OLEN THE UNIVERSITY OF
o v NEW SOUTH WALES

)
O

@ng
‘S—“m

% $
L, e

OHiversitY

Application Development Using J2ZME -

Evaluation of
Intrinsic Platform Limitations

by

Havar Lundberg

A thesis submitted for the degree of

Master of Science in Information
and Communication Technology

Agder University College -
Faculty of Engineering and Science
and
University of New South Wales -
Faculty of Engineering

Grimstad, 18" of July 2005

Application development using J2ZME — Evaluation of intrinsic platform limitations

ABSTRACT

The operating system Symbian OS and the programming language Java have existed in a
symbiosis since the first version of Symbian OS arrived on the mobile scene. This thesis will
explore important aspects of the mobile version of Java, namely the Java 2 Micro Edition, on

Symbian OS based mobile phones.

Part one of the thesis reviews the structure and evolution of Java 2 Micro Edition and the
Symbian OS, and the symbiosis between them. This is done through a thorough theoretical
investigation of the programming interfaces offered to the developer. Particularly certain
problem areas such as hardware control, wireless messaging, network services and file access
will be investigated. To evaluate the maturity and feature richness of the platform, a test

application has been made which incorporates features depending on all these areas.

We found that Java 2 Micro Edition platform was quite easy to use when implementing
features like camera recording, HTTP/Servlet communication and Graphical User Interface
programming. However, we also experienced that the platform is lacking some advanced

options in each of the mentioned features.

The individual part investigates security and functionality issues related to accessing hardware
on Symbian OS mobile phones. In addition, investigate whether there might be limitations in
the Java 2 Micro Edition standard or the strategy behind it that would reduce the scope of
future application development. Access restriction to privileged resources is one of the key
security elements in the Java 2 Micro Edition platform. In order to investigate whether access
to device hardware could impose security issues, a test application, which requests to use
phone features like camera recording and file access, has been executed under different
security levels. Fortunately there were no deviation between assumed and actually behavior.
In addition I have investigated whether there might be any factors in the platform strategy,
like weaknesses in the hardware access or possible security threats, which could affect future
application development. The Optional Packages concept, which gives access to hardware,
clearly works and will most likely let future developers to make even more versatile
applications. There is one flaw in the low level configuration that could be a security issue for

the standard. This problem could however be avoided using so called signed applications.

Application development using J2ZME — Evaluation of intrinsic platform limitations

PREFACE

This Master thesis is the final work in order to achieve the Master of Science degree in
Information and Communication Technology at Agder University College (AUC), Faculty of
Engineering and Science. The thesis is written in collaboration whith AUC and the University

of New South Wales (UNSW).

The work has been done in Sydney, Australia and Grimstad, Norway between February and

July 2005.

The thesis consist two parts, one joint part and one individual part. The first and main part is
written in collaboration with fellow student Terje Eggum, the second part is written

exclusively by me (Hévar Lundberg).
We would like to thank our supervisor, assistant professor Lars Line (AUC), for valuable

guidance throughout the thesis. We would also like to thank our assistant supervisor, Fritjof

Boger Engelhardtsen, for useful feedback.

Grimstad 18%of July 2005

Hévar Lundberg Terje Eggum

II

Application development using J2ZME — Evaluation of intrinsic platform limitations

TABLE OF CONTENTS

ABSTRACT ...ttt teereeereertesee s et se s s seess s nneeesssneesessnseessssnsesasssneesssssseessssnseessssneessssnseeesssnseeesssnnessssannees I
PREFAGQCEeetereieeereeecreeeteseteseeeseseessssessssasessesassssssssassssasassesassssesssessssesassesessseesseessseessssessssesesssensnnes II
TABLE OF CONTENTS......ootiitiecterertereresesreesresestesessesesssessssasassasessssesssessssesssssssssesessssesssessssesassssessssessees 11
LIST OF FIGURES.eeooeieieteectetrereeesesreeeeeesenesesssneesessnnesssssnnessssnseessssnsesssssnsessssnseessssnsesssssnnessssnneesssnne VI
LIST OF TABLES ... cceeeteeetererteeereeesresesteseseesessssesssessseesassssassesesssessssesassesessssesssessssesassesassesesssessseeras VII
ABBREVIATIONS.......oo o eieeiecteeetererteseteeeseresssresassesessasassseesssessssasassesassesesssessssessstesassesessesessssssssessssesas VIII
1 INTRODUCGTIONooiitiecieeieereereerreeresrneesesssnaesesssseeesssssesssssseessssnsesssssnsessssssesssssnsesssssneessssnseessssnsesesss 1
1.1 BACKGROUND........etiiiiiiieeiiiite ettt ettt e ettt e e ettt sttt e e ettt e ettt e e s aae e e e sabneteeabneeesaaneeeenanneeesanneeenan 1
1.2 PROBLEM SPECIFICATIONotttiuitteeiintteenireteeniineeesanteeestneteenatseeessuneeeesasneeesnanneeessuneeeesmneeesnnneeenas 2
1.3 DELIMITATIONS — PART ONE ...uiiiiiiiiiiieiiiiite ettt ettt et e st e e sene e senneee e 2
1.3.1 Focus Areas — Features and MATUITLYccccveeeeeeeeesiieeesieeeesiaeesieaeesisaessesaesiseaeanns 2
.32 PIAIOITIL. ...ttt ettt e e e et e et e e et e et e et e e a it e e ntteaeans 3
g S 1Y/ 7 71)< SRS 3
1.4 DELIMITATIONS — PART TWO ...ttt ettt e 3
Lo] FOCUS ATCAS ...ttt ettt e ettt e e e e sttt et e e eassssttaseaaeaeas 3
) B 1Y 1 71 - SRS 4
1.5 THESIS OVERVIEW ...cuiiiiieiiitteeiiieeeeiitteesiteeeesiieeeesineeeesaineeeesatseeesaneeeesatnetesnanaeeesaneeeenanneeesnanneeenas 4
PART ONE — MATURITY AND FEATURES OF J2ME ON SYMBIAN OS........irerereierereeeerreesereseeeenas 6
2 TECHNICAL REVIEWooiiiiieiereeceeeetesetese s sssnessssesessesessssesssassssesassesessssessssssssessssesassssesssssssees 6
2.1 THE SYMBIAN OS L.ttt ettt ettt e e st e et e e sane e e e saaneeesanneee e 6
201 Symbian - AIODIIE OS..............ooveoeeeeeeieeeeeeee ettt e et e et e e steaessttsaessaaeenataaeannnrees 6
2.1.2 The SYmbian OS ATCAIIECIULC.ccc.ooveeeiieeeeieeeseeeestaeseteesteaeasattsaessstsaessssssssannsnsens 7
2.2 THE J2ZME STANDARDceoiutitttiiiiteeiiitteeniteee ettt esiteeeesetaeeeesateeeesaneeeesetneeessanaeeesaneeeennneeesnanneeenas 9
221 The VIFTUAI MACHINICccoeeeeeeeeeese ettt e et e e et e e aaaeannsaaeasssaaennsnes 10
2.22 Connected Device Configuration (CDC)...............cccuveeeeeereeseieeeesiieaessiieeessiirsessissanssssnsansnnns 11
2.23 Connected Limited Device Configuration (CLDC)...............cccccoeeeeeeeeeeasiireesiiraeasiiraeasineaennnnns 11
224 Foundation PrOfile (FP)............ow oo e e eeeeeeeeeeeeeeset ettt e ettt e eattaaesstaaeasnssaeanssnssennsnes 12
225 PerSONAI PrOMIE (PP)........ooooeeeeeeeeeeeeeeeeee ettt e sttt a e et e estaaeasntssaeasssaasnnsnes 12
226 PerSonal BaSIS PrOfile (PBP)ooeeouieeeeiieeeeieeeeee ettt e esta e e st e esstaasasnissasanssnssnnnsnes 13
2.2.7 Mobile Information Device Profile 1.0 (MIDP 1.0).............cccccoveeeeeeeeeasieeesiraeesiinaeasiiraeennnnns 13
228 Mobile Information Device Profile 2.0 (MIDP 2.0).............cccccveeeseeeeeasiiaeesivaeaaiiraessiivneennnnns 13
2.3 OPTIONAL PACKAGES.....ccoiiiiiiiiiiite ittt ettt ettt sttt e et e st e e sttt e e sebaeeeseaneeeenaaneees 15
2.3.1 JSR 75: PDA Optional PACKAGEcocoeeeeeeiieeesiieeeseeeeseeeaiaeesaaeaaisaaeansnsaennsnes 16
2.3.2 JSR 120: Wireless Messaging API (WIMA 1.0)ooeeeueeeeeeieeeesiieeeaeiiaeesiraessiisaeasiinaaennnns 16
2.3.3 JSR205: Wireless Messaging API 2.0 (WMA 2.0)...........ooeeeeeeeeeesieeeasieeesivaeasiiraessiinaaennenns 17
234 JSR 135: Mobile Media API (MMAPI)cccoveeeveeiieaeiiresiiresiisesiiseasissasissasissessssssssssssisnans 17
2.4 APISIN DEVELOPMENTceeiittiteniitteeniiieeeeiieeeesuntteenaiteeeeetneeesateteesatneteesanneeeenanaeeessneeeennneeeenanne 19
24.1 JSR 234 Advanced Multimedia Supplements (MAMSAPI)cccceeeeeeceeeeseireeeairaeairaaennenn, 19
2.4.2 JSR 238: Mobile Internationalization APlc.ccccoeveeeeieeeesiieaessiieeeseireeeaiiraessiinaeenens 20
243 TSR 230: DAla SYIC APL ...ttt eteats ettt e st e st e st s aissansssenssssassssansssans 20
2.5 THE MIDLET....c.uiiiiiiiiieeit ettt et ettt e e et e st e e st e e sebneeesaneeeesaaneees 21
2.6 GENERIC CONNECTION FRAMEWORKccooouiiiiiiiiiieiiiiieeniieteeniieeeeniineeesineeeenaineeeenenneeesnaneeeenanneees 22
2.7 J2ZME ON SYMBIAN L...cuiiiiiiiiiie ettt et ee ettt e ettt e ettt e e sttt e e satte e e e et e e saateeeesatneeeenesaeeesaneeeenaaneees 25
2.7 HISEOTY [13] oottt ettt et ettt ettt e et e et e ettt asstteasttaastsaansssansssanssssansssasssans 25
2.72 MIDP 2.0 011 Symbiann OS PAONES..............cccoeueveeesiieeessiieesieeeesiieaeasiaeesiraesssissassssssssnsnnns 26
2.7.3 Howto use native Symbian serviceS WIth J2ME [14]oooooeeeeeeeieeeeeeeeeeieeeeieaeavaaeaann 27
2.74 Benefits 0Of JZME O11 SYITIDIAIcc.vveesiieeesiieeeseitaesteeestteaeasittaesssisssssssssssassssssnnsnes 28
3 EVALUATION OF J2ME ON SYMBIANcctticrteecrterereeerreeesnesesesessssessssssssessssesessesessssssssessssesas 29
3.1 SCOPE AND METHODuuttiiiiiiieeiiieteenittee ettt eeseiaeteeeeieeeesateteesetneeesnateeeesaneeeesanneeesaneeeesanneeeenanne 30
Filid SCOPC ...ttt ettt ettt e e s sttt e e e e e s seiteeees 30

Application development using J2ZME — Evaluation of intrinsic platform limitations

