

A Real Time Operating System

for embedded platforms

by

Torstein Wroldsen
Ståle Tveitane

Masters Thesis in
Information and Communication Technology

Agder University College
Faculty of Engineering and Science

Grimstad, May 2004

Summary

SDL (Specification and Description Language) is today widely used for
description and development of complex systems. One of the major benefits of
SDL is the possibility to graphically describe a complex system, as well as the
capability to analyze the system before implementation. This thesis evaluates
SDL as a formal description language for use in an embedded platform.
To be able to map the properties and behaviour of an SDL system into a
programming language, a Real Time Operating System (RTOS) must be used. We
will evaluate all properties of SDL to get a overview of which properties can be
mapped to a programming language, which properties can be omitted, and which
properties isn’t possible to map to a programming language.
Further, well evaluate what properties of an RTOS are essentially for the
implementation of an SDL system.
Several RTOS already exists on the market today. Some are specifically
developed with mapping between SDL and ANSI C as the main task.
Our target is the Atmel AVR 8 bit microcontroller. A microcontroller built on the
Harvard architecture (separate memories and buses for program and data).

Through this master thesis we have discovered the shortcomings of several
RTOS. Due to this, we have developed our own RTOS, SDL REFLEX,
specifically designed to our needs and with the AVR microcontroller as target.

Preface

This thesis was written for Agder University College, Faculty of Engineering and
Science and it is a part of a “Norwegian master grad”. The work has been carried
out in the period January 2004 and May 2004.
We would like to thank our supervisor, Paul Bjørn Andersen at Agder Univeristy
College for valuable help and inspiration.

A Real Time Operating System for embedded platforms I

Table of content

1. Introduction... 1

1.1 Background... 1
1.2 Thesis Definition... 2

2. Formal Description language... 3
2.1 Object models ... 3
2.2 Basic approaches: structural, behavioural and translative. 4

2.2.1 Structural approach. .. 5
2.2.2 Behavioural approach. .. 6
2.2.3 Translative approach... 7
2.2.4 Comparison between the approaches.. 8

2.3 UML, a short description .. 9
2.4 SDL - The Nature of Real Time Applications .. 9
2.5 SDL limitations... 11

2.5.1 Introduction... 11
3. Introduction to real time operating systems... 13

3.1 General.. 13
3.2 Real-time concepts.. 14

3.2.1 Triggering the system ... 14
3.2.2 Foreground background systems. ... 14
3.2.3 Process synchronization.. 15

3.2.3.1 Mutual exclusion... 15
3.2.3.2 Disabling interrupts... 15
3.2.3.3 Semaphore... 16
3.2.3.4 Messaging ... 17

3.2.4 Resource.. 17
3.2.4.1 Shared resources ... 17
3.2.4.2 Reentrant functions ... 18

3.2.5 Multitasking .. 19
3.2.5.1 Tasks state... 20
3.2.5.2 Context Switch.. 21
3.2.5.3 Micro kernel.. 21
3.2.5.4 Non-Preemptive micro kernel... 22
3.2.5.5 Preemptive micro kernel ... 22

3.2.6 Deadlock ... 23
3.2.7 Scheduler... 23
3.2.8 Task priority.. 23

3.2.8.1 Static priorities .. 23
3.2.8.2 Dynamic priorities .. 24
3.2.8.3 Assigning task priorities ... 24

3.2.9 Scheduling algorithms .. 26
3.2.9.1 First come, first served (FCFS)... 26
3.2.9.2 Shortest job first (SJF) .. 26
3.2.9.3 Priority .. 26
3.2.9.4 Round robin (RR) ... 27

A Real Time Operating System for embedded platforms II

3.2.9.5 Multilevel queue ... 27
3.2.9.6 Multilevel feedback .. 28

4. Essential RTOS properties to describe SDL systems .. 29
4.1 Introduction – Simplified SDL ... 29
4.2 Process states and transitions .. 29
4.3 Signals and queues.. 29
4.4 Timing... 30
4.5 Triggers & transition elements.. 30

5. Review and analysis of some existing RTOS .. 31
5.1 OSE Epsilon for AVR... 31

5.1.1 Properties of OSE ... 31
5.1.2 Shortcomings of OSE ... 32

5.2 PR_RTX.. 33
5.2.1 Properties of PR_RTX .. 33
5.2.2 Shortcomings of PR_RTX .. 35

5.3 C Micro ... 36
5.3.1 Properties of C Micro.. 36
5.3.2 Shortcomings of C Micro.. 37

6. Design consideration for the SDL REFLEX RTOS kernel................................. 38
6.1 Introduction – simple and unambiguous... 38
6.2 Optimization ... 38
6.3 Critical stack ... 39
6.4 Decision of programming language.. 40

6.4.1 Decision factors .. 40
6.4.2 High-level language advantages ... 40
6.4.3 High-level language disadvantages... 41

6.5 Kernel Implementation ... 42
7. Functional description of the SDL REFLEX microkernel 43

7.1 Introduction... 43
7.2 Overview... 43
7.3 Most prominent kernel features .. 44

7.3.1 CREATE... 44
7.3.2 INPUT... 46
7.3.3 SIGNAL.. 47
7.3.4 OUTPUT... 48
7.3.5 TIME & TIMERS... 49

7.3.5.1 NEW_TIMER... 50
7.3.5.2 SET ... 50
7.3.5.3 RESET .. 50
7.3.5.4 ACTIVE.. 51

7.3.6 STOP... 51
7.3.7 SAVE .. 52
7.3.8 START.. 53
7.3.9 SELF ... 53
7.3.10 SENDER... 53
7.3.11 PARENT... 54

A Real Time Operating System for embedded platforms III

7.3.12 OFFSPRING... 54
7.4 Additional SDL REFLEX system calls .. 55

7.4.1 WAIT_SIGNAL ... 55
7.4.2 GET_SIGNAL_DATA... 56

7.5 Compatibility between specification and implementation................................ 56
7.5.1 Timing constraints .. 57

7.6 Omitted SDL properties.. 58
7.6.1 Behaviour.. 58

7.6.1.1 Imported / Exported .. 58
7.6.1.2 Service... 58
7.6.1.3 Continuous signal.. 59
7.6.1.4 Enabling condition .. 60
7.6.1.5 Spontaneous transitions .. 62
7.6.1.6 View.. 63
7.6.1.7 Optional transition string .. 63

7.6.2 System Structure ... 63
7.6.3 Communication... 63
7.6.4 Constructs ... 64

7.7 Data Types .. 65
7.7.1 Predefined data.. 65

7.8 Global time.. 66
8. Discussion... 67

8.1 Introduction... 67
8.2 Formal descriptive languages ... 68
8.3 SDL... 68
8.4 Real time properties .. 69
8.5 Pitfalls ... 70
8.6 Prototype ... 71
8.7 Future Work .. 71

9. Conclusion ... 72
10. Bibliography .. 73
11. Appendix.. 76

11.1 Users reference guide for SDL REFLEX. .. 76
11.2 Test case:... 87

11.2.1 Lerret styring... 87
11.2.2 Tappesystem ... 87

11.3 SDL REFLEX source code.. 87
11.4 AVR datasheets... 87
11.5 WinAVR ... 87
11.6 AVR studio 4.03 ... 87
11.7 Plugins for PN2... 87

11.7.1 SDL Reflex syntax highlight .. 87
11.7.2 Custom Tools .. 87

11.8 Sample Makfiles ... 87
11.9 GPL Gnu Public License policies ... 87
11.10 Device drivers for the “HiA Trainer” ... 87

A Real Time Operating System for embedded platforms IV

11.11 SDL REFLEX – Users Reference Guide.. 87

A Real Time Operating System for embedded platforms V

A Real Time Operating System for embedded platforms 1

1. Introduction

1.1 Background

From the early stage of the computers until now, software designers have
experienced a tremendous acceleration regarding development time and language
complexity for the different programming language.
In today’s competitive development environment, organizations are struggling to
deliver more complex systems in less time and with fewer staff. For developers
this has serious consequences; it increases their responsibility to design and
deliver the highest quality systems as efficient as possible. In this climate, many
developers find that adopting a more visual, automated and reliable development
process – model-driven development – can help.
With the rising complexity, and the importance of rapid development, designers
tend to use software automation tools. However, design automation in general
needs a formal system description to capture the functional and non-functional
requirements. Model-based code generation produces application source code
automatically from graphical models of system behaviour or architecture.
Development tools are moving to model-based development to raise the level of
abstraction at which the developers can work.
The fast-paced and competitive world of embedded systems technology forces
manufactures to reduce time to market. Object-oriented (OO) methods and tools
can improve productivity, quality, and reuse. Capabilities for generating code
from object models offer additional help for keeping pace.
OO methods help developers analyze and understand a system, but the bottleneck
of analyzes and design has been the transition to code. Without the automatic
code generation, the benefit of object modeling seldom live thought the entire
products life cycle. Developers pressed on time to marked, or deadlines for
upgrade as well, tend to make changes directly to the source code, resulting in out
of date models. Generating code from object models still retains it usefulness.
Model-based code generation continues a long term trend in development tools.
The abstraction of the languages has increased from assembly to high-level
languages up to graphical models. The abstraction has moved from the system
solution space toward the application problem space. The reason for this trend is
the demand for increased productivity, the need for constructing larger
applications and last but not least understanding complex systems. The enduring
nature of these needs suggest that model based code generation is inevitable.

A Real Time Operating System for embedded platforms 2

1.2 Thesis Definition

The thesis is closely related to the current research and development of embedded
platforms at HiA, Grimstad. The use of formal description languages for
development and documentation of applications is one of the main focuses for
using fast prototyping software. At present, real time operating systems for
description of state machine behaviour and state transition exist for several
different embedded systems.
The title for this thesis is “A Real Time Operating System for embedded
platforms”.

The final definition of the project is:

• Analyze which properties a Real Time Operating System (RTOS), should have to

be well suited for implementing systems described in a formal language such as
SDL on an embedded platform.

• Explore commonly used RTOS, and analyze their properties.
• Design and implement an RTOS for the Atmel AVR microcontroller family with

properties as found in the above research.
• If time permits, use this RTOS in a test case on HiA’s recently developed Lego™

training kit.

A Real Time Operating System for embedded platforms 3

2. Formal Description language

Today the developers of embedded systems are exposed to a fast-paced
competitive arena. The result of this exposure is a demand for reduced time-to
market. One way of achieving better and faster results is to use formal description
languages. Several different languages exist such as Unified Modeling Language
(UML), Model Driven Architecture (MDA), Component Based Development
(CBD), Use Case Maps, Message Sequence Chart (MSCs) and Specification and
Description Language (SDL). The common thing with all of them is that they
support modeling concepts.
UML is today de-facto standard for specification, construction and documentation
of software systems. UML is an open standard developed by Object Management
Group (OMG). In general UML is a language for constructing framework and
classes for a system.
SDL originated from the telecom industry as a tool for unambiguous specification
and description of the behaviour of telecommunications systems. Every concept
and construct in SDL has a precise meaning and can be executed.
Some of the benefits using a description language include:

• System is divided into modules. Gives easier overview of a complex
system.

• The possibility to analyze a module or several modules in the system
before implementation.

• Testing interaction within the system can be done before implementation.

2.1 Object models

Object-oriented (OO) methods and tools can improve productivity, quality, and
reuse. Automatic code generation based on graphical models is one of the
approaches used to achieve the above mentioned demands. Model-based code
generation produces application source code automatically from graphical models
of system behaviour or architecture. Development tools are moving towards
model-based development to raise the level of abstraction at which developers can
work.

A Real Time Operating System for embedded platforms 4

2.2 Basic approaches: structural, behavioural and translative.

These three approaches seem to cover the today’s available methods and tools. As
illustrated in figure 1, the “next” approach incorporates the properties of the
previous approach. The first approach, structural approach, generates the
framework code for the object structure of a system. Behavioural approach model
the behaviour of a system sufficiently to enable generation of code for the system
functionality. The most recent approach also adds an architecture model that
enables user control of all generated code.
All the code generating model-based tools have some in common, such as:

• Regardless of which approach is used, they are all associated with at least
one method of analysis and design

• Commercial tools on the market support the approaches.
• All translation tools take as input the models of a system's static object

structure, which are developed using the OO method supported by the tool
• All tools translate these models into corresponding code for system

objects, providing a framework to implement for communication and
behaviour code

• The synchronization of code and model are supported by most all tools.
• State machines are the common way of describing behaviour, whether or

not code generation is supported.
• Real-time embedded applications have been developed by all approaches.

There are also some differences in the properties of the approaches. These
differences might include:

• OO Methods associated.
• Verification of behaviour before code generation.
• Programming languages supported (other than C++).
• The amount of code generated (does it include behavioural code?).
• Synchronizing or reconciling of models and code.
• The possibility to customize the translator technology.
• Control of generated code and system architecture.
• Integration of non-generated code.

