
Application Development Using J2ME – Architecture for Device Independence

Application Development using J2ME –
Architecture for Device Independence

By

Terje Eggum

A thesis submitted for the degree of
Master of Science in Information
and Communication Technology

Agder University College -
Faculty of Engineering and Science

and
University of New South Wales -

Faculty of Engineering

Grimstad, 18th of July 2005

Application Development Using J2ME – Architecture for Device Independence

ABSTRACT
The operating system Symbian OS and the programming language Java have existed in a

symbiosis since the first version of Symbian OS arrived on the mobile scene. This thesis

explores important aspects of the mobile version of Java, namely the Java 2 Micro Edition, on

Symbian OS based mobile phones.

Part one of the thesis reviews the structure and evolution of Java 2 Micro Edition and the

Symbian OS, and the symbiosis between them. This is done through a thorough theoretical

investigation of the programming interfaces offered to the developer. Particularly certain

problem areas such as hardware control, wireless messaging, network services and file access

have been investigated. To evaluate the maturity and feature richness of the platform, a test

application has been made which incorporates features depending on all these areas.

We found that Java 2 Micro Edition platform was quite easy to use when implementing

features like camera recording, HTTP/Servlet communication and Graphical User Interface

programming. However, we also experienced that the platform is lacking some advanced

options in each of the mentioned features.

In the second part of the thesis, the device independent aspects of Java2 Micro Edition have

been examined. The idea was to evaluate the portability offered by this development platform,

and consider the feasibility of creating device independent applications that offer an even

higher degree of portability. By reviewing Java2 Micro Editions built in portability and

studying relevant projects, two frameworks, built on top of Java2 Micro Edition, have been

suggested as possible tools for development of better device independent applications.

 I

Application Development Using J2ME – Architecture for Device Independence

PREFACE
This Master thesis is the final work in order to achieve the Master of Science degree in

Information and Communication Technology at Agder University College (AUC), Faculty of

Engineering and Science. The thesis is written in collaboration with AUC and the University

of New South Wales (UNSW).

The work has been done in Sydney, Australia and Grimstad, Norway between February and

July 2005.

The thesis consist two parts, one joint part and one individual part. The first and main part is

written in collaboration with fellow student Håvar Lunberg, the second part is written

exclusively by me, Terje Eggum.

We would like to thank our supervisor, assistant professor Lars Line (AUC) for valuable

guidance throughout the thesis. We would also like to thank our assistant supervisor, Fritjof

Boger Engelhardtsen, for useful feedback.

Grimstad 18thof July 2005

___________________ ___________________

Terje Eggum Håvar Lundberg

 II

Application Development Using J2ME – Architecture for Device Independence

TABLE OF CONTENTS
ABSTRACT.. I
PREFACE... II
TABLE OF CONTENTS..III
LIST OF FIGURES .. VI
LIST OF TABLES .. VII
ABBREVIATIONS ..VIII
1 INTRODUCTION ... 1

1.1 BACKGROUND .. 1
1.2 PROBLEM SPECIFICATION.. 2
1.3 DELIMITATIONS – PART ONE .. 2

1.3.1 Focus Areas – Features and Maturity... 2
1.3.2 Platform .. 3
1.3.3 Testing... 3

1.4 DELIMITATIONS – PART TWO ... 3
1.5 THESIS OVERVIEW .. 3

PART ONE – MATURITY AND FEATURES OF J2ME ON SYMBIAN OS ... 5
2 TECHNICAL REVIEW ... 5

2.1 THE SYMBIAN OS... 5
2.1.1 Symbian - A mobile OS.. 5
2.1.2 The Symbian OS Architecture ... 6

2.2 THE J2ME STANDARD .. 9
2.2.1 The Virtual Machine.. 9
2.2.2 Connected Device Configuration (CDC) .. 10
2.2.3 Connected Limited Device Configuration (CLDC) ... 11
2.2.4 Foundation Profile (FP).. 12
2.2.5 Personal Profile (PP)... 12
2.2.6 Personal Basis Profile (PBP).. 12
2.2.7 Mobile Information Device Profile 1.0 (MIDP 1.0).. 12
2.2.8 Mobile Information Device Profile 2.0 (MIDP 2.0).. 13

2.3 OPTIONAL PACKAGES... 15
2.3.1 JSR 75: PDA Optional Package.. 15
2.3.2 JSR 120: Wireless Messaging API (WMA 1.0).. 16
2.3.3 JSR 205: Wireless Messaging API 2.0 (WMA 2.0).. 16
2.3.4 JSR 135: Mobile Media API (MMAPI) ... 17

2.4 APIS IN DEVELOPMENT... 18
2.4.1 JSR 234 Advanced Multimedia Supplements (MAMSAPI).. 18
2.4.2 JSR 238: Mobile Internationalization API .. 19
2.4.3 JSR 230: Data Sync API.. 20

2.5 THE MIDLET .. 20
2.6 GENERIC CONNECTION FRAMEWORK ... 21
2.7 J2ME ON SYMBIAN... 24

2.7.1 History [13]... 24
2.7.2 MIDP 2.0 on Symbian OS phones ... 26
2.7.3 How to use native Symbian services with J2ME [14] ... 27
2.7.4 Benefits of J2ME on Symbian.. 27

3 EVALUATION OF J2ME ON SYMBIAN ... 29
3.1 SCOPE AND METHOD .. 29

3.1.1 Scope ... 29
3.1.2 Method .. 29

 III

Application Development Using J2ME – Architecture for Device Independence

3.1.3 Choice of Tools ... 30
3.2 TEST APPLICATION ... 30

3.2.1 Use Case ... 30
3.2.2 User Interface.. 31
3.2.3 Functionality ... 33
3.2.4 Implementation issues ... 33

3.3 TEST APPLICATION EXPERIENCES... 34
3.3.1 Using GFC .. 35
3.3.2 Networking capabilities... 35
3.3.3 File access... 37
3.3.4 Wireless Messaging... 39
3.3.5 Hardware control.. 42
3.3.6 GUI.. 44
3.3.7 General programming Issues .. 46

4 DISCUSSION AND CONCLUSION ... 47
4.1 DISCUSSING MATURITY AND FEATURES .. 47

4.1.1 Focus Areas... 47
4.1.2 GUI.. 48
4.1.3 Using Native Services.. 49

4.2 CONCLUSION .. 49
4.3 THE FUTURE OF J2ME ON SYMBIAN OS ... 50

PART TWO – DEVICE INDEPENDENCE... 52
5 DEVICE INDEPENDENCE... 52

5.1 DIVERSITY ISSUES... 52
5.1.1 Graphical User Interface .. 53
5.1.2 Input Devices... 53
5.1.3 Platform Fragmentation.. 53

5.2 THE J2ME APPROACH .. 54
5.2.1 The Java Virtual Machine ... 54
5.2.2 MIDP portability ... 55
5.2.3 Optional Packages .. 57

5.3 RELEVANT PROJECTS .. 57
5.3.1 Component Based Development.. 58
5.3.2 J2ME Polish .. 58
5.3.3 Content adaption... 59

6 PROPOSED SOLUTIONS ... 59
6.1 BUILT IN CONTEXT ADAPTABILITY (BICA) ... 60

6.1.1 Structure and Principles.. 60
6.1.2 Context Adaption in BICA... 62
6.1.3 Component Structure... 64
6.1.4 Coding Guidelines... 64
6.1.5 Optimized Portable GUI ... 64
6.1.6 Example Scenario.. 65

6.2 BUILD ON DEMAND FRAMEWORK (BODF) .. 65
6.2.1 Structure and Principles.. 66
6.2.2 Process Description .. 67
6.2.3 Device Characterization ... 68
6.2.4 Component Structure... 69
6.2.5 Optimized GUI .. 70
6.2.6 Coding Guidelines... 70
6.2.7 Example Scenario.. 71

6.3 GENERAL TECHNIQUES FOR PORTABLE J2ME PROGRAMMING... 71
7 DISCUSSION AND CONCLUSION ... 72

7.1 DISCUSSION .. 72
7.1.1 Proposed Frameworks .. 72
7.1.2 Feasibility and Further Work.. 73

 IV

Application Development Using J2ME – Architecture for Device Independence

7.2 CONCLUSION .. 74
BIBLIOGRAPHY ... 75
APPENDIX A – THE SYBMIAN OS EVOLUTION .. 77
APPENDIX B - OTHER DEVELOPMENT PLATFORMS ON SYMBIAN.. 78

B.2 - C++ NATIVE PROGRAMMING.. 79
B.3 - OPEN PROGRAMMING LANGUAGE.. 79
B.3 - VISUAL STUDIO .NET... 79

APPENDIX C – TEST APPLICATION ... 80
APPENDIX D – DEVELOPMENT TOOLS .. 80

D.1 - TOOLKITS AND EMULATORS ... 80
D.1.1 - Sun J2ME Wireless Toolkit 2.2 ... 80
D.1.2 - Sony Ericsson J2ME SDK 2.2.0 .. 81
D.1.3 - Nokia Developer's Suite 2.2 for J2ME™ .. 81

D.2 - INTEGRATED DEVELOPMENT ENVIRONMENTS ... 82
D.2.1 - Borland JBuilder X Enterprise Edition ... 82
D.2.2 - Sun Java Studio Standard 5... 84

 V

Application Development Using J2ME – Architecture for Device Independence

List of Figures
Figure 2.2 Functional overview of Symbian OS v8.0 [4] .. 7
Figure 2.5 shows the different layers that comprise the J2ME platform, from hardware to
application. ... 9
Figure 2.6 J2ME related to the OS and the device... 9
Figure 2.7 The lifecycle of a MIDlet [11] ... 20
Figure 2.8 An illustration of the MIDlet on top of the MIDP/CLDC structure 21
Figure 2.9 GCF overview[12] .. 22
Figure 2.10 Extended version of the GCF [12]. ... 23
Figure 2.11 Estimated performance of J2ME on Symbian .. 28
Figure 3.1 Use Case of the registration MIDlet RegApp... 31
Figure 3.2 Available features in RegApp... 32
Figure 3.4 MIDP 1.0 on top of CLDC 1.0 [15].. 34
Figure 3.5 The JSR 185 stack [15]... 34
Figure 3.6 Connecting MIDlet to Servlet with HttpConnection (from test application). 35
Figure 3.7 An example of socket and datagram connections... 36
Figure 3.8 Example on sending data to a Servlet from a MIDlet using the HTTP POST request
.. 37
Figure 3.9 Some GCF root values and how they could be opened[17] 38
Figure 3.10 Example on how to create a file.. 39
Figure 3.11 Example on creating and sending SMS .. 40
Figure 3.12 Creating and sending MMS Example from RegApp.. 41
Figure 3.13 Example on creating and sending a binary message... 42
Figure 3.14 Creating a visible video controller and taking a snapshot in the test application . 43
Figure 3.15 Creating and using AudioRecorder in the test application. 44
Figure 3.16 Overview of available GUI components in J2ME [18] .. 45
Figure 5.1 Diversity in design .. 52
Figure 5.2 Java Program Execution ... 55
Figure 5.3 A high-level GUI sample (WTK2.2 sample). Same application running on Ericsson
P910 (left) and Nokia series 60 .. 56
Figure 5.4 A low-level GUI sample (WTK2.2 Sample). Same application running on Ericsson
K750 (left) and Nokia series 40 ... 57
Figure 6.1 Illustration of the Built In Context Adaptability framework 60
Figure 6.2 Component diagram showing component structure of an application created with
BICA .. 61
Figure 6.3 ContextAdaptor class sample.. 63
Figure 6.4 Sample of component structure .. 64
Figure 6.5 Illustration of the BODF framework .. 66
Figure 6.6 Sample XML document read by ACE.. 69
Figure 6.7 Sample component structure of the BODF... 70
Figure 6.8 Pre-edited code ... 70
Figure 6.9 Edited code ... 71
Figure 6.10 Straight forward way of drawing a rectangle[x] ... 71
Figure 6.11 Portable way of drawing a rectangle[x] .. 72

 VI

Application Development Using J2ME – Architecture for Device Independence

List of Tables
Table 2.1 Some MIDP 2.0 enabled Symbian phones... 26
Table 3.1 GCF connections [referanse….]... 24

 VII

Application Development Using J2ME – Architecture for Device Independence

ABBREVIATIONS

ABB Audio Building Block
AMS Application Management Software
CDMA Code Division Multiple Access
CLDC Connected Limited Device Configuration
EMS Enhanced Messaging Service
eSCO extended Synchronous Connection Oriented
FC File Connection
FP Foundation Profile
GCF General Connection Framework
GPRS General Packet Radio Service
GUI Graphical User Interface
IPSEC IP Security
J2EE Java 2 Enterprise Edition
J2ME Java 2 Micro Editon
J2SE Java 2 Standard Edition
JAD Java Application Descriptor
JAR Java Archive
JVM Java Virtual Machine
KVM K-Virtual Machine (Kauai VM)
MAMSAPI Advanced Multimedia Supplements
MID Mobile Information Devices
MIDP Mobile Information Device Profile
MIDP Mobile Information Device Profile
MMAPI Mobile Media API
MMS Multimedia Messaging Service
NDS Nokia Developer Suite
OMA Open Mobile Alliance
OTA Over The Air
PAN Personal Area Network
PBP Personal Basis Profile
PDP Packet Data Protocol
PIM Personal Information Management
PP Personal Profile
RDS Radio Data System
RTP Realtime Transfer Protocol
SMS Short Messaging Service
SyncML Synchronization Markup Language
UDP User Datagram Protocol
WCDMA Wideband Code Division Multiple Access
WMA Wirless Messaging API
WTK Wireless Toolkits
BICA Built In Context Adaptability
DOC Device Optimized Components
CAL Context Adaption Layer
BODF Build On Demand Framework
ACE Automated Code Editor

 VIII

Application Development Using J2ME – Architecture for Device Independence

1 Introduction

1.1 Background

It is a well known fact that computer technology evolving fast in a more and more mobile

environment. Professional users carry laptops and advanced smartphones with them in order

to be able to do useful work when and where it might please them. Whether this is a good

thing is a question for others to answer, but since we are heading down this mobile path at

least we should have decent tools to work with. Since application development on mobile

technology is a relatively young subject, and the devices themselves are rapidly getting more

advanced, it is important to periodically evaluate development platforms in order to see

whether or not they are using the available technology to the full extent.

When Sun decided to divide Java into three branches, Java 2 Second Edition (J2SE), Java 2

Enterprise Edition (J2EE) and Java2 Micro Edition (J2ME), the mobile Java lost some

functionality. There were many reactions to this; some developers even predicted that J2ME

would be only temporary. However, current statistics tell us otherwise: “Globally there are

more than 708 million J2ME capable mobile devices worldwide, according to Ovum, and

more than 140 operators that have deployed Java technology-based services, according to

Nokia. Java technology-based devices are expected to reach 1.5 billion consumers by 2007

according to some analysts, and the overall revenue from services enabled by Java

technologies is forecast to reach $15 billion by 2008.” [1]. The accuracy of this statement is

hard to test, but it clearly states that J2ME is still here. So, the question explored in part one of

this thesis is whether J2ME has eradicated these childhood diseases, or if there still is a

substantial lack in its functionality.

With so many devices out there and J2ME applications being fronted as portable and we still

have MIDlets specified for the different types of devices new questions arises. What kind of

obstacles is the J2ME platform facing in the struggle for device independence, and what can

be done to improve? These questions are explored in part two of the thesis.

