecutive zeroes, because that is  
almost the only consecutive sequences that exists in our data. Zero is therefore used 
as escape character, so after a zero, a value telling how many subsequent zeroes 
there are. 
 
The last step in the encoding process is the Huffman coding. This implementation is 
quite similar to the one used in JPEG, and we will only briefly explain it. The Huffman 
coding is generated from the length of the codes. First we generate a frequency table 
for the data to be coded. Then the code lengths are calculated from the frequency 
table. The huffman codes are generated from these code lengths, and finally the data 
is coded with the generated huffman codes. 
 
The traverse and RLE coding are executed in the class ‘CompOutFile’, if selected by 
the user. The RLE is implemented by two wrappers, RLEOutputStream and 
RLEInputStream. The RLEOutputStream are wrapped around a Java OutputStream 
during the initialize of the CompOutFile, seen in Figure 9.4. The traverse coding are 
executed in CompOutFile.WriteTable(...). The Huffman coding is executed in 
CompOutFile.close(...), and all the methods regarding this can be found in the 
class ’HuffmanEn’. 

10 Prototype Design 
We have chosen a programming language, found a framework, and some quite 
important procedures for our CODEC, and hopefully this will give us the head start 
we need. But where shall we go from here? How do we handle audio? How do we 
structure our file format? How do we estimate motion? Before implementing our 
prototype we sat down and tried to structure questions, open issues, thoughts and 
ideas. In this chapter we present some of the plans, design models, and diagrams 
developed during this stage. 
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We start by looking at the goal of this prototype; what are we supposed to 
accomplish? In our thesis definition we state that if time permits, we should develop 
a software video CODEC prototype based on wavelet, and that this prototype should 
consider advantages and disadvantages of our literature study. The definition gives 
room for different approaches, so we decide to divide the programming task into 
several stages, where each stage is a partial goal and joint together they make an 
adequate video CODEC application. After sketching, modelling, remodelling, and re-
remodelling, our design phase results in The Programming Progression Plan. Even 
though it is our goal, we do not think it is realistic to believe that we can implement 
this entire plan; we probably should be satisfied if we are able to develop the intra-
frame CODEC in step a) to f). The purpose of this list is to make a structured, 
extendable application, where the different algorithms are easy to improve or 
exchange. In addition, after each step the functionality of the prototype is enhanced, 
we can stop programming, having a half-finished application, but we will still have 
something that works. This is a quite important quality for us since the <priority> of 
the prototype is “if time permits”. 
 
To handle digital video, our prototype has to know how to handle the following: 
• Format — how the contents are arranged in a file or network stream.  
• Multiplexing — how multiple media streams are put mixed together into a single 

byte-stream. While it might be convenient to write all the video data to a file and 
then all the audio, the resulting file could be difficult or impossible to play at a 
consistent speed, so you "multiplex," or interleave, the streams together, putting 
the pieces of each stream that represent the same time close to one another.  

• Encoding — how the media is encoded and compressed.  
• Rendering — how to present the decoded/decompressed data to the screen, 

speakers, etc. 
 
We use the RGB space as output to the renderer, so JMF can handle the rendering, 
but we have to specify the MDWT format and implement a multiplexer, demultiplexer 
(parser), encoder, and decoder that can handle this format. 

10.1  A coarse CODEC sketch 
We name the CODECs: 
• Intra-frame CODEC: MDWT – Motion Discrete Wavelet Transform 
• Inter-frame CODEC: MEWT – Motion Estimation Wavelet Transform 
Both CODECs will use the same file format, but we give them different file 
extensions, MDWT will have *.mdw, and MEWT have *.mew. <Er det nødvendig?> 
 
We start by making a course sketch, as seen in  
Figure 10.1, to figure out how to handle different type of input and output. If the 
input is a file with extension *.mdw or *.mew the prototype will decode it with the 
appropriate decoder and render it to the screen. If the input is of another file type or 
captured from e.g. a web camera, the user have to decide what compression scheme 
to use and if it shall be stored to file or rendered to screen. We also want to support 
rendering files and capture direct to screen using JMF player built-in functionality. 
This feature will enable the user to play video<media hvis audio kan fungere>files of 
the file formats supported by JMF, like an ordinary media player, or to show capture 
from a web camera. We will refine the sketch in the following sections;  MDWT 
(Motion Discrete Wavelet Transform) CODEC and  MEWT (Motion Estimation Wavelet 
Transform) CODEC. 
 



