o\EN,

s 87
m
%, 0\\"‘"’?

]
O}Iiversity

<
O
Q
e

Semi-automatic web resource discovery
using
ontology-focused crawling

by

Erik Kristoffersen
Marius A. Seetren

Master’s Thesis in
Information and Communication Technology

Agder University College
Faculty of Engineering and Science

Grimstad

May 2005

Semi-automatic web resource discovery using onyefogused crawling

Abstract

The enormous amount of information available on Ititernet makes it difficult to find
resources with relevant information using regulagabdlth-first crawlers. Focused crawlers
seek to exclusively find web pages that are relef@nthe user, and avoid downloading
irrelevant web pages. Ontologies have recently h@eposed as a tool for defining the
target domain for focused crawlers.

In this project we have developed a prototype obatology-focused crawler. We have
accomplished this by developing extra modules éaJtéva open source crawler Heritrix. In
one of the modules we have developed, we measeneligvancy of web pages in relation
to an ontology describing the area of interest. Ndge also developed a link analysis
module to determine the importance of web pagess module uses the link analysis
component from the open source search engine Nilitehimportance measure is used to
ensure that the most important web pages are dadeatbfirst.

This thesis also contains an evaluation of sevepain source crawlers. We found that
Heritrix was the easiest to extend, and best suibedour purpose. Our prototype is
therefore built upon Heritrix.

To measure the performance of the prototype setesatrawls with different settings has
been carried out. Focused crawlers are often etegluay harvest rate, which is the ratio
between number of relevant and all of the web pad@snloaded. The prototype
performed well in the tests, and in one of thempgheotype had a harvest rate of about
0.55. In a similar unfocused crawl, the harvest veds only about 0.15. Both the prototype
and the algorithm are designed to be easily cordijuMore testing and adjustments of the
settings could improve the performance of the pyp® even further, but we have shown
that ontologies are a suitable technology for engdbcused crawlers.

Semi-automatic web resource discovery using onyefogused crawling

Preface

This thesis is written for the company InterMediums, a part of the Master of Science
degree in Information and Communication Technolagygder University College. The
work has been carried out in the period from Jant@aMay 2005.

The project group has consisted of Erik Kristofégr&nd Marius A. Saetren. Both have a
BSc degree in Computer Science from Agder UniveiGillege. Presently, Marius is also
working part time for InterMedium.

We would like to thank our supervisors, Asle Pederat InterMedium and Vladimir

Oleshchuk at Agder University College for valuabkdp and guidance during the project
period.

Grimstad, May 2005

Erik Kristoffersen and Marius A. Saetren

Semi-automatic web resource discovery using onyefogused crawling

Table of contents

F AN S SN I\ o T 2
[Y O N 3
T ABLE OF CON T ENT S .. ittt ettt et et e et e et e e et e e e et e e ea e s ea e ee s e saaesseteeeanessanrerrnsas 4
LIST OF FIGURES. ...ttt ettt et e et e et e et e et e e et e e e b e e s aaa e e e ba s s e b e s saa s e et e sanessaneenansss 6
RN IO L 7Y =] I T T 7
1 LN I RO 110 L@ I [1 8
1.1 201 (] 21010 N o TP 8
1.2 THESIS DEFINITION 1u ittt ettettsttetteesttseaeesaessassansssanssanstnsssnean st ssanseaessssassssessassnnsesnessnssensees 8
1.3 (@0 TV 0] =R 9
14 (= =TT N 1 N N 9
2 FOCUSED WEB CRAWLING ...ouii ittt e et e et s e e et e st e et s s s s s et e e e enreeaas 10
2.1 RELATED WORK ... tttiite it et ettt st e e et e e et e e s e e e s e et st s e b e ea e eae s eaeesa s e eaeesn s saneennsenseansstnsren 10
3 (@] \\ [OO 1 i T 12
3.1 INTRODUCTION TO ONTOLOGIES .. ctuittiitnietniitnttaneetettestetsessnsestssastnsesneesnsssnteenseteernsenaernaees 12
3.2 ONTOLOGY LANGUAGES ... ctuiittiittiitetiee et et e ee et te e s st s saa e st sttt e e ettt saaeeaa e st e es s et e et eenneeans 12
G 2020 KO = d 5 | =TT 12
G T © 1Y N 13
3.2.3 TOPIC MAPSIXTIM ..ttt sttt ettt e e s ettt e e s e ne e e e s st e e e e e e s annnnneeeas 13
3.3 SELECTED ONTOLOGY LANGUAGEutitttittiiiiite ittt et et e s saeeata s et e e s aa s satsesnessnseaneesnssaneen 13
3.3. 1 TMAJ — TOPIC MAPS FOF JAVA.....eeiieiiiiiiiiiie ettt e e e 14
ICTRC T2 @ o1 (o] o 1= W@ 141 g1 [=1 (o] PR 15
3.4 ONTOLOGY-FOCUSED CRAWLING ...cuuttttittettsttettestttssneetaettnsesessasesnsttera st erseesnessnserteestessnees 15
4 EVALUATION OF EXISTING CRAWLERS. ... e 16
4.1 N LU 1 16
4.2 HERITRIX t1titttite et e e e e e e e et et e e e e e e et e e b e et et e e b e et e e b e s b e et e enneeea e sn e ssasanseansetneens 17
4.3 RV AT =T I8 T 17
4.4 AVA 2R o N N 18
45 B S = 5] = 19
4.6 L A== = =TT 0] = TN 19
4.7 A = 7Y N 20
4.8 EXTENDING AN EXISTING CRAWLER OR DEVELOPING A NEW CRWLERccvviiviiitiiiieeiiiiieenneeinnns 20
4.8.1 Extending an existing Web CraWler...........o i 20
4.8.2 Developing a web crawler from SCratCh........cceeeiiieiieiiiiiiiii e e 21
4.9 Y7 L T T 21
5 DESCRIPTION OF HERITRIX ..oniieiiieeeei ettt et ettt e st e e e e e e e e st e e seaesasans e s e e enanaas 22
51 [L0 N 1= 22
5.2 IO = I T2 1=\ 1P 23
53 CRAWLURI AND CANDIDATEURI it mmee ettt et e r et e e e e e eeas 23

Semi-automatic web resource discovery using onyefogused crawling

54 (O N ol] = = 23
55 PROCESSOR CHAINS . . et itt ittt et et et et et e et et e e s s eb e st e et s e eb s st s st e saestassansesnsaranaesnssrasnen 23
6 FOCUSING ALGORITHM AND SEARCH STRATEGY ...t e 24
6.1 ONTOLOGY BASED COMPARISON OF DOCUMENTS .. uitttittiiitiittiettiiineeieitneranssteennesssesnassnsasnns 24
6.2 OUR RELEVANCE ALGORITHM. .. ctttiieittieitieeeeteeeeteseteesetee s s sesaassetaeseanessaneessaeeransersnneeeran 24
6.3 TN TN YR 2] 1S T 27
7 B | = 2 5O 1O 2 17 = T 28
7.1 TS O] Y = TS = = T 29
7.2 RELEVANCECALCULATOR .. evttiiitt ettt eeeteeeaeesata e e eaae e s e aeessatasseaneseaneeeaneeeansesansesrneranneenns 29
T.2. 1 INIHAITASKS() -erterveeeeeeeeeetiaeee e e et ommm ettt ettt et e et et e e e e e e e e e s e e s e s s aanneeeeeeeeaaaaaaaeaaasaesaaaanans 30
A 101 1= o Yo 1T USSR 30
7.3 NV EBD B O ST SELECTOR ...t uittiittett ettt et ettt et e et et e eaeeea s et s et s ea e sst s eaaeasassansesnsstnssrnnannnren 32
7.3.1 Description of WebDBPOSISEIECIONcommmmmeeeeiieiieiciiiieiierererereeeeeeeeeeeseeennnsennnnne 32
VR I Y (o To [T=To 1510 | o] i £0)] 41 1<) (T 34
7.3.3 Modified Page Class in NULCHuuiiiiiiiieiiiicieeee e e e e 34
8 o O O I o S I S S TS 36
8.1 PERFORMANGCE MEASURES.uiiitteiettiteeeteeete e et eeeaa e s e e seatasseaaesetneeeaseesanseraneesrnserennaenns 36
8.2 B ISR ST = 1T T 37
. 0 S T o] o = 11 (= 37
I S 1= T o B 1 = X 38
S T2 T [a1 o 11 0@ 1 1o][To | OSSP 38
8.3 T E ST RESULT S tttittittiittiett ettt ettt et e st e et s et e e s eet e ea s st e sa s aa s sa s sn e sa st basean s basnanssbsseansssastaaes 39
9 (BT G103] (@] T 45
9.1 THE PROT O TY P ituittiitniiti ettt et e st ettt e et e st teeaes st s aa e ta et b s easeb e et s sb e sbssa s sanseansssnsasnssrnnen 45
9.1.1 Problems running Nutch on WINAOWSccueeeeriiiiiiiiiec e 46
9.1.2 Problems with DNS [00KUP iIN HEFIFIXeeeiiiiiieiei e 47
9.2 LIS 21T 48
9.3 FURTHER WORK . .ttt ttt ittt tee e e e ettt e et e et e st seeeas e et e e b e e b e eb e sbe s ea e s sb s e sa s sa s snnaeansssnseansbasnen 50
O T O @ 1\ (@ 1] [N T 52
ST I 1@ 1 2 d o /2N 53
APPENDIX A - JAVA SOURCE CODE ...ttt ee e CD ROM

Semi-automatic web resource discovery using onyefogused crawling

List of figures

Figure 2.1 a) Standard crawling b) Focused crawling................. 10
Figure 3.1 TopQuadrant’s comparison of some ontolagguages in 2003. [19]........... 14
Figure 3.2 Screenshot from the TMNav appliCation.............ccceeeeeiiieiieieeiieeeeeeeiiieees 15
Figure 5.1 Overview of HeritrixX. [33] ...ooeveiioeeiiiiiiiiieiiii e ee e 22
Figure 5.2 Processor ChaiNs. [33] .. .cociiiiiiiiecieeceeeeeeeess s e e e e e e e e e e e e eee e e eeeanneees 23
Figure 6.1 A very simple TM about TOYOta.ccccariurmiiiiiiiee e 25
Figure 7.1 Overview of Heritrix. The emphasized med are the modules we have added.
... 28
Figure 7.2 Flowchart for initialTasks() in Releva@alculator.ccevvvvvviiviiinnnm 30
Figure 7.3 Flowchart for innerProcess() in Releedriculator.cccoeeevveiiiiiinnnnnee. 1.3
Figure 7.4 Flowchart for innerProcess() in WebDBBR@gctorovvvciiiiiiiiieeneen, 33
Figure 8.1 Scope filter which removes irreleval®@ fypes............ccooreiiiiiiiiiiiiiiiis e 38
Figure 8.2 The input ontology used in the testekRionnections annotate Superclass-
Subclass associations, while all other types attials are purple. ... 39
Figure 8.3 Harvest rate of focused crawl with ralesy limit 0.01cccccceeeeivieeeennll 04
Figure 8.4 Harvest rate of unfocused crawl witlevahcy limit 0.01ooeeeeeiineeee. 41
Figure 8.5 Harvest rate of unfocused crawl witlevahcy limit 0.01 and irrelevant seeds
... 42
Figure 8.6 Harvest rate of focused crawl with raley limit 0.02ccccoeeeeeveieeeennn. 24
Figure 8.7 Harvest rate of unfocused crawl witlevahcy limit 0.02ccccevvvveeeneen. 43
Figure 8.8 Harvest rate of unfocused crawl witlevahcy limit 0.02 and irrelevant seeds
... 43
Figure 8.9 Harvest rate of equal crawls with antheaut link analysis............ccccccceeieennnn. 44
Figure 9.1 Code from net.nutch.LocalFileSystem.java...........ccccccvvvvvvvviiiiinnnnnnnnnn 47

Semi-automatic web resource discovery using onyefogused crawling

List of tables

Table 6.1 Weights of the topics from the topic nmapigure 6.1.........ccccceevveeeeeeeeennnnn. 25.
Table 7.1 The processors in Heritrix grouped bycpssor chain. The emphasized rows
describe the modules we have added........coceeeeiiiiiiiiiii e, 29

Table 7.2 Attributes in the modified Page clasBlitch ... 35
Table 8.1 Top 10 web pages found by focused crathl iglevancy limit 0.01................ 40
Table 9.1 IDF values for the same term in a typigcalised and unfocused crawil............ 48
Table 9.2 Relevancy of some web pages in a focaeddan unfocused crawl with equal
1] 1] 0 1P PRPPP PP PPPPPRRTRPRR 49

Semi-automatic web resource discovery using onyefogused crawling

1 Introduction

1.1 Background

In January 2000 the Internet had about 72 milliosté advertised in the DNS system. By
January 2005 this number had risen to more thanm3llion [1]. This means that the
Internet is so huge that even the largest seargimes only cover a small fraction of the
billions of pages estimated to constitute the mmér Even though the size of the search
engines is increasing very fast, no search engivasage to follow the growth rate of the
Internet. The Internet contains more informatioantlever, and it is difficult to separate the
relevant information from the less relevant.

The process of finding relevant resources of infram is often called resource discovery.
Searching for relevant resources manually is a viemg consuming and expensive task.
Turning this task into an automated or semi-autechgirocess would be very valuable.
Different methods can be used to discover resowgtsnatically.