 1

Application Development Using J2ME – Architecture for Device Independence

1.2 Problem specification

The first part of the problem specification states: “The assignment assumes that the student

has good skills in object-oriented java development, but no explicit experience with J2ME on

Symbian OS phones. The first part of the assignment is to explore this development

environment and evaluate maturity and features. Possibilities for initiating network services

and controlling local devices like camera and audio recording must be included in the

evaluation. The first part of the assignment can be done in cooperation with other students.”

The second and individual part of this thesis can be described in the following: “A core idea

with Java is “develop once and run anywhere”. Experience shows that many applications still

are tailor made for specific brands and models of mobile phones. The reason for this can be

differences in features like screen resolution, input devices or other characteristics. The

intention of this thesis is to explore to what extent it is feasible to develop good device

independent applications. A framework for characterisation of device features and a solution

for how this should be handled by the application shall also be explored.”

1.3 Delimitations – Part One

In the evaluation part of the thesis, we do not have the time to examine all parts of the

J2ME/Symbian relationship. We have therefore made these delimitations:

1.3.1 Focus Areas – Features and Maturity

As stated in the problem specification there are certain areas of the J2ME platform that are

more relevant than others and it is in these topics we will conduct our most thorough research

and testing.

Hardware control: We will implement and test photo and audio recording functions. This

requires API’s to control hardware extensions such as camera and microphone.

File access: File access is essential since we need to store image and audio files in order to

make a decent application.

Network services: We are going to implement and test Multimedia Messaging Service

(MMS) functions and other ways of transferring the gathered files and information from the

device to the server.

 2

Application Development Using J2ME – Architecture for Device Independence

Besides these three focus areas we will only make brief investigations regarding general

programming issues such as Graphical User Interface (GUI) programming and general

maturity.

1.3.2 Platform

Although we will conduct some research on all the old versions of J2ME and Symbian OS,

this is merely to see where the evolution is heading. The real focus will be on Symbian OS

version 8.0 and J2ME (Connected Limited Device Configuration (CLDC) 1.1, Mobile

Information Device Profile (MIDP) 2.0) since these are currently the newest and most richly

featured versions on the market. These are the only platforms we will do any development on.

1.3.3 Testing

The only Symbian OS based mobile phone available to us is the Nokia 6630, with Symbian

version 8.0. This will therefore be the only “real” test platform for our application. The reason

for choosing this particular phone was that at the time it had the newest version of Symbian

OS and it had all the hardware extensions needed for the thesis.

1.4 Delimitations – Part Two

The second part of this thesis is approached theoretically, i.e. there will only be conducted

partial testing. Solutions will be based on literature and my own ideas, and the

implementation of these solutions will be left to future work.

1.5 Thesis overview

This thesis is divided into two separate parts. The first part is co-written with Håvar Lundberg

and concerns itself with evaluation of maturity and features of the J2ME/Symbian OS

development platform

Chapter 2 is a technical review of the Symbian OS and the J2ME development language. The

operating system is examined historically and architecturally. This is also the case with the

research on J2ME, but here we also go into the tools available and look more specifically at

API’s we can use in the development process. The interaction between Symbian and Java is

also examined.

 3

Application Development Using J2ME – Architecture for Device Independence

Chapter 3 is where we present our research on the platform. We give the scope and the

method for our investigation and we present a demonstrator application made to illuminate the

areas mentioned in the problem specification. Our experiences on each of these subjects are

thoroughly discussed in chapter 3.3 Test Results. A conclusion based on this chapter and the

previous is made in chapter 3.5.

Chapter 4 will contain a discussion of our experience with the platform, and a conclusion

regarding maturity will finish of the first part of this thesis.

In the second part of the thesis I take on the task of considering device independent

application development with J2ME

Chapter 5 reviews the device independence issue regarding MIDP based applications. Sun’s

approach to device diversity and other interesting projects will be studied here.

Chapter 6 is where I present my proposed solutions. I present two frameworks with some

similarities and differences.

Chapter 7 will contain a discussion on the topic of device independence, and a comparison

between the two proposed frameworks. A conclusion is also made on the feasibility of

extending MIDlets’ portability with a framework.

 4

Application Development Using J2ME – Architecture for Device Independence

PART ONE – MATURITY AND FEATURES OF J2ME ON
SYMBIAN OS

2 Technical review

2.1 The Symbian OS

A few years ago the mobile phones had very few features and most manufactures used their

own operating system in their products. The phones nowadays are much more complex and

require an advanced operation system to provide a reliable and versatile platform for third

party software. In 1998 some of the leading companies in wireless communication (Sony,

Ericsson, Nokia, Motorola and Psion) formed the company Symbian 0. Symbian developed

the Symbian OS which is an advanced, open standard operating system for data enabled

phones written in C++. The Symbian OS is by far the most used OS for smartphones and it

holds a 61% market share world wide [3].

2.1.1 Symbian - A mobile OS

The Symbian OS is made entirely for the

mobile market and its particular needs. C

issues that are common only for mobile

phones have to be addressed. The Symbian

OS was created because it was more adequate

to develop a particular mobile OS to meet

these needs rather than to redefine alread

existing desktop or server OS. Many

unfortunate compromises would have had to

be made in order to make this possible. Figure 2.1 Symbian mobile phone
configuration

ertain

y

Some of the important issues that have to be addressed in a mobile environment are memory

footprint and processor power. Depending on type and model, most mobile phones only have

a small amount of memory available, and this issue has to be coped with in order for the

phone to work in a satisfying manner. For example, if a user frequently experience that his

 5

Application Development Using J2ME – Architecture for Device Independence

phone is hanging or has to be restarted due to lack of memory or processor power, he will

most certainly get frustrated and probably change mobile phone manufacturer the next time he

buys a phone. This issue is rather common on desktops and most users are accepting that

these incidents occur once in a while. The mobile phones however, have to work flawless,

thus the OS have to have a very effective memory handling and an effective use of available

processor power.

The OS has to provide built-in power management features in order for the phone to work in a

practical manner. These features turn of battery draining functions and applications when they

are not in use. In addition to this, Symbian phones are provided with flash memory to avoid

loss of data in case of a shutdown.

A mobile OS have to cope with the networking use and capabilities that are common for a

mobile phone. There are principally three different states a mobile phone operates in;

connected to the operator network, connected to a local network or operating in offline mode.

In order to transfer data there has to be some kind of connectivity, either using a wide area

network or a local area network. The wide area network can be based on different

technologies, e.g. GSM, General Packet Radio Service (GPRS) or Wideband Code Division

Multiple Access (WCDMA), and the local area network can be based on e.g. Bluetooth or

Infrared connectivity. In any case, the phone has to handle fade outs and one can not always

assume that the phone is connected due to incomplete coverage. The phone has to function as

an advanced client and these issues have to be handled in a way that is transparent to the user.

Other important issues that have to be dealt with are different types of keyboard input and

different screen types. Mobile phones come in different shapes and sizes and some are very

sophisticated, others are very primitive. A phone can be equipped with a large screen, a small

screen, a keyboard, a pen input or a perhaps a keypad. Regardless of phone design and

technical solutions from different vendors, the OS have to handle these variations.

2.1.2 The Symbian OS Architecture

Symbian OS is an open standard operating system licensed by some of the worlds leading

mobile manufacturers. It is designed to meet the requirements of data-enabled 2G, 2.5G and

3G mobile phones. The OS includes a multitasking kernel, integrated telephony support,

 6

Application Development Using J2ME – Architecture for Device Independence

communications protocols, data-management, advanced graphics support, a low-level

graphical user interface framework and a variety of application engines.

Figure 2.2 Functional overview of Symbian OS v8.0 [4]

The architecture of Symbian OS can be divided into two different parts, the main kernel that

handles protocol stacks and network resources, and the graphical user interface platform

which can be altered by the different phone vendors. The graphical user interface has been

divided into four different platforms in order to handle different screen sizes and keyboard

inputs. These are UIQ, Series 60, Series 80 and others.

 7

Application Development Using J2ME – Architecture for Device Independence

UIQ

UIQ is designed for smart phones and the newest version is v3.0 and is

based on Symbian v9.1. In contrast to its predecessors it supports one-

handed use with softkeys, in addition to pen-based input. Other UI designs

can easily be implemented by the mobile phone manufacturer on this

platform. Sony Ericsson P910, Motorola A1010 and BenQ P30 are all

typical UIQ phones.

 Figure 2.3 Sony Ericsson
with the UIQ platform

Series 60

The Series 60 platform is created by Nokia and it is designed for smart

phones. It supports single-hand operated mobile phones and it is

designed for voice communication, multimedia messaging, content

browsing and application downloading. Series 60 2ndedition has

existed since 2003 and was last implemented on Symbian v8.1. The

newest version is the Series 60 3rdedition and it runs on Symbian v9.1.

Nokia N91 is announced as the first mobile phone that is based on

Series 60 3rdedition [5]. Both the 2nd and the 3rd edition have a scalable

UI’s and support the following screen sizes: 176 x 208, 240 x 320

(QVGA) and 352 x 416. Nokia 6620, Nokia 6630, Nokia 6680 and

Panasonic X700 are examples of Series 60 mobile phones. This platform is distributed as

Symbian’s official Graphical User Interface (GUI).

Figure 2.4 Nokia 6630 with
the Series 60 platform

Series 80

The Series 80 is also created by Nokia and it is designed for enterprise devices with large

horizontal screens (640 x 200 pixels) and keyboard-based input. The series 60 is based on

Symbian v7.0s. Nokia 9500 and Nokia 9300 are examples of Series 80 mobile devices.

Other GUI

Not all Symbian mobile phones fall into the above mentioned categories such as the mobile

phones developed by Fujitsu for the FOMA network.

 8

Application Development Using J2ME – Architecture for Device Independence

2.2 The J2ME standard

In 1999 Sun realized that the idea of one Java platform for all purposes was perhaps not yet

feasible. The Java2 platform consequently divided into three distinct parts, each with a

complete runtime environment for Java applications. J2EE targets the enterprise market, the

J2SE focuses on desktop applications and J2ME handles the wireless environments [6].

The world of wireless platforms is arguably the most diverse of the three target areas, and to

manage this diversity J2ME have different approaches to different groups of devices. It is

possible to “tailor” the J2ME setup with a mix of configurations, profiles and optional

packages. Figure 2.5 shows the different layers that comprise the J2ME platform, from

hardware to application.

Figure 2.6 J2ME related to the OS and the device

In this chapter we will list the most common configurations and profiles that make up the

J2ME platform [10]. We start with configurations, after a short virtual machine history, as

they are the foundation on which all the other parts build upon. Not all will be described at the

same level of detail, but the Connected Limited Device Configuration and the Mobile

Information Device Profile will be emphasized as they are the most relevant for this project.

2.2.1 The Virtual Machine

As in all Java platforms J2ME applications run on a virtual machine. Due to limited resources

on the devices they can not use the standard Java Virtual Machine (JVM) used on stationary

computers. So, in 1999 the K-Virtual Machine (KVM) for mobile devices based on

CLDC/MIDP was introduced by Sun Microsystems. The K was put there instead of the J

 9

Application Development Using J2ME – Architecture for Device Independence

because the KVM was the result of the project "Kauai”, and not because its size is measured

in kilobytes instead of the megabytes in the standard JVM [7]. The KVM was a lot slower

than the JVM and ran at about 30% to 80% of JDK1.1.x desktop speed performance [8].

With the release of J2SE 1.3.x, Sun Microsystems introduced the Java HotSpot Virtual

Machine technology to the java developers community. The introduction of HotSpot

Optimized JVM technology to CLDC/MIDP devices occurred in 2001 [CLDC HI

Whitepaper] CLDC HotSpot Implementation Virtual Machine. The HotSpot Java Virtual

Machine for CDC/J2ME Platform devices was introduced in 2004. This largely improved

performance of the mobile virtual machine [9].

2.2.2 Connected Device Configuration (CDC)

“The J2ME CDC provides the basis of the Java 2 Platform, Micro Edition in devices

characterized as follows:

• 512K minimum ROM available

• 256K minimum RAM available

• Connectivity to some type of network.

• Supporting a complete implementation of the Java Virtual Machine as defined in the

Java Virtual Machine Specification, 2nd Edition.

User interfaces with varying degrees of sophistication down to and including none may be

supported by this configuration specification. TV set-top boxes, web enabled phones, and car

entertainment/navigation systems are some, but not all, of the devices that may be supported

by this configuration specification.” Error! Reference source not found.

The J2ME CDC will define the minimum required complement of Java Technology

components and API's for connected devices. Supported APIs, application life-cycle, security

model, and code installation are the primary topics to be addressed by this specification.

The core APIs of CDC are almost identical to the ones found in J2SE.

 10

Application Development Using J2ME – Architecture for Device Independence

2.2.3 Connected Limited Device Configuration (CLDC)

The CLDC was developed to be used in devices where CDC is too large to meet the strict

memory footprint requirements that are characteristic of CLDC target devices. Two versions

of the CLDC have been defined, version 1.0 and version 1.1. CLDC 1.1 adds a few new

features over CLDC 1.0. Floating point support is the most important feature added, but

several minor bug fixes have also been added. CLDC 1.1 is the configuration we will use for

development in this project, and it is intended to be backwards compatible with version 1.0.

The CLDC provides these packages to the developer [10]:

• java.io:

Provides classes for input and output through data streams.

• java.lang:

Provides classes that are fundamental to the Java programming language.

• java.lang.ref:

Provides support for weak references.

• java.util:

Contains the collection classes, and the date and time facilities.

• javax.microedition.io:

 Classes for the Generic Connection Framework (GCF).

As we can see there are no GUI classes provided by the CLDC. This is up to the profiles to

provide.

The CLDC is intended to work on devices with intermittent network connections, small

processors and limited memory. Devices that support CLDC typically include 192 to 512 KB

total memory available for the Java platform and a 16-bit or 32-bit processor. Within this

group of devices, the variety of features is immense, and to make a standard Java platform

suiting them all is difficult. Therefore the CLDC makes a minimum of assumptions about the

environment it exists within.

 11

Application Development Using J2ME – Architecture for Device Independence

2.2.4 Foundation Profile (FP)

FP is a set of Java APIs that support resource-constrained devices without a standards-based

GUI system. Combined with the CDC, FP provides a complete J2ME application

environment for consumer products and embedded devices. FP is the most basic of the CDC

family of profiles.

2.2.5 Personal Profile (PP)

J2ME PP is a set of Java APIs that supports resource-constrained devices with a GUI toolkit

based on AWT. Combined with the CDC, J2ME Personal Profile provides a complete J2ME

application environment for consumer products and embedded devices.

2.2.6 Personal Basis Profile (PBP)

J2ME PBP is a set of Java APIs that support resource-constrained devices with a standards-

based GUI framework. Combined with the CDC, J2ME PBP provides a complete J2ME

application environment for consumer products and embedded devices. J2ME PBP includes

all of the APIs in Foundation Profile.

2.2.7 Mobile Information Device Profile 1.0 (MIDP 1.0)

The MIDP target Mobile Information Devices (MID). To be classified as a MID a device

should have the following minimum characteristics:

• Display:

o Pixels: 96x54

o Display depth: 1-bit

o Pixel shape (aspect ratio): approximately 1:1

• Input

o One- or two-handed keyboard or touch screen

• Memory:

o 128 KB of non-volatile memory for the MIDP components

o 8 KB of non-volatile memory for application-created persistent data

o 32 KB of volatile memory for the Java runtime

 12

Application Development Using J2ME – Architecture for Device Independence

• Networking:

o Two-way, wireless, possibly intermittent, with limited bandwidth

We will not go into packages provided by MIDP 1.0 since we will be using MIDP 2.0 in

development, and the packages there are an extension of MIDP 1.0.