S 2 ¥ /1 o o SRS 30
3003 CROICE OF TOOIS.oeevveeeeeeiieeeeeeeta ettt e e ettt st e e e e e ettt e e e eaeesttssssaaeeaaesasssssss 30
32 TEST APPLICATION ...ccttuiitiiteteeesieiiiittteeeesesitttteeeeeessaaabbbteeeeessaaasbbbteeeeessanasbabeeeeeessananbbeeeeeesssnnnnrnnes 31
321 USE CASC...ccovvoosesssissseeeeeee e 31
322 USCE INEITACE ...t e ettt e e e e e ettt e e e e s ettt e e e eaassstssssaaeesassasssssss 32
3.2.3 FUNCHONAIILY. ...ttt e et e et e e sttt e e ssttsaeastsaaaassssaeaansssaennnsssens 33
3.2.4 IMPICIICIIALION ISSUCScc.eeeeeieeesieeeeseeesete e e st aeessta e e st e e ssttsaeasstssaeasssassnsssssennsssssns 34
33 TEST APPLICATION EXPERIENCEScettttetiiiitiittteeeesaniittttteeessanuttteeteeessannsareeeeessssnmssseeeeesssnnmsnne 35
IS A N)11 € 7 o SRS 36
3.3.2 NEIWOIKING CAPADIILICS.ooeeeeieeeeeeeeeeeee et e et e e et e e s s e astaaeastsaeessssasennnssnens 36
3.3.3 FIIC ACCESS ..oooooaaaeeeiieeeeeeeete ettt e e ettt e e e e e ettt e e e e e ettt e e e e e ettt a e e e e e esraresss 38
3.3 4 WAEEIESS MESSAGING.oveeeeeeeeeieeeeeeeese e e et e e sttt e et e e sttt e e assssaeasstsaasassssassnsssssennssssens 40
3.3.5 HATAWALE COMITOL..........ccccveeeiiaeeeeeeeeeee ettt ettt e e e e ee ettt e e e eaettttttssaaeeaaessssssss 43
IS € B/ SRS 45
3.3.7 General programiming ISSUCS.ccuveeeueeeessiieeeseiieeessteaessiaaeestteaessstssassssssassssssssennssssens 47
4 DISCUSSION AND CONCLUSION......coicotttieecteeeeeereeeeeereeeesereeeessreesesssresesssssessesssssssssssesesssssesesnnn 48
4.1 DISCUSSING MATURITY AND FEATURES ...cceeuitiiitteeeeiiriiiittteeesssiiieteeeeessssanbaeeeeeesssnsnssreeeeesssnnmssnes 48
Gl] FOCUS ATCAS.....cccceeeeeeeeeeeeeeeeeeeeeeeeeeee e 48
A B € O/ SRS 49
4 1.3 USING INALIVE SCIVICES..........evveeseieeeesiieseaseeeesteseesseaeassttsaeastsaaesssssasasssssssanssssssansssssnsnsssssains 30
4.2 (610)(@) 71013 (0)\ F PSP PP URPTPPURPPRPPIN 50
43 THE FUTURE OF J2ME ON SYMBIAN OS .. .oeiiiiiiiiiiiiiieiiitttee ettt ettt e e e s sttt e e e e s s 52
PART TWO — INTRINSIC PLATFORM LIMITATIONS........uttteeeeeeeereeeeeeereeeeenereeeensneeeeessneeeessseseennns 53
5 TECHNICAL REVIEWooeeieceeeecteeeceteeeeeeneeeeeeseeeesessaeeeessneseesssessssssesssesssesessssesssssssssssnnsnes 53
5.1 ACCESS TO DEVICE HARDWARE.......uuiiiiiiieeeeiiiiiitietee e e ettt eeeesssiiibeeteeessssibbbeeeeeeesssnbbreeeeeessennns 53
5.1.1 Access via Optional PACKAGEScccueeeeeeieeeeeieeeseaeeseaeeeeaeseaeassaeassssaaeanasenens 33
5.1.2 Access via NALIVE SYIMDIAN SCIVICES.cccuvveessireeessieseesssissesssissssssstssssssssssessssssssssssssssssssses 33
5.2 J2IME SECTURITY ..cttteeeiiiiiiittttee e e ettt e e e e ettt et e e e s sttt ettt eeessatbbbe et eeesseabbbbteeeeesssanbbbeeeeesssnnnrnnes 54
5.2.1 Security threats in the J2ME eNVIFOMINCINL..................ccccvveeseiieseesiiesessiirsessissesssssssesssssssesssssens 35
522 J2ME LOW IEVEI SCCUIILYoveeeeeeeeeeeee et e sttt e st aeasttaaeatsaeaassssasannsssaeansssens 35
523 J2ME BIGH IEVOI SCCULTLYooeeeeeeeeeeee ettt e e e e ataeasaaeansssaaeasssnens 36
524 MIDlet Signing and VEITHICALION.cc.vveeesiireessiiseesiieseesiieaessissssssssssssssssssesssssssesssssens 60
5,25 SCCUIILY PIOLOCOISeveeeeeeeeeeesee et ee e e e e st e e e st e e e sstsaaeasstsaeaassssaeanssssannnsssens 60
5.3 RELEVANT PROJECTS AND RESEARCHceeiviuiiiiiiiieeeiiiiiitttee e e ettt e e e e e esiibieteeeeesssiibbeeeeeessssannbnnee 60
531 MIDP 2.0 security enhancements [22]..............oceeveeeeeiereeseiieeesiieeeasiieaessiesesssisssessssssesssnnens 60
532 Adam Gowdiak, breaking the SANADOX [23]........c..eveeeeieeeesiiieesieeeeeieeesiaeesieaesaiaaesnaaeeens 60
533 The Java COMUNUINILY PIrOCESS...........ccccuvieeeiieeessiieeessieseesttesessitsaeasstssssastssssassssssssssssseannsssens 62
6 TESTING AND PROPOSED SOLUTIONSooo o teteeecteeeeeteeeeeeereeeenreeeeessneesessreseessseessessssesessses 63
6.1 TESTING THE TRUSTED MIDLET CONCEPTevvtttieeiiiiiiiiitieeeeeriiieteteeessesiiieeeeeeesssiibneeeeeesssnnnnnees 63
O. 1.1 THE TESE SCIUP. ...t e et e e et e et e e te e e et s e e st e e asstsasannstaaeastasannnsses 64
6.1.2 Testing the Trusted MIDICt CONCEPLoveeeseeeeesiieeesiieeeasieeeseeaaesiivaeasissasasssssannnaens 64
0. 1.3 TOSETOSUILS.....ooooeeeeeeeeiieeeeeeeeie ettt e e ettt e e e ettt st e e e e e ettt e e e e ae ettt s aaeaaessssssss 65
6.2 PROPOSED SOLUTIONS FOR J2ME SECURITY THREATSccttiiiiiiiiiiiiieeeerniiiiieeeeeesenniieeeeeeesssnnnnnees 67
6.2.1 ESCAPING thE SANADOXcccc.eeeeeeeeeeeeeea ettt e st a e st e e saaeansaaeastsaannnsees 67
6.22 Malicious MIDIELS 11 EMEIAL...............c...ovveeeieeeesiieeeeeeesee e e e st e e saaeastaaeassisaannnaens 67
0.2.3 SALE NEIWOIK LIANSIEE ...ttt e ettt e e e e e ettt s e e e e eeestassssaaeeaeessssesss 68
60.2.4 ProteCting SCNSIHIVE JALAcccueveeesiiseesiiesessitaeasitteesttaeastteaeastssasassssssasssssssasssssannnsses 68
7 DISCUSSIONciiiiececteieerrtereerreeeeseresesssstesssssseessssssesasssseessssssesesssnsesssssseessssaseessssnsesssssasessssseesssnne 68
7.1 CONCERNS REGARDING ACCESS TO NEW JAVA APIS.....oiiiiiiiiiiiiiieee et 68
7.2 THE J2ME STRATEGY AND FUTURE APPLICATION DEVELOPMENTccceetviiiiiiiiieeeesnniiiieeeeeeessnanieees 69
7.3 (610)(@) 71013 (0) FN TP PSP UUPTPPPPPPRPRINE 70
7.3.1 Concerns regarding access t0 NEW JAVA APISooeeeeeveeeeieeeeeeeeeeaeseieaeseaeesinaeanns 70
7.3.2 THE J2ME SHALCZY.......ooeeeeeeeeeeeeeeeeeeset e et e e et e e ettt e e sttt s e e asstsasasstssasasssssasssssasannssnsnanns 71
33050 B3 (0 1€ 0N o 5 1 72
APPENDIX A — THE SYBMIAN OS EVOLUTION......occccttiieeieeeeeeeeeeeneeeeeeereeeenereeeessneeeeessseseesssessennns 74

Application development using J2ZME — Evaluation of intrinsic platform limitations

APPENDIX B - OTHER DEVELOPMENT PLATFORMS ON SYMBIAN

.. 75

B.2 - CH++ NATIVE PROGRAMMINGcovtuueeeeeeiiiitiiieeeeeeeeestteeeeeeesessattaaeeeeeeessttaaeeeessessrtaaaeeeessssrriiaaeeeaeseens 76
B.3 - OPEN PROGRAMMING LLANGUAGEuoiiiiiiiiiiiiieeeeeeeeettiee e e e e e eeeee e e e eeateeeeeeeeeeaateeeeeeeeeessateeeeeeeeens 76
B.3 - VISUAL STUDIO .INETootiiiiiiiiiiee ettt e ettt e e e e et ee e e e e e e e e st eeeaeeeees 76
APPENDIX C — TEST APPLICATION.......oiiiiooee e ee e e e e e eeeeeeeeeeeeeeeeeeeeeees 77
APPENDIX D —DEVELOPMENT TOOLS ettt eeeeeeeeeeeeeeeeeeeeeeeeeeees 79
D.1 - TOOLKITS AND EMULATORScotttueeeeeeetttttiieeeeeeeseestieaeeeeesesssttaaeeeesssssttaaeeeesssssrtaaaeeeessssrriaaeeeseseses 79

D. 1.1 -8un J2ME WIT€lesS TOOIKIT 2.2..............cooeeeeeeeeeeeeieeeeeeeeeeeeeeeeeeeeaaeetaeeeeeaaaaasaeaasaaaaavann 79

D. 1.2 - Sony EricSSOn J2ZME SDK 2.2.0...........coceeeeeeeesieeeesiieeeasetaesitaeasiteaeasssasaessisssanssssssssssssssssnes 80

D. 1.3 - Nokia Developer's Suite 2.2 101 J2ZMETM...............ooeeeeeeeeeeieeeeseieeeesiieeesstiaeessiisaessnssassasssnsssssnns 80

D.2 - INTEGRATED DEVELOPMENT ENVIRONMENTS.......ccctttttiieeeeeeeiiiiiiieeeeeeeeetstieeeeeeeeesertieeeeeeesesrnieaeeeeeseens 81
D.2.1 - Borland JBuilder X EnNterpriSe EQIHONccccvveeeeiiieesiieeeesiieeessiiaeesiaaessivsassssinsannnnns 82
D.2.2-8un Java StUdIO SIANAATA S...............uueeeeeeeeeeeeeeeeeeeeeeeeeeeee et eeeeeteeeeeeeaeeasaeaeesaaaennan 53

Application development using J2ZME — Evaluation of intrinsic platform limitations