Focused crawlers, as opposed to regular breadthefiawlers, try to exclusively follow
links that are relevant to a specific topic. Thisdkof crawler plays an important part in
many automatic resource discovery approaches, iffataht methods for calculating the
relevancy are used. Some focused crawlers use éxalopuments and machine learning
to determine the relevancy of web pages. Others amge or more keywords. Using
keywords would resemble a normal search enginelseakcept that the relevancy of the
pages is calculated for each page as they are dadedl, and not in an index that is the
result of a regular web crawl. Recently, it hasrbeeggested to use ontologies to define
the target domain for focused crawlers. In thisigobwe have developed a crawler that
uses ontologies to focus the search on a spegfiic.t

1.2 Thesis definition
This is the definition of our thesis as df df February 2005:

“Resource discovery refers to the task of identtyielevant resources e.g. on the Internet.
One example could be to identify all Internet rases worldwide, which publish news
about nano-technology. Manually identifying all $be resources is very resource
demanding and the task could and should be autamd@me approach to automatic
resource discovery is to use focused crawlers. ph®oeed to standard crawlers in use by
most search engines, which follow each link, tylpicapplying a breadth-first strategy,
focused crawlers instead try to identify the masingsing links to follow by using some
sort of probability measure. The criteria usedhie probability measure are usually based
on an analysis of hyperlinks, content and structlResource discovery is never done
entirely from scratch — there are always some agriknown resources, starting-points
and knowledge about the domain, which could beasgmted using an ontology. Focused
crawlers may use such ontologies to guide the ifieastion of promising links.

Semi-automatic web resource discovery using onyefogused crawling

The project will include an evaluation of some &xg web crawlers to find out if it is
possible to use one of them as a basis for an agyeiocused crawler. One or more
algorithms for using ontologies in focused crawlingl then be found or developed. The
students shall develop a demonstrator in whichstreerch strategies and algorithms could
be evaluated. The students should also define sesheriteria, and metrics for measuring
the precision of the crawler.”

1.3 Our work

During the project period an ontology-focused wednder prototype has been developed.
It is built as an extension of an already existaya open source web crawler called
Heritrix. The decision to extend this specific ckamwas made after a brief evaluation of
some existing open source crawlers written in J&eabe able to do link analysis in our
prototype we have included a link analysis modubenf Nutch called WebDB. Nutch is
one of the other crawlers we have evaluated.

To decide how relevant a web page is, we have dpedl a relevancy algorithm. Our
relevancy algorithm uses the TFIDF [2] weightinggalthm and is inspired by the
relevance computation strategy described in [3g piototype has several parameters that
can be set to calibrate it or adjust its behavior.

We have also found methods to measure the perfaenainthe crawler by reading articles
about other focused crawlers. The prototype has tessted with different parameters, and
the results have been logged and evaluated.

1.4 Report outline

Chapter 1 describes the background of the thesjegir and gives a short introduction to
resource discovery and web crawling. We also ptesgenthesis definition and a short
description of our work. In chapter 2 we give amaduction to focused web crawling, and
to other work related to this topic. Chapter 3 akp what we mean by an ontology and
gives an introduction to some ontology languaged antology tools. Our choice of
ontology language is also explained here. At trie arthe chapter we explain the concept
of ontology-focused crawling. Chapter 4 containgaaluation of some existing Java open
source web crawlers, and some possible methodgdating the prototype. In this chapter
we also explain why we decided to extend an exgstrawler, and why we selected
Heritrix as a basis for our prototype. Chapter Sctibes the structure of Heritrix, and how
the different parts work. Chapter 6 explains tlgoathm used in the prototype as well as
the algorithms it is based on. Chapter 7 desctio@swe have built the prototype and how
it works. Chapter 8 describes different measured tan be used to measure the
performance of a focused crawler. It also incluale®scription of the test settings and the
input ontology we used for the tests. At the enthefchapter we present the results of our
tests. Chapter 9 contains a discussion of our fyje¢oand the test results. Chapter 10
contains a conclusion of our project in general.

Semi-automatic web resource discovery using onyefogused crawling

2 Focused web crawling

The Web might be seen as a social network. Autbbrseb pages often insert links to
other pages relevant to their topic of interest.this way the Web contains a social
network of pages linking to other on-topic pagese Tink structure and the content of the
pages can be used intelligently to decide whickslito follow and which pages to discard.
This process is called “focused crawling”.

Figure 2.1 a) Standard crawling b) Focused crawling

Figure 2.1 shows the difference between standandlicrg and focused crawling.

a) A standard crawler follows each link, typicadlpplying a breadth first strategy. If the
crawler starts from a document which isteps from a target document, all the documents
that are up to- 1 steps from the starting document must be downkbheéore the crawler
hits the target.

b) A focused crawler tries to identify the most mpising links, and ignores off-topic
documents. If the crawler starts from a documentkwisi steps from a target document,
it downloads a small subset of all the documerds déine up ta - 1 steps from the starting
document. If the search strategy is optimal, tlaevtar takes only steps to discover

the target. [4]

2.1 Related work

Chakrabarti et al. seem to introduce focused cravfor the first time. In the crawler

described in their article [5], the user picks &ijsat from a pool of hierarchically

structured example documents. The program leamsubjects by studying the examples,
and generates subject models. These models aretosddssify web pages. The link

structure is also considered by the crawler to alisc hubs. Hubs are described by
Kleinberg [6] as high-quality lists that guide useao recommended authorities, and
authorities are prominent sources of primary cantena topic. Links from hubs can be
relevant even though the text on the hub pagd dsels not appear to be relevant.

10

Semi-automatic web resource discovery using onyefogused crawling

The focused crawlers described in the literatuneegaly have a similar structure. One
thing that separates them is the algorithm they tosdecide whether a web page is
relevant. The crawler described by Chakrabartile{5 uses example documents and
machine learning principles.

Diligenti et al. [7] describe a focused crawlertthaes the same methods to determine the
relevancy as Chakrabarti et al. [5]. One differemdgéh Diligenti’s crawler is that it
generates a context graph that describes the tiloktsre around all the seed documents.
This is done to make it easier for the crawleritm frelevant documents, hidden behind
one or more levels of irrelevant web pages. The page of a university may for example
have links to the home pages of professors, whialg hrave good links to pages about
nanotechnology, even though the university web p&ags no information about
nanotechnology.

Diligenti’s crawler only focuses on web pages. &uthat is interested in finding relevant
information resources may be more interested uhrfig relevant web sites than web pages.
Ester et al. [8] explain how a focused crawler fiad relevant web sites instead of web
pages. Their proposed prototype contains an extanthan internal crawler. The internal
crawler only views the web pages of a single givesb site and performs focused
crawling within that web site. The external crawias a more abstract view of the web as
a graph of linked web sites. Its task is to seleetweb sites to be examined next and to
invoke internal crawlers on the selected sites. drhw/lers use both link structures and text
classifiers to determine site relevancy. The averagnber of pages used for classification
was between 3.2 and 7.4 indicating that web sitésstication does not require large
numbers of web pages per site for making more ateyoredictions.

Ester's crawler and other crawlers that use acstaiiial set of example documents for
classification, are very dependent on the qualitshe initial training data. Sizov et al. [9]
have built a focused crawler that aims to overcdheelimitation of the initial training
data. It identifies “archetypes” from the documeatsl uses them for periodically re-
training the classifier. This way the crawler isndwically adapted based on the most
significant documents found so far. Two kinds othetypes are considered: good
authorities as determined by employing the linklysia algorithm proposed by Kleinberg
[6], and documents that have been automaticallysdiad with high confidence using a
linear Support Vector Machine (SVM) classifier.

All of the focused web crawlers mentioned earlige example documents to determine the
relevance. Another approach is to use keywordsk@barti et al. [10] describe a focused
crawler that finds hub- and authority-pages withirsubject which is given by a few
keywords. A hub is a web page that points to maal pages about the subject, while an
authority-page contains much information aboutdiieject. The crawler evaluates the text
around the link-tag to decide whether the link se@rteresting.

11

Semi-automatic web resource discovery using onyefogused crawling

3 Ontologies

In this chapter we will give a short introductiandntologies and some of the mostly used
ontology languages. Our choice of ontology languagdso explained here. At the end of
this chapter we explain the concept of ontologysf®d crawling.

3.1 Introduction to ontologies

According to Wikipedia [11] the termntologyis an old term from the field of philosophy,
where it means the study of being or existences Taéim is also used in the field of
computer science, where it has a slightly differevaning. In the field of computer
science, an ontology is the result of an attemptréate a rigorous conceptual schema
about a domain. Typically an ontology is a hierarahdata structure containing relevant
entities, relationships and rules within a spedaificnain.

Tom R. Gruber [12] defines an ontology aspecification of a conceptualization
ontology is a formal description of concepts an@ ttelationships between them.
Definitions associate the names of entities indhtlogy with human-readable text that
describes what the names mean. The ontology cancalstain rules that constrain the
interpretation and use of these terms.

An ontology can be used to define common vocalegafor users who want to share
knowledge about a domain. It includes definitiohs@ncepts and relations between them,
and is written in a language that can also bepné¢ed by a computer. Ontologies can be
used to share common understanding of the struaire@formation, enable reuse of

domain knowledge, separate domain knowledge froeratpnal knowledge and analyze

domain knowledge. [13]

3.2 Ontology languages

In order to ensure that a computer understands rdology, the ontology must be
represented in a computer-readable language. Téeist several different ontology
languages which can be used for this purpose.isnctiepter we will present some of the
most distinguished ontology languages.

3.2.1 RDF

RDF (Resource Description Framework) [14] is ad#ad developed by W3C, intended to
be a universal format for data on the Web. RDFaseld on XML and can be used to
represent information about resources in the Wdfide Web. Particularly it can be used
to represent metadata about Web resources, likeifioadtbn date, author, title or
copyright information. RDF aims to make it easi@r dgents and applications to exchange
information by providing interoperability of data.

12

Semi-automatic web resource discovery using onyefogused crawling

3.2.2 OWL

OWL (Web Ontology Language) [15] is a W3C recomnatimh designed for use by
applications that need to process the contentfofnmation instead of just presenting the
information to humans. OWL makes it easier for cataps to interpret Web contents than
that supported by XML, RDF and RDF Schema. Thislose by providing additional
vocabulary along with formal semantics. OWL haseghrincreasingly expressive
sublanguages: OWL Lite, OWL DL and OWL Full.

3.2.3 Topic Maps/XTM

XTM (XML Topic Maps) [16] is created by the Topicids.Org Authoring Group (AG),
formed in 2000 by an independent consortium namggicMaps.Org. Topic Maps was
first fully described in the 1SO13250 standard whie SGML and HyTime-based, but has
now been developed into the XML-based XTM 1.0. Tddiaps is designed for describing
knowledge structures and associate them with irdtion resources. It is well suited for
knowledge management and provides powerful new waysavigating large and
interconnected information resources. [17] Topicpblaries to solve the findability
problem of information, i.e. how to find the infoation you are looking for in a large body
of information. It can also be used for content agament, web portal development,
enterprise application integration (EAI), and iscablescribed as an enabling technology
for the semantic web. [18]

3.3 Selected ontology language

There are several different ontology languages ¢batd have been used in this project,
but we decided to use Topic Maps. One of the resasdry we selected Topic Maps is that
InterMedium has much experience with Topic Mapsother reason is that, as shown in
Figure 3.1, Topic Maps is well supported by botle tommercial and open source
community. Topic Maps is an established standaatitihs been used for several years and
many tools have been developed to support TopicsMap

13

Semi-automatic web resource discovery using onyefogused crawling

Legucy K8 Liniversal fopic Resource DAREA ML+ | Web
Languages AModeling AMans 20l Desecription Chrfalagy Onfology
Language Topic Maps Framewark Inference L angurage
Amevican Nabin ['.‘] F :l‘ ['d %c @ %c
. ’,ot e A ot
>G5 +G +5 *3 3 or fess 3 or fess
O L OO OOonono O0on O
Yes Yes Yes Yes Yes Coming
| 2orlessvendors 1010 10 or less vendars

& Cabyeigit 2001-200% Tl Tac . LA Colld pardthn Exagadlad Wearisiah %22 lkde 2L

[&orlessvendars I = 10 wendars

Figure 3.1 TopQuadrant’s comparison of some ontologlanguages in 2003. [19]

In our project we have used several Topic Mapsstanl order to develop and use
ontologies. Some of the tools we have used wiptasented in the following chapters.

3.3.1 TM4J — Topic Maps for Java

TMA4J [20] is an open source tool for creating anelspnting topic maps. The project is
divided into four sub projects. Two of these subjgrts have been used in our project: the
TM4J Engine and TMNav.

The TM4J Engine is a topic map processing engine.the core of the TM4J project and
provides an APl which makes it possible to creatt edit topic maps in Java applications.
It also gives support for importing and exportingit maps to and from XTM files. Topic
maps can be saved in memory or persistently storeah Ozone [21] object-oriented
database or in a relational database by using Ritbe[22].

TMNav is a Java application for browsing topic mapsgure 3.2 shows a screenshot of
TMNav and how it can display a topic map in treewwiand graph view. One problem with

TMNav is that the graphical topic map representatioly shows the selected topic and the
ones directly connected to it. It is therefore possible to view the entire topic map at
once.

