oO\EN,

& o

g KGio rUn

E ‘Ilz 3
% o

. o
72iversity

Assessing challenges for remotely downloaded
telecom features

by

Viggo Fredriksen

Master Thesis in
Information and Communication Technology

Agder University College

Faculty of Engineering and Science

Grimstad
May 2005

Summary

The telecom and software industries are converging, pioyidew market and revenue poten-
tials for both industries. Personalization of services apglications is an emerging trend, and
this thesis suggests using remotely downloaded UML 2.0 sighines components as a candi-
date for enabling this. This thesis thus assess the challeragsed by replacing submachines at
run-time.

This report gives an introduction to the core technologfesterest in this thesis work; UML 2.0
and Ericsson’s service creation architectures. Ericsssgrvice creation architecture is a set of
frameworks for development of services and applicationb thie new hybrid networks created
by the merging of the Internet and the telecom service nédsvorhis architecture is built upon
the UML 2.0 concepts of asynchronous communication thraughsage passing and the use of
Actors.

There are several issues which must be evaluated when afja@motely downloaded and re-
placeable submachines at run-time. This thesis does nti gylve all these issues, but tries to
alleviate potential problems by decomposing the exteynadlible properties of the structured
classifier in which the state machine is deployed. This alow to assert these properties at
run-time, and the thesis hence introduces a concept célésgl/ent acceptorThis approach is
based on the UML 2.0 concepts of the port and the protoca stachine. Solutions for setting
up connectors between ports, sending and replying to messagl execution of the assertion
mechanism are shown.

The main conclusion of this thesis is that run-time replagethof submachines is both useful
and viable. Allowing such replacement to happen enablesopatization of running services
and applications. At the same time services may increaseltmgevity by adding new and
emerging technologies without affecting their availdhiliAlthough this has not been a formal
study, it has been shown to work when there exists mechamwidna$ can detect erroneous be-
havior — such as the run-time event acceptor proposed byhtbsss.

The main contribution of this thesis is the run-time eventegtor. Ideas on how to route,
send and reply to messages is proposed and implementedhefndre, a solution on how to
configure connectors using signaling is proposed and imgtéed. The implementation of an
example phone book service suggests that this solution wellk and that the introduced con-

cepts should be comprehendable by designers and devefapeliar with the NorARC service
creation architectures.

Preface

This thesis was written as part of the Masters degree inimition and Communication Tech-
nology at Agder University College, Faculty of EngineeringleScience located in Grimstad.
The project is related to théeleservice labn Grimstad andProgram for Advanced Telecom
ServicegPATS), and was carried out in the period between Januaryey2005.

| would like to thank my supervisors, Fritjof Boger Engelnaah and Geir Melby, for their
invaluable counseling, ideas and support throughout ieisi$ project.

Grimstad, May 2005

Viggo Fredriksen

Table of Contents

Summary

Preface

Table of Contents

List of Figures

1

Introduction

11
1.2
13
1.4
15
1.6

Background
UML2.0 e
Ericsson NorARC'’s service creation architectures
Thesisdefinition.
Work description L
Reportoutline

The Unified Modeling Language 2.0

2.1

2.2

2.3

2.4

2.5

2.6

Introduction
Classes e
2.2.1 Structuredclass,
Port e
2.3.1 BehaviorPort.
232 ComplexPort.
ConNnectors L e e
2.4.1 Delegationconnector
2.4.2 Assemblyconnector
State machines
251 States e
252 Transitions
2.5.3 The behavioral state machine.
2.5.4 The protocol state machine
SUMMary e e e e

3 Ericsson NorARC's service creation architectures 12

3.1 Introduction 12
3.2 EJBFrame 13
3.21 Statemachine 14
3.3 EJBActorFrame e 15
3.3.1 ACtOr e e e 15
3.3.2 TheActorFrame protocol 16
3.4 SUMMANY . . . e e e e e e e e e e 19
4 Allowing remotely downloaded telecom features 20
4.1 Introduction e 20
4.2 An example telecom service — the phone book service 20
4.3 The submachine as a remotely downloaded feature 22
4.4 Encapsulating the submachine component 23
441 Instancevariables. oL 23
442 TIMEIS o e 24
443 Portsandmessages i e e 4. 2
4.5 How and when to download and replace a submachine 25
4.6 Ensuring behavioral conformity o oL 26
4.7 SUMMANY . . . o o e e e e e e e e e e e e 27
5 Using ports and protocol state machines as run-time eventaeptors 28
5.1 Introduction e 28
5.2 Goalsoftheeventacceptor 28
5.3 POrts e 29
5.3.1 Connectors and addressing of ports and state machines. 29
5.3.2 Routing signals between connectors 31
5.3.3 Replyingtosignals 23
5.3.4 Configuring connectors at creation time ofapart 34
5.3.5 Limitationsoftheapproach 36
5.4 Eventacceptor execution e 37
5.5 Eventacceptor and multipleclients, 38
56 UML2.0andmessageinterleaving, 39
5.7 Structured classifiers violating protocols 40
5.8 Updating the protocol specification at run-time 40
9.9 SumMMaAry e e e 41
6 Run-time replacement of submachines in EJBActorFrame and EBFrame 43
6.1 Introduction 43
6.2 Whathas beenrealized? 43
6.3 Modificationsoverview e 44
6.3.1 Modified EJBFrame Javapackage 44.
6.3.2 Modified EJBActorFrame Javapackage 45

6.4 Implementation of SubMachine using EJBFrame CompositeSt. 46
6.4.1 Structural modifications L. 46
6.4.2 Behavioral modifications o 0. 47
6.5 DynamicActorCS — actor behavior for dynamic submactoaeing 48
6.5.1 Messages 49
6.5.2 Getting the reference of the SubMachine to bereplaced. 49
6.5.3 Searching the active state configuration i e i www B0
6.5.4 Remotely download and initialize a SubMachine 51
6.5.5 Replacing the existing SubMachine o ¥ A
6.6 Run-time event acceptor implementation 52
6.6.1 Classoverview e 53
6.6.2 Portaddressing implementation 53
6.6.3 Portimplementation 54
6.6.4 PortSMimplementation 54
6.6.5 Sendingandreplyingtomessages 55
6.6.6 Messagereception 5 5
6.6.7 Port description implementation 58
6.6.8 Port and connector creation implementation 58
6.7 SUMMArY e e e e e e e e 60
7 Implementation of a service using remotely downloaded faares 62
7.1 Introduction e 62
7.2 Thephonebookservice, 62
7.3 Design of phone book service. L 63
7.4 Phone book service implementation 63
7.4.1 Implementation of run-time replaceable submachines 65
7.4.2 Implementation of the event acceptor T 7 4
7.5 SUMMANY o e 70
8 Discussion and conclusion 71
8.1 Introduction e 71
8.2 Allowing remotely downloaded telecom features . C e 72
8.3 Using ports and protocol state machines as run- tlmaptors 73
8.4 Run-time replacement of submachines in EJBActorFrardd&edBFrame 73
8.5 Implementation of a service using remotely downloaééstom features 74
8.6 Usefulness of remotely downloading and replacing suinas at run-time . . . 75
8.7 Futurework 57
8.8 Conclusion e 77
Bibliography 77
Appendix A: CD-ROM 80

Vi

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2
4.3
4.4
4.5

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

Class Television with an attribute and an operation.
Class Television with internal structure.
Port with required and provided interfaces.

Portremotespecified as a behaviorport.o oL

Connectors constrained by aprotocol.
The different types of connectors.
State machine with simple states and a submachine state..
Submachine with entry and exitpoints.
Protocol state machine.

ServiceFrame - A model driven service development kit [3.
Class diagram for the EJBFrame Java package. : C
Class diagram for the EJBActorFrame (gray classes frower cpiackages)
The ActorFrame Actor class — adopted from [5]. . e
Actor addressing [4] (Non-normative UML).
Sequence diagrams for RoleCreate — adopted from [3]. C e
RoleRequest protocol concept — adopted from [2] (Non-atuw@ UML).
Sequence diagram for RoleRequest.

Class diagram for the phone book service.

State machine ¢thoneBookService
State machines tfserTerminal CallEdgeandSMSEdge
Save submachine update messages until requirememietire.
Protocol for the provided interface BhoneBookService

Event acceptor and message interleaving (Non-norentitL).
Portaddressingexample. e
Inner classifier not able to signal enclosing classifier.
Static setup ofreply paths. L
Sending messages with a dynamically created reply path.
Incomplete connection configuration.
Black-box versus white-box view of the structure.
Addressing of ports and interfaces and theircontext.
Execution of the eventacceptor. L.

vii

5.10
5.11

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11

Two clients connectedtoone port.
UML 2.0 and message interleaving (Left diagram: Norvadive UML). . . .

Modified EJBFrame Java package overview.
Modified EJBActorFrame Java package overview.

Modifications done to State and StateMachine.

Classes inherited from SubMachine.
Modified transition execution. Lo
Sequence diagrams fGetStatePropertieandStoreStateProperties
Activity diagram showing the submachine replacemesgsst.

ActorMsg’s forDynamicActorCS

Classes CompositeState and State with partial operati@hattributes. . . .

Searching active state configuration (non-normativie))
The event acceptor classes Port and PortSM in Actorgonte
Modified ActorAddressclass.
Modified ActorMsgclass.
Sequence diagram for message reception (simplified).

Sequence diagram for event acceptor execution.

PortTask — Execution of a protocol state machine meetmcceptor
Modified PortSpecclass.

Setting up addresses between two ports.

PathRequest sequence for synchronization of conlse(;tor

Sequence diagram for phone book service.
Sequence diagram f8earchFeatureSnadSearchFeatureCall.
Class diagram of the phone book service.
Class diagram for manually modified classeRlobneBookService.
Class diagram for manually modified classeS®ISEdge
Implementation of behavior — claBioneBookServiceCS.
Actor descriptor with part and connector mapping&otorDomain(partial). . .
Protocol state machine mapping 8vISEdgePortSM
Actor descriptor and port mapping fehoneBookService.
Actor descriptor and port mapping ®MSEdge L.
Actor descriptor with part and connector mappingXotorDomain(partial).

viii

Chapter 1

Introduction

1.1 Background

These days the computer domain and the more traditionaam@elomain are starting to con-
verge. The telecom network operators are opening up theiiceenetwork through initiatives
such as the Parlay/OSA API's [18]. Such initiatives enatislopment of applications that op-
erate across multiple networking-platform environmeAtshe same time the computer domain
is becoming more IP network oriented. As such, this convergerovides both the computer
and telecom industry with new revenue and market possaslit

This convergence enables third-party service providensitegrate their special purpose ser-
vices with the telecom service network. At the same time nedila devices with increased
processing power is becoming available to customers — argltlie opportunity to create new
and exciting services. The demand for personalizationmises and applications is increasing.
Customers want the opportunity of customizing applicatiamson their terminals or services
executed by the service provider to fit their specific needswvéver, the customers may find it
unacceptable to stop the service while doing such custdimizandfeatureenrichment. It thus
becomes interesting to see if a service or application cbaldpdated by remotely download-
ing and deploying newly available features at run-time -haitt having to affect its availability.
Furthermore, if such features could be designed and degpiagependently, it would allow new
and emerging technologies to achieve shorter time to market

Such possibilities also imposes some major challenges.darty service providers and the
telecom network operators will have to agree upon secueduirements which they must ad-
here to. When the telecom networks are exposed through thetwdrks, they need mechanisms
which can protect them from abuse. There already existsisp&ito such network level abuses,
and the lack of security is thus found at application level.

This thesis will use the traditional approach by modeling lehavior of such services and ap-
plications through the use sfate machinesMore specifically, théJnified Modeling Language

2.0 (henceforth UML) state machine construct. N@ARC service creation architecturase
based upon this programming technique.

1.2 UML 2.0

Telecom companies have successfully used SDL [19] in thigules telecom products. This
allowed making functional models of a system, while beinig & formally verify and automat-
ically generate code.

The Object Management Group [16] (OMG) recently adoptedtht. 2.0 Superstructure [8]
specification. Earlier versions of UML became thefactostandard modeling language in the
software industry, but lacked the formalisms and conceptichvmade SDL successful in the
telecom industry. This new version promises to leverage itk of concepts and formalisms,
and is the core language component to be used iMthael Driven Architecturg20] (MDA).

1.3 Ericsson NorARC's service creation architectures

Ericsson NorARC'’s service creation architectures is buitirufhree distinct frameworks; Ser-
viceFrame [2], ActorFrame [3][4] and JavaFrame [13]. Theaseall tools for design, deployment
and management of services. The architecture is meant kavitbahe complex systems which
emerges with the convergence between telecom and Intemnetes.

The main objectives of the ServiceFrame project is desgr@sefollows in [2]:

e Enable model driven service development using UML 2.0 taemehboth short time to
market and controlled quality.

e Provide a solution that leverage and support the emergif§ aind full service networks.

e Remove constraints known from the IN approach in order tolerfatrizontal, end to end,
services and the widest possible range of advanced hybwigtss.

e Take advantage of emerging technologies for service oratd execution.
e Provide architectural support for incremental servicestlgyment and deployment.
e Support personalized services and mobility.

e Serve as a test case for UML 2.0.

1.4 Thesis definition

The thesis will evaluate the submachine component as a daedior remotely downloaded
telecommunication features introduced at runtime. The firesis definition is thus:

The student will assess the usefulness of utilizing submeslzis remotely down-
loaded and replaceable components with regards to dynaratare adaption. This
assessment will be conducted using NorARC'’s telecommumcsgitvice frame-
work ActorFrame as test bed. Replaceable submachine comiongal impose
challenges on both the underlying framework and the compsrieemselves. These
challenges will be identified and proposed solutions to thelirbeievaluated.

Furthermore, the thesis will provide the following artifac

A prototype demonstrating some of the proposed solutiondwiimplemented in
the ActorFrame framework.

The final thesis title is:

Assessing challenges for remotely downloaded teleconrésatu

1.5 Work description

The main questions to be answered in this thesis are:

¢ In order to customize services, are submachines viable sefdilltas components for en-
abling third-party service providers to create new feauhat may be downloaded at run-
time?

e Which challenges needs to be addressed when designingeaplasubmachines?

To answer these questions, the thesis work will therefagd sff by designing a telecommu-

nication application. This application is modeled using URIO notation, and shall be able to

adapt its behavior using remotely downloaded and dynaiypicglaceable submachine features
introduced at runtime. This application model will provideme of the means for evaluating
how useful such a possibility is with regards to rapid depient.

Furthermore, the model will act as a basis for an analysis lithvchallenges submachine
components impose — i.e., which mechanisms and propergaesegded in the framework and
components to make them viable for implementation. Finalig following question will be
answered:

e How can dynamic submachine components be realized in thAR©rservice creation
architecture?

This question will be answered by implementing the desigpalication in ActorFrame — using
some of the proposed solutions from above. It is expectedctienges within the framework
are necessary to accommodate the new features. Furthermenenplementation will help to

conclude if remotely downloaded, replaceable submactongponents are useful for telecom-
munication service developers.

1.6 Report outline

The UML 2.0 specification constitutes a large set of concept'e NorARC service creation
architecture is a complex framework stack involving marghteques which will not be further
explored in this thesis. This report will therefore focusparts which are important for under-
standing the contents of this report. Readers unfamilidn thiése technologies are encouraged
to read referenced literature if the given descriptiong@oeorief or incomplete.

Chapters 2 and 3 present the technologies UML 2.0 and NorAR@csecreation framework
stack which are used throughout this report. Readers famlih these technologies can skip
these chapters.

Chapter 4 presents a telecom service which is used to idetiffgrent issues when allowing
remotely downloaded submachine features.

Chapter 5 expands Chapter 4, and presents an approach whibimesrthe UML 2.0 port and
protocol state machine constructs as means for ensurirayizell conformity at run-time.

Chapter 6 proposes a solution for run-time replacement afaghines in the NorARC ser-
vice creation frameworks, using some of the proposed swisitirom Chapter 4 and Chapter 5.
Chapter 7 describes an implementation of the service destimbChapter 4 and demonstrates
the use of the modified frameworks.

In Chapter 8 the proposed solutions are discussed accomlitigetproblem definition given
in this chapter, followed by the thesis conclusion at its.end

Chapter 2
The Unified Modeling Language 2.0

2.1 Introduction

The Object Management Group [16] recently adopted the rteulels Superstructure specifi-
cation, UML 2.0. Amongst the most notable improvements @revious versions of the spec-
ification, one finds better support for scaling large sofeveystem with its new architectural
modeling capabilities. Furthermore, important improvaetséave been done to state machines
and its encapsulation of submachines through entry angbeixits.

This chapter focuses on the parts of UML 2.0 which are mostveeit for this thesis, namely
the architectural elementructured classeand the behavioral elemengsate machinesnd
protocol state machines

2.2 Classes

The class is a standard UML construct used to specify objbetsshare the same attributes,
operations, relationships and behavior. Figure 2.1 show/s & class specifying a television.

Television

channel : Integer

tune(int channel)

Figure 2.1: Class Television with an attribute and an opemati

2.2.1 Structured class

A structured class is a class showing its inner structursisting of parts, ports and connectors.
When an instance of a structured class is created, its parts,gnd connectors are created, and
upon destruction they are destroyed. Port instances araeated or destroyed during the life-
time of the structured class.