A Real Time Operating System for embedded platforms 5

We will walk trough the three different methods, one by one. As a guideline one
can state that structural approach generate code frames as a result from the static
relationship among objects (UML), such as classes and relationships between
classes. The behavioural approach uses additional state machines models and state
transitions description to generate code for a whole system (SDL). The last
approach is based on the independence between the architecture model and the
application model. This approach leaves the programmer with total control over
translating complete models into code.

Figure 1.

As shown in figure 1, each can be seen as building on the concepts
of the prior approach. The “inner” approach generates the
framework code for the object structure of a system. Newer
approaches model behaviour sufficiently to enable generation of
system functionality. The most recent approach adds an
architecture model that enables user control of all generated code.

2.2.1 Structural approach.

The basis for the structural approach is the model of object structure (static
relationships). Based on this model most OO tools have the capability to generate
code for the application framework. The code generated would normally be a
class hierarchy, e.g. C++ or Java class hierarchy. The programmer can then add
code for the behaviour of the different objects and the communication between
them. This is done in the target language, being Java or C++ as some examples.
The most common method of development using this approach is a gradual
transition from analysis model to design and code. Methods that support structural
code generation include Object Modeling Technique (James Rumbaugh), Object-
Oriented Software Engineering (Ivar Jacobson), Object-Oriented Analysis and
Design (Grady Booch). These methods joint together is what we today know as
UML. The recent version out is UML 2.0.
As the name indicates, the approach doesn’t support code generation for object
behaviour. Methods in this category model behaviour as state machines without
executable semantics. Developers then have to manually program the system
dynamics of the application. The tools normally integrate hand code with

A Real Time Operating System for embedded platforms 6

generated code. Some of the tools also protect the hand code from being
overwritten if a regeneration of the object is done. If using tools that do not
support such feature, the programmers have the tendency to develop two
independent versions, the graphical model and the coded model. Some tools also
support reversed engineering of OO programming languages, meaning that object
structures can be generated from source code. Structural code generation is
incomplete, but saves hand coding and provides an implementation framework
consistent with the object model.

2.2.2 Behavioural approach.

This approach is based on state machines behaviour with action specification.
Some OO methods that model behaviour with state machine, add code to
represent action that occur upon a state transition. Tight coupled with objects of
model structures as well as communication, the possibility for code generation is
present. Code can be generated for the entire application.
Those tools that support behavioural system description, as the case with SDL
tools, can simulate and test the model before code is generated. The application
can be debugged on a graphical level of abstraction. SDL is only one of several
description languages that support the behavioural approach. Most recently, UML
2.0 has implemented SDL, so UML 2.0 also has a part that is classified as
behaviour approach. Since ULM 2.0 is the leading standard for formal description
language, an introduction to UML will be presented in chapter 2.3. When
modeling the behaviour of an entire system, the classical state-machine is
described in two different ways. Methods using this approach also differ in the
way they model object structure and communication. SDL includes block
diagrams, process diagrams, signal and data type definitions and message
sequence chart for object communication. Most SDL tools maps processes to an
RTOS task, signal to messages in memory and timer to a hardware or software
timer device.
The most significant difference in the approaches is that the in the latter system
behaviour coding is done during object modeling, reducing the hand coding to a
minimum. Another difference is the “lack” of reversed engineering, obvious since
all code comes from the models. To be able to describe a system with behavioural
approach the developer must obtain a state-machine view of the systems
functionality as well as an object view of the systems structure.

A Real Time Operating System for embedded platforms 7

2.2.3 Translative approach.

Translative approach is based on application and architecture models. The two
models are totally independent of each other. Object-Oriented Analysis (OOA) is
used to create an application model consisting of object structure, behaviour and
communication. Also this approach has the ability to simulate system behaviour
before code generation, just like the behavioural approach. The architecture model
defines the mapping rules for the translation engine when generating code of the
application model. One of the biggest benefits of this approach is the possibility to
easy reuse code. The reason for this is the total independence of the application
and architecture models.
To be able to simulate before code generation, the system is divided into domains.
The domain is modeled by an object information model, state models for each
objects and action specification for each state. Completely modeled domains can
then be tested and if desired code can be generated. The simulation is based on an
interpretation of the action specification, modeled in the domain.
As mentioned, architecture model consists of the translation rules for mapping of
the OOA construct into source code. All constructs, if code is to be generated,
used in OOA must have a defined translation in the mapping. The developer has
the benefit of complete control over the code generation, since he also controls the
development of the mapping rules in the architecture model. Programming
language can also be changed to meet the needs of the programmer. Performance
critical parts can be translated directly into assembly for best performance control.
Another possibility is to omit mappings for some implementations in the
application model. The developer then have to hand code the unmapped part,
letting the developer have the total control of the quality of the code.
The translative approach do not support reversed engineering, if the system need
to be changed this must be done in the application model or the architecture
model, and regeneration of code must be done for applying changes.

A Real Time Operating System for embedded platforms 8

2.2.4 Comparison between the approaches

This is a simplified comparison for the three models described above.

Approach Structural Behavioural Translative

Models
Supported: Objects Objects / states /

actions

Objects / states /
actions/

architecture

Methodology: OMT, Booch,
UML, …

Harel, SDL,
ROOM, UML 2.0

Shlaer-Mellor
(OOA)

Languages
targeted: C++, Ada, … C++, C, … Any (user-

defined)
Extend of
code generated: Framework Complete Full, any

architecture

Control of code: Templates User code, RT
libraries

Complete,
separate,

architecture model

Tool support:
Reverse

engineering
protected code

Simulation and
debug

Simulation and
debug, construct

architecture

Cost: Small Tooling, learning Building
architecture

Advantages: Synch code to
model Early verification Reuse architecture

Table 1. Comparison between different approaches.

A Real Time Operating System for embedded platforms 9

2.3 UML, a short description

UML is a visual language for specifying, constructing and documenting software
systems. UML is an open standard and has established itself as a common
modeling language throughout the software and system industry, and is treated as
today’s de facto standard for specifying software architecture. OMG is the body
responsible for the standardization of UML, which started with UML 1.1 in 1997.
During this project UML 2.0 was the current standard. March 2003, UML 1.5 was
released, but had only small changes from version 1.4. The UML 2.0 upgrading is
due to the fact that version 1.x has lots of shortcomings (e.g. non-standard
implementation, exaggerated complexity, imprecise semantics etc). One
inadequate part of UML 1.x often mentioned is the insufficient support for
component-based development. To cope with these drawbacks UML 1.x has been
used in a non-standard way. Other tools like SDL, ROOM10 and MSC11 have
been used together with UML 1.x to achieve the goal.
The basic improvements from version 1.x to 2.0 are:

• Better support for component-based software development.
• Better alignment of other widely used standards like, XML/XMI and SDL.
• Improved support for composite state machines.

Beginning from UML 2.0, SDL 2000 is implemented as a standard for describing
system in the state-machine behaviour approach. The classic UML diagrams,
from UML 1.x, are used for describing the overall framework of the application.
SDL is then used to describe the system interaction and transitions in a process.
Since the classic UML part is out of scoop for this project, SDL will be the main
topic and UML will be left from this point.

2.4 SDL - The Nature of Real Time Applications

SDL is a formal description language defined by the ITU Z.100 recommendation.
SDL today is a language well suited for specification and implementation of
distributed systems. SDL was developed by the telecommunication industry. At
the early start in 1972, SDL was originally a language for specification. As a
result of the first tool being released in 1984, things changed significantly. Both
the user and the designer of SDL had to be more formal. The workload then
became more apparent, but the benefits were the identification of errors and the
ability to animate models, so “what if” questions could be answered.
In 1992 SDL got some significant updates, the addition of type constructs for an
object oriented version of SDL. This version of SDL is called SDL-92.
After the release of UML 2.0 there has been a merge between UML 2.0 and SDL-
2000, which is the latest SDL recommendation.
UML 2.0 has built in support for all of the SDL semantic.

A Real Time Operating System for embedded platforms 10

UML will be left as a subject, and the focus will fall on SDL, in particularly SDL-
2000.
SDL is broadly used in the telecommunication domain, especially on protocol
specifications, as well as on the specification of reactive real-time and embedded
systems. Since SDL is a formal language, it is widely used for specification,
verification, simulation and code generation processes.
SDL by nature is a dataflow, hierarchical built, with Extended Finite State
Machine (EFSM) as the lowest level defining the behaviour of the system. The
system entity is the framework as well as the main structure of the language. The
system entity defines the interface with the external world. Next lower level,
defined inside system entity, is the block which defines the structure of the
specification. Messages are used for communication between different blocks in a
system. Messages are also used for communication with the external world. These
messages are sent through structures called channels. A block containing one or
several processes defined as EFSM. These communicate with each other through
signals using signal routes.
Each process possesses an infinite queue in which all incoming signals are stored
and consumed according to FIFO (First-In-First-Out), with some exceptions.
If a signal is expected in the current state of the process, the transition related to
this event is executed. Otherwise the signal is discarded unless it is saved in the
queue by means of the save construct. SDL follows a totally asynchronous model
of computation that combines characteristics of processes networks with FSMs.
Each SDL process executes concurrently and the specification behaviour of a
SDL system is the sum of the individual behaviours of each specification process.
SDL
also allows new abstract data types definitions and dynamic creation of processes.
SDL is a modeling language which helps designers express and verify their design
ideas in an adequate way. This means that the language is expressive and
unambiguous; it has platform-independent semantics, operational semantics and
adequate support for modularization.

A Real Time Operating System for embedded platforms 11

2.5 SDL limitations

2.5.1 Introduction

SDL is arguably the most successful formal technique used today with
widespread usage throughout the software and the telecommunications industries.
Part of the reasons for its general adoption is its intuitive graphical notation and
excellent tool support. The tool support typically offers capabilities to analyze,
design, implement and subsequently test systems, often using combinations of
interrelated notations together with SDL such as Message Sequence Charts.
One of the main perceived benefits of SDL over other notations such as UML is
the ability to model and reason about, e.g. via model checking tools, detailed
behavioural specifications, including real-time behaviours.
SDL has some language aspects for expressing features of timed systems, these
are unfortunately inadequate for hard real-time systems development, because
they are indeterminable. Since timer expiry results in an input signal being placed
in the (possibly non-empty) input queue of the associated agent, these signals can
be in the queue any arbitrary time before they are consumed. When a timer is set
to t seconds, the interpretation of this timer is in fact an arbitrary time duration
dt (dt € [t,∞])). Such a weak interpretation of timers cannot provide enough
expressive power to describe the timing behaviour of hard real time systems.
The time mechanism in SDL is heavily affected by the platform-dependent
physical clock. Such a platform dependent timing mechanism cannot provide
facilities to debug and analyse timing behaviour of a model, because any
debugging and analysis observation may introduce extra time passing, which
changes the real-time behaviour of the model and leads to unreliable debugging
and analysis results.
As a natural consequence of language limitations, associated tools suffer from a
lack of precision for dealing with the temporal aspects of specifications and are
often unable to enforce or establish the existence of temporal properties.
Typical examples of the properties that a real-time specification language and
associated real-time tool support should be able to check for include:

• deadlock properties where the real-time specification reaches a state
where no more transitions are possible and time progresses indefinitely;

• livelock properties where the specification is unable to ever receive
messages (signals) from the environment due to continuous internal
interactions;

• invariant properties that must hold for all executions of the model
including real-time invariant properties;

• non-zenoness of runs where time in the system does not progress beyond a
certain value due to continued (non-time dependent) interactions;

A Real Time Operating System for embedded platforms 12

As well as these classical real-time properties, SDL lacks more general properties
as e.g. to describe non-linear properties such as signal X should be followed by
signal Y within a maximum of Z time units.
To achieve this, a precise notion of time in SDL and language features that allow
for various timing aspects to be both modeled and subsequently validated by
associated tools is required.

A Real Time Operating System for embedded platforms 13

3. Introduction to real time operating systems

3.1 General

In general a real time operating system is designed to do the work that almost all
real time systems do. The intension of the real time operating system is to replace
the control loops, jump, global variables and calls that otherwise would control
the execution of an application. Maybe the major advantage with operating
system is the substantial decrease in manpower for development of a system. One
reason for this is that a large and potentially difficult part of the program has
already been written. This even before the project has started. Another reason is
the fact that the program can be divided into smaller portions of independent
programs, making it easier to write, debug and modify than a big complex
program. Real time systems are characterized by the severe consequence if a logic
as well as timing correctness property of the system is not met. The real time
system is evaluated not only with regards to result produced, but also on the time
delay at which the results are presented.

Real time system can be distinguished with respect to following:

• Hard real-time system. The tightness for time deadlines is strict.
Exceeding a deadline (too early or too late) may result in a disaster, e.g.
pacemaker or the controlling logic of some vital systems in an airplane.
The whole system has to cope with all temporal requirements in order to
be correct.