List of Figures

Figure 2.2 Functional overview of Symbian OS v8.0 [4]...ccccciiiiiiiiiiiieiiiie e 8
Figure 2.6 J2ME related to the OS and the device...........cccoovviiiiiiiiniiiiniiieeee, 10
Figure 2.6 The lifecycle of a MIDIet [11]ooiiiiiiiiiiiiiiieeeeeie e e 21
Figure 2.7 An illustration of the MIDlet on top of the MIDP/CLDC structure....................... 22
Figure 3.6 GCF OVEIVIEW [12] ..uiiiiiiiiiieiiiiie ettt e et e e s iaaee e e 22
Figure 3.7 Extended version of the GCF [12]....cccuuiiiiiiiiiiiiiiiiee e 23
Figure 2.11 Estimated performance of J2ME on Symbian...........c.cceceeeviiiniiiniieeniicennen. 29
Figure 3.1 Use Case of the registration MIDIet REGAPD ...coevvviiiieiiiiiiieiiiiee e 32
Figure 3.2 Available features in REZADPDvvviiiiiiiiiiiieiieeeee e 33
Figure 3.4 MIDP 1.0 on top 0of CLDC 1.0 [15] ceueiiiiiiiiiieeeee e 35
Figure 3.5 The JSR 185 Stack [15]..cuuuiiiiiiiiiiieeiiie ettt et e e e e 35
Figure 3.6 Connecting MIDlet to Servlet with HttpConnection (from test application).......... 36
Figure 3.8 An example of socket and datagram connectionsccceeevveeenieeeniieeeniieeennnen. 37
Figure 3.9 Example on sending data to a Servlet from a MIDlet using the HTTP POST request
... 38
Figure 3.10 Some GCF root values and how they could be opened [17]......ccccoevvveierininennns 39
Figure 3.11 Example on how to create a filecoooveeiriiiiiiiiiniiiiiicceeeeec e, 40
Figure 3.12 Example on creating and sending SMSccoooiiiiiiiiniiiiniicceeeeen 41
Figure 3.13 Creating and sending MMS Example from RegAPp.......ccceevvviiieiviiiiiiiiiiiieees 42
Figure 3.14 Example on creating and sending a binary messagecccocueeevvveeniveenieeennnen. 43
Figure 3.15 Creating a visible video controller and taking a snapshot in the test application .44
Figure 3.16 Creating and using AudioRecorder in the test application..............ceecueeerieeennnen. 45
Figure 3.17 Overview of available GUI components in J2ME [18]cccccceveviiiiiieniiiiieeens 46
Figure 5.1 A MIDlet communication with a native C++ damonccceceeeviieeniieenieeennnen. 54
Figure 5.2 The CLDC/MIDP Verification Process [25]......ccovvuiiiiiniiiiiieiiiiee e 56
Figure 5.3 MIDP 1.0 Security mOdelcccueiiiiiiiiiiiiiiiiiicee e 57
Figure 5.4 MIDP 2.0 Security MOdelcccueiiiiiiiiiiiiiiiiie e 58
Figure 5.6 Breaking memory safety using a table of bytescccevviiiniiiiniiiiniicinieeee, 61
Figure 6.1 The series 60 emulator SECUTTtY CENLETeeevuviiiriieiriiiieiieeniiie e 64
Figure 6.2 Protection domains on MIDP 2.0 S60 emulator.............ccccceeeviiiiniiiiniieeniieenen, 66
Figure 6.3 Untrusteed protection domain on Nokia 6630cccceeeviiiiniiiiniiiiniieenieenee. 67

VI

Application development using J2ZME — Evaluation of intrinsic platform limitations

List of Tables

Table 2.1 GCF connections [12]cccevveeeeeeinnnnnnen.
Table 2.2 Some MIDP 2.0 enabled Symbian phones

VII

Application development using J2ZME — Evaluation of intrinsic platform limitations

ABBREVIATIONS

ABB Audio Building Block

AMS Application Management Software
CDMA Code Division Multiple Access
CLDC Connected Limited Device Configuration
EMS Enhanced Messaging Service
eSCO extended Synchronous Connection Oriented
FC File Connection

FP Foundation Profile

GCF General Connection Framework
GPRS General Packet Radio Service

GUI Graphical User Interface

IPSEC IP Security

J2EE Java 2 Enterprise Edition

J2ME Java 2 Micro Editon

J2SE Java 2 Standard Edition

JAD Java Application Descriptor

JAR Java Archive

JVM Java Virtual Machine

KVM K-Virtual Machine (Kauai VM)
MAMSAPI Advanced Multimedia Supplements
MID Mobile Information Devices

MIDP Mobile Information Device Profile
MMAPI Mobile Media API

MMS Multimedia Messaging Service
NDS Nokia Developer Suite

OMA Open Mobile Alliance

OTA Over The Air

PAN Personal Area Network

PBP Personal Basis Profile

PDP Packet Data Protocol

PIM Personal Information Management
PP Personal Profile

RDS Radio Data System

RSP Recommended Security Model
RTP Realtime Transfer Protocol

SMS Short Messaging Service

SyncML Synchronization Markup Language
UDP User Datagram Protocol

WCDMA Wideband Code Division Multiple Access
WMA Wirless Messaging API

WTK Wireless Toolkits

VIII

Application development using J2ZME — Evaluation of intrinsic platform limitations

1 Introduction

1.1 Background

It is a well known fact that computer technology evolving fast in a more and more mobile
environment. Professional users carry laptops and advanced smartphones with them in order
to be able to do useful work when and where it might please them. Whether this is a good
thing is a question for others to answer, but since we are heading down this mobile path at
least we should have decent tools to work with. Since application development on mobile
technology is a relatively young subject, and the devices themselves are rapidly getting more
advanced, it is important to periodically evaluate development platforms in order to see

whether or not they are using the available technology to the full extent.

When Sun decided to divide Java into three branches, Java 2 Second Edition (J2SE), Java 2
Enterprise Edition (J2EE) and Java2 Micro Edition (J2ME), the mobile Java lost some
functionality. There were many reactions to this; some developers even predicted that 2ME
would be only temporary. However, current statistics tell us otherwise: “Globally there are
more than 708 million J2ME capable mobile devices worldwide, according to Ovum, and
more than 140 operators that have deployed Java technology-based services, according to
Nokia. Java technology-based devices are expected to reach 1.5 billion consumers by 2007
according to some analysts, and the overall revenue from services enabled by Java
technologies 1s forecast to reach $15 billion by 2008.” [1]. The accuracy of this statement is
hard to test, but it clearly states that J2ME is still here. So, the question explored in part one of
this thesis is whether J2ME has eradicated these childhood diseases, or if there still is a

substantial lack in its functionality.

Most of J2MEs access to device hardware and functionality is provided through so called Java
Optional Packages provided by the Java Community Process (JCP). This makes it feasible to
implement much more versatile applications, but the question that rises is whether this access

could impose security and functionality issues.

Native C++ applications have more access to hardware and resources on the Symbian
Operating System (OS) than J2ME has. This is because of C++ applications’ direct access
through the native Symbian OS API. Is it a weakness in the J2ME platform or the strategy

Application development using J2ZME — Evaluation of intrinsic platform limitations

behind it that could limit future J2ME application development? These questions will be
explored in this part of the thesis.

1.2 Problem specification

The assignment assumes that the student has good skills in object-oriented java development,
but no explicit experience with J2ME on Symbian OS phones. The first part of the assignment
is to explore this development environment and evaluate maturity and features. Possibilities
for initiating network services and controlling local devices like camera and audio recording
must be included in the evaluation. The first part of the assignment can be done in cooperation

with other students.

The second and individual part of this thesis:

J2ME is foreseen to be the platform for development of services and applications for mobile
devices. New API’s are made available that opens access to the mobile device such as the
Mobile Media and Wireless Messaging APIs. On the other hand the operators are afraid of
that these services will cause security and functionality conflicts with the core functionality of

the device. Will these concerns limit what can be done on the device by service developers?

The Symbian API is mostly available for C++ developers, so applications developed using
C++ have access to more functionality than what J2ME supports. Is it a weakness in the
JM2E platform or the strategy behind it that limits what will be possible in the future for
J2ME developers?

1.3 Delimitations — Part One

In the evaluation part of the thesis, we do not have the time to examine all parts of the

J2ME/Symbian relationship. We have therefore made these delimitations:

1.3.1 Focus Areas — Features and Maturity

As stated in the problem specification there are certain areas of the J2ME platform that are
more relevant than others and it is in these topics we will conduct our most thorough research

and testing.

Application development using J2ZME — Evaluation of intrinsic platform limitations

Hardware control: We will implement and test photo and audio recording functions. This
requires API’s to control hardware extensions such as camera and microphone.

File access. File access is essential since we need to store image and audio files in order to
make a decent application.

Network services: We are going to implement and test Multimedia Messaging Service
(MMS) functions and other ways of transferring the gathered files and information from the

device to the server.

Besides these three focus areas we will only make brief investigations regarding general
programming issues such as Graphical User Interface (GUI) programming and general

maturity.

1.3.2 Platform

Although we will conduct some research on all the old versions of J2ME and Symbian OS,
this is merely to see where the evolution is heading. The real focus will be on Symbian OS
version 8.0 and J2ME (Connected Limited Device Configuration (CLDC) 1.1, Mobile
Information Device Profile (MIDP) 2.0) since these are currently the newest and most richly

featured versions on the market. These are the only platforms we will do any development on.

1.3.3 Testing

The only Symbian OS based mobile phone available to us is the Nokia 6630, with Symbian
version 8.0. This will therefore be the only “real” test platform for our application. The reason
for choosing this particular phone was that at the time it had the newest version of Symbian

OS and it had all the hardware extensions needed for the thesis.

1.4 Delimitations — Part Two

1.4.1 Focus Areas

In this part of the thesis I will focus specifically on security issues related to hardware access
via Optional Java Packages on a Symbian OS mobile phone. In addition I will focus on

whether there might be any factors in the platform strategy, like weaknesses in the Optional

Application development using J2ZME — Evaluation of intrinsic platform limitations

Package concept or possible security threats, which could affect future application

development. This part is discussed based on the technical review.

1.4.2 Testing

The testing of the J2ME security model in chapter 6 regarding is done both on a Nokia 6630
mobile phone and a Series 60 emulator. However, the testing on the Nokia mobile phone is
limited to only using unsigned MIDlets. Further testing would involve obtaining a certificate

from a Certification Authority.

1.5 Thesis overview

This thesis is divided into two separate parts. The first part is co-written with Terje Eggum
and concerns itself with evaluation of maturity and features of the J2ME/Symbian OS

development platform

Chapter 2 is a technical review of the Symbian OS and the J2ME development language. The
operating system is examined historically and architecturally. This is also the case with the
research on J2ME, but here we also go into the tools available and look more specifically at
API’s we can use in the development process. The interaction between Symbian and Java is

also examined.

Chapter 3 is where we present our research on the platform. We give the scope and the
method for our investigation and we present a demonstrator application made to illuminate the
areas mentioned in the problem specification. Our experiences on each of these subjects are
thoroughly discussed in chapter 3.3 7est Results. A conclusion based on this chapter and the

previous is made in chapter 3.5.

Chapter 4 will contain a discussion of our experience with the platform, and a conclusion

regarding maturity will finish of the first part of this thesis.

In the second part of the thesis I take on the task to evaluate intrinsic platform limitations in

the J2ME environment.

Application development using J2ZME — Evaluation of intrinsic platform limitations

Chapter 5 contains a technical review that comes in addition to the technical review in part

one. Together they cover all relevant subjects for part two of the thesis.

Chapter 6 describes a testing scenario with appurtenant test results for one of the core

concepts in the thesis.

Chapter 7 contains discussion and conclusion on the topic of intrinsic platform limitations.

Application development using J2ZME — Evaluation of intrinsic platform limitations

PART ONE — MATURITY AND FEATURES OF J2ME ON
SYMBIAN OS

2 Technical review

2.1 The Symbian OS

A few years ago the mobile phones had very few features and most manufactures used their
own operating system in their products. The phones nowadays are much more complex and
require an advanced operation system to provide a reliable and versatile platform for third
party software. In 1998 some of the leading companies in wireless communication (Sony,
Ericsson, Nokia, Motorola and Psion) formed the company Symbian [2]. Symbian developed
the Symbian OS which is an advanced, open standard operating system for data enabled
phones written in C++. The Symbian OS is by far the most used OS for smartphones and it
holds a 61% market share world wide [3].

2.1.1 Symbian - A mobile OS

The Symbian OS is made entirely for the Add on Application

mobile market and its particular needs. Certain Third Party Applications

issues that are common only for mobile

UlQ/Series 60/Series 80

phones have to be addressed. The Symbian

OS was created because it was more adequate

to develop a particular mobile OS to meet : — =
these needs rather than to redefine already —

existing desktop or server OS. Many Symbian OS

unfortunate compromises would have had to

Hardware ‘

be made in order to make this possible. Figure 2.1 Symbian mobile phone

configuration

Some of the important issues that have to be addressed in a mobile environment are memory
footprint and processor power. Depending on type and model, most mobile phones only have
a small amount of memory available, and this issue has to be coped with in order for the
phone to work in a satisfying manner. For example, if a user frequently experience that his

phone is hanging or has to be restarted due to lack of memory or processor power, he will

Application development using J2ZME — Evaluation of intrinsic platform limitations

most certainly get frustrated and probably change mobile phone manufacturer the next time he
buys a phone. This issue is rather common on desktops and most users are accepting that
these incidents occur once in a while. The mobile phones however, have to work flawless,
thus the OS have to have a very effective memory handling and an effective use of available

Processor power.