10 Prototype Design 

 
 
Figure 10.1 Coarse sketch of how to handle different type of input and output 

10.2  Layout and User Interaction 
After designing some basic functionality for the prototype, we sketch the user 
interaction for compressing, displaying, or storing digital media. A UML Use Case 
inspired diagram is seen in Figure 10.2. 
 

 
Figure 10.2 User interaction for compressing, displaying, and storing a movie clip 
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To solve the encoding options necessary, we make several layout sketches by using 
the graphic interface in VB (Visual Basic) editor; the last version is seen in Figure 
10.3. We choose to put all options in one modal dialog window, and enable/disable 
them based on earlier selections.  
Table 10.1 gives an overview over what is enabled/disabled and when. For more 
information about the different options, see section 10.4, 10.5, and the User Guide. 
All encoding options for the DWT and the entropy encoding are derived from the still 
image compression application. 
 

  
Figure 10.3 Layout sketch for compression options 
 
Table 10.1 Compression options 
Category Action command Enabled Enables 
 OK/Cancel Always  
Destination, default Render to screen Always All other options are 

disabled 
Destination Compress and render to 

screen 
Always CODEC and DWT 

options are always 
enabled 

Destination Compress and store to file Always CODEC and DWT 
options are always 
enabled 

CODEC MDWT (intra-frame) Depending on destination MEC options are 
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disabled  
CODEC, default MEWT (with MEC) Depending on destination MEC options are 

enabled 
MEC algorithm Real Motion Detection Depending on CODEC  
MEC algorithm, default MEC in Wavelet Domain Depending on CODEC  
MEC agorithm, default 
search algorithm depends 
on chosen MEC algorithm  

Choose search algorithm Depending on CODEC. 
Alternatives in the first 
combo box depend on 
the selected MEC 
algorithm. 

Alternatives in second 
combo box depends 
on selection in the first 
combo box 

DWT and Encoding, 
Colormodel, default RGB 

Grayscale, RGB, YCrCb Depending on destination Quantising textfields 
and labels 

DWT and Encoding, 
Quantising, 
Default: 16R, 32G, 32B 

 Depending on destination 
and colormodel 

 

DWT and Encoding, 
Encoding options, all are 
default checked 

Traverse, RLE/RLE16 and 
Huffman 

Depending on destination We do not support 
optional choices for 
Huffman. Huffman is 
always checked and 
disabled. 

 
The compression option dialog window is the only layout design we do for our 
prototype. To display and play the video, we decide to use standard JMF control 
panel. For the superior GUI-framework we want to use a MDI <(multiple...)> frame, 
which can contain several child frames and a standard menu (we develop the 
MDIframe derived from [11]), and we choose to use the systems look and feel. Look 
and feel is how Java defines the appearance of an application, like if you run a 
Windows OS (operating system) your application will look like a standard Windows 
applications, and if you run on Sun Solaris you application will look like a Sun Solaris 
application.  
Table 10.2 contains the menu items: 
 
Table 10.2 Menu Items 
File Menu  View Menu  Window Menu  
Open Image Derived from 

[11] 
Image Options Derived from 

[11] 
Arrange All Derived from 

[11] 
Open Video Select a video 

file. The 
compression 
option dialog is 
displayed. 

Video Options Select some 
options 
regarding the 
video 
compression, 
e.g to show a 
debug/message 
window 

Split Derived from 
[11] 

Capture Capture video 
from a web 
camera (and 
audio from 
microphone). 
The compression 
option dialog is 
displayed 

    

Exit Derived from 
[11] 

    

10.3  File Format 
We wanted to make the file format as easy as possible. We studied the QUICKTIME 
[13] and AVI [14] to find out how it can be done. 
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10.4  MDWT (Motion Discrete Wavelet Transform) CODEC  
The MDWT CODEC codes a video sequence as a series of DWT5 images, each 
corresponding to one frame of video (i.e. a series of intra-coded frames). No attempt 
is made to exploit the inherent temporal redundancy in the moving video sequence 
and so the compression performance will be poor compared with inter-frame 
CODECs. The reason why we design and implement this CODEC is to get the 
framework up and running. All the parts (file opening, multiplexer, encoder, decoder, 
file writer, etc.) implemented in this stages, are with some adjustments reusable in 
an inter-frame CODEC. In Figure 10.4 we give a coarse overview over the processes 
in the MDWT CODEC.  
 