14

Semi-automatic web resource discovery using onyefogused crawling

1o

Fle Window Help

Topictaps loaded Tree-view Graph-View
N, file: ome/g07 theritrix-finalieritrix-1 3.0jjobs/Ontalogy Crawler Security-20050527 o [| I | o sseamserzortosen - ito s secutytrerefl [0 | B
N, file: ome/g07 theririx-finaleritrix-1 3.0jabs/Ontalogy Crawler Security-20050527

0.5343699720712992 - hitp:/awa sun.com/

58 Textrelevancy
| © 0539369972071 2092
=8 Wieb page
L@ hitp. fjava sun.comisecurtyheferer

@neep: //3ava. sun. confsecurity/reference fags/
d I 2

Indlexes L

B

page
Topics -

© 0.5304785618673848 - hitp:fitransportationsec.comiwhat_worksfind =

© 0.5306282510621704 - hitp:/if-secure.com/

© 0.5306468836188372 - hitp:/fwwaw? corest comiproductsiindex php

© 0.5307585891033741 - hitpiesre.nist gowesre/govemment htm|

© 0.5308155695978871 - hitp/frsasecurity comisolutionssecondary as

© 05308663746434364 - hitpficryptomathic. dkindex html

© 05316477923569423 - hitp:ficsre.nesl nist gowacroymn html

© 0.5316634817200022 - hitp:/isys-exp com’i

© 0.5318054142351843 - hitpfiesre.nesl nist gowesrelinks html

© 0.4318572557232163 - hitpisecuringjava comichapter-nines

© 0.4325024571610354 - hitp:Atransportationsec comiansecurity_los_

© 0532935876120996 - hitpfrsasecurity. comnode asp?id=1003

© 0.5333867202882314 - hitpferyptomathic.dkiproducts/primeink_why

© 05336191 612984208 - hitp:eryptomathic.dkiproductsiprimeink_har

© 0533680558847 4545 - hitp/heww2 corest comicorelabsipapersinde

© 05337368426522788 - hitpfirecon.cden/contact him|

© 0.5338730969266033 - hitpfigartner. comi2_eventsiconferences/sec

evancy

L]
o ®

0.5343693720712992

© 0.5339960321559566 - hitp:Atransportationsec comiansecurity_airlir
© 0.5342008284890698 - hitp/heww2 corest cominewsipressroomiing
© 0.5343309794396437 - hitpfiesre.nesl nist gowarchived-projects htm
(1)

© Security

O Texrelevancy

© Wieh page -

. [NI E— 3

2092KE f 3E100KE

Figure 3.2 Screenshot from the TMNav application

3.3.2 Ontopia Omnigator

Ontopia Omnigator is a web-based topic map navigaeated by Ontopia [23]. It can be
used to browse topic maps in both tree view andhgv@gew. Omnigator also has the ability
to merge topic maps on the fly, search in topic srapd export topic maps. In our project
we have used Omnigator to view ontologies graplyic&ligure 8.2 shows an ontology
viewed in Omnigator. Omnigator can show all togit&n ontology at the same time, in
contradiction to TMNav which only shows one topilahe nodes connected directly to it.

3.4 Ontology-focused crawling

Ontologies can be used in focused crawlers. Anlogyefocused crawler uses an ontology
to describe the area of interest, in the same way search in a search engine uses a list of
keywords to describe the area of interest. A probhath standard keyword based search
queries is that it is difficult to express advanse@rch queries. By using ontologies it is
possible to express richer and more accurate quéttgig et al. [3] discuss how a focused
crawler can find relevant web pages by lettinguker make an instantiated ontology. The
system has an ontology that describes the aredichvihe search will be performed, and
the user enters different parameters to say wimatldtbe weighted in the search. Then the
program scans the web for pages containing text deacribes the area given by the
ontology.

15

Semi-automatic web resource discovery using onyefogused crawling

4 Evaluation of existing crawlers

This chapter starts with an evaluation of a fewsemoopen source Java web crawlers.
They have been picked as candidates for crawleswle can use as a basis for our
prototype. We give a short description of each &&gwand our own opinion about the
ability to use that crawler for our purpose. Thalastion is based on the knowledge we
had about the crawlers at the time we tested thiter the individual description and
evaluation, the difference between developing aun crawler entirely from scratch, and
extending an existing crawler, is discussed.

4.1 Nutch

The purpose of Nutch [24] is to promote public ascéo search technology without
commercial bias. Nutch is a transparent alternatveommercial web search engines and
makes it possible for everyone to see how thencbealgorithms work.

Nutch is primarily a breadth-first crawler. It dolwads all the web pages it finds, indexes
them in a database and provides a web-based useiage for searching the results. The
relevance-score of the results is calculated usaygvord search and link analysis.

Nutch can do both Intranet crawling and whole-wedoning. Each step of the crawling
procedure must be started manually by the usest fhie user must inject some seed URLSs.
Then the user can generate a segment of the URLstart fetching the pages. When the
fetching procedure has been completed the useupdate the database with the newly
downloaded pages from the segment. Then the usemucaan analysis of the database in
order to analyze the link structure between theepadfter this the user can generate a
new segment with the top-scoring pages from theldse and do another round of
fetching and analyzing.

When the user is finished downloading pages, allskgments must be indexed in order to
make the results searchable. The web applicatibiutoh can then be used to do keyword-
based search in the indexes.

Positive:
* Relatively well documented (API, good web page widage information and a
developer’s section)
* Has support for plug-ins.

Negative:
* When we started testing Nutch we had difficultiezking the crawler work.
e Nutch is quite complex and it is difficult to und&and how all the parts work.
* No stable releases exist yet.

16

Semi-automatic web resource discovery using onyefogused crawling

4.2 Heritrix

The Heritrix crawler [25] has a modular design, am@asy to extend. It has a powerful
web-based user interface where the user can chddsbh modules to use in his crawl, and
the settings for the modules and the crawl jobenagal. By developing and adding our
own modules, we can make the crawler ontology-fedusieritrix has had some problems
with high memory usage, but the developers are mgrkn it, and the latest versions
allegedly show improvement. It is a living proje@nd the crawler is still under

development.

In one of the first tests we ran on Heritrix, tregp rate was very low. The first 13 minutes
had an average of 1.94 pages downloaded per s¢cend16.4 pages per minute, 6984
pages per hour). We had disabled a module to ntekerawler work, and we suspected
that this was the reason for the low download Hateok 30 seconds to process each URI,
and this is a long period of time. After the evéloa period was over, we discovered that
the relatively slow crawling was caused by the ldsé module. The module did not work

due to a bug in the dnsjava [26] library that thedoie used. This problem, and the
solution, is described in chapter 9.1.2.

Positive:

» Heritrix is very modular and extendable. It is desid to make it easy to include
new modules, and replace existing modules withedsffit ones.

* It is well documented. In addition to the API, theis a Users Manual and a
Developers Manual, as well as many forums.

» The Internet Archive organization [27], which hasveloped Heritrix, has much
experience with web crawling.

* ltis has been tested extensively. It is used srfuby Internet Archive [27].

» The crawler is highly configurable and is politaverds servers and it obeys the
robots.txt protocol.

* The web user-interface is user friendly and easyntderstand.

Negative:
* When we tested Heritrix it was very slow becausthefproblems with dnsjava.
 The 1.2.0 version of Heritrix, which was used ie fiirst tests, used quite much
memory and got OutOfMemoryExceptions when it haad far a little while, but
the Heritrix developers are working on this andniere recent CVS versions show
improvement on the memory issues.

4.3 Weblech

Weblech seems to be a program mainly for downlaadin mirroring a web site, but
according to the project web site [28] it is pobsito configure it to ‘spider the Whole
Web'. Still it will probably take a lot of work teurn this crawler into something we can
use in our project. The Weblech project is als@ ipre-alpha state, with a latest release
version of 0.0.3, so it is not at all finished. Tfreject web site states that the main features
work, but that the GUI has not been developed.la@test news posted on the page informs

17

Semi-automatic web resource discovery using onyefogused crawling

us that version 0.0.4, which will include the Gl being developed, but this post is from
June 12 2004, so it is almost a year old.

Positive:
« The crawler is multithreaded, written in Java apeérosource, but so are most of
the other crawlers we have evaluated.

Negative:
» This crawler seems to be specialized on a diffetask than what we need in our
project.

* The project is in a pre-alpha state (version 0.0.3)

4.4 WebSPHINX

WebSPHINX consists of two parts: A crawler workbemnd a class library that provides
support for writing web crawlers in Java. The wakbh can show a graphical
representation of web sites and links found, saagep to disk for offline browsing,
show/print different pages in a single documentraex text matching a pattern from a
collection of pages, and develop a custom cravilar processes pages the way you want.
[29]

The WebSPHINX class library offers several feat(i2£g:

* Multithreaded Web page retrieval in a simple agian framework

* An object model that explicitly represents pages larks

» Support for reusable page content classifiers

e Tolerant HTML parsing

» Support for the robot exclusion standard

« Pattern matching, including regular expressions|XUshell wildcards, and HTML
tag expressions. Regular expressions are provigiethd Apache jakarta-regexp
regular expression library

« Common HTML transformations, such as concatenagiages, saving pages to
disk, and renaming links

If we are going to use this crawler as a basisweald probably have to use the class
library part of WebSPHINX. The workbench alone does seem to be powerful enough,
but the features of the class library look prongsiwe would have to write a Java web
crawler that utilizes the class library to get standard crawler functions done, like
fetching web pages, parsing HTML, honoring the tabalusion standard, and so on. The
part of the crawler that parse the ontology andigaithe crawl according to it would then
have to be created in addition.

Positive:

* WebSPHINX includes a Java library that gives supgor developing a web
crawler in Java. This could be useful if we dectdedevelop a crawler from
scratch, and parts could also maybe be used if @oide to extend a different
crawler.

18

Semi-automatic web resource discovery using onyefogused crawling

Negative:
 The WebSPHINX crawler does not seem to be poweriaugh for our project.

4.5 J-Spider
J-Spider [30] is a configurable and customizablé weider engine. J-Spider is primarily
designed for crawling a single web site and hasaltased Ul.

It can be used:
» to check a site for errors (internal server errorkg,
» for outgoing and/or internal link checking
» to analyze a site structure (creating a site mgp, .
» to download complete web sites

Positive:
e Itis modular and extensible using plug-ins
* Well documented. 121 pages in user manual.

Negative:
» Designed for crawling single web sites
* Under development. No stable releases
e Only text based Ul

4.6 HyperSpider

HyperSpider [31] is designed to evaluate the linkudure of a web site. It can
import/export to/from databases and CSV-files.as$ la GUI which can be used to analyze
the link structure of a web site. HyperSpider ckso &xport the link structure to several
formats, e.g. HTML, XML Topic Maps (XTM) and RDF.

Positive:
» Graphical user interface
* Graphical presentation of link structures
» Good support for analyzing link structures
» Good support for exporting link structures to diffiet formats, e.g. XTM and RDF

Negative:
» Only designed for evaluating the link structuresioigle web sites
* Low modularity and extensibility
» Little or no documentation
* No development activity since 29.08.2003

19

Semi-automatic web resource discovery using onyefogused crawling

4.7 Arale

Arale [32] is a Java based web crawler primarilgigeed for downloading files from a
single web site. It can also be used to rendermimaages into static pages. The crawler
has a text based Ul.

Arale is a very simple crawler, and consumes aofotmemory while crawling pages.
Apparently the software has some issues concemergory usage.

Positive:
* Simple and easy to use
* Can be filtered to download certain file types

Negative:
» Designed for crawling single web sites
* Very simple code, low extensibility
* No development activity since 2001

4.8 Extending an existing crawler or developing a new crawler

In this chapter we will discuss the positive angatere aspects of extending an existing
web crawler, and developing a new crawler fromtstra

4.8.1 Extending an existing web crawler

By extending an existing web crawler, we mean tibdbextra modules, or alter existing
parts of an already existing rather complete wekwviar.

One of the main advantages of extending an exigtrawvler is that we have to do less
programming. There are a lot of more or less bigsitures that are necessary to make the
crawler work, that are not actually a part of teevance algorithms. We could save a lot
of time by reusing this functionality from an exigt crawler instead of implementing it
ourselves. This time could be used to improve thdspof the crawler that are more
relevant to our thesis. The basic features reused &n existing crawler will most likely
also be better than equivalent features implemebyeds. This means that extending an
existing crawler will lead to a more robust anditggbrototype.

On the other hand, to be able to build extensiona fcrawler, it is necessary to understand
how the crawler is designed, how it works and hog aan extend it. Some of the time

saved by reusing code, will be used to gain thidewstanding. Still, if the extendable

crawler is reasonably well documented, gettingribeessary understanding will be less
time consuming than developing a crawler from straThe crawler to extend will most

likely have been designed with a different or mgemeric area of application in mind.

This means that an extended crawler will have lopeiformance than a web crawler
developed from scratch solely for the purpose dafiglontology-focused crawling.

20

Semi-automatic web resource discovery using onyefogused crawling

4.8.2 Developing a web crawler from scratch

When we talk about developing a web crawler fromatet, we mean that instead of
building an extension to an existing complete wetwter, we could design our own web
crawler using class libraries, modules from oth@wters, and modules implemented by
ourselves. Developing a web crawler from scratadsdwt mean that we must write all the
code ourselves.