The OS has to provide built-in power management features in order for the phone to work in a
practical manner. These features turn of battery draining functions and applications when they
are not in use. In addition to this, Symbian phones are provided with flash memory to avoid

loss of data in case of a shutdown.

A mobile OS have to cope with the networking use and capabilities that are common for a
mobile phone. There are principally three different states a mobile phone operates in;
connected to the operator network, connected to a local network or operating in offline mode.
In order to transfer data there has to be some kind of connectivity, either using a wide area
network or a local area network. The wide area network can be based on different
technologies, e.g. GSM, General Packet Radio Service (GPRS) or Wideband Code Division
Multiple Access (WCDMA), and the local area network can be based on e.g. Bluetooth or
Infrared connectivity. In any case, the phone has to handle fade outs and one can not always
assume that the phone is connected due to incomplete coverage. The phone has to function as

an advanced client and these issues have to be handled in a way that is transparent to the user.

Other important issues that have to be dealt with are different types of keyboard input and
different screen types. Mobile phones come in different shapes and sizes and some are very
sophisticated, others are very primitive. A phone can be equipped with a large screen, a small
screen, a keyboard, a pen input or a perhaps a keypad. Regardless of phone design and

technical solutions from different vendors, the OS have to handle these variations.

2.1.2 The Symbian OS Architecture

Symbian OS is an open standard operating system licensed by some of the worlds leading
mobile manufacturers. It is designed to meet the requirements of data-enabled 2G, 2.5G and

3G mobile phones. The OS includes a multitasking kernel, integrated telephony support,

Application development using J2ZME — Evaluation of intrinsic platform limitations

communications protocols, data-management, advanced graphics support, a low-level

graphical user interface framework and a variety of application engines.

Java MIDP

Application engines Messaging Wireless messaging, B_luetooth,
Contacts, agenda, office, SyncML, SMS, EMS, MMS, mobile media, 3D graphics (SR184)

data management, browsing email (POP3 & IMAP4)
. CLDC 1.1

: Application framework Personal area networking
Graphical user interface framework, Bluetooth, infrared, USB
text and graphical utilities

ia Communication infrastructure
Images, sounds, graphics TCP, dual IPv4 & v6, HTTP, WAP stack

Telephony

Security Base
G5M, GPRS, HSCSD, EDGE, ‘
Cryptography, certificate management, CDMA (1S-95), cdma2000, User library, file server,

software installation WCDMA Kernel, device driver

Figure 2.2 Functional overview of Symbian OS v8.0 [4]

The architecture of Symbian OS can be divided into two different parts, the main kernel that
handles protocol stacks and network resources, and the graphical user interface platform
which can be altered by the different phone vendors. The graphical user interface has been
divided into four different platforms in order to handle different screen sizes and keyboard

inputs. These are UIQ, Series 60, Series 80 and others.

UIQ
UIQ is designed for smart phones and the newest version is v3.0 and is
based on Symbian v9.1. In contrast to its predecessors it supports one-

handed use with softkeys, in addition to pen-based input. Other Ul

designs can easily be implemented by the mobile phone manufacturer on

this platform. Sony Ericsson P910, Motorola A1010 and BenQ P30 are

all typical UIQ phones.

Figure 2.3 Sony Ericsson
with the UIQ platform

Application development using J2ZME — Evaluation of intrinsic platform limitations

Series 60

The Series 60 platform is created by Nokia and it is designed for smart
phones. It supports single-hand operated mobile phones and it is
designed for voice communication, multimedia messaging, content
browsing and application downloading. Series 60 2"edition has
existed since 2003 and was last implemented on Symbian v8.1. The
newest version is the Series 60 3"edition and it runs on Symbian v9.1.
Nokia N91 is announced as the first mobile phone that is based on

Series 60 3"edition [5]. Both the 2™ and the 3™ edition have a scalable

UTI’s and support the following screen sizes: 176 x 208, 240 x Figure 2.4 Nokia 6630 with
320 (QVGA) and 352 x 416. Nokia 6620, Nokia 6630, Nokia ~ the Series 60 platform
6680 and Panasonic X700 are examples of Series 60 mobile phones. This platform is

distributed as Symbian’s official Graphical User Interface (GUI).

Series 80

The Series 80 is also created by Nokia and it is designed for enterprise devices with large
horizontal screens (640 x 200 pixels) and keyboard-based input. The series 60 is based on
Symbian v7.0s. Nokia 9500 and Nokia 9300 are examples of Series 80 mobile devices.

Other GUI
Not all Symbian mobile phones fall into the above mentioned categories such as the mobile

phones developed by Fujitsu for the FOMA network.

22 The J2ME standard

In 1999 Sun realized that the idea of one Java platform for all purposes was perhaps not yet
feasible. The Java2 platform consequently divided into three distinct parts, each with a
complete runtime environment for Java applications. J2EE targets the enterprise market, the

J2SE focuses on desktop applications and J2ME handles the wireless environments [6].

The world of wireless platforms is arguably the most diverse of the three target areas, and to
manage this diversity J2ME have different approaches to different groups of devices. It is

possible to “tailor” the J2ME setup with a mix of configurations, profiles and optional

Application development using J2ZME — Evaluation of intrinsic platform limitations

packages. Figure 2.5 shows the different layers that comprise the J2ME platform, from

hardware to application.

Figure 2.5 J2ME related to the OS and the device

In this chapter we will list the most common configurations and profiles that make up the
J2ME platform [10]. We start with configurations, after a short virtual machine history, as
they are the foundation on which all the other parts build upon. Not all will be described at the
same level of detail, but the Connected Limited Device Configuration and the Mobile

Information Device Profile will be emphasized as they are the most relevant for this project.

2.2.1 The Virtual Machine

As in all Java platforms J2ME applications run on a virtual machine. Due to limited resources
on the devices they can not use the standard Java Virtual Machine (JVM) used on stationary
computers. So, in 1999 the K-Virtual Machine (KVM) for mobile devices based on
CLDC/MIDP was introduced by Sun Microsystems. The K was put there instead of the J
because the KVM was the result of the project "Kauai”, and not because its size is measured
in kilobytes instead of the megabytes in the standard JVM [7]. The KVM was a lot slower
than the JVM and ran at about 30% to 80% of JDK1.1.x desktop speed performance [8].

With the release of J2SE 1.3.x, Sun Microsystems introduced the Java HotSpot Virtual
Machine technology to the java developers community. The introduction of HotSpot
Optimized JVM technology to CLDC/MIDP devices occurred in 2001 [CLDC HI
Whitepaper] CLDC HotSpot Implementation Virtual Machine. The HotSpot Java Virtual

10

Application development using J2ZME — Evaluation of intrinsic platform limitations

Machine for CDC/J2ME Platform devices was introduced in 2004. This largely improved

performance of the mobile virtual machine [9].

2.2.2 Connected Device Configuration (CDC)

“The JZME CDC provides the basis of the Java 2 Platform, Micro Edition in devices

characterized as follows:

o 5/2K minimum ROM available

o 256K minimum RAM available

e (Connectivity to some type of network.

e Supporting a complete implementation of the Java Virtual Machine as defined in the

Java Virtual Machine Specification, Z2nd Edition.

User interfaces with varying degrees of sophistication down to and including none may be
supported by this configuration specification. TV set-top boxes, web enabled phones, and car
entertainment/navigation systems are some, but not all, of the devices that may be supported

by this configuration specification.” Error! Reference source not found.

The J2ME CDC will define the minimum required complement of Java Technology
components and API's for connected devices. Supported APIs, application life-cycle, security

model, and code installation are the primary topics to be addressed by this specification.

The core APIs of CDC are almost identical to the ones found in J2SE.

2.2.3 Connected Limited Device Configuration (CLDC)

The CLDC was developed to be used in devices where CDC is too large to meet the strict
memory footprint requirements that are characteristic of CLDC target devices. Two versions
of the CLDC have been defined, version 1.0 and version 1.1. CLDC 1.1 adds a few new
features over CLDC 1.0. Floating point support is the most important feature added, but
several minor bug fixes have also been added. CLDC 1.1 is the configuration we will use for

development in this project, and it is intended to be backwards compatible with version 1.0.

11

Application development using J2ZME — Evaluation of intrinsic platform limitations

The CLDC provides these packages to the developer [10]:
e java.io:
Provides classes for input and output through data streams.
e java.lang:
Provides classes that are fundamental to the Java programming language.
e java.lang.ref:
Provides support for weak references.
e java.util:
Contains the collection classes, and the date and time facilities.
e javax.microedition.io:

Classes for the Generic Connection Framework (GCF).

As we can see there are no GUI classes provided by the CLDC. This is up to the profiles to

provide.

The CLDC is intended to work on devices with intermittent network connections, small
processors and limited memory. Devices that support CLDC typically include 192 to 512 KB
total memory available for the Java platform and a 16-bit or 32-bit processor. Within this
group of devices, the variety of features is immense, and to make a standard Java platform
suiting them all is difficult. Therefore the CLDC makes a minimum of assumptions about the

environment it exists within.

2.2.4 Foundation Profile (FP)

FP is a set of Java APIs that support resource-constrained devices without a standards-based
GUI system. Combined with the CDC, FP provides a complete J2ME application
environment for consumer products and embedded devices. FP is the most basic of the CDC

family of profiles.

2.2.5 Personal Profile (PP)

J2ME PP is a set of Java APIs that supports resource-constrained devices with a GUI toolkit
based on AWT. Combined with the CDC, J2ME Personal Profile provides a complete J2ME

application environment for consumer products and embedded devices.

12

Application development using J2ZME — Evaluation of intrinsic platform limitations

2.2.6 Personal Basis Profile (PBP)

J2ME PBP is a set of Java APIs that support resource-constrained devices with a standards-
based GUI framework. Combined with the CDC, J2ME PBP provides a complete J2ME
application environment for consumer products and embedded devices. J2ME PBP includes

all of the APIs in Foundation Profile.

2.2.7 Mobile Information Device Profile 1.0 (MIDP 1.0)

The MIDP target Mobile Information Devices (MID). To be classified as a MID a device

should have the following minimum characteristics:

e Display:
o Pixels: 96x54
o Display depth: 1-bit
o Pixel shape (aspect ratio): approximately 1:1
e Input
o One- or two-handed keyboard or touch screen
e Memory:
o 128 KB of non-volatile memory for the MIDP components
o 8 KB of non-volatile memory for application-created persistent data
o 32 KB of volatile memory for the Java runtime
e Networking:

o Two-way, wireless, possibly intermittent, with limited bandwidth

We will not go into packages provided by MIDP 1.0 since we will be using MIDP 2.0 in

development, and the packages there are an extension of MIDP 1.0.

2.2.8 Mobile Information Device Profile 2.0 (MIDP 2.0)

Requirements for display, input and networking are the same as for MIDP 1.0. Memory
requirements have been raised in the MIDP 2.0 specification. There must be 256 KB of non-

volatile memory for the MIDP implementation, beyond what's required for the CLDC and 128

13

Application development using J2ZME — Evaluation of intrinsic platform limitations

KB of volatile memory for the Java runtime. Requirements for sound have been added. The

ability to play tones is now made a requirement.

MIDP 2.0 is backwards compatible with MIDP 1.0, hence it provides all functionality defined

in the MIDP 1.0 specification. In addition it provides OTA provisioning. This feature was left

to Original Equipment Manufacturers (OEM) to provide in the MIDP 1.0 specification.