Figure 2.2 shows the class Television with an internal siimec The Television class contains
two ports that connect it with the environment. One of theoenges signals from a remote con-
trol, while the other shows the video output. Connectors eaevd from these ports to the inner
part Tuner. This enables the tuner to receive remote coewraits and send video output.

Television

remote |
L 1
[t:Tuner L]

Figure 2.2: Class Television with internal structure.

video

2.3 Port

A port is a structural feature of a classifier that encapsslatteraction between the contents of
the classifier and its environment. Each port can define & setjairedandprovidedinterfaces,
drawn as socket and ball respectively. These interfacedfiggewhat the class offers to, and
expects from, its environment. While tiequiredinterface specifies what is needed to interact
with the class, th@rovidedinterface specifies what the port offers to the environment.

The port provides a mechanism for encapsulating a classifier its environment. This makes
it possible to hide the inner structure of a classifier andasigh classifiers without any other
knowledge then the interfaces or protocols it requires aadiges. Furthermore, the use of ports
permits the internal structure of a classifier to be modifigtlout affecting external clients, pro-
vided the specified interfaces of the ports are correcthpstpd. UML does not explicitly
specify how reception on a port with multiple definemhnectorshould be routed.

As shown in Figure 2.3, the class Television specifies a requinterfacdControl, to control the
unit, and a provided interfad&treamwhich gives access its video stream.

2.3.1 Behavior Port

The behavior port is a port with the flagBehaviorset totrue. This port type specifies a port
which delivers requests to the behavioral part — such asta stachine or procedures imple-

6

Television

video

remote |
O +—20
IControl (] t:Tuner [} IStream

Figure 2.3: Port with required and provided interfaces.

mented by the classifier. A port which is not a behavior porshinave a connector to a port on
an internal part. Figure 2.4 shows tienoteport with theisBehaviorflag set. This is drawn as
a small state symbol attached to the port.

Television

remote video

— [—O
]@ IStream

IControl

Figure 2.4: Portemotespecified as a behavior port.

2.3.2 Complex Port

The complex port is a port which has complex behavior — mepitidoes not have a single set
of requiredor providedinterfaces. In other words, the port could specify more thagprovided
and more than one required interface.

2.4 Connectors

A connector defines the connection between two parts witlstnuetured part. This connection
is a specification of a contextual association which appfhies certain context. The connector
makes it possible for two parts to communicate. A connedarl®e constrained to a protocol as
shown in Figure 2.5. Note that such a constraint represerdssertion, not an executable mech-
anism. There are two different types of connectors,délegation connectoand theassembly
connector

2.4.1 Delegation connector

A delegation connector is defined as a connector betweentamekport and an internal port.
A signal arriving on the external port should be receivedh®yihternal port. A request sent on
the internal port is sent by the external port. Such a comnestshown between th€ompiler
and theOptimizerin Figure 2.6.

cd constrained connectors)

classA classB

N

~.. L

Figure 2.5: Connectors constrained by a protocol.

Compiler

[]—éﬁ ‘Lexer H :Parser H :Optimizer J‘]—[

Figure 2.6: The different types of connectors.

Lt

2.4.2 Assembly connector

An assembly connector is a connector which connects a extjinterface or a port on one
component, to a provided interface or port on another componSuch a connector is shown
between thé.exerand theParserin Figure 2.6.

2.5 State machines

The state machine is an universal and well-known formalignspecifying the state space and
the state transition relations of objects. It is a convenvealy to specify a sequence sfates
that an object passes through during its lifecycle in respda events sent to the state machine.
UML 2.0 defines two different kinds of state machines; theagierbehavioral state machirend

the specializegrotocol state machine

2.5.1 States

An object has different states during its lifetime, and desig said to bectivewhen the object
satisfies the conditions of the state. Tdwive state configuratiors the set of states which are
active for an object at any point in time. A state may optignabntain internal transitions in the
form of entryactivity, do activity andexit activity. The entry activity is performed upon entering
the state, the do activity is performed as long as the staéetige, while the exit activity is
performed upon leaving the state. UML 2.0 specifies diffetgpes of states — th@mple state
thecomposite statehesubmachine statend different types gbseudo states

sm CalleeSM J

waitForCall

Alert

calleeSetup :
CalleeSetupSM

unsuccessfull

Figure 2.7: State machine with simple states and a submastare.

Simple state

The simple state is a state without any substructure ofsst&tigure 2.7 shows the two simple
stateswaitForCall andtalking.

Submachine state

The submachine state is a state which references anotbkensiahine — submachingA sub-
machine state is semantically equivalent to inserting th@y ©f the referenced submachine in
place of the state. The submachine state itself has no schst, as this structure comes from
the referenced state machine.

sm CaleeSetupSM J

waitForAcceptance

Reject Accept

unsuccessfull successfull

Figure 2.8: Submachine with entry and exit points.

A transition to the submachine state establishes the lisitédes of the submachine — if there
exists no initial state, transitions to the boundary areatiotved. A transition to the state may
also target a named entry point on its boundary, which isvadgnt to a transition to the corre-
sponding entry point on the submachine. Equally, transstexiting the submachine through an

exit point targets the corresponding exit point specifietheasubmachine state. As the subma-
chine which is referenced by the submachine state is defmkghendently from its environment,
itis not allowed to cross their boundaries by entering onesaub-states directly. Entry and exit
points are thus specifiezkplicitly.

A submachine state is shown in the Figure 2.7 where the suinestatecalleeSetupefer-
ences the submachi@alleeSetupSNrom Figure 2.8.

Composite state

A composite state is a state with sub-states, or inner streicT his inner structure contains states
and transitions which specifies the behavior the state madias while it is in this state. If a
composite state is part of the active state configuratioplgrand contains one region, exactly
onesub-state is active. The composite state is semanticallgldq the submachine state, but
with one difference — it is allowed to cross the compositeedb@undaries directly into one of its
sub-states.

2.5.2 Transitions

A transition is a relationship between two states withinagestnachine. This relationship speci-
fies conditions for which a state machine should exit one statl enter another. Such conditions
may be defined bgvent triggersandguards If the guarding condition is met, the event trigger
is the event received by a state machine which makes thattoanfere. When a transition fires,
it may have areffect— an activity or action performed by the transition.

2.5.3 The behavioral state machine

As in contrast to th@rotocol state machinghe behavioral state machine is an executable be-
havior which specifies the executions of objects of a givasshs triggered by the occurrence
of events. A behavioral state machine is shown in Figure 2.7.

2.5.4 The protocol state machine
The protocol state machine is defined in [6] as follows:

A state machine used to specify the legal sequences of apecats and signals
received by an object.

In contrast to thévehavioral state machinavhere it is stated that any legal sequence of events
produces an outcomepgotocol state machinenly specifies the legal sequences of events that
may occur within the context of a classifier. A protocol stai@chine is thus not responsible for
ensuring that the legal sequence of events occurs.

If a sequence of events leads to a valid path through the gobstate machine, the sequence

10

sm Fly {protocol} J

[cleared]

takeOff() / [gearRetracted)]
flying

Figure 2.9: Protocol state machine.

land()

of events is legal and shall thus be accepted by the systahe #equence is invalid, it may not
occur. The protocol state machine could thus be used fortassef sequences — where illegal
event sequences may not be handled by the receiving class.

Furthermore, the following differences exists betweenbleavioral state machingnd thepro-
tocol state machine

e Transitions do not have effects.
¢ Transitions may have preconditions.
e Transitions may have postconditions.

Figure 2.9 shows a protocol state machine. This states tflaha which wants ttake off shall
be in stataeadyand beclearedfor take off before allowed to do so. Furthermore, it spesifie
that that after such a take off, the gears shalidimctedand be in statélying.

2.6 Summary

This chapter introduced the main concepts of UML 2.0 whiehuaed throughout the remainder
of this thesis report. Architectural elements such as ppads and connectors are described. A
brief overview of the behavioral state machine and protetaike machine has also been provided.
In the next chapter | will introduce Ericsson’s service ti@aarchitectures — parts of which is
built upon the concepts of UML 2.0.

11

Chapter 3

Ericsson NorARC's service creation
architectures

3.1 Introduction

ServiceFrame, ActorFrame and JavaFrame are three fratkewbich are being actively devel-
oped by Ericsson NorARC. At the time of writing this thesis,réhexists two different imple-
mentations of the built on the abstract ideas of ActorFranteJavaFrame; one implementation
on the J2EE [21] platform targeted for service developmeut @ne MIDLet implementation
targeted for thin user terminals. This thesis will use thEEJ2mplementations, called EJBAc-
torFrame and EJBFrame accordingly.

. Services, example
Services
] UserAgent, ExtAddressManager
ServiceFrame ActorNameServer, HotDeploy
PositionEdge, SmsEdge
EJBAgentFrame Agent, instance deployment,
external addressable, security
ActorFrame
protocol «—p EJBActorFrame Actor, port, part, actor _ ‘
deployment, dynamic configuration
ActorMsg State machine, composite
< > EJBFrame simple state, trace
IMS, Servlets Beans, container, persistency
Web-services < > J2EE deployment, transaction
Socket, o
streams <“—>» javaVM [P JavaVvM Threads, utility packages,
XML support

Figure 3.1: ServiceFrame - A model driven service develogrki [3].

12

Figure 3.1 shows the layered model of the framework stackh @aplementing its own set
of concepts with regards to service development, deployiaeth description. The frameworks
are implemented using Java, and each of them is containegparate Java packages. The layer-
ing used by this model is not strict, and services are impleateby extending the classes from
these packages. This thesis will concentrate on the twoeinark layers EJBActorFrame and
EJBFrame, as they deal with structured classifierg&ators and behavior using asynchronous
communication with message passing and state machinekin this chapter focus on the basic
concepts needed for understanding this report, for fuitifermation on these two framework
layers refer to [3] and [4].

3.2 EJBFrame

EJBFrame is the bottom layer of the NorARC service creatiohigacture. EJBFrame is a
Modeling Development K{IMDK) for developing and executing state machines in theJan-
guage. It provides a subset of the UML 2.0 state machine nmgdebncepts. According to
[13]: "With JavaFrame it is possible to apply modeling technigaes still work in Java. The
Java source and the model have one-to-one relationship. fiBineework provides classes of
well-proven modeling concepts, and by using these, instepgsioprogramming in plain Java,
the abstraction level is raised” The current version of JavaFrame is called EJBFrame and is
implemented using J2EE technologies for asynchronousagegsassing, persistent state data
and state machine addressing. Figure 3.2 shows the maseslatthe EJBFrame Java package.

cd EJBFrame classes /

<<interface>>
State ActorAddress StateDataBean
CompositeState ——@ StateMachine StateData

L

ActorMsg @ —— ActorAddress

<<interface>>
StateDataHome

Figure 3.2: Class diagram for the EJBFrame Java package.

13

3.2.1 State machine

EJBFrame models behavior of systems with state machiness i§tdone by using the Java
classesStateMachingStateand CompositeStateMessages sent betweStateMachin@bjects
are of typeActorMsg This message specifies an address to the sender and ansaiddiies
receiver of the message in addition to optional message data

State

The Stateclass represents the simple state from UML 2.0, and thus tcvamer structure. The
class holds a reference to its enclosgmpositeStatebject with the attributenclosingState
As in UML 2.0, theStateclass can have internal transitions by specializing theadmasentry()
andexit(). They do not allow anglo activities.

CompositeState

The CompositeStatelass extends th8tateclass and implements a state that contains an inner
structure of states and transitions. The inner state streict contained in thehildrenHashtable
attribute, using the state name as key. States containedighildren hash references either
objects of typeStateor otherCompositeStatebjects. The EJBFram@ompositeStatdoes not
support the use of orthogonal state regions as in UML 2.0.

As in UML 2.0, theCompositeStatean define different entry and exit points, which are named
with integer values. Entering théompositeStates done by callingenterStatewith the given
integer identifying the entry point. WheanterStatas called without such an integer identifica-
tion, the default entry point is used. Exiting its boundsiiggperformed by callingxitStatewith

the given integer identification, and execution continugsélling enclosingState operation
outOflnnerCompositeStat&he inner sub-structure of states is not exposed, and tBEr&the
CompositeStatthus resembles the UML 2.0 submachine state constructjsaaat allowed to
cross its boundaries withoekplicitly using entry or exit points.

StateMachine

The classStateMachindas oneCompositeStatehich contains the state and transition structure
of the state machine. In this way, the containment of statdgransitions in the clasS8ompos-
iteStatecan be reused in the state machine without implementingatiam.

The StateMachineclass implements all the behavior for executing the statehma. This in-
volves storing and resurrecting persistent data and handl message reception and message
sending. Furthermore, thgtateMachineclass implements all the necessary methods for pro-
graming a state machine.

StateMachinebjects are addressable through the use oftterAddressclass. This address

14

represents the message input queue of the state machinés ased by otheStateMachine
objects which wants to send messages to it.

3.3 EJBActorFrame

EJBFrame is layered above EJBFrame in the framework stacksaBdrviceFrame’s service
execution environment. The core concept of ActorFranifadsors plays roles” According to
[2]: "An Actor is a (composite) object having a state machine ¢A8M) and an optional inner
structure of Actors” Figure 3.3 shows the main Java classes of the EJBActorHpaciege.

cd EJBActorFrame classes /

CompositeState

SubMachine

<<interface>>
Actor

<<interface>>
StateData

i

i

ActorCS

1
|

ActorSM

ActorBean

StateDataBean

<<interface>>
ActorHome

<<interface>>
StateDataHome

7
T AN

PartSpec ActorContext N PortSpec

Figure 3.3: Class diagram for the EJBActorFrame (gray ctasen other packages).

3.3.1 Actor

The ActorFrame Actor is a composite object with a state mrechind optional inner structure.
Figure 3.4 shows the ActorFrame Actor, withandout ports and an inner pairinerActor.

<<actor>>
Actor

out

in out
innerActor:Actor[*]

Figure 3.4: The ActorFrame Actor class — adopted from [5].

15

Actor behavior

The generic behavior of an Actor is implemented by the statehime combination of thAc-
torSM and theActorCSclasses. These classes extendsSteeMachineand CompositeState
classes from EJBFrame. The generic behavior implementsdtw Afecycle management pro-
tocols as described in Section 3.3.2.

Actor descriptors

The inner structure of an ActorFrame Actor and its contdxtlations with ports and connectors
is described in a set of XML files, callexttor descriptors This information is parsed from the
XML files upon initiation of the Actor, and is contained in tRartSpeand thePortSpeclasses.
The PartSpecclass specifies the inner structure of the Actor, whileRbeSpecclass specifies
the contextual relations the Actor has to other Actors. Bb#sé classes can have multiplicity,
meaning they can have several inner Actors and relatiorsseiteral other Actors.

Ports, connectors and addressing of Actors

The PortSpecclass specifies a relation between two Actors. This reldtafescribed as a set
of ActorAddressnstancesinquiredRoleandrequestedRoleThe connectors are set up between
two Actors by using this information in tHeoleRequegtrotocol of the ActorFrame protocol.

As shown in Figure 3.4 an ActorFrame Actor has two ports, iongort and oneout port. In
EJBActorFrame thén port is mapped to a JNDI name of the input queue for the stathime,
while theout port is mapped to the operati@utputin the classStateMachine Sending a mes-
sage through aaut port is done specifying other JMS destinations represgitltie input queues
for other Actors.

This means the Actor port does not use the UML 2.0 delegatiomectors — only assembly
connectors directly between two adversary Actors. As soeliniding of inner structure through
the use of ports is supported by EJBActorFrame.

Figure 3.5 shows how Actor instances are addressed usictbeAddresslass. The address-
ing is based on the instance name of the and class type of ttoe. Ade address also includes
the contextual information of its enclosing Actors.

3.3.2 The ActorFrame protocol

ActorFrame Actors implement a set of protocols which aredu®e invocation, control and
management of other Actors. The combinations of all thesallemprotocols constitutes the
ActorFrame protocol. A subset of these, named by its imitiatessage, is shown in Table 3.1.

The most important of these protocols, with regards to thesis, are nameRoleCreateand
RoleRequest will thus provide a brief description of these.

16

ActorAddress Actor

actorld: String
actorType: String

Class D

A
A 4
IH
¢}
A
A 4

A

- -

Address: ¢:C || Address: d:D Address: d/c:C

Figure 3.5: Actor addressing [4] (Non-normative UML).

Initiator: Description:

RoleCreate | Creation of new actors.
RoleRequest Request roles from other actors.
RoleRemove Remove actor and all its associations.
RoleUpdate | Actor reconfiguration.
RoleReset | Reinitialization of actors.
RoleReport | Get status reports from actors.

Table 3.1: Protocol names in the ActorFrame protocol.

RoleCreate

The RoleCreateprotocol is used to create new Actor instances. This préisadilized when a
new inner Actor part is created, or upon initiation of an Actdnich shall instantiate all its inner
parts. Figure 3.6 shows hasDeltaActorcreates the new inner pagtGammaActar After this
inner part has been created, a message witRdheSpeds of this part is sent. ThedeortSpemb-
jects represents the Actors this actor sipddly with, and specifies the ActorAddresses for these
Actors.

