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Summary

The telecom and software industries are converging, providing new market and revenue poten-
tials for both industries. Personalization of services andapplications is an emerging trend, and
this thesis suggests using remotely downloaded UML 2.0 submachines components as a candi-
date for enabling this. This thesis thus assess the challenges raised by replacing submachines at
run-time.

This report gives an introduction to the core technologies of interest in this thesis work; UML 2.0
and Ericsson’s service creation architectures. Ericsson’s service creation architecture is a set of
frameworks for development of services and applications with the new hybrid networks created
by the merging of the Internet and the telecom service networks. This architecture is built upon
the UML 2.0 concepts of asynchronous communication throughmessage passing and the use of
Actors.

There are several issues which must be evaluated when allowing remotely downloaded and re-
placeable submachines at run-time. This thesis does not tryto solve all these issues, but tries to
alleviate potential problems by decomposing the externally visible properties of the structured
classifier in which the state machine is deployed. This allows us to assert these properties at
run-time, and the thesis hence introduces a concept called theevent acceptor. This approach is
based on the UML 2.0 concepts of the port and the protocol state machine. Solutions for setting
up connectors between ports, sending and replying to messages and execution of the assertion
mechanism are shown.

The main conclusion of this thesis is that run-time replacement of submachines is both useful
and viable. Allowing such replacement to happen enables personalization of running services
and applications. At the same time services may increase their longevity by adding new and
emerging technologies without affecting their availability. Although this has not been a formal
study, it has been shown to work when there exists mechanismswhich can detect erroneous be-
havior – such as the run-time event acceptor proposed by thisthesis.

The main contribution of this thesis is the run-time event acceptor. Ideas on how to route,
send and reply to messages is proposed and implemented. Furthermore, a solution on how to
configure connectors using signaling is proposed and implemented. The implementation of an
example phone book service suggests that this solution workwell, and that the introduced con-



cepts should be comprehendable by designers and developersfamiliar with the NorARC service
creation architectures.

ii



Preface

This thesis was written as part of the Masters degree in Information and Communication Tech-
nology at Agder University College, Faculty of Engineering and Science located in Grimstad.
The project is related to theTeleservice labin Grimstad andProgram for Advanced Telecom
Services(PATS), and was carried out in the period between January andMay 2005.

I would like to thank my supervisors, Fritjof Boger Engelhardtsen and Geir Melby, for their
invaluable counseling, ideas and support throughout this thesis project.

Grimstad, May 2005

Viggo Fredriksen

iii



Table of Contents

Summary i

Preface iii

Table of Contents iv

List of Figures vii

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 UML 2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Ericsson NorARC’s service creation architectures . . . . . .. . . . . . . . . . . 2
1.4 Thesis definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 3
1.5 Work description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3
1.6 Report outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

2 The Unified Modeling Language 2.0 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5
2.2 Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Structured class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
2.3 Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1 Behavior Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.2 Complex Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4.1 Delegation connector . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7
2.4.2 Assembly connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 State machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
2.5.1 States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5.2 Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5.3 The behavioral state machine . . . . . . . . . . . . . . . . . . . . .. . . 10
2.5.4 The protocol state machine . . . . . . . . . . . . . . . . . . . . . . .. . 10

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

iv



3 Ericsson NorARC’s service creation architectures 12
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 12
3.2 EJBFrame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.1 State machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 EJBActorFrame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15

3.3.1 Actor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.2 The ActorFrame protocol . . . . . . . . . . . . . . . . . . . . . . . . .. 16

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Allowing remotely downloaded telecom features 20
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 20
4.2 An example telecom service – the phone book service . . . . .. . . . . . . . . . 20
4.3 The submachine as a remotely downloaded feature . . . . . . .. . . . . . . . . 22
4.4 Encapsulating the submachine component . . . . . . . . . . . . .. . . . . . . . 23

4.4.1 Instance variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 23
4.4.2 Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4.3 Ports and messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.5 How and when to download and replace a submachine . . . . . . .. . . . . . . 25
4.6 Ensuring behavioral conformity . . . . . . . . . . . . . . . . . . . .. . . . . . 26
4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Using ports and protocol state machines as run-time event acceptors 28
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 28
5.2 Goals of the event acceptor . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 28
5.3 Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.3.1 Connectors and addressing of ports and state machines .. . . . . . . . . 29
5.3.2 Routing signals between connectors . . . . . . . . . . . . . . . .. . . . 31
5.3.3 Replying to signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3.4 Configuring connectors at creation time of a part . . . . . .. . . . . . . 34
5.3.5 Limitations of the approach . . . . . . . . . . . . . . . . . . . . . .. . 36

5.4 Event acceptor execution . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 37
5.5 Event acceptor and multiple clients . . . . . . . . . . . . . . . . .. . . . . . . . 38
5.6 UML 2.0 and message interleaving . . . . . . . . . . . . . . . . . . . .. . . . . 39
5.7 Structured classifiers violating protocols . . . . . . . . . .. . . . . . . . . . . . 40
5.8 Updating the protocol specification at run-time . . . . . . .. . . . . . . . . . . 40
5.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6 Run-time replacement of submachines in EJBActorFrame and EJBFrame 43
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 43
6.2 What has been realized? . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 43
6.3 Modifications overview . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 44

6.3.1 Modified EJBFrame Java package . . . . . . . . . . . . . . . . . . . . .44
6.3.2 Modified EJBActorFrame Java package . . . . . . . . . . . . . . .. . . 45

v



6.4 Implementation of SubMachine using EJBFrame CompositeState . . . . . . . . . 46
6.4.1 Structural modifications . . . . . . . . . . . . . . . . . . . . . . . .. . 46
6.4.2 Behavioral modifications . . . . . . . . . . . . . . . . . . . . . . . . .. 47

6.5 DynamicActorCS – actor behavior for dynamic submachine loading . . . . . . . 48
6.5.1 Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.5.2 Getting the reference of the SubMachine to be replaced. . . . . . . . . . 49
6.5.3 Searching the active state configuration . . . . . . . . . . .. . . . . . . 50
6.5.4 Remotely download and initialize a SubMachine . . . . . . .. . . . . . 51
6.5.5 Replacing the existing SubMachine . . . . . . . . . . . . . . . . .. . . 51

6.6 Run-time event acceptor implementation . . . . . . . . . . . . . .. . . . . . . . 52
6.6.1 Class overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.6.2 Port addressing implementation . . . . . . . . . . . . . . . . . .. . . . 53
6.6.3 Port implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
6.6.4 PortSM implementation . . . . . . . . . . . . . . . . . . . . . . . . . .54
6.6.5 Sending and replying to messages . . . . . . . . . . . . . . . . . .. . . 55
6.6.6 Message reception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.6.7 Port description implementation . . . . . . . . . . . . . . . . .. . . . . 58
6.6.8 Port and connector creation implementation . . . . . . . .. . . . . . . . 58

6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7 Implementation of a service using remotely downloaded features 62
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 62
7.2 The phone book service . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 62
7.3 Design of phone book service . . . . . . . . . . . . . . . . . . . . . . . .. . . . 63
7.4 Phone book service implementation . . . . . . . . . . . . . . . . . .. . . . . . 63

7.4.1 Implementation of run-time replaceable submachines. . . . . . . . . . . 65
7.4.2 Implementation of the event acceptor . . . . . . . . . . . . . .. . . . . 67

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

8 Discussion and conclusion 71
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 71
8.2 Allowing remotely downloaded telecom features . . . . . . .. . . . . . . . . . 72
8.3 Using ports and protocol state machines as run-time event acceptors . . . . . . . 73
8.4 Run-time replacement of submachines in EJBActorFrame and EJBFrame . . . . 73
8.5 Implementation of a service using remotely downloaded telecom features . . . . 74
8.6 Usefulness of remotely downloading and replacing submachines at run-time . . . 75
8.7 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
8.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Bibliography 77

Appendix A: CD-ROM 80

vi



List of Figures

2.1 Class Television with an attribute and an operation. . . . .. . . . . . . . . . . . 5
2.2 Class Television with internal structure. . . . . . . . . . . . .. . . . . . . . . . 6
2.3 Port with required and provided interfaces. . . . . . . . . . .. . . . . . . . . . . 7
2.4 Portremotespecified as a behavior port. . . . . . . . . . . . . . . . . . . . . . . 7
2.5 Connectors constrained by a protocol. . . . . . . . . . . . . . . . .. . . . . . . 8
2.6 The different types of connectors. . . . . . . . . . . . . . . . . . .. . . . . . . 8
2.7 State machine with simple states and a submachine state.. . . . . . . . . . . . . 9
2.8 Submachine with entry and exit points. . . . . . . . . . . . . . . .. . . . . . . . 9
2.9 Protocol state machine. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 11

3.1 ServiceFrame - A model driven service development kit [3]. . . . . . . . . . . . 12
3.2 Class diagram for the EJBFrame Java package. . . . . . . . . . . . .. . . . . . 13
3.3 Class diagram for the EJBActorFrame (gray classes from other packages). . . . . 15
3.4 The ActorFrame Actor class – adopted from [5]. . . . . . . . . .. . . . . . . . . 15
3.5 Actor addressing [4] (Non-normative UML). . . . . . . . . . . .. . . . . . . . . 17
3.6 Sequence diagrams for RoleCreate – adopted from [3]. . . . . .. . . . . . . . . 18
3.7 RoleRequest protocol concept – adopted from [2] (Non-normative UML). . . . . 18
3.8 Sequence diagram for RoleRequest. . . . . . . . . . . . . . . . . . . . .. . . . 19

4.1 Class diagram for the phone book service. . . . . . . . . . . . . . .. . . . . . . 20
4.2 State machine ofPhoneBookService. . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 State machines ofUserTerminal, CallEdgeandSMSEdge. . . . . . . . . . . . . 21
4.4 Save submachine update messages until requirements aremet. . . . . . . . . . . 26
4.5 Protocol for the provided interface ofPhoneBookService. . . . . . . . . . . . . . 27

5.1 Event acceptor and message interleaving (Non-normative UML). . . . . . . . . . 29
5.2 Port addressing example. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 30
5.3 Inner classifier not able to signal enclosing classifier.. . . . . . . . . . . . . . . 31
5.4 Static setup of reply paths. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 33
5.5 Sending messages with a dynamically created reply path.. . . . . . . . . . . . . 34
5.6 Incomplete connection configuration. . . . . . . . . . . . . . . .. . . . . . . . 36
5.7 Black-box versus white-box view of the structure. . . . . . .. . . . . . . . . . . 36
5.8 Addressing of ports and interfaces and their context. . .. . . . . . . . . . . . . . 37
5.9 Execution of the event acceptor. . . . . . . . . . . . . . . . . . . . .. . . . . . 38

vii



5.10 Two clients connected to one port. . . . . . . . . . . . . . . . . . .. . . . . . . 38
5.11 UML 2.0 and message interleaving (Left diagram: Non-normative UML). . . . . 40

6.1 Modified EJBFrame Java package overview. . . . . . . . . . . . . . .. . . . . . 44
6.2 Modified EJBActorFrame Java package overview. . . . . . . . .. . . . . . . . . 45
6.3 Modifications done to State and StateMachine. . . . . . . . . .. . . . . . . . . 47
6.4 Classes inherited from SubMachine. . . . . . . . . . . . . . . . . . .. . . . . . 47
6.5 Modified transition execution. . . . . . . . . . . . . . . . . . . . . .. . . . . . 48
6.6 Sequence diagrams forGetStatePropertiesandStoreStateProperties. . . . . . . . 49
6.7 Activity diagram showing the submachine replacement steps. . . . . . . . . . . . 50
6.8 ActorMsg’s forDynamicActorCS. . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.9 Classes CompositeState and State with partial operationsand attributes. . . . . . 51
6.10 Searching active state configuration (non-normative UML). . . . . . . . . . . . . 52
6.11 The event acceptor classes Port and PortSM in ActorContext. . . . . . . . . . . . 53
6.12 Modified ActorAddress class. . . . . . . . . . . . . . . . . . . . . . .. . . . . . 54
6.13 Modified ActorMsg class. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 55
6.14 Sequence diagram for message reception (simplified). .. . . . . . . . . . . . . . 57
6.15 Sequence diagram for event acceptor execution. . . . . . .. . . . . . . . . . . . 58
6.16 PortTask – Execution of a protocol state machine in the event acceptor. . . . . . . 59
6.17 Modified PortSpec class. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 59
6.18 Setting up addresses between two ports. . . . . . . . . . . . . .. . . . . . . . . 60
6.19 PathRequest sequence for synchronization of connectors. . . . . . . . . . . . . . 61

7.1 Sequence diagram for phone book service. . . . . . . . . . . . . .. . . . . . . . 63
7.2 Sequence diagram forSearchFeatureSmsandSearchFeatureCall. . . . . . . . . . 64
7.3 Class diagram of the phone book service. . . . . . . . . . . . . . . .. . . . . . 64
7.4 Class diagram for manually modified classes ofPhoneBookService. . . . . . . . 65
7.5 Class diagram for manually modified classes ofSMSEdge. . . . . . . . . . . . . 65
7.6 Implementation of behavior – classPhoneBookServiceCS. . . . . . . . . . . . . 66
7.7 Actor descriptor with part and connector mapping forActorDomain(partial). . . 67
7.8 Protocol state machine mapping forSMSEdgePortSM. . . . . . . . . . . . . . . . 68
7.9 Actor descriptor and port mapping forPhoneBookService. . . . . . . . . . . . . 69
7.10 Actor descriptor and port mapping forSMSEdge. . . . . . . . . . . . . . . . . . 69
7.11 Actor descriptor with part and connector mapping forActorDomain(partial). . . 70

viii



Chapter 1

Introduction

1.1 Background

These days the computer domain and the more traditional telecom domain are starting to con-
verge. The telecom network operators are opening up their service network through initiatives
such as the Parlay/OSA API’s [18]. Such initiatives enablesdevelopment of applications that op-
erate across multiple networking-platform environments.At the same time the computer domain
is becoming more IP network oriented. As such, this convergence provides both the computer
and telecom industry with new revenue and market possibilities.

This convergence enables third-party service providers tointegrate their special purpose ser-
vices with the telecom service network. At the same time new mobile devices with increased
processing power is becoming available to customers – and thus the opportunity to create new
and exciting services. The demand for personalization of services and applications is increasing.
Customers want the opportunity of customizing applicationsrun on their terminals or services
executed by the service provider to fit their specific needs. However, the customers may find it
unacceptable to stop the service while doing such customization andfeatureenrichment. It thus
becomes interesting to see if a service or application couldbe updated by remotely download-
ing and deploying newly available features at run-time – without having to affect its availability.
Furthermore, if such features could be designed and deployed independently, it would allow new
and emerging technologies to achieve shorter time to market.

Such possibilities also imposes some major challenges. Third-party service providers and the
telecom network operators will have to agree upon security requirements which they must ad-
here to. When the telecom networks are exposed through the IP networks, they need mechanisms
which can protect them from abuse. There already exists solutions to such network level abuses,
and the lack of security is thus found at application level.

This thesis will use the traditional approach by modeling the behavior of such services and ap-
plications through the use ofstate machines. More specifically, theUnified Modeling Language
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2.0 (henceforth UML) state machine construct. TheNorARC service creation architecturesare
based upon this programming technique.

1.2 UML 2.0

Telecom companies have successfully used SDL [19] in the design of telecom products. This
allowed making functional models of a system, while being able to formally verify and automat-
ically generate code.

The Object Management Group [16] (OMG) recently adopted theUML 2.0 Superstructure [8]
specification. Earlier versions of UML became thede-factostandard modeling language in the
software industry, but lacked the formalisms and concepts which made SDL successful in the
telecom industry. This new version promises to leverage this lack of concepts and formalisms,
and is the core language component to be used in theModel Driven Architecture[20] (MDA).

1.3 Ericsson NorARC’s service creation architectures

Ericsson NorARC’s service creation architectures is built upon three distinct frameworks; Ser-
viceFrame [2], ActorFrame [3][4] and JavaFrame [13]. Theseare all tools for design, deployment
and management of services. The architecture is meant to deal with the complex systems which
emerges with the convergence between telecom and Internet services.

The main objectives of the ServiceFrame project is described as follows in [2]:

• Enable model driven service development using UML 2.0 to achieve both short time to
market and controlled quality.

• Provide a solution that leverage and support the emerging all-IP and full service networks.

• Remove constraints known from the IN approach in order to enable horizontal, end to end,
services and the widest possible range of advanced hybrid services.

• Take advantage of emerging technologies for service creation and execution.

• Provide architectural support for incremental service development and deployment.

• Support personalized services and mobility.

• Serve as a test case for UML 2.0.

2



1.4 Thesis definition

The thesis will evaluate the submachine component as a candidate for remotely downloaded
telecommunication features introduced at runtime. The final thesis definition is thus:

The student will assess the usefulness of utilizing submachines as remotely down-
loaded and replaceable components with regards to dynamic feature adaption. This
assessment will be conducted using NorARC’s telecommunication service frame-
work ActorFrame as test bed. Replaceable submachine components will impose
challenges on both the underlying framework and the components themselves. These
challenges will be identified and proposed solutions to them will be evaluated.

Furthermore, the thesis will provide the following artifact:

A prototype demonstrating some of the proposed solutions will be implemented in
the ActorFrame framework.