These are the packages that MIDP 2.0 provides the developer with:

javax.microedition.lcd

The UI API provides a set of features for implementation of user interfaces for MIDP
applications.

javax.microedition.lcdui.game

The Game API package provides a series of classes that enable the development of
rich gaming content for wireless devices.

javax.microedition.midlet

The MIDlet package defines MIDP applications and the interactions between the
application and the environment in which the application runs.
javax.microedition.rms

The MIDP provides a mechanism for MIDlets to persistently store data and later
retrieve it.

javax.microedition.io

MIDP includes networking support based on the Generic Connection Framework from
the CLDC.

javax.microedition.pki

Certificates are used to authenticate information for secure Connections.
javax.microedition.media

The MIDP 2.0 Media API is a directly compatible building block of the MMA (JSR-
135) specification.

javax.microedition.media.control

This package defines the specific Control types that can be used with a Player.

Core Packages

java.lang

MIDP Language Classes included from J2SE.

14

Application development using J2ZME — Evaluation of intrinsic platform limitations

e java.util

MID Profile Utility Classes included from J2SE.

As we can see, this is a much more extensive library to work with than what the CLDC alone
provides. An enhanced user interface has been defined, making applications more interactive
and easier to use. Media support has been added through the Audio Building Block (ABB),

giving developers the ability to add tones, tone sequences and WAV files even if the MMAPI

optional package is not available.

Game developers now have access to a Game API providing a standard foundation for

building games. This API takes advantage of native device graphic capabilities.

MIDP 2.0 adds support for HTTPS, datagram, sockets, server sockets and serial port

communication.

Push architecture is introduced in MIDP 2.0. This makes it possible to activate a MIDlet when
the device receives information from a server. Hence, developers may develop event driven

applications utilizing carrier networks.

End-to-end security is provided through the HTTPS standard. The ability to set up secure
connections is a leap forward for MIDP programming. A wide range of application models
require encryption of data and may now utilize the security model of MIDP 2.0 based on open

standards.

2.3 Optional Packages

An optional package is a set of APIs, but unlike a profile, it does not define a complete
application environment. An optional package is always used in conjunction with a
configuration or a profile. It extends the runtime environment to support device capabilities
that are not universal enough to be defined as part of a profile or that need to be shared by

different profiles.

15

Application development using J2ZME — Evaluation of intrinsic platform limitations

The Optional Packages mentioned in this chapter are the ones that are relevant to the problem
specification of thesis. There are, of course, more APIs available but they have been excluded

from this paper for lack of relevance.

2.3.1 JSR 75: PDA Optional Package

This specification will define two independent optional packages that will extend and enhance
the "J2ME CLDC" JSR-000030. These packages separately represent important features

found on many PDAs and other mobile devices. The optional packages are:

e Personal Information Management (PIM) - This package gives J2ME devices access
to personal information management data that resides natively on mobile devices.
Information to be accessed are contained in address books, calendars, and to-do lists
residing in many mobile devices.

e FileConnection - This package gives J2ME devices access to file systems residing on
mobile devices. The primary use of this API is to allow access to removable storage

devices, such as memory cards that many of today's devices support.

The PDA Optional Package is placed on top of the CLDC and provides optional APIs
common to PDAs and handsets. For example, the PIM functionality in JavaPhone makes its
re-introduction into J2ME Platform devices within this optional package. FileConnection API

is added to allow General Connection Framework (GCF) to access removable media storage.

2.3.2 JSR 120: Wireless Messaging APl (WMA 1.0)

“The messaging API is based on the GCF, which 1s defined in the CLDC 1.0 specification.
The package javax.microedition.io defines the framework and supports input/output and
networking functionality in J2ME profiles. It provides a coherent way to access and organize
data in a resource-constrained environment. The design of the messaging functionality is
similar to the datagram functionality that is used for the User Datagram Protocol (UDP) in
the GCF. Like the datagram fiunctionality, messaging provides the notion of opening a
connection based on a string address and that the connection can be opened in either client
or server mode. However, there are differences between messages and datagrams, so

messaging interfaces do not inherit from datagram. It might also be confiising to use the same

16

Application development using J2ZME — Evaluation of intrinsic platform limitations

interfaces for messages and datagrams. The interfaces for the messaging API have been

defined in the javax. wireless.messaging package’ [10].

WMA provides a common API for sending and receiving text and binary messages, typically
SMS messages. WMA was first defined in JSR 120 and revised in JSR 205, which introduced
support for multi-part messages and the Multimedia Message Service (MMS). This revision is
not supported by our test mobile Nokia 6630. However, there are ways to overcome this

obstacle, and we will describe this further in chapter 3.3.4.

WMA is based on GCF and depends on CLDC as its lowest common denominator, meaning
that it can be implemented along with both CLDC- and CDC-based profiles. It targets cell

phones and other devices that can send and receive wireless messages.

2.3.3 JSR 205: Wireless Messaging APl 2.0 (WMA 2.0)

“With the WMA 2.0 it will be possible for Java applications to compose and send messages,
which can contain text, images and sound. This technology allows a richer possibility for

messaging on mobile devices. For the realisation the fiamework of JSR 120 will be used.[10]”

With the WMA 2.0 it will be possible for Java applications to compose and send messages,
which can contain text, images and sound. This technology allows a richer possibility for

messaging on mobile devices. For the realisation the framework of JSR 120 will be used.

2.3.4 JSR 135: Mobile Media API (MMAPI)

” The API is targeted to fulfill the needs for the control and simple manipulation of sound and
multimedia for applications in mobile devices, with scalability to other J2ME devices. Mobile
devices may feature a great variety of multimedia capabilities. Some of the target devices may
only be able to produce single monophonic sounds while others may féature both sampled,
synthetic audio and other media types. The API should also be able to support the control of
time-based multimedia formats. This causes special consideration for the API design. The

main requirements for the API are:

o Enable the use of the basic sound generation routines with simple controls.

17

Application development using J2ZME — Evaluation of intrinsic platform limitations

e Do not provide too much hard coded functionality that is obsolete on the basic
devices.

e Provide methods to access more sophisticated audio féatures if they exist.

e Address media synchronization issues

e Be able to extend support to other media types

e Maintain low footprint

These requirements are fulfilled by a design where the API provides direct support for basic
features such as simple generation and playback of sound, and playback of multimedia. A
control interface is proposed to enable the management and control of different multimedia
formats and extended functionalities. This design enables the supported features to vary

according to the platform and the corresponding implementation of the MMAPL ™~

MMAPI provides a generic but flexible foundation for multimedia processing for devices with
advanced sound and multimedia capabilities. This optional package was introduced by JSR
135. MMAPI depends on the CLDC as its lowest common denominator, so it too can be used
with CDC-based profiles. The only requirement is that the implementation includes
1llegalStateException, which 1s not present in CLDC 1.0.” [10]

The MMAPI splits media processing into two main concepts: data source handlers, media
protocols specified by an URL, and content handlers, media controls and players. In addition,
a media manager provides a factory of resources such as players, as well as methods to query

for supported content types and protocols. The manager also includes a simple tone player.

MMAPI 1.0 defines protocols, controls, and players for a number of media types, such as
MIDIControl, VideoControl, ToneControl, and VolumeControl. The specification does not
mandate any particular one, allowing implementers to subset the MMAPI as appropriate. The
only requirement is that implementations must guarantee support of at least one media type

and protocol.

18

Application development using J2ZME — Evaluation of intrinsic platform limitations

2.4 APIs in developbment

Here we will briefly go through some interesting API’s that are currently being developed in
the Java Community Process. Specifically we look at API’s that will improve the platforms

features for general development. All this information is gathered from the JCP web site [10].

2.4.1 JSR 234 Advanced Multimedia Supplements (MAMSAPI)

This specification will define an optional package for advanced multimedia functionality
which is targeted to run as a supplement in connection with MMAPI (JSR-135) in
J2ME/CLDC environment.

Java equipped terminals are evolving into general multimedia and entertainment platforms.
Features like camera and radio which have traditionally belonged into different device
categories are now integrated into same terminals. The increase in the processing power of
modern mobile phones allows more sophisticated media processing capabilities. Displays will
remain relatively small due physical limitations but rich aural experience can be achieved

without adding the physical size of the terminals.

The purpose of this API is to give access to multimedia functionality of the modern mobile
terminals. Specifically, better support for camera and radio and access to advanced audio

processing will be introduced but it’s possible to add other functionality as well.

This specification will bring the following capabilities to the mobile terminals with

J2ME/CLDC support:

e Access for camera specific controls like visual settings (brightness, contrast),
flashlights, lighting modes and zooming.

e Proper access to radio and other channel/frequency based media sources including
RDS (radio data system)

e Access to advanced audio processing capabilities like equalizer, audio effects,
artificial reverberation and positional 3D audio. Dynamically changing audio

resources are addressed as well.

19

Application development using J2ZME — Evaluation of intrinsic platform limitations

e Media output direction. For example, the ability to choose whether the audio is played

out from speaker of from headset.

This specification had its final release the 20" of June this year.

2.4.2 JSR 238: Mobile Internationalization API

This JSR defines an API that provides culturally correct data formatting, sorting of text strings
and application resource processing for 2ME MIDlets running in MIDP over CLDC.

This specification will provide a common API for the internationalization of MIDP
applications, delivered and licensed as an optional package. It will provide the means to
isolate localizable application resources from program source code and an API for accessing
those resources at runtime, selecting the correct resources for the user’s/device’s locale. The
specification will also define an API for supporting cultural conventions in applications, e.g.
for formatting dates, times, numbers, and currencies, and sorting text strings correctly for the
user’s locale. The API needs to be memory-efficient to run on resource-constrained devices

such as mobile phones.

The need for this API arises from the fact that mobile devices are personal by nature, and
users expect them to conform to the cultural conventions they are accustomed to. Users want
to be able to interact with the device in their own native language and see data rendered as in

their everyday environment.

This API had its final release the 21* of April this year.

2.4.3 JSR 230: Data Sync API

This JSR will be a J2ME optional package that can be used with the J2ME configurations
CLDC and CDC. It enables applications to synchronize their application specific data stored
in the terminal with corresponding data stored on a server, replicating any changes made to
either instance of the data. It should provide a generic interface to the data synchronization

device implementation, to enable data synchronization via underlying implementations of data

20

Application development using J2ZME — Evaluation of intrinsic platform limitations

synchronization protocols. One example of the data synchronization protocols to be accessed

from Java applications will be SyncML / OMA Data Synchronization.

The API should be a high level API, which provides a common set of synchronization

commands.

2.5 The MIDlet

A MIDlet is a MIDP application that runs on a device with CLDC configuration and MIDP
profile, and it is built upon the MIDlet class. This class provides programmatic interfaces for
invoking, pausing, restarting and terminating the MIDlet application. For instance, the
application manager can pause a MIDlet to allow the user to answer an incoming phone call,

and a MIDlet can also make a request to be paused and later restarted.

startApp()

tartA
SRl pauseApp()

destroyedApp(boolean)

destroyApp({boolean)

Figure 2.6 The lifecycle of a MIDlet [11]

Since today’s mobile phones seem to favor this CLDC/MIDP setup, this is the type of

application this thesis will prioritize.

21

Application development using J2ZME — Evaluation of intrinsic platform limitations

(MIDlet]

W

: Optional Packages I Optional Packages i
&

i MIDP 1.0/MIDP 2.0 I FP/PP/IFBP B

- 4

(CLDC I CDC i

L =iy

Figure 2.7 An illustration of the MIDlet on top of the MIDP/CLDC structure

Instead of executing like an ordinary Java application, MIDlets are stored in a jar-file called a
MIDlet suite. Then this suite is put onto a MIDP device which contains Application
Management Software (AMS), which again opens and launches the MIDlet on the device.
Figure 2.7shows how a MIDlet fits in the J2ME universe.

2.6 Generic Connection Framework

To handle the communication with the servers we used the Generic Connection Framework
(GCF). Below the structure of the GCF is displayed. As we can see it is a straightforward

hierarchy of interfaces and classes used to create various sorts of connections.