If we choose this approach, we will have a lotreefiom to design the crawler to make it
best fit our needs. We would not be limited by ander that someone else has made for a
different purpose.

But, as mentioned before, developing our own crawid take more time, and be more
difficult. The crawler would probably have to be dwraas simple as possible to let us
complete our project in time. This could cause drevler to be more unstable and less
polite than an extended crawler.

49 Evaluation

We decided to extend an existing crawler. One efrdtasons was that the crawler is only
used to test algorithms and principles, and ihexefore desirable to use as little time as
possible on developing the crawler itself. Timalso always a scarce resource. Spending
less time on developing a crawler will free timattitan be used to choose and develop
algorithms on how the crawler can use ontologiebeicome focused. Another important
factor was that it seemed feasible actually extemdihe most promising crawler, named
Heritrix.

After we had decided to extend an existing craweg, chose to extend Heritrix. The
evaluation had led us to believe that Heritrix aNdtch were the most promising
alternatives. Because of this we spent more tirstnge these crawlers than the rest. After
these tests, Heritrix seemed to be easiest to éxéasiest to use, and it also seemed to be
best documented. These are the main reasons whglaaed Heritrix.

21

Semi-automatic web resource discovery using onyefogused crawling

5 Description of Heritrix

It is stated in the Heritrix developer documentatjd3] that the Heritrix Web Crawler is
designed to be modular. Adding a new module wittnaefunctionality is easy, and it is
possible to choose which modules to use at runtintee web user interface. Figure 5.1
shows an overview of the most important parts efleritrix crawler. The parts shown in
the figure will be explained in this chapter. Mast the information in the following
subchapters is fetched from the Heritrix develapmumentation [33] andn Introduction
to Heritrix [34], and these documents are recommended if & ohetailed presentation of
Heritrix is required.

CrawlLRI

CrawlScope
(CandidateUR|)
Frontier Processor chains
\ ToeThreads

& extracted links

CrawlURI)J

Crawl|Controller

Figure 5.1 Overview of Heritrix. [33]

5.1 Frontier

The Frontier maintains the state of the crawl. Agnother things it contains the queue of
URIs that have not yet been downloaded and afliststted URIs to prevent the crawler

22

Semi-automatic web resource discovery using onyefogused crawling

from downloading pages unnecessarily. When a Takhfinishes processing an URI, it
delivers discovered links to the Frontier, and thsks the Frontier for another URI. The
politeness is also controlled by the Frontier. Hnentier has a queue for each domain to
distribute the load on different servers.

5.2 ToeThreads

The Heritrix Web Crawler is multithreaded in orderbe more effective. The threads that
do the real work are called ToeThreads. It is fmsgio configure how many of these a
crawl should have. The ToeThreads ask the Frofattea new URI, and sequentially run it

through the processors the crawler is configurasses

5.3 CrawlURI and CandidateURI

All the URIs are represented by a CrawlURI instaridee ToeThreads get a CrawlURI
object from the Frontier, and this object contdhres URI. The different processors use this
object to move information to the succeeding preces The FetchHTTP processor
downloads the web page, and stores the downloaded

data in the CrawlURI instance. When the sal

CrawlURI-object enters the ExtractorHTML process

the downloaded data is fetched from the CrawlUl

object. A CandidateURI is created when a new UR
discovered. If it is accepted in the Frontier tl | Prefetch processing chairD

CandidateURI is turned into a CrawlURI. ‘

54 CrawIScope Getch processing chain
A CrawlScope defines which URIs are allowed to

scheduled into the Frontier. Basically it is agfilivhich

looks at the information in a CrawlURI or

CandidateURI and decides whether it should G}{tractarpmcessing chain

crawled or not. ‘

5.5 Processor chains (‘-.-'-.-"riteflnden' processing chairD
The processors are organized into different prace:

chains according to their functionality. For instarall

link extraction processors are part of the Extnac (.)
. . o Post-processing chain
processing chain. A processor chain is the same .

processing chain. The Heritrix documentation isita
inconsistent and alternates between these two terms

'
o

Figure 5.2 Processor chains. [33]

23

Semi-automatic web resource discovery using onyefogused crawling

6 Focusing algorithm and search strategy

This chapter explains the algorithms used in owtqgtype and some other relevant
algorithms.

6.1 Ontology based comparison of documents

The algorithm in [35] has been developed by Vladi@ieshchuk and Asle Pedersen. Its
purpose is to measure similarity between documenite idea is that the degree of
similarity depends on the context and the exiskngwledge of the agent performing the
comparison. The context/knowledge is representéalagically. Instead of comparing the
document contents, the linkage between ontologyceis and document contents is
compared.

The algorithm consists of two parts. The first paimns to generate an ontological
“footprint” of a document. The footprint is a sulbology of the main ontology, describing
the linkage between the document contents andritotogy.

The second part is used to compare two footprifitéwo different documents. The
algorithm can determine on which abstraction |¢keltwo documents are similar.

In the beginning of our project, some ideas frons @igorithm were used as a starting
point when we developed our relevance algorithm.

6.2 Our relevance algorithm

One of the ideas behind an ontology-focused wetleras that the user often has some
initial knowledge about the area of interest. Thetqtype developed in this project can
take this knowledge in the form of a topic map. gbal of the relevance algorithm used in
the prototype is to determine how relevant a wedepga in relation to the topic map. The
algorithm is inspired by the relevance computatitgorithm described in [3].

The names of all the topics in the ontology areastéd, and these words are the basis for
the relevance calculation. The user has the pdisgitn select one or more focal topics in
the topic map. These topics will get a higher weigind if they are found on a web page
they will affect the relevancy of the page morentweords with lower weights. There are
four different weight classes, and the weight adsth can be set by the user in the web
administrative console. The first class includesftital topics themselves, and the default
weight is 1.0. The second group includes all tipgctodirectly related to one or more focal
topics through a Superclass-Subclass associalitis group has a default weight of 0.8.
The next class embraces all the topics directlgteel to one or more of the focal topics
through any other association than a Superclassk&sghassociation. The default weight is
0.5. Topics that are not directly connected to ftieal topics constitute the last weight
class. These topics get a weight of 0.1 as defdahié weight of all the topics in the
ontology is calculated once for each crawl jobchanging the weights for the different
weight classes during a crawl will not have anyeetff If a topic should belong to more

24

Semi-automatic web resource discovery using onyefogused crawling

than one of these weight classes, it will get iwght assigned from the class with the
highest weight.

w Kiichiro Toyoda

Superclass-Subclass Founder-Company

Subclass-Superclass

Toyota Motor
Product-Producer: Manufacturing,
Inc.

‘

Superclass-Subclass

Avensis Corolla

Superclass-Subclass

Corolla Verso

Figure 6.1 A very simple TM about Toyota.

Figure 6.1 shows a very simple example of a tomap @ibout Toyota. It shows that Toyota
is a subclass of Japanese car, and the superdldssiosis and Corolla. The topic map
states that TMM Inc. produces Toyotas, and thatHfic Toyoda was the founder of
TMM Inc. Although simple, this TM contains enougliferent types of associations to
show how the weights of the topics are calculatethée prototype. The table below shows
the weights of the topics, given that the defawdighits are used. The values in the center
column presuppose that Toyota is chosen as fopal, tawhile the rightmost column shows
the values as they would be if TMM Inc. and Coreliere set as focal topics.

Topic Weight (Focus: Toyota) | Weight (Focus: TMM Inc and Corolla)
Japanese car 0.8 0.1

Kiichiri Toyoda | 0.1 0.5

TMM Inc. 0.5 1.0

Toyota 1.0 0.8

Avensis 0.8 0.1

Corolla 0.8 1.0

Corolla Verso 0.1 0.8

Table 6.1 Weights of the topics from the topic mam Figure 6.1

The weights in Table 6.1 are only used to dictateclv part of the topic map is most
important. They say nothing about the relevancye RielevanceCalculator processor uses
a version of the TFIDF (Term Frequency Inverse Doent Frequency) [2] algorithm to
calculate the relevance of a web page.

The classical TFIDF algorithm [2] can be descriletth the following equation:

D
Wy =ty IOQ(FJ
f

25

Semi-automatic web resource discovery using onyefogused crawling

where w,, is the weight of the feature (term) f in documdntf,, the raw frequency of
feature f in document d, D the total number of doeats in the training set, amtl, is the

number of documents containing the feature f. Thgiral TFIDF is explained in detail in
[36].

The TFIDF values are found by multiplying Term Frequenvith Inverse Document

Frequency. TF is the number of occurrences of aifspéerm in a particular document.

The IDF part is found by dividing the total numbdr documents by the number of
documents containing the term, and it increasesTE#H®F value for more rare terms. A
term that only occurs in 2 % of the documents gelsgher IDF value than a term that
occurs in for instance 95 % of the documents.

In the prototype described in this thesis a maxinmommalized version of TFIDF has been
used, that can be described by the following equati

tf
Wigmn = —_— DlOg R
TF, df,

Here, &, is the weight of the feature (term) f in documemeb page) dif,, the number
of times the feature f occurs in documenilé,, the number of occurrences for the feature

that occurs most frequently in this document, Dttital number of processed web pages,
and df, is the number of web pages containing the fedture

A TFIDF value is calculated for each term in thei¢apap that occurs in the document.

Because the crawler is focused, the relevancyeofmib page is needed to decide whether
to follow the links on the page or not. This medrat it is not possible to do the relevance

calculation after all web pages have been downkbad€he calculation has to be done

during the crawl, so the IDF values will be basadldferent document sets.

To get an overall relevancy of a web page, the maximormalized TFIDF values of the
terms found on the page needs to be combinedelalgorithm described in [3] the scores
of the terms from the ontology are simply summatite get a final relevance for the
document. In our prototype this is achieved inrailsir way, according to the following

equation:
Z (wfdmnwf)

2 W
f
whererelevancy is the overall relevancy of the web page,, is the TFIDF value of the

term f in web page d, and/, is the weight of the term f. Note that, is not the TFIDF

weight, but the weight used for defining the foanfsthe topic map. The maximum
normalized TFIDF values are multiplied by the ongglaveights. This is done for all the
different terms in the document that occurs in tbpic map, and the results are
summarized. We normalize by dividing by the sumtte# ontology weights of all the
topics in the topic map. This sum is the theoreticakimum value of the dividend, and so

relevancy =

26

Semi-automatic web resource discovery using onyefogused crawling

the highest possible relevance value for a docunseht It is this normalization part that
differs from the algorithm in [3].

6.3 Link analysis

Pages on the Web are heavily interconnected andaicoma lot of cross-references.
Analysis of the link patterns on the Web can beedaith link analysis algorithms. Several
link analysis algorithms have been successfullydusediscover authoritative information
resources on the Web. One well-known algorithmhis Kleinberg HITS algorithm [6].
This algorithm gives a page a high “authority” weight is linked to by many pages with
high “hub” weight, and gives a page a high hub Wwei§ it links to many authoritative
pages. Another popular algorithm is the PageRaidky8ed in the Google search engine.
PageRank is one of the methods used by Google terndi@ee a page’s relevance or
importance.

In order to ensure that our prototype only followks that are considered important, we
have included a link analysis module from NutchleckWebDB. The WebDB module is a
web database that can save and analyze the gnagitust of web pages. According to
Khare et al. [38] the link analysis algorithm usedNutch is similar to the PageRank
algorithm. The WebDB database contains one tabledcdPage” and one table called
“Link”. The Page table contains information about @#lé web pages the crawler has
discovered, while the Link table contains informatebout the link connections between
the pages. When the link analysis is started, Nus#s the link structure to calculate a
score for each page in the database. The page giwesean indication of the importance
or authoritativeness of the web page.

27

Semi-automatic web resource discovery using onyefogused crawling

7 The prototype

Our prototype is based on the Heritrix web crawlémk analysis functionality is achieved
through the WebDB module from the Nutch crawler. phatotype takes an ontology and
a list of URLs as input. The ontology delimits theaof interest, and the URLs are used
as seeds (starting URLS). Each downloaded URI isegassturn to the processors defined
to be used in the crawl. Each downloaded web pagarsed with the NekoHTMLParser
processor, and the RelevanceCalculator analyzesafiients extracted by the parser and
determines a relevance value of the page in relatidhe input ontology.

Web Administrative Console H Crawl Order

A [

A\ Y
CrawlController

next(CrawlURl)——————————— |

Prefetch chain

URI Work Preselector J
Queues

ServerCache Precondition- r
Enforcer

Fetch chain

-
-y

Y

[DNSFetcher

FetchHTTP J‘
Scope

Extractor chain ToeThreads

Y

Frontier

HTMLParser

TfldfCalculator

Relevance-
Calculator

TopicMapLoader

Already

gy - 1

Y
I Y
Y

Included URIs Extractors

Postprocessor
chain

CrawlState- [
Updater J

WebDB WebDB-
Postselector

-4 Finished(CrawlURI)

- ~————

r-Schedule(URI)

Figure 7.1 Overview of Heritrix. The emphasized modiges are the modules we have added.

28

Semi-automatic web resource discovery using onyefogused crawling

Figure 7.1 shows an overview of the modules in tderand how they are connected. The
emphasized parts are the modules we had to adcetitrikd in order to turn it into an
ontology-focused crawler. In the following chaptere will explain how these modules
work and how we have created the prototype.