2.2.8 Mobile Information Device Profile 2.0 (MIDP 2.0)

Requirements for display, input and networking are the same as for MIDP 1.0. Memory

requirements have been raised in the MIDP 2.0 specification. There must be 256 KB of non-

volatile memory for the MIDP implementation, beyond what's required for the CLDC and 128

KB of volatile memory for the Java runtime. Requirements for sound have been added. The

ability to play tones is now made a requirement.

MIDP 2.0 is backwards compatible with MIDP 1.0, hence it provides all functionality defined

in the MIDP 1.0 specification. In addition it provides OTA provisioning. This feature was left

to Original Equipment Manufacturers (OEM) to provide in the MIDP 1.0 specification.

These are the packages that MIDP 2.0 provides the developer with:

• javax.microedition.lcd

The UI API provides a set of features for implementation of user interfaces for MIDP

applications.

• javax.microedition.lcdui.game

The Game API package provides a series of classes that enable the development of

 rich gaming content for wireless devices.

• javax.microedition.midlet

The MIDlet package defines MIDP applications and the interactions between the

application and the environment in which the application runs.

• javax.microedition.rms

The MIDP provides a mechanism for MIDlets to persistently store data and later

retrieve it.

• javax.microedition.io

MIDP includes networking support based on the Generic Connection Framework from

the CLDC.

 13

Application Development Using J2ME – Architecture for Device Independence

• javax.microedition.pki

Certificates are used to authenticate information for secure Connections.

• javax.microedition.media

The MIDP 2.0 Media API is a directly compatible building block of the MMA (JSR-

135) specification.

• javax.microedition.media.control

This package defines the specific Control types that can be used with a Player.

Core Packages

• java.lang

MIDP Language Classes included from J2SE.

• java.util

MID Profile Utility Classes included from J2SE.

As we can see, this is a much more extensive library to work with than what the CLDC alone

provides. An enhanced user interface has been defined, making applications more interactive

and easier to use. Media support has been added through the Audio Building Block (ABB),

giving developers the ability to add tones, tone sequences and WAV files even if the MMAPI

optional package is not available.

Game developers now have access to a Game API providing a standard foundation for

building games. This API takes advantage of native device graphic capabilities.

MIDP 2.0 adds support for HTTPS, datagram, sockets, server sockets and serial port

communication.

Push architecture is introduced in MIDP 2.0. This makes it possible to activate a MIDlet when

the device receives information from a server. Hence, developers may develop event driven

applications utilizing carrier networks.

End-to-end security is provided through the HTTPS standard. The ability to set up secure

connections is a leap forward for MIDP programming. A wide range of application models

require encryption of data and may now utilize the security model of MIDP 2.0 based on open

standards.

 14

Application Development Using J2ME – Architecture for Device Independence

2.3 Optional Packages

An optional package is a set of APIs, but unlike a profile, it does not define a complete

application environment. An optional package is always used in conjunction with a

configuration or a profile. It extends the runtime environment to support device capabilities

that are not universal enough to be defined as part of a profile or that need to be shared by

different profiles.

The Optional Packages mentioned in this chapter are the ones that are relevant to the problem

specification of thesis. There are, of course, more APIs available but they have been excluded

from this paper for lack of relevance.

2.3.1 JSR 75: PDA Optional Package

This specification will define two independent optional packages that will extend and enhance

the "J2ME CLDC" JSR-000030. These packages separately represent important features

found on many PDAs and other mobile devices. The optional packages are:

• Personal Information Management (PIM) - This package gives J2ME devices access

to personal information management data that resides natively on mobile devices.

Information to be accessed are contained in address books, calendars, and to-do lists

residing in many mobile devices.

• FileConnection - This package gives J2ME devices access to file systems residing on

mobile devices. The primary use of this API is to allow access to removable storage

devices, such as memory cards that many of today's devices support.

The PDA Optional Package is placed on top of the CLDC and provides optional APIs

common to PDAs and handsets. For example, the PIM functionality in JavaPhone makes its

re-introduction into J2ME Platform devices within this optional package. FileConnection API

is added to allow General Connection Framework (GCF) to access removable media storage.

 15

Application Development Using J2ME – Architecture for Device Independence

2.3.2 JSR 120: Wireless Messaging API (WMA 1.0)

“The messaging API is based on the GCF, which is defined in the CLDC 1.0 specification.

The package javax.microedition.io defines the framework and supports input/output and

networking functionality in J2ME profiles. It provides a coherent way to access and organize

data in a resource-constrained environment. The design of the messaging functionality is

similar to the datagram functionality that is used for the User Datagram Protocol (UDP) in

the GCF. Like the datagram functionality, messaging provides the notion of opening a

connection based on a string address and that the connection can be opened in either client

or server mode. However, there are differences between messages and datagrams, so

messaging interfaces do not inherit from datagram. It might also be confusing to use the same

interfaces for messages and datagrams. The interfaces for the messaging API have been

defined in the javax.wireless.messaging package” [10].

WMA provides a common API for sending and receiving text and binary messages, typically

SMS messages. WMA was first defined in JSR 120 and revised in JSR 205, which introduced

support for multi-part messages and the Multimedia Message Service (MMS). This revision is

not supported by our test mobile Nokia 6630. However, there are ways to overcome this

obstacle, and we will describe this further in chapter 3.3.4.

WMA is based on GCF and depends on CLDC as its lowest common denominator, meaning

that it can be implemented along with both CLDC- and CDC-based profiles. It targets cell

phones and other devices that can send and receive wireless messages.

2.3.3 JSR 205: Wireless Messaging API 2.0 (WMA 2.0)

“With the WMA 2.0 it will be possible for Java applications to compose and send messages,

which can contain text, images and sound. This technology allows a richer possibility for

messaging on mobile devices. For the realisation the framework of JSR 120 will be used.[10]”

With the WMA 2.0 it will be possible for Java applications to compose and send messages,

which can contain text, images and sound. This technology allows a richer possibility for

messaging on mobile devices. For the realisation the framework of JSR 120 will be used.

 16

Application Development Using J2ME – Architecture for Device Independence

2.3.4 JSR 135: Mobile Media API (MMAPI)

”The API is targeted to fulfill the needs for the control and simple manipulation of sound and

multimedia for applications in mobile devices, with scalability to other J2ME devices. Mobile

devices may feature a great variety of multimedia capabilities. Some of the target devices may

only be able to produce single monophonic sounds while others may feature both sampled,

synthetic audio and other media types. The API should also be able to support the control of

time-based multimedia formats. This causes special consideration for the API design. The

main requirements for the API are:

• Enable the use of the basic sound generation routines with simple controls.

• Do not provide too much hard coded functionality that is obsolete on the basic

devices.

• Provide methods to access more sophisticated audio features if they exist.

• Address media synchronization issues

• Be able to extend support to other media types

• Maintain low footprint

These requirements are fulfilled by a design where the API provides direct support for basic

features such as simple generation and playback of sound, and playback of multimedia. A

control interface is proposed to enable the management and control of different multimedia

formats and extended functionalities. This design enables the supported features to vary

according to the platform and the corresponding implementation of the MMAPI.”

MMAPI provides a generic but flexible foundation for multimedia processing for devices with

advanced sound and multimedia capabilities. This optional package was introduced by JSR

135. MMAPI depends on the CLDC as its lowest common denominator, so it too can be used

with CDC-based profiles. The only requirement is that the implementation includes

IllegalStateException, which is not present in CLDC 1.0.” [10]

The MMAPI splits media processing into two main concepts: data source handlers, media

protocols specified by an URL, and content handlers, media controls and players. In addition,

a media manager provides a factory of resources such as players, as well as methods to query

for supported content types and protocols. The manager also includes a simple tone player.

 17

Application Development Using J2ME – Architecture for Device Independence

MMAPI 1.0 defines protocols, controls, and players for a number of media types, such as

MIDIControl, VideoControl, ToneControl, and VolumeControl. The specification does not

mandate any particular one, allowing implementers to subset the MMAPI as appropriate. The

only requirement is that implementations must guarantee support of at least one media type

and protocol.

2.4 APIs in development

Here we will briefly go through some interesting API’s that are currently being developed in

the Java Community Process. Specifically we look at API’s that will improve the platforms

features for general development. All this information is gathered from the JCP web site [10].

2.4.1 JSR 234 Advanced Multimedia Supplements (MAMSAPI)

This specification will define an optional package for advanced multimedia functionality

which is targeted to run as a supplement in connection with MMAPI (JSR-135) in

J2ME/CLDC environment.

Java equipped terminals are evolving into general multimedia and entertainment platforms.

Features like camera and radio which have traditionally belonged into different device

categories are now integrated into same terminals. The increase in the processing power of

modern mobile phones allows more sophisticated media processing capabilities. Displays will

remain relatively small due physical limitations but rich aural experience can be achieved

without adding the physical size of the terminals.

The purpose of this API is to give access to multimedia functionality of the modern mobile

terminals. Specifically, better support for camera and radio and access to advanced audio

processing will be introduced but it’s possible to add other functionality as well.

This specification will bring the following capabilities to the mobile terminals with

J2ME/CLDC support:

 18

Application Development Using J2ME – Architecture for Device Independence

• Access for camera specific controls like visual settings (brightness, contrast),

flashlights, lighting modes and zooming.

• Proper access to radio and other channel/frequency based media sources including

RDS (radio data system)

• Access to advanced audio processing capabilities like equalizer, audio effects,

artificial reverberation and positional 3D audio. Dynamically changing audio

resources are addressed as well.

• Media output direction. For example, the ability to choose whether the audio is played

out from speaker of from headset.

This specification had its final release the 20th of June this year.

2.4.2 JSR 238: Mobile Internationalization API

This JSR defines an API that provides culturally correct data formatting, sorting of text strings

and application resource processing for J2ME MIDlets running in MIDP over CLDC.

This specification will provide a common API for the internationalization of MIDP

applications, delivered and licensed as an optional package. It will provide the means to

isolate localizable application resources from program source code and an API for accessing

those resources at runtime, selecting the correct resources for the user’s/device’s locale. The

specification will also define an API for supporting cultural conventions in applications, e.g.

for formatting dates, times, numbers, and currencies, and sorting text strings correctly for the

user’s locale. The API needs to be memory-efficient to run on resource-constrained devices

such as mobile phones.

The need for this API arises from the fact that mobile devices are personal by nature, and

users expect them to conform to the cultural conventions they are accustomed to. Users want

to be able to interact with the device in their own native language and see data rendered as in

their everyday environment.

This API had its final release the 21st of April this year.

 19

Application Development Using J2ME – Architecture for Device Independence

2.4.3 JSR 230: Data Sync API

This JSR will be a J2ME optional package that can be used with the J2ME configurations

CLDC and CDC. It enables applications to synchronize their application specific data stored

in the terminal with corresponding data stored on a server, replicating any changes made to

either instance of the data. It should provide a generic interface to the data synchronization

device implementation, to enable data synchronization via underlying implementations of data

synchronization protocols. One example of the data synchronization protocols to be accessed

from Java applications will be SyncML / OMA Data Synchronization.

The API should be a high level API, which provides a common set of synchronization

commands.

2.5 The MIDlet

A MIDlet is a MIDP application that runs on a device with CLDC configuration and MIDP

profile, and it is built upon the MIDlet class. This class provides programmatic interfaces for

invoking, pausing, restarting and terminating the MIDlet application. For instance, the

application manager can pause a MIDlet to allow the user to answer an incoming phone call,

and a MIDlet can also make a request to be paused and later restarted.

Figure 2.7 The lifecycle of a MIDlet [11]

Since today’s mobile phones seem to favor this CLDC/MIDP setup, this is the type of

application this thesis will prioritize.

 20

Application Development Using J2ME – Architecture for Device Independence

Figure 2.8 An illustration of the MIDlet on top of the MIDP/CLDC structure

Instead of executing like an ordinary Java application, MIDlets are stored in a jar-file called a

MIDlet suite. Then this suite is put onto a MIDP device which contains Application

Management Software (AMS), which again opens and launches the MIDlet on the device.

Figure 2.7 shows how a MIDlet fits in the J2ME universe.

2.6 Generic Connection Framework
To handle the communication with the servers we used the Generic Connection Framework

(GCF). Below the structure of the GCF is displayed. As we can see it is a straightforward

hierarchy of interfaces and classes used to create various sorts of connections.

 21

Application Development Using J2ME – Architecture for Device Independence

Figure 2.9 GCF overview[12]

The GCF is very flexible and it is easy to extend it when needed. New connection types,

which are defined and standardized via the Java Community Process (JCP), can be added by

defining a new Connection subtype and supporting classes, providing a Connector factory

class that supports the newly defined connection type, and defining a new URL scheme that

identifies the new connection type. Figure 3.7 illustrates how the GCF could be extended by a

profile or an optional package.

 22

Application Development Using J2ME – Architecture for Device Independence

Figure 2.10 Extended version of the GCF [12].

The GCF provides a whole range of connection types for the developer. One of the best

features from the GCF is the way it standardizes the connection syntax. All connections are

opened with a standard URL like this: scheme://user:password@host:port/url-

path;parameters, where the different parts are [12]:

• scheme specifies the access method or protocol, such as FTP or HTTPS. In the GCF,

it describes the connection type to use, which maps to an underlying connection or I/O

protocol.

• user is an optional user name.

• password is an optional password.

• host is the fully qualified name or the IP address of the host where the resource is

located.

• port is an optional port to use. Its interpretation depends on the scheme.

• url-path is the "path" to the resource. Its format and interpretation depend on the

scheme. The url-path may define optional parameters.

 23

Application Development Using J2ME – Architecture for Device Independence

Below, the currently available GCF connections are listed

URL Scheme Connectivity GCF Connection Type Defined By
btl2cap Bluetooth L2CAPConnection JSR 82. Support is optional
datagram Datagram DatagramConnection All CLDC- and CDC-based profiles,

such as MIDP, Foundation and related
profiles, and with JSR 197, J2SE
support is optional.

File File Access FilleConnection
Input Connection

JSR 75. Support is optional.

http HyperText
Transport
Protocol

Httpconnection MIDP 1.0, MIDP 2.0, Foundation
Profile, J2SE (JSR 197). Support is
required.

https Secure HTTP HttpsConnection MIDP 2.0 support is required.
comm Serial I/O CommConnection MIDP 2.0 support is optional
sms Short

Messaging
Service

mms Multimedia
Messaging
Service

MessageConnection JSR 120, JSR 205. Support is optional.

cbs Cell Broadcast
SMS

apdu
jcrmi

Security
Element

APDUConnection
JavaCardRMIConnection

JSR 177. Support is optional.

socket
serverSocket

Socket SocketConnection
ServerSocketvonnection

JSR 118 (MIDP 2.0). Support is
optional

datagram UDP
Datagram

UDPDatagramConnection JSR 118 (MIDP2.0). Support is
optional.

Table 2.1 GCF connections [12]

2.7 J2ME on Symbian

2.7.1 History [13]

Symbian’s first Java implementation, based on Sun’s JDK 1.1.4, was released as a part of

Symbian OS v5 in 1999.

Symbian OS v5.0 was released in 1999 and was the first Symbian OS with Java support and it

was based on Sun’s JDK 1.1.4. The next Symbian release, Symbian v6.0, based its Java

support on the PersonalJava 1.1.1 specification and was released in 2000. PersonalJava, which

was based on JDK 1.1.6, had the advantage of reduced memory footprint. This Symbian

release also implemented Sun’s JavaPhone API, which is a vertical extension to the

PersonalJava platform. Because of this extension, it was now possible to access telephony

functionality, send and receive datagrams and manipulate address book and calendar

information.