• Soft real-time systems. Acting after the deadline, if one exists, may not
cause a disaster, but surely influence on the QoS for the output of the
system. A telephone system with an audible delay is unpleasant but not
critical. Typically in a soft real-time system the requirements are defined
as minimal quality of service.

Further a real time system can be spilt into following categories:

• Critical system. This is measured by the consequences of a failure in the
system. A major failure causes in the worst case loss of human life.

• Non-Critical systems. Missing a deadline won’t harm much, but the
system might be totally useless.

The usual approach is to have a combination of the hard and soft real time
requirements in the same system, being critical or non-critical. There is no distinct
composition for the combination of these four, so any combination in a bigger
system is possible. The normal approach is then to define parts of the system as
e.g. hard real time with critical outcome if the requirements are not met. Real time

A Real Time Operating System for embedded platforms 14

operating systems are used in many different applications, raging from huge PC
systems down to the tiniest embedded application. Most real time systems are
embedded, e.g. cellular phone, laundry machine.

3.2 Real-time concepts

3.2.1 Triggering the system

There is two common ways of triggering a real time system. If the system is based
on time periodic triggering, it’s classified as a time triggered system. Instant
interaction with the outside environment can’t be accomplished, but interaction
can occur at certain point in time if the system polls the external devices. One way
to implement this would be in a control loop.
The other method is event triggering, and the execution is guided of the non-
deterministic occurrences of external and internal events. This results in a timely
acceptable instant interaction with the environment. Such a system can be
implemented with e.g. ISR’s.

3.2.2 Foreground background systems.

When designing a small system, it’s possible to design it as a foreground
background system, also called control loop program. The whole program
executes in one infinite loop, calling subroutines (modules) to get desired action
done. This is referred to as the background system. To be able to react on
asynchronous events, such as input from the environment, an ISR can execute
immediate action. This is referred to as the foreground system. Letting the ISR
handle time critical events, assures that the operations are dealt with in a timely
manner. If the background system is handling information passed from the ISR,
it’s not guaranteed that it will be dealt with immediately. It depends entirely on
when the background routine get executed. A lot of the high volume consumer
products act as a background foreground system, e.g. laundry machines,
telephones.

A Real Time Operating System for embedded platforms 15

3.2.3 Process synchronization

A process, also called a thread or a task, is a simple program that thinks it has the
CPU all to itself. Referring to a task or process in a real time operating system,
will have the same meaning. If one have several tasks running concurrently it’s
called multitasking. The processes run in an infinite loop and execute its program
code step by step. Since the system is divided into several processes, some
synchronization between them is necessary. The synchronization can be done in
several ways. If the synchronization involves several events it can be done with
two different methods. Synchronization can occur if one of the events have
occurred, this is called disjunctive synchronization. The other one is conjunctive,
now all events must have happened in order to be synchronized and further
execution can start.

3.2.3.1 Mutual exclusion

Mutual exclusion (often abbreviated to mutex) algorithms are used in concurrent
programming to avoid the concurrent use of un-shareable resources by pieces of
computer code called critical sections.
In the light of process synchronization one can use this method for accessing
shared data structures. When e.g. an ISR is writing to a data structure, it has to
lock the reader of the data out until all structure are updated. Mutual exclusion
can be obtained with:

• Disabling interrupts
• Performing test- and set- operations
• Disabling scheduling
• Using semaphores

 The problem is acute because without special care, an interrupt can occur
between any two instructions of the non-interrupt code, including the very code
used to communicate with the interrupt code. If the critical section is not
protected, this can cause severe failures.

3.2.3.2 Disabling interrupts

The easiest way of gaining mutual exclusion is to disable interrupts. This has to
be done with care to prevent a long period of time with interrupt disabled.
Environment stimuli could then be lost.

A Real Time Operating System for embedded platforms 16

3.2.3.3 Semaphore

A semaphore is a protected variable (or abstract data type) and constitutes the
classic method for restricting access to shared resources (e.g. storage) in a multi
processing environment. They were invented by Edsger Dijkstra mid 1960, and
first used in the T.H.E. operating system. [TheFreeEncyclopedia.com]

A semaphore can be a hardware or software flag. In a multitasking environment
the semaphore is most likely a variable with a value indicating the status of access
to a common resource. Two types exist:

• Binary semaphore.
• Counting semaphore.

The binary can only have 2 values: 0 or 1. The counting can have values in the
range of the variable type assigned to it. The kernel needs to keep track of the
value of the semaphore and which processes is waiting for the semaphore.
Processes who want to wait for a semaphore are set in a wait state and put in the
queue for waiting processes. A process desiring a binary semaphore performs a
state check. If the semaphore is available it changes the state of the semaphore
and continues execution. If the semaphore is occupied the kernel puts the process
in a queue waiting for it. The wait state can have a timeout, depending on the
support of the kernel. Once the process occupying the semaphore releases it, the
kernel checks which process to give access next time. The selection can be based
on several options such as:

• Highest priority process
• FIFO queue system

Some resources can manage several accesses simultaneously. Imaging a pool of
buffers available to the processes, in such a scenario a counting semaphore, with a
maximum value same as the number of buffers, is an option. One “key” for each
puffer is available. A task requiring a buffer, checks the semaphore and
increments it if a buffer is available. When the process releases the buffer the
semaphore is decremented, making it available for other tasks.

A Real Time Operating System for embedded platforms 17

3.2.3.4 Messaging

Messages can be exchanged between processes (or ISR) through a kernel
services. In most cases the message is only a pointer to an allocated area in the
memory containing the data to be sent, this is called a mail box or a message
exchange. The kernel provides services for posting the message and for receiving
the message. A list for waiting processes is associated with the mailbox, in the
case that several processes want to receive a message thorough the mailbox.
Tasks polling for a message in an empty mailbox are suspended and placed in the
waiting list. Also in this service a timeout for the waiting period should be able so
specify. Messages can also be completely copied (including all data) and sent to
the other process, also done through the kernel service. If a process should be
capable of receiving several messages almost simultaneously, a message queue is
used. A message queue is a list of messages waiting to be consumed by the
receiving process. A normal method of organizing the queue is first in first out
(FIFO), meaning that first message posted is the first to be read of the receiver.

3.2.4 Resource

A resource is a entity used by a process, it can be a variable within the system or a
I/O device such as printers, disks. Resources can be shared amongst several
processes or it can be dedicated to a single process.

3.2.4.1 Shared resources

A resource accessed by several processes is a shared resource. A shared resource
should normally be given a special attention when accessing it. Normally a
semaphore must be used to control the access to the resources, gaining control of
the use.

A Real Time Operating System for embedded platforms 18

3.2.4.2 Reentrant functions

A reentrant function is a function that can be used by more than one task without
fear of data corruption. A reentrant function can be interrupted at any time and
resumed at a later time without loss of data. Reentrant functions either use local
variables (i.e., CPU registers or variables on the stack) or protect data when global
variables are used. An example of a reentrant function is shown in listing below.

void strcpy(char *dest, char *src){

while (*dest++ = *src++) {
 ;
}
*dest = NULL;

}

Because copies of the arguments to strcpy() are placed on the task's stack, strcpy()
can be invoked by multiple tasks without fear that the tasks will corrupt each
other's pointers.
An example of a non-reentrant function is shown below. swap() is a simple
function that swaps the contents of its two arguments. For sake of discussion, I
assumed that you are using a preemptive kernel, that interrupts are enabled and
that Temp is declared as a global integer:

int Temp;

void swap(int *x, int *y) {

Temp = *x;
*x = *y;
*y = Temp;

}

We can make swap() reentrant by using one of the following techniques:

• Declare Temp local to swap().
• Disable interrupts before the operation and enable them after.
• Use a semaphore.

If the interrupt occurs either before or after swap(), the x and y values for both
tasks will be correct.

A Real Time Operating System for embedded platforms 19

3.2.5 Multitasking

A technique used in an operating system for sharing a single processor between
several independent jobs [TheFreeDictionary.com].

Since task is the common name for an independent portion of an application,
when referring to real time operating systems, we’ll use the word task instead of
process in this chapter.
The idea of multitasking is to share the central processing unit (CPU) between
different tasks in a system. The different tasks can be seen on as multiple
background systems. This approach ensures that the system get maximized
throughput since the CPU always get to run a ready task. Another benefit of
multitasking, especially in complex systems, is the ability to split the jobs to be
done in smaller portions called tasks. This makes it easier to manage a system
because each module is an independent program. Maybe the biggest benefit of
multitasking is the programmer’s ability to manage complexity inherent in real-
time applications

A Real Time Operating System for embedded platforms 20

3.2.5.1 Tasks state

During the execution of an application, the tasks change state. The current activity
of the task partly defines the state of the task. A task can be in one of the
following states.

• New, a new task is dynamically created.
• Running, the task is executing in the CPU.
• Waiting, the task is waiting for an event to occur, bringing it out of this

state.
• Ready, the task is waiting for CPU time.
• Terminated, the process has finished execution for the lifetime of the

application.

The task control block (TCB) holds information about the current state of all
tasks. If referring to the ready list simply means the collection of all tasks that
have the ready status in the TCB.
The following figure visualizes the transition between the different states, and the
possible action to trigger the transition from one state to another state.

 Figure 1
 A representation of all different states a process can be in.

A Real Time Operating System for embedded platforms 21

3.2.5.2 Context Switch

When a multitasking kernel decides to run a different task, it simply saves the
current task's context (CPU registers) in the current task's context storage area –
its stack. Once this operation is performed, the new task's context is restored from
its storage area and then resumes execution of the new task's code. This process is
called a context switch or a task switch. Context switching adds overhead to the
application. The more registers a CPU has, the higher the overhead. The time
required to perform a context switch is determined by how many registers have to
be saved and restored by the CPU.
The following scenarios may generate a context switch:

• A task switching from the running state to waiting state (e.g. waiting for a
signal).

• A task switching from the running state to the ready state (e.g. occurrence
of an interrupt).

• Tasks switching from the waiting state to the ready state (e.g. reception of
a signal).

• Task terminates.

For scenario one and four a context has no choice of scheduling. A new task must
be selected to execute. For scenario two and three there are some possible
outcomes for the scheduling. This is what differs preemptive and non-preemptive
scheduling. The topic is described later in the text.

3.2.5.3 Micro kernel

An operating system kernel is the portion of the operating system that is common
among all other operating system services and applications. Kernels can be
specialized according to the applications that they support. One such
specialization is that for the real-time system. A real-time system, given its strict
temporal requirements, requires a specific set of services that a kernel must
provide. [CS423, Advanced Operating Systems Research in Real-Time System
Kernels Tanya L. Crenshaw]

The kernel is the heart of the operating system, being real time or not. Its job is to
manage the CPU time between the tasks, as well as the communication between
them. The fundamental service provided by the kernel is context switching. A
kernel will certainly add overhead to your system, but normally the benefits are
much more distinctive. Since each task has its own stack space the RAM will be
eaten up quite quickly. The kernel also consume CPU time to get the job done,
normally this is about 2 and 5%. In a small chip controller it is of great
importance to keep the kernel as small as possible, this will usually be in the cost
of the supported functionality.

A Real Time Operating System for embedded platforms 22

3.2.5.4 Non-Preemptive micro kernel

Non-preemptive or cooperative multitasking, also called, requires the tasks to
explicitly give up the CPU. The asynchronous events can still be handled by the
ISR, but the ISR always return back to the last executing task. If the ISR makes
another task, with higher priority than current, ready to run, it still has to wait
until the current process gives up the CPU. To get the illusion of concurrency the
release of CPU must be done frequently from the process. Some of the advantages
with non-preemptive kernel include:

• Low interrupt latency.
• Non-reentrant functions can be used. The process owns The CPU and can

finish executing the non-reentrant function.
• Less need of semaphore for access control to recourses. Since the process

itself controls when to release the CPU it’s easier to control sheared
recourses, this is not the case all time.

The greatest disadvantage with non-preemptive kernels is the responsiveness. If
e.g. an ISR makes a higher priority task ready to run, it still has to wait until the
current task gives up the CPU. To summarize, a non-preemptive kernel allows
each task to run until it voluntarily gives up control of the CPU. An interrupt will
preempt a task. Upon completion of the ISR, the ISR will return to the interrupted
task. Task-level response is much better than with a foreground/background
system but is still non-deterministic. Very few commercial kernels are non-
preemptive.