Name Function

:cg Preselector Offers_an opportunity to reject previously schedulgRls

o not of interest.

GJ . .

= " Ensures that any URIs which are preconditions fa|th

o
PreconditionEnforcer current URI are scheduled beforehand.

S FetchDNS Performs DNS lookups, for URIs of the “dissheme.

@ | FotchHTTP ‘I‘Derfor.,rps HTTP retrievals, for URIs of the “http:” apd

https:” schemes.
NekoHTMLParser | Parses the content from the currentURI.

Calculates the relevance of the web page in relatido the
RelevanceCalculator

7 ontology.

% ExtractorHTTP Discovers URIs in the HTTP header.

g ExtractorHTML Discovers URIs inside HTML resources.

W ExtractorCSS Discovers URIs inside Cascading Style Sheet ressurc
ExtractorJS Discovers likely URIs inside Javascript resources.
ExtractorSWF Discovers URIs inside Shockwave/Flash resources.

” ¥ : ; :

2 | CrawlStateUpdater qulates crawlgr internal caches with new informatio

? retrieved by earlier processors.

= Adds the links extracted from the current URI to the

09_ WebDB, and if the queue in the Frontier is too smal it

‘g WebDBPostSelector| runs link analysis on the WebDB contents, extractshe

o URIs with highest page score and schedules them inthe

Frontier.

Table 7.1 The processors in Heritrix grouped by proessor chain. The emphasized rows describe the
modules we have added.

7.1 NekoHTMLParser

The processor called NekoHTMLParser uses the NekoHT38I parser to extract the
web page content from the downloaded HTML code. TheoN&ML parser is also used
by the Nutch crawler. It is easy to configure tlaser, by telling it what to do with the
different tags. The parser can either keep thertagopve the tag, or remove the start and
end tag as well as everything between them. Theféadtire is especially effective to
remove all scripts and styles from HTML code. The difia to just remove the tags.

7.2 RelevanceCalculator

The RelevanceCalculator’s job is to determine theveace of the downloaded web pages
in relation to the ontology defining the area oftemnest. It is dependant on the

29

Semi-automatic web resource discovery using onyefogused crawling

NekoHTMLParserProcessor. If the parser has not eelidhe web page contents from the
HTML code, the RelevanceCalculator can not evalldsedlevancy of the page.

7.2.1 initialTasks()

The initialTasks method of a processor is called wiaercrawl is started. In the
RelevanceCalculator this initiation includes thikofeing tasks.

First the topic map is loaded from a XTM file with BVl In our crawler TM4J uses a
hibernate backend with a MySQL database in theobotb keep the topic map. The name
of the XTM file is given by theopicmap-filenameattribute. After this task has been
completed, all the base names of the topics amaatgt from the loaded topic map. The
next thing that happens is that the list of fooglits ocal-topicattribute) and the defined
weights of the weight classe®¢us-weighttaxrel-weight otherrel-weightandrest-weight
attributes) are read from the crawl order. Theg@ates are then used to assign a weight
to each of the topics. For more detailed informata the relevancy algorithm see chapter
6.2. Finally, all the extracted base names arerstirusing the Snowball module from the
open source full text indexing engine Lucene [40}e Wave configured the Snowball
module to use the Porter stemming algorithm.

Assign a weight to

all topics in the
topic map based

Load the topic on the list of focal
map from the file topics, and
given by predefined weight
TM_FILENAME, classes
using TM4J +
% Stem the base

names using
Snowball and the
Porter algorithm

Extract all the
base names from
the topic map

— @

Figure 7.2 Flowchart for initialTasks() in Relevance@lculator.

7.2.2 innerProcess()

The innerProcess method is called for each downtbaad page. Error pages, robots.txt's
and URLs that are not http or https are filteredyawmathe first part of the method. Then
the text content of the web page is fetched frone thariable where the
NekoHTMLParserProcessor stored it. The words in thetent are stemmed using the
same algorithm as the one used on the base nanmbe imitialization. After this the
TFIDF value is calculated for all the topic map baaees that occur in the content of the
web page. All the TFIDF values are then combinegetiban overall relevancy of the web
page. For more information about the TFIDF algoritised see chapter 6.2.

30

Semi-automatic web resource discovery using onyefogused crawling

Is it
an error page,

robots.txt or not
http/https?

NO

Does the page
use frames?

NO

v

A

Calculate TFIDF
values for each
base name that
occurs in the web
page content

v

Calculate overall
relevancy for web
page based on the
TFIDF values and
the weights of the
base names

Get the web page
content from the
CrawlURI object

v

Split the content to
words/tokens and
stem the words
using Snowball
and the Porter
algorithm

Is overall
relevancy >
RELEVANCY_
LIMIT?

YES
v

Is this a
ocused crawl?

YES

v

Add a topic
representing this
web page to the

™

Tell the CrawlURI
object to skip all
the link extractors

I

»
Ll

NO

Ll
hal

d
N

Figure 7.3 Flowchart for innerProcess() in RelevanceGeulator.

The following attributes can be altered to confignosv the RelevanceCalculator works.

topicmap-filename
This attribute holds the filename of the XTM-file theontains the topic map
defining the area of interest. The crawler will lofak this file in the topicmaps
folder in the Heritrix root folder.
focal-topics
This is a comma separated list with the id(s) offtheal topics in the topic map.
These topics will get a higher weight when deciding relevancy of a web page.
The weights are defined in the next four attributdsthe weights are declared as
doubles, and their value should not be less thannGore than 1.
focus-weight
In this attribute the weights of the focal topics defined.

31

Semi-automatic web resource discovery using onyefogused crawling

7.3

7.3.1

taxrel-weight

This attribute holds the weight of the topics dilecklated to the focal topics
through a taxonomical association. This means thatpossible to get to this topic
from one of the focal topics by traversing only oassociation of the type
Superclass-Subclass.

otherrel-weight

This attribute holds the weight that should be amsigto all the topics directly
connected to the focal topics through any otheo@aton type than Superclass-
Subclass.

rest-weight

This attribute defines the weight of all the topikat are neither a focal topic nor
directly connected to one.

relevancy-limit

A web page is not necessarily relevant just bec#useelevancy value is higher
than zero. This just means that one of the word® fifte topic map occurs in the
web page. The relevancy-limit attribute is used &xide the border between
relevant and irrelevant pages. Its value shoulddtereen 0 and 1. If set to O, all
web pages will be considered relevant, if set talllweb pages will be considered
irrelevant.

focused-crawl

This Boolean attribute denotes whether this shoald focused crawl or not. If this
value is true, the crawler will only extract linkem web pages that are considered
relevant by the RelevanceCalculator (i.e. the waley of the page is higher than
the relevancy-limij. If the attribute is set to false, the crawletl ianction more
like a breadth-first crawler, and extract linksrfrall the web pages.
harvestrate-logfile

This attribute contains the filename of the filetthél be used to write harvest rate
samples.

harvest-samplerate

This attribute defines the minimal time between eheéhnvest rate sample, in
seconds.

WebDBPostselector

Description of WebDBPostselector

The purpose of the standard Postselector in Hergriw determine which extracted links
and other related information that get fed bacth&Frontier. Instead of using the standard
Postselector, we have developed our own Postseleatted WebDBPostselector. The
purpose of WebDBPostselector is to focus the cralyeusing link analysis. This module
uses link analysis to determine the importanceistavered links, and then follows the
most important links first. WebDBPostselector isiigurable through module attributes.
The module can be configured to add e.g. the 50@ mgortant links. In order to do link
analysis WebDBPostselector uses a module from Ncatled WebDB. The database in
the WebDB module contains a web graph with all kng&ges and the links that connect

them.

32

Semi-automatic web resource discovery using onyefogused crawling

A

Close WebDB and
write new pages
and links

Are there new links

to add ?
A
Yes Run x iterations of
oy Yes link analysis
Add new links and
pages to WebDB Y
No Extract top n
pages from
WebDB

A

Schedule top n
pages into Frontier

Is FrontierSize <
MINIMUM_FRONTIER
SIZE ?

A

N End

Figure 7.4 Flowchart for innerProcess() in WebDBPostdector

The WebDBPostselector is part of the post-processiragn in Heritrix. When a page has
been fetched by a ToeThread the CrawlURI objectris tbeough all the processing chains
and at the end to the WebDBPostselector. The WebBi8&ector receives the CrawlURI
through the innerProcess() method. Figure 7.4 shberdlowchart for innerProcess() in
WebDBPostselector.

When the CrawlURI is received the WebDBPostselechacks the CrawlURI to see if it

contains new links. If it contains new links, thase all added to the WebDB database.
After that, the WebDBPostselector checks the sizbe Frontier queue to see if it is less
than the defined minimum size. If the Frontier sigenot less than minimum, the

WebDBPostselector is finished and the control refuo the ToeThread. If the Frontier
size is less than minimum, then the WebDBPostsaietbses the WebDB so that the new
pages and links are written to WebDB. After thisdefined number of link analysis

iterations are run in order to calculate a pageestar all the pages in WebDB. All the

pages are then sorted and the pages with the highese are extracted from WebDB.

These pages are then scheduled into the FrontiertrendVebDBPostselector is then

finished.

As mentioned earlier, the WebDBPostselector isdasethe standard Postselector module
in Heritrix. In addition to the standard attribufesm the Postselector, we have added the
following module attributes in order to make theb®&Postselector more configurable:

33

Semi-automatic web resource discovery using onyefogused crawling

* linkanalysis-iterations
Number of iterations to run link analysis

* linkanalysis-topsize
This is the number of top pages that will be exeddtom the WebDB module and
scheduled into the Frontier. The top pages will le pages with highest page
score.

e minimum-frontiersize
This is the minimum number of URLs that should bé¢hie Frontier queue. When
the size of the Frontier queue is lower than thignimum value, the
WebDBPostselector will start running link analysisd schedule new pages into
the Frontier.

* maximum-hostqueuesize
Maximum number of URLs in each host queue. New pagesnot added to the
Frontier if the host queue already contains thecifipd maximum number of
URLs. This is done to ensure that all the ToeThreaelsetive and have URLs in
their host queues.

7.3.2 ModifiedBdbFrontier

To be able to test whether the size of a host qieless than the defineshaximum-
hostqueuesizewe had to modify the Frontier. The ModifiedBdbRien extends the
standard BdbFrontier with a method called getHost@%ize(). This method returns the
number of URLSs in one specific host queue. We ctkateest in order to ensure that all the
ToeThreads are active and have URLs in their hosteguatiall times. Without this test
some of the host queues sometimes became very dadyeontained many URLs. This
resulted in very few active ToeThreads and theredarimeffective crawler.

7.3.3 Modified Page class in Nutch

In our project we have used the WebDB module incNub store information about
discovered links and pages. Each new relevant pagewered by Heritrix is inserted as a
new row in the page table in WebDB. To be able toaex pages from WebDB and insert
them into the Frontier in Heritrix, we had to adsh® attributes to the Page class in Nutch.
The page extracted from WebDB must be transformedanCandidateURI which can be
scheduled into the Frontier. To be able to create GandidateURI object these extra
attributes from the Page object are necessary. Tablbelow shows the original attributes
in the Page class, plus the attributes we havedadde

34

Semi-automatic web resource discovery using onyefogused crawling

Type Name Description

byte VERSION A byte indicating the version of thigry.

UTF8 URL The URL of a page. This is the primary key.
128bit ID The MD5 hash of the contents of the page.
64bit DATE The date this page should be refetched.

byte RETRIES The number of times we've failed to féich page.
byte INTERVAL Frequency, in days, this page shoulddieeshed.
float SCORE Multiplied into the score for hits dnst page.

float NEXTSCORE Multiplied into the score for hits tinis page.

Attributes added by us:

D

UTF8 FROMURL The URL of the page where the link testhage was
found.

UTF8 PATH Letters describing the path from the sedatiipage.

UTF8 VIACONTEXT | Context of URI's discovery, as peetlontext' in Link.

byte DIRECTIVE The type of link this page was disc@gkvia.

boolean SEED Whether this page is a seed or not.

Table 7.2 Attributes in the modified Page class ifNutch

The attribute called FROMURL might be considered neldunt, because the same
information is also stored in the Link table in Wéh[DT'he Link table contains information
about which pages are linking to which. The reasby we also put this information in the
Page object was to ease the task of extracting itliemmation when creating the
CandidateURI object.

35

Semi-automatic web resource discovery using onyefogused crawling

8 Prototype tests

This chapter describes different measures that ocanused when evaluating the
performance of a focused crawler. It also describegests and the input ontology used in
the tests. Towards the end of the chapter we présemésults of our tests.

All the tests were run on a computer with an AMChlah 800 MHz processor and 512
MB RAM, running MandrakeLinux 10.1. The average davad speed in the tests was
around 500 kb/s. This means that the Internet caiumewas not a bottleneck.

8.1 Performance measures

This chapter presents some performance measurdedosed crawlers. The measures
have been collected from different articles abdbheofocused crawlers, and are meant to
be a list over possible performance measures tavhea testing our prototype. Some of
the measures also say a lot about the structureafcanned domain of the Internet.