The final thesis title is:

Assessing challenges for remotely downloaded telecom features.

1.5 Work description

The main questions to be answered in this thesis are:

• In order to customize services, are submachines viable and useful as components for en-
abling third-party service providers to create new features that may be downloaded at run-
time?

• Which challenges needs to be addressed when designing replaceable submachines?

To answer these questions, the thesis work will therefore start off by designing a telecommu-
nication application. This application is modeled using UML 2.0 notation, and shall be able to
adapt its behavior using remotely downloaded and dynamically replaceable submachine features
introduced at runtime. This application model will providesome of the means for evaluating
how useful such a possibility is with regards to rapid deployment.

Furthermore, the model will act as a basis for an analysis of which challenges submachine
components impose – i.e., which mechanisms and properties are needed in the framework and
components to make them viable for implementation. Finally, the following question will be
answered:

• How can dynamic submachine components be realized in the NorARC service creation
architecture?
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This question will be answered by implementing the designedapplication in ActorFrame – using
some of the proposed solutions from above. It is expected that changes within the framework
are necessary to accommodate the new features. Furthermore, the implementation will help to
conclude if remotely downloaded, replaceable submachine components are useful for telecom-
munication service developers.

1.6 Report outline

The UML 2.0 specification constitutes a large set of concepts. The NorARC service creation
architecture is a complex framework stack involving many techniques which will not be further
explored in this thesis. This report will therefore focus onparts which are important for under-
standing the contents of this report. Readers unfamiliar with these technologies are encouraged
to read referenced literature if the given descriptions aretoo brief or incomplete.

Chapters 2 and 3 present the technologies UML 2.0 and NorARC service creation framework
stack which are used throughout this report. Readers familiar with these technologies can skip
these chapters.

Chapter 4 presents a telecom service which is used to identifydifferent issues when allowing
remotely downloaded submachine features.

Chapter 5 expands Chapter 4, and presents an approach which combines the UML 2.0 port and
protocol state machine constructs as means for ensuring behavioral conformity at run-time.

Chapter 6 proposes a solution for run-time replacement of submachines in the NorARC ser-
vice creation frameworks, using some of the proposed solutions from Chapter 4 and Chapter 5.
Chapter 7 describes an implementation of the service described in Chapter 4 and demonstrates
the use of the modified frameworks.

In Chapter 8 the proposed solutions are discussed according to the problem definition given
in this chapter, followed by the thesis conclusion at its end.
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Chapter 2

The Unified Modeling Language 2.0

2.1 Introduction

The Object Management Group [16] recently adopted the newest UML Superstructure specifi-
cation, UML 2.0. Amongst the most notable improvements overprevious versions of the spec-
ification, one finds better support for scaling large software system with its new architectural
modeling capabilities. Furthermore, important improvements have been done to state machines
and its encapsulation of submachines through entry and exitpoints.

This chapter focuses on the parts of UML 2.0 which are most relevant for this thesis, namely
the architectural elementsstructured classesand the behavioral elementsstate machinesand
protocol state machines.

2.2 Classes

The class is a standard UML construct used to specify objectsthat share the same attributes,
operations, relationships and behavior. Figure 2.1 shows such a class specifying a television.

Television

channel : Integer

tune(int channel)

Figure 2.1: Class Television with an attribute and an operation.
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2.2.1 Structured class

A structured class is a class showing its inner structure consisting of parts, ports and connectors.
When an instance of a structured class is created, its parts, ports and connectors are created, and
upon destruction they are destroyed. Port instances are notcreated or destroyed during the life-
time of the structured class.

Figure 2.2 shows the class Television with an internal structure. The Television class contains
two ports that connect it with the environment. One of them receives signals from a remote con-
trol, while the other shows the video output. Connectors are drawn from these ports to the inner
part Tuner. This enables the tuner to receive remote controlevents and send video output.

Television

remote video

t:Tuner

Figure 2.2: Class Television with internal structure.

2.3 Port

A port is a structural feature of a classifier that encapsulates interaction between the contents of
the classifier and its environment. Each port can define a set of requiredandprovidedinterfaces,
drawn as socket and ball respectively. These interfaces specifies what the class offers to, and
expects from, its environment. While therequired interface specifies what is needed to interact
with the class, theprovidedinterface specifies what the port offers to the environment.

The port provides a mechanism for encapsulating a classifierfrom its environment. This makes
it possible to hide the inner structure of a classifier and to design classifiers without any other
knowledge then the interfaces or protocols it requires and provides. Furthermore, the use of ports
permits the internal structure of a classifier to be modified without affecting external clients, pro-
vided the specified interfaces of the ports are correctly supported. UML does not explicitly
specify how reception on a port with multiple definedconnectorsshould be routed.

As shown in Figure 2.3, the class Television specifies a required interfaceIControl, to control the
unit, and a provided interfaceIStreamwhich gives access its video stream.

2.3.1 Behavior Port

The behavior port is a port with the flagisBehaviorset totrue. This port type specifies a port
which delivers requests to the behavioral part – such as a state machine or procedures imple-
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IControl IStream

Television

remote video

t:Tuner

Figure 2.3: Port with required and provided interfaces.

mented by the classifier. A port which is not a behavior port must have a connector to a port on
an internal part. Figure 2.4 shows theremoteport with theisBehaviorflag set. This is drawn as
a small state symbol attached to the port.

IControl IStream

Television

remote video

Figure 2.4: Portremotespecified as a behavior port.

2.3.2 Complex Port

The complex port is a port which has complex behavior – meaning it does not have a single set
of requiredor providedinterfaces. In other words, the port could specify more thanone provided
and more than one required interface.

2.4 Connectors

A connector defines the connection between two parts within astructured part. This connection
is a specification of a contextual association which appliesin a certain context. The connector
makes it possible for two parts to communicate. A connector can be constrained to a protocol as
shown in Figure 2.5. Note that such a constraint represents an assertion, not an executable mech-
anism. There are two different types of connectors, thedelegation connectorand theassembly
connector.

2.4.1 Delegation connector

A delegation connector is defined as a connector between an external port and an internal port.
A signal arriving on the external port should be received by the internal port. A request sent on
the internal port is sent by the external port. Such a connector is shown between theCompiler
and theOptimizerin Figure 2.6.
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classA classB

 

protocol

cd constrained connectors

Figure 2.5: Connectors constrained by a protocol.

Compiler

:Lexer :Parser :Optimizer

Figure 2.6: The different types of connectors.

2.4.2 Assembly connector

An assembly connector is a connector which connects a required interface or a port on one
component, to a provided interface or port on another component. Such a connector is shown
between theLexerand theParserin Figure 2.6.

2.5 State machines

The state machine is an universal and well-known formalism for specifying the state space and
the state transition relations of objects. It is a convenient way to specify a sequence ofstates
that an object passes through during its lifecycle in response to events sent to the state machine.
UML 2.0 defines two different kinds of state machines; the genericbehavioral state machineand
the specializedprotocol state machine.

2.5.1 States

An object has different states during its lifetime, and a state is said to beactivewhen the object
satisfies the conditions of the state. Theactive state configurationis the set of states which are
active for an object at any point in time. A state may optionally contain internal transitions in the
form of entryactivity, doactivity andexit activity. The entry activity is performed upon entering
the state, the do activity is performed as long as the state isactive, while the exit activity is
performed upon leaving the state. UML 2.0 specifies different types of states – thesimple state,
thecomposite state, thesubmachine stateand different types ofpseudo states.
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waitForCall

Alert

calleeSetup :
CalleeSetupSM

startSetup

successfull
unsuccessfull

talking

Hangup

sm CalleeSM

Figure 2.7: State machine with simple states and a submachine state.

Simple state

The simple state is a state without any substructure of states. Figure 2.7 shows the two simple
stateswaitForCall andtalking.

Submachine state

The submachine state is a state which references another state machine – asubmachine. A sub-
machine state is semantically equivalent to inserting the copy of the referenced submachine in
place of the state. The submachine state itself has no substructure, as this structure comes from
the referenced state machine.

sm CaleeSetupSM

startSetup
waitForAcceptance

Reject Accept

unsuccessfull successfull

Figure 2.8: Submachine with entry and exit points.

A transition to the submachine state establishes the initial states of the submachine – if there
exists no initial state, transitions to the boundary are notallowed. A transition to the state may
also target a named entry point on its boundary, which is equivalent to a transition to the corre-
sponding entry point on the submachine. Equally, transitions exiting the submachine through an
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exit point targets the corresponding exit point specified inthe submachine state. As the subma-
chine which is referenced by the submachine state is defined independently from its environment,
it is not allowed to cross their boundaries by entering one ofits sub-states directly. Entry and exit
points are thus specifiedexplicitly.

A submachine state is shown in the Figure 2.7 where the submachine statecalleeSetuprefer-
ences the submachineCalleeSetupSMfrom Figure 2.8.

Composite state

A composite state is a state with sub-states, or inner structure. This inner structure contains states
and transitions which specifies the behavior the state machine has while it is in this state. If a
composite state is part of the active state configuration graph, and contains one region, exactly
onesub-state is active. The composite state is semantically equal to the submachine state, but
with one difference – it is allowed to cross the composite state boundaries directly into one of its
sub-states.

2.5.2 Transitions

A transition is a relationship between two states within a state machine. This relationship speci-
fies conditions for which a state machine should exit one state and enter another. Such conditions
may be defined byevent triggersandguards. If the guarding condition is met, the event trigger
is the event received by a state machine which makes the transition fire. When a transition fires,
it may have aneffect– an activity or action performed by the transition.

2.5.3 The behavioral state machine

As in contrast to theprotocol state machine, the behavioral state machine is an executable be-
havior which specifies the executions of objects of a given class as triggered by the occurrence
of events. A behavioral state machine is shown in Figure 2.7.

2.5.4 The protocol state machine

The protocol state machine is defined in [6] as follows:

A state machine used to specify the legal sequences of operation calls and signals
received by an object.

In contrast to thebehavioral state machine, where it is stated that any legal sequence of events
produces an outcome, aprotocol state machineonly specifies the legal sequences of events that
may occur within the context of a classifier. A protocol statemachine is thus not responsible for
ensuring that the legal sequence of events occurs.

If a sequence of events leads to a valid path through the protocol state machine, the sequence
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landed ready
ready()

flying

[cleared]
takeOff() / [gearRetracted]

land()

sm Fly {protocol}

Figure 2.9: Protocol state machine.

of events is legal and shall thus be accepted by the system. Ifthe sequence is invalid, it may not
occur. The protocol state machine could thus be used for assertion of sequences – where illegal
event sequences may not be handled by the receiving class.

Furthermore, the following differences exists between thebehavioral state machineand thepro-
tocol state machine:

• Transitions do not have effects.

• Transitions may have preconditions.

• Transitions may have postconditions.

Figure 2.9 shows a protocol state machine. This states that aplane which wants totake off, shall
be in statereadyand beclearedfor take off before allowed to do so. Furthermore, it specifies
that that after such a take off, the gears shall beretractedand be in stateflying.

2.6 Summary

This chapter introduced the main concepts of UML 2.0 which are used throughout the remainder
of this thesis report. Architectural elements such as parts, ports and connectors are described. A
brief overview of the behavioral state machine and protocolstate machine has also been provided.
In the next chapter I will introduce Ericsson’s service creation architectures – parts of which is
built upon the concepts of UML 2.0.
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Chapter 3

Ericsson NorARC’s service creation
architectures

3.1 Introduction

ServiceFrame, ActorFrame and JavaFrame are three frameworks which are being actively devel-
oped by Ericsson NorARC. At the time of writing this thesis, there exists two different imple-
mentations of the built on the abstract ideas of ActorFrame and JavaFrame; one implementation
on the J2EE [21] platform targeted for service development and one MIDLet implementation
targeted for thin user terminals. This thesis will use the J2EE implementations, called EJBAc-
torFrame and EJBFrame accordingly.

 

Java VM Java VM

J2EE

EJBFrame

EJBActorFrame

EJBAgentFrame

ServiceFrame

Services

Socket,
streams

JMS, Servlets
Web-services

ActorMsg

ActorFrame
protocol

Threads, utility packages, 
XML support

Beans, container, persistency
deployment, transaction

State machine, composite
simple state, trace 

Actor, port, part, actor 
deployment, dynamic configuration

Agent, instance deployment, 
external addressable, security

UserAgent, ExtAddressManager
ActorNameServer, HotDeploy
PositionEdge, SmsEdge

Services, example

Java VM Java VM

J2EE

EJBFrame

EJBActorFrame

EJBAgentFrame

ServiceFrame

Services

Socket,
streams

JMS, Servlets
Web-services

ActorMsg

ActorFrame
protocol

Threads, utility packages, 
XML support

Beans, container, persistency
deployment, transaction

State machine, composite
simple state, trace 

Actor, port, part, actor 
deployment, dynamic configuration

Agent, instance deployment, 
external addressable, security

UserAgent, ExtAddressManager
ActorNameServer, HotDeploy
PositionEdge, SmsEdge

Services, example

Figure 3.1: ServiceFrame - A model driven service development kit [3].
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Figure 3.1 shows the layered model of the framework stack, each implementing its own set
of concepts with regards to service development, deployment and description. The frameworks
are implemented using Java, and each of them is contained in separate Java packages. The layer-
ing used by this model is not strict, and services are implemented by extending the classes from
these packages. This thesis will concentrate on the two framework layers EJBActorFrame and
EJBFrame, as they deal with structured classifiers, orActors, and behavior using asynchronous
communication with message passing and state machines. I will in this chapter focus on the basic
concepts needed for understanding this report, for furtherinformation on these two framework
layers refer to [3] and [4].

3.2 EJBFrame

EJBFrame is the bottom layer of the NorARC service creation architecture. EJBFrame is a
Modeling Development Kit(MDK) for developing and executing state machines in the Java lan-
guage. It provides a subset of the UML 2.0 state machine modeling concepts. According to
[13]: ”With JavaFrame it is possible to apply modeling techniquesand still work in Java. The
Java source and the model have one-to-one relationship. Theframework provides classes of
well-proven modeling concepts, and by using these, instead of just programming in plain Java,
the abstraction level is raised”. The current version of JavaFrame is called EJBFrame and is
implemented using J2EE technologies for asynchronous message passing, persistent state data
and state machine addressing. Figure 3.2 shows the main classes of the EJBFrame Java package.

State

CompositeState StateMachine

ActorAddress

cd EJBFrame classes

ActorAddressActorMsg

StateData

<<interface>>
StateDataBean

*

<<interface>>
StateDataHome

1

Figure 3.2: Class diagram for the EJBFrame Java package.
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3.2.1 State machine

EJBFrame models behavior of systems with state machines. This is done by using the Java
classes;StateMachine; StateandCompositeState. Messages sent betweenStateMachineobjects
are of typeActorMsg. This message specifies an address to the sender and an address to the
receiver of the message in addition to optional message data.

State

TheStateclass represents the simple state from UML 2.0, and thus has no inner structure. The
class holds a reference to its enclosingCompositeStateobject with the attributeenclosingState.
As in UML 2.0, theStateclass can have internal transitions by specializing the operationsentry()
andexit(). They do not allow anydoactivities.

CompositeState

TheCompositeStateclass extends theStateclass and implements a state that contains an inner
structure of states and transitions. The inner state structure is contained in thechildrenHashtable
attribute, using the state name as key. States contained by this children hash references either
objects of typeStateor otherCompositeStateobjects. The EJBFrameCompositeStatedoes not
support the use of orthogonal state regions as in UML 2.0.

As in UML 2.0, theCompositeStatecan define different entry and exit points, which are named
with integer values. Entering theCompositeStateis done by callingenterStatewith the given
integer identifying the entry point. WhenenterStateis called without such an integer identifica-
tion, the default entry point is used. Exiting its boundaries is performed by callingexitStatewith
the given integer identification, and execution continues by calling enclosingState’s operation
outOfInnerCompositeState. The inner sub-structure of states is not exposed, and the EJBFrame
CompositeStatethus resembles the UML 2.0 submachine state construct, as itis not allowed to
cross its boundaries withoutexplicitlyusing entry or exit points.

StateMachine

The classStateMachinehas oneCompositeStatewhich contains the state and transition structure
of the state machine. In this way, the containment of states and transitions in the classCompos-
iteStatecan be reused in the state machine without implementing thisagain.

The StateMachineclass implements all the behavior for executing the state machine. This in-
volves storing and resurrecting persistent data and handling of message reception and message
sending. Furthermore, theStateMachineclass implements all the necessary methods for pro-
graming a state machine.

StateMachineobjects are addressable through the use of theActorAddressclass. This address
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represents the message input queue of the state machine, andis used by otherStateMachine
objects which wants to send messages to it.

3.3 EJBActorFrame

EJBFrame is layered above EJBFrame in the framework stack and is ServiceFrame’s service
execution environment. The core concept of ActorFrame is”actors plays roles”. According to
[2]: ”An Actor is a (composite) object having a state machine (ActorSM) and an optional inner
structure of Actors”. Figure 3.3 shows the main Java classes of the EJBActorFramepackage.