 
Figure 10.4 Coarse overview of the processes in the MDWT CODEC 
 
Figure 10.5 gives a bit more details of what happens in the encoder/decoder. All the 
compression algorithms used in this figure are the same as developed in [11]. We 
plan to separate the “pieces” of the still image application, and set them together in 
our architecture, using the JMF 2.1.1. 
 
                                          
5 DWT is the fileformat used in [11] 
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Figure 10.5 Overview of the intra-frame encoder and decoder  
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Figure 10.6 Sequence diagram: Preparing the Processor for playback 
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10.5  MEWT (Motion Estimation Wavelet Transform) CODEC 
The MEWT CODEC codes a video sequence as a series of DWT images, each 
corresponding to one frame of video (i.e. a series of intra-coded frames). No attempt 
is made to exploit the inherent temporal redundancy in the moving video sequence 
and so the compression performance will be poor compared with inter-frame 
CODECs. The reason why we design and implement this CODEC is to get the 
framework up and running. All the parts (file opening, multiplexer, encoder, decoder, 
file writer, etc.) implemented in this stages, are with some adjustments reusable in 
an inter-frame CODEC. 

10.6 The Programming Progression Plan 
We want to develop our prototype step-by-step. Each stage adds some functionality 
to the prototype and joint together all steps make an adequate video CODEC. The 
purpose of this plan is to make a structured and extendable prototype. 
 

a) Implement a UI (User Interface) framework based on JMF, including methods 
for opening and playing movie clips 

b) Extend this framework and get access to each frame in the playing movie clip 
c) Implement the intra-frame encoder and decoder, based on the compression 

algorithms from [11]. The result should be rendered directly to screen, so we 
do not have to handle demultiplexing, multiplexing, file writing, and file 
format 

d) Implement a file format, and handle storing to a file 
e) Implement handling for demultiplexing and multiplexing 
f) Implement UI for selecting compression options. Clean up the code and get 

rid of all hard coded variables/constants 
 
By this stage we hope to have a working intra-frame CODEC. In the next steps we 
want to improve the prototype by implementing an inter-frame CODEC. The main 
difference between an intra- and inter-frame CODEC is that in an inter-frame CODEC 
we do temporal redundant removal. In the first attempt to remove temporal 
redundant data we implement the simplest form of motion estimation. 
 

g) Implement the reusable parts of the intra-frame CODEC for the inter-frame 
CODEC (we want to keep the intra-frame CODEC). 

h) Extend the encoder; Implement an algorithm to find a residual frame by 
detecting real motion, for now we use the compression algorithms from [11] 
to encode the residual frame 

i) Extend the decoder; Implement an algorithm to calculate the current frame 
from a reference frame and a residual frame 

 
We should have a working inter-frame CODEC, but the MEC algorithm is in its 
simplest form. Now is the time to start working on a real MEC algorithm, and take 
into consideration advantages and disadvantages of our literature study.  
 

j) Improve the motion detection algorithm by <using the original frame as the 
reference frame every xth frame to reduce problem with drifting> 

k) Implement a loop to choose whether to use intra- or inter-coded frame from a 
calculated SNR (Signal-to-Noise-ratio) value 
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l) Implement a real Motion Estimation and Compensation (MEC) algorithm. This 
MEC algorithm should take place after the DWT has been performed (so-
called in-band prediction or MEC in the wavelet domain) 

 
When this work is done, we can try to improve the transform and encoding parts of 
the CODEC according to the literature study. 
 

m) Implement biorthogonal wavelet filters to use for DWT 
n) Implement static Huffman tables, instead of generating them during encoding 
o) Implement an improved DWT based on SPITH or SPECK 
p) Improve the entropy encoding; traverse, RLE and Huffman. <Motion vectors, 

residual frame and reference (intra) frame> should be encoded differently. 