The actual setup of the play — i.e., the creation of ports ameotors, is shown in Figure 3.6.
The figure shows thatctualPart:Part sends aRoleRequestessage teartB:Actor, which it
shall initiate a play with. The ActgpartB:Actorsends confirmation that it can play the specified
role. The inner parg:GammaACtohence sends the messdg@eCreateAcko its creator.

17

sd RoleCreate J

d : DeltaActor

sd PortSetup J

actualPart: Actor

‘ partB : Actor

<<create>>
g : GammaActor

RoleRequest

|

RoleCreate(PortSpec)

|
waitCreateAck ref
I

RoleConfirm

N

PortSetup

RoleCreateAck

Figure 3.6: Sequence diagrams for RoleCreate — adopted friom [3

RoleRequest

The Role Requegtrotocol is the protocol in ActorFrame which enables Actorsequest roles
from other actors. The principle workings of this protoc®lshown in Figure 3.7. The figure
shows that the Actorequester:Actomwants to initiate a play witlhequested:ActarThis is done
by sending &RoleRequeshessage to aimquired Actor. Theinquired Actor checks if this Actor
can contain theequested:Actqreither by creating a new instance or by asking an existingrin
Actor. Such a request is made by sendinBaePlaymessage to the Actor. The receiver of
this message sen@oleConfirmback to the initiator which confirms the request. This hasthu
created a relationship between teguester:Actorand therequested:Actgrand a play can start

between these. Figure 3.8 shows the full RoleRequest pratateoaction.

req

<<actor>>
uester : Actor

1. RoleRequest(requested,)

<<actor>>
inquired : Actor

ActorSM

3. RoleConfirm(RoleRequest)

2. RolePlay(RoleRequest)

<<actor>>
requested : Actor

Figure 3.7: RoleRequest protocol concept — adopted from [@h¢{Normative UML).

18

sd RoleRequest J
requestorRole: inquiredRole:
AlphaActor BetaActor
RoleRequest("requestedRole”, "DeltaActor”)
alt RoleDenied(REASONCODE)
<<create>> requestedRole:
DeltaActor
init
RolePlay(portSpec)
ref RoleCreate
ref PortSetup
RoleConfirm ‘
idle
RolePlay(portSpec)
RoleConfirm

Figure 3.8: Sequence diagram for RoleRequest.

3.4 Summary

This chapter provided a brief overview of the relevant fraumiks in the NorARC service cre-
ation architectures. The focus of the chapter has been tlewAeame Actor structure and the
ActorFrame protocol in EJBActorFrame. Furthermore, tlagestachine structure in EJBFrame

was described.

| will in the next chapter introduce the concept of allowiregnotely downloaded telecom fea-
tures, and the issues which arise when using the submaatrimgonent as a candidate for run-

time feature adaptation.

19

Chapter 4

Allowing remotely downloaded telecom
features

4.1 Introduction

In the previous chapters the technological backgroundmeglards to UML 2.0 and the NorARC
service creation architecture was established. With thisdation, | will in this chapter show
an example telecom service and how this service could bdrafitusing remotely downloaded
telecom features. Furthermore, this chapter establisiiethiesis’ conceptual approach to using
the UML 2.0 submachine construct as a feature which enalyteandic behavior adaptation in
services. The approach taken in this chapter is partiabgth@n the findings in [11].

4.2 An example telecom service — the phone book service

cd PhoneBookService J
<<actor>>

<<actor>> SMSEdge
PhoneBookService <<actor>>

<<actor>> BillingService
UserTerminal }/D 9
<<actor>>

CallEdge

Figure 4.1: Class diagram for the phone book service.

The phone book service is a telecom service which providesale phone book lookup service.
Figure 4.1 shows the structure of the actors involved withgbrvice. Thé>honeBookServiae
the actor which provides the phone book service to a userUBegTerminals the actor which
represents the users terminal, such as a PDA or mobile pAitresSMSEdgés the actor which
makes it possible to send SMS messages to mobile phone ddrsarsing the Parlay-X SMS

20

API. The CallEdgeis an actor which enables clients to set up conversationgeaet two arbi-
trary phone numbers using the Parlay-X Call API. As shown éRlgure 4.1, these two actors
requires the interface @illingServiceto be able to perform their service. ThadlingServiceis
an actor which enables charging of end-users for the prd\sdevices.

sm PhoneBookServiceSM sm SearchFealureCallSM sm SearchFeatureSmsSM)

waitForRequest

PhoneBookLookup / search(), PhoneBookLookup / search(),
send PhoneResults send PhoneResults

waitForRequest

PhoneBookLookup / download(feature),
replace(feature, searchFeature)

" searchFeature :
> SearchFeatureSM

waitForChoice

waitForChoice

%

PhoneBookChoice / PhoneBookChoice /
send CallForward(choice, phonenr) send SendSms(choice, phonenr)

& 6

Figure 4.2: State machine BhoneBookService

Figure 4.2 shows the principle behavior of tRBoneBookServicgith its state machin®hone-
BookServiceSMIt accepts a message which enables it to download and birappropriate
submachine to the submachine stagarchFeature The figure also shows two different sub-
machines which this state can contéggearchFeatureCallSMnd SearchFeatureSmsSMeach
yielding different behavior of thehoneBookServiceSM

Figure 4.3 shows the state machines wHttoneBookServiceSMteracts with. The state ma-
chineUserTerminalSMs the state machine of thégserTerminalactor, SMSEdgeSNs the state
machine of the&sMSEdgector, whileCallEdgeSMs the state machine of tlgallEdgeactor.

sm UserTerminalSM J sm SMSEdgeSM J sm CallEdgeSM J

CallSetup

setupCall()

StartPlaying
/ send ChooseFeature

waitForFeature

ChooseFeatureAck
1 send PhoneBookLookup

ChooseFeatureNack

[lrue}h/ [false}—<callSetup,
v

[lrue]u/

CallSetupAck

CallSetupNack

v
‘ ‘ ‘
/send PhoneBookChoice

Figure 4.3: State machines OterTerminal CallEdgeandSMSEdge

21

4.3 The submachine as a remotely downloaded feature

Figure 4.2 shows the behavior of tReoneBookServicactor. As seen, this simple state machine
specifies the submachine stagarchFeaturedescribing parts of its behavior. The submachine
state also specifies one entry and one exit point, encapsutae state and transition substruc-
ture of the referenced submachine. Furthermore, the twmaabinesSearchFeatureCallSM
andSearchFeatureSmsSBhows two different behaviors for this submachine. Thiedhce in
behavior between these two components is that one sets Uibategeen two phones, while the
other sends an SMS, based on the results of the phone boakjook

Now, imagine that these components could be changed aimen-tmeaning one could choose
between these behaviors while the service is still runningthermore, imagine that more such
featurescould be developed, remotely downloaded and chosen lorgydfter this service was
initially deployed. New and emerging technologies coulastibontinue to add value to the ser-
vice after the inception and deployment stages. Such suiime@components could even be
developed and deployed llyird-party service providers, and as such expand availability of dif-
ferent features. Furthermore, allowing this feature dmmient to be conducted at run-time gives
it the advantage of not affecting the availability of thevses.

However, such a possibility also adds additional compyex@teveral problems needs to be ad-
dressed before allowing such replacements:

e How to ensure that the remotely downloaded submachine coemp@riginated from the
correct source?

e How to minimize the interdependencies between the statdimaand the submachine to
allow the view of a submachine as a truly replaceable comu@ne

e How to ensure that a new component does not introduce ddagllteelocks or non-
deterministic behavior in the system?

¢ How and when should a submachine be replaced?

When downloading a feature which is meant to be deployed aacuésd in a service network,
one needs to ensure that this feature indeed is safe to exeamaning the origin of the code is
verifiable. Features could be downloaded kitp, ftp or other internet protocols viable for ser-
vice attacks such d® spoofing[17]. A mechanism which ensures the executed feature indeed
originates from the correct source is thus needed. Thisdcbheldone by signing the features
with digital signatures, and check these before executiagbde. Such an approach is possible
in Java by signing classes.

Minimizing the interdependencies between the state maand the submachine is done through

proper encapsulation of the component. This is address&dation 4.4. Furthermore, to ensure
a new component does not introduce unwanted behavior iet@ythtem, one needs to decide

22

how and when a replacement is to be done and how the behawaldsbe verified. This is
addressed in Section 4.5 and Section 4.6 respectively.

4.4 Encapsulating the submachine component

Entry and exit points serves the role of encapsulating tlensehines state substructure and
makes it a reusable component. As described in Section, Ztte machines are not allowed
to perform direct boundary crossing from the submachini stdo a submachine. This way,

the entry and exit points explicitly states how a submacisne be entered and exited by its

environment.

However, exit and entry points alone does not ensure bete\donformity when replacing a
submachine at run-time. The new submachine may indeed tutrtodbe incompatible as it
may breach the protocol adherence as specified in the envénatin which it is deployed. The
submachine may very well be found to introduce deadlocksl|dcks or non-deterministic be-
havior to the encapsulating state machine or to state meshiith which it communicates. |
will in the remainder of this section establish some guitkdifor how to deal with the following
encapsulation issues:

e How to encapsulate instance variables?
e How to handle timers created by submachines?

e How to deal with ports and messages?

4.4.1 Instance variables

UML allows modeling of submachines and composite stateshvare capable of reading and
writing to instance variables defined by the encapsulatiagesnachine. A newly introduced
submachine may make the wrong assumptions about the iestariables of the enclosing state
machine or have undesired effects upon these. Ensuringubhaterroneous assumptions are not
being made when designing the components thus requires@utioinvestigation of these in-
stance data interdependencies. When remotely downloadahfiading submachines, allowing
these components to freely access the instance data of thpsiating state machine may not
be wanted. [11] suggests assessing at which level the nemvasiiine can be trusted to behave
correctly, and select a security policy specifying to wheeat the submachine can access its
environments instance variables.

An encapsulating state machine is designed with a fixed setstdnce variables. It is very
likely that a newly and independently designed submacheeels to specify additional variables
which was not specified by its encapsulating state machiiewfg submachines to encapsu-
late its own set of instance variables should thus be allowed

23

One could require that submachines which are to be replacadchdime shall extend an al-
ready defined submachine. This enables the encapsulategsachine to know which instance
variables to expect in this submachine, and possibly eveasacthis data. However, the sub-
machine is an independently designed component, and tomzithe interdependencies which
exists between these two components, it would thus make sen®t allow such access. This
becomes even more evident when we allow replacing the subneat run-time. This would
require mechanisms which are able to copy the instancebkasiaxpected by the enclosing state
machine from the old submachine into the new. If a previotstyaced submachine at some time
made the wrong assessments of the state of these varidt@esyor would propagate to subma-
chines which replaces this at a later timietherefore propose deleting the instance variables
defined by an encapsulated submachine upon replacementparal allow the encapsulating
state machine to access data of its submachines.

4.4.2 Timers

Timers are often used as a technique to leverage problem®slgons might be expected to
cause a deadlock in a state machine — e.g., not getting anssfmm a request in a timely

manner. A timer can thus be of vital importance when desg@mew submachine. Timers

are usually specified in the enclosing state machine envieor, and allowing submachines to
create and start such new timers thus raises a problem; stti@achine starts a timer and exits
before this timer expires, the enclosing state machine dvamdeive an unspecified timer event.
Such timer events could be ignored, as the enclosing statkineadoes not know how to handle
it. However, it would be a good design guideline to stop atflers which are not stopped upon
exiting the submachine.

4.4.3 Ports and messages

A state machine sends and receives messages on the poresidsfiitts encapsulating classifier.
When dealing with dynamic pluggable submachines, it is edguethat these components may
need additional ports to communicate with other classifigrigh was not thought of at the time
of creation of the classifier. However, [8] states thaport cannot be created or destroyed ex-
cept as part of the creation or destruction of the owning dfass . If the state machine realizing
the behavior of the classifier adapts new functionality attime, there may be situations where
this would require new ports.

This can be shown in Figure 4.1 where the classieoneBookServiceequires the provided
ports of SMSEdgeindCallEdge Imagine the port which connects @allEdgewas not speci-
fied at the creation time of thehoneBookServiceThis would make it impossible to insert the
SearchFeatureCallSMubmachine, as it is not allowed to communicate V@tilEdge It may
therefore appear to be reasonable to allow loadable subnescto define and create new ports
in addition to the already existing ones.

24

[11] proposes differentiating between dynamically andicti#ly created ports, where subma-
chines could be allowed to create ports upon instantiattmhdestroy them upon destruction.
Such an approach would require that these ports are ablee&tecconnectors to other ports
dynamically. This raises the issue that messages mightriieoser these ports while the sub-
machine is not part of the active state configuration — itee,eénclosing state machine would
receive an unspecified event which might lead to undesifedtsf This might be alleviated by
ignoring messages sent through a dynamic port while the aobhime that created them is not
part of the active state configuration. Furthermore, [1bjgasts the use of security policies to
specify which messages submachines are allowed to send artat extent they are allowed to
create new ports.

4.5 How and when to download and replace a submachine

There needs to be a mechanism which is able to download a shbmacomponent and to
decide whether the current state is appropriate to replaexisting submachine. The most
flexible approach of doing this is to implement the functidggor downloading and binding
submachines within the state machine based on receptionugfdatemessage. Such an update
message should specify which submachine the new submaobingonent shall be replacing,
and could also have additional attributes which instrun¢sstate machine on how and where to
find the new component. This would give us the possibility @hd the correct assessments on
whether the current state of the state machine allows sucdvie. However, this adds the addi-
tional concern of deciding which of the communicating pestiguld be aware of such updates.

When receiving an update message, a state machine may be imsaitable state for updates.
Lets consider the case where the adversary state machmeasvare of the update, and maybe
even depending on it. In such cases it might be of utter inapod to reach a state safe for up-
dating before the update can take place. This may be donebwigethe current state abruptly,
saving the current state, execute the update and maybeirgfuo the previous state. As these
adversaries are aware of the update, they may expect thgebéhehavior by the state machine.
On the other hand, peers not aware of such updates shoul@ adéto observe any externally
visible change of behavior by the state machine — i.e., @sda¢eds to be atomic. These two
requirements are met by not allowing a submachine to begeglahile part of the active state
configuration.l therefore propose to defer update messages until thisitonds met and send
an acknowledgment to the update-aware state machine whenplaeeenent has been dangn
example of how this could be done is shown in Figure 4.4. Thardighows a state machine
which accepts an update messa&gahMachineUpdaten any state and defers this message until
the requirements are met.

25

sm SubMachineUpdale)

)

['submachine.isActive] SubMachineUpdate
1 defer SubMachineUpdate

['submachine.isActive] SubMachineUpdate
/ replace(submachine)
send SubMachineUpdateAck

Figure 4.4: Save submachine update messages until recante@re met.

4.6 Ensuring behavioral conformity

When replacing a submachine at run-time, one wants to maketsatrthis does not introduce ill
effects upon the system in which it shall be deployed. Theisteseveral approaches to achieve
this. Anomalous behavior between communicating state mastcan be detected using the
projectionapproach described in [7]. Such a projection is an abstrattichnique, as described
by [7]: "A projection is a simplified system description or viewpdimat emphasises some of
the system properties while hiding othersThe validation is done on these projections rather
than the whole system, and thus simplifies the designers.ymwever, the practical use of this
method is yet to be established in any real examples.

Furthermore, [11] suggests the use of security policiexvispecifies what the submachine
is allowed to do in the classifier it is deployed. One apprdacénforce such guidelines could
be bysandboxinghe submachine. The submachine component would thus Faogevit envi-
ronment which explicitly states the effects the submaciksralowed to have upon the system.
Although such an approach may very well turn out useful, taed to formally verify the effects
such asandboxshall have.

One of the most important properties of using componentddseelopment is the possibil-
ity of being able to understand the relevant parts of a statehimes behavior by examining its
required and provided interfaces. When using UML 2.0 classifithis would involve observing
the signal interleaving over the ports which are definedsatdiges. One can thus decompose the
external visible behavior into several different protacalhich the state machine must adhere
to. This does not conflict with the use of replaceable submashas the submachine shall still
adhere to the protocols defined for its communicating advess. However, this approach can
not cover all the failure scenarios. A submachine may sélleninternal failures — e.g., it may
use inappropriate operations on its own structured class@in the other hand, it does alleviate
the problem of a failing part having ill effects upon othertpdhe system.

Figure 4.5 shows the decomposed protocol which exists legtRieoneBookServicandUserT-
erminal This protocol could be asserted by b&®honeBookServicand UserTerminalat run-
time, thus both parties makes sure the other state machivexexlito the protocoll therefore
propose usingports and protocol state machinean event acceptoras a method of asserting

26

behavioral conformityvhen allowing remotely downloadable and replaceable submaatom-
ponents.

sm PhoneBookServiceProvided {protocol}) cd UserTerminal and PhoneBookService)

UserTerminal []

ChooseFeature waitForFeature

PhoneBookChoice ~ ChooseFeatureNack ChooseFeatureAck

. X PhoneBookResults i
waitForChoice waitForResults

vl PhoneBookService

PhoneBookServiceProvided

Figure 4.5: Protocol for the provided interfaceRifoneBookService

4.7 Summary

This chapter first introduced an example telecom serviceeatablished how this service could
benefit from dynamic loading of remotely downloaded teledeatures. Furthermore, the chap-
ter found the following for remotely downloaded submackine

e Exit and entry points is not enough to ensure behavioral eitifty.