3.2.5.5 Preemptive micro kernel

In preemptive systems, the kernel scheduler is called with a defined period, each
tick. Each time it is called it checks if there is a ready-to-run task which has a
higher priority than the executing task. If that is the case, the scheduler performs a
context switch. This means that a task can be preempted - forced to go from
executing to ready state - at any point in the code, something that puts special
demands on communication between tasks and handling common resources.
Using a preemptive kernel solves the problem where a high priority task has to
wait for a lower priority task to yield the processor. Instead, when the high
priority task becomes ready to run, the lower priority task will become preempted,
and the high priority task can start to execute. A preemptive kernel is used when
system responsiveness is important, most commercial real-time kernels are
preemptive.

A Real Time Operating System for embedded platforms 23

3.2.6 Deadlock

A deadlock can be a disaster for a critical system, but have only might only have
irritating effects on a non critical system. A deadlock occurs if two processes are
waiting for the other task to release e.g. a semaphore. Say two semaphores are
needed to perform an operation. Task 1 gets semaphore A and tries to get
semaphore B. Task 2 takes semaphore B before task A. Now task A waits for task
B to release semaphore B, and task B wait for task B to release semaphore B.
Resulting in a deadlock. Deadlock can be avoided in several ways:

• Acquire all resources before proceeding.
• Acquire the resources in the same order.
• Release the resources in the reversed order.

The consequence of a deadlock can be minimized if a timeout is specified when
waiting for a semaphore. This approach release the system from the deadlock
occurred, even though the consequence could be fatal.

3.2.7 Scheduler

If the CPU becomes idle, the RTOS must select one of the other tasks in the ready
queue for execution. If none is ready the idle task (always ready) is switched in.
The selection of next task to execute can be based on different algorithms.

3.2.8 Task priority

A priority is assigned to each task. The more important the task, the higher the
priority is given to it.

3.2.8.1 Static priorities

Task priorities are said to be static when the priority of each task does not change
during the application's execution.
Each task is thus given a fixed priority at compile time. All the tasks and their
timing constraints are known at compile time in a system where priorities are
static.

A Real Time Operating System for embedded platforms 24

3.2.8.2 Dynamic priorities

Task priorities are said to be dynamic if the priority of tasks can be changed
during the application's execution; each task can change its priority at run-time.
The priority of a task is a function of time. The longer in ready queue, the higher
is the priority given to it. Another advantage is that if a high priority task trying to
access a resource hold by a low priority task, the low priority task can get the
same priority as the other task.

3.2.8.3 Assigning task priorities

Assigning task priorities is not a trivial undertaking because of the complex nature
of real-time systems. In most systems, not all tasks are considered critical. Non-
critical tasks should obviously be given low priorities. Most real-time systems
have a combination of soft and hard requirements. In a soft real-time system,
tasks are performed by the system as quickly as possible, but they don't have to
finish by specific times. In hard real-time systems, tasks have to be performed not
only correctly but on time.
An interesting technique called Rate Monotonic Scheduling (RMS) has been
established to assign task priorities based on how often tasks executes. Simply
put, tasks with the highest rate of execution are given the highest priority.
RMS makes a number of assumptions:

1. All tasks are periodic (they occur at regular intervals).
2. Tasks do not synchronize with one another, share resources, or exchange

data.
3. The CPU must always execute the highest priority task that is ready to run.

In other words, preemptive scheduling must be used.

Given a set of n tasks that are assigned RMS priorities, the basic RMS theorem
states that all task HARD real-time deadlines will always be met if the following
inequality is verified:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−∗≤∑ 12

1
n

i i

i n
T
E

Figure 2

where, Ei corresponds to the maximum execution time of task i and Ti
corresponds to the execution period of task i. In other words, Ei/Ti corresponds to
the fraction of CPU time required to execute task i. Table 1 shows the value for
size n(21/n-1) based on the number of tasks. The upper bound for an infinite
number of tasks is given by ln(2) or 0.693.

A Real Time Operating System for embedded platforms 25

This means that to meet all hard real-time deadlines based on RMS, CPU
utilization of all time-critical tasks should be less than 70 percent! Note that you
can still have non-time-critical tasks in a system and thus use 100 percent of the
CPU's time. Using 100 percent of your CPU's time is not a desirable goal because
it does not allow for code changes and added features. As a rule of thumb, you
should always design a system to use less than 60 to 70 percent of your CPU.

Number of Tasks N(21/n-1)
1 1,000
2 0,828
3 0.779
4 0,756
5 0,743
. .
. .
. .

Infinity 0,693
Table 2

RMS says that the highest-rate task has the highest priority. In some cases, the
highest-rate task may not be the most important task. Your application will thus
dictate how you need to assign priorities. RMS is, however, an interesting starting
point.

A Real Time Operating System for embedded platforms 26

3.2.9 Scheduling algorithms

3.2.9.1 First come, first served (FCFS)

Surely the simplest scheduling algorithm discussed in this document. Tasks ready
to execute are kept in a FIFO queue. When a process gives up the CPU, either by
requesting some resources or explicitly gives up the CPU, the task first in the
queue gets the CPU. A task going from wait to ready state enters the queue in the
tail. A task switch in from the front of the queue is removed from the queue.
FCFS is non-preemptive, as soon as a task gets the CPU it owns it until it
terminates or entering a state different from ready. This algorithm is too simple to
be used for implementation of SDL. One has no control over time critical
operations.

3.2.9.2 Shortest job first (SJF)

Another non-preemptive algorithm is the SJF. The latter’s next CPU burst are
examined and the one with the shortest next burst are allowed to execute. If two
processes have the same burst length, FCFS are used for selection of these two. In
this manner the through put of the CPU are increased, because it reduces the
waiting time for short tasks more than it increases the waiting time for longer
tasks. As a result the average waiting time decreases. The difficulty in this method
is to predict the length of the next burst in the short term CPU scheduling as in
embedded systems.

3.2.9.3 Priority

A priority is associated with each task. The CPU is allocated to a task in the ready
list, having the highest priority. If two or more tasks have equal priority, the
choice of task is based on FCFS. Priority scheduling can either be preemptive or
non-preemptive. Most embedded systems use preemptive scheduling.
Task priorities can be set in two different ways:

• Static Priorities. The priority of a task is unchanged during the lifetime of the

application. A static priority is given at compile time.

• Dynamic Priorities. The priorities of a task can be changed during execution time
if desirable. If an external event which happens rarely must be dealt with
immediately, the task handling the event gets top priority when the event occurs.
This is a desirable feature to have in a real-time operating system for
implementation of SDL.

A Real Time Operating System for embedded platforms 27

3.2.9.4 Round robin (RR)

RR scheduling is similar to FCFS, but preemption is added. The algorithm is
developed for time sharing systems. A time slice is defined, named system tick,
normally between 10 to 100 milliseconds. Every time the system tick occurs, the
dispatcher switch in a new task. This task is the first task at the head of the ready
queue. All tasks in ready state are kept in a FIFO queue. If a task is finished
before the system tick occurs the task voluntary gives the CPU to the dispatcher,
the dispatcher switch in a new task. If a task still have code to execute at the
occurrence of the system tick, the dispatcher switch in a new task and the other
task is placed at the end of the ready queue.

 Summarized the following situations give a task switch:

• The current task doesn't have any work to do during its time slice or
• The current task completes before the end of its time slice.

The performance of the RR depends heavily on the length of the system tick. The
longer lasting the system tick is, the more identical it becomes FCFS. A long
system tick gives no control over timing, tasks must wait a long time before they
can execute. If the system tick becomes to short, the added overhead for the
dispatcher to run becomes apparent, too much of the CPU time if used just for
task switches.

3.2.9.5 Multilevel queue

Task with similar characteristics or same priority are placed in a common group.
Several different groups can exist within a system. Every group has its own
private scheduling algorithm. It isn’t necessary to use the same scheduling
algorithm for the groups, different group can use different algorithms. Ones a task
is placed in a queue, done at entry of the system, it must stay in the group for the
lifetime of the application.
A scheduling algorithm must be chosen between the groups as well. Normally the
priority scheduling or time slicing is used.

A Real Time Operating System for embedded platforms 28

3.2.9.6 Multilevel feedback

The difference between multilevel queue and multilevel queue feedback is the
possibility for the task to dynamically change process group during execution. If a
task is using to much CPU time it can be moved down to a group with lower
priority, and a task with short CPU bursts can be moved up to a higher priority
group. This aging approach prevents starvation of a task. All tasks get the ability
to execute.
Following properties make multilevel feedback scheduling:

• The number of queues.
• The scheduling algorithm for each queue.
• The method used to determine when to upgrade a task to a higher priority

queue.
• The method used to determine when to demote a task to a lower-priority

queue.
• The method used to determine which queue a task will enter when the task

needs service.

Multilevel feedback scheduling is the most general scheduling algorithm. The
drawback is the cost of time and memory due to the complex decisions that has to
be done by the scheduler.

A Real Time Operating System for embedded platforms 29

4. Essential RTOS properties to describe SDL systems

4.1 Introduction – Simplified SDL

An SDL system can be described as process instances that communicate by
sending signals to each other or to the environment. Each single process can be
viewed as an autonomous finite state machine, working concurrently with other
processes, co-operating with other processes or the environment through discrete
messages (signals). Depending on the next input, the process performs a
transition; that may include many actions, and finally moves to a new or same
state. Its next state may be determined by decisions in the actions. In SDL, a state
is the only location where input from the queue can trigger a transition. All
communication in SDL is asynchronous.

4.2 Process states and transitions

In SDL all processes are supposed to run simultaneously, in an embedded
platform such behaviour is impossible to achieve. Thus, all processes have to
share the same processor, in a pseudo-parallel manner. In that way only one
process is executing at any time. All others processes are either ready-to-run or
blocked. If an external event or a process timer expires, the kernel scheduler have
to check if the event enabled a higher priority process, and if it did this process
will be dispatched, and a transition will take place.
This implies that scheduling is needed, preferably a pre-emptive to handle
spontaneous events, and with priority.

4.3 Signals and queues

 Further, each process should have a unique address (Pid). A signal is always
assumed to carry the address of both the sending and the receiving process, in
addition to possible data values. The receiving process thus always knows the
address of the sending process.
A process should have an infinite input queue, where incoming signals are to be
queued. When a signal has initiated a transition, it should be removed from the
input queue (consumed). A process should also have the possibility to save
signals for later use, if no input under the current state contains the received
signal.

A Real Time Operating System for embedded platforms 30

4.4 Timing

All systems implementing the conceptual basis of SDL should contain methods
for timer management; because in most system descriptions certain time
constraints are commonly used. SDL has the timer construct for this. The timer is
an object owned by a process, which is able to generate a timer signal and put this
signal into the input queue of the process. SDL defines a set of operators for
timers, with these we have the ability to set, reset and to check if timers are active
(running).

4.5 Triggers & transition elements

If an embedded real time operating system has implemented the features
described above, and in addition has implemented all the triggers, and transition
elements; it’s should be capable to use for implementing systems described with
SDL. A real time kernel whose purpose is to implement the SDL behaviour, need
to implement the SDL semantic, the SDL/PR syntax and SDL data types are of
less importance.

Not all triggers are applicable for use in embedded systems, as is true for
“continuous signals”. This will be described in chapter 7 “omitted SDL
properties”.

 Figure 3 List of SDL symbols.

A Real Time Operating System for embedded platforms 31

5. Review and analysis of some existing RTOS

5.1 OSE Epsilon for AVR

OSE is a RTOS kernel developed by ENEA Embedded Technology in Sweden.
The kernel is ported to different microcontrollers. OSE for AVR is exclusively
designed to fit the peculiarities of the AVR processor family.