11 Implementation and Development 
The current implementation contains a framework with support for opening and 
playing video sequences of those content types supported by the JMF API, including 
quicktime (*.mov) and msvideo (*.avi). Capturing video clips from a web camera is 
also supported, the captured sequence can either be rendered direct to screen, or 
stored to a ‘quicktime’ or ‘avi’ file. Our implementation does not currently support 
encoding the captured video directly with our encoder; it has to be intermediately 
stored to a file. We have implemented a so-called intra-frame CODEC (no attempt is 
done to remove temporal redundancy), the MDWT (Motion DWT) CODEC. It includes 
a MDWT encoder and decoder; this is where the DWT compression algorithms have 
been exploited. In addition, we have implemented a MDWT file format and a 
multiplexer/demultiplexer to handle writing and reading this format. Initially we 
implemented support for sound tracks in this multiplexer/demultiplexer, but this was 
removed in order to more correctly estimate the real compression performance of 
our CODEC. 
 
Experimental testing has showed that our MDWT CODEC can yield a compression 
rate of 13:1 in a small resolution video clip, with good visual quality on single 
frames. The major problem of our CODEC is as initially concerned, the 
computationally complexity. Small-resolution video becomes very jerky, while larger-
resolution video clips are considerably worse, maybe able to show one frames pr 
second. This is due to the combination of the computationally complexity of the 
implemented DWT and the CODEC, the ‘slow nature’ of the Java programming 
language, and most-likely and inefficient method used to draw and represent the 
frames. 
 
Figure 10.6 is a sequence diagram, showing the most important classes, methods 
and messages when a user activates the menu item: File -> Open Video... The Menu 
item File -> Capture... is almost the same, the main difference is that instead of 
creating a FileChooser and selecting a file, the user must select capture device and 
some capture options. The sequence diagram mainly shows how the processor is 
being prepared for playback. (The processor has to reach a state (be prefetched and 
realized) before it can be played). Sequences during playback, file writing and 
building the GUI-frame is not included in this diagram. 
 
So what happens after the processor is ready and the video clip can be played? After 
playback of the media is started (e.g. by a user clicking the play button), the 
following takes place (conceptual description, se også Figure 10.4 and <i JMF 
section>): 



12 User Guide 

• The DataSource reads a chunk of data (a frame) from a media source 
• The MediaProcessor separates the tracks and get information from the data by 

using an appropriate Multiplexer plug-in (the Multiplexer has been selected by a 
handler (TrackControl), using a ContentDescriptor). The Multiplexer receives a 
frame-worth of data and separates the track, frame by frame. 

• The frame (of the videoTrack) is decoded/encoded using the appropriate CODEC 
(the CODEC-plug-in was set in setCodecChain) 

The videoTrack is rendered using a RENDER plug-in, selected by a handler, using the 
output format of the CODEC, or if the user has chosen to store to a file, the data is 
demultiplexed and written to file using a DataSink (chosen by the Manager using the 
DataSource (a Processor can be a DataSource...)). 

12 User Guide 
In this part we will give a brief introduction on how to use the MediaCODEC 
application. 
 
When you start the program, you should see an empty MDI () window with a menu 
containing File, View, and Window, as in  
. 
 

 
Figure 12.1 MDI window with menu 
 

12.1  The File Menu 
Open Image... 

Displays a selected image and allow you to compress it with the algorithms 
developed in [11]. This is the original image compression application 
presented in section 9.3, we have not done any changes that affect this 
compression process (and that also explain why most of the prompts for this 
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menu item are in Norwegian). If you like information beyond what we have 
provided, take a look at [11]. 
 
When you choose “Open Image” a standard “open file” dialog box is 
displayed.  
• Select the image you want to compress and click Open. Now you should 

see the selected image.  
• Click the “Compress” button in the toolbar below the image, marked with 

red in Figure 12.2. A dialog window is displayed. 
• Choose your compression scheme, and mark your options  
• If you like to compress the image right away click the “Komprimer” 

button, marked with green in Figure 12.2. Otherwise you can click Ok, and 
your options will be saved for later.  

• When the “Komprimer” button in the dialog window is clicked the 
compression process is carried out, and finally the compressed image and 
an information window is displayed. 

 

 
Figure 12.2 Menu item: File->Open Image... 

 
Open Video... 

Displays or stores a selected video clip. See section 12.2  The Open Video 
Menu Item for further information. 

 
Capture... 
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Capturing video clips from a web camera is also supported, the captured 
sequence can either be rendered direct to screen, or stored to a ‘quicktime’ or 
‘avi’ file (note that the MDWT choice in the dialog box can not be used). Our 
implementation does not currently support encoding the captured video 
directly with our encoder; it has to be intermediately stored to a file. 
Detecting  capture device can be done as shown in Figure 12.3. 
 