 24

Application Development Using J2ME – Architecture for Device Independence

The Micro Edition was designed for a range of consumer and embedded electronic devices

with little resources. It was clear that J2ME MIDP was highly suitable for mass market

mobile phones and it became very popular among phone manufacturers because of its

lightweight configuration. Symbian included this standard whit its Symbian v7.0 release and

also back-ported it to earlier releases. Even tough this standard was foreseen to have ha great

future, it was also apparent that MIDP 1.0 had its limitations due to the limited MIDP 1.0

specification.. Because of this, both J2ME and PersonalJava lived side by side on Symbian

phones until the release of Symbian v8.0, where PersonalJava was no longer supported.

J2ME has progressed a lot since the release of MIDP1.0, and in 2002 MIDP 2.0 was released

as a part of the Java specification Request (JSR 118). In addition to this a range of optional

packages were released, also part of the Java Community Process. The optional packages

enhance the MIDlet functionality, giving support to range of features.

Symbian version 7.0s was released in 2003 and was the first Symbian OS with MIDP 2.0

support. It introduced a lot of new features and APIs like the new security model, new game

and audio APIs, enhanced UI API, the Push Registry, Bluetooth and SMS support. In addition

to this Symbian gave support for Sun’s high performance CLDC HI VM.

Nokia has used Symbian OS v7.0s for Version 2.0 of their Series 60 Developer Platform. The

Series 60 2nd edition supplements the functionality that comes standard in Version 7.0s with

an implementation of the Mobile Media API (MMA, JSR 135) providing Java support for

video playback, tone generation and photo capture, adding to the audio API that comes as part

of MIDP 2.0.

Symbian 8.0 was announced in 2004 and enhanced the J2ME CLDC/MIDP implementation

adding the following optional packages to Symbian OS: Mobile Media API (JSR 125),

Mobile 3D Graphics (JSR 184), File GCF (part of JSR 75) all running on top of Sun’s CLDC

HI 1.1 VM. In addition, the Java implementation is now fully compliant with the Java

Technology for the Wireless Industry specification (JTWI, JSR 185). The JTWI is an

initiative defined via the JCP to specify a minimum set of APIs and behaviour that a

compliant phone should support. By targeting the JTWI, ISVs and 3rd party developers can

know that their applications will run on the largest possible number of phones. Release 1 of

the specification mandates MIDP 2.0, CLDC 1.0 and WMA as a minimum API set with the

 25

Application Development Using J2ME – Architecture for Device Independence

MMA also required if multimedia functionality is exposed to Java. Symbian OS v8.0 also

integrates support for the Universal Emulator Interface (UEI) allowing Symbian MIDP

emulators to fully integrate with standard tools such as Sun’s Wireless Toolkit and IDEs such

as JBuilder and Sun One Studio.

2.7.2 MIDP 2.0 on Symbian OS phones

Nokia 6600 was the first MIDP 2.0 enabled Symbian phone on the market. This phone was

based on v7.0s, which was the first Symbian version with MIDP 2.0 support. This support has

also been back-ported to UIQ 2.1 phones based on Symbian v7.0. Symbian v9 is currently the

newest OS and supports the UIQ 3 and the Series 60 UI platforms. Nokia N91, which is the

first v9 mobile phone, will be available in 3Q or 4Q 2005.

Model SE

P910

Nokia

N91

Nokia

6680

Nokia

6630

Nokia

9300

BenQ

P30

Panasonic

X700

Motorola

A1010

OS V7 v9 V8 V8 V7s V7 V7s V7

UI UIQ Series 60 Series 60 Series 60 Series 80

Series 40

UIQ Series 60 UIQ

Screen 208 x 320 176 x208 176x208 176 x 208 640x200

128x128

208x320 132x176 208x320

Table 2.2 Some MIDP 2.0 enabled Symbian phones

 26

Application Development Using J2ME – Architecture for Device Independence

2.7.3 How to use native Symbian services with J2ME [14]

Even though the MIDP/CLDC together with optional packages typically provides the

developer with a rich API set there are bound to be things that only a C++ application with

access to native services can do. This poses a big problem if a key feature in a MIDlet

depends on a service that simply is not accessible through conventional methods. There is

however, a way to circumvent these limitations. This requires more than the regular Java

skills to do, but to the experienced Symbian developer it is a reality.

MIDlets handle socket communication with other hosts, and the same way they can handle

communication with sockets listening on the local loopback address 127.0.0.1. This means

that we can actually have a MIDlet communicating with a native C++ application running on

the same device. Since the native application has the whole spectrum of native services

available, this means that even the MIDlet can reach them indirectly through socket

communication.

What you need to have on the native side is a so-called daemon. This will be an EXE

program, always resident and ready to process requests from the MIDlet. Just implement the

desired native functions into the daemon, and you have access to Symbians, for J2ME

developers, hidden features. Of course, this breaches the perimeters of the sandbox, but it can

sure be useful to a capable C++ programmer.

2.7.4 Benefits of J2ME on Symbian

Symbian and J2ME are two fast growing technologies that enhance the mobile environment.

They both have great value separately and when joined together they produce a very reliable

environment for mobile applications. The J2ME implementation on Symbian is very robust

and it is running on the very stable Symbian OS kernel. Its implementation has a small

footprint which takes advantage of Symbian OS’s compact and effective philosophy, both for

MIDP 1.0 and 2.0 applications. The Java UI components directly mapping to the native UI

components is very efficient and allows the applications to work at a faster rate. J2ME on

Symbian also have the advantage of the JCP. They frequently provide new optional Java

APIs, which again leads to that MIDlets to get more and more functionality and features. With

the performance and capabilities of J2ME on Symbian OS continually improving it now

 27

Application Development Using J2ME – Architecture for Device Independence

offers third party developers a viable developer environment. It’s likely to believe that this

environment will approach the mass market in an even greater extent.

Figure 2.11 Estimated performance of J2ME on Symbian

 28

Application Development Using J2ME – Architecture for Device Independence

3 Evaluation of J2ME on Symbian
In this chapter we will go through our evaluation of the J2ME/Symbian platform. We start

with defining the tasks scope and method, and go through the development of an application

used for testing of the platform. The results/experiences from this development are presented

in its own chapter 3.3, and here we will go through the core issues of the process. Following

this will be a brief discussion of these experiences and a conclusion. We also include a short

look to the future at the end because J2ME/Symbian is a constantly evolving symbiosis.

3.1 Scope and Method

3.1.1 Scope

In this first part of the thesis we will evaluate the development platform J2ME on the

operating system Symbian OS. It is especially the areas of initiating network services,

hardware control, and file access that will undergo a thorough evaluation. GUI and general

development issues will also be explored, but in this thesis these topics will not have the same

priority as the previously mentioned focus-areas. The idea is to examine the maturity level of

this development platform, and the richness of the features it provides.

3.1.2 Method

Research is an essential part of making an evaluation. Without theoretical knowledge, there is

little to base conclusions on. Therefore the technical review we did in the previous chapter is

the foundation on which we build this evaluation. In the research for the technical review we

gained an extensive knowledge about both J2ME and the Symbian OS, and the relationship

between them. To evaluate the maturity and feature-level of this development platform, a

practical approach is taken. We intend to develop an application where the all the elements of

interest are incorporated. This way the maturity and features are examined from both a

theoretical and a practical angle, and this will give us the background we need to draw a well

well-considered and well-tested conclusion. There are four questions on which we will base

our conclusion:

1. How well does MIDP’s hardware control fit the underlying technology?

 29

Application Development Using J2ME – Architecture for Device Independence

2. Is MIDP a good networking profile?

3. Can you easily develop good GUI’s with MIDP?

4. Is the general development process reasonably hassle-free?

3.1.3 Choice of Tools

The tools we chose for the development of our test application were chosen merely on

theoretical grounds. The need for advanced enterprise features was not there, and we could

have done just as well with just a text editor and Suns Wireless Toolkit. However when using

the professional tools, you get a certain sense of how much effort the industry is putting into

the platform, and this can help us in the evaluation process.

We landed on Borland JBuilder as the choice of IDE as this is the leading IDE for Java

development on the market now. This comes as a 30 day trial version and we felt that this was

enough time for us to test the features we needed, and to make a good test application. We

also used Sun Wireless Toolkit 2.2 as a testing base for our application. Since we can add any

desired emulator to this toolkit, we got to test the application on several different emulated

devices.

3.2 Test Application

The best way to explore the capabilities of the different Optional Packages and the J2ME

MIDP/CLDC platform in general, is to put them to use. This is what we aimed to do with this

application which will be deployed and tested on a Nokia 6630 with integrated photo and

recording hardware and the operating system Symbian OS v8.0

3.2.1 Use Case

To make this the following use case has been defined: An inspector, e.g. a foreman at a

construction site, wishes to report a detail in the construction back to a central computer. He

takes a picture, classifies the detail, adds some measurements and records some additional

audio comments. These recorded data will then be assembled into one message by the

application and sent back to the computer where it will be analysed for further actions.

 30

Application Development Using J2ME – Architecture for Device Independence

Figure 3.1 Use Case of the registration MIDlet RegApp

3.2.2 User Interface

As we have seen in previous chapters J2ME/MIDP has limited standard GUI components.

Therefore the design for our test-applications user interface is a minimalistic one. To make it

we used the following mix of low-level and high-level MIDP UI classes:

Screen

This is the common superclass of all high-level user interface classes.

Form

A Form is a Screen that contains an arbitrary mixture of items: images, read-only text

fields, editable text fields, editable date fields, gauges, and choice groups.

We use this to contain and organize where there are several elements like TextBoxes

and Strings.

List

The List class is a Screen containing list of choices. It is ideal for simple menus, where

all menu items are of the same class.

 31

Application Development Using J2ME – Architecture for Device Independence

TextBox

The TextBox class is a Screen that allows the user to enter and edit text. We used this

to typically take notes from the user, or to specify addresses and such.

Canvas

The Canvas class is a base class for writing applications that need to handle low-level

events and to issue graphics calls for drawing to the display.

This we used to contain the VideoController we needed to implement the camera

function. Since it is low-level we have control over the location and size of the

elements we put into it.

Navigation

The main menu is simply a List object with several elements which functions as a menu. The

user has several choices:

Figure 3.2 Available features in RegApp

Each of the choices leads to a new screen and you can at any time move back to the main

menu.

 32

Application Development Using J2ME – Architecture for Device Independence

3.2.3 Functionality

The whole application consists of the five choices in the menu. Each of them described here:

1. Take Snapshot: Selecting this menu-item displays a

low-level GUI for taking snapshots. It contains simple

functionality; simply take snapshot, and go back to

main menu. Snapshots are stored in files for later use.

2. Record Audio Comments: This displays a simple

start-stop audio recording interface. Contains start and

stop functions. Audio is stored in files for later use.

3. Write Comment: This displays a big textbox for

writing additional comments.

4. Preview: To be sure what you want to send is

actually what you send, preview functionality is added.

This reads files from and displays the message in an

orderly way.
Figure 3.3 Main menu on RegApp
shown on the Series 60 emulator

5. Send to Server: Displays different kinds of sending options. We have implemented MMS,

Servlet, Socket and Datagram communication, but only Servlet communication will appear in

the final application because of support issues.

3.2.4 Implementation issues

As the API support in the IDE and WTK differ from the support in the actual device, there

were bound be some problems. Even though we had the newest version of Symbian OS

available, it did not have support for the revised version of Wireless Messaging API

(JSR205). We found out that this is because this Optional Package is not supported until

Series 60 3rdedition, which are only implemented on Symbian OS v9. The first phone shipped

 33

Application Development Using J2ME – Architecture for Device Independence

with this OS is expected on the market 3Q or 4Q 2005. As a result the MMS implementation

that worked just fine in the emulator made the application crash in the actual device.

3.3 Test Application Experiences

As a relatively young platform J2ME is constantly undergoing huge improvements. When

reviewing the maturity of the platform one has to make a decision whether to review the

version currently dominating the market or the latest version that is not yet available in any

handsets. For instance, on the java-enabled phones people use today there are two dominating

stacks. We have the original MIDP stack with CLDC 1.0 and MIDP 1.0 as figure 3.4

illustrates.

Figure 3.4 MIDP 1.0 on top of CLDC 1.0 [15]

Although this combination has been wildly successful since its release in September 2000, it

is clearly just a start and not a mature platform for software development. It offers rather basic

environment for general application development. Vendors had to make a lot of device

specific APIs to make up for the lack of functionality, and this led to quite a fragmented

platform for developers to use.

Then we have the JSR 185 stack, as illustrated below, which provides a wireless Java

application environment that tries to reduce the fragmentation effect and improves portability.

Figure 3.5 The JSR 185 stack [15]

 34

Application Development Using J2ME – Architecture for Device Independence

Fragmentation is addressed by providing many crucial capabilities in one standard application

environment. Interoperability is addressed by clarifications to existing specifications and an

exhaustive suite of compliance tests.

Our review of the J2ME platform will therefore only focus on the latter of the two versions

mentioned above. To do this we made an application in which we incorporated a lot of

features to explore the maturity of the J2ME APIs. The analysis of the platform is presented

here, and the application itself is described in detail in Appendix C.

3.3.1 Using GFC
In our test application we used GCF for connecting to sockets, UDP-servers and a Servlet. We

also used it to perform I/O operations on the file system on the mobile phone

Using the GCF is very simple. To create a connection you use the Connector factory class and

a URL. To close it, you use the created Connection subtype object. Here is one code example

to illustrate a connection made from a MIDlet to a Servlet:

Figure 3.6 Connecting MIDlet to Servlet with HttpConnection (from test application).

All the connections made in the test application were created the same way. Needles to say,

this makes the developers job a whole lot easier than if he had to use a new procedure on each

of the different connection types. Of course there are differences when using the different

connection types, because each connection type has its own peculiarities.

3.3.2 Networking capabilities

In the test application we chose to implement several ways of MIDlet/Server communication.

We created three different servers: A simple servlet, a simple TCP server and a simple UDP

server. The emphasis in this thesis is on the MIDlet-side of the system, and the servers were

given one task only; just reassemble the message received from the MIDlet and display it.

 35

Application Development Using J2ME – Architecture for Device Independence

3.3.2.1 Datagrams and Sockets

Using datagrams as means of communication has the advantage that they are rather

lightweight when compared to TCP-based connections such as sockets. When programming

applications for wireless devices with limited network capacity this is clearly a thing to

consider. In the process of making the test application we tested the UDP and TCP protocols

as means to send a composite message from a MIDlet to a server.

Figure 3.7 An example of socket and datagram connections

It is no problem to send data from a MIDlet to a server using these two protocols. We just

converted the data files to byte arrays and sent them over an OutputStream object. However,

none of these protocols are mandatory implementations in the MIDP platform; it is entirely up

to the handset manufacturers and network operators to deploy these capabilities [16]. We

chose therefore just to test them out, but not make them part of the final application.

3.3.2.2 Http communication

As mentioned, sockets and datagram communications are network dependent. And some

networks may implement only one of these, and not the other. This clearly makes any

datagram or socket based application less portable. Because HTTP support is mandatory in

MIDP devices and HTTP is a high-level, standard network-independent protocol, this gives

wireless applications developed using HttpConnection a very high level of portability. HTTP

communication also makes it easier to deal with issues such as network security and firewalls,

because the HTTP's well-known port 80 is the least likely port blocked by firewalls.