Instance variables should be handled carefully.

Timers started by a submachine should be stopped upon exit.

It may be beneficial to allow dynamic creation of ports.

The external visible properties may be decomposed andtadsbrough the use of ports
and protocol state machines.

In the next chapter | will present conceptual approachessiioguports and protocol state ma-
chines as amvent acceptor

27

Chapter 5

Using ports and protocol state machines as
run-time event acceptors

5.1 Introduction

Section 4.6 introduces the idea of ports and protocol statehines as an appropriate approach
to assert whether state machines which are able to adaptibetiaring run-time adheres to the
protocols as defined by its provided and required interfaSesh an approach would also have
the additional benefit of being able to protect critical rgses in the system, and thus resembles
a sort of statefull application level firewall. This is of gteadvantage when allowing third-party
service providers and developers to access a system. éctimial flaws can be discovered in the
running components of the system, as could misuse of dréycstem components. This chapter
will hence show a conceptual approach to enabling such imaevent acceptor.

"In component-based software engineering, a basis for raagpon behavioral
compliance is highly desirable in order to validate softwarehitectures and to
reason on component compatibilityZ0]

5.2 Goals of the event acceptor

The main goal of thevent acceptors to capture the message interleaving between two adver-
sary state machines and assert its legality at run-time. Bgrdposing the behavior of each
state machine into a set of provided and required interfames can thus assert the behavior of
the state machine in a given context. A state machine may mavsy different adversary state
machines, each communicating over different ports and extors. By asserting the message
interleaving in all these specified contexts, one is thus abVerify whether the externally rele-
vant properties of the state machine is correct.

Figure 5.1 shows the interleaving of messages over the &dgeonnector betweeportA and
portB. This interleaving is constrained IprotocolAB— a protocol state machine. Doing such

28

Message interleaving J sm protocolAB {protocol} J

requires provides v
acceptRequest

portB :Port Request

acceptResponse
T 3
\<protocolAB Response

1. Request

portA : Port 2. Response

Figure 5.1: Event acceptor and message interleaving (Momative UML).

assertion at run-time, one wants to make sure that bothrsthines involved with this context
adheres to the given protocol. As the two state machine$vieglaitilizes ports to communicate,
the message interleaving shall thus be asserted at thesadtibn points.

5.3 Ports

When ports shall be created as part of the structured classifieh owns it, there needs to be
mechanisms which are able to do the following:

e Unique and global addressing of ports and state machines.
¢ Routing, sending and replying to messages between the donsiec
e Configure the ports with connectors upon creation.

These issues will be discussed in the remainder of thissecti

5.3.1 Connectors and addressing of ports and state machines

Naming is of critical importance when it comes to being abladdress a part’s port and state
machine uniquely throughout the system. A behavior porttinesable to address the state ma-
chine to which it is connected. In addition, ports should bke &0 address other ports through
the use of delegation and assembly connectors. One thus aeedidressing scheme which can
handle addressing both state machines and ports.

In UML 2.0 a port can be given a name and a structured classifierbe given a type. Fur-

thermore, when a structured classifier shall be an innergdahother structured classifier, it
has an instance name. It is thus possible to create a nantiegnecwhich qualifies addresses
with this information. This naming scheme is based on thstiexj ActorAddress scheme from
ActorFrame, and the introduced addition of port names makssssible to address both state

29

Port Direction | In address | Out address
bOut | out - /a:aOut@A
aOut | out - /d:dInOut@D
cln in lc@C -

dinOut | in-out /d/e:elIn@E| /c:/cin@C
eln in /dle@E -

Table 5.1: Connector addresses described in the ports.

machines and portd.thus propose adding the port name as an addressing qualdiéne ex-
isting ActorAddress scheme. Furtermore, | propose thewioig textual representation of this

addressing scheme

|/contextinstance],, yipieop: /Stance [port] , , @Type

Summarized, the following invariants apply to the addmegsicheme:
e Each port name must be unique within the structured classifie

o Ifthere exists more than one part of the same type withingstred classifier, the instance
name must be unique.

cd Port Addressing J oC
aA d:D

cin

Out aOut dinOut eln

lc:cin@C
b:B ‘ eE
/a:aOut@A /d:dInOut@D /dle:elin@E
% }fadnougD o, desn@e) ()
b

Figure 5.2: Port addressing example.

Figure 5.2 shows an example class diagram involving fivedifit parts. As seen in this figure, it
is necessary for each port to distinguish betwieeamdout addresses. This is due to the fact that
we allow ports to have connectors both in and out of the panvfach it is defined. Following
Figure 5.2, a configured port shall end up having the connecidresses as described in Table

5.1.

30

5.3.2 Routing signals between connectors

When a signals is received by a port, one needs to define howignals is to be handled —
i.e., should it be delivered to the state machine or be fate@rthrough one of its configured
connectors. UML 2.0 does not explicitly define how this skidag implemented.

Using the above connector addressing approach, such a @as& trivial solution. As each
port is limited to have one connector for each direction,ustipropose using théirection in
which the signal was sent to decide where the port shoulddi@hthe signal. Signals arriving on

a port which was sent by the behavior of the classifier, ontinca connector from an inner part,
should forward this signal to theut address. Likewise, signals which were sent by a connector
owned by the enclosing structured part are forwarded to éf@or or through a connector to
an inner part.

Determining the direction in which a signal was sent amotmisomparing the address of the
sender with the address of the port. As the proposed addgessiheme has context information
embedded in its structure, it is thus possible to evaluatethdr an actor is an inner part of a
structured partl thus propose evaluating the direction of a sent signal ygaring the context
part of the senders address with the address of the part whicls tvenport.

aA

b:B

ain]

Figure 5.3: Inner classifier not able to signal enclosingsiféer.

Using this approach it is thus possible to determine oveckwibnnector the signal should be
conveyed. However, the approach raises another problejurd=b.3 shows a scenario where the
inner parto:B provides an interface to the enclosing paat’d behavior portain. With the above
described propagation technique, signals across suclectora can not be sent in a proper man-
ner. The above signal forwarding mechanism would decidethigasignal should be sent on the
outaddress — which was clearly not the intention.

A partial solution to this problem is thus to explicitly definvhether the port has connectors
in to the part,out of the part orboth In the scenario shown in Figure 5.3, it would thus be
possible to specify that the patn only connects in to the part. With this information it is thus
possible to forward the signal to the addressegardless of the direction which the signal was
sent. Section 5.3.3 describes the complete algorithm gmasrouting solving this problem.

31

5.3.3 Replying to signals

A part providing a service, such as tB®SEdgelescribed in Section 4.2, often has many clients
connected to its port. Such types of services often handjeest signals without caring who
actually sent it. When the request has been processed, ieis néeded to convey a response
which describes the successfulness of the request. Thetddsthus be a mechanism which
is able to route the signal back to its originator in such geot scenarios. There exists two
solutions to this:

e Send reply directly to the requester.
e Send the reply through the path of connectors which the stguaved through.

By sending the reply directly to the requester, the signatiergnteed to arrive correctly. How-
ever, this solution has the disadvantage of making it hafolethe event acceptor to assert
whether the reply adheres to its protocol. An erroneoug/replild be sent which violates the
protocol of the requester. Furthermore, this violates geeaf assembly connectors.

A better solution is thus to send reply signals through thaespath of connectors which the
request signal arrived on. This makes it tangible to asdeetier the reply adheres to the proto-
col between the two communicating state machines. | propeselifferent solutions for doing
this:

¢ Staticallydefine reply paths.
e Dynamicallydefine the reply path.

A statically defined reply path involves having the routing informatiombedded in the ports —
thus resembling IPv4 routing [12]. This is in contrast witle tynamicallydefined reply path,
which resembles the IPv6 routing [12] in that it has the gubsi to embed routing information
in the header of a package.

Static reply path

One approach to ensure replies are being sent through tbkesay ports, is to create a protocol
which sets up such a reply path at creation time of the port.

A port which requests a connector to another port sends aesé@long the configured path
of connectors. While this request is being passed from popbtd along the path, the ports
which are interested in asserting the communication betweetwo classifiers adds its address
to a list in the request message. This list specifies which gubdresses a reply shall be sent
through.

This is shown in Figure 5.4, where the only port intereste@sserting the communications
betweenportA andportD in a reply situation igportB. When portB receives theathRequesit
adds the address of the port to a stack in the message. Yt receives the message, and

32

sd Static setup J

portA : Port

portB : Port portC : Port portD : Port

configured [configured j [configured]
T T

configured

Ut
il

PathRequest_ | |
——

PathRequest.add(portB)
——— pathRequest

PathRequest

PathRequestAck

i
|
i
PathRequestAck ‘
< |
|
|
|
|
|
|
|
|

Figure 5.4: Static setup of reply paths.

verifies that it is a behavior port, an acknowledgment is $aak toportB. This would thus
provide portB with sufficient information to create a static map which sfies that messages
sent fromportD shall be forwarded tportA. However, this approach is probably not fail safe,
as such static maps might be conflicting if there exists athents which uses the same path of
connectors.

Dynamic reply path

Thestatic reply pathapproach described above is unnecessary, and furthercdseamplexity
to the protocols which shall be used for setting up the cailmnedetween ports. Another ap-
proach to doing this, is thus to tag messages with the poreadds which it passed on the way
to its final destination. This tagging could be implementgea atack, and an algorithm could be
created which supports replying through the use of thikstac

Figure 5.5 describes how the message is handled by a portrepeption. If the last element
in the reply stack is not equal to the ports address, it ismogply to a previous message. The
port should thus add its address to the reply stack in theagesd he receiver of this message is
hence set according to the direction in which the messagsevdsIf the message was sent by an
inner classifier, the port should forward the message tothaddressonnector. If the message
was sent by an outer classifier, the port should send the ges$sahein addressconnector or

to the behavior of the part.

Furthermore, messages which are received by a port firskshithe last element in the re-
ply stack is equal to the address of the port. If this is soJdakesender of this message was this
port — meaning it is in reply to an earlier sent message. Hssdlement is removed from the
stack, and the new last element is thus the address of thevpmt should receive the message.

A state machine which wants to send reply to a message wouklidhly need to copy the

33

Port::MsgReceived J

[msg.lastFromStack == myAddress]

[else]

msg.addToStack(myAddress)

msg.removelLastFromStack
msg.receiver := msg.lastFromStack

[else] [msgFrominner msg.sender := myAddress

&& !requiredOnly]

msg.receiver := requiredRole msg..receiver := providedRole
msg.sender := myAddress msg.sender := myAddress

L X

Figure 5.5: Sending messages with a dynamically createdy pegh.

reply stack specified by the request message into the respoessagd.thus propose using the
routing algorithm as shown in Listing 5.1.

5.3.4 Configuring connectors at creation time of a part

We now have the necessary routing information for addrgssimd sending messages between
ports. However, these are all useless unless there existsamems which are able to specify
and configure these properties at instantiation time of #re p

Upon instantiation of a structured classifier, the porteaissed with it should be created. This
structured classifier is a part of another structured diagsand in this encapsulating context the
connectors of a part’s ports are specified. As a port in sotnat&ns may require a connector
to another non-local port across a distributed systemug thakes sense to use signaling to set
up connectors.

This approach requires that the ports must implement a gobfor such signaling. | propose
the following principal behavior of this protocol:

34

Listing 5.1: Message routing algorithm described usindhByt

def route(sig):
if sig.replystack.last == myAddress:
last sender on stack is me, reply
sig.replystack.remove(sig.replystack.last)
sig.receiver = sig.replystack.last
sig.sender = myAddress
send(sig)
else:
not a reply message
if myAddress.islnnerActor(sig.sendergnd !islnPort:
sig.receiver = outRole
else:
sig.receiver = inRole

sig.replystack.add(myAddress)
sig.sender = myAddress
send(sig)

A port which wants to set up a connector to another port shalbdsemequest to

this port. A port receiving such a request shall send a corfiron to this request

back to the requester. Upon reception of a confirmation, tmnector address is set
according to direction of the received signal and addresthefsender.

A path of assembly and delegation connectors should alwaysvéh a port which is a behavior
port. The approach taken here is that each part is resperisitdetting up the connectors for its
ports —i.e., they have no further knowledge of what conmnedte port they connect to specifies.
It is thus necessary to have a mechanism which ensures thpath of connectors are properly
set up before signals can be conveyed across them.

This scenario is shown in Figure 5.6, whexdas not yet set-up its connectorsdo As b is
already connected, it might send a message which was dé$tine. However, as part of the
connector path is not configured at this time, the messagédwmt arrive to the correct desti-
nation.

A solution to this problem is thus to make sure ports whichrdefiut connectors shall not
send messages until the whole path has been acknowledgieds @one by signaling a request
through the path upon confirmation of the connector whichdquested. This request propagates
through the path until it is received by a behavior port. Thldvior port sends a confirmation
back to the requester, which hence can allow messages tmbe se

35

cd Incomplete connection /

aA c.C

—5 =

Figure 5.6: Incomplete connection configuration.

5.3.5 Limitations of the approach

Ports can have connectors to other ports and be a behaviorSagrporting hiding of the inner
structures of other classifiers presents some problemswigieds to be addressed. Such hiding
of structure prevents connecting classifiers from seeiagvtiolepicture, and the ports are thus
to be viewed ablack-boxedo these classifiers. This difference is shown in Figure 5.7.

cd whitebox J cd blackbox J

aA b:B
aA

aOut bin

aOut

Figure 5.7: Black-box versus white-box view of the structure

As Figure 5.7 shows, it is impossible for the pafdutto know whether it is connected to the
behavior of classifie:B, c1:C or c2:C. This causes trouble when receiving messages at the port
bin, as it does not have sufficient information for deciding whitstancea:A wants to address.
UML 2.0 specifies that such multiplicity could be handled litpher copying the signal which
arrived to the port to all these connectors, or by selectmgaf the connectors. In Figure 5.7 we
have shown two inner parts of the same type, which thus hasatime state space in their state
machines. By duplicating the signal and sending it to botkehgarts, we thus have the risk that
both will react to it — which in most cases would be regardedrasnwanted effect. It should
therefore be possible to select one connector. Howevdr,tha lack of information it is hard to
choose the correct route.

The above described approach to solving this problem is pdicitky limit the number of al-
lowed connectors on each port to one in each direction of #ne plowever, this approach is
not very flexible, as it would require one port to be specif@dsfach inner part of the structured
classifier. Furthermore, this effectively prevents craatiew parts after the structured classifier
has been created. This is because it would require creadwgports in the enclosing part after

36

its instantiation — which is not allowed by the UML 2.0 spegation.

Extending the addressing scheme with interface names

The shortcoming of the previous addressing scheme witlrdega multiplicity of delegation
connectors is thus in need for some modifications. As UML 2fispis allowed to specify
named interfaces, a solution is thus to extend the previohsrse with the following added
invariant:

¢ Interface names specified by a port shall be unique for thie por

This scheme thus makes it possible to route messages basatedace names. Figure 5.8
shows the context which qualifies the unique addressingeofdquired interfaceReqwhich is
specified forbPortin partb:B. Creating a new inner part afwould thus involve adding a new
provided interface omPort which is to be used by clients communicating with the new inne
part.