<<interface-:
Connection
extends
< <interfane-= < <interfanes= <zinterfaoesx < <interfare==
DatagramConnection InputConnection OutputConnaction StreamConnectionlictifier
i)
N %
<=clasg=r
S ConnectionotFoundExeeption
StreamConnection
extends <=classs>
Connector
E e ((Cormection Factory)
ContentConnection
<<interface==
) : Datagram
[0 Connection Interface Hierarchy

Figure 2.8 GCF overview [12]

22

Application development using J2ZME — Evaluation of intrinsic platform limitations

The GCF is very flexible and it is easy to extend it when needed. New connection types,
which are defined and standardized via the Java Community Process (JCP), can be added by
defining a new Connection subtype and supporting classes, providing a Connector factory
class that supports the newly defined connection type, and defining a new URL scheme that

identifies the new connection type. Figure 3.7 illustrates how the GCF could be extended by a

profile or an optional package.

}] Connection
O Connection Interface Hierarchy
extends
\ , ,) . | Other Connecticnsub- |
DatagramConneaction InputConnection OutputConnection StreamConnectioMNotifier | types (as defined by
| profile or optional |
% package)
extends %c% gﬁ-@ I_______|
= S - . —
| Other datagram | | Other StreamConnection
Connection sub-types (as] enctends | sub-types (as defined by
| defined by profilecr | S profile or optional |
| optional packags) | | package) |
e s e e e oo gy IS0 |]
T extends
Connector :
; ContentConnection
Corriechion Fachory
¢ 4 Datalnpt DataCmtput
extencs
| Other stream Connection | extenc
I0Exception | sub-types (as defined by |
profile or opticnal
| package)
"\ oy . T e | Datagrarm

ConnectionNotFoundEsoeption

Figure 2.9 Extended version of the GCF [12]

The GCF provides a whole range of connection types for the developer. One of the best
features from the GCF is the way it standardizes the connection syntax. All connections are
opened with a standard URL like this: scheme.//user:password@host:port/url-

path;parameters, where the different parts are [12]:

23

Application development using J2ZME — Evaluation of intrinsic platform limitations

e scheme specifies the access method or protocol, such as FTP or HTTPS. In the GCF,

it describes the connection type to use, which maps to an underlying connection or I/O

protocol.

e useris an optional user name.

e password is an optional password.

e hostis the fully qualified name or the IP address of the host where the resource is

located.

e portis an optional port to use. Its interpretation depends on the scheme.

o url-path is the "path" to the resource. Its format and interpretation depend on the

scheme. The url-path may define optional parameters.

Below, the currently available GCF connections are listed

URL Scheme | Connectivity GCF Connection Type Defined By
btl2cap Bluetooth L2CAPConnection JSR 82. Support is optional
datagram Datagram DatagramConnection All CLDC- and CDC-based profiles,
such as MIDP, Foundation and related
profiles, and with JSR 197, J2SE
support is optional.
File File Access FilleConnection JSR 75. Support is optional.
Input Connection
http Hyper Text Httpconnection MIDP 1.0, MIDP 2.0, Foundation
Transport Profile, J2SE (JSR 197). Support is
Protocol required.
https Secure HTTP | HttpsConnection MIDP 2.0 support is required.
comm Serial /0O CommConnection MIDP 2.0 support is optional
sms Short
Messaging
Service
mms Multimedia
Messaging MessageConnection JSR 120, JSR 20S. Support is optional.
Service
cbs Cell Broadcast
SMS
apdu Security APDUConnection JSR 177. Support is optional.
jermi Element JavaCardRMIConnection
socket Socket SocketConnection JSR 118 (MIDP 2.0). Support is

24

Application development using J2ZME — Evaluation of intrinsic platform limitations

ser ver Socket Server Socketvonnection optional
datagram UDP UDPDatagramConnection JSR 118 (MIDP2.0). Support is
Datagram optional.

Table 2.1 GCF connections [12]

2.7 JZ2ME on Symbian

2.7.1 History [13]

Symbian’s first Java implementation, based on Sun’s JDK 1.1.4, was released as a part of

Symbian OS v5 in 1999.

Symbian OS v5.0 was released in 1999 and was the first Symbian OS with Java support and it
was based on Sun’s JDK 1.1.4. The next Symbian release, Symbian v6.0, based its Java
support on the PersonalJava 1.1.1 specification and was released in 2000. PersonalJava, which
was based on JDK 1.1.6, had the advantage of reduced memory footprint. This Symbian
release also implemented Sun’s JavaPhone API, which is a vertical extension to the
PersonalJava platform. Because of this extension, it was now possible to access telephony
functionality, send and receive datagrams and manipulate address book and calendar

information.

The Micro Edition was designed for a range of consumer and embedded electronic devices
with little resources. It was clear that J2ME MIDP was highly suitable for mass market
mobile phones and it became very popular among phone manufacturers because of its
lightweight configuration. Symbian included this standard whit its Symbian v7.0 release and
also back-ported it to earlier releases. Even tough this standard was foreseen to have ha great
future, it was also apparent that MIDP 1.0 had its limitations due to the limited MIDP 1.0
specification.. Because of this, both J2ME and PersonalJava lived side by side on Symbian

phones until the release of Symbian v8.0, where PersonalJava was no longer supported.

J2ME has progressed a lot since the release of MIDP1.0, and in 2002 MIDP 2.0 was released
as a part of the Java specification Request (JSR 118). In addition to this a range of optional
packages were released, also part of the Java Community Process. The optional packages

enhance the MIDlet functionality, giving support to range of features.

25

Application development using J2ZME — Evaluation of intrinsic platform limitations

Symbian version 7.0s was released in 2003 and was the first Symbian OS with MIDP 2.0
supportt. It introduced a lot of new features and APIs like the new security model, new game
and audio APIs, enhanced UI API, the Push Registry, Bluetooth and SMS support. In addition
to this Symbian gave support for Sun’s high performance CLDC HI VM.

Nokia has used Symbian OS v7.0s for Version 2.0 of their Series 60 Developer Platform. The
Series 60 2™ edition supplements the functionality that comes standard in Version 7.0s with
an implementation of the Mobile Media API (MMA, JSR 135) providing Java support for
video playback, tone generation and photo capture, adding to the audio API that comes as part

of MIDP 2.0.

Symbian 8.0 was announced in 2004 and enhanced the 2ME CLDC/MIDP implementation
adding the following optional packages to Symbian OS: Mobile Media API (JSR 125),
Mobile 3D Graphics (JSR 184), File GCF (part of JSR 75) all running on top of Sun’s CLDC
HI 1.1 VM. In addition, the Java implementation is now fully compliant with the Java
Technology for the Wireless Industry specification (JTWI, JSR 185). The JTWI is an
initiative defined via the JCP to specify a minimum set of APIs and behaviour that a
compliant phone should support. By targeting the JTWI, ISVs and 3rd party developers can
know that their applications will run on the largest possible number of phones. Release 1 of
the specification mandates MIDP 2.0, CLDC 1.0 and WMA as a minimum API set with the
MMA also required if multimedia functionality is exposed to Java. Symbian OS v8.0 also
integrates support for the Universal Emulator Interface (UEI) allowing Symbian MIDP
emulators to fully integrate with standard tools such as Sun’s Wireless Toolkit and IDEs such

as JBuilder and Sun One Studio.

2.7.2 MIDP 2.0 on Symbian OS phones

Nokia 6600 was the first MIDP 2.0 enabled Symbian phone on the market. This phone was
based on v7.0s, which was the first Symbian version with MIDP 2.0 support. This support has
also been back-ported to UIQ 2.1 phones based on Symbian v7.0. Symbian v9 is currently the
newest OS and supports the UIQ 3 and the Series 60 UI platforms. Nokia N91, which is the
first v9 mobile phone, will be available in 3Q or 4Q 2005.

26

Application development using J2ZME — Evaluation of intrinsic platform limitations

Table 2.2 Some MIDP 2.0 enabled Symbian phones

2.7.3 How to use native Symbian services with J2ME [14]

Even though the MIDP/CLDC together with optional packages typically provides the
developer with a rich API set there are bound to be things that only a C++ application with
access to native services can do. This poses a big problem if a key feature in a MIDlet
depends on a service that simply is not accessible through conventional methods. There is
however, a way to circumvent these limitations. This requires more than the regular Java

skills to do, but to the experienced Symbian developer it is a reality.

MIDlets handle socket communication with other hosts, and the same way they can handle
communication with sockets listening on the local loopback address 127.0.0.1. This means
that we can actually have a MIDlet communicating with a native C++ application running on
the same device. Since the native application has the whole spectrum of native services
available, this means that even the MIDlet can reach them indirectly through socket

communication.

27

Application development using J2ZME — Evaluation of intrinsic platform limitations

What you need to have on the native side is a so-called daemon. This will be an EXE
program, always resident and ready to process requests from the MIDlet. Just implement the
desired native functions into the daemon, and you have access to Symbians, for J2ME
developers, hidden features. Of course, this breaches the perimeters of the sandbox, but it can

sure be useful to a capable C++ programmer.

2.7.4 Benefits of J2ME on Symbian

Symbian and J2ME are two fast growing technologies that enhance the mobile environment.
They both have great value separately and when joined together they produce a very reliable
environment for mobile applications. The J2ME implementation on Symbian is very robust
and it is running on the very stable Symbian OS kernel. Its implementation has a small
footprint which takes advantage of Symbian OS’s compact and effective philosophy, both for
MIDP 1.0 and 2.0 applications. The Java UI components directly mapping to the native Ul
components is very efficient and allows the applications to work at a faster rate. 2ME on
Symbian also have the advantage of the JCP. They frequently provide new optional Java
APIs, which again leads to that MIDlets to get more and more functionality and features. With
the performance and capabilities of J2ME on Symbian OS continually improving it now
offers third party developers a viable developer environment. It’s likely to believe that this

environment will approach the mass market in an even greater extent.

28

Application development using J2ZME — Evaluation of intrinsic platform limitations

‘._I

[= WY]

3
" p.

#1{]

40

Figure 2.10 Estimated per formance of J2ME on Symbian

3 Evaluation of J2ME on Symbian

In this chapter we will go through our evaluation of the J2ME/Symbian platform. We start
with defining the tasks scope and method, and go through the development of an application
used for testing of the platform. The results/experiences from this development are presented
in its own chapter 3.3, and here we will go through the core issues of the process. Following
this will be a brief discussion of these experiences and a conclusion. We also include a short

look to the future at the end because J2ME/Symbian is a constantly evolving symbiosis.

29

Application development using J2ZME — Evaluation of intrinsic platform limitations

3.1 Scope and Method

3.1.1 Scope

In this first part of the thesis we will evaluate the development platform J2ME on the
operating system Symbian OS. It is especially the areas of initiating network services,
hardware control, and file access that will undergo a thorough evaluation. GUI and general
development issues will also be explored, but in this thesis these topics will not have the same
priority as the previously mentioned focus-areas. The idea is to examine the maturity level of

this development platform, and the richness of the features it provides.

3.1.2 Method

Research is an essential part of making an evaluation. Without theoretical knowledge, there is
little to base conclusions on. Therefore the technical review we did in the previous chapter is
the foundation on which we build this evaluation. In the research for the technical review we
gained an extensive knowledge about both J2ME and the Symbian OS, and the relationship
between them. To evaluate the maturity and feature-level of this development platform, a
practical approach is taken. We intend to develop an application where the all the elements of
interest are incorporated. This way the maturity and features are examined from both a
theoretical and a practical angle, and this will give us the background we need to draw a well
well-considered and well-tested conclusion. There are four questions on which we will base

our conclusion:

How well does MIDP’s hardware control fit the underlying technology?
Is MIDP a good networking profile?
Can you easily develop good GUI’s with MIDP?

b N

Is the general development process reasonably hassle-free?