ActorCS ActorSM

ActorContext

cd EJBActorFrame classes

PortSpec

1

ActorBean

<<interface>>
ActorHome

PartSpec
*

*

<<interface>>
Actor

CompositeState SubMachine

<<interface>>
StateDataHome

StateDataBean

<<interface>>
StateData

1

Figure 3.3: Class diagram for the EJBActorFrame (gray classes from other packages).

3.3.1 Actor

The ActorFrame Actor is a composite object with a state machine and optional inner structure.
Figure 3.4 shows the ActorFrame Actor, within andout ports and an inner partinnerActor.

<<actor>>
Actor

innerActor:Actor[*]
in

out
in

out

Figure 3.4: The ActorFrame Actor class – adopted from [5].
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Actor behavior

The generic behavior of an Actor is implemented by the state machine combination of theAc-
torSM and theActorCSclasses. These classes extends theStateMachineandCompositeState
classes from EJBFrame. The generic behavior implements the Actor lifecycle management pro-
tocols as described in Section 3.3.2.

Actor descriptors

The inner structure of an ActorFrame Actor and its contextual relations with ports and connectors
is described in a set of XML files, calledactor descriptors. This information is parsed from the
XML files upon initiation of the Actor, and is contained in thePartSpecand thePortSpecclasses.
ThePartSpecclass specifies the inner structure of the Actor, while thePortSpecclass specifies
the contextual relations the Actor has to other Actors. Both these classes can have multiplicity,
meaning they can have several inner Actors and relations with several other Actors.

Ports, connectors and addressing of Actors

The PortSpecclass specifies a relation between two Actors. This relationis described as a set
of ActorAddressinstances;inquiredRoleandrequestedRole. The connectors are set up between
two Actors by using this information in theRoleRequestprotocol of the ActorFrame protocol.

As shown in Figure 3.4 an ActorFrame Actor has two ports, onein port and oneout port. In
EJBActorFrame thein port is mapped to a JNDI name of the input queue for the state machine,
while theout port is mapped to the operationoutput in the classStateMachine. Sending a mes-
sage through anoutport is done specifying other JMS destinations representing the input queues
for other Actors.

This means the Actor port does not use the UML 2.0 delegation connectors – only assembly
connectors directly between two adversary Actors. As such,no hiding of inner structure through
the use of ports is supported by EJBActorFrame.

Figure 3.5 shows how Actor instances are addressed using theActorAddressclass. The address-
ing is based on the instance name of the and class type of the Actor. The address also includes
the contextual information of its enclosing Actors.

3.3.2 The ActorFrame protocol

ActorFrame Actors implement a set of protocols which are used for invocation, control and
management of other Actors. The combinations of all these smaller protocols constitutes the
ActorFrame protocol. A subset of these, named by its initiator message, is shown in Table 3.1.

The most important of these protocols, with regards to this thesis, are namedRoleCreateand
RoleRequest. I will thus provide a brief description of these.
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Class D

c:C

Class DClass D

c:C

MyActorMyActor

c:C

ActorActor

Address: c:C Address: d:D Address: d/c:C

ActorAddress

actorId:     String
actorType: String

ActorAddressActorAddress

actorId:     String
actorType: String

d:D

c:C

d:Dd:D

c:C

Figure 3.5: Actor addressing [4] (Non-normative UML).

Initiator: Description:
RoleCreate Creation of new actors.
RoleRequest Request roles from other actors.
RoleRemove Remove actor and all its associations.
RoleUpdate Actor reconfiguration.
RoleReset Reinitialization of actors.
RoleReport Get status reports from actors.

Table 3.1: Protocol names in the ActorFrame protocol.

RoleCreate

TheRoleCreateprotocol is used to create new Actor instances. This protocol is utilized when a
new inner Actor part is created, or upon initiation of an Actor which shall instantiate all its inner
parts. Figure 3.6 shows howd:DeltaActorcreates the new inner partg:GammaActor. After this
inner part has been created, a message with thePortSpec’s of this part is sent. ThesePortSpecob-
jects represents the Actors this actor shallplay with, and specifies the ActorAddresses for these
Actors.

The actual setup of the play – i.e., the creation of ports an connectors, is shown in Figure 3.6.
The figure shows thatactualPart:Part sends aRoleRequestmessage topartB:Actor, which it
shall initiate a play with. The ActorpartB:Actorsends confirmation that it can play the specified
role. The inner partg:GammaACtorhence sends the messageRoleCreateAckto its creator.
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d : DeltaActor

g : GammaActor
<<create>>

init

idle

RoleCreate(PortSpec)

waitCreateAck

RoleCreateAck

ref PortSetup

sd RoleCreate

actualPart: Actor partB : Actor

waitConfirmPorts

RoleRequest

RoleConfirm

sd PortSetup

Figure 3.6: Sequence diagrams for RoleCreate – adopted from [3].

RoleRequest

TheRole Requestprotocol is the protocol in ActorFrame which enables Actorsto request roles
from other actors. The principle workings of this protocol is shown in Figure 3.7. The figure
shows that the Actorrequester:Actorwants to initiate a play withrequested:Actor. This is done
by sending aRoleRequestmessage to aninquiredActor. TheinquiredActor checks if this Actor
can contain therequested:Actor, either by creating a new instance or by asking an existing inner
Actor. Such a request is made by sending aRolePlaymessage to the Actor. The receiver of
this message sendsRoleConfirmback to the initiator which confirms the request. This has thus
created a relationship between therequester:Actorand therequested:Actor, and a play can start
between these. Figure 3.8 shows the full RoleRequest protocolinteraction.

<<actor>>
requester : Actor

<<actor>>
inquired : Actor

<<actor>>
requested : Actor

ActorSM
1. RoleRequest(requested,)

2. RolePlay(RoleRequest)

3. RoleConfirm(RoleRequest)

Figure 3.7: RoleRequest protocol concept – adopted from [2] (Non-normative UML).
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requestorRole: 
AlphaActor

inquiredRole:
BetaActor

RoleRequest(”requestedRole”, ”DeltaActor”)

RoleDenied(REASONCODE)

<<create>> requestedRole:
DeltaActor

init

RolePlay(portSpec)

ref RoleCreate

ref PortSetup

RoleConfirm

RolePlay(portSpec)

RoleConfirm

idle

alt

sd RoleRequest

Figure 3.8: Sequence diagram for RoleRequest.

3.4 Summary

This chapter provided a brief overview of the relevant frameworks in the NorARC service cre-
ation architectures. The focus of the chapter has been the ActorFrame Actor structure and the
ActorFrame protocol in EJBActorFrame. Furthermore, the state machine structure in EJBFrame
was described.

I will in the next chapter introduce the concept of allowing remotely downloaded telecom fea-
tures, and the issues which arise when using the submachine component as a candidate for run-
time feature adaptation.
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Chapter 4

Allowing remotely downloaded telecom
features

4.1 Introduction

In the previous chapters the technological background withregards to UML 2.0 and the NorARC
service creation architecture was established. With this foundation, I will in this chapter show
an example telecom service and how this service could benefitfrom using remotely downloaded
telecom features. Furthermore, this chapter establishes this thesis’ conceptual approach to using
the UML 2.0 submachine construct as a feature which enables dynamic behavior adaptation in
services. The approach taken in this chapter is partially based on the findings in [11].

4.2 An example telecom service – the phone book service

<<actor>>
SMSEdge<<actor>>

PhoneBookService
<<actor>>

UserTerminal

cd PhoneBookService

<<actor>>
BillingService

<<actor>>
CallEdge

Figure 4.1: Class diagram for the phone book service.

The phone book service is a telecom service which provides a simple phone book lookup service.
Figure 4.1 shows the structure of the actors involved with this service. ThePhoneBookServiceis
the actor which provides the phone book service to a user. TheUserTerminalis the actor which
represents the users terminal, such as a PDA or mobile phone.TheSMSEdgeis the actor which
makes it possible to send SMS messages to mobile phone subscribers using the Parlay-X SMS
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API. TheCallEdgeis an actor which enables clients to set up conversations between two arbi-
trary phone numbers using the Parlay-X Call API. As shown in the Figure 4.1, these two actors
requires the interface ofBillingServiceto be able to perform their service. ThisBillingServiceis
an actor which enables charging of end-users for the provided services.

sm PhoneBookServiceSM sm SearchFeatureCallSM

idle

PhoneBookLookup / download(feature),
replace(feature, searchFeature)

searchFeature : 
SearchFeatureSM

waitForRequest

PhoneBookLookup / search(),
send PhoneResults

waitForChoice

PhoneBookChoice /
send CallForward(choice, phonenr)

sm SearchFeatureSmsSM

waitForRequest

PhoneBookLookup / search(),
send PhoneResults

waitForChoice

PhoneBookChoice /
send SendSms(choice, phonenr)

Figure 4.2: State machine ofPhoneBookService.

Figure 4.2 shows the principle behavior of thePhoneBookServicewith its state machinePhone-
BookServiceSM. It accepts a message which enables it to download and bind anappropriate
submachine to the submachine statesearchFeature. The figure also shows two different sub-
machines which this state can contain,SearchFeatureCallSMandSearchFeatureSmsSM– each
yielding different behavior of thePhoneBookServiceSM.

Figure 4.3 shows the state machines whichPhoneBookServiceSMinteracts with. The state ma-
chineUserTerminalSMis the state machine of theUserTerminalactor,SMSEdgeSMis the state
machine of theSMSEdgeactor, whileCallEdgeSMis the state machine of theCallEdgeactor.

idle

waitForFeature

StartPlaying 
/ send ChooseFeature

waitForResults

ChooseFeatureAck 
/ send PhoneBookLookup

PhoneBookResults 
/ send PhoneBookChoice

sm UserTerminalSM

ChooseFeatureNack

idle

msgSent [true][false]

sm SMSEdgeSM

SendSmsAck

Billing

SendSmsNack

SendSms

sendSms()

idle

callSetup [true][false]

sm CallEdgeSM

CallSetupAck

Billing

CallSetupNack

CallSetup

setupCall()

Figure 4.3: State machines ofUserTerminal, CallEdgeandSMSEdge.
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4.3 The submachine as a remotely downloaded feature

Figure 4.2 shows the behavior of thePhoneBookServiceactor. As seen, this simple state machine
specifies the submachine statesearchFeature, describing parts of its behavior. The submachine
state also specifies one entry and one exit point, encapsulating the state and transition substruc-
ture of the referenced submachine. Furthermore, the two submachinesSearchFeatureCallSM
andSearchFeatureSmsSM, shows two different behaviors for this submachine. The difference in
behavior between these two components is that one sets up a call between two phones, while the
other sends an SMS, based on the results of the phone book lookup.

Now, imagine that these components could be changed at run-time – meaning one could choose
between these behaviors while the service is still running.Furthermore, imagine that more such
featurescould be developed, remotely downloaded and chosen long time after this service was
initially deployed. New and emerging technologies could thus continue to add value to the ser-
vice after the inception and deployment stages. Such submachine components could even be
developed and deployed bythird-party service providers, and as such expand availability of dif-
ferent features. Furthermore, allowing this feature enrichment to be conducted at run-time gives
it the advantage of not affecting the availability of the service.

However, such a possibility also adds additional complexity. Several problems needs to be ad-
dressed before allowing such replacements:

• How to ensure that the remotely downloaded submachine component originated from the
correct source?

• How to minimize the interdependencies between the state machine and the submachine to
allow the view of a submachine as a truly replaceable component?

• How to ensure that a new component does not introduce deadlocks, livelocks or non-
deterministic behavior in the system?

• How and when should a submachine be replaced?

When downloading a feature which is meant to be deployed and executed in a service network,
one needs to ensure that this feature indeed is safe to execute – meaning the origin of the code is
verifiable. Features could be downloaded viahttp, ftp or other internet protocols viable for ser-
vice attacks such asIP spoofing[17]. A mechanism which ensures the executed feature indeed
originates from the correct source is thus needed. This could be done by signing the features
with digital signatures, and check these before executing the code. Such an approach is possible
in Java by signing classes.

Minimizing the interdependencies between the state machine and the submachine is done through
proper encapsulation of the component. This is addressed inSection 4.4. Furthermore, to ensure
a new component does not introduce unwanted behavior into the system, one needs to decide
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how and when a replacement is to be done and how the behavior should be verified. This is
addressed in Section 4.5 and Section 4.6 respectively.

4.4 Encapsulating the submachine component

Entry and exit points serves the role of encapsulating the submachines state substructure and
makes it a reusable component. As described in Section 2.5.1, state machines are not allowed
to perform direct boundary crossing from the submachine state into a submachine. This way,
the entry and exit points explicitly states how a submachineis to be entered and exited by its
environment.

However, exit and entry points alone does not ensure behavioral conformity when replacing a
submachine at run-time. The new submachine may indeed turn out to be incompatible as it
may breach the protocol adherence as specified in the environment in which it is deployed. The
submachine may very well be found to introduce deadlocks, livelocks or non-deterministic be-
havior to the encapsulating state machine or to state machines with which it communicates. I
will in the remainder of this section establish some guidelines for how to deal with the following
encapsulation issues:

• How to encapsulate instance variables?

• How to handle timers created by submachines?

• How to deal with ports and messages?

4.4.1 Instance variables

UML allows modeling of submachines and composite states which are capable of reading and
writing to instance variables defined by the encapsulating state machine. A newly introduced
submachine may make the wrong assumptions about the instance variables of the enclosing state
machine or have undesired effects upon these. Ensuring thatsuch erroneous assumptions are not
being made when designing the components thus requires a thorough investigation of these in-
stance data interdependencies. When remotely downloading and binding submachines, allowing
these components to freely access the instance data of the encapsulating state machine may not
be wanted. [11] suggests assessing at which level the new submachine can be trusted to behave
correctly, and select a security policy specifying to what extent the submachine can access its
environments instance variables.

An encapsulating state machine is designed with a fixed set ofinstance variables. It is very
likely that a newly and independently designed submachine needs to specify additional variables
which was not specified by its encapsulating state machine. Allowing submachines to encapsu-
late its own set of instance variables should thus be allowed.
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One could require that submachines which are to be replaced at run-time shall extend an al-
ready defined submachine. This enables the encapsulating state machine to know which instance
variables to expect in this submachine, and possibly even access this data. However, the sub-
machine is an independently designed component, and to minimize the interdependencies which
exists between these two components, it would thus make sense to not allow such access. This
becomes even more evident when we allow replacing the submachine at run-time. This would
require mechanisms which are able to copy the instance variables expected by the enclosing state
machine from the old submachine into the new. If a previouslyreplaced submachine at some time
made the wrong assessments of the state of these variables, the error would propagate to subma-
chines which replaces this at a later time.I therefore propose deleting the instance variables
defined by an encapsulated submachine upon replacement, andto not allow the encapsulating
state machine to access data of its submachines.

4.4.2 Timers

Timers are often used as a technique to leverage problems where actions might be expected to
cause a deadlock in a state machine – e.g., not getting a response from a request in a timely
manner. A timer can thus be of vital importance when designing a new submachine. Timers
are usually specified in the enclosing state machine environment, and allowing submachines to
create and start such new timers thus raises a problem; if thesubmachine starts a timer and exits
before this timer expires, the enclosing state machine would receive an unspecified timer event.
Such timer events could be ignored, as the enclosing state machine does not know how to handle
it. However, it would be a good design guideline to stop all timers which are not stopped upon
exiting the submachine.

4.4.3 Ports and messages

A state machine sends and receives messages on the ports defined by its encapsulating classifier.
When dealing with dynamic pluggable submachines, it is expected that these components may
need additional ports to communicate with other classifierswhich was not thought of at the time
of creation of the classifier. However, [8] states that”A port cannot be created or destroyed ex-
cept as part of the creation or destruction of the owning classifier” . If the state machine realizing
the behavior of the classifier adapts new functionality at run-time, there may be situations where
this would require new ports.

This can be shown in Figure 4.1 where the classifierPhoneBookServicerequires the provided
ports ofSMSEdgeandCallEdge. Imagine the port which connects toCallEdgewas not speci-
fied at the creation time of thePhoneBookService. This would make it impossible to insert the
SearchFeatureCallSMsubmachine, as it is not allowed to communicate withCallEdge. It may
therefore appear to be reasonable to allow loadable submachines to define and create new ports
in addition to the already existing ones.
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[11] proposes differentiating between dynamically and statically created ports, where subma-
chines could be allowed to create ports upon instantiation and destroy them upon destruction.
Such an approach would require that these ports are able to create connectors to other ports
dynamically. This raises the issue that messages might be sent over these ports while the sub-
machine is not part of the active state configuration – i.e., the enclosing state machine would
receive an unspecified event which might lead to undesired effects. This might be alleviated by
ignoring messages sent through a dynamic port while the submachine that created them is not
part of the active state configuration. Furthermore, [11] suggests the use of security policies to
specify which messages submachines are allowed to send and to what extent they are allowed to
create new ports.

4.5 How and when to download and replace a submachine

There needs to be a mechanism which is able to download a submachine component and to
decide whether the current state is appropriate to replace the existing submachine. The most
flexible approach of doing this is to implement the functionality for downloading and binding
submachines within the state machine based on reception of an updatemessage. Such an update
message should specify which submachine the new submachinecomponent shall be replacing,
and could also have additional attributes which instructs the state machine on how and where to
find the new component. This would give us the possibility of doing the correct assessments on
whether the current state of the state machine allows such behavior. However, this adds the addi-
tional concern of deciding which of the communicating peersshould be aware of such updates.