Domain
Address = /a/b:bPort.bReq@Bﬁ aA
~~~~~~~~ e 9)\ b:B
Address = /a:aPort.aProv@A ﬁ__m w{ bReq
aPort bPort
N
Context of part b:B = /a/

Figure 5.8: Addressing of ports and interfaces and theiteodn

This approach has not been investigated any further in lieisi¢, but it is clear that a solution
based on this approach would be more appropriate and flaxibise.

5.4 Event acceptor execution

| propose the structure for the event acceptor as shown uré&i5.9. When a signal is received
by or sent through a poRort, the protocol state machirtSMis executed witrexecTrans()
The result of this execution yields two possible outcomébgee the message is regarded legal
or illegal by the protocol state machine. A message regaaddegal would thus be propagated
to the correct connector by the algorithm described in 88&i3.3.

37



:Port

sd Event acceptor execution ) cd Event acceptor J

‘ :PortSM ‘
T

exec(sig) !

> Port Ko— PortSM

execTrans(sig, state, this)

I
[IegaIMéssage]
1

alt legalMessage(sig)

g
-t

illegalMessage(sig) [else]
i
I
i
i

Figure 5.9: Execution of the event acceptor.

5.5 Event acceptor and multiple clients

It is necessary for protocol state machines to have stasetdaiperate correctly. One single port
instance could have many clients connected directly anideicitly to it. Figure 5.10 shows an
example where two different clients are connected to thegiort The portaPortis a port with

a delegation connector to the inner peastbehavior port.

cd Multiple clients J

bl:B aA

aPort c:C

Figure 5.10: Two clients connected to one port.

At design time of the protocol state machine for @fort, one could in this scenario proba-
bly foresee this, and thus make it understand that thesevarditferent clients which needs to
be taken care of accordingly. However, this is not very fliexibwe were to extend this model
to include new clients at run-time.

There is thus a need to differentiate between the clientglwbould send signals on a port.
This would ease the design of such protocol state machirestasutially, as each port is able to
handle signals according to the identification of the clighich sent it.

Enabling such port sessions in a framework supporting tinegmol protocol state machine con-
cepts could be done in several ways. One method would be atecsessions onfast message

basis. This requires less work in the port implementatiemrae would only have to associate
each message with a protocol state machine. If a messagaimktiown sender has been re-
ceived, one would then initiate a new protocol state macfinéhis sender. Since we by using

38



Sender assoc. key Protocol state
bl:B @staterefl
b2:B @stateref2

Table 5.2: Hash lookup table for state data.

this approach can not know if the actor has stopped existirgge is a need to have timers for
how long each session is to live in the port. However, thishoethas several pitfalls. Even
though it is easy to create such a session, deleting andrigefi@m alive is hard. It would solely
rely on well defined timers which do not delete the assoaiatimefore an actor has stopped send-
ing on the port. Deleting too early would in effect reset thetpcol state of this client, and if the
protocol does not allow the new message, it is not allowecetsdmt through the port.

Another way of doing this altogether, is to create a protdmiveen the ports which sets up
these association along the path as they are created. Dosgauld reserve a protocol state
machine on each port along the path of connectors. Thisoseagproach would also make it
possible to tear down the associations upon a clients aisinu Table 5.2 shows how this infor-
mation is gathered in thePort.

| thus propose that the port shall perform a hash lookup with sender of the message as
identifier. This lookup shall return the state of the protiosiate machine associated with this
session. The sender is found using the first element of thestek described in Section 5.3.3.

5.6 UML 2.0 and message interleaving

The event acceptor as proposed in this chapter violatesutinent UML 2.0 specification. This
is because the protocol state machine shall only verifytswveeived by a classifier. Translated
to the example shown in Section 5.2, Figure 5.11 shows theguts which matches this speci-
fication.

It should prove very useful to be able to assert the bi-dimaality of events. To set this into
perspective, assume a remotely downloaded submachineddesthre wrong assumptions upon
its environment. The encapsulating state machine has rtoot@wer what it is actually doing.
The failing submachine is entered and is part of the actiage stonfiguration. A message is
received which is expected to have a given effect. Howeusresassuming this componentisiill
behaving, it sends the wrong response using the reply meshalescribed above. Figure 5.11
clearly shows that this message interleaving assertiondvmt be possible in this case, and the
message should thus be allowed by the system.

This worst-case scenario shows that the current consigatob restrictive. | thus suggest al-
lowing UML 2.0 protocol state machines to both check the ikestkevent and the sent effect

39



Message interleaving J sm protocolA {protocol} /
requires provides
acceptResponse
1. Request

Response

portA : Port portB : Port

2. Response

sm protocolB {protocol} /

e o~ i y
---------------

Request

Figure 5.11: UML 2.0 and message interleaving (Left diagriimn-normative UML).

of the fired transition in the state machine. However, thenfdities and reasoning behind this
current restriction has not been investigated any furthénis thesis.

5.7 Structured classifiers violating protocols

We now have the conceptual tools to assert protocols betalassifiers ports at run-time. It is
thus necessary to decide what to do when one behavioral c@npareachessuch a protocol.
The UML 2.0 protocol state machine construct clearly speifhat it is not allowed to have
effects. However, it becomes clear that such a restrictiap be too strict when doing run-time
assertion. A classifier which fails to adhere to a protocoy mé&oduce deadlocks in adversary
state machines. Although the wrongfully sent signal wereatiowed through, adversary state
machines may wait for other signals from this classifier -steatering a deadlock which could
potentially propagate throughout the system.

Such deadlock situations might be remedied with carefulaigemers, but solely relying on
this mechanism could lead to unreliable services. Thuseinsereasonable to allow protocol
state machines to have effects when performing run-timerasss, even though this violates
the UML 2.0 specification. As an example, TAPAS’ [15] PlugdaPlay [9] system uses the
countermeasures as shown in Table 5.3.

5.8 Updating the protocol specification at run-time

Allowing submachines to be replaced at run-time raisesramnatiiemma. It is probable that the
replacement of one submachine for another invalidates omeooe of the currently specified
protocols. For interfaces requiring the update to be iblestihis would probably mean the sub-
machine had unwanted effects upon the system — and thuding fadHowever, there may exist
cases where communicating state machaweesupon the change of behavior —i.e., some state

40



No action It is decided not to take any action.
Actor initialization It is decided to install a new actor; this includes instanti-
ation of a new actor, installation of the manuscript defin-

ing the behavior of the actor, and execution of the actor.
Actor termination It is decided to terminate the actor freeing all resources

allocated to and consumed by that actor.
Actor reinitialization A sort of combination ofictor terminatiorandactor ini-.

tialization that terminates the actor and reinitializes it on

. the same node
Actor relocation It is decided to move the actor to a new node.

Play reconfiguration It is decided to reconfigure the whole play. All actors
involved in the play are influenced by this action. The
best node for executing each role is computed, and the

actors will be relocated to these positions.
Default Relocation of all actors involved in the problem.

Table 5.3: TAPAS’ Plug and Play countermeasures for faidiotprs.

machines are aware of the update taking place, and the clofibghavior is expected by these
adversary state machines. In such cases it may thus souswhedde to allow updates to the
protocol specified by a protocol state machine at run-timéeéd, allowing such updates would
make the system even more adaptable to behavioral changes.

A conceptual approach to do this may be as simple as sendjnglsito the port which should
be updated — specifying where the new protocol can be fouddvaich state this protocol state
machine shall be in after installing the new protocol. Sialtéhe state machines communicating
over this port are aware of the update, signaling could nastias normal after the update has
taken place.

5.9 Summary

| have in this chapter proposed solutions to addressing poid state machines as well as send-
ing and replying to signals between these. A solution totifiea sender’s protocol state using
sessions and the execution behavior of the event accepsopreposed.

Furthermore, concerns regarding UML 2.0’s restrictionstlom protocol state machines were
raised. The protocol state machine is neither allowed tyvsignals sent by the classifier nor
to have effects. | proposed that this clearly limits the ugglof run-time event assertion, and
the reasoning and formalities behind these restrictionslsibe further explored.

| will in the next chapter describe the implementation wodned as part of this thesis. This
implementation is based on the proposed solutions and apipes presented in this chapter and

41



Chapter 4.

42



Chapter 6

Run-time replacement of submachines in
EJBActorFrame and EJBFrame

6.1 Introduction

Chapters 4 and 5 presents several issues and solutions tmsidex@d when dealing with re-
motely downloaded and replaceable submachines. In thigt@hbpresent the prototype modi-
fication done to the NorARC frameworks EJBActorFrame and EdBierto enable some of the
proposed solutions.

6.2 What has been realized?

Modifying existing code-bases takes a lot of time, and tleagdpresented in the previous chap-
ter requires core changes within the NorARC frameworks. Ndhe issues in the two previous
chapters have thus been addressed.

With regards to replacing submachines at run-time, theioiig have been implemented:
e New SubMachine class which can encapsulate its own instarc@bles.

e Actor behavior for actors which wants to enable remotely nloadable and replaceable
submachines.

e SubMachine replacement while not part of the active statéguaration.

Furthermore, the run-timevent acceptohas been implemented, with most ideas from Chapter
5 implemented:

e Port construct support for EJBActorFrame.

e Protocol state machine support for EJBActorFrame.

43



e Updated addressing scheme including support for Ports.
e Connector description and setup between Ports.

e Sending and replying to messages through Ports.

6.3 Modifications overview

Modifications have been made to both the EJBFrame and EJBAeioe Java packages. An
overview of the changes done to each of the packages is deddyelow.

6.3.1 Modified EJBFrame Java package

Figure 6.1 shows the modified Java package of EJBFrame. Adrsé@n figure, changes have
been made to almost all classes in the structure. No stalatbanges have been done to the
package, but the new classibMachinehas been added. The n&SubMachineclass extends
the existingCompositeStatelass, and implements a submachine which is able to encapstd
own instance variables. The modifications done to thessetagpans the following:

Inception point for reception ghctorMsgto Port.

Storing instance data f@ubMachine

Support for newActorAddresaddressing scheme.

Reply stack for thé\ctorMsg

cd EJBFrame classes J

<<interface>>

State ActorAddress StateDataBean

' SubMachine l—|> CompositeState —@ StateMachine StateData

ActorMsg @ —— ActorAddress

[

<<interface>>
StateDataHome

Legend: [ ] Modified class [ ] New class

Figure 6.1: Modified EJBFrame Java package overview.

44



6.3.2 Modified EJBActorFrame Java package

Several changes have been done to the EJBActorFrame Jakagpad his is shown in Figure
6.2. Some structural changes in the package have taken st notable is the relocation of
the clasgPortSpedo be contained by th&ctorSMclass. This was done to accommodate creation
of the newPort class.

Furthermore, three new classes has been added to the padkageort class is the new port
construct for EJBActorFrame, and is referenced in a Javatdbke in theActorContexiclass.
ThePort class have the neRortSMclass attached to it, representing the protocol state machi
implementation for thé’ort. The PortSM class extends the existirRpleCSclass from Agent-
Frame, which contains much of the needed structure for im@iging a protocol state machine.

The new clasPynamicActorC<lass implements new behavior for downloading and replac-
ing SubMachinelasses at run-time. The actual downloading and Java c&disl is performed
by the utility clasgFileClassLoader

cd EJBActorFrame classe: )
<<interface>>
PartSpec PortSpec Actor
l*
DynamicActorCS  +—{ | ActorCS ActorSM ActorBean
. RoleCS <<interface>>
FileClasslLoader (from AgentFrame) ActorContext ActorHome
Z% <f*
1
PortSM —> Port

Legend: [ | Modified class [ ] New class

Figure 6.2: Modified EJBActorFrame Java package overview.

The following have been implemented in EJBActorFrame:

e Sending and replying to message#ictorSM

Creation ofPort instances using theortSpec

Modified ActorCSfor creation ofPort and accommodated ActorFrame protocol to match.

Run-time event acceptor with th®rt andPortSMclasses.

45



¢ Behavior for downloading and replaciigybMachinesvith DynamicActorCS

| will in the remainder of this chapter show in greater detadl structural and behavioral changes
done to the Java packages.

6.4 Implementation of SubMachine using EJBFrame Com-
positeState

EJBFrame lacked the UML 2.0 submachine construct as dedcimib8ection 2.5.1. The first
step was thus to map this construct to EJBFrame.

A submachine is a state machine referenced by another stathime. The natural way of
mapping this would thus be to reference&StteMachineobject to create submachines. The
StateMachinelass in EJBFrame contains functionality such as messagesgustate machine
execution and J2EE specific details, whilempositeStates used to specify transitions and ar-
bitrarily deep state configurations. As the submachind blea part of a state machine, one can
thus use the already existing queue and execution handlimg@emented by th8tateMachine
class. As the&CompositeStatalready implements most of the necessary properties aravioeh
of a submachine, it thus makes sense to extend this classaxb@iing theSubMachineln fact,
the EJBFrameé&ompositeStates very close to the submachine construct — it is not alloveed t
cross its boundaries without using entry and exit pointse fifain difference between the two
constructs is that we shall allow additional instance \désa to be stored as part of the new
SubMachine&lass.

6.4.1 Structural modifications

Figure 6.3 shows attribute and operation additions to tli&HEIme classeState StateMachine
StateDataBeamand StateData These additions are done to make storage, initializaganing
and resurrection of state data possible. SteteMachinelass is modified by adding a new Java
Hashtable. This Hashtable is marked as persistent, andssstved and restored as part of the
StateMachineTo uniquely identify what data belongs to whi€kateobject, the full state name
is inserted as the key.

The implementation of the specified operations by the Gateare left empty by default. This
is done as it is most likely that classes in the class-hiagaabove theSubMachin&lo not need
this feature. The addition of these methods would thus resterany significant computational
overhead.

Classes which extend&tateand wants to save persistent data in 8tateMachineshould over-

ride the specified operations. As tBabMachinelass is such an inherited class and wants to use
this feature, we thus override these operations. Classesdirg theSubMachinelass must call

46



State StateMachine

getStateProperties(byte[]) : ByteArraylnputStream stateProperties : Hashtable
storeStateProperties() : byte[]
initStateProperties(StateMachine) : void

removeStateProperties(State) : boolean
addStateProperties(State) : void

StateDataBean StateData
getStateProperties() : Hashtable setStateProperti_es(Hashtable) : void
setStateProperties(Hashtable) : void getStateProperties() : Hashtable

Figure 6.3: Modifications done to State and StateMachine.

the super implementation of the method to ensure that Jagapecified by the inheritesub-
Machineis stored properly. This is shown in Figure 6.4, whé&fSPositioningdds an attribute
gpsPosition Using the described model, it has thus been assured tHathexgsmPositiorand
gpsPositiorinstance data is saved f&PSPositioningbjects.

GSMPositioning GPSPositioning
SubMachine ] gsmPosition : String gpsPosition : String

Figure 6.4: Classes inherited from SubMachine.

6.4.2 Behavioral modifications

The structural requirements of being able to save data &msek inheritingtateare now met.
Storing and resurrecting this data needs to be done insedgt#tteMachingbefore and after the
StateMachine executes a transition. Figure 6.5 shows theesee diagram specifying the with
transition execution of a StateMachine, with the addedtfanality of resurrecting and storing
data with the reference to tlietStatePropertieand StoreStatePropertiesequence diagrams.

Figure 6.6 shows how the instance data is restored t&tidachindefore a transition on it is
fired. As seen, this is done by fetching the byte array fromsthgPropertiesHashtable with
the key of the current enclosing state’s fully qualified staame. If this lookup turns out empty,
it has not been entered before, and the initial values isdtested by callingnitStateProperties
Otherwise a call tgetStateProperties performed, which is responsible for resurrection of the
instance data.

Figure 6.6 shows how the instance data is stored after tram$ias ended in th&toreStateProp-

ertiessequence diagram. This is done by callgigreStatePropertiesf the enclosing state. If
there exists data in the byte array returned, it is storedastatePropertiesiashtable.

a7



sd ExecuteTransition J
1 JMS : ActorSM : ActorCS

M [enclosingState != null]
el / GetStateProperties

execTrans()

alt

performExit()
exit()
opt
‘ ref Task
execTrans
alt [nextState!=null && performExitisDone]
nextstate.enterState()
alt [nextState!=null]

entry()

nextState.enterState

ref/ StoreStateProperties

Figure 6.5: Modified transition execution.

6.5 DynamicActorCS — actor behavior for dynamic subma-
chine loading

As shown in Figure 6.2, a new claBgnamicActorCSvas implemented by extending the ex-
isting ActorCSclass. This class is intended to be used by actors that waetsatble remotely