3.1.3 Choice of Tools

The tools we chose for the development of our test application were chosen merely on
theoretical grounds. The need for advanced enterprise features was not there, and we could

have done just as well with just a text editor and Suns Wireless Toolkit. However when using

30

Application development using J2ZME — Evaluation of intrinsic platform limitations

the professional tools, you get a certain sense of how much effort the industry is putting into
the platform, and this can help us in the evaluation process.

We landed on Borland JBuilder as the choice of IDE as this is the leading IDE for Java
development on the market now. This comes as a 30 day trial version and we felt that this was
enough time for us to test the features we needed, and to make a good test application. We
also used Sun Wireless Toolkit 2.2 as a testing base for our application. Since we can add any
desired emulator to this toolkit, we got to test the application on several different emulated

devices.

3.2 Test Application

The best way to explore the capabilities of the different Optional Packages and the J2ME
MIDP/CLDC platform in general, is to put them to use. This is what we aimed to do with this
application which will be deployed and tested on a Nokia 6630 with integrated photo and

recording hardware and the operating system Symbian OS v8.0

3.2.1 Use Case

To make this the following use case has been defined: An inspector, e.g. a foreman at a
construction site, wishes to report a detail in the construction back to a central computer. He
takes a picture, classifies the detail, adds some measurements and records some additional
audio comments. These recorded data will then be assembled into one message by the

application and sent back to the computer where it will be analysed for further actions.

31

Application development using J2ZME — Evaluation of intrinsic platform limitations

_-"”fr _-x"'m.
,4': Take Snapshat ‘}x
v S~ Thausess
e &
- — \\Pﬂ‘. —
o ¥ T ™ usess T “--H\I
v _{ Record Audio }——>(StoreFile)
p.d o ~ = \f.?,q___ __F_,f
// ,_f"'f ausesy
* _/" - "/
o . P
o - v
Q il —{ Write Cnmmenls\]r”
T, g ot
e e s
Y \
.\-“.....-H"'-\. —_— __“-..___\ HUSEE !___.-'-"__ - _"--\.‘_‘\
User \< Preview }—— I LoadFiles)
p." s =t \m___ __,--"r

\ — —

)

e

N .
\(ﬁ.;———ﬂ,\ i,

| Send Data H‘;&Send to Serviet)
W S

Figure 3.1 Use Case of the registration MIDlet RegApp

3.2.2 User Interface

As we have seen in previous chapters J2ME/MIDP has limited standard GUI components.
Therefore the design for our test-applications user interface is a minimalistic one. To make it

we used the following mix of low-level and high-level MIDP UI classes:

Screen

This is the common superclass of all high-level user interface classes.

Form

A Form is a Screen that contains an arbitrary mixture of items: images, read-only text
fields, editable text fields, editable date fields, gauges, and choice groups.

We use this to contain and organize where there are several elements like TextBoxes

and Strings.

List
The List class is a Screen containing list of choices. It is ideal for simple menus, where

all menu items are of the same class.

32

Application development using J2ZME — Evaluation of intrinsic platform limitations

TextBox

The TextBox class is a Screen that allows the user to enter and edit text. We used this

to typically take notes from the user, or to specify addresses and such.

Canvas

The Canvas class is a base class for writing applications that need to handle low-level

events and to issue graphics calls for drawing to the display.
This we used to contain the VideoController we needed to implement the camera
function. Since it is low-level we have control over the location and size of the

elements we put into it.

Navigation

The main menu is simply a List object with several elements which functions as a menu. The

user has several choices:

RegApp Main Menu
1. Take snapshot

2. Write comments

3. Record oudio comments

4. See Preview

9. Lreate & Send

Figure 3.2 Available features in RegApp

Each of the choices leads to a new screen and you can at any time gﬁ Hain Henu

move back to the main menu. 1. Take snapshot

2. Write comments

3. Record audio

3.2.3 Functionality comments

Dptions +

The whole application consists of the five choices in the menu.

Each of them described here:

1. Take Snapshot: Selecting this menu-item displays a low-level

Figure 3.3 Main menu on RegApp
shown on the Series 60 emulator

33

Application development using J2ZME — Evaluation of intrinsic platform limitations

GUI for taking snapshots. It contains simple functionality; simply take snapshot, and go back

to main menu. Snapshots are stored in files for later use.

2. Record Audio Comments: This displays a simple start-stop audio recording interface.

Contains start and stop functions. Audio is stored in files for later use.

3. Write Comment: This displays a big textbox for writing additional comments.

4. Preview: To be sure what you want to send is actually what you send, preview

functionality is added. This reads files from and displays the message in an orderly way.

5. Send to Server: Displays different kinds of sending options. We have implemented MMS,
Servlet, Socket and Datagram communication, but only Servlet communication will appear in

the final application because of support issues.

3.2.4 Implementation issues

As the API support in the IDE and WTK differ from the support in the actual device, there
were bound be some problems. Even though we had the newest version of Symbian OS
available, it did not have support for the revised version of Wireless Messaging API
(JSR205). We found out that this is because this Optional Package is not supported until
Series 60 3"edition, which are only implemented on Symbian OS v9. The first phone shipped
with this OS is expected on the market 3Q or 4Q 2005. As a result the MMS implementation

that worked just fine in the emulator made the application crash in the actual device.

34

Application development using J2ZME — Evaluation of intrinsic platform limitations

3.3 Test Application Experiences

As a relatively young platform J2ME is constantly undergoing huge improvements. When
reviewing the maturity of the platform one has to make a decision whether to review the
version currently dominating the market or the latest version that is not yet available in any
handsets. For instance, on the java-enabled phones people use today there are two dominating
stacks. We have the original MIDP stack with CLDC 1.0 and MIDP 1.0 as figure 3.4

illustrates.

Figure 3.4 MIDP 1.0 on top of CLDC 1.0 [15]

Although this combination has been wildly successful since its release in September 2000, it
is clearly just a start and not a mature platform for software development. It offers rather basic
environment for general application development. Vendors had to make a lot of device
specific APIs to make up for the lack of functionality, and this led to quite a fragmented

platform for developers to use.

Then we have the JSR 185 stack, as illustrated below, which provides a wireless Java

application environment that tries to reduce the fragmentation effect and improves portability.

Figure 3.5 The JSR 185 stack [15]

35

Application development using J2ZME — Evaluation of intrinsic platform limitations

Fragmentation is addressed by providing many crucial capabilities in one standard application
environment. Interoperability is addressed by clarifications to existing specifications and an

exhaustive suite of compliance tests.

Our review of the J2ME platform will therefore only focus on the latter of the two versions
mentioned above. To do this we made an application in which we incorporated a lot of
features to explore the maturity of the J2ME APIs. The analysis of the platform is presented
here, and the application itself is described in detail in Appendix C.

3.3.1 Using GFC

In our test application we used GCF for connecting to sockets, UDP-servers and a Servlet. We

also used it to perform I/O operations on the file system on the mobile phone

Using the GCF is very simple. To create a connection you use the Connector factory class and
a URL. To close it, you use the created Connection subtype object. Here is one code example

to illustrate a connection made from a MIDlet to a Servlet:

HttpConnection hc = (HttpConnection)Connector.open{“http://localhost:8080/regapp”):

Figure 3.6 Connecting MIDlet to Servlet with HttpConnection (from test application).

All the connections made in the test application were created the same way. Needles to say,
this makes the developers job a whole lot easier than if he had to use a new procedure on each
of the different connection types. Of course there are differences when using the different

connection types, because each connection type has its own peculiarities.

3.3.2 Networking capabilities

In the test application we chose to implement several ways of MIDlet/Server communication.
We created three different servers: A simple servlet, a simple TCP server and a simple UDP
server. The emphasis in this thesis is on the MIDlet-side of the system, and the servers were

given one task only; just reassemble the message received from the MIDlet and display it.

36

Application development using J2ZME — Evaluation of intrinsic platform limitations

3.3.2.1 Datagrams and Sockets

Using datagrams as means of communication has the advantage that they are rather
lightweight when compared to TCP-based connections such as sockets. When programming
applications for wireless devices with limited network capacity this is clearly a thing to
consider. In the process of making the test application we tested the UDP and TCP protocols

as means to send a composite message from a MIDlet to a server.

Connection conn= Connector.openi(®=socket://localhost: A7897) ;

Connection conn= Connector. openi(™datagram //localho=st: 3876%) ;

Figure 3.7 An example of socket and datagram connections

It is no problem to send data from a MIDlet to a server using these two protocols. We just
converted the data files to byte arrays and sent them over an OutputStream object. However,
none of these protocols are mandatory implementations in the MIDP platform; it is entirely up
to the handset manufacturers and network operators to deploy these capabilities [16]. We

chose therefore just to test them out, but not make them part of the final application.

3.3.2.2 Http communication

As mentioned, sockets and datagram communications are network dependent. And some
networks may implement only one of these, and not the other. This clearly makes any
datagram or socket based application less portable. Because HTTP support is mandatory in
MIDP devices and HTTP is a high-level, standard network-independent protocol, this gives
wireless applications developed using HttpConnection a very high level of portability. HTTP
communication also makes it easier to deal with issues such as network security and firewalls,

because the HTTP's well-known port 80 is the least likely port blocked by firewalls.

In the test application we use HttpConnection to communicate with a servlet and to send
messages containing pictures and audio. Below is an example of how to send data to a Servlet

from a MIDlet using the HTTP POST request.

37

Application development using J2ZME — Evaluation of intrinsic platform limitations

Figure 3.8 Example on sending data to a Servlet from a MIDlet using the HTTP POST request

Figure 3.91s a sample from an early version of the test application. A more complex

sendToServlet() method is found in the final version.

To send multiple files as we did in the test application, we found that the easiest way to do
this was to convert all the files to byte arrays and implement a small protocol. First we send a
String message, indicating the file type arriving in the succeeding stream of bytes, and then

the payload is sent. This is repeated for each file.

3.3.3 File access

File access for MIDlets has been an issue since Sun decided to move away from Personal Java
and JavaPhone and to put their efforts into J2ME instead. With the FileConnection API
however, this important hurdle has been overcome. The API is very simple containing just
one class, two interfaces, and two exceptions. As a part of the GCF, the FileConnection

interface extends the Connection interface and gives access to directories and individual files.

Implementations of FileConnection are created using the Connector.open() method. The
argument of the open() method is an URL with the format
file://<host>/<root>/<directory>/<directory>/.../<name>, and a parameter to decide if read

and write rights will be given.

38

Application development using J2ZME — Evaluation of intrinsic platform limitations

The host element may be empty, and it often will be, when the string refers to a file on the
local host. The root directory corresponds to a logical mount point for a particular storage
unit. Root names are device-specific. The following table provides some examples of root

values and how to open them:

Root Value How to Open a FileConnection

CFCard/ FileConnection fc = (FileConnection)

Connector.open ("file:///CFCard/") ;

SDCard/ FileConnection fc = (FileConnection)

Connector.open ("file:///SDCard/") ;

MemoryStick/ | FileConnection fc = (FileConnection)

Connector.open ("file:///MemoryStick/") ;

C:/ FileConnection fc = (FileConnection)

Connector.open ("file:///C:/");

/ FileConnection fc = (FileConnection)

Connector.open ("file:////"):

Figure 3.9 Some GCF root values and how they could be opened [17]

When a connection to the file system is established, there are several kinds of operations that

can be performed. FileConnection includes amongst others[17]:

e Get a filtered list of files and directories using the method /is#(String filter, boolean
includeHidden). In the filter parameter you can use * as a wildcard to specify zero or
more occurrences of any character. The inc/udeHidden parameter specifies whether
you want to list only visible files or hidden files as well.

e Discover whether a file or directory exists using exists().

e Discover whether a file or directory is hidden using isHidden().

e Create or delete a file or directory using create(), mkdir(), or delete().

For a list of all the valid root values in a device, call the /istRoots() method of

FileSystemRegistry.

FileConnection behaves differently from other Generic Connection Framework connections in

one important way: The Connector.open() method can return successfully without referring to

39

Application development using J2ZME — Evaluation of intrinsic platform limitations

an existing file or directory. This capability enables you to create new files and directories.