Chakrabarti et al. [5] use several measures whaluating their crawler:

e Harvest rate

Harvest rate is a common measure on how well sskExtgrawler performs. It is
the number of relevant pages per downloaded pagesl@ows how well the
crawler avoids the irrelevant web pages. This is@gneasure because the
definition of a focused crawler is to try to avaicklevant pages.
hr = r

Y
hr is the harvest rate,is the number of relevant pages found piglthe number
of pages downloaded. Preferably, it would be be&tthumans evaluate the
relevancy of the discovered pages. This is an ustieahpproach, due to the large
amount of web pages crawled. Instead we countuh#&aer of pages considered
relevant by the prototype itself, and use this neimib compute the harvest rate. In
[5] the same approach has been used. Chapter faRdescribes the harvest rate
measure in more detail.

* Crawl robustness
Two different crawls that focus on the same topecsarted with two different
seed sets. The overlapping of the web pages fourigebiyvo crawls is monitored
as the number of downloads increase. The crawl tnbss is the number of pages
overlapping divided by the total number of pagesmoaded. This measure will
also depend on the topic the crawl is focused og.t&hts done in [5] indicate that
crawls done on competitive domains like investind enutual funds overlap less
than crawls focusing on more co-operative topks dycling.

» Fraction of acquired pages vs. relevance
This measure shows how the pages are distributelifferent relevance values,

36

Semi-automatic web resource discovery using onyefogused crawling

and is therefore dependent on how the relevancgicilated.

e Minimum distance from crawl seed
Some graphs in [5] show how the 100 most relevagep found in a crawl are
distributed on distance in number of links from thesest seed document. This
measure can say something about the charactens$tiose domain of Internet that
concerns the topic the crawler is focusing on.

The measures used in [4] consist of some sort ofelarrate, and in addition the
following:

» Average relevance
This graph shows how the average relevance valtleafownloaded web pages
changes as number of downloads increase.

In [8] it is described how it is possible to crafet web sites instead of web pages. This
leads to some different measures. Harvest rateeid in this crawler also.

* Pages per relevant site rate
This measure is only relevant in crawlers that ardiscover web sites. It is the
number of downloaded pages divided by the numbezlefant web sites found.

Harvest rate seems to be the most used measureitwoenes to rating the performance of
a focused crawler.

8.2 Test settings

8.2.1 Scope filter

In order to ensure that our crawler only downlo&ités with textual content, and not

irrelevant files like images and video, we haveeatld filter when performing the tests.
The filter is shown in Figure 8.1 and contains adisfile endings for all the file types we

do not want the crawler to download. The filter ussgular expressions to decide which
links the crawler should not follow and is basedadiiter found at [41].

37

Semi-automatic web resource discovery using onyefogused crawling

A*(?i)\.(alai|aif|aifc|aiff|asc|au|avi]|bcpio|bin|bnp|bz2|c|cablcdf|cgi]|c
gm cl ass| cpi o] cpp?| cpt| csh| css| cxx| dcr|dif|dir|djv|djvu]dll|dng|dms|doc|d
td| dv| dvi | dxr| eps| et x| exe| ez| gi f|gram grxm | gtar| h| hdf| hgx|ice|ico|ics|ie
flifbliges|igs|iso|jar|jnlp|jp2|jpeljpegl|jpgljs|kar|latex|l|hallzh|nBu|lnac
| man| mat hrd | ne| mesh| mi d| mi di | mi f | mov| novi e| mp2| np3| np4| npe| npeg| npg| npga
ms| msh| mxu| nc| o| oda| ogg| pbn pct | pdb| pdf | pgm pgn| pi c| pi ct| pl | png| pnmi pnt | p
nt gl ppm ppt| ps|pylat|qgtijqgtif|irajranmras|rdf|rgbjrmroff|rpmrtf|rtx|s|sg
m sgm | sh| shar| sil o] sit]|skd| skm skp| skt|sm |smil|snd|so|spl|src|srpnisvidc
pi o] svdcrc|svg|swi|t|tar|tcl|tex|texi|texinfo|tgz|tif|tiff|tr|tsv|ustar]|vV
cd| vrm | vxm | wav| wonp| woxm | wrl | wrl ¢| wnl s| wd sc| wrl | xbmj xht | xht md | xI s| xn
| xpr xsl | xsl t| xwd| xyz| z| zi p) $

Figure 8.1 Scope filter which removes irrelevant fé types

This URL filter is used to ignore irrelevant filepiys before they are actually downloaded.
Files that are not removed by this filter are davaded by the crawler. In order to ensure
that the files that actually get downloaded onlgtamn textual content, we have also added
a filter that ensures that the content type is fomhtml.

8.2.2 Seed URLs

In the tests we have focused our crawler to fingiegawithin the field of “it-security”. The
seed pages we have used to start the crawler iwilisted below. These URLs have been
handpicked from the category Computers/Securityifighe Open Directory Project.

http://www.w3.org/Security/
http://netsecurity.about.com/
http://www.rsasecurity.com/
http://www.unisys.com/
http://www.us-cert.qov/
http://www.sans.org/
http://www.gocsi.com/
http://www.cisecurity.org/
http://www.icsa.net/
http://www.securezone.com/
http://www.securitysolutions.com/
http://www?2.csl.sri.com/jcs/
http://www.securitymagazine.com/
http://www.openssh.org/

8.2.3 Input Ontology

The ontology that was used as input in the testlsr@based on a small selection of the
security taxonomy found on [43]. This taxonomy cetssiof a collection of terms and

associations from several web sites and RFCs. Eonglete list of sources, see [43]. The
input ontology was built up around the term Seguriigure 8.2 shows how the test
ontology is presented in Omnigator. Omnigator veesdnly topic map viewer of the ones

38

Semi-automatic web resource discovery using onyefogused crawling

we found, that could show the entire topic maphat $ame time. The pink connections
represent Superclass-Subclass associations, andpuh@e ones represent Related
associations. Unfortunately Omnigator only showes ithies of the associations when the
mouse is moved over the association. Because othhifigure is less informative in this

report than it is in Omnigator.

Security archit... Accreditation

Intrusion Detec..
lerberos \

Securm.r

Security sofhwa.. /\

Wirls scanner B Fi5k Lo

"l-h.____‘_‘_-- S—
\ Iru.:u.iunt

/ synchronous at..
@D
Scanning
Active attack

Checksum

Figure 8.2 The input ontology used in the tests. Pinlconnections annotate Superclass-Subclass
associations, while all other types of relations arpurple.

8.3 Testresults

All the diagrams in this chapter, except the last,dvave three graphs. The ‘Avg over 50’-
graph shows harvest rate for the last 50 downlopdegs, ‘Avg over 500’ shows harvest
rate for the last 500 pages and ‘Total avg’ indisdke development of the harvest rate for
all downloaded pages so far. The harvest rate sarafgecan be configured in the web
interface, and it was set to 50 in all the testwtsa This means that when the
RelevancyCalculator has processed 50 web pagesathest rate of these 50 pages, and
the harvest rate of all processed pages is catzlland added to a log file. A timestamp
and the number of processed pages are also wiittére file. The ‘Avg over 500’ values
are calculated after the crawl is finished basedhen'Avg over 50’ values. The name of
the log file can be configured in the web interface

Figure 8.3 shows the development of harvest raterenof the focused test crawls. The
relevancy limit of the crawl was set to 0.01. Thisams that web pages with a relevancy
value less than 0.01 were considered irrelevantaBse it was a focused crawl, no links
found on the irrelevant pages were followed. Thelgrshows a slight rise in the harvest
rate, and the total harvest rate ends at abouaf@e6 29 000 processed pages. Notice that
the x-axis shows the number of processed pages,nandlownloaded pages. This is

39

Semi-automatic web resource discovery using onyefogused crawling

because the downloaded pages number in Heritrludes DNS lookups and robots.txt’s.
The processed pages only includes the URIs that aataally processed by the
RelevanceCalculator, and therefore DNS lookupsptsotxt’s, error pages (e.g. 404’s) and
pages that do not belong to the http or https sehanme not counted in this number.
Pictures, text/plain and other non-HTML URIs that am stopped by the scope filter
described in chapter 8.2.1, will however be counga@n though none of these URIs ever
can become relevant. These URIs constitute about 6f the URIs processed by the
RelevanceCalculator.

Harvest rate, focused crawl, limit 0.01

o
)

o
2]

|
o [,
JﬂM 1 il] W
| i Lﬂﬂ*ﬂﬂ L T

==
—
=
=
=

harvest rate

I
~

=

IH.. i

o
w

o
)

©
=

o

54
991 4
1934 4

Figure 8.3 Harv

In Table 8.1 we present the most relevant web pé&mesd by the focused

2875
3818
4759
5692
6631
7567 A
8510
9438
10377 A
11310 A
12245 A
13181 A
14119 A
15057 A
16007 A
16936 -
17871 A
18810 A
19746 A
20675 -
21623 4
22559
23487 4
24436
25365 1

processed pages

\—Avg over 50 Avg over 500 — Total avg

est rate of focused crawl! with releviacy limit 0.01

generated the harvest rate shown in Figure 8.3.

26297 4

27254 4
28186 -
29116 -

crawl that

Relevancy

URI

0.29776142]

[http://securitysoftwaresolutions.com/contact.htm

0.28657338¢

Bhttp://securitysoftwaresolutions.com/ vti bin/shithlcontact.htmi

0.23078940¢

Bhttp://abanet.org/scitech/ec/isc/home.html

0.219206044

thttp://visa-asia.com/secured/flash index.html

0.19506603

Phttp://engarde.com/software/ipwatcher/risks/

0.19377175%

Bhttp://safenet-inc.com/

0.17916608¢

Dhttps://redsiren.com/infosecu/samplecontent.html

0.177217099

Dhttp://anchortechnologies.com/prod svcs.htm

0.17518272

Phttp://cisecurity.org/software cert.html

0.17264874¢

shttp://networkassociates.com/us/audience/entergi@®e.asp

Table 8.1 Top 10 web pages found by focused crawitlvrelevancy limit 0.01.

40

Semi-automatic web resource discovery using onyefogused crawling

Figure 8.4 shows the harvest rate of an unfocusmal evith relevancy limit at 0.01. When
the prototype is configured to crawl unfocused liaks are followed, but only the pages
with relevance value above the limit will be comsield relevant and added to the input
topic map. The harvest rate starts off quite high,tben it keeps going lower as the crawl
goes on.

Harvest rate, unfocused crawl, limit 0.01

1

0.9

0.8

0.7

0.6
0.5 J
0.4

0.3

dl gl
‘ ’vl i ,. | ‘1Il "““ TR R Y ; I
T U it itk l,‘u'“ b it »,.(,‘,. ALk Wr Ui

harvest rate

0.1+

0

—
0

2062
4074 A
6070
8105 -
10125 A
12126 A
14149 A
16163 A
18162 A
20210 +
22251 +
24319 +
26349
28468
30485 +
32546
34576
36599 -
38662
40684

processed pages

\—Avg over 50 pages Avg over 500 pages — Total avg

Figure 8.4 Harvest rate of unfocused crawl with releancy limit 0.01

The crawl that generated the graph in Figure 8.5 wdscused and it was started with
irrelevant seeds. This test was run because we wanteee how much effect the seeds
had on the crawl and harvest rate. The harveshete actually increases slightly as more
pages are downloaded.

41

Semi-automatic web resource discovery using onyefogused crawling

Harvest rate, unfocused crawl, limit 0.01, irreleva nt seeds

1
0.9 -
0.8 -
0.7 -
o 0.6
©
©
% 0.5 -
()
2
S04
0.3
2 A N
A A A A N
0.1 1 j\AA’\[‘*ﬂﬁA-;‘ UAWAA s V\/v’\v‘wv/\/\'.f\—/\/\k/\\ﬂ A
L v v V W V v \J
v
% to——r—r—r——-———
AN T AN T NN AN S ONMOOLMOOO OO NS NOULMTSANNSTSNM OO OO W I~
N 00 < OO NO I 00U ANOSOO O MO ANLLDSASOWL HdO00 WL ANNMAOOLW N ©
MW 00 d M O 0 AT OO NI N~NONLULMNOMOOATMNMOANLN~NMNO ML O AM O o o
H\—|HHNNNNmmmmvvvmmmmowo@r\r\r\wwwwmmmmg

processed pages

‘—Avg over 50 pages Avg over 500 pages — Total avg ‘

Figure 8.5 Harvest rate of unfocused crawl with releancy limit 0.01 and irrelevant seeds

Figure 8.6 and Figure 8.7 show how the harvesttrateed out when the relevancy limit
was raised to 0.02. The motivation for raising ihetlwas that we felt that the harvest rate

in the unfocused crawls with limit 0.01 was sugmisy high.