downloadable and possibly replaceaSlébMachineat run-time.

Figure 6.7 shows the steps taken upon receptioButfMachineUpdateMsgrhe first step in-
volves searching through the list 8tatechildren contained by thactorCS If the SubMachine
state name is found in this list, processing continues watirgg the existing reference to this
State A search is then performed to check whetherSbeMachinavhich should be replaced is

48



sd StoreStateProperties /

‘ : ActorSM ‘ ‘

: ActorCS

T
: storeStateProperties()

byte[] data

e E— ]

alt [data 1= null]
|

. |
stateProperties.put(enclSt.getFullStateName(),
=

|
|
|
|
|
Il
|
|
|
Idata)
|
|
|
|

sd GetStateProperties J

stateProperties.get]

: ActorSM

enclSt.getFullStateName())

e

alt

[data

|
+=null

I

I initStateProperties(this)

T —

i getStateProperties(data)

.
|
|

Figure 6.6: Sequence diagrams (eetStatePropertieandStoreStateProperties

part of the active state configuration. Processing thenmoes by creating a ne®ubMachine
with the configuration specified by tisibMachineUpdateMsdf the class loading is successful,
the submachine state reference is replaced with nBukdachinebject. As seen in the figure,
this implementation saves the signal if the current actiséess unappropriate for updating the
SubMachine If any of the steps failsDynamicActorCSends éSubMachineUpdateNackMsg
message to the requester of the update. These steps anbel@soore thoroughly in the next
sections.

6.5.1 Messages

The messages used to communicate \ByimamicActorCSare all messages which inherits the
EJBFrameActorMsgclass, as shown in Figure 6.8. Table 6.1 describes what dattfese
messages are used for. TBebMachineUpdateMsg the message which is used to invoke re-
placement of the remotely downloaded or locally defined dtass ofSubMachine

The most important properties of tieibMachineUpdateMsgessage are:
¢ stateNameState name of the SubMachine to be replaced.
e classNameJava class name of the SubMachine which shall replace thenex

o classRoatWhere the Java class is located, either locally or remotely.

6.5.2 Getting the reference of the SubMachine to be replaced

TheCompositeStatelass contains a Hashtable with state names and refererSegdinstances
specified within the structure of a composite state. By senttia state name of the state which
shall be replaced with thBubMachineUpdateMsgne can thus perform a hash-lookup on the
childrenlist and get this reference by its state name.

49



ad DynamicActorCS SubMachineUpdateMsg )

State name
search

[else] [contains state name]

Get existing
SubMachine
. [part of active state configuration]
defer signal

['part of active state configuration]

Download and
instantiate new
SubMachine

Send
SubMachineStateUpdateNack [failed]
with reasoncode [success]

Remove instance data,
replace SubMachine reference

Send
; ; SubMachineStateUpdateAck

Figure 6.7: Activity diagram showing the submachine reptaent steps.

cd DynamicActorCS ActorMsg’s )
o

SubMachineUpdateAckMsg SubMachineUpdateMsg SubMachineUpdateNackMsg

stateName : String errorNo : int

className : String stateName : String
classRoot : String
classVersion : int

stateName : String

Figure 6.8: ActorMsg’s foDynamicActorCS

6.5.3 Searching the active state configuration

The EJBFrame clasState and thus also extended classes, contains an attendesingState
which is a reference to the enclosing state Stateobject — as shown in Figure 6.9. An operation
isEnclosingwas added to perform a reversed, recursive search of the atiite configuration —
checking if each of these enclosing states is a referente @ubMachinebject which shall be
replaced.

TheisEnclosingoperation works as shown in Figure 6.10. The currently acfate in EJBFrame
is always a simplé&tateobject, denotedurrentStatan the figure. By checking whether the ref-
erence tenclosingStatés equal to theeplaceSMwe can thus check if thBubMachinebject

to be replaced is part of the active state configuration. Adigure shows, th8ubMachineb-
ject to be replaced in this example is not part of the actimgestonfiguration, and the operation

50



SubMachineUpdateMsg Message specifying where to find the new SubMachine
component and which state it shall replace. Initiates|the
replacement.

SubMachineUpdateAckMsg Message sent by actor if the update was successful.
SubMachineUpdateNackMsgMessage sent by actor if an error occurred. Appropriate
error code set.

Table 6.1: Messages used BynamicActorCS

State

enclosingState : CompositeState

b1

CompositeState

+ isEnclosing(CompositeState) : boolean

Figure 6.9: Classes CompositeState and State with partiehiiges and attributes.

thus returns false.

6.5.4 Remotely download and initialize a SubMachine

The initialization of a newsubMachinebject is done by using standard Java classloading fea-
tures. A new clas&ileClassLoaderwas implemented which tries to find Java classes in the
following order:

1. Get class from local package.

2. Get class from remote using Java URL.

3. Get class from local filesystem.
The Java Class returned by this utility class is hence use@ébeca Java Object using the default
constructor. This Object is thereafter casted into3nbMachinebject which is to be used. The
code for this is shown in Listing 6.1.
6.5.5 Replacing the existing SubMachine
Replacing the existingubMachinebject is done in three steps:

1. Remove the instance variables used by theSpildMachinebject.

2. Update the environment of the n&ubMachinebject.

3. Update the references in tbkildrenHashtable.

51



/ enclosingState2 : CompositeState \

enclosingStatel : CompositeState

Submachine

L
replacement 1. enclosingState
candidate currentState : State | "~ g

2. isEnclosing(replaceSM)
3. enclosingState
replaceSM : SubMachine >
4. isEnclosing(replaceSM)

N

Figure 6.10: Searching active state configuration (nomaadive UML).

Listing 6.1: Remotely download and initialize a n8ubMachine

FileClassLoader cLoader mew FileClassLoader ();
Class cls = cLoader.loadClass(amsg.getClassRoot (),
className ,
false);
Object obj = cls.newlnstance () ;
SubMachine c¢s = (SubMachine)obj;

With the creation of th&ubMachineomponent in Section 6.4, we have already defined behavior
such that if the instance variables is not saved anywherhésubmachine, it will be initialized
and stored properly when entering and leaving the submeachihthat needs to be done is thus
to remove the instance variables as defined bySthlieMachineobject which is to be replaced.
This is done with a call to th&tateMachinebject'sremoveStateDatavith the fully qualified
state name of th8ubMachine

The newSubMachineobject must be placed in the correct state structure, and thus de-
fine its enclosing state environment. This is needed whesuhmachine shall exit through any
of its submachine state’s exit points. This is done by sgtiine objectenclosingStat¢o refer-
ence theDynamicActorCS®bject.

All that remains for replacing &ubMachines hence to update thehildren Hashtable with
the newSubMachinenstance. However, this limits the possibility of replagfBubMachineb-
jects which are part of deeper nestabMachiner CompositeStatstructures. As thehildren
Hashtable has no knowledge of these substructures, thiklwequire a different approach all
together. The code for this, and the above steps, is showisiimd, 6.2.

6.6 Run-time event acceptor implementation
Implementation of the run-timevent acceptors based on solutions proposed in Chapter 5.

Smaller changes have been done in the NorARC frameworkshbutverall operation of the
event acceptor is as described in this section.

52



Listing 6.2: Replacing a SubMachine.

/!l remove instance variables
curfsm.removeStateProperties (updateCsS);

/I set enclosing environment
subMachine.enclosingState this;

/l update the references
this.children .remove (subMachineStateName) ;
this.children.put(subMachineStateName , subMachine);

6.6.1 Class overview

Figure 6.11 shows the event acceptor classes with an exfdbe attributes and operations.
As seen in the figure, the event acceptor is stored as part Atems ActorContext. An Actor

can have multiple defined ports, and this is stored in a Hakhta the ActorContext. OnPort
instance contains exactly of@rtSMinstance. The PortSM class represents the protocol state
machine, and is responsible for allowing or disallowing sagges. The Port class represents the
port construct. The Port implements the ActorFrame prdfoootes and sends of signals and
executes the protocol state machRetSM

cd Event acceptor in ActorContext /

RoleCS

Port (from AgentFrame)

name : Strin

associatedRoles : Hashtable

instanceData : Hashtable

inRole : ActorAddress

PortSM

outRole : ActorAddress
ActorContext 1 .
@ ——— + legalMessage(ActorMsg) @ ——| * serialize()
(from EJBActorFrame) *{hash} | + illegalMessage(ActorMsg) + deS_enahzﬁbyteD)
+ sendMessage(ActorMsg) + serialize() : byte]]

+ exec(ActorMsg, StateMachine)
+ isFrominnerActor(ActorMsg) : boolean
+ isFromOuterActor(ActorMsg) : boolean

+ execPortTrans(ActorMsg) ?
*

State
(from EJBFrame)

Figure 6.11: The event acceptor classes Port and PortSMtor@ontext.

6.6.2 Port addressing implementation

Addressing of Port instances is done according to the apprpeoposed in Section 5.3.1. As
EJBFrame already implements most of this scheme, it was tttaaaed to add support for the
Port addressing. This was done by adding the fieldrPortto theActorAddresglass as shown

53



ActorAddress

- actorID : String
- actorType : String
- actorPort : String

+ boolean islnnerActorAddress(ActorAddress)

Figure 6.12: Modified ActorAddress class.

in Figure 6.12.

All utility operations specified by this class was updatethwie additional information odc-
torPort. This approach does not change the default ActorFrame etehaddressing StateMa-
chines. In addition, a new utility operatiois)nnerActor was added to check if a one ActorAd-
dress specifies an Actor which is an inner part of anotherrActo

6.6.3 Portimplementation

The Port class implements the necessary behavior and piegoas described in Section 5.3. The
class is shown in Figure 6.11.

The legalMessag®peration routes messages to the correct sender. Thistiopeuaes the al-
gorithm as proposed in Section 5.3.3. TiHegalMessageoperation is used to handle illegal
messages. Currently this implementation hasaction and is only tracing the errors which
occur. However, countermeasures for failing Actors as @sed in Section 5.7 could be imple-
mented here. Thexecmethod executes the event acceptor. This operation isidadith upon
reception and sending of messages. &kecPortTran®peration implements the ActorFrame
protocol which enables configuring tieRole and outRoleconnectors of the Port at creation
time. The two operationsFromlInnerActorand isFromOuterActorare utility methods which
makes it possible to decide the direction of a message.

6.6.4 PortSM implementation

The PortSM class implements the protocol state machine jsaresponsible for accepting or
rejecting the signals sent to the port. The class extendBRdheCSclass from AgentFrame, and
thus has much of the structure needed to create the protatelnsachine. The exception is that
the arguments used in the operation implementations ac&&pt objects instead of StateMa-
chine objects.

The PortSM class should thus be used like any other Comptaiee8lass from EJBFrame,
but does not use theendMessageperation to send ActorMsg’s. AlthougiendMessage/as
implemented, it is tagged with a deprecation warning sueth developers are aware that the
use of it should be limited. Propagating messages is instead by calling the Port operations

54



illegalMessager illegalMessage- according to the legality of the message which was received
or sent.

As the PortSM class gets called with both messages sent aaned, it should thus take di-
rection into consideration when asserting legality of tressage. Such a check can be done by
calling theisFromInnerActorandisFromOuterActoroperations of Port.

6.6.5 Sending and replying to messages

Section 5.3.3 showed how signals shall be replied to. Tharighgn which does the actual rout-
ing and delivery of the messages are implemented by the ipetagalMessagen the Port
class. However, additional methods are necessary to beabidiver the message to the Port.
The ActorSMclass already implements this througlsendMessageperation which takes the
ActorMsg and a port name as parameters.

ActorMsg

replyStack : Vector

+ remoteLastFromReplyStack() : void
+ firstElementFromReplyStack() : ActorAddress
+ lastElementFromReplyStack() : ActorAddress

Figure 6.13: Modified ActorMsg class.

The existingsendMessageethod was thus updated to cakecof the port name described
by the parameter. Furthermore, a new operasendMessageReplyas added. This operation
takes a new ActorMsg and the ActorMsg which this messagerieply to as parameters. The
method copies the reply stack from the request message teflyemessage, updates the sender
and receiver roles of the message and hence sends the massagenal. The modified Ac-
torMsg class with its neweplyStackis shown in Figure 6.13. The Java implementation of the
ActorSM operationsendMessagandsendMessageReply/shown in Listing 6.3.

6.6.6 Message reception

Figure 6.14 shows an overview of what happens upon messegjeti@n by an Actor. The figure
shown is simplified to increase readability. The main ddfeze between the previous behavior
and the inclusion of ports, is the addition of the metsbduldProcessMessage

The shouldProcessMessagmethod is declared abstract in the StateMachine class,samat i
plemented inActorSM The method checks if the attribudetorPortis set in its ActorMsg pa-
rameter. If this attribute is set and a Port with this nametexin the Hashtable of the Actors
ActorContext, the Port is executed and the method returss.fddtherwise the method returns
true, and the processing continues with execution of the stachine.

95



Listing 6.3: Java code for ActorSM operatiosesndMessagandsendMessageReply

public void sendMessage (ActorMsg am, String portNamé¢)
if (context.ports !=null & context.ports.containsKey (portName)|]
Port port = (Port)context. ports.get(portName);
am.setSenderRole (getMyActorAddress () );
am.addToReplyStack (getMyActorAddress ());
port.exec(am, this);

}

public void sendMessageReply(ActorMsg replyMsg, ActorMsg requesgis{
Vector replyStack = requestMsg.getReplyStack () ;
if (replyStack ==null) {

return ;
}
replyMsg.setReplyStack(requestMsg.getReplyStack());
ActorAddress rcvRole = requestMsg.getLastElementFromR&tack () ;

if (rcvRole == null) {

return ;
}
replyMsg.setSenderRole (getMyActorAddress () ) ;
replyMsg.setReceiverRole (rcvRole);
sendMessage (replyMsg);

56



sd Message reception J

‘ :JMS

‘ : ActorSM ‘ ‘ : ActorHome ‘ ‘ : Actor

‘ : ActorCS ‘ ‘ : Port ‘

onMessage(Message)

MessageAck

——
processMessage(sig)
-

findByPrimaryKey(myActorld, currentState)

getStateData()

A

StateData

1
shouldProcessMessage(sig)
l————————

alt [sig.receiverRole.actorPort in context.ports]

ExecutePortTransition

ref

ref ExecuteTransition

StoreData(StateData)

A

StateData

Figure 6.14: Sequence diagram for message reception (8edpl

As seen in Figure 6.14, state data is extracted and storedtleagh the state machine is not
executed. This is done because the Port objects are stoqeartasf this state data. This has
significant computational overhead when done on this platf@and steps should be taken to
change this behavior for later implementations.

Figure 6.15 shows how the event acceptor is executed. Tihergva possible branches of ex-
ecution for the event acceptor. Framework messages atedrepecially, as these are used to
implement the ActorFrame protocol for the ports. This impéatation is stateless, which is not
an optimal solution. The other possibility is to execute fhetocol state machine. This is done
by first finding the state data associated with the sendereofrissage, as described in Section
5.5. The PortSM instance is fed with the state data assdcveté the sender and the PortSM
execution is performed. After the execution is performbd,updated state data is stored.

Figure 6.16 shows the possible outcomes of the event agcexgoution. In accordance with
Section 5.4, there are two possible outcomes of such execdteither the message is regarded
as legal or illegal. Furthermore, the protocol state maghiortSM, is allowed to change state
when it is executed.

57



sd ExecutePortTransition J

‘ : ActorSM

—
T

exec(sig, this) : |

alt [sig.isFrameWorkMsg]

1
: execPortTransition(sig)

findStateData(sig.getFirstFromReplyStack())
-

1
i
: deSerialize(data)
I
1

LY

ref PortTask

! serialize()

Y

byte[] data

Figure 6.15: Sequence diagram for event acceptor execution

portName Unique name of the Port.

portType Class name implementing the PortSM.
portDirection | Can restrict the directionality of the Port.
requestedRole Requests connector to this ActorAddress.
inquiredRole | InquiresActorAddresgor therequestedRole

Table 6.2:PortSpeattribute description.

6.6.7 Port description implementation

To be able to describe the ports and connectors between getstructure of actor descriptor
XML-file was changed. This was done by adding additional fietdthe descriptor which is read
into the clas$ortSpeaupon initialization of an Actor.

The modifiedPortSpecclass is as shown in Figure 6.17. To support the new Actoréskir
scheme described above, the actor descriptor reader mbe#sothe added support of reading
port names from theequestedandinquiredroles. A description of the attributes BbrtSpeas
shown in Table 6.2.

6.6.8 Port and connector creation implementation

To be able to create Ports and connectors for an Actor part imittalization, changes had to be
done to the existing ActorFrame protocols RoleCreate and Rqalef&t. This is done by extend-
ing the existing RoleRequest ActorMsg with the possibilitydescribing aractorPort Figure
6.18 shows a somewhat simplified sequence diagram whiclig¢kteinRoleandoutRolecon-
nectors between two Ports.

The sequence as shown in Figure 6.18 is initiated by the rdetteatePortsimplemented in

58



sd PortTask J

‘ : ActorSM ‘

: Port : PortSM
T

execTrans(sig, state, this) |

alt

legalMessage(sig)

I
I -
1
1

sendMessage(sig) i !

[iIIegaIM'essage]
1

: illegalMessage(sig, strReason)

[
1
I

opt ) performExit()
> nextState(state)

sameState() !

opt )

Figure 6.16: PortTask — Execution of a protocol state macirihe event acceptor.

PortSpec

- portName : String

- portType : String

- portDirection : String

- requestedRole : ActorAddress
- inquiredRole : ActorAddress

Figure 6.17: Modified PortSpec class.

ActorSM This method is responsible for creating all the Port instaras defined by its actor de-
scriptor. For each of the Port instances created, a RoleQresgsage is sent to the Port with the
PortSpec as argument. This PortSpec defines the conneist&attt should try to set up — if any.