When receiving an update message, a state machine may be in a non-suitable state for updates.
Lets consider the case where the adversary state machines are aware of the update, and maybe
even depending on it. In such cases it might be of utter importance to reach a state safe for up-
dating before the update can take place. This may be done by leaving the current state abruptly,
saving the current state, execute the update and maybe returning to the previous state. As these
adversaries are aware of the update, they may expect the change of behavior by the state machine.
On the other hand, peers not aware of such updates should not be able to observe any externally
visible change of behavior by the state machine – i.e., updates needs to be atomic. These two
requirements are met by not allowing a submachine to be replaced while part of the active state
configuration.I therefore propose to defer update messages until this condition is met and send
an acknowledgment to the update-aware state machine when the replacement has been done. An
example of how this could be done is shown in Figure 4.4. The figure shows a state machine
which accepts an update message,SubMachineUpdate, in any state and defers this message until
the requirements are met.
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*

[!submachine.isActive] SubMachineUpdate
/ replace(submachine)

send SubMachineUpdateAck

[!submachine.isActive] SubMachineUpdate
/ defer SubMachineUpdate

sm SubMachineUpdate

Figure 4.4: Save submachine update messages until requirements are met.

4.6 Ensuring behavioral conformity

When replacing a submachine at run-time, one wants to make sure that this does not introduce ill
effects upon the system in which it shall be deployed. There exists several approaches to achieve
this. Anomalous behavior between communicating state machines can be detected using the
projectionapproach described in [7]. Such a projection is an abstraction technique, as described
by [7]: ”A projection is a simplified system description or viewpointthat emphasises some of
the system properties while hiding others.”. The validation is done on these projections rather
than the whole system, and thus simplifies the designers work. However, the practical use of this
method is yet to be established in any real examples.

Furthermore, [11] suggests the use of security policies which specifies what the submachine
is allowed to do in the classifier it is deployed. One approachto enforce such guidelines could
be bysandboxingthe submachine. The submachine component would thus have its own envi-
ronment which explicitly states the effects the submachineis allowed to have upon the system.
Although such an approach may very well turn out useful, it ishard to formally verify the effects
such asandboxshall have.

One of the most important properties of using component based development is the possibil-
ity of being able to understand the relevant parts of a state machines behavior by examining its
required and provided interfaces. When using UML 2.0 classifiers, this would involve observing
the signal interleaving over the ports which are defined at its edges. One can thus decompose the
external visible behavior into several different protocols which the state machine must adhere
to. This does not conflict with the use of replaceable submachines, as the submachine shall still
adhere to the protocols defined for its communicating adversaries. However, this approach can
not cover all the failure scenarios. A submachine may still have internal failures – e.g., it may
use inappropriate operations on its own structured classifier. On the other hand, it does alleviate
the problem of a failing part having ill effects upon other parts the system.

Figure 4.5 shows the decomposed protocol which exists betweenPhoneBookServiceandUserT-
erminal. This protocol could be asserted by bothPhoneBookServiceandUserTerminalat run-
time, thus both parties makes sure the other state machine adheres to the protocol.I therefore
propose usingportsand protocol state machines, an event acceptor, as a method of asserting
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behavioral conformitywhen allowing remotely downloadable and replaceable submachine com-
ponents.

idle waitForFeature
ChooseFeature

waitForResults

ChooseFeatureAck 

PhoneBookResults 

sm PhoneBookServiceProvided {protocol}

waitForChoice

PhoneBookChoice ChooseFeatureNack 

PhoneBookServiceUserTerminal

 PhoneBookServiceProvided

cd UserTerminal and PhoneBookService

Figure 4.5: Protocol for the provided interface ofPhoneBookService.

4.7 Summary

This chapter first introduced an example telecom service andestablished how this service could
benefit from dynamic loading of remotely downloaded telecomfeatures. Furthermore, the chap-
ter found the following for remotely downloaded submachines:

• Exit and entry points is not enough to ensure behavioral compatibility.

• Instance variables should be handled carefully.

• Timers started by a submachine should be stopped upon exit.

• It may be beneficial to allow dynamic creation of ports.

• The external visible properties may be decomposed and asserted through the use of ports
and protocol state machines.

In the next chapter I will present conceptual approaches to using ports and protocol state ma-
chines as anevent acceptor.
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Chapter 5

Using ports and protocol state machines as
run-time event acceptors

5.1 Introduction

Section 4.6 introduces the idea of ports and protocol state machines as an appropriate approach
to assert whether state machines which are able to adapt behavior during run-time adheres to the
protocols as defined by its provided and required interfaces. Such an approach would also have
the additional benefit of being able to protect critical resources in the system, and thus resembles
a sort of statefull application level firewall. This is of great advantage when allowing third-party
service providers and developers to access a system. Architectural flaws can be discovered in the
running components of the system, as could misuse of critical system components. This chapter
will hence show a conceptual approach to enabling such a run-time event acceptor.

”In component-based software engineering, a basis for reasoning on behavioral
compliance is highly desirable in order to validate softwarearchitectures and to
reason on component compatibility.”[10]

5.2 Goals of the event acceptor

The main goal of theevent acceptoris to capture the message interleaving between two adver-
sary state machines and assert its legality at run-time. By decomposing the behavior of each
state machine into a set of provided and required interfaces, one can thus assert the behavior of
the state machine in a given context. A state machine may havemany different adversary state
machines, each communicating over different ports and connectors. By asserting the message
interleaving in all these specified contexts, one is thus able to verify whether the externally rele-
vant properties of the state machine is correct.

Figure 5.1 shows the interleaving of messages over the assembly connector betweenportA and
portB. This interleaving is constrained byprotocolAB– a protocol state machine. Doing such
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portA : Port portB :Port

providesrequires

 

protocolAB

1. Request

2. Response

Message interleaving

acceptRequest

sm protocolAB {protocol}

acceptResponse

Request

Response

Figure 5.1: Event acceptor and message interleaving (Non-normative UML).

assertion at run-time, one wants to make sure that both statemachines involved with this context
adheres to the given protocol. As the two state machines involved utilizes ports to communicate,
the message interleaving shall thus be asserted at these interaction points.

5.3 Ports

When ports shall be created as part of the structured classifier which owns it, there needs to be
mechanisms which are able to do the following:

• Unique and global addressing of ports and state machines.

• Routing, sending and replying to messages between the connectors.

• Configure the ports with connectors upon creation.

These issues will be discussed in the remainder of this section.

5.3.1 Connectors and addressing of ports and state machines

Naming is of critical importance when it comes to being able to address a part’s port and state
machine uniquely throughout the system. A behavior port must be able to address the state ma-
chine to which it is connected. In addition, ports should be able to address other ports through
the use of delegation and assembly connectors. One thus needs an addressing scheme which can
handle addressing both state machines and ports.

In UML 2.0 a port can be given a name and a structured classifiercan be given a type. Fur-
thermore, when a structured classifier shall be an inner partof another structured classifier, it
has an instance name. It is thus possible to create a naming scheme which qualifies addresses
with this information. This naming scheme is based on the existing ActorAddress scheme from
ActorFrame, and the introduced addition of port names makesit possible to address both state
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Port Direction In address Out address
bOut out – /a:aOut@A
aOut out – /d:dInOut@D
cIn in /c@C –
dInOut in-out /d/e:eIn@E /c:/cIn@C
eIn in /d/e@E –

Table 5.1: Connector addresses described in the ports.

machines and ports.I thus propose adding the port name as an addressing qualifierto the ex-
isting ActorAddress scheme. Furtermore, I propose the following textual representation of this
addressing scheme:

⌊/contextinstance⌋multipleopt /instance ⌊: port⌋opt @Type

Summarized, the following invariants apply to the addressing scheme:

• Each port name must be unique within the structured classifier.

• If there exists more than one part of the same type within a structured classifier, the instance
name must be unique.

a:A

aOut

b:B

bOut

d:D

dInOut

cd Port Addressing c:C

cIn

/c:cIn@C

 /d:dInOut@D/a:aOut@A

e:E

eIn

/d/e:eIn@E

Figure 5.2: Port addressing example.

Figure 5.2 shows an example class diagram involving five different parts. As seen in this figure, it
is necessary for each port to distinguish betweenin andout addresses. This is due to the fact that
we allow ports to have connectors both in and out of the part for which it is defined. Following
Figure 5.2, a configured port shall end up having the connector addresses as described in Table
5.1.
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5.3.2 Routing signals between connectors

When a signals is received by a port, one needs to define how thissignals is to be handled –
i.e., should it be delivered to the state machine or be forwarded through one of its configured
connectors. UML 2.0 does not explicitly define how this should be implemented.

Using the above connector addressing approach, such a task has a trivial solution. As each
port is limited to have one connector for each direction, I thus propose using thedirection in
which the signal was sent to decide where the port should forward the signal. Signals arriving on
a port which was sent by the behavior of the classifier, or through a connector from an inner part,
should forward this signal to theout address. Likewise, signals which were sent by a connector
owned by the enclosing structured part are forwarded to the behavior or through a connector to
an inner part.

Determining the direction in which a signal was sent amountsto comparing the address of the
sender with the address of the port. As the proposed addressing scheme has context information
embedded in its structure, it is thus possible to evaluate whether an actor is an inner part of a
structured part.I thus propose evaluating the direction of a sent signal by comparing the context
part of the senders address with the address of the part which owns the port.

a:A

aIn

b:B

Figure 5.3: Inner classifier not able to signal enclosing classifier.

Using this approach it is thus possible to determine over which connector the signal should be
conveyed. However, the approach raises another problem. Figure 5.3 shows a scenario where the
inner partb:B provides an interface to the enclosing part’sa:A behavior portaIn. With the above
described propagation technique, signals across such connectors can not be sent in a proper man-
ner. The above signal forwarding mechanism would decide that the signal should be sent on the
out address – which was clearly not the intention.

A partial solution to this problem is thus to explicitly define whether the port has connectors
in to the part,out of the part orboth. In the scenario shown in Figure 5.3, it would thus be
possible to specify that the portaIn only connects in to the part. With this information it is thus
possible to forward the signal to thein addressregardless of the direction which the signal was
sent. Section 5.3.3 describes the complete algorithm for signal routing solving this problem.

31



5.3.3 Replying to signals

A part providing a service, such as theSMSEdgedescribed in Section 4.2, often has many clients
connected to its port. Such types of services often handle request signals without caring who
actually sent it. When the request has been processed, it is often needed to convey a response
which describes the successfulness of the request. There should thus be a mechanism which
is able to route the signal back to its originator in such protocol scenarios. There exists two
solutions to this:

• Send reply directly to the requester.

• Send the reply through the path of connectors which the request arrived through.

By sending the reply directly to the requester, the signal is guaranteed to arrive correctly. How-
ever, this solution has the disadvantage of making it harderfor the event acceptor to assert
whether the reply adheres to its protocol. An erroneous reply could be sent which violates the
protocol of the requester. Furthermore, this violates the use of assembly connectors.

A better solution is thus to send reply signals through the same path of connectors which the
request signal arrived on. This makes it tangible to assert whether the reply adheres to the proto-
col between the two communicating state machines. I proposetwo different solutions for doing
this:

• Staticallydefine reply paths.

• Dynamicallydefine the reply path.

A staticallydefined reply path involves having the routing information embedded in the ports –
thus resembling IPv4 routing [12]. This is in contrast with thedynamicallydefined reply path,
which resembles the IPv6 routing [12] in that it has the possibility to embed routing information
in the header of a package.

Static reply path

One approach to ensure replies are being sent through the necessary ports, is to create a protocol
which sets up such a reply path at creation time of the port.

A port which requests a connector to another port sends a request along the configured path
of connectors. While this request is being passed from port toport along the path, the ports
which are interested in asserting the communication between the two classifiers adds its address
to a list in the request message. This list specifies which port addresses a reply shall be sent
through.

This is shown in Figure 5.4, where the only port interested inasserting the communications
betweenportA andportD in a reply situation isportB. When portB receives thePathRequestit
adds the address of the port to a stack in the message. WhenportD receives the message, and
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portA : Port portB : Port portC : Port portD : Port

PathRequest

PathRequest
PathRequest.add(portB)

PathRequest

PathRequestAck
PathRequestAck

sd Static setup

configured configured configured configured

Figure 5.4: Static setup of reply paths.

verifies that it is a behavior port, an acknowledgment is sentback toportB. This would thus
provideportB with sufficient information to create a static map which specifies that messages
sent fromportD shall be forwarded toportA. However, this approach is probably not fail safe,
as such static maps might be conflicting if there exists otherclients which uses the same path of
connectors.

Dynamic reply path

Thestatic reply pathapproach described above is unnecessary, and furthermore adds complexity
to the protocols which shall be used for setting up the connectors between ports. Another ap-
proach to doing this, is thus to tag messages with the port addresses which it passed on the way
to its final destination. This tagging could be implemented as a stack, and an algorithm could be
created which supports replying through the use of this stack.

Figure 5.5 describes how the message is handled by a port uponreception. If the last element
in the reply stack is not equal to the ports address, it is not in reply to a previous message. The
port should thus add its address to the reply stack in the message. The receiver of this message is
hence set according to the direction in which the message wassent. If the message was sent by an
inner classifier, the port should forward the message to theout addressconnector. If the message
was sent by an outer classifier, the port should send the message to thein addressconnector or
to the behavior of the part.

Furthermore, messages which are received by a port first checks if the last element in the re-
ply stack is equal to the address of the port. If this is so, thelast sender of this message was this
port – meaning it is in reply to an earlier sent message. This last element is removed from the
stack, and the new last element is thus the address of the portwhich should receive the message.

A state machine which wants to send reply to a message would thus only need to copy the
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msg

msg.removeLastFromStack
msg.receiver := msg.lastFromStack

msg.sender := myAddress

msg

[msgFromInner 
&& !requiredOnly]

[else]

msg.addToStack(myAddress)

[else]

msg..receiver := providedRole
msg.sender := myAddress

msg.receiver := requiredRole
msg.sender := myAddress

[msg.lastFromStack == myAddress]

Port::MsgReceived

Figure 5.5: Sending messages with a dynamically created reply path.

reply stack specified by the request message into the response message.I thus propose using the
routing algorithm as shown in Listing 5.1.

5.3.4 Configuring connectors at creation time of a part

We now have the necessary routing information for addressing and sending messages between
ports. However, these are all useless unless there exists mechanisms which are able to specify
and configure these properties at instantiation time of the part.

Upon instantiation of a structured classifier, the ports associated with it should be created. This
structured classifier is a part of another structured classifier, and in this encapsulating context the
connectors of a part’s ports are specified. As a port in some situations may require a connector
to another non-local port across a distributed system, it thus makes sense to use signaling to set
up connectors.

This approach requires that the ports must implement a protocol for such signaling. I propose
the following principal behavior of this protocol:
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Listing 5.1: Message routing algorithm described using Python.
�

def r o u t e ( s i g ) :
i f s i g . r e p l y s t a c k . l a s t == myAddress :

# l a s t sende r on s t a c k i s me , r e p l y
s i g . r e p l y s t a c k . remove ( s i g . r e p l y s t a c k . l a s t )
s i g . r e c e i v e r = s i g . r e p l y s t a c k . l a s t
s i g . s e n d e r = myAddress
send ( s i g )

e l s e:
# no t a r e p l y message
i f myAddress . i s I n n e r A c t o r ( s i g . s e n d e r )and ! i s I n P o r t :

s i g . r e c e i v e r = ou tRo le
e l s e:

s i g . r e c e i v e r = inRo le

s i g . r e p l y s t a c k . add ( myAddress )
s i g . s e n d e r = myAddress
send ( s i g )

� �

A port which wants to set up a connector to another port shall send a request to
this port. A port receiving such a request shall send a confirmation to this request
back to the requester. Upon reception of a confirmation, the connector address is set
according to direction of the received signal and address ofthe sender.

A path of assembly and delegation connectors should always end with a port which is a behavior
port. The approach taken here is that each part is responsible for setting up the connectors for its
ports – i.e., they have no further knowledge of what connectors the port they connect to specifies.
It is thus necessary to have a mechanism which ensures that the path of connectors are properly
set up before signals can be conveyed across them.

This scenario is shown in Figure 5.6, wherea has not yet set-up its connectors toc. As b is
already connected, it might send a message which was destined for c. However, as part of the
connector path is not configured at this time, the message would not arrive to the correct desti-
nation.

A solution to this problem is thus to make sure ports which define out connectors shall not
send messages until the whole path has been acknowledged. This is done by signaling a request
through the path upon confirmation of the connector which it requested. This request propagates
through the path until it is received by a behavior port. The behavior port sends a confirmation
back to the requester, which hence can allow messages to be sent.
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a:A c:C

b:B

cd Incomplete connection

Figure 5.6: Incomplete connection configuration.

5.3.5 Limitations of the approach

Ports can have connectors to other ports and be a behavior port. Supporting hiding of the inner
structures of other classifiers presents some problems which needs to be addressed. Such hiding
of structure prevents connecting classifiers from seeing the wholepicture, and the ports are thus
to be viewed asblack-boxesto these classifiers. This difference is shown in Figure 5.7.

a:A

aOut

b:B

bIn

c1:C

c2:C

cd whitebox

a:A

aOut

b:B

bIn

cd blackbox

Figure 5.7: Black-box versus white-box view of the structure.