5.1.1 Properties of OSE

ENEA Embedded Technology claims that OSE for AVR is a fast, compact real-
time operating system for AVR microcontrollers. The size of the kernel is
estimated to approx 1kbyte RAM, depending on options set in the configuration
files. Direct process-to-process message passing is the hallmark of OSE Systems'
RTOS, the same as with SDL.
OSE build processes as independent tasks, just like a subprogram. Each process
can be written as if it has the entire CPU on its own. OSE has the ability to run
static processes, created at compile time. It also has the feature to create, run and
kill dynamic, predefined, processes at runtime. Each process is an independent
program which is assigned a private area of memory.
OSE has defined to types of processes, independent of dynamic or static creation.
These to types are prioritized and background. The prioritized processes are, as
the name indicate, assigned a priority dependent of the importance of the task.
The priority is just a number ranging from 0 to 31, where 0 reflects the highest
priority. Priority is set by the user of the RTOS. A process can be started and
stopped during program execution.
The dispatcher in OSE will assure that the process with highest priority, supposed
it’s in ready state, are given CPU time to execute.
Another quality of OSE is its “pre-emptive” dispatcher, meaning that the
dispatcher has the ability to stop the current process after the next assembler
instruction (even within a system call) and move the execution to another process.
A background process is not assigned any priority. All background processes are
put in a pool, and given the possibility to execute when all prioritized processes
are in a wait state. The dispatcher determine which process are given the
opportunity to execute after the principle of “round robin”, the user can determine
the length of the time slice interval.
The last category of process is interrupt processes. This is hardware activated and
can run inside or completely outside the OS. The user can determine which
approach to use for the interrupt process. Only one process can be created for
each hardware interrupt vector.
A special case of interrupt processes are timer interrupt processes. The user has
the ability to set the number of elapsed system ticks between each call to the

A Real Time Operating System for embedded platforms 32

process. The number is hold in an 8-bit variable, ranging from 1 to 255. The timer
process has the same priority as the interrupt source.
OSE systems do not recommend the use of global variables used by more than
one process, even thou global variables can be used. To access the global
variables semaphores is used, available through the kernel as a system call. Before
entering a global variable the interrupt must be disabled, enabled again when done
operating on the variable. The use of global variables are not recommended from
the inventors side, instead they stress the use of signals as the safest way to do
communication between different processes. A signal is no more than a message
passed from one process to another, with or without data included in it. All signals
are put in a signal buffer. This buffer can only be accessed by one process at a
time. Once the sender process has sent the signal, it has no more privileges to
access the signal. The owner of the signal buffer is the process that receives the
signal. Only the owner can do operations on the buffer.
The signal buffer pool is administrated by the OS. Eight different user predefined
sizes are available. When the user defines the size needed for the signal, the OS
releases data memory, from the message pool, according to the closest higher
predefined size. The reason for this approach is to prevent memory leakage and
fragmentation. The signal memory area is released from the pool and handed over
to the process, the process sends the signal to another process. The receiving
process consumes the signal and releases the memory area back to the signal
memory pool.
The receiving process can scan thru the signal queue looking for one or several
signals at a time. The first signal in the queue matching the parameters is
consumed.

5.1.2 Shortcomings of OSE

At a glance OSE seems well suited for describing SDL systems in ANSI C code.
Especially the property of sending messages between processes makes it well
suited for SDL implementation. There are after all a few disadvantages found in
the RTOS. One of the main drawbacks is the size of the kernel and the amount of
memory claimed by processes and signal buffers. The total memory needed is
close to the total memory available on the biggest 8-bit AVR controllers. The
kernel requires approximately 1 kbyte RAM and each process need 96 byte, plus
stack and pool size. Minimum code size of OSE for AVR is approximately 6
kbyte ROM. The RTOS is designed for a microcontroller set up for a capability of
addressing up to 16 Mbyte data memory and 8 Mbyte program memory. This
amount of memory is far beyond the size of our embedded target.

A Real Time Operating System for embedded platforms 33

5.2 PR_RTX

PR_RTX is produced by Progressive Resources LLC exclusively for the CVAVR
compiler.
They claim that the kernel is a lean, mean task switching machine for the some of
the AVR processors.

5.2.1 Properties of PR_RTX

The RTOS is initialized and implemented by the inclusion of a code file and a
control block in the heading of the program file. All processes should be written
as independent tasks.
All control structure (TCB’s) is created and held in the program memory. The
RTOS are not supporting dynamic allocation or de-allocation. This means that
deleted processes still take up RAM in the memory, and it makes the creation of
dynamic processes impossible. PR_RTX support the feature of interrupts, making
none or small impact on the timing as long as the interrupt process execution time
is shorter than one system tick since there is only one level of interrupt. The user
has the ability to deal with an interrupt in the standardized ISR, making the RTOS
vulnerable for heavy user code loaded ISRs. If so is the case it will certainly make
an impact on the interrupt latency.
The RTOS can be run in two modes, Round Robin or task priority based.
Timer 0, independent of processor, is used as the default base for generating
system ticks. As an alternative tick base, any interrupt routine can be used to
generate system ticks. The user will then have the responsibility to ensure that a
system tick happens on a regularly time interval. When Timer 0 creates an
interrupt (system tick), or a task enters a blocked state, the kernel can make a task
switch. Either it switches in a ready task or the idle task is selected. Main function
is defined as the idle task. When a context switch is due the kernel stores away the
stack pointers for the task to shift out, and load the stack pointers for the new task.
When running in RR mode, it is important that the tasks give up the processor as
often as possible, with either PR_End_Task() or one of the PR_Wait functions.
In priority mode the task with highest priority are given the chance to run ones pr
tick. Task with a higher priority are not able to pre-empt task with lower priority.
Progressive Resources propose the use of shorter tick rate, alternatively to handle
high priority task on an interrupt basis, as a substitute for the drawback on not
having pre-emptiness.
During the creation of a task, the user has the choice of setting the task to active
or dormant.

A Real Time Operating System for embedded platforms 34

The following system calls are implemented and are of interest in the scenario of
implementing a SDL system:

• PR_Wait_Ticks(ticks), ticks denotes number of system ticks the process is
put to sleep. Ticks is a char type, so 255 is the maximum number of wait
ticks.

• PR_Wait_Semaphore(ticks), ticks is the maximum time to be put in a
sleep state, waiting for a semaphore. If the zero is used, the timeout
function is disabled.

• PR_End_Task(PR_active or PR_inactive), returns the control to the task
switcher. If PR_active is used, the task is in a ready position and will be
executed as soon as it’s time. If PR_inactive is used, only another task can
put it in a ready state again

• PR_Stop_Task(Task_number), puts Task_number in a dormant state. The
task can be re-enabled, starting from the end point of execution or totally
re-started again. This lies under the control of the system call
PR_Enable_Task().

• PR_Enable_Task(Task_number, PR_continue or PR_restart), are used to
enable other tasks out of a dormant stat. Using PR_continue as a input
parameter, forces the task to start from last executed statement. PR_restart
forces the process to do a complete restart.

• PR_Query_Task(PR_Task_Number), gets the state of another task.
Possible replies are dormant, ready, waiting semaphore or waiting timer.

• PR_Send _Semaphore(Task_number, Semaphore), sends a semaphore to
another task. If the task is waiting for a semaphore, it’s put in a ready
state. If it’s not waiting for a semaphore this call have none effect. The
semaphore may contain a value between 1 and 15.

• PR_Query_Semaphore(), checks the source for it’s awakening. Possible
outcome is awakened by timer timeout or acceptance of a semaphore.

A Real Time Operating System for embedded platforms 35

5.2.2 Shortcomings of PR_RTX

First of all PR_RTX has very limited features. The non-existent possibility to
allocate memory at runtime is a substantial shortcoming. The ability to create
dynamic processes at run time is of vital necessity for an correct implementation
of SDL.
Further more the RTOS uses semaphores as a communication base between
processes. This doesn’t comply with the strict semantic of SDL, where signals
passed form process to process is the only inter process communication available.
A signal in SDL can theoretically contain an unlimited amount of information, the
send semaphore system call in PR_RTX can only contain a value from 0 to 15.
Resulting in a divergence in the amount may needed and actually offered in
passing a signal containing information. With the already mentioned shortcoming
it seems quite obvious that PR_RTX is not suited for implementation of a SDL
system. Further discussion seems unnecessary when fundamental properties are
not supported in the RTOS.

A Real Time Operating System for embedded platforms 36

5.3 C Micro

C Micro is developed by Telelogic Tau as a RTOS for their code generating tools.
It’s used to realize SDL system in the ANSI C language. The RTOS is a library
with a configurable SDL kernel. Telelogic Tau is one of the leading companies in
tools for system description and code generating.

5.3.1 Properties of C Micro

The Cmicro Library consists of a configurable SDL kernel together with all the
necessary SDL data handling functions. The collection of C functions and C
modules make up the so called SDL machine. The Cmicro kernel can be scaled
down to 4kByte. The RTOS comes in a pre-emptive kernel or a non pre-emptive
kernel version. The run time model in Cmicro is such that there are global
variables used in the generated C code and the Cmicro, library variable and
function names have to be unique within the whole system. In principle no
(automatic) dynamic memory allocation is possible. However this is a truth with
modifications. For signal instances a static buffer is allocated at compile time. The
user has to specify the size of this buffer. If a process wants to send a signal, it
requests a memory area from the buffer. The memory area is released, and when
the signal is consumed the memory area is handed back to the buffer. The
predefined type TIMER exists, and acts just like a signal in the system. If a
process requests a memory area from the buffer when the buffer is empty,
dynamic memory allocation can be used. This option has to be declared before
compilation. Dynamic allocation can’t be used together with the preemptive
kernel. Before compilation the maximum number of instances for a process must
be specified. This is due to the fact that no dynamic allocation is possible. All
processes are crated at compile time, at the number of instances specified by the
programmer. Processes that are not meant to start at the initial start of the
application are put in a dormant state. When a process is to be “dynamically
created” it only changes state from dormant to ready. This behaviour simulates
dynamic process creation. If a process is supposed to be terminated, it won’t
release the memory area, it only enters the dormant state. No formal parameters
can be past at process creation.

A Real Time Operating System for embedded platforms 37

5.3.2 Shortcomings of C Micro

C Micro, even design for SDL implementation, doesn’t support the feature of
dynamic memory allocation in combination with pre-emptive kernel. This is
necessarily not a shortcoming, as long as you specify the maximum number of a
process instances before compilation. The compiler allocates memory area for the
total number of processes, but not all are instantiated. When a “dynamic” process
is created it gets an already allocated area of memory. This approach is time
effective since dynamic allocation can be avoided. The drawback with this
approach is the immediate need for memory. Using a real dynamic allocation is
less memory consuming, an important property when developing for an
embedded target, even though more time is consumed during allocation. Memory
is a scarce resource in our target. Another feature needed to implement the
behaviour of SDL is the possibility to pass parameters to a process at time of
creation. Cmicro doesn’t support this feature due to the fact that all processes are
created at compile time.
Maybe the main reason for not using Cmicro is the cost per license. It is far
beyond the cost that HiA is willing to spend.

A Real Time Operating System for embedded platforms 38

6. Design consideration for the SDL REFLEX RTOS kernel

6.1 Introduction – simple and unambiguous

The primary motivation, when designing this real time operating system kernel
was to simplify the development process of real time systems for embedded
systems. To achieve this goal the most reasonable way was to adopt the behaviour
of a simple and unambiguous formal description language. A thorough study
showed that SDL was the most appropriate at present time; not only because of its
simple conceptual basis, but also because toolmakers like Telelogic, and
PragmaDev provides drawing and analyzing tools for this language. Thus,
complete system could be drawn and analyzed in detail, for subsequently to be
implemented in the AVR target processor on top of the micro kernel running on
top of the micro kernel real time operating system.

6.2 Optimization

Animportant issue regarding the development of the micro kernel real time
operating system is to decide what performance property is the most critical. Two
disjunctive approaches are of current interest, either to code optimize or to speed
optimize. These approaches can partly be determined with a compiler setting, and
partly forced through the structure of the program.
For example by declaring inline functions, one can direct the compiler to integrate
that’s function code into the code of its callers. This makes execution faster by
eliminating the function-call overhead; in addition, if any of the actual argument
values are constant, their known values may permit simplifications at compile
time so that not all of the inline function's code needs to be included. The effect
on code size is less predictable; usually the code becomes larger with function
inlining, depending on the particular case. Inlining of functions is an optimization
and it really "works" only in optimizing compilation.

A Real Time Operating System for embedded platforms 39

6.3 Critical stack

In embedded platforms stack overflow is very critical. If overflow occurs the
system will easily crash, however to ensure that a system don’t run out of stack is
almost impossible. To reduce the chance of stack overflow, it’s common to
observe the stack size during testing, and afterwards to allocate the largest stack
size ever observed by some safety margin. A larger safety margin would provide
better insurance against stack overflow, but for embedded processors used in
commercial products such as sensor network nodes and consumer electronics, the
degree of over provisioning must be kept small in order to minimize per-unit
product cost. Thus, the decision should be closely considered. Testing-based
approaches to software validation are inherently unreliable, and testing embedded
software for maximum stack depth is particularly unreliable because its behaviour
is timing dependent: the worst observed stack depth depends on what code is
executing when an interrupt is triggered and on whether further interrupts trigger
before the first returns.

A Real Time Operating System for embedded platforms 40

6.4 Decision of programming language

6.4.1 Decision factors

The decision of what language to use to implement the operating system is a
difficult one. Many factors must be considered and different weights given to
each of them. The factors relevant to a language decision probably include at
least:

• Efficiency of compiled code
• Source code portability
• Program maintainability
• Typical bug rates (per thousand lines of code)
• The amount of time it will take to develop the solution
• The availability and cost of the compilers and other development tools
• Your personal experience with specific languages or tools

6.4.2 High-level language advantages

The advantages of using a higher-level language, for implementing operating
systems are the same as those accrued when the language is used for application
programming:

• The code can be written faster,
• is more compact,
• is easier to understand,
• is easier to debug.
• Less lines of code = less chance for errors
• More Portable

In addition, improvements in compiler technology will optimize the generated
code for the entire operating system by simply recompile. Finally, an operating
system is far easier to port to some other hardware if it is written in a high-level
language.