When the port receives the RoleCreate, it requests the roldiasdi®y sending a RoleRequest
message. This protocol pattern is equivalent to the RoleR¢gadtern in ActorFrame, with the
addition that Ports may be addressed.

When a connector has been confirmed by a RoleConfirm messageatthesymchronization
mechanism is started, as described in Section 5.3.4. TBisown by the sequence diagram in
Figure 6.19. The PathRequest protocol works by sending thHeRRguest message when the
outRoleis set in the Port. This message is propagated byeh@Messagen the Port class.
Upon reception of a PathRequest, the Port cadldAssociatedRoles his call creates new in-
stance and state data for this sender, and enables the evepta to keep unique state data for
each potential sender.

PathRequestAck is sent back to the originator if the receifea PathRequest message is a

behavior port. Upon reception of a PathRequestAck, the Rartdr sends a RoleCreateAck to
the Actor. When the Actor has received RoleCreateAck fromsa#ipiecified ports, the Actor can

59



sd PortCreate J

T
loop J [morePortsToCreate]
| sSscreate>> . >{ rr : Port requestedPort : Port

RoleCreate(PortSpec)

requestedActor : ActorCS ‘

- ActorCS

RoleRequest

alt [hasPort]

RolePlay

RoleConfirm

)
setinOutRole(RoleConfirm.senderRole)

ref

PathCreate

RoleCreateAck

t [allPortsAcked]

al

idle

RoleDenied(REASONCODE)

RoleCreateNack

Figure 6.18: Setting up addresses between two ports.

start sending messages as normal.

6.7 Summary

This chapter presented the most important implementataild on how the NorARC frame-
works EJBActorFrame and EJBFrame were modified to suppomtedyndownloaded and run-
time replaceable submachines. The chapter also shows heovwwtihtimeevent acceptqoras
described in Chapter 5, was implemented in the NorARC framiesvor

Summarized, the changes done to the frameworks are as ifiofow
e SubMachine construct added to EJBFrame.

e New Actor behavior which supports remotely downloadabbram-time replaceable Sub-
Machines.

60



sd PathCreate

: Port requestedPort : Port

) [isSet(outRole)]

PathRequest

.
addAssociatedRole(PathRequest.senderRole)
lg——

PathRequest

[isBehavior]
PathRequestAck

alt
loop [unsentPathRequests]
alt

It
a add.unsentPathRequest()
|———

D

1
galMessage(PathRequest)
e

Figure 6.19: PathRequest sequence for synchronizationnofextors.

e Updated the ActorAddress addressing scheme to includs.port

e New Port construct for EJBActorFrame.
e Protocol state machine which enables the run-time eveeiphoc

In the next chapter | will revisit the case telecom serviaerfrChapter 4. The service is imple-
mented to demonstrate the usage and usefulness of the ndddafireeworks.

61



Chapter 7

Implementation of a service using remotely
downloaded features

7.1 Introduction

In order to demonstrate how the proposed modifications t&ti&Frame and EJBActorFrame
works, and to show a service which can replace submachinesmdime, | implemented the
phone book serviggreviously introduced in Section 4.2. Furthermore, thwise utilizes the
event acceptoto protect some of the actors involved in the service.

The descriptions made in this chapter does not reflect adlildedf implementing services us-
ing the NorARC frameworks. | will hence focus on the parts Wrace relevant for the proposed
changes —i.e., run-time replacement of submachines anof tiseevent acceptor

7.2 The phone book service

The phone book services a simplified service which enables users of the serviceetéopmn
phone book lookups based on search keywords. The servidermaptation shown in this chap-
ter does not fully implement such searching, and the foctrauiis the messages sent between the
actors. ServiceFrame has support for the Parlay-X API'sémding SMS and setting up calls
through the use of predefined actors. However, the implemtientshown in this chapter does
not use these actors, and instead uses the simple &B&dgendCallEdge This was done

to reduce the implementation work.

The behavior of th&honeBookServicactor and its environment is shown in the sequence dia-
gram in Figure 7.1. The defauthoneBookServidaehavior is to make it possible farserTer-
minal to choose the behavior of the actor through run-time submadakeplacement. As shown

in the figure, thé>honeBookServiagefines two different interaction featur&earchFeatureCall
andSearchFeatureSm3 he difference between these two interactions is thaStachFeature-
Call sets up a phone call between the phone of the phone book loekuester and the result

62



sd Phone book service J

: UserTerminal : PhoneBookService : SMSEdge : CallEdge : BillingService

ChooseFeatureMsg

1
SubMachineUpdateMsg
=

alt
SubMachineUpdateAckMsg
=

ChooseFeatureAckMsg

alt [searchFeature instanceof SearchFeatureSmsSM]
1

ref SearchFeatureSms

1
[searchFeature instanceof SearchFeatureCallSM]
1

ref /" SearchFeatureCall

|
SubMachineUpdateNackMsg
=—

ChooseFeatureNackMsg

Figure 7.1: Sequence diagram for phone book service.

of the lookup, while th&SearchFeatureSnsends an SMS with the result to the mobile phone of
the lookup requester. The interactions for 8earchFeatureCatindSearchFeatureSnisatures
are shown in the sequence diagram in Figure 7.2.

7.3 Design of phone book service

Figure 7.3 shows how the phone book service is designed.hAlirtvolved actors are Actor-
Frame Actors, and thus has state machines specifying teaavior and amctorAddresdor
their state machine. The new addition as shown in the figuteusthe named ports.

The root actor of the service is thctorDomain— the actor which encloses all the other ac-
tors involved. | will in the remainder of the chapter show tiwe actorsPhoneBookServicand
SMSEdgeas examples on how to implement such a service.

7.4 Phone book service implementation

The phone book service is implemented by extending theedadsfined in the EJBActorFrame
Java package. Figure 7.4 shows the classes which is mamatlified for the actoPhone-
BookServicén gray. All other classes are extended in accordance toiB&&orFrame profile,
and is thus automatically generated using code-generalibe PhoneBookServicactor does

63



sd SearchFeatureSms J sd SearchFeatureCall J
‘ : UserTerminal ‘ ‘ : PhoneBookService ‘ ‘ : SMSEdge ‘ ‘ : BillingService ‘ ‘ : UserTerminal ‘ ‘ : PhoneBookService ‘ ‘ : CallEdge ‘ ‘ : BillingService
T T
PhoneBookLookupMsg PhoneBookLookupMsg
PhoneBookResultsMsg PhoneBookResultsMsg
I I 1 1 1 1
| ] | 1 1 ] I 1
} PhoneBookChoiceMsg : } : : PhoneBookChoiceMsg : : :
| 1 1 1
| : SendSMSMsg | i i : CallSetupMsg i i
' :
alt / : [smsSent] alt ) : [callSetup]
SendSMSAckMsg CallSetupAckMsg
BillingMsg BillingMsg
1 \ . i i i
} SendSMSNackMsg ! : : CallSetupNackMsg ! :
= ==
| | | i i i
| | ] T T T T
| | 1 1 1 1 1
! ! 1 1 1 1

Figure 7.2: Sequence diagram feearchFeatureSnamdSearchFeatureCall

cd PhoneBookService J

<<actor>>
ActorDomain

<<actor>>
SMSEdge
<<actor>> —

PhoneBookService billingPort <<actor>>
<<actor>> g sactor>
UserTerminal j/Cj smsOut smsPort illingService

phoneln callout <<actor>> / .
CallEdge billing
billingPort

callPort

Figure 7.3: Class diagram of the phone book service.

not define any protocols for its ports, and thus uses the HeRauntSM class attached to the
ports. This allows all messages by default. Furthermom atttor allows replacement of the
two SubMachinesSearchFeatureCallSMind SearchFeatureSmsSMs such, the behavior of

PhoneBookServigdPhoneBookServiceC#us extends th®ynamicActorCXlass instead of

the defaultActorCSclass.

Figure 7.5 shows the manually implemented classes cBM8Edgector. This actor provides
a service which could potentially accesses the Parlay-X $8E and should as such be pro-
tected against other failing actors. This is done by impleting a protocol state machine for the
port which other actor clients access. As seen in Figurehisid done by creating a new class
SMSEdgePortSMhich extends the defauRortSMclass of EJBActorFrame.

| will in the next sections show how these two actors are mddpem UML, and how the
class structure from Figure 7.3 is achieved.

64



cd PhoneBookService J

State DynamicActorCS ActorSM ~ ActorContext
(from EJBFrame) (from EJBActorFrame) (from EJBActorFrame) (from EJBActorFrame)
/s SearchFeatureCallSM Z> 4 Q
SubMachine PhoneBookServiceCS PhoneBookServiceSM Port
(from EJBFrame) (from EJBActorFrame)
"\ SearchFeatureSmsSM ‘

PortSM
(from EJBActorFrame)

Figure 7.4: Class diagram for manually modified classeRrmineBookService

cd SMSEdge /

DynamicActorCS ActorSM ActorContext
(from EJBActorFrame) (from EJBActorFrame) (from EJBActorFrame)
SMSEdgeServiceCS  |—>| SMSEdgeSM Port

9 9 (from EJBActorFrame)
State PortSM

SMSEdgePortSM —

(from EJBFrame) (from EJBActorFrame)

Figure 7.5: Class diagram for manually modified classeéSMSEdge

7.4.1 Implementation of run-time replaceable submachines

The mapping from UML to Java of the state machifteneBookServiceGSshown Figure 7.6.
The figure shows how the SubMachisearchFeatures targeted for replacement by sending a
SubMachineUpdateMdg itself. The super implementatidynamicActorCSvould in this case
try to load theSearchFeatureCallSMubmachine and bind this to tsearchFeatursubmachine
state.

Implementing run-time replaceable submachines are divilsk® two steps:
e Implement the enclosing state machine.

¢ Implement the submachine feature.

Implementation of the enclosing state machine

As seen in this exampl&honeBookServiceG3iooses th&ubMachingo load based on a pa-
rameter in the&ChooseFeatureMsdrhis is not the only way to do this, as one could put the logic
of selecting the SubMachine to be loaded in theerTerminalactor instead. Such an approach
would be more flexible, as a user of the service thus couldsdhadeature based upon a lookup
in some kind of feature database. The implementation she@&m i thus not very dynamic, as
PhoneBookServiceQ®eds to have information about all the different featuresuld load at

65



design time.

N N public class PhoneBookServi ceCS extends Dynam cActorCS {
sm PhoneBookServiceCS extends DynamicActorCS

publ i ¢ SubMachi ne searchFeature = new Sear chFeat ureSnsSM "sear chFeature", this);

“ 4pub| ic State waitUpdate = new State("waitUpdate", this);
/ public void execTrans(ActorMsg sig, State st, StateMchine curfsm {

/ PhoneBookSer vi ceSM asm = ( PhoneBookSer vi ceSM cur f sm
ChooseFeatureMsg / super . execTrans(si g, st,curfsm;
/ send SubMachineUpdateMsg if (st ==idle) {
/ if (sig instanceof ChooseFeatureMsg) {
updat eOri gi nator = sig;
/ String feature = ((ChooseFeatureMsg)sig).getFeature();
/ N if (feature.tolLowerCase().equals("call")) {
. / perfornExit(curfsm;
S Sibhech etpat e crsg = new
SubMachi neUpdat eMsg( " sear chFeature", ""
"act or. phonebookservi ce. SearchFeatureCal | SM', "", 2);
asm sendMessage(cnsg, curfsm get M/Act or Address());

next St at e(wai t Updat e, curfsm;
return;

}

} else if (st == waitUpdate) {
if (sig instanceof SubMachi neUpdat eAckMsg) {
/1l enter through the default entry
perfornExit(curfsm;
asm sendMessageRepl y(new ChooseFeat ur eAckMsg(), updateOriginator);
next St at e(sear chFeature, curfsm;
return;

}

ublic void outof | nner Conposi t eSt at e( ConpositeState cs,int exNo, StateMachi ne curfsm{

searchFeature :
SubMachine

if (exNo == 0) {
next State(idle, curfsm;
return;
}
}

Figure 7.6: Implementation of behavior — cldsoneBookServiceCS

Furthermore, Figure 7.6 shows how the submachine stedechFeaturas entered and exited
through the defined entry and exit points by using ofritagtStat@andoutofinnerCompositeState
operations respectively. The implementation shown hees dot specify an entry point, and it
should thus be entered through the default entry point. @bisvalent to theCompositeState
usage in the original EJBActorFrame.

Implementation of the feature submachine

Figure 7.7 shows the mapping from UML to Java of the featubermachineéSearchFeatureSmsSM
This class extends the EJBFrame claabMachingand it is thus possible to replace this at run-
time. BothSearchFeatureSmsS&hd SearchFeatureCallSMre mapped using this approach,
and contains the same entry and exit points. As shown in thusd]j the default entry point and
the numeric entry point0” enters the same stat@aitForRequest

Furthermore, the figure shows how messages are repliedrig ti@sendMessageRepbpera-

tion and how messages are sent through a specific named pwrtliesendMessageperation.

It also shows how the submachine is exited using the numeitip@int "0” when the SMS mes-
sage has been acknowledged.

66



cd SearchFeatureSmsSM) public class SearchFeat ureSmsSM ext ends SubMachi ne {

),/ specific entry
/public void enterState(int enterNo, StateMachine curfsm {

SubMachine /’ if (enterNo == 0) {
(from EJBFrame) K wai t For Request . enter State(curfsm;

/
’ } }

’

4 /] default entry

,’ public void enterState(StateMachine curfsnm {
SearchFeatureSmsSM enterState(0, curfsm;

}

public State waitFor Request = new State("waitForRequest", this);
public State waitForChoi ce = new State("waitForChoice", this);
public State waitFor SMSAck = new St at e("wait For SMSAck", this);

sm SearchFeatureSmsSM )

waitForRequest

PhoneBookLookupMsg
/ send reply PhoneResultsMsg

public static String SMSPORT = "smsQut";

public void execTrans(ActorMg sig, State st, StateMachine curfsm {
Act or SM asm = (Actor SM cur fsm
if (st == waitForRequest) {
if (sig instanceof PhoneBookLookupMsg) {
perfornmExit(curfsm;
P asm sendMessageRepl y(new PhoneBookResul t sMsg(), si g);
next St at e(wai t For Choi ce, curfsm;
return;

}
. B } else if (st == waitForChoice) {
waitForChoice if (sig instanceof PhoneBookChoi ceMsg) {
perfornExit(curfsm;

/ asm sendMessage( new SendSMsMsg(), SMSPORT);

PhoneBookChoiceMsg § next St at e(wai t For SMSAck, curfsm;

/ send SendSMSMsg to SMSPORT~ return;
}
} else if (st == waitFor SM5Ack) {
. if (sig instanceof SendSMSAckMsg) {
waitForSMSAck / perfornExit(curfsm;
d exitState(0, curfsm;

/ return;

SendSMSAckMsg }

SendSMSNackMsg }
}
}

Figure 7.7: Actor descriptor with part and connector magor ActorDomain(partial).

The two replaceable submachine candidates in this exaropietchave any instance data. How-
ever, as described earlier this might be needed by a subnsgchmplementing this for &ub-
Machinewould amount to overriding thmitSubMachinelnstanceperation for instantiation of
data,getStatePropertieto resurrect data argtoreStatePropertiet® store data.

7.4.2 Implementation of the event acceptor

To verify the behavior oPhoneBookServiceOSis decided that event acceptor should be im-
plemented on all the ports which communicates withRPheneBookServicactor. This means
the portssmsPort callPort and phonePortfrom Figure 7.3. Additionally, one could also add
extra protection by implementing the event acceptor in thiesemsOut callOut andphoneln

of PhoneBookServiceHowever, | will in this example show how to enable the everdeptor
between thé>honeBookServicend SMSEdgectors. Implementation of the event acceptor is
done in two stages:

¢ Implement the protocol state machine.

67



e Specify the event acceptor with the actor-descriptors.

Implementation of the protocol state machine

As shown in Figure 7.5 we have already identified that$hMSEdgeactor should protect one
port with a protocol state machin8MSEdgePortSMIhe message interleaving which should
be allowed by usinggmsPortthus needs to be established and implemented in the the class
SMSEdgePortSM

cd SMSEdgePortSM J public class SMSEdgePort SM ext ends Port SM {

PortSM public State waitSVSAck = new State("wai t SMSAck", this);
(from EJBActorFrame)
public void execTrans(ActorMsg sig, State st, Port curfsm {
Z> if (st ==idle) {

if (sig instanceof SendSMBMsg) {

SMSEdgePortSM per for mExi t (curfsm;

curfsm | egal Message(sig);

next St at e(wai t SMSAck, curfsm;
return;

SMSEdgePortSM {protocol} )

}
} else if (st == waitSMSAck) {

if (sig instanceof SendSMSAckMsg) {
perfornExit(curfsn;
curfsm | egal Message(sig);
next State(idl e, curfsm;
return;

} else if (sig instanceof SendSMSNackMsg) {
perfornmExit(curfsm;

curfsm | egal Message(si g);
next State(idl e, curfsm;
SendSmsMsg SendSMSNackMsg : return;
} else {
/1 all other nmessages are disallowed
waitSMSAck curfsmillegal Message(sig, "Not allowed in this state: " + st);
sanmeSt ate(curfsm;
return;
sendSMSAckMsg } }

Figure 7.8: Protocol state machine mapping3diSEdgePortSM

The protocol state machine femsPortis shown in Figure 7.8. Furthermore, it shows how
the protocol state machine is mapped UML to the Java implémtien. Mapping follows the
normal pattern foCompositeStaten EJBFrame, with the exception that it does not have any ef-
fects. Instead messages are allowed or disallowed by thef lesggalMessagandillegalMessage
operations. In Figure 7.8 the implementation shows the kgguences of messages and that if
a message does not fulfill these conditions, it is regarddétegal by the use oillegalMessage

A possible improvement to tHeMSEdgePortSMould be to evaluate the frequency of messages
received — i.e., to have a table with timestamps for the ngesseeceived. This would prevent
clients of the service to send too many requests within atgyeriod of time. Although the
sequences are valid, its frequency may be considered sti@almplementing this for classes

68



extendingPortSMwould amount to overriding thdeSerializeandserializemethods for storing
and resurrecting such data.

Specifying the event acceptor with actor-descriptors

The second part of implementing the event acceptor is tafypghich ports should be created
with an actor, and what protocol state machine should be wgbd a port. Such specification
in EJBActorFrame is done with the useaiftor-descriptors- XML-files which specifies an ac-
tors with inner parts and ports.

PhoneBookService el .
<act ort ype>PhoneBookSer vi ce</ act or t ype>
smsOut o
EF\ <actor port >
7 T <Messmsaut <f nane>
e <di recti on>out </ di recti on>
A - .
. |_pp-<type>se. ericsson. eto. norarc. ej bactorfrane. Port S\/ t ype>
PortSM —"] </actorport>
</ act or >

PhoneBookService-actor.xml
Figure 7.9: Actor descriptor and port mapping RitoneBookService
The actorPhoneBookServices shown in Figure 7.9. As shown in the mapping between UML

and XML, the portsmsOuis specified by thactorporttag. The port is given theame smsOut
direction outand uses the protocol state machiyye PortSM

<act or>
<act ort ype>SMSEdge</ act ort ype>

smsPort e
}P\%Ort >
” <

e >smsPor t </ nanme>

SMSEdge

//'/ <di recti on>i n</di recti on>
Vi p-<type>act or . snsedge. SMSEdgePor t SM</ t ype>
SMSEdgePortSM —"] </actorport>
</ act or >

SMSEdge-actor.xml

Figure 7.10: Actor descriptor and port mapping 8MSEdge

The actorSMSEdgas specified in the same manner. The main differences arethbaport
specifies a port withdirection in, and furthermore should use the protocol state mactype
SMSEdgePortSMrhe other ports specified by the act@8SEdgendPhoneBookServicare
mapped to the actor-descriptors accordingly.

When all actors are described in their respective actorrigscs, the parts involved in the ser-