Harvest rate, focused crawl, limit 0.02

09 |
0.8 | !
0.7 |
Y 06 ih‘ ‘ h | MI, mf W m m‘l | !
et L i I H
% 0.5 l 'Il l THN | ' A Ill '
. TN e U
204 — t M [T 1 | |
03 |
02
0.1
-
N < ©O O O~ N M O d dIN~ 00 M0 M O M O AN OO O N W00 M~ O O o
I N 0O O M O IO N O S OM~MNMOOLWL N OO S ANNMO S 00 A1 oM OO <N~ ©
O dA N~ M O ¥ OO AN N O MOLWL 4 O N O MO < OWwOo Wwmw—H O N IMN~NN WM O
"M < O~ O AN ON0O0 d MmO 00O dN SOUNOOO O N MWL O 0 o0 A N
o A Hd AN NN NN ANNOOO OO0 S &Y 0w

processed pages

\—Avg over 50 pages Avg over 500 pages — Total avg

Figure 8.6 Harvest rate of focused crawl! with relevacy limit 0.02

42

Semi-automatic web resource discovery using onyefogused crawling

Harvest rate, unfocused crawl, limit 0.02

0.9

0.8

0.7

0.6

0.5

harvest rate

0.4

0.2 4 T i IRAT A I | =
P N e

0.1 A

==
=

=t

=
2=

S
_—

==
-

—
—

=
¥

—==
1 ==
==
5!=_

49221 1

36630 -

38444 |

40246 | =%

54660 | ===

51
1853
5472 |
7298
9109

10943 |
34825 -
42041
43842
45626
47434 -
51048 -
52848
56483

processed pages

‘—Avg over 50 Avg over 500 — Total avg ‘

Figure 8.7 Harvest rate of unfocused crawl with releancy limit 0.02

Harvest rate, unfocused crawl, limit 0.02, irreleva nt seeds

0.9

0.8

0.7

0.6

0.5

harvest rate

0.4
0.3 4

Zj b il hal } A St et 1 "J"LIMNJ"A'LH“WL“WP el "'J' l'm o

qL 1 |

' ' .‘W'Tﬂ

—3X

M S T T T

51 +a
1619 -
6365 -
7952 -
9561 -

11165 -

12793 -

14443 -

16063

17643 -

19300 -

20892

22499 -
24134 -
25724
27355 -
28984 -
30609 -
32260 -
33909 -
35524 -
37158 -
38775 -
40381

processed pages

‘—Avg over 50 pages Avg over 500 pages — Total avg ‘

Figure 8.8 Harvest rate of unfocused crawl with releancy limit 0.02 and irrelevant seeds

Figure 8.8 shows how the harvest rate develops imdocused crawl with irrelevant seed
URLs and a relevance limit of 0.02. The graph stafft@t about 5 % and rises slowly to
around 10 % after 40 000 processed pages.

43

Semi-automatic web resource discovery using onyefogused crawling

Harvest rate, with and without link analysis

0.9

0.8

0.7

0.6

0.5

harvest rate

0.4

0.3

0.2

0.1

52
1676 -
3293
4917
6541 |
8164 |
9767 |

11385
12999
14618
16231
17844
19460
21067
22683
24320
25948
27557
29182
30806
32395
33986
35605
37213
38800
40397
42002
43608
45207
46794 |
48381 -
49969 -
52422 +

processed pages

‘— no link analysis — link analysis ‘

Figure 8.9 Harvest rate of equal crawls with and wiout link analysis

Figure 8.9 shows the harvest rates of one crawi Viitkk analysis and one without link
analysis. The crawl with link analysis achieves evést rate that is slightly higher than the
harvest rate of the crawl without link analysis.

Robustness of acquisition

The robustness of acquisition measure describelapter 4.3 in [5] has also been used to
describe our prototype. This was done by splittihg top 100 URIs returned when
searching for the wordecurityin the Computer/Security directory on dmoz.orghaif.
These two subsets were then assigned as start ORisot different test crawls with
otherwise equal settings. When the crawls had beening for about 24 hours we
compared the results. It turned out that of th& @D first relevant web pages found by the
crawls, 10 322 were found by both. This gives a tmabustness of 0.497. Because of
limited time in the project, we were not able tovastigate how the robustness of
acquisition developed over time.

44

Semi-automatic web resource discovery using onyefogused crawling

9 Discussion

By using ontologies to guide a focused crawl ipassible to provide the crawler with
more knowledge about the target domain. Informatika synonyms to the terms, and
different types of relations between the terms banused to make the crawler more
capable of finding pages that are relevant.

Heritrix was easy to extend, and it has worked veslla basis for our prototype. The
developers have succeeded in making an intuitivee rmodular crawler. By extending

Heritrix we have reduced the time used on codind, duite some time has been spent
reading documentation and gaining understandinghef crawler. The solutions and

strategies chosen in Heritrix have in some casefentamore complicated to implement

solutions the way we wanted. Including Nutch’ limkalysis module in our Heritrix based

prototype was complicated. Because Nutch and Hehtive so different structures, we

had to do several adjustments to both Heritrix #vellink analysis module to make it

work.

9.1 The prototype

The prototype reads the input topic map from a XTM-tiuring the initiation of each
crawl. At first we tried to make the crawler adébimmation about the relevant web pages it
found to this topic map, and then write the topipno a XTM-file again when the crawl
was terminated or finished. This turned out to bkcdit. The process of writing the topic
map to a file was very demanding. Crawls that hadrdoaded around 50 000 URIs kept
writing to the file for hours, and were still nadrake. It is obvious that this is not acceptable.
Another problem was that at this point, the top&pmvas kept in the RAM. That means
that the memory usage increased as more web pages downloaded, and the
OutOfMemoryException was unavoidable. TM4J supporifferént backends for
containing the topic maps. In addition to the di#fdoMemory backend, there is a
Hibernate-backend that utilizes a traditional ielzl database, and an Ozone-backend
that uses the Ozone object oriented database $sptre topic maps. We changed to the
Hibernate-backend with a MySQL database, and tHiseedathe memory problem. The
Hibernate-backend also led to our solution of thabfem of writing the topic map to file.
The TMNav is a subproject of TM4J and therefore it pagsent topic maps from all
backends supported by TM4J as well as topic maps XKdM-files. It turned out to take a
lot less time to load the topic map directly frome tHibernate backend using TMNav, than
to first write it to an XTM-file and then load thepgic map from the file. The time
consumption was reduced from several hours to pleamf minutes.

In addition we reduced the amount of informatioattivas added to the topic map. In the
earlier versions of our prototype, each of thedsghat was found in a web page got an
occurrence pointing to the URI, and all these ommaes were reified to be able to add
TFIDF values for these occurrences. There was aldedad topic representing the web
page where the relevancy value was stored. This srisaih a web page mentioning 10 of
the topics in the topic map will cause 10 occuresn@and 11 topics to be added to the topic
map. The final version of the prototype only adde twpic and two occurrences for each

45

Semi-automatic web resource discovery using onyefogused crawling

relevant web page that is found. This topic cont#tiresrelevance value of the web page,
and the URI. We did this to keep the topic mapnaalisas possible.

It was a bit difficult to find information on howotload topic maps from Hibernate
backends in TMNav. In the comments in the configarafile of TMNav there was an
example on how to add a Hibernate backend. By chgribis example we managed to get
things working, but there are some exceptions atwmwhen loading the topic map. We
searched in search engines and relevant foruméeinternet, but we found very little
information about using Hibernate backend with TMNav

While testing our prototype we discovered that wihiee crawler has been running for
some time, the WebDBPostselector uses quite af lbie to do link analysis. In one of
the tests we did, the crawler used 7 minutes tbntcanalysis when the crawler had been
running for 20 hours. The link analysis started agpnately every 20 minutes, so this part
of the application used very much of the cpu-ti@alculating the score of all the links in
the link database (WebDB) is a heavy task, andt#isis takes more time to complete when
there are more links in the database. When theleraas been running for some time the
link database contains several thousand links, lmwhuse the computer we used when
testing the prototype had a slow 800 MHz cpu, mgnhe link analysis was also slow.

9.1.1 Problems running Nutch on Windows

A lot of time was used in order to get the WebDBduie from Nutch working in Heritrix.
We discovered some problems while using Nutch ondMivs XP. When running link
analysis on the WebDB, Nutch returned error messagaying that the file
"db\webdb.new\pagesByURIdlready existed. This problem occurred becauselthe/ds
not deleted the last time the link analysis was. N#hen running the dbWriter.close()
method the “webdb.new” directory is copied to “wbbadnd the “webdb.new” should be
deleted. When running Nutch on Windows XP the “Wehdw” directory was not deleted
and the next time link analysis was started, Nwttdpped because the “webdb.new”
directory already existed.

To be able to delete files and directories, Nutobsuwe class LocalFileSystem from the
package net.nutch.fs. The method used to delete ditedirectories is listed below in
Figure 9.1.

46

Semi-automatic web resource discovery using onyefogused crawling

private boolean fullyDelete(File dir) throws | CException {

File contents[] = dir.listFiles();
if (contents !'=null) {
for (int i =0; i < contents.length; i++) {

if (contents[i].isFile()) {
if (! contents[i].delete()) {
return fal se;
}
} else {
if (! fullyDelete(contents[i])) {
return fal se;

}
}

return dir.delete();

}

Figure 9.1 Code from net.nutch.LocalFileSystem.java

This is a recursive method that deletes a direcoiy all its subdirectories and files. For
some reason this method was not able to deletdilehédb\webdb.new\pagesByURL”
when running Nutch on Windows XP. We were not eable to delete this file manually
using Windows Explorer. It seemed like the file v&idl in use by Nutch and therefore
could not be deleted.

After a lot of testing and debugging of Nutch rummion Windows XP, we tried to run
Nutch on Linux. We discovered that the problem witla “webdb.new” directory did not
occur on Linux. Because of this we switched and usedx when running tests with our
focused crawler.

As stated on the homepage of Nutch [24] Linux idgsred, but Nutch is developed using
Java and should therefore have been platform innkgye.

9.1.2 Problems with DNS lookup in Heritrix

The earliest tests of Heritrix were run on a computenning Norwegian Microsoft
Windows XP Professional. In these tests the crastdy worked when we disabled the
PreconditionEnforcer processor, and it was very slomy two pages downloaded per
second. After some debugging we found out thatlitbrary Heritrix used to do DNS
lookup (dnsjava-1.6.2) only worked on English WindoXP. The reason for this was
simply that dnsjava used the ipconfig command tdalye IP addresses of the DNS servers.
The output from the ipconfig command was then patsefind the correct line. The
program searched for the line starting with “DN®vees:”, but could not find it because
the Norwegian version of ipconfig prints out “DN&rgere:”. We changed the source code
to look for the Norwegian text, compiled the Jaita &ind replaced the class file in the

a7

Semi-automatic web resource discovery using onyefogused crawling

dnsjava jar file. After having done this, the DNSkap in Heritrix worked again, and the
speed increased to between 20 and 30 pages peardsddee crawler finds DNS servers
differently on Linux, so when it was moved to the winserver the fix in the dnsjava
library was not needed anymore.

9.2 Testresults

We believe that the harvest rate values from thtbawsed test crawls are too high
compared to the focused crawls with the same ratgvamit. The implementation of the
IDF calculation makes it difficult to compare the IDF values from a focused and an
unfocused crawl. IDF is calculated like this:

idf, = Iog(dgfj
t

wheredf, is number of documents containing token t, and tal number of documents.

Unfocused crawl | Focused crawl
Processed documents (D) 50 000 50 000
Documents containing a relevant terndt, () 6 000 25 000
IDF value for term t 0.921 0.301

Table 9.1 IDF values for the same term in a typicdocused and unfocused crawl

The problem is that in our implementation the D uwlels all processed web pages,
including the irrelevant documents. An unfocuseaintrwill have a higher percentage of
irrelevant pages, and therefore also a lower sbfad®cuments containing relevant terms.
This could be demonstrated with an example. Let ysvea have a focused and an
unfocused crawl with otherwise equal settings #ath has processed 50 000 web pages.
The relevant term t could typically occur in 6 0GQle documents found in the unfocused
crawl, and in 25 000 documents in the focused cratwese numbers would result in IDF
values for the unfocused and focused crawls aesely 0.921 and 0.301. This is in a
way correct, because the relevant term is raréhenunfocused crawl, and hence should
get a higher IDF. But it could result in the samebwpage getting a higher relevancy in an
unfocused crawl than in a focused crawl, even thotng content of the page has not
changed. Table 9.2 shows a list of URIs with releyamalue from a focused and an
unfocused crawl with otherwise equal settings.

48

Semi-automatic web resource discovery using onyefogused crawling

URI

Focused

Unfocused

http://symantec.com/techsupp/enterprise/producsa/gkes.html

0.1932968¢

»0.35987031

http://engarde.com/software/ipwatcher/risks/

0.15190837

20.1793079¢

http://cve.mitre.org/press/releases.htmi

0.12576317

20.2429151¢

http://gocsi.com/netsec/pre post.jhtml

0.1239727¢

90.1879969¢§

http://forum.sans.org/discus/messaqges/729/729.h0AI641274

»0.1147468

»0.279410043

http://engarde.com/software/manualintrusion.php

0.10932691

10.1298117¢

http://altaassociates.com/announcements/index.asp

0.1077210¢

50.22833504

http://engarde.com/aboutus/contact.php

0.107067

0.1014465

http://redsiren.com/abouti4.htm

0.1022393]

[0.26713874

http://engarde.com/software/ipwatcher/paper.php

0.0985560¢1

»0.124430343

http://engarde.com/software/ipwatcher/info.php

0.0956635¢

30.121 75934

http://redsiren.com/

0.09517584

10.19776214

http://engarde.com/software/ipwatcher/thanks.php

0.09467551

30.14540123

http://redsiren.com/soc.htm

0.0945946"

»0.25206704

http://gocsi.com/training/

0.09411774

10.1241872]

Table 9.2 Relevancy of some web pages in a focusel an unfocused crawl with equal settings

This means that if the relevancy limit of a focused an unfocused crawl is set to the
same value, for example 0.02, and all other setting the same, many pages will be
considered relevant by the unfocused crawl thatcaresidered irrelevant in the focused
crawl. When we compared the relevancy values ofesaeb pages processed in a focused
and an unfocused crawl, we found that these welepag average got 125 % higher
relevance values in the unfocused crawl. This mehas the relevance limit of the
unfocused crawl should be set 125 % higher thanlithié of the focused crawl. The
unfocused crawl in Figure 8.7 should therefore havnit of 0.045 to be comparable to
the focused crawl! with relevance limit at 0.02 (Figy8.6). Only half of the pages found to
be relevant by the unfocused crawl with relevanayitl0.02 have a relevancy above
0.045. This means that the harvest rate shownguar€&i8.7 and Figure 8.4 should have
been about 50 % lower.