A Real Time Operating System for embedded platforms 41

6.4.3 High-level language disadvantages

The major claimed disadvantages of implementing an operating system in a
higher-level language are reduced speed and increased storage requirements.
Although a modern compiler can perform very complex analysis and apply
sophisticated optimizations that produce very good code. In addition, only a small
amount of code is critical to high-performance; the memory manager and the CPU
scheduler.

A Real Time Operating System for embedded platforms 42

6.5 Kernel Implementation

In the decision process, the above problems have been closely weight, for and
against. Since the target for the operating system primary is the AVR 8-bit RISC
microcontroller family, we’ve decided to focus on program size, and memory
usage. Thus, optimization done will be to reduce code size, and not for speed,
though both would be preferable. If more program memory were available, time
optimization would be preferred.

In order to preserve stack safety we’ve made some effort. As describe above the
worst observed stack depth depends on what code is executing when an interrupt
is triggered and on whether further interrupts trigger before the first returns. In
order to overcome this problem we’ve decided not to allow interrupt nesting, this
involves interrupt latency in the system, which occasionally might to be a
problem but solves unpredictable stack usage. In order to do this, all interrupts
have to be handled by the kernel. From SDL's point of view, there isn’t such a
thing as interrupts, neither is use of global variables. Thus, in order to deal with
these features we introduce interrupt-signals. Interrupt signals are signals which
are sent from the environment to a process listening for these signals.
When an interrupt occurs, the system will immediately dispatch a signal to
whatever process listening for this signal, and at the same time give the listening
process the highest priority and set ready to run. In such a way that the listening
process will execute straight after the interrupt handler terminates, to avoid further
latency.
Another important issue regarding stack usage is to inform the users of the
potential problem regarding stack; and aware them of using recursion in their
systems.

The micro kernel does neither use inline functions or templates, in order to keep
the usage of program memory as small as possible.
The SDL REFLEX micro kernel has implemented the usage of dynamic task
creation, so the users should roughly estimate how many dynamic tasks which
possible could run concurrently, in order to estimate if it’s possible to run the
systems on the chosen controller, or if he has to add extended memory.
Since the resources in the AVR family microcontrollers are limited, the kernel
can’t implement all of SDL’s functionality, therefore some features have to be
omitted, what features which will be omitted is described in the next chapter.

A Real Time Operating System for embedded platforms 43

7. Functional description of the SDL REFLEX microkernel

7.1 Introduction

SDL REFLEX is the micro kernel of a real time operating system. The micro
kernel provides the most essential functions to write programs for embedded
computer systems.
The kernel is especially designed to implement systems described in
SDL – “The Specification and Description Language” recommended by ITU-T.
SDL REFLEX is primary implemented for Atmel’s AVR 8-bit RISC
microcontroller family, and is written to compile with the GNU ANSI C compiler
for AVR v.3.3.

7.2 Overview

SDL REFLEX is a small, portable and efficient pre-emptive microkernel real time
operating system. It has been designed specifically for resource-constraint
embedded systems. SDL REFLEX controls access to system resources and
schedules program processes according to process priority. By introducing the
process concept, the internal system operation is coordinated and synchronization
can be performed between processes. SDL REFLEX is a pre-emptive operating
system, which means that the system can interrupt any process at any point in the
execution, and let another process continue execution.
The processes communicate with each other through signals. A signal is actually a
message which is sent from one process to another in order to inform the receiver
of an event, or to send some data. Each process has its own FIFO queue for
incoming signals, in which received signals are stored. When a signal is
consumed, it’s removed from the FIFO queue. All the actions a process performs
are usually responses to received signals. All interaction with the SDL REFLEX
microkernel is through a set of system services.

A Real Time Operating System for embedded platforms 44

7.3 Most prominent kernel features

An SDL system is defined by the behaviour of the processes it consist of and how
they are interconnected. By, ignoring many details we can describe an SDL
system at run-time as process instances that communicate by sending signals to
each other or to the environment. Each single process can be viewed as a finite
state machine, acting on input. Depending on the next input, the process performs
a transition; that may include many actions, and finally moves to a new or same
state. Its next state may be determined by decisions in the actions. In SDL, a state
is the only location where input from the queue can trigger a transition. All
communication in SDL is asynchronous.

Down below is a list of the system services that has been designed to “reflex” the
behaviour of SDL. These are only the most prominent features.

7.3.1 CREATE

SDL:

In SDL the create statement is associated with the creation of dynamic process
instances. In SDL parameters may be passed to the created process instance.

SDL REFLEX:

This function tries to create an instance of a given process-type; this might fail if
no more memory is available, and if this happens a NULL pointer is returned.
If the creation of the process was successful, a pointer containing the handler for
this function is returned, in SDL REFLEX this is referred as the process Pid.
Unlike the SDL definition, in which CREATE only is associated with the creation
of dynamic processes, the SDL REFLEX create has be used to create both static
and dynamic processes. Further, in SDL REFLEX the kernel needs to know how
much workspace the new process is assumed to use and the priority of the
process, this information is to be passed as parameters to the create function. In
SDL REFLEX as in SDL, it is possible to pass creation parameters, if this is to be
done, CREATE_WITH_PARAMS function should be used.

A Real Time Operating System for embedded platforms 45

Pid CREATE (void (*proc_code)(void *),
 u08 priority,

u16 stackSize)

Pid CREATE_WITH_PARAMS (void (*proc_code)(void *),
u08 priority,
u16 stackSize,
u08 paramSize,
void*param);

Figure 4 Create

A Real Time Operating System for embedded platforms 46

7.3.2 INPUT

SDL:

In SDL all signals reaching a process are stored into a FIFO (first in first out)
queue associated to every process instance.
When performing an input:

• The first signal in the signal queue is removed from the queue.
• The values of the signal parameters if any; are assigned to the variables

specified in the input symbol.
• The Pid of the process which transmitted this variable is stored into the

predefined variable SENDER.
• The receiver process performs the transition.

SDL REFLEX:

This function does not really perform the assumed action described in SDL, but
when used in association to WAIT_SIGNAL they comply with the SDL input
concept. The SDL REFLEX function INPUT, is used to select a set of signals,
which the process is going to wait for. At the end of the signal list, a special
terminator should be applied, to inform the kernel of where to stop scanning for
arguments. In SDL states, all processes have an infinity sized signal-queue. The
select list is also associated with the process, each time the process is to be
resumed, the process scans through its input queue to see if any of the signals in
the queue exist in the select list. If it does, this signal is to be consumed. And the
process is to perform a transition.

• If priority signals is present in the list of input signals, these will if present be

picked from the input queue before other signals, even though they don’t
appear to first in the FIFO queue.

void INPUT (SIGNAL signal,... /* sig1,sig2,…,sigN, END_LIST */);

 Figure 5 Input

A Real Time Operating System for embedded platforms 47

7.3.3 SIGNAL

SDL:

In SDL a signal is transient asynchronous event, transmitted by a process instance
to another process instance. A signal may carry one or more parameters.

SDL REFLEX:

In SDL REFLEX a signal has to be created prior to be used. And to create a new
signal, simply call the system service NEW_SIGNAL with subsequent
parameters.
This function is executed whenever a new signal is needed, it’s not certain it will
succeed. If it proves a success, memory is allocated. To be able to estimate how
much memory which is to be used with the signal, the function needs to be
informed of the size of all the parameters which is to be sent with the signal.
If this call does not succeed in allocating memory, a NULL pointer is returned,
instead of real signal pointer.
In addition to the system service NEW_SIGNAL, the kernel has another
implementation of the same function, but is to be used to deal with signals sent
from the environment. This service has some additional parameters. The
“taskCode” parameter is used to specify which process, is to be used as an
“interrupt handler”, the next parameter is to specify which interrupt should be
redirected. The third and the last parameter is used to specify if the process could
be interrupted during execution or not, this is because some interrupts won’t be
cleared unless you’ve actually read a specific register.

SIGNAL NEW_INT_SIGNAL(PC taskCode, u08 interrupt, u08 Interrupted);

SIGNAL NEW_SIGNAL (u16 number_of_args, ... /* arg1,arg2…*/);

A Real Time Operating System for embedded platforms 48

7.3.4 OUTPUT

SDL:

Output is used to transmit a signal from one process instance to another.
If destination is ambiguous, SDL has include the keyword VIA and TO to specify
a unique receiver process instance, or the signal will be sent in a non-deterministic
way; which is not tolerable in SDL description of a real system.
The first possibility to avoid this is to use output VIA; to specify on which signal
route the signal is supposed to be sent, another possibility is to use output TO
followed by the name of the receiver process. If more instances of the same
receiver process exist, the output will have to use the receivers Pid to
unambiguous determine which process instance which is supposed to receive the
signal.

SDL REFLEX:

This is a complete SDL output function; the usage is on the other hand dissimilar.
In SDL REFLEX output is implemented as a service with the same name, but it’s
usage is not exactly like SDL’s description. This is because neither signal routes,
nor channels have been implemented in SDL REFLEX, thus SDL REFLEX’s
output implementation only accepts the Pid (process identification) as a valid
destination argument, this is always unambiguous, and thus will be able to handle
all the previously mentioned scenarios. With the parameter signal_id, the signal id
is to be specified, this is the value returned from the system service
NEW_SIGNAL.
The dest parameter, is the Pid of the process which is to receive the signal.
If signal data is to be sent along with the signal, pointers to all the memory
locations where the parameter data is located are to be inserted in the placeholders
as follows. Signal data should neither be declared as static nor global.

void OUTPUT (SIGNAL signal_id, void *dest,...)

Figure 6 Output

A Real Time Operating System for embedded platforms 49

7.3.5 TIME & TIMERS

SDL:

In SDL a timer is an object, owned by a process, that is able to generate a timer
signal and put this signal into the input queue of the process. A timer can be
activated with the set construct. The set construct has two arguments. First one is
the absolute time for the expiration of the timer, and the other one is the name of
the timer. For the specification of the expiration time, the expression NOW (of the
predefined type Time, which is similar to Real) can be used. NOW always gives
the current time during the interpretation of the system description. An activated
timer can be deactivated with the reset construct. After resetting the timer, the
process will behave in a way as if the timer never had been activated.

SDL REFLEX:

In SDL REFLEX no absolute timers are present, thus NOW doesn’t exist in SDL
REFLEX. In SDL REFLEX all defined timers are relative, thus if we had
executed the statement SET(15,t), we would had to wait for an timer event in 15
timer units.
A timer unit in SDL REFLEX is by default set to 1ms.

In order to use SDL REFLEX timers, they have to be created. With the service
NEW_TIMER() a new timer will be created, if memory is available; the function
returns a TIMER object. To deal with the timer objects, SDL REFLEX has
provided some operators:

• SET()
• RESET()
• ACTIVE()

The timer function ACTIVE() is used to check if a timer is counting(active) or
not. Below we’ll illustrate the effect of the SET and RESET on a timer, these
statements are true for both SDL and SDL REFLEX.

Timer state / event SET RESET Timeout
Stopped(inactive) 1. counting 2.stopped
Counting 3.reset,restart

counting
4.stopped 5.put timer into

queue
Timer is in queue 6.remove timer from

queue, restart
counting

7.remove timer from
queue, stopped

Table 3.

A Real Time Operating System for embedded platforms 50

7.3.5.1 NEW_TIMER

SDL:

This constructor is not implemented in SDL, but in a real implementation such a
constructor has to be implemented.

SDL REFLEX:

This function creates a timer object if memory space is available. A timer is
associated with its creator, and thus only the timer creator is allowed to do actions
with the object.

TIMER New_TIMER (void); // create a new timer.

7.3.5.2 SET

SDL/SDL REFLEX:

The function set the duration t for a timer, and to start the timer. If the timer is
active when this function is executed, the timer will be reset. Thus the timer
expiry is postponed with t timer units.

void SET (u16 duration, TIMER timer); // set duration to expire

7.3.5.3 RESET

SDL/SDL REFLEX:

This function is used to stop a timer. If a timer is active, but hasn’t yet expired,
the timer will be deactivated immediately. If the timer is inactive, but the signal
which was sent previously still remains in the signal input queue, this signal will
be removed from the queue.

void RESET (TIMER timer_id); // reset timer

A Real Time Operating System for embedded platforms 51

7.3.5.4 ACTIVE

SDL/SDL REFLEX:

This function is used to examine if a specific timer is active, if true a boolean
value is returned. If the timer is active 1 is returned else 0 is returned.

u08 ACTIVE (TIMER timer_id); // check if timer is counting

7.3.6 STOP

SDL:

After executing stop, the process instance and it’s associated input queue and the
signals are immediately destroyed. In that way the executing process instance
becomes terminated.