In the test application we use HttpConnection to communicate with a servlet and to send

messages containing pictures and audio. Below is an example of how to send data to a Servlet

from a MIDlet using the HTTP POST request.

 36

Application Development Using J2ME – Architecture for Device Independence

Figure 3.8 Example on sending data to a Servlet from a MIDlet using the HTTP POST request

Figure 3.9 is a sample from an early version of the test application. A more complex

sendToServlet() method is found in the final version.

To send multiple files as we did in the test application, we found that the easiest way to do

this was to convert all the files to byte arrays and implement a small protocol. First we send a

String message, indicating the file type arriving in the succeeding stream of bytes, and then

the payload is sent. This is repeated for each file.

3.3.3 File access

File access for MIDlets has been an issue since Sun decided to move away from Personal Java

and JavaPhone and to put their efforts into J2ME instead. With the FileConnection API

however, this important hurdle has been overcome. The API is very simple containing just

one class, two interfaces, and two exceptions. As a part of the GCF, the FileConnection

interface extends the Connection interface and gives access to directories and individual files.

Implementations of FileConnection are created using the Connector.open() method. The

argument of the open() method is an URL with the format

file://<host>/<root>/<directory>/<directory>/.../<name>, and a parameter to decide if read

and write rights will be given.

 37

Application Development Using J2ME – Architecture for Device Independence

The host element may be empty, and it often will be, when the string refers to a file on the

local host. The root directory corresponds to a logical mount point for a particular storage

unit. Root names are device-specific. The following table provides some examples of root

values and how to open them:

Root Value How to Open a FileConnection
CFCard/ FileConnection fc = (FileConnection)

Connector.open("file:///CFCard/");

SDCard/ FileConnection fc = (FileConnection)

Connector.open("file:///SDCard/");

MemoryStick/ FileConnection fc = (FileConnection)

Connector.open("file:///MemoryStick/");

C:/ FileConnection fc = (FileConnection)

Connector.open("file:///C:/");

/ FileConnection fc = (FileConnection)

Connector.open("file:////");

Figure 3.9 Some GCF root values and how they could be opened[17]

When a connection to the file system is established, there are several kinds of operations that

can be performed. FileConnection includes amongst others [17]:

• Get a filtered list of files and directories using the method list(String filter, boolean

includeHidden). In the filter parameter you can use * as a wildcard to specify zero or

more occurrences of any character. The includeHidden parameter specifies whether

you want to list only visible files or hidden files as well.

• Discover whether a file or directory exists using exists().

• Discover whether a file or directory is hidden using isHidden().

• Create or delete a file or directory using create(), mkdir(), or delete().

For a list of all the valid root values in a device, call the listRoots() method of

FileSystemRegistry.

FileConnection behaves differently from other Generic Connection Framework connections in

one important way: The Connector.open() method can return successfully without referring to

 38

Application Development Using J2ME – Architecture for Device Independence

an existing file or directory. This capability enables you to create new files and directories.

Here is a segment of code that creates a new file; assume SDCard is a valid file-system root:

Figure 3.10 Example on how to create a file

In the test application we wanted to have persistent storage of the registration data, and

therefore we used the FileConnection to read and write files. It works smoothly as soon as you

get to know the file system.

3.3.4 Wireless Messaging

Sending messages with the Wireless Message API is really not a problem. For sending a text

message we just have to create a MessageConnection object and pass it a parameter to say it

will send text messages. Then we create a TextMessage object and use the setAddress()

method to set receiver address, and setPayloadText() to fill it with a String message. The

Message object is sent with the MessageConection’s send() method. A sample from the

application is displayed below.

 39

Application Development Using J2ME – Architecture for Device Independence

Figure 3.11 Example on creating and sending SMS

To send an MMS is not much worse, the difference is that we have to create a

MultipartMessage object which can, as the name implies, contain multiple message parts.

These can be files such as images or video, and also plain text messages. This feature arrived

first with the revision of the WMA, the JSR205, and at the time of writing the application, no

phone supported this. It worked without hassle in the emulator, and there is no reason it

should not work in a device which supports the revised WMA. Below is part of the MMS

implementation. It’s not included in the final application, as it will not work on the actual

device. It is merely included here to show how it is done.

 40

Application Development Using J2ME – Architecture for Device Independence

Figure 3.12 Creating and sending MMS Example from RegApp

There is a third option in the WMA, namely binary messages. This allows the developer to

convert the entire message into bytes and send it as a byte-stream. We figure this can be an

alternative to MMS for devices without JSR205 support.

Sending a binary message is no worse than sending a text message, as we can see in this code

sample.

 41

Application Development Using J2ME – Architecture for Device Independence

Figure 3.13 Example on creating and sending a binary message

3.3.5 Hardware control

In our application we instantiate a video capture player object by passing the URI locator

“capture://video” to the Manager.createPlayer() factory method. Then we display the

resulting video in a canvas and we are able to grab a snapshot from this by calling the

VideoControl.getSnapshot(). We can pass arguments to this method to adjust the type and the

dimensions of the resultant image. Below is a code sample from the application, which shows

how we implemented this feature with help from Forum Nokia.

 42

Application Development Using J2ME – Architecture for Device Independence

Figure 3.14 Creating a visible video controller and taking a snapshot in the test application

The procedure for implementing audio recording is somewhat simpler, since it does not

require a display, such as the Video display we used for the snapshot function. But it is similar

in the way that we use the Manager.createPlayer() method.

 43

Application Development Using J2ME – Architecture for Device Independence

Figure 3.15 Creating and using AudioRecorder in the test application.

Even though recording audio did not pose a problem, the replay did. Loading the recorded

wav file into the memory took so much time it was not any point including the replay function

in the final version of the application.

3.3.6 GUI

In order to show something on a MIDP device, you will need to obtain the device's display,

which is represented by the Display class. This class is the one and only display manager that

is instantiated for each active MIDlet and provides methods to retrieve information about the

device's display capabilities.

 44

Application Development Using J2ME – Architecture for Device Independence

Figure 3.16 Overview of available GUI components in J2ME [18]

To make something useful for the user, you have to go further down the

javax.microedition.lcdui tree to the level of the Screen class and the Canvas class.

We used three types of Screen implementations in our application; List, Form and TextBox.

They are all straight forward and easy to use, but perhaps not as flexible as you would want.

Not much creativity allowed, since the underlying implementation takes care of most of the

placement and size issues.

In order to directly draw lines, text, and shapes on the screen, you must use the Canvas class.

The Canvas class provides a blank screen on which a MIDlet can draw. We used this to

display the VideoController output in the snapshot function.

For an application like the one we have made in this project you can do fine with a mix of

low-level and high-level MIDP UI API’s.

 45

Application Development Using J2ME – Architecture for Device Independence

3.3.7 General programming Issues

Due to the nature of the targeted devices, J2ME and MIDP are understandably limited. Here

we will go through some of the general limitations you experience when moving from J2SE

development to the mobile world of MIDP [19].

Serialization

Serialization of objects comes in handy when data classes such as the SessionData class in our

test application. This is a class whose only job is to store images, audio and text, and

serializing this object would make it much easier to transfer these data over a byte stream.

Since MIDP does not support serialization this process becomes quite cumbersome.

Exception Handling

Exception handling is resource-expensive and is therefore limited in J2ME. For instance,

CLDC only defines three error classes: java.lang.Error, java.lang.OutOfMemoryError, and

java.lang.VirtualMachineError. This imposes extra care in coding and testing for the

developer.

Finalization

And you can not do finalization in J2ME. It is unwise to rely too much on this even when

using J2SE, but at least you have the possibility to do so if you wish. In J2ME this possibility

has been removed.

Threading

There are no thread groups or daemon threads in J2ME, however MIDP supports

multithreading. Thread groups can be created at the application level by using a collection to

store the tread objects.

GUI

Large UI APIs such as Swing and AWT are not suited to be used on a small device, and

therefore MIDP implements its own set of UI APIs that fits the smaller screen size and

minimal resources. Divided into high-level and low-level UI, this provides the developer with

easy to use UI components and the ability to draw on the display. The high-level components

 46

Application Development Using J2ME – Architecture for Device Independence

leave a lot of the GUI design up to MIDP, and thereby limit developers’ freedom. And the

low-level UI is a bit too low level to be used in fast development of applications.

4 Discussion and Conclusion
When J2ME was first introduced to the Symbian platform it was as a kind of second class

citizen. It did not have the features to compete with the native C++, but it had something that

we believe has contributed to its continuous existence; portability. However J2ME needs to

prove itself in more ways than this to defend its place as a prioritized language on the

Symbian platform. Through this paper we have examined some specific problem areas and we

have looked at the evolution of J2ME and Symbians co-existence.

4.1 Discussing maturity and features

4.1.1 Focus Areas
The first area we examined was the hardware control. This had long been a weakness for

J2ME on Symbian. What we experienced currently the situation was rather the opposite; the

arrival of the MMAPI has made developing hardware controlling software such as camera and

audio recording apps not only possible, but easy as well. Of course, the features are not very

advanced; it is basically just record and play functions that are implemented. For instance,

neither zooming nor filtering is implemented.

As mentioned in chapter 2.4.1 a new JSR had its final release the 20th of June this year called

JSR 235 ASMAPI. This will greatly enhance the developers’ capabilities to control cameras

and other recording equipment. It will actually take a step closer to the features of the

specialized devices out there. One can ask oneself why this hasn’t been done before but, the

answer is most likely that API development is just taking the steps one at the time. The

MMAPI was designed to be easily extensible, and this pays of now as ASMAPI utilizes this

framework by introducing control for advanced multimedia features.

File access have also been lacking in the J2ME/Symbian platform, and again we found that

the problems have been mended. At least to the degree we needed to make the application

without any problems.

 47

Application Development Using J2ME – Architecture for Device Independence

Originally we intended to register data with the camera and microphone and send it as an

MMS with the help of the WMA. However, the phone we used for this project does not

support the revised WMA (JSR205), and we were therefore unable to send the data as MMS.

Still, we did make an implementation that we only tested on the emulator.

When it comes to networking in J2ME we tried three different approaches: Socket, datagram

and HTTP. All three are good ways to connect the application to servers but we found that an

HTTP/Servlet solution is the best for mobile networking with J2ME. The HTTP protocol is

more adaptable to the somewhat unstable network that mobile phones operate in.

We could have tested all these API’s further, but this would be best to do as separate projects

as they each would need to be studied at a much deeper level. To thoroughly review and

suggest improvements needs the time and expertise at the level of JSR expert groups.

4.1.2 GUI
The general feeling we got from developing the GUI on the test application was that it was

quite easy. But that is really just what we expected when we found out that MIDP 2.0 gave us

very limited options.

 The MIDP profile has too few GUI classes and this puts serious constrains on the developer

if he wishes to develop a creative GUI solution. This is of course because MIDP is created to

be the lowest common denominator for mobile devices, but when developing on advanced

devices with operating systems like Symbian you want more control. J2SE GUI classes such

as menus and drop down lists are sorely missed.

You can of course use the low-level GUI API to create your own hierarchy of components,

but the moment you start to adapt the GUI components to the capabilities of each device, you

instantly loose one of J2ME’s major selling points; the portability. This is a challenge has to

be overcome if J2ME applications are to be able to pass as first citizens in the Symbian

environment.

 48

Application Development Using J2ME – Architecture for Device Independence

4.1.3 Using Native Services
As described in the J2ME on Symbian chapter of the technical review, there is a way to break

out of the sandbox and access native services, if necessary, via a daemon program on the local

loopback address 127.0.0.1. This way of communicating gives the MIDP application indirect

access to the full native API, and is a good solution if the project is depending on a few

services that lie outside the reach of MIDP or when the device does not support a certain

optional package.

This technique is not very common however, and this is probably due to the barrier of

Symbian C++ programming. For a MIDP developer this can be a daunting task to take on, but

the benefits are clearly there for grabs if one is willing to take the challenge.

One other downside is of course the portability issues that appear once you breach the

sandbox, but this is the prize to pay for access to native functionality.

4.2 Conclusion

As mobile phone technology moves forward with an increasingly high pace, the software

industry has a tough job keeping up. When looking at the variety of Symbian OS based

phones on the market, it is easy to see that this progress is creating a very fragmented market

for developers of mobile applications to work in. Even though all Symbian platforms support

Java in one way or the other, this is not a uniform support. From the Symbian 6.X to 8.0

which are the platforms we have looked at in this project, the range in Java support stretches

from PersonalJava/JavaPhone to J2ME MIDP2.0/CLDC1.1 and the differences here are

substantial. Even within MIDP2.0/CLDC1.1 based devices there are differences in optional

packages that make programs less portable. Therefore, the evaluation of J2ME is a difficult

task.

We decided that we would focus on the platform on our chosen device, the Nokia 6630, as

this had the newest version of Symbian OS and supported the most optional packages.

The general impression of this platform is that it is streamlined to develop simple applications

fast. Being used to work in environments like J2SE and J2EE it is not hard to get into J2ME

programming. The language itself is grammatically the same, but it requires a slight change in

 49

Application Development Using J2ME – Architecture for Device Independence

the way the developer thinks. The tools we used were mature in the way that they provided

help in all parts of the process, so that we could focus on the coding.

GUI programming in J2ME is easy. Very few standard high-level UI elements help you to get

the complete overview of possibilities. Unfortunately, this has a downside for the more

creative developers as it limits GUI freedom.

The hardware control provided by the optional package MMAPI was also very good

considering ease of use. However it lacks features to exploit the technical finesses of the

hardware. However, there are improvements coming in the near future with a supplement

package specified by the Java Community Process.

As far as networking goes there were little problems to find; at least in the developing

process. We tested socket and datagram networking and HTTP/Servlet communication. How

it works in works in real-life environments with the mobile networks is outside the scope of

this project.

When reviewing the whole platform of J2ME on Symbian OS, we will have to say that there

is still quite a way to go before it is fully matured. There is a lack of richness in the J2ME

language that limits development of advanced applications. The fact that one can access

native services through a C++ daemon application is of course helpful, but should be seen as a

shortage of features and should not be considered as part of the J2ME features.

Our claim is that a development language is never more mature than the platform it will be

used on. An application will always be limited by its environment. The lack of maturity and

features is therefore not due to limitations in the J2ME itself, but rather in the willingness of

the mobile device manufacturers to agree amongst them selves to implement standard APIs.

4.3 The future of J2ME on Symbian OS

The 2nd of February 2005, Symbian Limited today announces the launch of Symbian OS™

version 9, the latest evolution of the world’s leading smartphone operating system. According

to the executive vice president of marketing at Symbian, Marit Døving: “Symbian’s strategic

focus is to ensure that Symbian OS is the ideal choice for Symbian OS licensees’

 50

Application Development Using J2ME – Architecture for Device Independence

development of smaller, less expensive and more powerful smartphones,” said Marit Døving,

Executive Vice President, Marketing at Symbian [20].

Regarding J2ME support on Symbian OS, they are still supporting the newest configurations

and profiles [21] in the coming versions of the OS and Symbians intention is clearly to make

J2ME a first class citizen in the Symbian OS environment.

The fact that Symbian is now aiming for the masses, instead of just high-end mobile phones is

a certain sign that the Symbian OS is expanding its territory. And with Symbians efforts to

stay in front with J2ME technology, we believe J2ME will evolve and mature alongside with

the Symbian OS.