 
Figure 12.3 JMF Registry Editor: Detect Capture Devices 

 
JMF Registry Editor... 

Opens the JMF Registry Editor, which is an application developed by Sun6 
which can be used to configure JMF. We included the JMF Registry Editor in 
our application for convenience during implementation and testing. If you 
want a user guide on JMF Registry Editor or download the source code, see 
[12]. 

 
Exit 

Closes the MDI window and all its containing frames 

12.2  The Open Video Menu Item 
When you choose “Open Video” a standard “open file” dialog box is displayed, as 
seen in Figure 12.4. In the “Files of type:” drop down list you can see the file types 
supported by our prototype7. The file type MotionDWT, with the extension “.mdw”, is 
the format which uses the compression scheme developed in this prototype. 

                                          
6 This menu item request that jmapps library are in the classpath, it was included in the JMF version we 
installed, jmf-2_1_1e-windows-i586.exe. (It was a part of jmf.jar) 
7 The file types supported are the same as supported by JMF, and all restrictions regarding file type 
support in JMF also applies to our prototype. 
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Figure 12.4 Open file dialog 
 
• Select the video clip you want to process and click Open.  
• If you selected a file with the extension “*.mdw”, you should see a window 

containing the video clip, as in Figure 12.5. Click the  button to start the video 
clip. 

 

 
Figure 12.5 Video panel with presentation controls 

 
• If you selected another video file type, a dialog window, like Figure 12.6, is 

displayed. 
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Figure 12.6 Video encoding options dialog 
 

• If you select “Render to screen” as the destination, the file is played using the 
compression scheme specified in the format. <If the file is raw> 

 
• If you select “Export to File” as the destination, you are now able to set options 

which will be used during compression. 
o Colour model 
o Quantizising 
o Filter 
o Decomposition 
o Traverse 
o RLE/RLE16 

 
• When you have marked all your options, click OK to start the process 
 
• Be prepared, this can take a while, a message box appears when the process is 

finished. 

12.3  The View Menu 
Image Options...   

Display options for the compressed still image, belongs to the Image 
Compression program. This menu item has no effect on video clips. 

12.4  The Window Menu 
Arrange All 

Arranges all child-windows, which are not minimized, from top to bottom 
inside the MDIFrame 

 
Split 

Splits the space inside the MDIFrame evenly among all open (not minimized) 
child-windows 
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Error! Reference source not found. Error! Reference source not found. 

13 Experimental Testing and Comparisons 

13.1  Testing of Image- and Video CODEC algorithms in VcDemo 
Here we will show a visual (subjective) and numerical (objective) comparison of 
SPIHT, EZW, JPEG2000 and Baseline JPEG, all with a resolution level of 0.5 bits per 
pixel (bpp), or a compression ratio of 48:1. SPIHT, EZW and JPEG2000 are all 
compressed with 6 decomposition levels. 
 

 
Figure 13.1 Original (256x256) 
 

  
Figure 13.2 SPIHT 
 

 
Figure 13.3 EZW 
 

 
Figure 13.4 JPEG2000  
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Figure 13.5 JPEG 
 
We used a software image compression learning tool called VcDemo, developed by 
the Information and Communication Theory Group at Delft University of Technology, 
and the software including test images can be downloaded from [1]. This program is 
not been optimized for ultimately comparing of PSNR, visual, or encoding/decoding 
time performance, but it gives a good indication of how different compression 
aspects affect an image. This experimentation is therefore intended to illustrate the 
visual and numerical similarity between the image coders mentioned. We will present 
the values we got to show how little the PSNR values differ between each image 
coder, and given that this is not an optimized comparison test, we have only 
compressed the Lena image, and the results we got are shown in Figure 13.2. 
 
Table 13.1 PSNR Performance at 0.5 bpp and 48:1 compression ratio 

 
 
This shows that JPEG2000 and SPIHT are very similar in that of visual quality and 
PSNR values, and as expected, the visual quality of EZW is hardly noticeable, but 
slightly inferior compared to SPIHT at this bit rate. JPEG performs the worst, but 
even at 0.5 (bpp) it still shows quite good visual quality. Usually JPEG2000 performs 
slightly better than SPIHT, and the reason for why it does not this time is probably 
due to the software implementation of the algorithm, and we believe that not all of 
the quality enhancing mechanisms in the JPEG2000 standard is implemented here. 
 