As Figure 5.7 shows, it is impossible for the portaOut to know whether it is connected to the
behavior of classifierb:B, c1:Cor c2:C. This causes trouble when receiving messages at the port
bIn, as it does not have sufficient information for deciding which instancea:A wants to address.
UML 2.0 specifies that such multiplicity could be handled by either copying the signal which
arrived to the port to all these connectors, or by selecting one of the connectors. In Figure 5.7 we
have shown two inner parts of the same type, which thus has thesame state space in their state
machines. By duplicating the signal and sending it to both these parts, we thus have the risk that
both will react to it – which in most cases would be regarded asan unwanted effect. It should
therefore be possible to select one connector. However, with the lack of information it is hard to
choose the correct route.

The above described approach to solving this problem is to explicitly limit the number of al-
lowed connectors on each port to one in each direction of the part. However, this approach is
not very flexible, as it would require one port to be specified for each inner part of the structured
classifier. Furthermore, this effectively prevents creating new parts after the structured classifier
has been created. This is because it would require creating new ports in the enclosing part after
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its instantiation – which is not allowed by the UML 2.0 specification.

Extending the addressing scheme with interface names

The shortcoming of the previous addressing scheme with regards to multiplicity of delegation
connectors is thus in need for some modifications. As UML 2.0 ports is allowed to specify
named interfaces, a solution is thus to extend the previous scheme with the following added
invariant:

• Interface names specified by a port shall be unique for the port.

This scheme thus makes it possible to route messages based oninterface names. Figure 5.8
shows the context which qualifies the unique addressing of the required interfacebReqwhich is
specified forbPort in partb:B. Creating a new inner part ofa would thus involve adding a new
provided interface onaPort which is to be used by clients communicating with the new inner
part.

a:A

Domain

aPort

b:B

bPort

bReqaProv

Address =  /a/b:bPort.bReq@B

Address = /a:aPort.aProv@A

Context of part b:B =  /a/

Figure 5.8: Addressing of ports and interfaces and their context.

This approach has not been investigated any further in this thesis, but it is clear that a solution
based on this approach would be more appropriate and flexiblein use.

5.4 Event acceptor execution

I propose the structure for the event acceptor as shown in Figure 5.9. When a signal is received
by or sent through a portPort, the protocol state machinePortSM is executed withexecTrans().
The result of this execution yields two possible outcomes; either the message is regarded legal
or illegal by the protocol state machine. A message regardedas legal would thus be propagated
to the correct connector by the algorithm described in Section 5.3.3.
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Port PortSM

:Port :PortSM

exec(sig)

execTrans(sig, state, this)

legalMessage(sig)

[else]

alt [legalMessage]

illegalMessage(sig)

sd Event acceptor execution

1

cd Event acceptor

Figure 5.9: Execution of the event acceptor.

5.5 Event acceptor and multiple clients

It is necessary for protocol state machines to have state data to operate correctly. One single port
instance could have many clients connected directly and indirectly to it. Figure 5.10 shows an
example where two different clients are connected to the port aPort. The portaPort is a port with
a delegation connector to the inner partc’s behavior port.

a:Ab1:B

b2:B

c:CaPort

cd Multiple clients

Figure 5.10: Two clients connected to one port.

At design time of the protocol state machine for theaPort, one could in this scenario proba-
bly foresee this, and thus make it understand that these are two different clients which needs to
be taken care of accordingly. However, this is not very flexible if we were to extend this model
to include new clients at run-time.

There is thus a need to differentiate between the clients which could send signals on a port.
This would ease the design of such protocol state machines substantially, as each port is able to
handle signals according to the identification of the clientwhich sent it.

Enabling such port sessions in a framework supporting the port and protocol state machine con-
cepts could be done in several ways. One method would be to create sessions on afirst message
basis. This requires less work in the port implementation, as one would only have to associate
each message with a protocol state machine. If a message withunknown sender has been re-
ceived, one would then initiate a new protocol state machinefor this sender. Since we by using
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Sender assoc. key Protocol state
b1:B @stateref1
b2:B @stateref2

Table 5.2: Hash lookup table for state data.

this approach can not know if the actor has stopped existing,there is a need to have timers for
how long each session is to live in the port. However, this method has several pitfalls. Even
though it is easy to create such a session, deleting and keeping them alive is hard. It would solely
rely on well defined timers which do not delete the associations before an actor has stopped send-
ing on the port. Deleting too early would in effect reset the protocol state of this client, and if the
protocol does not allow the new message, it is not allowed to be sent through the port.

Another way of doing this altogether, is to create a protocolbetween the ports which sets up
these association along the path as they are created. Doing this would reserve a protocol state
machine on each port along the path of connectors. This session approach would also make it
possible to tear down the associations upon a clients destruction. Table 5.2 shows how this infor-
mation is gathered in theaPort.

I thus propose that the port shall perform a hash lookup with the sender of the message as
identifier. This lookup shall return the state of the protocol state machine associated with this
session. The sender is found using the first element of the reply stack described in Section 5.3.3.

5.6 UML 2.0 and message interleaving

The event acceptor as proposed in this chapter violates the current UML 2.0 specification. This
is because the protocol state machine shall only verify events received by a classifier. Translated
to the example shown in Section 5.2, Figure 5.11 shows the protocols which matches this speci-
fication.

It should prove very useful to be able to assert the bi-directionality of events. To set this into
perspective, assume a remotely downloaded submachine has made the wrong assumptions upon
its environment. The encapsulating state machine has no control over what it is actually doing.
The failing submachine is entered and is part of the active state configuration. A message is
received which is expected to have a given effect. However, since assuming this component is ill
behaving, it sends the wrong response using the reply mechanism described above. Figure 5.11
clearly shows that this message interleaving assertion would not be possible in this case, and the
message should thus be allowed by the system.

This worst-case scenario shows that the current constraintis too restrictive. I thus suggest al-
lowing UML 2.0 protocol state machines to both check the received event and the sent effect
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acceptRequest

Request

sm protocolB {protocol}

portA : Port portB : Port

providesrequires

 

protocolA

1. Request

2. Response

Message interleaving

 

protocolB

acceptResponse

Response

sm protocolA {protocol}

Figure 5.11: UML 2.0 and message interleaving (Left diagram: Non-normative UML).

of the fired transition in the state machine. However, the formalities and reasoning behind this
current restriction has not been investigated any further in this thesis.

5.7 Structured classifiers violating protocols

We now have the conceptual tools to assert protocols betweenclassifiers ports at run-time. It is
thus necessary to decide what to do when one behavioral componentbreachessuch a protocol.
The UML 2.0 protocol state machine construct clearly specifies that it is not allowed to have
effects. However, it becomes clear that such a restriction may be too strict when doing run-time
assertion. A classifier which fails to adhere to a protocol may introduce deadlocks in adversary
state machines. Although the wrongfully sent signal were not allowed through, adversary state
machines may wait for other signals from this classifier – thus entering a deadlock which could
potentially propagate throughout the system.

Such deadlock situations might be remedied with careful useof timers, but solely relying on
this mechanism could lead to unreliable services. Thus it seems reasonable to allow protocol
state machines to have effects when performing run-time assertions, even though this violates
the UML 2.0 specification. As an example, TAPAS’ [15] Plug-and-Play [9] system uses the
countermeasures as shown in Table 5.3.

5.8 Updating the protocol specification at run-time

Allowing submachines to be replaced at run-time raises another dilemma. It is probable that the
replacement of one submachine for another invalidates one or more of the currently specified
protocols. For interfaces requiring the update to be invisible this would probably mean the sub-
machine had unwanted effects upon the system – and thus is failing. However, there may exist
cases where communicating state machinesagreesupon the change of behavior – i.e., some state
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No action It is decided not to take any action.
Actor initialization It is decided to install a new actor; this includes instanti-

ation of a new actor, installation of the manuscript defin-
ing the behavior of the actor, and execution of the actor.

Actor termination It is decided to terminate the actor freeing all resources
allocated to and consumed by that actor.

Actor reinitialization A sort of combination ofactor terminationandactor ini-
tialization that terminates the actor and reinitializes it on
the same node

.

Actor relocation It is decided to move the actor to a new node.
Play reconfiguration It is decided to reconfigure the whole play. All actors

involved in the play are influenced by this action. The
best node for executing each role is computed, and the
actors will be relocated to these positions.

Default Relocation of all actors involved in the problem.

Table 5.3: TAPAS’ Plug and Play countermeasures for failingactors.

machines are aware of the update taking place, and the changeof behavior is expected by these
adversary state machines. In such cases it may thus sound reasonable to allow updates to the
protocol specified by a protocol state machine at run-time. Indeed, allowing such updates would
make the system even more adaptable to behavioral changes.

A conceptual approach to do this may be as simple as sending signals to the port which should
be updated – specifying where the new protocol can be found and which state this protocol state
machine shall be in after installing the new protocol. Sinceall the state machines communicating
over this port are aware of the update, signaling could continue as normal after the update has
taken place.

5.9 Summary

I have in this chapter proposed solutions to addressing ports and state machines as well as send-
ing and replying to signals between these. A solution to identify a sender’s protocol state using
sessions and the execution behavior of the event acceptor was proposed.

Furthermore, concerns regarding UML 2.0’s restrictions onthe protocol state machines were
raised. The protocol state machine is neither allowed to verify signals sent by the classifier nor
to have effects. I proposed that this clearly limits the usability of run-time event assertion, and
the reasoning and formalities behind these restrictions should be further explored.

I will in the next chapter describe the implementation work done as part of this thesis. This
implementation is based on the proposed solutions and approaches presented in this chapter and
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Chapter 6

Run-time replacement of submachines in
EJBActorFrame and EJBFrame

6.1 Introduction

Chapters 4 and 5 presents several issues and solutions to be considered when dealing with re-
motely downloaded and replaceable submachines. In this chapter I present the prototype modi-
fication done to the NorARC frameworks EJBActorFrame and EJBFrame to enable some of the
proposed solutions.

6.2 What has been realized?

Modifying existing code-bases takes a lot of time, and the ideas presented in the previous chap-
ter requires core changes within the NorARC frameworks. Not all the issues in the two previous
chapters have thus been addressed.

With regards to replacing submachines at run-time, the following have been implemented:

• New SubMachine class which can encapsulate its own instancevariables.

• Actor behavior for actors which wants to enable remotely downloadable and replaceable
submachines.

• SubMachine replacement while not part of the active state configuration.

Furthermore, the run-timeevent acceptorhas been implemented, with most ideas from Chapter
5 implemented:

• Port construct support for EJBActorFrame.

• Protocol state machine support for EJBActorFrame.
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• Updated addressing scheme including support for Ports.

• Connector description and setup between Ports.

• Sending and replying to messages through Ports.

6.3 Modifications overview

Modifications have been made to both the EJBFrame and EJBActorFrame Java packages. An
overview of the changes done to each of the packages is described below.

6.3.1 Modified EJBFrame Java package

Figure 6.1 shows the modified Java package of EJBFrame. As seenin this figure, changes have
been made to almost all classes in the structure. No structural changes have been done to the
package, but the new classSubMachinehas been added. The newSubMachineclass extends
the existingCompositeStateclass, and implements a submachine which is able to encapsulate its
own instance variables. The modifications done to these classes spans the following:

• Inception point for reception ofActorMsgto Port.

• Storing instance data forSubMachine.

• Support for newActorAddressaddressing scheme.

• Reply stack for theActorMsg.

State

CompositeState StateMachine

ActorAddress

cd EJBFrame classes

SubMachine

ActorAddressActorMsg

StateData

<<interface>>
StateDataBean

*

<<interface>>
StateDataHome

1

Modified class New classLegend:

Figure 6.1: Modified EJBFrame Java package overview.
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6.3.2 Modified EJBActorFrame Java package

Several changes have been done to the EJBActorFrame Java package. This is shown in Figure
6.2. Some structural changes in the package have taken place. Most notable is the relocation of
the classPortSpecto be contained by theActorSMclass. This was done to accommodate creation
of the newPort class.

Furthermore, three new classes has been added to the package. ThePort class is the new port
construct for EJBActorFrame, and is referenced in a Java Hashtable in theActorContextclass.
ThePort class have the newPortSMclass attached to it, representing the protocol state machine
implementation for thePort. ThePortSMclass extends the existingRoleCSclass from Agent-
Frame, which contains much of the needed structure for implementing a protocol state machine.

The new classDynamicActorCSclass implements new behavior for downloading and replac-
ing SubMachineclasses at run-time. The actual downloading and Java classloading is performed
by the utility classFileClassLoader.

ActorCS ActorSM

ActorContext

PortPortSM

RoleCS
(from AgentFrame)

cd EJBActorFrame classes

DynamicActorCS

PortSpec

Modified class New classLegend:

1

*

ActorBean

<<interface>>
ActorHome

PartSpec

* *

1

<<interface>>
Actor

FileClassLoader

Figure 6.2: Modified EJBActorFrame Java package overview.

The following have been implemented in EJBActorFrame:

• Sending and replying to messages inActorSM.

• Creation ofPort instances using thePortSpec.

• ModifiedActorCSfor creation ofPort and accommodated ActorFrame protocol to match.

• Run-time event acceptor with thePort andPortSMclasses.
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• Behavior for downloading and replacingSubMachineswith DynamicActorCS.

I will in the remainder of this chapter show in greater detailthe structural and behavioral changes
done to the Java packages.

6.4 Implementation of SubMachine using EJBFrame Com-
positeState

EJBFrame lacked the UML 2.0 submachine construct as described in Section 2.5.1. The first
step was thus to map this construct to EJBFrame.

A submachine is a state machine referenced by another state machine. The natural way of
mapping this would thus be to reference aStateMachineobject to create submachines. The
StateMachineclass in EJBFrame contains functionality such as message queues, state machine
execution and J2EE specific details, whileCompositeStateis used to specify transitions and ar-
bitrarily deep state configurations. As the submachine shall be a part of a state machine, one can
thus use the already existing queue and execution handling as implemented by theStateMachine
class. As theCompositeStatealready implements most of the necessary properties and behavior
of a submachine, it thus makes sense to extend this class whencreating theSubMachine. In fact,
the EJBFrameCompositeStateis very close to the submachine construct – it is not allowed to
cross its boundaries without using entry and exit points. The main difference between the two
constructs is that we shall allow additional instance variables to be stored as part of the new
SubMachineclass.

6.4.1 Structural modifications

Figure 6.3 shows attribute and operation additions to the EJBFrame classesState, StateMachine
StateDataBeanandStateData. These additions are done to make storage, initialization,saving
and resurrection of state data possible. TheStateMachineclass is modified by adding a new Java
Hashtable. This Hashtable is marked as persistent, and is thus saved and restored as part of the
StateMachine. To uniquely identify what data belongs to whichStateobject, the full state name
is inserted as the key.

The implementation of the specified operations by the classStateare left empty by default. This
is done as it is most likely that classes in the class-hierarchy above theSubMachinedo not need
this feature. The addition of these methods would thus not create any significant computational
overhead.

Classes which extendsStateand wants to save persistent data in theStateMachineshould over-
ride the specified operations. As theSubMachineclass is such an inherited class and wants to use
this feature, we thus override these operations. Classes extending theSubMachineclass must call

46



State

getStateProperties(byte[]) : ByteArrayInputStream
storeStateProperties() : byte[]
initStateProperties(StateMachine) : void

StateMachine

stateProperties : Hashtable

removeStateProperties(State) : boolean
addStateProperties(State) : void

StateDataBean StateData

getStateProperties() : Hashtable
setStateProperties(Hashtable) : void

setStateProperties(Hashtable) : void
getStateProperties() : Hashtable

Figure 6.3: Modifications done to State and StateMachine.

the super implementation of the method to ensure that variables specified by the inheritedSub-
Machineis stored properly. This is shown in Figure 6.4, whereGPSPositioningadds an attribute
gpsPosition. Using the described model, it has thus been assured that both thegsmPositionand
gpsPositioninstance data is saved forGPSPositioningobjects.

SubMachine
GSMPositioning GPSPositioning

gsmPosition : String gpsPosition : String

Figure 6.4: Classes inherited from SubMachine.

6.4.2 Behavioral modifications

The structural requirements of being able to save data for classes inheritingStateare now met.
Storing and resurrecting this data needs to be done inside the StateMachine, before and after the
StateMachine executes a transition. Figure 6.5 shows the sequence diagram specifying the with
transition execution of a StateMachine, with the added functionality of resurrecting and storing
data with the reference to theGetStatePropertiesandStoreStatePropertiessequence diagrams.

Figure 6.6 shows how the instance data is restored to theSubMachinebefore a transition on it is
fired. As seen, this is done by fetching the byte array from thestatePropertiesHashtable with
the key of the current enclosing state’s fully qualified state name. If this lookup turns out empty,
it has not been entered before, and the initial values is thuscreated by callinginitStateProperties.
Otherwise a call togetStatePropertiesis performed, which is responsible for resurrection of the
instance data.