 51

Application Development Using J2ME – Architecture for Device Independence

PART TWO – DEVICE INDEPENDENCE

5 Device Independence
The idea that applications can be used across all platforms and computer hardware is a good

one, but it seems unattainable when the enormous diversity is considered. The leap from a

stationary PC to a small mobile phone is still just too great. But then again it is not very likely

that you would want to use your mobile and PC for a lot of the same tasks. Of course, web

browsing and similar tasks can be done with both, but the “heavy” computing jobs are still the

PC’s domain. This is much because input and display makes working inconvenient on small

devices, but also because computing power is still much greater on a PC. This thesis will

therefore focus on device independent software development on a more homogeneous group

of devices, namely mobile phones with J2ME/MIDP support.

The motivation behind device independence is first and foremost cost- and time efficiency,

since the idea is to develop once and run/deploy anywhere. The aim is to determine whether it

is feasible to develop applications that are fully portable across devices that support the Java

platform, and to propose frameworks for such development.

5.1 Diversity issues

Even though mobile phones are used for many of the same tasks, the diversity amongst them

is huge. As we see in the picture below, the designers really do not have many restrictions on

their work.

Figure 5.1 Diversity in design

 52

Application Development Using J2ME – Architecture for Device Independence

For software developers this poses several different challenges, which are discussed in this

chapter.

5.1.1 Graphical User Interface

GUI’s differ a lot in the world of mobile devices, as we can see in the figure above. Although

the technology moves towards bigger and better displays all the time, they range from the

very small to almost small laptop sized ones. In addition to their variation in shape, they vary

in resolution and range of colours. This, of course, poses a great challenge to any developer

working with mobile technology. At least if the application is intended to be used by a group

of consumers with different devices, as these groups rarely are homogenous. The developer

will then need to know the features of each device before designing an application.

There are several ways of aligning GUI components such as menus and buttons on a screen,

depending on the size of each different display. When considering the more cosmetic issues of

a GUI, the screen resolution and colour depth possible on the device comes in to play. When

developing for more than one type of phone it is easy to use the “lowest common

denominator” approach. This usually results in a decent GUI for the low-end devices, but the

features of the high-end devices will not be used to the full extent. Although the application

might be useful it will most likely not have an optimal design.

5.1.2 Input Devices

As with displays, there are several different types of input devices that might be found on a

MIDP platform. There are the standard numeric key-pads that most mobile phones come with,

and there are more sophisticated solutions like full QWERTY key-pads, or touch screens. To

make good applications input devices must be taken in to consideration during the design.

5.1.3 Platform Fragmentation

Another problem to consider when developing applications for mobile phones is the great

diversity in platforms. It seems as if every single device has a different platform. This is much

due to the fact that in the world of mobile technology business there is no dominant factor; at

least not to the same extent as we see on operating systems for PC’s, where Microsoft is able

 53

Application Development Using J2ME – Architecture for Device Independence

to act like a monopolist. There are a lot of negative aspects to monopolism, but one thing it

has contributed to the PC market, is standardisation.

The lack of standards in mobile technology is a problem for any developer. At least it

increases the workload, since every time a new platform is encountered the developer needs to

thoroughly study its features in order to fully take advantage of the system.

The MIDP implementations on each device are often bundled by the device's manufacturer

and are considered to be part of the system software, i.e. they provide the underlying

implementations that interact with the operating system. This allows the implementation to

access features that would normally be off-limits to a third-party implementation, and also

ensures a good degree of integration with the other parts of the system. The down-side for a

device independent developer is that this integration often results in a fragmentation of the

whole mobile market. This means that we have a situation where different platforms allow

certain functions to be accessible and some do not.

5.2 The J2ME Approach

As platform independence is Java’s foundation stone and one of its best features, Sun faces

some expectations in the device independence area. This chapter takes a closer look at what

exactly is J2ME approach to this issue.

5.2.1 The Java Virtual Machine

Being the cornerstone of all Java platforms, the JVM is the component that makes Java

portable across different hardware and operating systems. The job of the virtual machine is to

be an abstraction of the machine it is running on. It interprets java class-files and makes calls

to the underlying system based on these [22].

 54

Application Development Using J2ME – Architecture for Device Independence

Figure 5.2 Java Program Execution

Each particular host operating system needs its own implementation of the JVM and runtime.

The virtual machine itself is therefore not device independent, but it acts as an abstraction of

the underlying system so that Java programs can run independently. The virtual machines

interpret the byte code semantically the same way, but the actual implementation may differ

from platform to platform. More complicated than just the emulation of byte code is

compatible and efficient implementation of the J2ME core API which has to be mapped to

each host operating system. This way J2ME applications can, in principal at least, be ported to

any hardware running the java virtual machine. Although a certain level of device

independence is reach this way, there are still the issues mentioned in chapter 5.1 Diversity

Issues that cannot be solved just by making code executable on each device.

5.2.2 MIDP portability

The high-level MIDP applications are portable across various all variations of MIDP enabled

devices and they are usually designed for applications where portability across a range of

handsets is desired. To achieve this portability, the APIs use a high level of abstraction from

the underlying implementation provided by the device manufacturers.

When making GUI’s with J2ME, one has initially two approaches: High-level or low-level

user interface API’s. The former is the one intended to provide the developer with portability

while the latter is much more direct in the control of the screen.

High-Level GUI

 55

Application Development Using J2ME – Architecture for Device Independence

The high-level user interface API provides the developer with a standard set of user interface

components that stay rather consistently in functionality across different devices. However,

their appearance and placement differs on different devices.

Figure 5.3 A high-level GUI sample (WTK2.2 sample). Same application running on Ericsson P910 (left)
and Nokia series 60

This component behaviour is the result of a high level of abstraction in the user interface API,

which actually uses interface components provided natively by the device. It creates a decent

look to the application, but it leaves the developer with little control over the interface design.

Low-level GUI

Although the high-level API’s provides a good set of UI-components, there is often a need for

more detailed control. This is why MIDP provides the low-level UI API’s, which are capable

of almost direct control over the screen space allocated to the application.

 56

Application Development Using J2ME – Architecture for Device Independence

Figure 5.4 A low-level GUI sample (WTK2.2 Sample). Same application running on Ericsson K750 (left)
and Nokia series 40

As we can see from the two pictures above, the difference is not that evident between low-

level GUIs on different devices. This is because of the direct control the developer has

through the low-level API’s.

This direct control can easily become a problem when creating portable programs; however

there are some tricks to use in order to minimize these problems. In chapter 6.3 General

Techniques for portable J2ME Programming, I will go through some of these.

5.2.3 Optional Packages

Problems arise when optional packages are added to a MIDP platform in order to improve

exploitation of device features. These are strong contributors to the fragmentation of the

platform, as the variations in supported optional packages tend to vary a great deal. On the

other hand they are definitely a necessity as new device features emerge all the time. This

fragmentation is one of the great challenges faced by developers of device independent MIDP

applications.

5.3 Relevant projects

There are not exactly many projects on the field of making framework for development of

portable J2ME applications. The most likely reason for this is that J2ME itself provides a

certain level of portability, and there is constantly work being done to improve. Projects on

device independence in general are more into making web-content device independent, or

 57

Application Development Using J2ME – Architecture for Device Independence

they go beyond frameworks and into the field of dynamic languages. Still, I managed to find

some inspirational ideas from a few projects and they are described in this chapter.

5.3.1 Component Based Development

A component based development framework is an interesting way of solving portability

issues. This is particularly the case with MIDlets as functions based on optional packages can

put into components and be used when the platform allows this. Treating GUIs as components

can also be advantageous.

In the paper, ”Migratable User Interface Descriptions in Component-Based Development”

[23], it is described how a component based approach can be combined with a UI description

language to get more extendible and adaptable UIs for embedded systems and mobile

computing devices. It envisions a new approach for building adaptable user interfaces for

embedded systems, which can migrate from one device to another.

5.3.2 J2ME Polish

J2ME Polish [24] is a set of tools used to optimize J2ME applications for each device. It is not

a tool for device independence as such, but it contains some ideas that can be useful.

In short J2ME Polish enables the developer to write code once and build it in device specific

versions. Three ideas presented by the J2ME Polish documentation are especially interesting

for this thesis.

Automated Code Optimization

The optimization is based on build-tools for creating application bundles, for multiple devices

and multiple locales, out of one source project. This includes a code pre-processor which

changes the code before compilation in order to optimize it for each device.

Device Characterization

J2ME Polish includes a device database in which the capabilities of known devices are

defined. These capabilities are then incorporated into the code during pre-processing.

 58

Application Development Using J2ME – Architecture for Device Independence

GUI Optimization

J2ME Polish includes an optional GUI, which can be designed using the web-standard

Cascading Style Sheets (CSS). The GUI is compatible with the javax.microedition.ui classes;

therefore no changes need to be made in the source code of the application. The GUI will be

incorporated by the pre-processing mechanism automatically.

5.3.3 Content adaption

This is part of a field that is a bit on the side of this thesis. Content adaption is a technique

used to make information viewable on multiple devices. The idea is to use this to build web

pages and web applications that can be used on very limited devices as well as on stationary

computers. Some members of the World Wide Web Consortium (W3C) have an ongoing

project in this field. This group is called Device Independence Working Group (DIWG), and

works on standardizing the World Wide Web in the hope of making it device independent

[25].

Even though this particular group works on web page and web applications the ideas can be

transferred to application development. It is possible to view the GUI in much the same way

as web content, and thereby transpose principles from content adaption to GUI development.

6 Proposed Solutions
I have looked at two ways of approaching the problem of portability in MIDlets. They have

similarities and differences, but the most important difference is that in the first one,

portability is handled at runtime by the application on the device. In the other one the

applications will not really portable in the same sense; it is more like a “portable idea”

framework. Both the proposed frameworks ideas are extracted and modified from the projects

mentioned in chapter 5.3 Relevant Projects, and they exist only as propositions for solving

device independence issues as they are not implemented and have not undergone full-scale

testing.

 59

Application Development Using J2ME – Architecture for Device Independence

6.1 Built In Context Adaptability (BICA)

As MIDP portability in itself is not an optimal solution because it is just capable of exploiting

a small part of the available device features, there is a need for greater adaptability in

applications. Here I propose a way of developing MIDlets with built in context adaptability.

Figure 6.1 Illustration of the Built In Context Adaptability framework

The top blue area of the figure illustrates the application. It is split up into three major parts:

The application core, device optimized components and a context adaption layer. These three

are intended to replace the standard MIDlet structure by isolating the parts that causes

portability problems.

6.1.1 Structure and Principles

On an abstract level this is the intended structure of an application developed using BICA:

Application Core:

This is where the main structure of the application will be located. No optional packages or

device specific implementations are allowed here to avoid device and platform dependence.

 60

Application Development Using J2ME – Architecture for Device Independence

Device Optimized Components (DOC):

These are program components which are optimized for different devices. For instance, if one

platform does not support one optional package, a suitable backup component may be used, or

in worst case, the feature may be excluded without this crashing the application.

ContextAdaptor:

In order to be able to fully adapt to different devices, the MIDlet needs to have knowledge

about different devices features. It is the ContextAdaptor’s task to read the system properties

and use the correct DOC’s according to these.

Figure 6.2 Component diagram showing component structure of an application created with BICA

The idea is that a MIDlet shall be aware of its environment at runtime. The core acts as the

glue in the application, binding the different components together.

At start-up, the ContextAdaptor registers what kind of device it is running on. System

properties are available to help determine the type of device on which the MIDlet suite is

running. The core then consults the ContextAdaptor to find out which of the built in

components the platform supports, and uses them accordingly.

Of course, this consultation may fail to advise the core of components being available if the

platform has no such support. If this happens, the core will exclude the unsupported feature

from the application.

 61

Application Development Using J2ME – Architecture for Device Independence

6.1.2 Context Adaption in BICA

Portability usually means that some features will be weakened by too many constrictions in

the platform that supports the least features. The BICA framework intends to solve this by

including device optimized implementations of each feature in the MIDlet suite. If there are

usable backup implementations possible for the features these will be used when the optimal

solution is not present.

This structure is part of what is called the Context Adaption Layer (CAL). It works as an

abstraction from the DOCs, allowing the core application to be unaware of the underlying

implementations. Since each function is implemented differently for the different devices, the

different versions of each DOC will all have to implement interface methods to make sure

they act equally to the application. The core only uses the interface methods.

Device characterization is an important part of the ContextAdaptor. This process uses the

system property names, defined by the various J2ME JSR documents. These can be queried at

runtime, and provides two services

[http://developers.sun.com/techtopics/mobility/midp/questions/properties/]:

• To indicate the availability of an optional package:

For example, if the device supports the Location API for J2ME then the property

microedition.location.version will be present. The value associated with it will be

"1.0", to indicate compliance with JSR 179.

• To provide platform-dependent configuration data

For instance, the property microedition.commports is present in the MIDP 2.0

specification. Its value is a comma-separated list of ports you can use to build a URL,

which the Generic Connection Framework can in turn use to create a

javax.microedition.io.CommConnection object.

One problem with this approach is that for some of the properties it is up to the devices MIDP

implementations whether they are accessible or not. In this system the ContextAdaptor

assumes that if the system properties are not accessible then the actual feature is not available

either.

 62

Application Development Using J2ME – Architecture for Device Independence

On start-up the MIDlet core creates an object of the ContextAdaptor which will be used

throughout the MIDlets life cycle. At creation this object reads all system properties into a list

and this list is what decides which DOCs will be used.

When a call to a DOC method is made, the ContextAdaptor directs the call to the correct

DOC.

This is the intended structure of the ContextAdaptor class. It will obviously be more complex

than this in practical use, but this illustrates the idea behind it.

Figure 6.3 ContextAdaptor class sample

 63

Application Development Using J2ME – Architecture for Device Independence

A small test was conducted to check if the ContextAdaptor class worked as intended, and in

this small-scale test with one MIDlet, the ContextAdaptor and two components it was

successful. It showed however, that exception handling is important since the MIDlet suite

has implemented functions for unsupported APIs as well as the ones the ContextAdaptor

chooses to use.

6.1.3 Component Structure

The component structure is described below, through a small example. What we see there are

two classes which implement an interface. The two classes are two versions of a component

for storing persistent data. The idea is to have at least one device dependent and one device

independent component under each interface, so that the application can provide one

optimized solution, and one backup solution in case of lack of support in the device.

Figure 6.4 Sample of component structure

6.1.4 Coding Guidelines

The components based on optional packages will be named according to the JSR numbering,

and the components which are made from functions supported by all MIDP devices are

named after the package they reside in.

6.1.5 Optimized Portable GUI

Regarding optimized portable GUIs, this is a subject that needs to be handled differently from

the rest of the structure. To incorporate optimized portability into the GUI of applications

developed with BICA, there will be a need for a new framework with more features than

MIDP offers. Portable optimized GUI-components can be part of the frameworks component

 64

Application Development Using J2ME – Architecture for Device Independence

libraries, but layout poses a challenge. The number of elements and their alignment relative to

each other is not quite as easy to handle.

In “Migratable User Interface Descriptions in Component-Based Development” [X], it is

proposed that the portable GUI issue could be handled with a so-called render-component. In

BICA this would be a component which reads GUI instructions from an XML-file and

presents the user with its interpreted GUI; much like a browser interpreting HTML code. This

feature has not been included in the proposed BICA framework because I did not have the

time to implement and test such a component. However, it would be interesting to see how it

would help complete the framework.

6.1.6 Example Scenario

Consider a MIDlet created to take a snapshot and store it in a file on a mobile phone before

viewing it. It is a very simple application with no purpose but to illustrate the usefulness of

Built In Context Adaptability. This application is targeted for two different mobiles; the

Nokia 6630 and the Nokia 6230.