vice is described in the actor-descriptor of fketorDomain This is the root actor which contains

69



<act or > )

<act ort ype>Act or Donai n</ act ort ype> Actorbomain

<part> phoneBookService : smsEdge :
<parttype>SMSEdge</ parttype> PhoneBookService SMSEdge
<i nst ances>snmsEdge</ i nst ances g
______________________ \

</ part > — ( smsOut smsPort |

<part> / ____-%_ _g-____l
<parttype>PhoneBookServi ce</partt -I

P A Y T R g

A Y
N
°
o
=
—
A\
rd

<name>snsQut </ name>

<r equest edr ol e>
<portid>snsPort</portid>
<act ori d>snsEdge</ act ori d>

- —————
- -

<act or t ype>SMsEdge</ act or t ype>
</ request edr ol e> I} Specifies connector from
Sslport> o ____ - smsOut to smsPort
</ part>
</ act or >

ActorDomain-actor.xml

Figure 7.11: Actor descriptor with part and connector magor ActorDomain(partial).

all the parts of the phone book service.

Figure 7.11 shows a partial actor descriptoAcforDomain and how the inner parts are mapped
from UML to XML. Furthermore, the figure shows how the conmedrom the portsmsOut

of the partphoneBookServict the portsmsPortof the partsmsEdgeas specified. Upon in-
stantiation of the pagphoneBookServidhis shall thus invoke the RoleCreate and RoleRequest
protocols for the porsmsOut When these protocols have finished, the#Roleof smsOuthus
specifies a connector smsPort-i.e., it enables thphoneBookServigeart to send messages to
thesmsEdgeart.

7.5 Summary

The modified EJBActorFrame and EJBFrame Java packages hemarbplemented as part of
this thesis work. A trace of the run of the example servicaujgpsied in the appendix of this
report. All state machines were in this example run simdlagé@d was thus not tested using an
application server such as JBoss [14].

The implementation of this example has shown that the pexposodification of EJBFrame
and EJBActorFrame can be used to implement services whécalde to remotely download an
replace submachines features at run-time. It has also beams$ow to implement theun-time
event acceptor by extending tRertSMclass from EJBActorFrame and specifying the structure
in the actor-descriptors. Furthermore, it has been shoatrthie proposed modifications closely
resembles the existing design and development patterndBAd&orFrame and EJBFrame.

70



Chapter 8

Discussion and conclusion

8.1 Introduction

This thesis started off by giving brief introductions to tleéevant concepts of UML 2.0 and the
NorARC service creation architectures. | then introducediisues and concepts behind us-
ing remotely downloaded and replaceable submachines athadnfer customizing and adding
value to services after deployment. This raised the questizether such change of behavior
could be verified during run-time. | thus proposed a solutisimg the run-time event acceptor —
based on the UML 2.0 concepts of ports and protocol state imeshUsing these approaches |
hence implemented this in the NorARC frameworks, and impteatea service demonstrating
the solution.

One of the main purposes of this project was to get a betteerstahding on how to remotely
download and replace submachines during run-time, andwsbsties must be considered when
allowing this. This discussion is structured as the mainspai this report, and the issues dis-
cussed are as follows:

¢ Allowing remotely downloaded telecom features.

e Using ports and protocol state machines as run-time eveepéaars.

¢ Run-time replacement of submachines in EJBActorFrame aB&i&aine.

¢ Implementation of a service using remotely downloaded.fest

e Usefulness of remotely downloading and replacing subnmashat run-time.

This chapter also proposes additional research topicsad®e8.7, before the main conclusion
is drawn in Section 8.8.

71



8.2 Allowing remotely downloaded telecom features

In Section 1.5 | raised the following questioiWhich challenges needs to be addressed when
designing replaceable submachines?o answer this question | will briefly sum up the chal-
lenges found in Chapter 4.

The effects of allowing replacement of remotely downloatiddcom features is hard to prop-
erly quantify. The submachine is in UML 2.0 based on reagpniircomponente-use not as a
method of adapting the behavior of a state machine at rue-t&s such, some challenges were
identified in Chapter 4:

Instance variables must be handled carefully.

Exit and entry points is not enough to ensure behavioral atifipty.

Timers started by a submachine should be stopped upon exit.

It may be beneficial to allow dynamic creation of ports.

The external visible properties may be decomposed andtadgbrough the use of ports
and protocol state machines.

Most notable of these issues is the interdependency whiish legtween a submachine an its
encapsulating state machine and their instance varialflesther the submachine or the state
machine makes the wrong assumptions upon the state of thaesy lead to erroneous behav-
ior. Verifying this instance data relationship is comptex$, and a solution to solve this problem
was not found.

Furthermore, it was stated that a newly introduced submaahight introduce deadlocks, live-
locks or non-deterministic behavior to the state machingtloer adversary state machines in the
system. Such behavioral anomalousness may be formalliyegtat design time of the compo-
nent usingprojectiong[7], but this approach was not further explored in this thesi

To combatant the above described problems, | proposeeviiat-acceptoas a mechanism for
ensuring run-time behavior conformity. This is done by dBposing the external relevant prop-
erties of the structured part by using ports and protocaé steachines. However, this method
can not detect all errors, as the internal properties ofttite snachine is invisible to the protocol
state machine.

When allowing dynamic behavior adaptation of structuredsp@rwas identified that one might
need to create new ports to create new features. This is lowteal by UML 2.0, and | thus
suggested that this restriction should be further invagtid, as it puts a serious constraint on the
possibilities of adapting behavior at run-time.

72



8.3 Using ports and protocol state machines as run-time event
acceptors

In Chapter 5 | presented an approach to using ports and ptatate machines as a solution
to ensure behavioral conformity at run-time. This solutiepresents the main contribution of
this thesis. The approach taken in the chapter was basedearchitectural shortcomings of
EJBActorFrame and EJBFrame to enable this.

The goal of the event acceptor was to capture the messageavieag between two ports, and
thus to assert whether two adversary state machines adbexespecified protocol at run-time.
Some of the advantages of using the event acceptor are assoll

e Capture erroneous behaviors as an effect of dynamic featiagation.
e Proper run-time protection of critical system components.
e Ease debugging of architectural and protocol flaws.

The UML 2.0 protocol state machine construct only allowsedssn of incoming events, the
proposed event acceptor thus violates its formal semantibe implications of this violation
was not further explored in this thesis. However, the eveoéptor has shown that having such
a mechanism in UML 2.0 would be of great value.

The chosen naming scheme for the connectors between patsheevn to have its limitations.
UML 2.0 specifies that signals received by a port with mudtipélegation connectors attached to
it, should either copy and forward the signaldbthese connectors or chooseeof them. The
proposed naming scheme does not allow seeing the innetwseuaf a structured part. | thus
argued that copying and forwarding signals to all innergaduld lead to unwanted effects. |
therefore chose to only allow one connector in each diraaifdhe port. However, this approach
disallows creation of new inner parts at run-time, as nevispmust be created at the enclosing
structured part. Creating new ports after a part is createdtillowed by UML 2.0. | thus
proposed a new solution using interfaces as qualifiers im&éin@ing scheme, but unfortunately |
did not have enough time for any further investigations asethis approach.

8.4 Run-time replacement of submachines in EJBActorFrame
and EJBFrame

In Section 1.5 | raised the following questiottiow can dynamic submachine components be
realized in the NorARC service creation architecturehis question was answered with the
proposed solutions to EJBFrame and EJBActorFrame in Chaptevi in this section discuss
some of the implementation issues which arose from this.

The newPort class in EJBActorFrame was developed to be able to definécéxpterception

73



points between ActorFrame Actors. This was done by hooking ioperations which receives
and sends messages. To ease the development of theseptitergmints, it was chosen to put
the Port instances in the ActorContext of the Actor. This isangood approach, as this requires
all the persistent state data of an Actor to be resurrectddtmmed even if a message only shall
be forwarded to an inner actor. This implies there is a serpmiformance penalty of the current
Port implementation. A better approach would thus be toHetRort objects be contained in
its own state data environment — such as the current StatéMaonplementation. With such
a solution, only the persistent data of the Port would havgetoesurrected upon reception of a
message.

The current implementation does not enforce the use of the @t class to communicate
with an ActorFrame Actor. With the current performance te&d of using the Ports, this was
deemed unnecessary. However, when this issue is resaamuld be considered that all com-
munication should be conducted by the using the new Pors.clas

As stated in the previous section, the implemented addrg@ssiheme has its limitation in that
it can not create new inner actors, as this would require raws fpo be created in the enclosing
part. It should thus be considered to implement a differeamiing scheme which can specify
interface names which can be added to the Port while runm@ind,thus alleviate the routing
mechanisms.

8.5 Implementation of a service using remotely downloaded
telecom features

By implementing the designed telecom service designed itidde4.2, it has been shown that
run-time replacement of submachines is possible usingrtiygoged modifications to EJBActor-
Frame and EJBFrame. Furthermore, the use of the event aceegg@emonstrated.

The phone book service is a simple service, and does thusefiettrall the modified parts
of the frameworks. It was not properly shown h&artSMclasses could benefit from its having
instance variables. Furthermore, it was not shown hovtiteViachinean encapsulate it's own
instance variables. These concepts were not any furthesrignated because of the limited time
available in this thesis work.

The implementation description shows that the modificatidone to the NorARC frameworks
does not affect the existing design and implementatiorepadtin any major way. Developers
familiar with the existing guidelines should thus be ableedonprehend the newly introduced
patterns for replacing submachines and setting up theimmévent acceptor quite easily.

The phone book service was executed using simulation, asdhues not tested using an ap-
plication server. This implies that neither the modificaido the frameworks nor the phone

74



book service has been thoroughly tested on an applicatioersédowever, considerations have
been taken such that these should work even when the exeditiot simulated.

8.6 Usefulness of remotely downloading and replacing sub-
machines at run-time

In Section 1.5 i raised the following questictin order to customize services, are submachines
viable and useful as components for enabling third-partyise providers to create new features
that may be downloaded at run-time?This is not an easy question to answer, as the useful-
ness and viability of the replaceable submachine compasemdrd to quantify and measure.
However, | will express my subjective conclusions on thidtera First my conclusion of its
viability:

Remotely downloaded and replaceable submachines have been $ be viable

when using a combatant against ill behaving components atiroe, such as the
event acceptor proposed in this thesis. However, furthelyasigof the instance
variable relationship, and security concerns when allowirngvdloading and exe-
cution of code from a remote location, is needed

With regards to the usefulness | draw the following conduosi

The usefulness of the replaceable submachine with regartisatare adaptation

and personalization of services is suggested by the impietien of the phone

book service. Furthermore, | believe run-time replacentrgubmachines to be a
reasonable approach for rapid deployment of new and emegrggmvice features

8.7 Future work

Several issues identified in this thesis work could be suligeduture research efforts:

e The simple state could be viable for replacement with a subma at run-time. This
would involve dynamically adding and removing entry and @xints at run-time. Such
an approach would increase the run-time feature adaptedjoability of the state machine.

e The implications of downloading and executing code fromragt location has not been
investigated further in this thesis. Allowing code to exeowhen its origins is not verified
could have devastating effects. Processes and mecharasmscommodating thisust
be further explored before allowing this ifiae system.

e The naming scheme for ports proposed in this thesis has lesmngo have limitations.
The use of interface names as addressing qualifiers cowe pocstrengthen the scheme,
and should thus be further investigated.

75



e The restriction of UML 2.0 not allowing ports to be createdidg the lifetime of a part
should be further investigated. Allowing ports to be crdat®uld increase a state ma-
chine’s run-time feature adaptation capabilities.

e The currentimplementation for replaciBgibMachin@bjects by updating thehildrenref-
erences oCompositeStatprevents replacement of arbitrary deeply neSatiMachines
A different approach to doing this should be further invgestid.

e EJBActorFrame and EJBFrame enables developers to sendgasdsaother actors by
addressing them directly with the use of ActorAddress, tmagng direct addressing of
adversary state machines. It may be more intuitive and sdéthese methods, and thus
enforce the use of the port mechanisms proposed in thissthesi

76



8.8 Conclusion

In this thesis issues regarding remotely downloaded tetefeatures has been discussed. This
thesis argues for replacing submachines at run-time aslaooh&ir adapting the behavior of ser-
vices. Some design guidelines have been discussed withdeegaallowing such replacement.
Furthermore, the event acceptor has been proposed as amsctiar run-time behavior asser-
tion of components. Following the guidelines, the submagliomponent was implemented in
EJBFrame, and generic behavior for replacing this was im@iged in EJBActorFrame. The
event acceptor was implemented by introducing ports antbpob state machines concepts to
EJBActorFrame. Furthermore, a concrete service exampmeamplemented demonstrating the
proposed modifications to the frameworks.

The main contribution of this thesis was the run-time evaxtieptor. ldeas on how to route,
send and reply to messages was proposed and finally implethelatirthermore, a solution on
how to configure connectors using signaling was proposedmpl@mented. The phone book
service demonstrator suggests that these solutions wdtkame that the introduced concepts
should be comprehendable by designers and developersaamilh the NorARC service cre-
ation architectures.

The main conclusion of this thesis is that run-time replageinof submachines is both useful
and viable. Allowing such replacement to happen enablesopatization of running services
and applications. At the same time services may increaseltimgevity by adding new and
emerging technologies without affecting their availdhiliAlthough this has not been a formal
study, it has been shown to work when there exists mechamiamdetect erroneous behavior —
such as the run-time event acceptor proposed by this thesis.

This study has also shown that the current restriction of UM not allowing to create ports

after a structured part has been created, may be found tobistpractical use. As new features
are introduced at run-time, it is expected that these wédbate time require the use of new ports.
This UML 2.0 restriction thus decreases the feature adaptatpability of the approach taken
in this thesis.

1



Bibliography

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Coad P., Lefebvre E. and De Lucaldva Modeling in Color with UMLPrentice
Hall, 1999 - ISBN 013011510X

Breek, R, Husa, K. E., Melby, GServiceFrame WhitePapeEricsson NorARC,
Draft 22.04.2002.

Husa, Knut Eilif and Melby, GeirActorFrame Architectural Guideericsson No-
rARC, 2003.

Melby, Geir. ActorFrame Developers guide GuidEricsson NorARC, August
2004.

Melby, Geir.Using J2EE Technologies for Implementation of ActorFraraedsi
UML2.0 Models Master Thesis AUC, August 2004.

Grady Booch, Ivar Jacobsen and James Rumbatigh.Unified Modeling Lan-
guage Reference Manual, Second Editidddison-Wesley, 2004 - ISBN 0-321-
24562-8.

Floch j., Breek R.,Using Projections for the Detection of Anamalous Behav-
iors, Proceedings of the 11th SDL Forum, Stuttgart, Germanyitsfuly 2003,
Springer.

Object Management Group, OMGML 2.0 Superstructure Specification, August
2003.0MG Adopted Specification.

Aagesen, F. A, Anatariya, C., Shiaa, M., M., Helvik, B.[Bynamic Configura-
tion of Plug-and-Play System2003.

Mencl, V. Enhancing Component Behavior Specifications with Port Stade M
chines Technical report, Dept. of SW Engineering, Charles Unitgr®rague,
September 2003.

Engelhardtsen, F. BAdapting telecom services on-the-fly using run-time plug-
gable submachingBaper, Agder University College, NTNU, 2005.

78



[12]

[13]

[14]
[15]

[16]
[17]

[18]
[19]
[20]
[21]

Keshav, SAn Engineering Approach to Computer NetworkiAgldison-Wesley,
1997 - ISBN 0201634422.

Haugen @., B. Mgller-PedersefavaFrame - Framework for Java-enabled mod-
eling, in ECSE2000 Stockholm, 2000.

JBOSS; J2EE Application Server; http://jboss.org/

TAPAS; Telematics Architecture for Play-based Ad#pea Systems;
http://tapas.item.ntnu.no/

OMG; Object Management Group; http://www.omg.org/

CERT Advisory TCP SYN Flooding and IP Spoofing Attacks;
http://www.cert.org/advisories/CA-1996-21.html [lastassed: 23.mai 2005]

The PARLAY Groups; http://www.parlay.org/
SDL - Specification and Description Language, CCITT repwndation Z100
MDA - Model Driven Architecture, OMG; http://www.omgrg/mda/

J2EE - Java 2 Platform, Enterprise Edition, Sun;
http://java.sun.com/j2ee/index.jsp

79



Appendix A: CD-ROM

If the report you are reading is a hard copy, there should be 4&ODI supplied in the sleeve.
This contains the code of the modified NorARC frameworks, amd@y of the phone book
service.

80