SDL REFLEX:

This function is actually killing the process, and is usually associated with
dynamically created processes. This call will release all memory occupied by the
process. All signals in the signal input queue will be deleted, and all timers
associated with the process are deleted (both active and inactive).
If the process to be killed has children, these children will stay alive but will be
made orphans. This behaviour complies with SDL.

void STOP(void)

 Figure 7 Stop

A Real Time Operating System for embedded platforms 52

7.3.7 SAVE

SDL:

In SDL all signals reaching a process are stored into a FIFO (first in first out)
queue associated to every process instance. The first signal ready to be consumed
in the FIFO input queue of a process instance can be either input by the instance
or saved, if no input symbol under the current state contains the signal name; or
discarded, if the signal name is not specified in an input nor in a save. When a
signal is saved, it remains in the input queue at the same position, and the next
signal in the FIFO queue is examined to see if they can be input, saved or
discarded.

SDL REFLEX:

This function does not really perform the assumed action described in SDL, but
when used in association to WAIT_SIGNAL they comply with the SDL input
concept. The SDL REFLEX service SAVE, is used to select a set of signals,
which the process is going to search through when a signals arrives the process.
At the end of the signal list, a special terminator should be applied, to inform the
kernel of where to stop scanning for arguments. The select list is associated with
the process, each time the process is to be resumed, the process scans through its
input queue to see if any of the signals in the queue exist in the select list. If it
does, this signal is to be consumed. If it doesn’t the process checks to see if this
signal exist in the save queue, if it does the signal remains in the input queue, and
isn’t discarded as it otherwise would.

void SAVE (SIGNAL signal,... /* sig1,sig2,…,sigN, END_LIST */);

 Figure 8 Save

A Real Time Operating System for embedded platforms 53

7.3.8 START

SDL:

In SDL, every process must contain exactly one start symbol. When a process
instance is created, the first transition to execute is the transition beginning from
the start symbol.

SDL REFLEX:

SDL REFLEX contains a function with the name start; this function is not
intended to be used in any process. This function is only used to start the
execution of the SDL REFLEX micro kernel, and thus can only be executed ones.
Start is the last instruction to be executed in main.
The start function is initiating the environment, such as the tick timer, and finding
first process to run. Load the process information, and then for eventually to start
the process execution.

void START(void)

7.3.9 SELF

SDL/SDL REFLEX:

This function, when executed will return the Pid of the current process. The SDL
REFLEX implementation of this functions is in accordance to SDL.

Pid SELF(void);

7.3.10 SENDER

SDL/SDL REFLEX:

This function, when executed will return the Pid of the process which sent the last
consumed signal. The SDL REFLEX implementation of this functions is in
accordance to SDL.

Pid SENDER(void);

A Real Time Operating System for embedded platforms 54

7.3.11 PARENT

SDL/SDL REFLEX:

This function, when executed will return the Pid of the process which created the
process executing. The SDL REFLEX implementation of this functions is in
accordance to SDL.

Pid PARENT(void);

7.3.12 OFFSPRING

SDL/SDL REFLEX:

This function, when executed will return the Pid of the process of the last created
child process of the executing process. The SDL REFLEX implementation of this
functions is in accordance to SDL.

Pid OFFSPRING(void);

A Real Time Operating System for embedded platforms 55

7.4 Additional SDL REFLEX system calls

In addition to the previously mentioned functions which are described in SDL,
there are more functions in SDL REFLEX which isn’t described in SDL, but is
critical to completely implement the behaviour of SDL.

7.4.1 WAIT_SIGNAL

SDL:

All processes in SDL are either in transition or waiting. No symbol is specified to
explicit describe a wait state, but obviously such a state is actually present.

SDL REFLEX:

This function has to be called each time a process is actually waiting for a signal
to arrive, this function is used after INPUT or/and SAVE or/and SET.
It’s absolutely necessary to perform this function call when a process is waiting
for a signal, because this function puts the currently running process into
sleep(blocked) until the pending signal is present. Meanwhile another process
which is ready to run will be set to execute. Since, SDL REFLEX is to be used
within a microcontroller which by nature only has one executing unit, all systems
running within the controller does this in a pseudo-parallel manner, thus each
process which is running, but should be sleeping is “stealing” valuable time from
the other processes.

When this function eventually returns, it delivers the signal which arrived.
If the received signal contains data, these data could be read using the system call
GET_SIGNAL_DATA this function is described in 9.4.2

SIGNAL WAIT_SIGNAL(void);

A Real Time Operating System for embedded platforms 56

7.4.2 GET_SIGNAL_DATA

SDL:

Not described in SDL

SDL REFLEX:

This function collects all data connected to the last consumed signal; and transfers
these data into the variables specified in the parameter list. All the parameter data
types given as parameters to the parameter list have to match those parameters
which were specified when the signal initially was created.

void GET_SIGNAL_DATA(void *param_1,... /* param_2,param_3 */);

7.5 Compatibility between specification and implementation

It seems like SDL is not much unlike the concurrent nature of the embedding
environment, it is message oriented, the communication is asynchronous and each
process has the behaviour of a state machine. In addition to these features, SDL
has more to offer. Due to SDL’s simple conceptual basis, SDL has maintained its
original flavor, and is a formal language implying that every concept and
construct in the language has a precise meaning and can be executed. With these
facts it’s should be reasonable to think that SDL would be an excellent choice for
describing systems in embedded platforms. It’s really an excellent choice, but
when doing so, we have to take some issues into consideration.

Unfortunately, SDL and real time systems running within SDL REFLEX do not
operate in same “environment”. SDL is originally developed to describe
distributed systems (telecommunication systems), where each SDL process runs
independently on its own processor, unlike real time embedded systems running
within an embedded platform, where all processes have to execute within the
same processor, in a pseudo-parallel manner. In SDL, systems can be divided into
independent subsystems that more easily can be designed, analyzed and
composed. However in real time systems, executing in a pseudo-parallel manner,
module independency is ruined by the fact that all modules running on one
processor share the same time resource. Therefore after the composition of
subsystems, the original real time properties of the individual subsystem can not
be sustained. Another problem with real time systems running SDL REFLEX, is
caused by the priority scheduling algorithm, is the possibility that processes with
low priority are being indefinitely blocked, if the embedded systems is heavily
loaded. This should never be the case in distributed systems where each process
has its own processor. Priority aging could be used as scheduling algorithm to
solve this problem, but this algorithm uses significantly more time to execute, and

A Real Time Operating System for embedded platforms 57

much more program space is required to implement this behaviour, thus it’s not
suitable to implement this for a micro kernel operating system.

7.5.1 Timing constraints

In SDL, no transitions take time, neither does signal exchange through signal
routes, thus when analysis is performed, timing is of no concern in SDL. However
in a real time system, timing constraints are of very much importance. So a
throughout performance analysis has to performed, after the SDL model is
complete.

In SDL, modules can easily be added to a model without degrading the system
performance. This is not the case in a real time embedded system, because each
additional component would need timing resources to execute, thus the system
would decrease its performance for each additional module applied; the result are
that all timing analysis has to be redone for each applied system block.

A Real Time Operating System for embedded platforms 58

7.6 Omitted SDL properties

During the development of the AVR microkernel, some SDL properties have been
omitted. Down below, each of the omitted properties will be described in detail,
and why these properties are left out in the kernel implementation.

7.6.1 Behaviour

7.6.1.1 Imported / Exported

In SDL a variable is only visible within the process in which it has been created.
SDL has defined a simple way to interchange process data, by using the imported
and exported value shorthand.

It’s possible to exchange data without using imported and exported. If a process
wants to access a variable value of another process, then a signal interchange with
the process owning the variable could be arranged.

Since it’s possible to achieve the same functionality with other constructs, we
have decided to not implement the behaviour of imported /exported in the kernel
implementation.

7.6.1.2 Service

The main advantage with services is that they can share common data. The
disadvantage is that they are mutually exclusive (they share the same queue), and
that they have to have disjunctive input signals sets (since the current signal
consumed from the queue determines which service is to run). This way force
unwanted renaming of signals just because you are using services.
One tends to prefer processes, unless one particularly wants to share data between
the state machines, in which case services is one way of solving it. But not the
only way; remote procedures, operations on data types or signaling to a
"database" process are other ways of sharing data.
It is very complex to implement the service property in an RTOS. In our opinion
it’s not necessary. It’s quite possible to achieve the same advantages with other
SDL concepts. This concept has also been removed in the new SDL
recommendation (SDL-2000) from ITU.

A Real Time Operating System for embedded platforms 59

7.6.1.3 Continuous signal

SDL:

In describing systems, the situation may arise where a transition should be
interpreted when a certain condition is fulfilled. A continuous signal interprets a
Boolean expression and the associated transition is interpreted when the
expression returns the predefined Boolean value true.

SDL REFLEX:

A continuous signal is an expression that is evaluated right after a process reaches
a new state. It is evaluated before any message input or saved messages.
The behaviour of continuous signal can easily be achieved with conditional
statements even if more continuous signals with distinct priority are present in the
same SDL state. An IF…ELSE combination should be suitable as a substitution.
Figure below shows an example.

 Figure 9. Continuous signal code Figure 10. continuous signal SDL

A Real Time Operating System for embedded platforms 60

7.6.1.4 Enabling condition

SDL:

An enabling condition makes it possible to impose an additional condition on the
consumption of a signal, beyond its reception as well as on a spontaneous
transition.

SDL REFLEX:

To describe this condition, two different scenarios might occur:
• The variable used as continuous signal is a local variable.
• The variable used as continuous is imported from another process.

To visualize these scenarios we’ve made two code snippets, one for each scenario.
The first snippet uses a local variable.

Figure 11 Enabling condition local variable.

A Real Time Operating System for embedded platforms 61

Figure 12 Enabling condition imported variable.

A Real Time Operating System for embedded platforms 62

It should be obvious that this approach is troublesome for a multi tasking kernel.
The problem is that the process enters a loop, and remains in this loop as long as
N>0, thus losing valuable execution time. A much better approach would be to
redesign the model. How this could be done is described in the figure below.

Figure 13 Enabling condition SDL

7.6.1.5 Spontaneous transitions

If the signal for an input is named NONE then the succeeding transition is a
spontaneous transition i.e., the succeeding transition can be activated without any
stimuli for the process. This will make the state-machine non-deterministic, in
that way input ‘NONE’ will certainly not be used in an SDL description; input
‘NONE’ is mainly used for ‘testware’ parts of a model, such as protocol layers
stubs. Thus, this will not be implemented in SDL REFLEX.

Figure 14 Spontaneous transitions.

A Real Time Operating System for embedded platforms 63

7.6.1.6 View

As opposed to import / export, view always gives the current value of the revealed
variable. This construct has been moved from SDL-2000, and is therefore not
implemented in the real time kernel.

7.6.1.7 Optional transition string

The purpose of optional transition string is similar to optional definition, but
transposed to transitions in a process. The symbol used is called an alternative.
This is similar to #ifdef in ANSI-C

7.6.2 System Structure

SDL provides some entitles to structure a description into a hierarchy, in order to
improve the system overview and for modularity; which is especially important in
large and complex systems. The micro kernel real time operating system does not
implement this hierarchy. This is because, the creation of such a hierarchy; will
increase the kernel size considerably. The disadvantage is the lost ability to reuse
code.

7.6.3 Communication

In SDL, the state machines contained in process instances communicate together or
with the environment by transmitting and receiving signals through channels and
signal routes.

The distinction between signal routes and channels are; signal routes communicate
among processes, while channels communicate among blocks and the environment.
All channels contain in addition a FIFO queue used to delay signals. Our real time
operating system is designed to operate in a single chip solution. Within a SDL
system where all processes executes on the same processor, neither channels nor
signal-routes are necessary to create a connection between two processes.
Thus, both channels and signal-routes will be missing in the SDL REFLEX
implementation.
All stimuli from the environment are handled by SDL REFLEX’s internal interrupt
handlers.

A Real Time Operating System for embedded platforms 64

7.6.4 Constructs

To help designers when facing large descriptions, and to ease teamwork and
maintenance, SDL provides some constructs. These constructs are:

• Package – To organize a description in several units
• Types of systems, of blocks, of processes and service – for better reusability
• Specialization (inheritance and virtuality)
• Context parameters

None of these constructs are implemented; these constructs are not essential to
implement the behaviour of SDL, and is thus not implemented; though it would be
nice to have, if more resources were available.

A Real Time Operating System for embedded platforms 65

7.7 Data Types

Data in SDL are based on Abstract Data Types (ADT); which means that SDL
doesn’t implement dependent features such as the number of bits to store the
different data types. An ADT is declared using the NEWTYPE construct, and is
similar to a class in many programming languages; it provides a data structure plus
some operations to manipulate the structure. The data structure can be enumerated
values (LITERALS), a struct, an array, etc.