Figure 6.6 shows how the instance data is stored after transition has ended in theStoreStateProp-
ertiessequence diagram. This is done by callingstoreStatePropertiesof the enclosing state. If
there exists data in the byte array returned, it is stored in thestatePropertiesHashtable.
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: JMS : ActorCS: ActorSM

loop [enclosingState != null]

execTrans()

alt

performExit()

exit()

opt

ref Task

execTrans

alt [nextState!=null && performExitIsDone]
nextstate.enterState()

alt [nextState!=null]

nextState.enterState

sd ExecuteTransition

entry()

ref GetStateProperties

ref StoreStateProperties

Figure 6.5: Modified transition execution.

6.5 DynamicActorCS – actor behavior for dynamic subma-
chine loading

As shown in Figure 6.2, a new classDynamicActorCSwas implemented by extending the ex-
isting ActorCSclass. This class is intended to be used by actors that wants to enable remotely
downloadable and possibly replaceableSubMachinesat run-time.

Figure 6.7 shows the steps taken upon reception ofSubMachineUpdateMsg. The first step in-
volves searching through the list ofStatechildren contained by theActorCS. If the SubMachine
state name is found in this list, processing continues with getting the existing reference to this
State. A search is then performed to check whether theSubMachinewhich should be replaced is
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storeStateProperties()

byte[] data

stateProperties.put(enclSt.getFullStateName(), data)

alt [data != null]

: ActorCS: ActorSM

sd StoreStateProperties

initStateProperties(this)

getStateProperties(data)

stateProperties.get(enclSt.getFullStateName())

alt [data == null]

: ActorCS: ActorSM

sd GetStateProperties

Figure 6.6: Sequence diagrams forGetStatePropertiesandStoreStateProperties.

part of the active state configuration. Processing then continues by creating a newSubMachine
with the configuration specified by theSubMachineUpdateMsg. If the class loading is successful,
the submachine state reference is replaced with new aSubMachineobject. As seen in the figure,
this implementation saves the signal if the current active state is unappropriate for updating the
SubMachine. If any of the steps fails,DynamicActorCSsends aSubMachineUpdateNackMsg
message to the requester of the update. These steps are described more thoroughly in the next
sections.

6.5.1 Messages

The messages used to communicate withDynamicActorCSare all messages which inherits the
EJBFrameActorMsgclass, as shown in Figure 6.8. Table 6.1 describes what each of these
messages are used for. TheSubMachineUpdateMsgis the message which is used to invoke re-
placement of the remotely downloaded or locally defined Javaclass ofSubMachine.

The most important properties of theSubMachineUpdateMsgmessage are:

• stateName: State name of the SubMachine to be replaced.

• className: Java class name of the SubMachine which shall replace the existing.

• classRoot: Where the Java class is located, either locally or remotely.

6.5.2 Getting the reference of the SubMachine to be replaced

TheCompositeStateclass contains a Hashtable with state names and references to Stateinstances
specified within the structure of a composite state. By sending the state name of the state which
shall be replaced with theSubMachineUpdateMsg, one can thus perform a hash-lookup on the
children list and get this reference by its state name.
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State name
search

[contains state name]

Get existing
SubMachine

[!part of active state configuration]

Download and 
instantiate new 

SubMachine

Send
SubMachineStateUpdateNack

with reasoncode

[part of active state configuration]

[else]

[failed]

Remove instance data,
replace SubMachine reference

[success]

Send 
SubMachineStateUpdateAck

ad DynamicActorCS SubMachineUpdateMsg

defer signal

Figure 6.7: Activity diagram showing the submachine replacement steps.

ActorMsg

SubMachineUpdateMsgSubMachineUpdateAckMsg SubMachineUpdateNackMsg

stateName : String errorNo : int
stateName : String

stateName : String
className : String
classRoot : String
classVersion : int

cd DynamicActorCS ActorMsg’s

Figure 6.8: ActorMsg’s forDynamicActorCS.

6.5.3 Searching the active state configuration

The EJBFrame classState, and thus also extended classes, contains an attributeenclosingState
which is a reference to the enclosing state of aStateobject – as shown in Figure 6.9. An operation
isEnclosingwas added to perform a reversed, recursive search of the active state configuration –
checking if each of these enclosing states is a reference to theSubMachineobject which shall be
replaced.

TheisEnclosingoperation works as shown in Figure 6.10. The currently active state in EJBFrame
is always a simpleStateobject, denotedcurrentStatein the figure. By checking whether the ref-
erence toenclosingStateis equal to thereplaceSM, we can thus check if theSubMachineobject
to be replaced is part of the active state configuration. As the figure shows, theSubMachineob-
ject to be replaced in this example is not part of the active state configuration, and the operation
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SubMachineUpdateMsg Message specifying where to find the new SubMachine
component and which state it shall replace. Initiates the
replacement.

SubMachineUpdateAckMsg Message sent by actor if the update was successful.
SubMachineUpdateNackMsgMessage sent by actor if an error occurred. Appropriate

error code set.

Table 6.1: Messages used byDynamicActorCS.

CompositeState

+ isEnclosing(CompositeState) : boolean

State

enclosingState : CompositeState

Figure 6.9: Classes CompositeState and State with partial operations and attributes.

thus returns false.

6.5.4 Remotely download and initialize a SubMachine

The initialization of a newSubMachineobject is done by using standard Java classloading fea-
tures. A new classFileClassLoaderwas implemented which tries to find Java classes in the
following order:

1. Get class from local package.

2. Get class from remote using Java URL.

3. Get class from local filesystem.

The Java Class returned by this utility class is hence used to create a Java Object using the default
constructor. This Object is thereafter casted into theSubMachineobject which is to be used. The
code for this is shown in Listing 6.1.

6.5.5 Replacing the existing SubMachine

Replacing the existingSubMachineobject is done in three steps:

1. Remove the instance variables used by the oldSubMachineobject.

2. Update the environment of the newSubMachineobject.

3. Update the references in thechildrenHashtable.
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currentState : State

enclosingState1 : CompositeState

enclosingState2 : CompositeState

replaceSM : SubMachine

1. enclosingState

2. isEnclosing(replaceSM)

4. isEnclosing(replaceSM)

3. enclosingState

Submachine 
replacement 
candidate

Figure 6.10: Searching active state configuration (non-normative UML).

Listing 6.1: Remotely download and initialize a newSubMachine.
�

F i l e C l a s s L o a d e r cLoader =new F i l e C l a s s L o a d e r ( ) ;
C las s c l s = cLoader . l o a d C l a s s ( amsg . g e t C l a s s R o o t ( ) ,

c lassName ,
f a l s e ) ;

Ob jec t ob j = c l s . newIns tance ( ) ;
SubMachine cs = ( SubMachine ) ob j ;

� �

With the creation of theSubMachinecomponent in Section 6.4, we have already defined behavior
such that if the instance variables is not saved anywhere forthe submachine, it will be initialized
and stored properly when entering and leaving the submachine. All that needs to be done is thus
to remove the instance variables as defined by theSubMachineobject which is to be replaced.
This is done with a call to theStateMachineobject’sremoveStateDatawith the fully qualified
state name of theSubMachine.

The newSubMachineobject must be placed in the correct state structure, and must thus de-
fine its enclosing state environment. This is needed when thesubmachine shall exit through any
of its submachine state’s exit points. This is done by setting the objectsenclosingStateto refer-
ence theDynamicActorCSobject.

All that remains for replacing aSubMachineis hence to update thechildren Hashtable with
the newSubMachineinstance. However, this limits the possibility of replacing SubMachineob-
jects which are part of deeper nestedSubMachineor CompositeStatestructures. As thechildren
Hashtable has no knowledge of these substructures, this would require a different approach all
together. The code for this, and the above steps, is shown in Listing 6.2.

6.6 Run-time event acceptor implementation

Implementation of the run-timeevent acceptoris based on solutions proposed in Chapter 5.
Smaller changes have been done in the NorARC frameworks, but the overall operation of the
event acceptor is as described in this section.
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Listing 6.2: Replacing a SubMachine.
�

/ / remove i n s t a n c e v a r i a b l e s
cur fsm . r e m o v e S t a t e P r o p e r t i e s ( updateCS ) ;

/ / s e t e n c l o s i n g env i ronmen t
subMachine . e n c l o s i n g S t a t e =t h i s ;

/ / upda te t h e r e f e r e n c e s
t h i s . c h i l d r e n . remove ( subMachineStateName ) ;
t h i s . c h i l d r e n . pu t ( subMachineStateName , subMachine ) ;

� �

6.6.1 Class overview

Figure 6.11 shows the event acceptor classes with an extractof the attributes and operations.
As seen in the figure, the event acceptor is stored as part of anActors ActorContext. An Actor
can have multiple defined ports, and this is stored in a Hashtable in the ActorContext. OnePort
instance contains exactly onePortSM instance. The PortSM class represents the protocol state
machine, and is responsible for allowing or disallowing messages. The Port class represents the
port construct. The Port implements the ActorFrame protocol, routes and sends of signals and
executes the protocol state machinePortSM.

Port

name : String
associatedRoles : Hashtable
instanceData : Hashtable
inRole : ActorAddress
outRole : ActorAddress

+ legalMessage(ActorMsg)
+ illegalMessage(ActorMsg)
+ sendMessage(ActorMsg)
+ execPortTrans(ActorMsg)
+ exec(ActorMsg, StateMachine)
+ isFromInnerActor(ActorMsg) : boolean
+ isFromOuterActor(ActorMsg) : boolean

PortSM

+ serialize()
+ deSerialize(byte[])
+ serialize() : byte[]

ActorContext
(from EJBActorFrame)

1

* {hash}

cd Event acceptor in ActorContext

RoleCS
(from AgentFrame)

State
(from EJBFrame)

*

Figure 6.11: The event acceptor classes Port and PortSM in ActorContext.

6.6.2 Port addressing implementation

Addressing of Port instances is done according to the approach proposed in Section 5.3.1. As
EJBFrame already implements most of this scheme, it was thus extended to add support for the
Port addressing. This was done by adding the fieldactorPort to theActorAddressclass as shown
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ActorAddress

- actorID : String
- actorType : String
- actorPort : String

+ boolean isInnerActorAddress(ActorAddress)

Figure 6.12: Modified ActorAddress class.

in Figure 6.12.

All utility operations specified by this class was updated with the additional information ofac-
torPort. This approach does not change the default ActorFrame behavior of addressing StateMa-
chines. In addition, a new utility operation,isInnerActor, was added to check if a one ActorAd-
dress specifies an Actor which is an inner part of another Actor.

6.6.3 Port implementation

The Port class implements the necessary behavior and properties as described in Section 5.3. The
class is shown in Figure 6.11.

The legalMessageoperation routes messages to the correct sender. This operation uses the al-
gorithm as proposed in Section 5.3.3. TheillegalMessageoperation is used to handle illegal
messages. Currently this implementation hasno action, and is only tracing the errors which
occur. However, countermeasures for failing Actors as proposed in Section 5.7 could be imple-
mented here. Theexecmethod executes the event acceptor. This operation is called both upon
reception and sending of messages. TheexecPortTransoperation implements the ActorFrame
protocol which enables configuring theinRoleandoutRoleconnectors of the Port at creation
time. The two operationsisFromInnerActorand isFromOuterActorare utility methods which
makes it possible to decide the direction of a message.

6.6.4 PortSM implementation

The PortSM class implements the protocol state machine, andis responsible for accepting or
rejecting the signals sent to the port. The class extends theRoleCSclass from AgentFrame, and
thus has much of the structure needed to create the protocol state machine. The exception is that
the arguments used in the operation implementations accepts Port objects instead of StateMa-
chine objects.

The PortSM class should thus be used like any other CompositeState class from EJBFrame,
but does not use thesendMessageoperation to send ActorMsg’s. AlthoughsendMessagewas
implemented, it is tagged with a deprecation warning such that developers are aware that the
use of it should be limited. Propagating messages is insteaddone by calling the Port operations
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illegalMessageor illegalMessage– according to the legality of the message which was received
or sent.

As the PortSM class gets called with both messages sent and received, it should thus take di-
rection into consideration when asserting legality of the message. Such a check can be done by
calling theisFromInnerActorandisFromOuterActoroperations of Port.

6.6.5 Sending and replying to messages

Section 5.3.3 showed how signals shall be replied to. The algorithm which does the actual rout-
ing and delivery of the messages are implemented by the operation legalMessagein the Port
class. However, additional methods are necessary to be ableto deliver the message to the Port.
The ActorSMclass already implements this through asendMessageoperation which takes the
ActorMsg and a port name as parameters.

ActorMsg

replyStack : Vector

+ remoteLastFromReplyStack() : void
+ firstElementFromReplyStack() : ActorAddress
+ lastElementFromReplyStack() : ActorAddress

Figure 6.13: Modified ActorMsg class.

The existingsendMessagemethod was thus updated to callexecof the port name described
by the parameter. Furthermore, a new operationsendMessageReplywas added. This operation
takes a new ActorMsg and the ActorMsg which this message is inreply to as parameters. The
method copies the reply stack from the request message to thereply message, updates the sender
and receiver roles of the message and hence sends the messageas normal. The modified Ac-
torMsg class with its newreplyStackis shown in Figure 6.13. The Java implementation of the
ActorSM operationssendMessageandsendMessageReplyis shown in Listing 6.3.

6.6.6 Message reception

Figure 6.14 shows an overview of what happens upon message reception by an Actor. The figure
shown is simplified to increase readability. The main difference between the previous behavior
and the inclusion of ports, is the addition of the methodshouldProcessMessage.

The shouldProcessMessagemethod is declared abstract in the StateMachine class, and is im-
plemented inActorSM. The method checks if the attributeactorPort is set in its ActorMsg pa-
rameter. If this attribute is set and a Port with this name exists in the Hashtable of the Actors
ActorContext, the Port is executed and the method returns false. Otherwise the method returns
true, and the processing continues with execution of the state machine.
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Listing 6.3: Java code for ActorSM operationssendMessageandsendMessageReply.
�

pub l i c vo id sendMessage ( ActorMsg am , S t r i n g portName ){
i f ( c o n t e x t . p o r t s != n u l l && c o n t e x t . p o r t s . con ta insKey ( portName ) ){

P o r t p o r t = ( P o r t ) c o n t e x t . p o r t s . g e t ( portName ) ;
am . s e t S e n d e r R o l e ( getMyActorAddress ( ) ) ;
am . addToReplyStack ( getMyActorAddress ( ) ) ;
p o r t . exec (am , t h i s ) ;

}
. .

}

pub l i c vo id sendMessageReply ( ActorMsg replyMsg , ActorMsg reques tMsg ) {
Vec to r r e p l y S t a c k = reques tMsg . g e t R e p l y S t a c k ( ) ;
i f ( r e p l y S t a c k == n u l l ) {

. .
re turn ;

}
replyMsg . s e t R e p l y S t a c k ( reques tMsg . g e t R e p l y S t a c k ( ) ) ;
Ac to rAddress rcvRo le = reques tMsg . ge tLas tE lemen tF romRep lyS tack ( ) ;

i f ( r cvRo le == n u l l ) {
. .
re turn ;

}
replyMsg . s e t S e n d e r R o l e ( getMyActorAddress ( ) ) ;
replyMsg . s e t R e c e i v e r R o l e ( rcvRo le ) ;
sendMessage ( replyMsg ) ;

}
� �
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: ActorSM : ActorHome : Actor : ActorCS: JMS

onMessage(Message)

MessageAck

processMessage(sig)

findByPrimaryKey(myActorId, currentState)

getStateData()

StateData

ref ExecuteTransition

StoreData(StateData)

StateData

sd Message reception

alt

shouldProcessMessage(sig)

[sig.receiverRole.actorPort in context.ports]

: Port

ref ExecutePortTransition

Figure 6.14: Sequence diagram for message reception (simplified).

As seen in Figure 6.14, state data is extracted and stored even though the state machine is not
executed. This is done because the Port objects are stored aspart of this state data. This has
significant computational overhead when done on this platform, and steps should be taken to
change this behavior for later implementations.

Figure 6.15 shows how the event acceptor is executed. There are two possible branches of ex-
ecution for the event acceptor. Framework messages are treated specially, as these are used to
implement the ActorFrame protocol for the ports. This implementation is stateless, which is not
an optimal solution. The other possibility is to execute theprotocol state machine. This is done
by first finding the state data associated with the sender of the message, as described in Section
5.5. The PortSM instance is fed with the state data associated with the sender and the PortSM
execution is performed. After the execution is performed, the updated state data is stored.

Figure 6.16 shows the possible outcomes of the event acceptor execution. In accordance with
Section 5.4, there are two possible outcomes of such execution – either the message is regarded
as legal or illegal. Furthermore, the protocol state machine, PortSM, is allowed to change state
when it is executed.
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sd ExecutePortTransition

: Port: ActorSM : PortSM

exec(sig, this)

alt [sig.isFrameWorkMsg]

execPortTransition(sig)

ref PortTask

deSerialize(data)

findStateData(sig.getFirstFromReplyStack())

serialize()

byte[] data

Figure 6.15: Sequence diagram for event acceptor execution.

portName Unique name of the Port.
portType Class name implementing the PortSM.
portDirection Can restrict the directionality of the Port.
requestedRole Requests connector to this ActorAddress.
inquiredRole InquiresActorAddressfor therequestedRole.

Table 6.2:PortSpecattribute description.

6.6.7 Port description implementation

To be able to describe the ports and connectors between ports, the structure of actor descriptor
XML-file was changed. This was done by adding additional fields to the descriptor which is read
into the classPortSpecupon initialization of an Actor.