We have also used VcDemo to provide an illustration of a motion estimation of a 
video clip. Here we show one frame of the “Carphone” video clip. 
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a) Current frame   b) Motion Compensated Prediction 

   
 
c) Frame Difference   d) Motion Compensated Frame Difference 

   
 
Figure a) is the current frame. 
 
Figure b) is a motion compensated prediction frame, which is how the encoder thinks 
the next frame will look like. 
 
Figure c) is the difference between the current and the previous frame, and we 
clearly see that this frame has more energy or image data in it than figure d) 
 
Figure d) is the difference between a motion compensated frame and the current 
frame, and the better the encoder estimates the next frame, the less energy will the 
motion compensated frame difference consist of. This frame can be transferred 
instead of the original frame, or the frame difference to save bandwidth and 
transmission time. 

13.2  Comparison of Phase-Correlated and Block-based Motion 
Estimation 

Phase-correlation ME is very computationally efficient and it produces much 
smoother motion field with low entropy than the BM method does. Phase-correlation 
works better than the block-based method in the case of large scale translational 
motion, while BM is more suitable for predicting regular and small scale motion and 
multiple-object movement. 
 
It is also found that the block size greatly affects the ME performance. The blocks 
should be large enough to group pixels with similar motion, but should be small 
enough to separate pixels with different motion and multiple-object movement. 
[42,71] 
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14 Conclusion 
Even though wavelet-based video compression has been an area of research for 
more than a decade, it has been considered complex and inefficient until recently.  
 
During our thorough investigation of existing research work we have found that by 
using a lifting-based three-dimensional wavelet transform with motion compensated 
temporal filtering; effective and highly scalable coding can be achieved, while 
additionally minimizing the well-known problem with visually disturbing ghosting 
artifacts in the low-pass band. Further, when combining this technique with a 
complex motion model, like for example a deformable triangle mesh, improved PSNR 
performance and visual quality can be gained.  
 
If performing motion compensated temporal filtering in the wavelet domain, by using 
a shift-invariant wavelet transform, it additionally permits the independent temporal 
filtering of each resolution of the input signal. This enables many potential 
developments for multi-resolution decoding and can be a viable approach for fully 
scalable video compression.  
 
It has also been found, that coding efficiency of both spatial-domain and wavelet-
band motion compensated temporal filtering can be improved by using an optimized 
multihypothesis motion estimation algorithm. 
 
Further combination with other type of optimised algorithms, like improved error 
resilience, can be done to improve an even better system, but it is important to 
consider the trade-off between computational complexity and compression 
performance. 
 
Experimental testing in several independent research work has shown that systems 
employing shift invariant MCTF for many sequences is comparable or superior in 
terms of mean PSNR to the highly-optimized DCT-based MPEG-4 AVC, over a large 
range of bit-rates. While at the same time, offer the advantage of fully-embedded 
coding. 
 
It is difficult to give a single conclusion whether wavelet-transforms are ready to 
replace the DCT in video CODECs, but what we can say is that from our point of 
view, it seems that the fundamental problem with wavelet-based temporal removal 
while obtaining the properties of multiresolution structure, has been solved, and that 
wavelet-based video CODECs now can compete with DCT-based video CODERS. 
 
Since scalable representations are important for efficient utilization of limited channel 
capacity, wavelet-based video CODERs has applications in many areas including 
simulcast, videoconferencing and remote video browsing. 

14.1 Further Development of the Prototype 
The CODEC is implemented in its most primitive form, and has a lot of potential for 
further development.  
 
Foremost we would strongly emphasize to improve the efficiency of the video 
CODEC, there is several ways to attack this problem; the most interesting seen from 
a wavelet-perspective is to improve the implementation of the DWT transform using 
a lifting based scheme, but a faster and even more effective computational saving 
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could be gained by changing the Huffman coding algorithm to uses pre-generated 
statistic tables. We would also strongly suggest implementing the actual CODEC 
classes in C++ and using native interfaces, like the SUN’s JMF API usually does for 
its incorporated VIDEO CODECs. When gaining an acceptable computationally 
efficiency, we would suggest to continue to develop the proposed programming plan 
in section 10.6 in order to improve the compression efficiency. 
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