7.7.1 Predefined data

Predefined data types are defined in the Annex D to ITU-T recommendation Z.100.
They are contained in the package called Predefined, implicitly used by an SDL
description. The package Predefined also defines the operators which can be used on
those types.
Most of the predefined data types, can easily be mapped to common ANSI-C
primitives, their actual number of bits, is not defined in SDL but in a programming
context, all primitives will have fixed data size. With matching operators, no work
has been done, but in most cases the operators are same or equivalent for both SDL
and ANSI-C.

Predefined SDL data types C types Byte Size
Boolean Char 1 byte
Character Char 1 byte
String char* 2 byte
Charstring char* 2 byte
Integer Int 2 byte
Natural unsigned int 2 byte
Real Float 4 byte
Array No equal !
Powerset No equal !
Pid Pid 2 byte
Duration, Time unsigned long 4 byte

 Table 4. Mapping of data types

A Real Time Operating System for embedded platforms 66

7.8 Global time

The micro kernel real time operating system, has no absolute global time, all time is
relative. In SDL the keyword NOW reference the actual global time. As a result,
NOW isn’t implemented. When we are setting timers, we’ll set the duration rather
then the exact time, when the timer is supposed to expire. In SDL a timer unit is not
specified. Within the SDL REFLEX real time kernel, the time unit is by default set
to 1us, but is configurable by the user.

A Real Time Operating System for embedded platforms 67

8. Discussion

8.1 Introduction

The thesis motivation was to investigate the possibilities of using design
automation software to develop software for embedded platforms and particular
for the AVR micro controller family. To achieve this some research had to be
done. As with all design automation software, they need a formal system
description to capture the functional and non-functional requirements of the
system. Hence, we started to investigate different formal description languages,
and through thorough research we discovered different lacks of properties in most
of these languages, thus these where to be rejected. Finally, we discovered SDL
which seemed to be a worthy candidate for our mission. At first glance SDL
seemed to perfectly satisfy all our needs. Hence, further investigation and analysis
revealed some pitfalls that system designers should be aware of. Even after
pitfalls where revealed, it seemed to be quite possible to use SDL to describe
systems in embedded platforms. Through this research we were to discover the
most prominent properties a real time operating system should possess, to succeed
in describing the SDL behaviour. We choose to do a throughout research of the
most common real time operating systems. The results from these investigations
were not uplifting from our point of view, though some kernels fulfilled our
demands. The disadvantage of these kernels was that they were not targeted for
the AVR processor family, or if they were; they were to resource demanding.
Thus, we started to create a framework for a kernel which purpose was to
implement the most prominent properties of the SDL behaviour, and at the same
time it should be able to fit into the AVR family of microprocessors. This task
was indeed time consuming, but eventually we had made a micro kernel
satisfying our needs. Though, the creation took some time, valuable discoveries
where revealed with regard to how a SDL implantation has to be performed to
achieve the expected results from a SDL system running within a multitasking
environment.

A Real Time Operating System for embedded platforms 68

8.2 Formal descriptive languages

Several tools, using different approach, exist on the market today. Formal
descriptive languages, generally helps the designers express and verify their
design ideas in an adequate way. This means that the language is expressive and
unambiguous; it has platform-independent semantics, operational semantics and
adequate support for modularization. Comparing the different approaches, tools
available on the market today which use behavioural approach are preferred. This
is due to the fact that almost complete code can be generated from a system
description if state machines and state transitions describe the application. A
behavioural approach system can be implemented with a RTOS designed for it
since the behaviour of real time applications very well matches the behaviour of
state machines.

8.3 SDL

SDL is a modeling language which primarily was developed for use in
telecommunication systems including data communication, but as we’ve shown it
can be used in all real time and interactive systems. It was designed for the
specification and description of the behaviour of such system, i.e. the interwork
between the system and its environment. It is also intended for the description of
the internal structure of a system, so that the system can be developed and
understood one part at a time. This feature is essential for distributed systems, and
has also been widely used in the software industries for such systems. SDL covers
different levels of abstraction, from a broad overview down to detailed design
level. It was not intended to be an implementation language, but more or less
automatic translation of SDL information to a programming language is, however
possible and is especially used for developing distributed systems. However, for
embedded systems, the situation is different, though it is possible to develop SDL
systems if certain rules are followed.
Through our comparison among many formal description languages, SDL is the
language which was chosen. Why is that ?
If we describe the nature of real time applications, you would be surprised to see
how well this behaviour matches the behaviour of SDL.
SDL is especially suitable for control flow dominated systems, it’s message
oriented has a asynchronous communication and SDL processes behaves like state
machine, thus this behaviour matches well the event driven nature of many real
time applications. Hence, SDL became our number one choice.

A Real Time Operating System for embedded platforms 69

8.4 Real time properties

To achieve the possibility of describing a SDL system in an embedded platform,
the most prominent SDL features was to be implemented.
Much time was spent on discussions, on how to create a framework for such a
kernel, though something was for certain, the kernel which was to be made had to
emulate the behaviour of a true parallel executing system; this is actually
impossible to achieve in an embedded system, but a pseudo-parallel system is in
most cases suitable. Thus, we created a pre-emptive multitasking kernel; the
kernel had to be pre-emptive to be able to adopt the behaviour of the SDL timer
constructs, and to be able to react spontaneous on incoming signals as is the
situation with interrupts. If these were the only criteria’s for our kernel many real
time kernels would be appropriate for our mission, but what’s not that common
for real time kernels, is how signal are to be handled.
Within a SDL system; a process should have an infinite input queue, where
incoming signals are to be queued. When a signal has initiated a transition, it
should be consumed and removed from the input queue. A process should also
have the possibility to save signals for later use, if no input under the current state
contains the received signal. A great effort was done, to implement this behaviour
but without it, the kernel would never be able to describe any SDL systems.
Further, other SDL properties as triggers and transition elements where
throughout analyzed to see if they were really necessary to describe systems. The
result from this research is found in the chapter about “Omitted SDL properties”
and in “Functional description of the SDL REFLEX microkernel”.

A Real Time Operating System for embedded platforms 70

8.5 Pitfalls

During our throughout research of SDL and through the kernel development
process some pitfalls where discovered.
Some of these pitfalls where introduced because of our pseudo-parallel
environment, some because of the SDL timer definitions, and some because of
our resource constraint target. SDL which purpose is to describe processes
running concurrently, has a property for describing continuous signals; such a
construct is within an embedded platform inappropriate because it might be
consuming a lot of valuable time, which should be used by other processes to run.
Thus, the usage of this construct should be obeyed. SDL has some language
aspects for expressing features of timed systems, these are unfortunately
inadequate for hard real-time systems development, because they are
indeterminable. When a timer is set to t seconds, the interpretation of this timer is
in fact an arbitrary time duration dt (dt € [t,∞])). Such a weak interpretation of
timers cannot provide enough expressive power to describe the timing behaviour
of hard real time systems. Thus, the system should not be used for hard real time
systems. The time mechanism in SDL is heavily affected by the platform-
dependent physical clock. Such a platform dependent timing mechanism cannot
provide facilities to debug and analyze timing behaviour of a model, because any
debugging and analysis observation may introduce extra time passing, which
changes the real-time behaviour of the model and leads to unreliable debugging
and analysis results. Thus, whenever a change in a system description has been
performed, all system analysis has to be redone.
In SDL there is no limit on how many processes that could be included in a
system, neither are the concern of process size nor stack usage. However in a real
time kernel operating systems, these parameters are of very much importance.
Hence, these parameters has to be closely observed during the real time
application development, if any of these parameters exceeds its size the system
won’t run or it will crash at some point. If its impossible to rewrite the system, to
decrease t.ex code size the kernel should be ported to another processor. We’ve
certainly made this possible because most of the kernel is written in the language
of C, just a small amount of code is has to rewritten to move the kernel to another
target platform.

A Real Time Operating System for embedded platforms 71

8.6 Prototype

After the system was written and it worked correctly, bottleneck routines was
identified and replaced with assembly-language routines. In this project GCC was
used as development platform. GCC is open-source, free of charge and a port for
the AVR-family exists. Most of the operating system was written in C to simplify
maintenance and portability; however it was necessary to write some processor
specific code in assembly. In addition to the properties already mentioned, GCC
for AVR have lots of pre-built libraries, most of these libraries are reentrant, wich
is requisite if they are supposed to collaborate with a pre-emptive operating
system.

8.7 Future Work

SDL has some object oriented concepts that preferably could be added to SDL
REFLEX, this hasn’t been done because at present time there is no debugger for
the AVR family that is able to debug code written in C++. But when eventually
C++ is supported, SDL REFLEX should include support for these object oriented
concepts. SDL is planned to be a profile of UML 2.0; so that executable
unambiguous software can be produced. In this action some of SDL concepts is to
be removed and in some is to be substituted by others which are which is not
clearly defined yet, but when this work has been done, it would be of a great
effort to rewrite SDL REFLEX to include these changes. To improve SDL
REFLEX, we would like to invite other programmers to join for further
development, thus SDL REFLEX will be distributed as open source through
SOURCEFORGE under a GNU GPL (GNU Public Licence) license.

A Real Time Operating System for embedded platforms 72

9. Conclusion

SDL has through this thesis been deeply investigated, and it seems like SDL is
appropriate to use for most types of embedded systems, if a descent framework is
offered that implements the simple semantics of SDL. If such a system is present,
complex software systems could be developed in less time, and with less error
than what’s the case for conventional programming. Thus, the software
development costs and time to market would be reduced. The matter of fact, to
use this kind of software development could for some firms be the only way to
survive in the business.

A Real Time Operating System for embedded platforms 73

10. Bibliography

Silbergscatz, Abraham.
Galvin, Peter Baer.
Operating system concepts, fifth edition.

Doldi, Laurent.
UML 2 Illustrated.
November 2003

Comer, Douglas.
Operating System Design, the xinu approach.

Tanenbaum, Andrew S.
Woodhull, Albert S.
Operating system, second edition.
1997

Doldi, Laurent.
Validation of communication systems with SDL.
2003

Bræk, Rolv.
Haugen Øystein.
Engineering real time systems.
1993

Doldi, Laurent.
SDL Illustrated.
Mai 2001.

Labrosse, Jean J.
MicroC/OS-II, second edition.
2002

A Real Time Operating System for embedded platforms 74

The ITU Telecommunication Standardization Sector (ITU-T)
www.itu.int/ITU-T/
ITU-T Recommendations.
Z.100 Specification and description language.
Z.109 SDL combined with UML.
Z.120 Message Sequence Chart (MSC).

Verschaeve, Kurt.
Combining UML and SDL.
System and Software Engineering Lab, Vrije Universiteit Brussel.

Mentor Graphics.
Embedded SoftwareWhite Paper.
Optimization Techniques for Risc Microprocessors.
Juli 1997.

OSE Systems.
OSE for AVR kernel, reference guide.
www.ose.com

Telelogic.
The Cmicro Library, reference guide.
www.telelogic.com

Progressive Resources LLC, Indianapolis.
PR_RTX reference guide.
http://www.prllc.com

SDL forum.
Tutorial SDL 88.
http://www.sdl-forum.org/sdl88tutorial/1/benefit.htm

What OS
Free Real Time Operating System (RTOS) solution
http://www.sticlete.com/whatos/

A Real Time Operating System for embedded platforms 75

Free RTOS homepage
http://www.freertos.org/implementation/index.html

John Regehr’s stack bounding page
http://www.cs.utah.edu/~regehr/stacktool/

A Real Time Operating System for embedded platforms 76

11. Appendix

11.1 Users reference guide for SDL REFLEX.

A Real Time Operating System for embedded platforms 77

A Real Time Operating System for embedded platforms 78

A Real Time Operating System for embedded platforms 79

A Real Time Operating System for embedded platforms 80

A Real Time Operating System for embedded platforms 81

A Real Time Operating System for embedded platforms 82

A Real Time Operating System for embedded platforms 83

A Real Time Operating System for embedded platforms 84

A Real Time Operating System for embedded platforms 85

A Real Time Operating System for embedded platforms 86

A Real Time Operating System for embedded platforms 87

11.2 Test case:

11.2.1 Lerret styring.
(CD-Rom)

11.2.2 Tappesystem
(CD-Rom)

11.3 SDL REFLEX source code.
(CD-Rom)

11.4 AVR datasheets
(CD-Rom)

11.5 WinAVR
(CD-Rom)

11.6 AVR studio 4.03
(CD-Rom)

11.7 Plugins for PN2

11.7.1 SDL Reflex syntax highlight
(CD-Rom)

11.7.2 Custom Tools
(CD-Rom)

11.8 Sample Makfiles
(CD-Rom)

11.9 GPL Gnu Public License policies
(CD-Rom)

11.10 Device drivers for the “HiA Trainer”
/CD-Rom)

11.11 SDL REFLEX – Users Reference Guide
(CD-Rom)