The harvest rate of the focused crawl with relevahoyt at 0.01 (Figure 8.3) was
promising, but the fact that the harvest rate igeghigh for the unfocused crawl (Figure
8.4) also, indicates that a relevancy limit of OMight be too low. This is why we
increased it to 0.02 in the next tests. By raighwglimit, fewer web pages are considered
relevant, and the harvest rate in the unfocusealsnaill be lowered.

We also did a few unfocused test crawls with inrafeg seed URLS, to see how much the
seeds affected the focusing and the harvest rateh@tvest rate of the unfocused crawls
with relevant seeds started quite high, but goteloand lower as the crawl went on (see
Figure 8.4 and Figure 8.7). In the unfocused crawth irrelevant seeds, the harvest rate
was more constant (see Figure 8.5), and it wastab@@o in the crawl with relevancy
limit 0.01. The harvest rate of the test with rel@veeeds is above 20 % even after more
than 65 000 web pages has been processed. This rienthe seeds also play an
important part in the focusing.

49

Semi-automatic web resource discovery using onyefogused crawling

In one of the tests we tried to measure the efiethie link analysis module. This was done
by running two test crawls, one with link analyared one without link analysis. All of the
other settings were equal. The harvest rate of tesserawls are shown in Figure 8.9. The
result shows that using link analysis only giveslight increase in the harvest rate. This
indicates that the prototype does not find many ean@levant pages when using link
analysis, but it may be that the content of theepaaye better, because the link analysis can
find more authoritative pages. Harvest rate isthetbest way to measure the effect of link
analysis, so more testing with other types of messuould therefore be done to further
evaluate the link analysis module. Link analysishhigpt be as useful as we thought. In an
interview with Doug Cutting [44], the primary dewgker of Nutch, Cutting says that the
value of link analysis is somewhat overrated.

In all of our tests we have used our prototypersovt pages directly on the Web. Since the
tests have not been performed at the exact sanee tita contents of some pages might
have changed between each test. In our project ave Imot considered this to be a
significant problem, but it is obvious that the rimdl pages might have participated in
causing the differences in the test results. Togmeehanging pages from affecting the
test results, it could have been possible to testprototype on a fixed set of pages. One
way of doing this is to use a web proxy server emafigure it to not download pages that
have already been downloaded. In this way our pyptowould only have crawled the
pages that already existed in the proxy servertheaBecause of limited time in our
project we did not pursue this possibility.

9.3 Further work

There are several ideas and methods that couldrtiefiexplored in our prototype. Our
prototype and algorithm contains several attributbgch can be adjusted, and it is fairly
easy to extend with more sophisticated algorithMere testing of the prototype can
therefore easily be done.

One thing that should be tested more thoroughhois the weight class values affect the
results. Will a higher value on the more periphéogics (in relation to the focal topics),
lead to fewer web pages about security in genamdldomputer security) being considered
relevant?

Implementing a best-first frontier could have besninteresting approach. A best-first

frontier could make sure that the links found oae thost relevant pages are downloaded
first. As of now, our prototype uses a kind of bist strategy based on the link scores,
but it would have been interesting to also take axtcount the text relevancy of the pages
where the links were found. The frontier queue cawldhis way be sorted to download the

most prominent pages first.

Enabling the crawler to find web sites instead obwages is another interesting approach
that could be examined. Ester et al. [8] proposesethod which uses an internal crawler

50

Semi-automatic web resource discovery using onyefogused crawling

to view the web pages of a single web site, anexa@rnal crawler that has a more abstract
view of the web as a graph of linked web sites.

One possible area of application for our prototig® use it to create a portal focused on a
specific domain or subject. In the current state, mrototype does not save the content of
the crawled pages. If we add an indexing module arskarch interface, it would be
possible to create a search portal or search emdiree users can search in a database that
only contains pages relevant to a certain subjéot. example researchers and others
interested in it-security could then create th@mnaveb portal which crawls the Web for
pages about it-security. Users in that communityiccdhen read the latest pages about it-
security or search in a database that only contsgss within the domain it-security. One
advantage of this is that the database is smalkértlzerefore easier to maintain and keep
up-to-date, compared to a standard search engiieh Wwies to crawl the entire Web. Each
community could then have their own focused seargfine. The task of finding relevant
pages on the Web could thereby be distributed werak specialized search engines in
different communities. If each of these communitiad their own focused search engines,
based on the same system, it might also be podsildeeate a common front-end for all
the search engines. Users could then use this canfroat-end to search in all of the
specialized distributed search engines at the siamee

51

Semi-automatic web resource discovery using onyefogused crawling

10 Conclusion

In our project we have developed a prototype tlsasuan ontology to perform focused
crawling. The prototype uses the structured infdromain the ontology to guide the
crawler in its search for web pages that are relei@the topic specified in the ontology.
Our relevance algorithm is inspired by the releeasomputation strategy proposed by
Ehrig et al. [3]. Their algorithm tries to map thentant of a web page against an ontology
to gain an overall relevance-score.

In this thesis we have evaluated several Java-baped source crawlers, but Heritrix

stands out as the most extensible and best sué@der for our purpose. Our prototype is

therefore built upon the Heritrix open source ceawEven though we experienced some
minor problems with Heritrix, we feel that Heritrig a stable and powerful crawler, and it
is well suited for developing extensions.

In addition to using an ontology to measure theuahcy of web pages, we have also used
link analysis to determine the importance of a lin&fore it is downloaded. In our
prototype, link analysis is achieved by using theBVB module from the open source
search engine Nutch. The test results show thatigkeof link analysis in our prototype
gives a slight increase in the harvest rate, bdidithot give as much improvement as we
had hoped.

When we started working on this project, we did matve much experience with
ontologies, but throughout this thesis we have shdiat ontologies are a suitable
technology for creating focused crawlers. In th&tstave have performed our prototype
shows good results, but there are still severaisajents that could be done on the settings
of the prototype and on the relevance algorithmilfitd/iore testing could also be done in
order to evaluate how well the prototype works whes set to focus on other topics.

52

Semi-automatic web resource discovery using onyefogused crawling

Bibliography

[1]
[2]
[3]
[4]

[5]

[6]

[7]

[8]
[9]

[10]

[11]
[12]

[13]

[14]
[15]
[16]

[17]

ISC Internet Domain Survey, Available from:
http://www.isc.org/index.pl?/ops/ds/reports/2003{#ccessed on May 2005]

G. Salton, C. Buckley, "Term weighting approacheautomatic text

retrieval,” Information Processing and Managem2¢5):513-523, 1988

M. Ehrig, A. Maedche, “Ontology-Focused Crawling/déb Documents,” in Proc.
of the 2003 ACM symposium on Applied computing, bmirne, Florida, 2003

M. Diligenti, F.M. Coetzee, S. Lawrence, C.L. Gilbt,Gori, “Focused Crawling
Using Context Graphs,” in 26th International Cosefere on Very Large Databases,
VLDB 2000

S. Chakrabarti, M. van den Berg, B. Dom, “Focuseavting: a new approach to
topic-specific Web resource discovery,” in 8th megional World Wide Web
Conference, May 1999

J. M. Kleinberg, "Authoritative Sources in a Hypekied Environment,” in
Proceedings of ACM-SIAM Symposium on Discrete Algons, 668-677, January
1998

M. Diligenti, F. M. Coetzee, S. Lawrence, C. L. GjIbt Gori, “Focused Crawling
Using Context Graphs,” in Proc. of the™?6LDB Conference, Cairo, Egypt, 527-
534, 2000

M. Ester, H. Kriegel, M. Schubert, “Accurate and &&nt Crawling for Relevant
Websites,” in Proc. of the 80/LDB Conference, Toronto, Canada, 2004

S. Sizov, S. Siersdorfer, M. Theobald, G. Weikum,é BINGO! Focused Crawler:
From Bookmarks to Archetypes,” in Proc. of the 1Bifernational Conference on
Data Engineering (ICDE 02), 2002

S. Chakrabarti, B. Dom, P. Raghavan, S. RajagopBlaGibson, J. Kleinberg,
“Automatic resource compilation by analyzing hypekistructure and associated
text,” in Proc. of the7th World Wide Web Conferenpages 65-74, 1997
Wikipedia article on Ontology, Available from:
http://en.wikipedia.org/wiki/Ontology (computer_soce)[Accessed May 2005]
T. R. Gruber, “What is an Ontology?,” Available dtp://www-
ksl.stanford.edu/kst/what-is-an-ontology.hffitcessed May 2005]

N. F. Noy, D. L. McGuinness, “Ontology DevelopmeftL1A Guide to Creating
Your First Ontology” Available on:
http://www.ksl.stanford.edu/people/dim/papers/oogetl 01/ontology101-noy-
mcqguinness.htnflAccessed May 2005]

W3C. Resource Description Framework (RDF), Avaiath:
http://www.w3.org/RDF[Accessed May 2005]

W3C. Web Ontology Language (OWL), Available ditp://www.w3.0rg/TR/owl-
features[Accessed May 2005]

XML Topic Maps (XTM) 1.0, Available onhttp://www.topicmaps.org/xtm/1.0/
[Accessed May 2005]

S. Pepper, “The TAO of Topic Maps,” Available from:
http://www.ontopia.net/topicmaps/materials/tao.hfAdcessed May 2005]

53

Semi-automatic web resource discovery using onyefogused crawling

[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]

[33]

[34]

[35]

[36]
[37]

[38]
[39]
[40]

[41]

L. M. Garshol, “Topic Maps, RDF, DAML, OIL,” Availabl&rom:
http://www.ontopia.net/topicmaps/materials/tmrdfi@iml.htmI[Accessed May
2005]

TopQuadrant Inc., Ontology Languages figure, Avadain:
http://www.coolheads.com/egov/opensource/topicni&gidmg21.htm[Accessed
May 2005]

Topic Maps For Java web page, Available loitp://tm4].org/[Accessed May 2005]
Ozone Database Project web page, Availabléntip://0zone-db.org/Accessed May
2005]

Hibernate web page, Available dritp://www.hibernate.org/Accessed May 2005]
Ontopia web page, Available onttp://www.ontopia.netfAccessed May 2005]
Nutch web page, Available ohttp://incubator.apache.org/nutdiccessed May
2005]

Heritrix web page, Available ofttp://crawler.archive.ordAccessed May 2005]
dnsjava web page, Available dmtp://www.xbill.org/dnsjavaJAccessed May 2005]
http://www.archive.org

WebLech URL Spider web page, Available bttp://weblech.sourceforge.net/
[Accessed May 2005]

WebSPHINX web page, Available olnittp://www-2.cs.cmu.edu/~rcm/websphinx/
[Accessed May 2005]

JSpider web page, Available dittp://j-spider.sourceforge.ndficcessed May
2005]

HyperSpider web page, Available dritp://hyperspider.sourceforge.npitccessed
May 2005]

Arale web page, Available ohttp://gomba.sourceforge.net/flavio/arale.html
[Accessed May 2005]

J. E. Hasle, G. Mohr, K. Sigurdsson, M. Stack, “Herideveloper documentation,”
Available on:http://crawler.archive.org/articles/developer_madriniml [Accessed
May 2005]

G. Mohr, M. Stack, I. Ranitovic, D. Avery, M. Kimgn, “An Introduction to
Heritrix,” 2004, Available on:
http://crawler.archive.org/An%20Introduction%20to0bteritrix.pdf [Accessed May
2005]

V. A. Oleshchuk, A. Pedersen, “Ontology Based Sdaim&imilarity Comparison of
Documents”

C. Liao, S. Alpha, P. Dixon, “Feature Preparatioif @xt Categorization”

S. Brin, L. Page. The anatomy of a large-scale hggeral (Web) search engine. In
The Seventh International World Wide Web Confered®88.

R. Khare, D. Cutting, K. Sitaker, A. Rifkin, “NutciA Flexible and Scalable Open-
Source Web Search Engine”

CyberNeko HTML Parser home page, Available on:
http://people.apache.org/~andyc/neko/doc/hiftcessed May 2005]

Lucene web page, Available amitp://lucene.apache.org/java/dops¢écessed May
2005]

Tom Emerson’s Heritrix Blog, Available on:
http://www.dreamersrealm.net/tree/blog/heritfkktcessed January 2005]

54

Semi-automatic web resource discovery using onyefogused crawling

[42] dmoz - open directory project web page, Availalrie o
http://www.dmoz.org/Computers/Securifplccessed May 2005]

[43] Security Taxonomy, Available ohitp://www.garlic.com/~lynn[Accessed April
2005]

[44] Doug Cutting Interview, Available ofttp://blog.outer-
court.com/archive/2004 05 28 _index.h{ltcessed May 2005]

55