To implement this, two optional packages are needed: Mobile Media API and the

FileConnection API. Nokia 6630 supports them both but Nokia 6230 supports only the

Mobile Media API.

Both devices will receive the exact same implementation, and both will work. The difference

will be that the application in 6630 will work 100% correctly, and the Nokia 6230, that cannot

store files, will use MIDP Record Management System (RMS) instead. Using standard

MIDlet programming would result in the application crashing in the Nokia 6230, but using

BICA it will still be functional.

6.2 Build On Demand Framework (BODF)

The BODF does not make applications portable as such, but rather it recreates the application,

optimized for a device, each time a user requests a download. It is a little bit outside the scope

of portability but it targets many of the problems encountered when trying to create portable

applications.

 65

Application Development Using J2ME – Architecture for Device Independence

Figure 6.5 Illustration of the BODF framework

6.2.1 Structure and Principles

In this framework the application is tailor made for each device centrally. The system consists

of three elements on an abstract level:

Device Database:

The device database is storage for device specifications. It contains information about

supported APIs and profiles.

WebService:

This handles requests from the Build and Deployment Server and queries the device database

regarding the features of specific devices. This is presented to the Build and Deployment

Server as a SOAP document.

 66

Application Development Using J2ME – Architecture for Device Independence

Build and Deployment Server:

This handles download requests from mobile phones and builds the application according to

information from the WebService.

The idea behind this structure is that if device-to-device portability is not needed, then the

optimal solution is to automatically tailor the application upon download requests. Even

though the resulting MIDlet will not be portable, important issues are taken care of. For

instance, the application only needs to be developed once; the rest is automated by the

framework.

When a mobile phone connects to the server using HttpConnection the server can register

what mobile type is used, either automatically or from the user indicating what type of device

is used. This is then passed on to a WebService which queries a device database about device

features, and the results are used by the server to build the application.

As in BICA, the final MIDlet suite will consist of components, but in this case the

components that are unsupported will be left out of the build to minimize the size.

6.2.2 Process Description

What enables the applications developed with BODF to be so well adapted to each device is

that the building and compilation happens when a download is requested. This allows the

system to access and manipulate to the MIDlets source code.

The BODF system can be explained through seven steps:

1. Coding: The developer has to conform to a certain style in order to make the system

work. No mixing of the core application and device dependent functions is allowed.

As far as naming goes, the classes and methods need to follow the BODF standard.

When calling device independent functions from the core tagging must be applied.

2. Server structure: When the code is finished it will be placed on the server. Device

dependent code will be compiled and put in libraries, but the core remains uncompiled

until a download request is made. The libraries are open to all applications in the

system, as reuse of code eases the job for the developers.

 67

Application Development Using J2ME – Architecture for Device Independence

3. Download request: When a device requests a download, it gives the server its name,

e.g. Nokia 6630. This name is passed on to the WebService which queries the device

database to find required information about the device. This is stored as an XML file

on the server.

4. Automated Code Editor (ACE): ACE is a simple program for traversing code and

responding to tags put there by the programmer. If desired, more of the development

tasks can be taken care of by extending this application. It reads an XML file in order

to know what manipulations are needed when encountering tags in the code. When

encountering tags it will manipulate code in accordance to the BODF standard.

5. Compiler: This is just a standard compiler. It is used to compile the manipulated code

of the core.

6. Packaging: Taking care of packaging the application and all its necessary files in a

JAR file.

7. Deployment: Returning the requested application, specified to the users device, as any

other MIDlet

Following these seven steps will result in an application which is tailored to a specific device.

A small test was conducted to check if it was possible to use the automated code editor to

manipulate the code when it was written according to the guidelines. In this small-scale test

with one MIDlet, and two components it was successful.

6.2.3 Device Characterization

As mentioned, when the build/download server gets the name of the device it queries the

device database through a web service. The result presented to the server is an XML-file like

the one below.

 68

Application Development Using J2ME – Architecture for Device Independence

Figure 6.6 Sample XML document read by ACE

This is an empty XML file, but it will contain all the device specifications needed to tailor the

core code. This way of organizing the device data makes the system easily extendible to new

emerging devices.

6.2.4 Component Structure

The component structure shares some similarities with the one in BICA. The difference is that

BODF uses one more abstraction level, the Component interface.

 69

Application Development Using J2ME – Architecture for Device Independence

Figure 6.7 Sample component structure of the BODF.

What is illustrated in the figure above is a sample of the BODF component framework. The

real structure will of course be a lot more complex and contain more classes with more

attributes and methods. This illustration only serves the purpose of displaying the general

idea.

6.2.5 Optimized GUI

The problems with optimized GUI construction is much the same in BODF as it is in BICA,

but BODF has the advantage that it will be handled before the application is deployed. This

opens for the use of the principles described in the J2ME Polish framework mentioned in

chapter 5.3.2 [26].

6.2.6 Coding Guidelines

To make the BODF process work, the developers need to conform to a certain way of

programming. This is because of the automated code editor that reads through the code and

changes it to fit a certain mobile phone.

When using components it is suggested to use this syntax:

Figure 6.8 Pre-edited code

 70

Application Development Using J2ME – Architecture for Device Independence

It is then easy for ACE to perform code optimization. It reads the #DataStorage# tag and gets

the suitable component from reading the XML file containing all device info. This is the

resulting code:

Figure 6.9 Edited code

When using classes that will undergo device specification by ACE the developers should

always use the super-class, which in the sample above is DataStorage. And the preceding tag

should always be in the format #<super-class>#.

6.2.7 Example Scenario

We can use the same example application as the one used in the BICA sample scenario. The

major difference is that with BODF the application will have only the optimized components

for the specified device, and therefore it will be smaller. And it will not be portable in the

same sense.

6.3 General Techniques for Portable J2ME programming

J2ME itself is rather portable, but still it is important to use proper programming techniques

that will not limit portability.

The high-level UI API is designed to be portable, but when using the low-level UI API there

are some things to consider. For instance, when working on a canvas, always align elements

proportionally to each other and the screen size. There are methods for getting screen size and

other features from the system.

Instead of drawing a rectangle like this:

Figure 6.10 Straight forward way of drawing a rectangle[x]

One should rather do it like this:

 71

Application Development Using J2ME – Architecture for Device Independence

Figure 6.11 Portable way of drawing a rectangle[x]

When using media in MIDlets it important to use media that is widely supported by devices,

or at least make the media files easy replaceable if needed. And any byte arrays used to store

media content must be flexible in size, since the sizes of different formats differ substantially.

The hard coding of constants should also be avoided. Constants should rather be stored in

separate configuration files.

7 Discussion and Conclusion

7.1 Discussion

Since MIDP already is portable technology and it is so because it uses the smallest common

denominator approach, there is no point in making it more portable. A core MIDP2.0

application will work on any device that supports this platform. The main problem with the

MIDP platform, or rather the portability on the platform, is the fact that it has been extended

by different APIs on many different devices. With MIDP enabled devices being able to

support two versions of CLDC, two versions of MIDP and a number of Optional Packages, a

MIDlet might only work on the platform it was developed for. This great fragmentation is of

course a necessary step in the process of growing into a mature platform for such a diverse

group of devices, but as more and more devices gets the same technology this will probably

change for the better. In the meantime, frameworks are needed to help J2ME along.

7.1.1 Proposed Frameworks

The two solutions proposed in this thesis both have the same goals: Cut development costs

when developing for more than one platform, and exploit more of the technical features on

each device than you would be able to with the “smallest common denominator” approach of

MIDP.

BICA approach differs from BODF in the way that it builds the portability into the deployed

MIDlet suite. This enables the application to be device-to-device portable, which is a feature

 72

Application Development Using J2ME – Architecture for Device Independence

that lacks in applications built with BODF. The question is then: when do we need device-to-

device portability? For a software development company this may not be desired. After all, it

would probably want to make money of the product, and maybe keep records of numbers of

downloads. Of course, there are other ways of making copying hard, but it just shows that

maybe this kind of portability is not needed. When using BODF, the MIDlet suite will be

designed to fit only your type of device, but someone with another brand may also download

and receive the same application tailor made to their needs.

As the mobile market is a market in motion, with new and extended technical possibilities

constantly emerging, a framework for development of portable applications also needs to be

able to extend accordingly. Both the suggested frameworks in this thesis extend by adding all

developed components to a library. This extension of the libraries can however pose a

problem for BICA as it needs to deploy implementations of all component versions in order to

be portable to all devices. BODF has one advantage in the fact that it does not need a class to

choose which component to use at runtime. This is handled centrally by ACE before

compilation and deployment, and therefore it will not be a problem that libraries grow in size

as only one version of the device-optimized components will be deployed with each

application.

The issue of creating a better portable GUI than the one MIDP offers poses challenges to both

of the proposed frameworks in this thesis. BICA needs an implemented GUI interpreter, but

BODF can employ principles such as the ones used in the project J2ME Polish. Since this

thesis is not about implementing a complete framework, only the feasibility of such principles

is considered. It seems more than likely that BODF will be able to handle these challenges.

7.1.2 Feasibility and Further Work

The proposed frameworks have not undergone a full-scale implementation or testing, but

indications from testing the core ideas in small applications gives reason to believe that a full-

scale implementation is possible.

However, it is difficult to say exactly how complex applications will behave within these

frameworks without actually testing, and therefore a full-scale framework is needed to make a

conclusive decision on the feasibility issue. The structures suggested in this thesis should

 73

Application Development Using J2ME – Architecture for Device Independence

provide enough information to implement full-scale frameworks. Probably the BODF

structure would be the easiest to make a full-scale framework from, since every step of the

process is based on existing technology, only added a few structural guidelines. Being based

on step-based process also makes it more flexible for structural changes.

7.2 Conclusion

This thesis explains how a portable technology like MIDlets needs help in order to achieve a

higher level of portability. It is also clear that certain aspects cannot be solved by a

programming framework, e.g. one device having a built-in camera and another has no camera

at all or no J2ME support for it. However, within groups of mobile devices with similar

technology, a framework for portable programming certainly can improve the development

process and optimize the applications.

I will suggest that the most suitable framework would be one similar to the BODF proposed

in this thesis, as this is an easily extendable framework type with its library of components. In

addition it can create optimized GUIs which will greatly improve the users experience with

MIDlets. With BODF, it is my claim that developers will experience that new devices

emerging to the market will sometimes be able do download applications that will be

automatically fitted without any new coding.

Although no complete framework has been implemented in this project it has been shown

that, with a high degree of probability, an improvement of portability is feasible through

frameworks and portability-conscious coding.

 74

Application Development Using J2ME – Architecture for Device Independence

 Bibliography
[1] 3G Americas, “Java Technical Recommendations for Handsets”, June 2005. Available:

biz.yahoo.com/prnews/050623/sfth006.html

[2] Symbian, “History”. Available: symbian.com/about/history.html

[3] Canalys, " Global smart mobile device sales surge past 10 million in quarter”. April 2005.

Available: canalys.com/pr/2005/r2005041.pdf

[4] Symbian, “Symbian OS version 8.0 product sheet”. Available:

www.symbian.com/technology/symbianOSv8_ds_0204.pdf

[5] Symbian, “Symbian OS phones”. Available: symbian.com/phones/index.html

[6] Author: Martin de Jode, “Programming J2ME on Symbian”, chapter 1.1.1, 2004.

[7] Author: Qusay H. Mahmoud, ” J2ME Luminary Antero Taivalsaari”, January 2004.

Available: developers.sun.com/techtopics/mobility/midp/luminaries/taivalsaari/

[8] Aouthor: Lauri Aarnio, ”Small scale Java virtual Machines”. Available:

cs.helsinki.fi/u/campa/teaching/j2me/papers/Small.pdf

[9] Sun, ”The CLDC HotSpot Implementation Virtual Machine”. Available:

java.sun.com/products/cldc/wp/CLDC_HI_WhitePaper.pdf

[10] Java Community Process, Available: jcp.org

[11] Author: Michael Kroll, Stefan Haustein. “Java 2 Micro Edition Application

Development”, chapter Introduction, June 2002

[12] Author: C. Enrique Ortiz. “The Generic Connection Framework”Available:

developers.sun.com/techtopics/mobility/midp/articles/genericframework/

[13] Author: Martin de Jode, “Programming Java 2 Micro Edition on Symbian OS”,

chapter 1.4, 2004

[14] Author: Arvind Gupta and Martin de Jode. “Extending the Reach of MIDlets: how

MIDlets can access native services“, June 2005.

[15] Sun, "Mobility overview". Available:

developers.sun.com/techtopics/mobility/overview.html

[16] Author: Qusay H. Mahmoud, "J2ME Low-Level Network Programming with MIDP

2.0", April 2003. Available: developers.sun.com/techtopics/mobility/overview.html

[17] Author: Qusay H. Mahmoud. "Getting Started with the FileConnection APIs",

December 2004. Available: developers.sun.com/techtopics/mobility/overview.html

[18] Author: Qusay H. Mahmoud. "MIDP GUI Programming". Available:

scmad.gayanb.com/tutorials/midp-gui-programming-part-1.php

 75

Application Development Using J2ME – Architecture for Device Independence

[19] Forum Nokia. "What’s in MIDP 2.0: A Guide for Java™ Developers", September

2003. Available: forum.nokia.com

[20] Symbian Press Release. "Latest version of Symbian OS targets smartphones for mass

market", February 2005. Available: symbian.com/news/pr/2005/pr20051892.html

[21] Symbian. "Symbian OS v9.1 functional description". Available:

symbian.com/technology/symbos-v91-det.html

[22] Author: Bill Venners. “Inside the Java Virtual Machine”, chapter 1.

[23] Author: . “Migratable User Interface Descriptions in Component-Based Development”,

2002.

[24] J2ME Polish. Available: j2mepolish.org

[25] W3C. Available: http://www.w3.org/2001/di/

[26] J2ME Polish. “Specific Design Attributes”. Available: http://j2mepolish.org/docs/css-

specific.html

 76

Application Development Using J2ME – Architecture for Device Independence

Appendix A – The Sybmian OS Evolution
Version 7.0

Symbian OS v7.0 was released in 2002 Building on 2.5G GSM / GPRS support in previous

versions, Symbian OS v7.0 includes support for multimode and 3G mobile phones, enabling

manufacturers to bring out Symbian OS phones worldwide, across all networks, with the

ability to reuse their application side software. Symbian OS v7.0 includes Enhanced

Messaging Service (EMS) and MMS, providing key revenue generating services for network

operators. More networking capabilities have been added, including both IPv6 and IP Security

(IPSEC) technologies, extending the abilities of mobile phones to communicate securely with

each other on a peer to peer basis. V7.0 incorporates Java MIDP, extending mobile phone

capabilities to run the millions of Java applications and services designed specifically for

mobile phones, and Synchronization Markup Language (SyncML), allowing convenient Over

The Air (OTA) synchronisation of data.

Version 7.0s

Symbian OS v7.0s was released in 2003 and provides new functionality providing a fit-for-

purpose platform for the 3G market and enabling the OS for 3GPP compliance, enabling the

delivery of 3G services. It has Lightweight multi-threaded multimedia framework and support

for Wideband Code Division Multiple Access (W-CDMA). More Java functionality has also

been added like the Java MIDP 2.0, Bluetooth® 1.1 and Wireless Messaging API (WMAPI)

1.0 profiles. V7.0s has been given support for multiple primary/secondary Packet Data

Protocol (PDP) contexts.