The modifiedPortSpecclass is as shown in Figure 6.17. To support the new ActorAddress
scheme described above, the actor descriptor reader methodhas the added support of reading
port names from therequestedandinquired roles. A description of the attributes ofPortSpecis
shown in Table 6.2.

6.6.8 Port and connector creation implementation

To be able to create Ports and connectors for an Actor part upon initialization, changes had to be
done to the existing ActorFrame protocols RoleCreate and RoleRequest. This is done by extend-
ing the existing RoleRequest ActorMsg with the possibility ofdescribing anactorPort. Figure
6.18 shows a somewhat simplified sequence diagram which setsup theinRoleandoutRolecon-
nectors between two Ports.

The sequence as shown in Figure 6.18 is initiated by the method createPortsimplemented in
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sd PortTask

: Port: ActorSM : PortSM

execTrans(sig, state, this)

legalMessage(sig)

sendMessage(sig)

[illegalMessage]

alt

illegalMessage(sig, strReason)

nextState(state)

opt

sameState()opt

performExit()

Figure 6.16: PortTask – Execution of a protocol state machine in the event acceptor.

PortSpec

- portName : String
- portType : String
- portDirection : String
- requestedRole : ActorAddress
- inquiredRole : ActorAddress

Figure 6.17: Modified PortSpec class.

ActorSM. This method is responsible for creating all the Port instances as defined by its actor de-
scriptor. For each of the Port instances created, a RoleCreatemessage is sent to the Port with the
PortSpec as argument. This PortSpec defines the connector this Port should try to set up – if any.
When the port receives the RoleCreate, it requests the role as defined by sending a RoleRequest
message. This protocol pattern is equivalent to the RoleRequest pattern in ActorFrame, with the
addition that Ports may be addressed.

When a connector has been confirmed by a RoleConfirm message, the path synchronization
mechanism is started, as described in Section 5.3.4. This isshown by the sequence diagram in
Figure 6.19. The PathRequest protocol works by sending the PathRequest message when the
outRoleis set in the Port. This message is propagated by thelegalMessagein the Port class.
Upon reception of a PathRequest, the Port callsaddAssociatedRoles. This call creates new in-
stance and state data for this sender, and enables the event acceptor to keep unique state data for
each potential sender.

PathRequestAck is sent back to the originator if the receiverof a PathRequest message is a
behavior port. Upon reception of a PathRequestAck, the Port hence sends a RoleCreateAck to
the Actor. When the Actor has received RoleCreateAck from all its specified ports, the Actor can
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: ActorCS

: Port requestedPort : Port

requestedActor : ActorCS

<<create>>

RoleCreate(PortSpec)

RoleRequest

RolePlay

RoleConfirm

RoleCreateAck

idle

[hasPort]alt

RoleDenied(REASONCODE)
RoleCreateNack

sd PortCreate

waitConfirmPorts

ref PathCreate

loop [morePortsToCreate]

setInOutRole(RoleConfirm.senderRole)

alt [allPortsAcked]

init

idle

Figure 6.18: Setting up addresses between two ports.

start sending messages as normal.

6.7 Summary

This chapter presented the most important implementation details on how the NorARC frame-
works EJBActorFrame and EJBFrame were modified to support remotely downloaded and run-
time replaceable submachines. The chapter also shows how the run-timeevent acceptor, as
described in Chapter 5, was implemented in the NorARC frameworks.

Summarized, the changes done to the frameworks are as following:

• SubMachine construct added to EJBFrame.

• New Actor behavior which supports remotely downloadable and run-time replaceable Sub-
Machines.
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: Port requestedPort : Port

alt [isSet(outRole)]

PathRequest

addAssociatedRole(PathRequest.senderRole)

alt [isBehavior]
PathRequestAck

legalMessage(PathRequest)

sd PathCreate

loop [unsentPathRequests]

PathRequest

alt add.unsentPathRequest()

Figure 6.19: PathRequest sequence for synchronization of connectors.

• Updated the ActorAddress addressing scheme to include ports.

• New Port construct for EJBActorFrame.

• Protocol state machine which enables the run-time event acceptor.

In the next chapter I will revisit the case telecom service from Chapter 4. The service is imple-
mented to demonstrate the usage and usefulness of the modified frameworks.
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Chapter 7

Implementation of a service using remotely
downloaded features

7.1 Introduction

In order to demonstrate how the proposed modifications to theEJBFrame and EJBActorFrame
works, and to show a service which can replace submachines atrun-time, I implemented the
phone book service, previously introduced in Section 4.2. Furthermore, the service utilizes the
event acceptorto protect some of the actors involved in the service.

The descriptions made in this chapter does not reflect all details of implementing services us-
ing the NorARC frameworks. I will hence focus on the parts which are relevant for the proposed
changes – i.e., run-time replacement of submachines and useof theevent acceptor.

7.2 The phone book service

The phone book serviceis a simplified service which enables users of the service to perform
phone book lookups based on search keywords. The service implementation shown in this chap-
ter does not fully implement such searching, and the focus isthus the messages sent between the
actors. ServiceFrame has support for the Parlay-X API’s forsending SMS and setting up calls
through the use of predefined actors. However, the implementation shown in this chapter does
not use these actors, and instead uses the simple actorsSMSEdgeandCallEdge. This was done
to reduce the implementation work.

The behavior of thePhoneBookServiceactor and its environment is shown in the sequence dia-
gram in Figure 7.1. The defaultPhoneBookServicebehavior is to make it possible forUserTer-
minal to choose the behavior of the actor through run-time submachine replacement. As shown
in the figure, thePhoneBookServicedefines two different interaction features;SearchFeatureCall
andSearchFeatureSms. The difference between these two interactions is that theSearchFeature-
Call sets up a phone call between the phone of the phone book lookuprequester and the result
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: UserTerminal : PhoneBookService : SMSEdge : CallEdge : BillingService

ChooseFeatureMsg

ChooseFeatureAckMsg

SubMachineUpdateMsg

SubMachineUpdateAckMsg

alt

SubMachineUpdateNackMsg

[searchFeature instanceof SearchFeatureCallSM]

alt [searchFeature instanceof SearchFeatureSmsSM]

ref SearchFeatureSms

ref SearchFeatureCall

ChooseFeatureNackMsg

sd Phone book service

Figure 7.1: Sequence diagram for phone book service.

of the lookup, while theSearchFeatureSmssends an SMS with the result to the mobile phone of
the lookup requester. The interactions for theSearchFeatureCallandSearchFeatureSmsfeatures
are shown in the sequence diagram in Figure 7.2.

7.3 Design of phone book service

Figure 7.3 shows how the phone book service is designed. All the involved actors are Actor-
Frame Actors, and thus has state machines specifying their behavior and anActorAddressfor
their state machine. The new addition as shown in the figure isthus the named ports.

The root actor of the service is theActorDomain– the actor which encloses all the other ac-
tors involved. I will in the remainder of the chapter show thetwo actorsPhoneBookServiceand
SMSEdgeas examples on how to implement such a service.

7.4 Phone book service implementation

The phone book service is implemented by extending the classes defined in the EJBActorFrame
Java package. Figure 7.4 shows the classes which is manuallymodified for the actorPhone-
BookServicein gray. All other classes are extended in accordance to the EJBActorFrame profile,
and is thus automatically generated using code-generation. ThePhoneBookServiceactor does
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PhoneBookLookupMsg

PhoneBookChoiceMsg

PhoneBookResultsMsg

SendSMSMsg

BillingMsg
SendSMSAckMsg

alt [smsSent]

SendSMSNackMsg

: PhoneBookService : SMSEdge : BillingService

sd SearchFeatureSms

: UserTerminal

PhoneBookLookupMsg

PhoneBookChoiceMsg

PhoneBookResultsMsg

CallSetupMsg

BillingMsg
CallSetupAckMsg

alt [callSetup]

CallSetupNackMsg

: PhoneBookService : CallEdge : BillingService

sd SearchFeatureCall

: UserTerminal

Figure 7.2: Sequence diagram forSearchFeatureSmsandSearchFeatureCall.

<<actor>>
SMSEdge

<<actor>>
PhoneBookService

<<actor>>
UserTerminal smsOut smsPort

cd PhoneBookService

callOutphoneIn
phonePort

<<actor>>
BillingService

billing

billingPort

<<actor>>
CallEdge

callPort

billingPort

<<actor>>
ActorDomain

Figure 7.3: Class diagram of the phone book service.

not define any protocols for its ports, and thus uses the default PortSM class attached to the
ports. This allows all messages by default. Furthermore, the actor allows replacement of the
two SubMachinesSearchFeatureCallSMand SearchFeatureSmsSM. As such, the behavior of
PhoneBookService, PhoneBookServiceCS, thus extends theDynamicActorCSclass instead of
the defaultActorCSclass.

Figure 7.5 shows the manually implemented classes of theSMSEdgeactor. This actor provides
a service which could potentially accesses the Parlay-X SMSAPI, and should as such be pro-
tected against other failing actors. This is done by implementing a protocol state machine for the
port which other actor clients access. As seen in Figure 7.5 this is done by creating a new class
SMSEdgePortSMwhich extends the defaultPortSMclass of EJBActorFrame.

I will in the next sections show how these two actors are mapped from UML, and how the
class structure from Figure 7.3 is achieved.

64



DynamicActorCS
(from EJBActorFrame)

ActorSM
(from EJBActorFrame)

PhoneBookServiceCS PhoneBookServiceSMSubMachine
(from EJBFrame)

SearchFeatureCallSM

SearchFeatureSmsSM

cd PhoneBookService
State

(from EJBFrame)

Port
(from EJBActorFrame)

ActorContext
(from EJBActorFrame)

PortSM
(from EJBActorFrame)

Figure 7.4: Class diagram for manually modified classes ofPhoneBookService.

DynamicActorCS
(from EJBActorFrame)

ActorSM
(from EJBActorFrame)

SMSEdgeServiceCS SMSEdgeSM

cd SMSEdge

State
(from EJBFrame)

Port
(from EJBActorFrame)

ActorContext
(from EJBActorFrame)

PortSM
(from EJBActorFrame)

SMSEdgePortSM

Figure 7.5: Class diagram for manually modified classes ofSMSEdge.

7.4.1 Implementation of run-time replaceable submachines

The mapping from UML to Java of the state machinePhoneBookServiceCSis shown Figure 7.6.
The figure shows how the SubMachinesearchFeatureis targeted for replacement by sending a
SubMachineUpdateMsgto itself. The super implementationDynamicActorCSwould in this case
try to load theSearchFeatureCallSMsubmachine and bind this to thesearchFeaturesubmachine
state.

Implementing run-time replaceable submachines are divided into two steps:

• Implement the enclosing state machine.

• Implement the submachine feature.

Implementation of the enclosing state machine

As seen in this example,PhoneBookServiceCSchooses theSubMachineto load based on a pa-
rameter in theChooseFeatureMsg. This is not the only way to do this, as one could put the logic
of selecting the SubMachine to be loaded in theUserTerminalactor instead. Such an approach
would be more flexible, as a user of the service thus could choose a feature based upon a lookup
in some kind of feature database. The implementation shown here is thus not very dynamic, as
PhoneBookServiceCSneeds to have information about all the different features it could load at
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design time.

public class PhoneBookServiceCS extends DynamicActorCS {
  ..
public SubMachine searchFeature = new SearchFeatureSmsSM("searchFeature", this);

  public State waitUpdate = new State("waitUpdate", this);

  public void execTrans(ActorMsg sig, State st, StateMachine curfsm) {
    PhoneBookServiceSM asm = (PhoneBookServiceSM)curfsm;
    super.execTrans(sig,st,curfsm);
    if (st == idle) {
      if (sig instanceof ChooseFeatureMsg) {
        updateOriginator = sig;
        String feature = ((ChooseFeatureMsg)sig).getFeature();

        if (feature.toLowerCase().equals("call")) {
          performExit(curfsm);
          SubMachineUpdateMsg cmsg = new
                 SubMachineUpdateMsg("searchFeature", "",
                     "actor.phonebookservice.SearchFeatureCallSM", "", 2);

          asm.sendMessage(cmsg, curfsm.getMyActorAddress());
          nextState(waitUpdate, curfsm);
          return;
        }
      ..
    } else if (st == waitUpdate) {
      if (sig instanceof SubMachineUpdateAckMsg) {
        // enter through the default entry
        performExit(curfsm);
        asm.sendMessageReply(new ChooseFeatureAckMsg(), updateOriginator);

nextState(searchFeature, curfsm);
        return;
      }
  ..
  public void outofInnerCompositeState(CompositeState cs,int exNo,StateMachine curfsm){
    ..
    if (exNo == 0) {
      nextState(idle, curfsm);
      return;
    }
  }

sm PhoneBookServiceCS extends DynamicActorCS

idle

ChooseFeatureMsg 
/ send SubMachineUpdateMsg

searchFeature :
SubMachine

waitUpdate

SubMachineUpdateAckMsg
/ send ChooseFeatureAckMsg

Figure 7.6: Implementation of behavior – classPhoneBookServiceCS.

Furthermore, Figure 7.6 shows how the submachine statesearchFeatureis entered and exited
through the defined entry and exit points by using of thenextStateandoutofInnerCompositeState
operations respectively. The implementation shown here does not specify an entry point, and it
should thus be entered through the default entry point. Thisequivalent to theCompositeState
usage in the original EJBActorFrame.

Implementation of the feature submachine

Figure 7.7 shows the mapping from UML to Java of the feature submachineSearchFeatureSmsSM.
This class extends the EJBFrame classSubMachine, and it is thus possible to replace this at run-
time. BothSearchFeatureSmsSMandSearchFeatureCallSMare mapped using this approach,
and contains the same entry and exit points. As shown in this figure, the default entry point and
the numeric entry point ”0” enters the same state;waitForRequest.

Furthermore, the figure shows how messages are replied to using thesendMessageReplyopera-
tion and how messages are sent through a specific named port using thesendMessageoperation.
It also shows how the submachine is exited using the numeric exit point ”0” when the SMS mes-
sage has been acknowledged.
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public class SearchFeatureSmsSM extends SubMachine {
  ..
// specific entry

  public void enterState(int enterNo,StateMachine curfsm) {
    if (enterNo == 0) {
      waitForRequest.enterState(curfsm);
    }
  }
  // default entry
  public void enterState(StateMachine curfsm) {

enterState(0, curfsm);
  }

  public State waitForRequest = new State("waitForRequest", this);
  public State waitForChoice = new State("waitForChoice", this);
  public State waitForSMSAck = new State("waitForSMSAck", this);

  public static String SMSPORT = "smsOut";

  public void execTrans(ActorMsg sig,State st,StateMachine curfsm) {
    ActorSM asm = (ActorSM)curfsm;
    if (st == waitForRequest) {
      if (sig instanceof PhoneBookLookupMsg) {
        performExit(curfsm);
       asm.sendMessageReply(new PhoneBookResultsMsg(),sig);
        nextState(waitForChoice, curfsm);
        return;
       }
    } else if (st == waitForChoice) {
      if (sig instanceof PhoneBookChoiceMsg) {
        performExit(curfsm);
        asm.sendMessage(new SendSMSMsg(), SMSPORT);
        nextState(waitForSMSAck, curfsm);
        return;
      }
    } else if (st == waitForSMSAck) {
      if (sig instanceof SendSMSAckMsg) {
        performExit(curfsm);
        exitState(0, curfsm);
        return;
      }
    }
    ..
  }
}

sm SearchFeatureSmsSM

waitForRequest

PhoneBookLookupMsg
/ send reply PhoneResultsMsg

waitForChoice

PhoneBookChoiceMsg
 / send SendSMSMsg to SMSPORT

waitForSMSAck

SubMachine
(from EJBFrame)

SearchFeatureSmsSM

cd SearchFeatureSmsSM

SendSMSNackMsg
SendSMSAckMsg

Figure 7.7: Actor descriptor with part and connector mapping for ActorDomain(partial).

The two replaceable submachine candidates in this example do not have any instance data. How-
ever, as described earlier this might be needed by a submachine. Implementing this for aSub-
Machinewould amount to overriding theinitSubMachineInstanceoperation for instantiation of
data,getStatePropertiesto resurrect data andstoreStatePropertiesto store data.

7.4.2 Implementation of the event acceptor

To verify the behavior ofPhoneBookServiceCSit is decided that event acceptor should be im-
plemented on all the ports which communicates with thePhoneBookServiceactor. This means
the portssmsPort, callPort andphonePortfrom Figure 7.3. Additionally, one could also add
extra protection by implementing the event acceptor in the ports smsOut, callOut andphoneIn
of PhoneBookService. However, I will in this example show how to enable the event acceptor
between thePhoneBookServiceandSMSEdgeactors. Implementation of the event acceptor is
done in two stages:

• Implement the protocol state machine.
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• Specify the event acceptor with the actor-descriptors.

Implementation of the protocol state machine

As shown in Figure 7.5 we have already identified that theSMSEdgeactor should protect one
port with a protocol state machine,SMSEdgePortSM. The message interleaving which should
be allowed by usingsmsPortthus needs to be established and implemented in the the class
SMSEdgePortSM.

idle

waitSMSAck

SendSmsMsg

sendSMSAckMsg

SMSEdgePortSM {protocol} 

SendSMSNackMsg

public class SMSEdgePortSM extends PortSM {

  public State waitSMSAck = new State("waitSMSAck", this);

  public void execTrans(ActorMsg sig, State st, Port curfsm) {
    if (st == idle) {
      if (sig instanceof SendSMSMsg) {
        performExit(curfsm);
        curfsm.legalMessage(sig);
        nextState(waitSMSAck, curfsm);
        return;
      }

} else if (st == waitSMSAck) {
      if (sig instanceof SendSMSAckMsg) {
        performExit(curfsm);
        curfsm.legalMessage(sig);
        nextState(idle, curfsm);
        return;
      } else if (sig instanceof SendSMSNackMsg) {
        performExit(curfsm);
        curfsm.legalMessage(sig);
        nextState(idle, curfsm);
        return;
      }
    } else {
      // all other messages are disallowed
      curfsm.illegalMessage(sig, "Not allowed in this state: " + st);
      sameState(curfsm);
      return;
    }
  }
}

PortSM
(from EJBActorFrame)

SMSEdgePortSM

cd SMSEdgePortSM

Figure 7.8: Protocol state machine mapping forSMSEdgePortSM.

The protocol state machine forsmsPortis shown in Figure 7.8. Furthermore, it shows how
the protocol state machine is mapped UML to the Java implementation. Mapping follows the
normal pattern forCompositeStatein EJBFrame, with the exception that it does not have any ef-
fects. Instead messages are allowed or disallowed by the useof legalMessageandillegalMessage
operations. In Figure 7.8 the implementation shows the legal sequences of messages and that if
a message does not fulfill these conditions, it is regarded asillegal by the use ofillegalMessage.

A possible improvement to theSMSEdgePortSMwould be to evaluate the frequency of messages
received – i.e., to have a table with timestamps for the messages received. This would prevent
clients of the service to send too many requests within a short period of time. Although the
sequences are valid, its frequency may be considered unrealistic. Implementing this for classes
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extendingPortSMwould amount to overriding thedeSerializeandserializemethods for storing
and resurrecting such data.

Specifying the event acceptor with actor-descriptors

The second part of implementing the event acceptor is to specify which ports should be created
with an actor, and what protocol state machine should be usedwithin a port. Such specification
in EJBActorFrame is done with the use ofactor-descriptors– XML-files which specifies an ac-
tors with inner parts and ports.

PhoneBookService

smsOut

<actor>
  <actortype>PhoneBookService</actortype>
  ....
  <actorport>
    <name>smsOut</name>
    <direction>out</direction>
    <type>se.ericsson.eto.norarc.ejbactorframe.PortSM</type>
  </actorport>
</actor>

PhoneBookService-actor.xml

PortSM

Figure 7.9: Actor descriptor and port mapping forPhoneBookService.

The actorPhoneBookServiceis shown in Figure 7.9. As shown in the mapping between UML
and XML, the portsmsOutis specified by theactorport tag. The port is given thename smsOut,
direction outand uses the protocol state machinetype PortSM.

SMSEdge

smsPort

<actor>
  <actortype>SMSEdge</actortype>
  ....
  <actorport>
    <name>smsPort</name>
    <direction>in</direction>
    <type>actor.smsedge.SMSEdgePortSM</type>
  </actorport>
</actor>

SMSEdge-actor.xml

SMSEdgePortSM

Figure 7.10: Actor descriptor and port mapping forSMSEdge.

The actorSMSEdgeis specified in the same manner. The main differences are thatthe port
specifies a port withdirection in, and furthermore should use the protocol state machinetype
SMSEdgePortSM. The other ports specified by the actorsSMSEdgeandPhoneBookServiceare
mapped to the actor-descriptors accordingly.

When all actors are described in their respective actor-descriptors, the parts involved in the ser-
vice is described in the actor-descriptor of theActorDomain. This is the root actor which contains
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ActorDomain-actor.xml

smsEdge :
SMSEdge

phoneBookService : 
PhoneBookService

smsOut smsPort

ActorDomain

Specifies connector from 
smsOut to  smsPort

<actor>
  <actortype>ActorDomain</actortype>
  <part>
    <parttype>SMSEdge</parttype>
    <instances>smsEdge</instances>
    .....
  </part>
  <part>
    <parttype>PhoneBookService</parttype>
    .....
    <instances>phoneBookService</instances>
    <port>
      <name>smsOut</name>
      <requestedrole>
        <portid>smsPort</portid>
        <actorid>smsEdge</actorid>
        <actortype>SMSEdge</actortype>
      </requestedrole>
    </port>
    .....
  </part>
  .....
</actor>

Figure 7.11: Actor descriptor with part and connector mapping forActorDomain(partial).

all the parts of the phone book service.

Figure 7.11 shows a partial actor descriptor ofActorDomain, and how the inner parts are mapped
from UML to XML. Furthermore, the figure shows how the connector from the portsmsOut
of the partphoneBookServiceto the portsmsPortof the partsmsEdgeis specified. Upon in-
stantiation of the partphoneBookServicethis shall thus invoke the RoleCreate and RoleRequest
protocols for the portsmsOut. When these protocols have finished, theoutRoleof smsOutthus
specifies a connector tosmsPort– i.e., it enables thephoneBookServicepart to send messages to
thesmsEdgepart.

7.5 Summary

The modified EJBActorFrame and EJBFrame Java packages have been implemented as part of
this thesis work. A trace of the run of the example service is supplied in the appendix of this
report. All state machines were in this example run simulated, and was thus not tested using an
application server such as JBoss [14].

The implementation of this example has shown that the proposed modification of EJBFrame
and EJBActorFrame can be used to implement services which are able to remotely download an
replace submachines features at run-time. It has also been shown how to implement therun-time
event acceptor by extending thePortSMclass from EJBActorFrame and specifying the structure
in the actor-descriptors. Furthermore, it has been shown that the proposed modifications closely
resembles the existing design and development patterns of EJBActorFrame and EJBFrame.
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Chapter 8

Discussion and conclusion

8.1 Introduction

This thesis started off by giving brief introductions to therelevant concepts of UML 2.0 and the
NorARC service creation architectures. I then introduced the issues and concepts behind us-
ing remotely downloaded and replaceable submachines as a method for customizing and adding
value to services after deployment. This raised the question whether such change of behavior
could be verified during run-time. I thus proposed a solutionusing the run-time event acceptor –
based on the UML 2.0 concepts of ports and protocol state machines. Using these approaches I
hence implemented this in the NorARC frameworks, and implemented a service demonstrating
the solution.

One of the main purposes of this project was to get a better understanding on how to remotely
download and replace submachines during run-time, and which issues must be considered when
allowing this. This discussion is structured as the main parts of this report, and the issues dis-
cussed are as follows:

• Allowing remotely downloaded telecom features.

• Using ports and protocol state machines as run-time event acceptors.

• Run-time replacement of submachines in EJBActorFrame and EJBFrame.

• Implementation of a service using remotely downloaded features.

• Usefulness of remotely downloading and replacing submachines at run-time.

This chapter also proposes additional research topics in Section 8.7, before the main conclusion
is drawn in Section 8.8.
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8.2 Allowing remotely downloaded telecom features

In Section 1.5 I raised the following question:”Which challenges needs to be addressed when
designing replaceable submachines?”. To answer this question I will briefly sum up the chal-
lenges found in Chapter 4.

The effects of allowing replacement of remotely downloadedtelecom features is hard to prop-
erly quantify. The submachine is in UML 2.0 based on reasoning of componentre-use, not as a
method of adapting the behavior of a state machine at run-time. As such, some challenges were
identified in Chapter 4:

• Instance variables must be handled carefully.

• Exit and entry points is not enough to ensure behavioral compatibility.

• Timers started by a submachine should be stopped upon exit.

• It may be beneficial to allow dynamic creation of ports.

• The external visible properties may be decomposed and asserted through the use of ports
and protocol state machines.

Most notable of these issues is the interdependency which exist between a submachine an its
encapsulating state machine and their instance variables.If either the submachine or the state
machine makes the wrong assumptions upon the state of these,it may lead to erroneous behav-
ior. Verifying this instance data relationship is complicated, and a solution to solve this problem
was not found.

Furthermore, it was stated that a newly introduced submachine might introduce deadlocks, live-
locks or non-deterministic behavior to the state machine orother adversary state machines in the
system. Such behavioral anomalousness may be formally verified at design time of the compo-
nent usingprojections[7], but this approach was not further explored in this thesis.

To combatant the above described problems, I proposed theevent-acceptoras a mechanism for
ensuring run-time behavior conformity. This is done by decomposing the external relevant prop-
erties of the structured part by using ports and protocol state machines. However, this method
can not detect all errors, as the internal properties of the state machine is invisible to the protocol
state machine.

When allowing dynamic behavior adaptation of structured parts, it was identified that one might
need to create new ports to create new features. This is not allowed by UML 2.0, and I thus
suggested that this restriction should be further investigated, as it puts a serious constraint on the
possibilities of adapting behavior at run-time.
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8.3 Using ports and protocol state machines as run-time event
acceptors

In Chapter 5 I presented an approach to using ports and protocol state machines as a solution
to ensure behavioral conformity at run-time. This solutionrepresents the main contribution of
this thesis. The approach taken in the chapter was based on the architectural shortcomings of
EJBActorFrame and EJBFrame to enable this.

The goal of the event acceptor was to capture the message interleaving between two ports, and
thus to assert whether two adversary state machines adheresto a specified protocol at run-time.
Some of the advantages of using the event acceptor are as follows:

• Capture erroneous behaviors as an effect of dynamic feature adaptation.

• Proper run-time protection of critical system components.

• Ease debugging of architectural and protocol flaws.

The UML 2.0 protocol state machine construct only allows assertion of incoming events, the
proposed event acceptor thus violates its formal semantics. The implications of this violation
was not further explored in this thesis. However, the event acceptor has shown that having such
a mechanism in UML 2.0 would be of great value.

The chosen naming scheme for the connectors between ports was shown to have its limitations.
UML 2.0 specifies that signals received by a port with multiple delegation connectors attached to
it, should either copy and forward the signal toall these connectors or chooseoneof them. The
proposed naming scheme does not allow seeing the inner structure of a structured part. I thus
argued that copying and forwarding signals to all inner parts could lead to unwanted effects. I
therefore chose to only allow one connector in each direction of the port. However, this approach
disallows creation of new inner parts at run-time, as new ports must be created at the enclosing
structured part. Creating new ports after a part is created isnot allowed by UML 2.0. I thus
proposed a new solution using interfaces as qualifiers in thenaming scheme, but unfortunately I
did not have enough time for any further investigations based on this approach.

8.4 Run-time replacement of submachines in EJBActorFrame
and EJBFrame

In Section 1.5 I raised the following question:”How can dynamic submachine components be
realized in the NorARC service creation architecture?”. This question was answered with the
proposed solutions to EJBFrame and EJBActorFrame in Chapter 6. I will in this section discuss
some of the implementation issues which arose from this.

The newPort class in EJBActorFrame was developed to be able to define explicit interception
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points between ActorFrame Actors. This was done by hooking in to operations which receives
and sends messages. To ease the development of these interception points, it was chosen to put
the Port instances in the ActorContext of the Actor. This is not a good approach, as this requires
all the persistent state data of an Actor to be resurrected and stored even if a message only shall
be forwarded to an inner actor. This implies there is a serious performance penalty of the current
Port implementation. A better approach would thus be to let the Port objects be contained in
its own state data environment – such as the current StateMachine implementation. With such
a solution, only the persistent data of the Port would have tobe resurrected upon reception of a
message.

The current implementation does not enforce the use of the new Port class to communicate
with an ActorFrame Actor. With the current performance overhead of using the Ports, this was
deemed unnecessary. However, when this issue is resolved, it should be considered that all com-
munication should be conducted by the using the new Port class.

As stated in the previous section, the implemented addressing scheme has its limitation in that
it can not create new inner actors, as this would require new ports to be created in the enclosing
part. It should thus be considered to implement a different naming scheme which can specify
interface names which can be added to the Port while running,and thus alleviate the routing
mechanisms.

8.5 Implementation of a service using remotely downloaded
telecom features

By implementing the designed telecom service designed in Section 4.2, it has been shown that
run-time replacement of submachines is possible using the proposed modifications to EJBActor-
Frame and EJBFrame. Furthermore, the use of the event acceptor was demonstrated.

The phone book service is a simple service, and does thus not reflect all the modified parts
of the frameworks. It was not properly shown howPortSMclasses could benefit from its having
instance variables. Furthermore, it was not shown how theSubMachinecan encapsulate it’s own
instance variables. These concepts were not any further demonstrated because of the limited time
available in this thesis work.

The implementation description shows that the modifications done to the NorARC frameworks
does not affect the existing design and implementation patterns in any major way. Developers
familiar with the existing guidelines should thus be able tocomprehend the newly introduced
patterns for replacing submachines and setting up the run-time event acceptor quite easily.

The phone book service was executed using simulation, and was thus not tested using an ap-
plication server. This implies that neither the modifications to the frameworks nor the phone
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book service has been thoroughly tested on an application server. However, considerations have
been taken such that these should work even when the execution is not simulated.

8.6 Usefulness of remotely downloading and replacing sub-
machines at run-time

In Section 1.5 i raised the following question:”In order to customize services, are submachines
viable and useful as components for enabling third-party service providers to create new features
that may be downloaded at run-time?”. This is not an easy question to answer, as the useful-
ness and viability of the replaceable submachine componentis hard to quantify and measure.
However, I will express my subjective conclusions on this matter. First my conclusion of its
viability:

Remotely downloaded and replaceable submachines have been shown to be viable
when using a combatant against ill behaving components at run-time, such as the
event acceptor proposed in this thesis. However, further analysis of the instance
variable relationship, and security concerns when allowing downloading and exe-
cution of code from a remote location, is needed.

With regards to the usefulness I draw the following conclusion:

The usefulness of the replaceable submachine with regards tofeature adaptation
and personalization of services is suggested by the implementation of the phone
book service. Furthermore, I believe run-time replacementof submachines to be a
reasonable approach for rapid deployment of new and emerging service features.

8.7 Future work

Several issues identified in this thesis work could be subject for future research efforts:

• The simple state could be viable for replacement with a submachine at run-time. This
would involve dynamically adding and removing entry and exit points at run-time. Such
an approach would increase the run-time feature adaptationcapability of the state machine.

• The implications of downloading and executing code from a remote location has not been
investigated further in this thesis. Allowing code to execute when its origins is not verified
could have devastating effects. Processes and mechanisms for accommodating thismust
be further explored before allowing this in alive system.

• The naming scheme for ports proposed in this thesis has been shown to have limitations.
The use of interface names as addressing qualifiers could prove to strengthen the scheme,
and should thus be further investigated.
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• The restriction of UML 2.0 not allowing ports to be created during the lifetime of a part
should be further investigated. Allowing ports to be created would increase a state ma-
chine’s run-time feature adaptation capabilities.

• The current implementation for replacingSubMachineobjects by updating thechildrenref-
erences ofCompositeStateprevents replacement of arbitrary deeply nestedSubMachines.
A different approach to doing this should be further investigated.

• EJBActorFrame and EJBFrame enables developers to send messages to other actors by
addressing them directly with the use of ActorAddress, thushaving direct addressing of
adversary state machines. It may be more intuitive and safe hide these methods, and thus
enforce the use of the port mechanisms proposed in this thesis.
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8.8 Conclusion

In this thesis issues regarding remotely downloaded telecom features has been discussed. This
thesis argues for replacing submachines at run-time as a method for adapting the behavior of ser-
vices. Some design guidelines have been discussed with regards to allowing such replacement.
Furthermore, the event acceptor has been proposed as a mechanism for run-time behavior asser-
tion of components. Following the guidelines, the submachine component was implemented in
EJBFrame, and generic behavior for replacing this was implemented in EJBActorFrame. The
event acceptor was implemented by introducing ports and protocol state machines concepts to
EJBActorFrame. Furthermore, a concrete service example was implemented demonstrating the
proposed modifications to the frameworks.

The main contribution of this thesis was the run-time event acceptor. Ideas on how to route,
send and reply to messages was proposed and finally implemented. Furthermore, a solution on
how to configure connectors using signaling was proposed andimplemented. The phone book
service demonstrator suggests that these solutions work well, and that the introduced concepts
should be comprehendable by designers and developers familiar with the NorARC service cre-
ation architectures.

The main conclusion of this thesis is that run-time replacement of submachines is both useful
and viable. Allowing such replacement to happen enables personalization of running services
and applications. At the same time services may increase their longevity by adding new and
emerging technologies without affecting their availability. Although this has not been a formal
study, it has been shown to work when there exists mechanismscan detect erroneous behavior –
such as the run-time event acceptor proposed by this thesis.

This study has also shown that the current restriction of UML2.0 not allowing to create ports
after a structured part has been created, may be found too strict in practical use. As new features
are introduced at run-time, it is expected that these will atsome time require the use of new ports.
This UML 2.0 restriction thus decreases the feature adaptation capability of the approach taken
in this thesis.
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Appendix A: CD-ROM
If the report you are reading is a hard copy, there should be a CD-ROM supplied in the sleeve.
This contains the code of the modified NorARC frameworks, and acopy of the phone book
service.
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