Version 8.0

Symbian OS v8.0 was released in the beginning of 2004 and has improved kernel architecture

with hard realtime capabilities, and it introduces SyncML compliant device management

framework. Significant support for Java has been added including CLDC 1.1, MobileMedia

API (MMA), Mobile 3D Graphics API, Personal Information Management (PIM) and

FileConnection (FC). Symbian OS v8.0 is provided in application compatible two variants.

The first variant, v8.0a uses the legacy kernel (EKA1) as per Symbian OS v6.1, v7.0 and

v7.0s. The second variant v8.0b adopts the new hard realtime kernel (EKA2). V8.0 also has

the addition of the Media Device Framework (MDF) which provides a Hardware Abstraction

Layer for multimedia hardware acceleration.

 77

Application Development Using J2ME – Architecture for Device Independence

Version 8.1

Symbian OS v8.1 was released in 2004 and delivers extensions to CDMA IS95 / 1xRTT

Telephony, Networking and SMS technology that are standard to all operators. It provides

new customisation and configurability options with support for multiple displays and scalable

user interfaces. It has continued alignment with standards including Java PIM, Bluetooth®

1.2, Bluetooth® Personal Area Network (PAN) and USB Mass Storage.

Version 9.1

Symbian OS v9.1 was released in the beginning of 2005 and is the newest contribution to the

Symbian OS familly. V9.1 provides a native Realtime Transfer Protocol (RTP) stack. This

stack can be used by licensee and 3rd party applications without the need for a separate RTP

stack. Features which give network operators and enterprises new capabilities to manage

phones in the field are also provided. This includes Open Mobile Alliance (OMA) Device

Management 1.1.2 support and OMA Client provisioning 1.1. V9.1 continues to add

Bluetooth innovations to the operating system. In this release support for Bluetooth extended

Synchronous Connection Oriented (eSCO) and Bluetooth Stereo headset profiles are

implemented. Symbian OS v9.1 is built using the ARM RVCT 2.1 compiler. This compiler is

compliant with the ARM EABI standard. This allows compatibility with the latest ARM

compliers and reduces the Symbian OS footprint while enhancing performance. Symbian OS

v9.1 provides a proactive defence mechanism against malware. The platform security

infrastructure uses a capability based model which ensures that sensitive operations can only

be accessed by applications which have been certified by an appropriate signing authority.

Data caging allows applications to have their own private data partition. This allows for

applications to guarantee a secure data store. This can be used for e-commerce, location

applications and others.

Appendix B - Other development platforms on Symbian
There are three main options regarding programming on Symbian OS based phones: C++,

OPL and .NET [ref: symbian.com]

 78

Application Development Using J2ME – Architecture for Device Independence

B.2 - C++ Native programming
C++ is the native language of Symbian OS. All non-privileged system facilities are directly

accessible via C++ APIs available in the C++ Software Development Kit. C++ is suitable

when high performance and comprehensive functionality is required.

Programs written in native C++ usually offers best performance in memory use and execution

speed. In addition to offering good performance, certain types of applications have to be

written using C++ because of restricted access to system resources. Instances of this type of

applications are servers, certain type of plug-ins and device drivers. Such programs either

manage system resources, extends existing Symbian OS framework or interacts with the

kernel.

B.3 - Open Programming Language
Open Programming Language (OPL) is a simple, easy to learn programming language that

allows developers to rapidly create powerful applications for Symbian OS phones. OPL is an

interpreted language that requires a translation phase before execution so is made up of two

major components. To allow users to run an OPL application, the OPL runtime environment

needs to be installed on their Symbian OS phone.

B.3 - Visual Studio .NET
AppForge Crossfire enables Microsoft® Visual Studio® .NET developers to use their existing

skills to create applications for Symbian OS phones. Crossfire integrates directly into Visual

Studio .NET, so developers can jump right into mobile phone application development using

the language, debugging tools and interface they already know. Crossfire is an integral part of

the AppForge Enterprise Developer Suite (EDS) which is designed for enterprise

organizations and system integrators who wish to leverage their Microsoft .NET and Visual

Studio resources for mobile and wireless application development. Appforge Crossfire makes

it possible to write applications with Visual Studio .Net using C++, C#, Visual Basic.

 79

Application Development Using J2ME – Architecture for Device Independence

Appendix C – Test Application

Figure 0.1 Class diagram for test application

RegAppMIDlet
This is the core class of the application. It
displays the main menu, and organizes the
application.

SessionData
Keeps track of the data registered by the
user, i.e. image, audio and comments.

PreviewScreen
Displays the data registered by the user.
Except the audio comments because this
function was omitted.

SendScreen
Displays different options for sending the
data, i.e. HTTP, TCP and UDP.

CommentScreen
Textbox where the user can write
comments.

AudioRecordingScreen
Screen for managing audio recording.
Includes start and stop recording.

DisplayCanvas
Canvas for displaying the snapshot taken
by the user.

CameraCanvas
Canvas for displaying the video from
which the snapshot is taken.

 80

Application Development Using J2ME – Architecture for Device Independence

Appendix D – Development Tools

D.1 - Toolkits and emulators
J2ME applications must pass through a pre-verification process before being deployed on an

actual device. Pre-verification allows the desktop compiler to verify that the compiled code

can be run with J2ME's virtual machine. It is also helpful to do testing on emulators that will

provide a reasonably real testing environment for a J2ME application. J2ME toolkits include

tools that handle this, and they also often provide sample programs and documentation.

D.1.1 - Sun J2ME Wireless Toolkit 2.2
The J2ME Wireless Toolkit is a toolbox for developing wireless applications. It provides the

basic tools needed for MIDP development, and for the time being it is free of charge. It does

not provide the developer with a text editor or advanced debugging facilities, but it facilitates

the process of compiling, pre-verifying and packaging of MIDlet suites. It also includes

standard emulators for application testing.

Figure 0.1 The Sun Wireless Toolkit

The toolkit's emulator complies fully with the relevant API technology compatibility kits,

ensuring that all the APIs are present and will react consistently with compliant

implementations. In standalone mode, users can set individual preferences, build applications,

create Java Archive (JAR) and Java Application Descriptor (JAD) files, and more, using

 80

Application Development Using J2ME – Architecture for Device Independence

either the toolkit's friendly KToolbar interface, or its command line. When integrated with an

IDE, the toolkit's utilities and preferences appear in the IDE's menu selections, and also can

be controlled from the IDE's command-line interface. When used with an IDE, the toolkit

supports source-level debugging. []

WTKs friendly user interface lets the user choose what optional packages to include, what

profile and configuration to use and many other useful features. The WTK also auto generates

a JAD file when creating the project. This is very useful when building the project. Network

and memory monitoring are two other very important features included. Because of the

limited amount of resources on the mobile phones, a thorough examination of the memory use

can be very handy when adjusting the application for optimal performance. In the same way

an examination of the network traffic is useful in order to optimize the use of the limited

available bandwidth. All in all the WTK is a very important tool in addition to an IDE when

developing mobile applications. Its features is very useful when tuning, compiling, building

and deploying applications.

D.1.2 - Sony Ericsson J2ME SDK 2.2.0
The Sony Ericsson J2ME SDK is a modified version of Sun Wireless Toolkit. In addition to

the WTK, more features have been added in order for it to be custom made for Sony Ericsson

and other UIQ products. This SDK supports all existing and newly announced mobile phones

from Sony Ericsson, including the K600, K750, K300 and J300. And of course it includes all

the APIs and emulators for two added JSR's, Java Bluetooth (JSR 82) and PDA Optional

Package for J2ME Platform (JSR 75). A text editor is not included in SDK, but this is of less

importance since it is primarily used in cooperation with an IDE.

D.1.3 - Nokia Developer's Suite 2.2 for J2ME™
As the Sony Ericsson SDK, the Nokia Developer Suite (NDS) is also created mainly to

enhance IDEs such as Borland JBuilder and Sun Java Studio. NDS provides an audio

conversion tool, application signing and features including application deployment to Nokia

devices or FTP servers. Developers can create MIDlets based on the MIDP specifications that

can be successfully implemented on Series 60 Nokia devices e.g. using the Series 60 MIDP

SDK’s. There are many Nokia SDKs that comes in addition to the NDS to provide specific

emulators, class libraries and documents targeted the different phone models.

 81

Application Development Using J2ME – Architecture for Device Independence

 [forum.nokia.com]

Figure 0.2 The Nokia Developer's Suite for J2ME

D.2 - Integrated Development Environments
For a full-scale development of production quality applications it is practical to use a fully

Integrated Development Environment (IDE). This thesis focuses on two of the most used and

extensive IDE’s on the market, namely Borland JBuilder X Enterprise Edition and Sun Java

Studio Standard 5.

D.2.1 - Borland JBuilder X Enterprise Edition
This JBuilder Enterprise version has integrated a lot of features for the Wireless environment

and many wizards are provided to make development faster and easier. A Developer version

and a Foundation version is also available, the latter is free of charge but does not include

features for the Wireless environment. The Developer version does not include all of the

 82

Application Development Using J2ME – Architecture for Device Independence

wizards like the Enterprise version does, but it does contain features for the Wireless

Environment.

JBuilder X Enterprise provides features like code obfuscation and integration of mobile

applications with web services. Like all other IDE’s, JBuilder also provides basic features like

file editing, code completion, class and project browsing and easy-to-configure project

properties.

In order to develop mobile applications the Wireless Toolkit has to be downloaded from the

Sun web site. The Java Development Kit (JDK) path can easily be changed from the standard

development kit to the Wireless Toolkit in the project properties. J2ME features will know be

available as a wizard option when adding new elements to a project. A runable MIDlet can

easily be constructed by the wizard without any code added by the user. The same javac

compiler used for J2SE is used for compiling MIDlets. The only difference is the base Java

classes that the compiler uses to compile the MIDlets against. All this however is transparent

to the user. A built in emulator from the Wireless Toolkit or e.g. the Nokia Developer Suite

will automatically pop up when running the MIDlet. The Tomcat server is also included and

is very handy when developing MIDlets that is e.g. working against Servlets or JSP.

Figure 0.3 Borland JBuilder X

 83

Application Development Using J2ME – Architecture for Device Independence

D.2.2 - Sun Java Studio Standard 5
This IDE supports mobile application development features when installing the Mobile Editon

modules from the Sun One Studio Update Center. This support comes in addition to enterprise

and desktop application development features. It provides integration with the Sun J2ME

Wireless Toolkit 2.2 for MIDlet development. In addition to this an implementation of the

Tomcat server is provided to make communication with JSP and Servlets easier. Some

wizards are also included to speed up and make the development easier.

Sun Java Studio Standard 5 provides full support for MIDP 1.0/2.0 development after

installing the mobile modules.

 84

	ABSTRACT
	 PREFACE
	TABLE OF CONTENTS
	 List of Figures
	 List of Tables
	 ABBREVIATIONS
	1 Introduction
	1.1 Background
	1.2 Problem specification
	1.3 Delimitations – Part One
	1.3.1 Focus Areas – Features and Maturity
	1.3.2 Platform
	1.3.3 Testing

	1.4 Delimitations – Part Two
	1.5 Thesis overview
	PART ONE – MATURITY AND FEATURES OF J2ME ON SYMBIAN OS
	2 Technical review
	2.1 The Symbian OS
	Symbian - A mobile OS
	2.1.2 The Symbian OS Architecture

	2.2 The J2ME standard
	2.2.1 The Virtual Machine
	2.2.2 Connected Device Configuration (CDC)
	2.2.3 Connected Limited Device Configuration (CLDC)
	2.2.4 Foundation Profile (FP)
	2.2.5 Personal Profile (PP)
	2.2.6 Personal Basis Profile (PBP)
	2.2.7 Mobile Information Device Profile 1.0 (MIDP 1.0)
	2.2.8 Mobile Information Device Profile 2.0 (MIDP 2.0)

	2.3 Optional Packages
	2.3.1 JSR 75: PDA Optional Package
	2.3.2 JSR 120: Wireless Messaging API (WMA 1.0)
	2.3.3 JSR 205: Wireless Messaging API 2.0 (WMA 2.0)
	2.3.4 JSR 135: Mobile Media API (MMAPI)

	2.4 APIs in development
	2.4.1 JSR 234 Advanced Multimedia Supplements (MAMSAPI)
	2.4.2 JSR 238: Mobile Internationalization API
	2.4.3 JSR 230: Data Sync API

	2.5 The MIDlet
	2.6 Generic Connection Framework
	2.7 J2ME on Symbian
	2.7.1 History [13]
	
	2.7.2 MIDP 2.0 on Symbian OS phones
	2.7.3 How to use native Symbian services with J2ME [14]
	2.7.4 Benefits of J2ME on Symbian

	3 Evaluation of J2ME on Symbian
	3.1 Scope and Method
	3.1.1 Scope
	3.1.2 Method
	3.1.3 Choice of Tools

	3.2 Test Application
	3.2.1 Use Case
	3.2.2 User Interface
	3.2.3 Functionality
	3.2.4 Implementation issues

	3.3 Test Application Experiences
	3.3.1 Using GFC
	3.3.2 Networking capabilities
	3.3.2.1 Datagrams and Sockets
	3.3.2.2 Http communication

	3.3.3 File access
	3.3.4 Wireless Messaging
	3.3.5 Hardware control
	3.3.6 GUI
	3.3.7 General programming Issues

	4 Discussion and Conclusion
	4.1 Discussing maturity and features
	4.1.1 Focus Areas
	4.1.2 GUI
	4.1.3 Using Native Services

	4.2 Conclusion
	4.3 The future of J2ME on Symbian OS

	 PART TWO – DEVICE INDEPENDENCE
	5 Device Independence
	5.1 Diversity issues
	5.1.1 Graphical User Interface
	5.1.2 Input Devices
	5.1.3 Platform Fragmentation

	5.2 The J2ME Approach
	5.2.1 The Java Virtual Machine
	5.2.2 MIDP portability
	5.2.3 Optional Packages

	5.3 Relevant projects
	5.3.1 Component Based Development
	5.3.2 J2ME Polish
	5.3.3 Content adaption

	6 Proposed Solutions
	6.1 Built In Context Adaptability (BICA)
	6.1.1 Structure and Principles
	6.1.2 Context Adaption in BICA
	6.1.3 Component Structure
	6.1.4 Coding Guidelines
	6.1.5 Optimized Portable GUI
	6.1.6 Example Scenario

	6.2 Build On Demand Framework (BODF)
	6.2.1 Structure and Principles
	6.2.2 Process Description
	6.2.3 Device Characterization
	6.2.4 Component Structure
	6.2.5 Optimized GUI
	6.2.6 Coding Guidelines
	6.2.7 Example Scenario

	6.3 General Techniques for Portable J2ME programming

	7 Discussion and Conclusion
	7.1 Discussion
	7.1.1 Proposed Frameworks
	7.1.2 Feasibility and Further Work

	7.2 Conclusion

	 Bibliography
	 Appendix A – The Sybmian OS Evolution
	Appendix B - Other development platforms on Symbian
	B.2 - C++ Native programming
	B.3 - Open Programming Language
	B.3 - Visual Studio .NET

	 Appendix C – Test Application
	 Appendix D – Development Tools
	D.1 - Toolkits and emulators
	D.1.1 - Sun J2ME Wireless Toolkit 2.2
	D.1.2 - Sony Ericsson J2ME SDK 2.2.0
	D.1.3 - Nokia Developer's Suite 2.2 for J2ME™

	D.2 - Integrated Development Environments
	D.2.1 - Borland JBuilder X Enterprise Edition
	D.2.2 - Sun Java Studio Standard 5

	