Here is a segment of code that creates a new file; assume SDCard is a valid file-system root:

Figure 3.10 Example on how to create a file

In the test application we wanted to have persistent storage of the registration data, and
therefore we used the FileConnection to read and write files. It works smoothly as soon as you

get to know the file system.

3.3.4 Wireless Messaging

Sending messages with the Wireless Message API is really not a problem. For sending a text
message we just have to create a MessageConnection object and pass it a parameter to say it
will send text messages. Then we create a TextMessage object and use the setAddress()
method to set receiver address, and setPayloadText() to fill it with a String message. The
Message object is sent with the MessageConection’s send() method. A sample from the

application is displayed below.

40

Application development using J2ZME — Evaluation of intrinsic platform limitations

Figure 3.11 Example on creating and sending SMS

To send an MMS is not much worse, the difference is that we have to create a
MultipartMessage object which can, as the name implies, contain multiple message parts.
These can be files such as images or video, and also plain text messages. This feature arrived
first with the revision of the WMA, the JSR205, and at the time of writing the application, no
phone supported this. It worked without hassle in the emulator, and there is no reason it
should not work in a device which supports the revised WMA. Below is part of the MMS
implementation. It’s not included in the final application, as it will not work on the actual

device. It is merely included here to show how it is done.

41

Application development using J2ZME — Evaluation of intrinsic platform limitations

Figure 3.12 Creating and sending MMS Example from RegApp

There is a third option in the WMA, namely binary messages. This allows the developer to
convert the entire message into bytes and send it as a byte-stream. We figure this can be an

alternative to MMS for devices without JSR205 support.

Sending a binary message is no worse than sending a text message, as we can see in this code

sample.

42

Application development using J2ZME — Evaluation of intrinsic platform limitations

Figure 3.13 Example on creating and sending a binary message

3.3.5 Hardware control

In our application we instantiate a video capture player object by passing the URI locator
“capture.//video” to the Manager.createPlayer() factory method. Then we display the
resulting video in a canvas and we are able to grab a snapshot from this by calling the
VideoControl getSnapshot(). We can pass arguments to this method to adjust the type and the
dimensions of the resultant image. Below is a code sample from the application, which shows

how we implemented this feature with help from Forum Nokia.

43

Application development using J2ZME — Evaluation of intrinsic platform limitations

Figure 3.14 Creating a visible video controller and taking a snapshot in the test application

The procedure for implementing audio recording is somewhat simpler, since it does not
require a display, such as the Video display we used for the snapshot function. But it is similar

in the way that we use the Manager.createPlayer() method.

44

Application development using J2ZME — Evaluation of intrinsic platform limitations

Figure 3.15 Creating and using AudioRecorder in the test application.

Even though recording audio did not pose a problem, the replay did. Loading the recorded
wav file into the memory took so much time it was not any point including the replay function

in the final version of the application.

3.3.6 GUI

In order to show something on a MIDP device, you will need to obtain the device's display,
which is represented by the Displayclass. This class is the one and only display manager that
is instantiated for each active MIDlet and provides methods to retrieve information about the

device's display capabilities.

45

Application development using J2ZME — Evaluation of intrinsic platform limitations

Object "I

4

/ Displayable bﬂ—" Command '|

* — ChoiceGroup '|

| l i
/ Screen f] / Canvas b i — DateField]

A
m B
Alert | avge I
List - EEEEEES »| Choice <<interface>> "It— B 1'"'"9"'"&“' |
. : ™1 Stringlt
Form - L& ,‘ ltem ?r . ringltem i
1

=t TextField i

— TextBox |

Figure 3.16 Overview of available GUI components in J2ME [18]

To make something useful for the user, you have to go further down the

Javax.microedition.lcdui tree to the level of the Screen class and the Canvas class.

We used three types of Screen implementations in our application; List, Form and TextBox.
They are all straight forward and easy to use, but perhaps not as flexible as you would want.
Not much creativity allowed, since the underlying implementation takes care of most of the

placement and size issues.

In order to directly draw lines, text, and shapes on the screen, you must use the Canvas class.
The Canvas class provides a blank screen on which a MIDlet can draw. We used this to

display the VideoController output in the snapshot function.

For an application like the one we have made in this project you can do fine with a mix of

low-level and high-level MIDP UI API’s.

46

Application development using J2ZME — Evaluation of intrinsic platform limitations

3.3.7 General programming Issues

Due to the nature of the targeted devices, J2ME and MIDP are understandably limited. Here
we will go through some of the general limitations you experience when moving from J2SE

development to the mobile world of MIDP [19].

Serialization

Serialization of objects comes in handy when data classes such as the SessionData class in our
test application. This is a class whose only job is to store images, audio and text, and
serializing this object would make it much easier to transfer these data over a byte stream.

Since MIDP does not support serialization this process becomes quite cumbersome.

Exception Handling

Exception handling is resource-expensive and is therefore limited in J2ME. For instance,
CLDC only defines three error classes: java.lang.Error, java.lang. OutOfMemoryError, and
Jjava.lang. VirtualMachineError. This imposes extra care in coding and testing for the

developer.

Finalization
And you can not do finalization in J2ME. It is unwise to rely too much on this even when
using J2SE, but at least you have the possibility to do so if you wish. In J2ME this possibility

has been removed.

Threading
There are no thread groups or daemon threads in J2ME, however MIDP supports
multithreading. Thread groups can be created at the application level by using a collection to

store the tread objects.

GUI

Large UI APIs such as Swing and AWT are not suited to be used on a small device, and
therefore MIDP implements its own set of UI APIs that fits the smaller screen size and
minimal resources. Divided into high-level and low-level Ul, this provides the developer with

easy to use Ul components and the ability to draw on the display. The high-level components

47

Application development using J2ZME — Evaluation of intrinsic platform limitations

leave a lot of the GUI design up to MIDP, and thereby limit developers’ freedom. And the

low-level Ul is a bit too low level to be used in fast development of applications.

4 Discussion and Conclusion

When J2ME was first introduced to the Symbian platform it was as a kind of second class
citizen. It did not have the features to compete with the native C++, but it had something that
we believe has contributed to its continuous existence; portability. However J2ME needs to
prove itself in more ways than this to defend its place as a prioritized language on the
Symbian platform. Through this paper we have examined some specific problem areas and we

have looked at the evolution of J2ME and Symbians co-existence.
4.1 Discussing maturity and features

4.1.1 Focus Areas

The first area we examined was the hardware control. This had long been a weakness for
J2ME on Symbian. What we experienced currently the situation was rather the opposite; the
arrival of the MMAPI has made developing hardware controlling software such as camera and
audio recording apps not only possible, but easy as well. Of course, the features are not very
advanced; it is basically just record and play functions that are implemented. For instance,

neither zooming nor filtering is implemented.

As mentioned in chapter 2.4.1, a new JSR had its final release the 20" of June this year called
JSR 235 ASMAPI. This will greatly enhance the developers’ capabilities to control cameras
and other recording equipment. It will actually take a step closer to the features of the
specialized devices out there. One can ask oneself why this hasn’t been done before but, the
answer is most likely that API development is just taking the steps one at the time. The
MMAPI was designed to be easily extensible, and this pays of now as ASMAPI utilizes this

framework by introducing control for advanced multimedia features.

48

Application development using J2ZME — Evaluation of intrinsic platform limitations

File access have also been lacking in the J2ME/Symbian platform, and again we found that
the problems have been mended. At least to the degree we needed to make the application

without any problems.

Originally we intended to register data with the camera and microphone and send it as an
MMS with the help of the WMA. However, the phone we used for this project does not
support the revised WMA (JSR205), and we were therefore unable to send the data as MMS.

Still, we did make an implementation that we only tested on the emulator.

When it comes to networking in J2ME we tried three different approaches: Socket, datagram
and HTTP. All three are good ways to connect the application to servers but we found that an
HTTP/Servlet solution is the best for mobile networking with J2ME. The HTTP protocol is

more adaptable to the somewhat unstable network that mobile phones operate in.

We could have tested all these API’s further, but this would be best to do as separate projects
as they each would need to be studied at a much deeper level. To thoroughly review and

suggest improvements needs the time and expertise at the level of JSR expert groups.

41.2 GUI

The general feeling we got from developing the GUI on the test application was that it was
quite easy. But that is really just what we expected when we found out that MIDP 2.0 gave us

very limited options.

The MIDP profile has too few GUI classes and this puts serious constrains on the developer
if he wishes to develop a creative GUI solution. This is of course because MIDP is created to
be the lowest common denominator for mobile devices, but when developing on advanced
devices with operating systems like Symbian you want more control. J2SE GUI classes such

as menus and drop down lists are sorely missed.

You can of course use the low-level GUI API to create your own hierarchy of components,
but the moment you start to adapt the GUI components to the capabilities of each device, you

instantly loose one of J2ME’s major selling points; the portability. This is a challenge has to

49

Application development using J2ZME — Evaluation of intrinsic platform limitations

be overcome if J2ME applications are to be able to pass as first citizens in the Symbian

environment.

4.1.3 Using Native Services

As described in the J2ME on Symbian chapter of the technical review, there is a way to break
out of the sandbox and access native services, if necessary, via a daemon program on the local
loopback address 127.0.0.1. This way of communicating gives the MIDP application indirect
access to the full native API, and is a good solution if the project is depending on a few
services that lie outside the reach of MIDP or when the device does not support a certain

optional package.

This technique is not very common however, and this is probably due to the barrier of
Symbian C++ programming. For a MIDP developer this can be a daunting task to take on, but

the benefits are clearly there for grabs if one is willing to take the challenge.

One other downside is of course the portability issues that appear once you breach the

sandbox, but this is the prize to pay for access to native functionality.

4.2 Conclusion

As mobile phone technology moves forward with an increasingly high pace, the software
industry has a tough job keeping up. When looking at the variety of Symbian OS based
phones on the market, it is easy to see that this progress is creating a very fragmented market
for developers of mobile applications to work in. Even though all Symbian platforms support
Java in one way or the other, this is not a uniform support. From the Symbian 6.X to 8.0
which are the platforms we have looked at in this project, the range in Java support stretches
from PersonalJava/JavaPhone to J2ME MIDP2.0/CLDCI.1 and the differences here are
substantial. Even within MIDP2.0/CLDC1.1 based devices there are differences in optional
packages that make programs less portable. Therefore, the evaluation of J2ME is a difficult
task.

We decided that we would focus on the platform on our chosen device, the Nokia 6630, as

this had the newest version of Symbian OS and supported the most optional packages.

50

Application development using J2ZME — Evaluation of intrinsic platform limitations

The general impression of this platform is that it is streamlined to develop simple applications
fast. Being used to work in environments like J2SE and J2EE it is not hard to get into J2ME
programming. The language itself is grammatically the same, but it requires a slight change in
the way the developer thinks. The tools we used were mature in the way that they provided

help in all parts of the process, so that we could focus on the coding.

GUI programming in J2ME is easy. Very few standard high-level UI elements help you to get
the complete overview of possibilities. Unfortunately, this has a downside for the more

creative developers as it limits GUI freedom.

The hardware control provided by the optional package MMAPI was also very good
considering ease of use. However it lacks features to exploit the technical finesses of the
hardware. However, there are improvements coming in the near future with a supplement

package specified by the Java Community Process.

As far as networking goes there were little problems to find; at least in the developing
process. We tested socket and datagram networking and HTTP/Servlet communication. How
it works in works in real-life environments with the mobile networks is outside the scope of

this project.

When reviewing the whole platform of J2ME on Symbian OS, we will have to say that there
is still quite a way to go before it is fully matured. There is a lack of richness in the 2ME
language that limits development of advanced applications. The fact that one can access
native services through a C++ daemon application is of course helpful, but should be seen as a

shortage of features and should not be considered as part of the J2ME features.

Our claim is that a development language is never more mature than the platform it will be
used on. An application will always be limited by its environment. The lack of maturity and
features is therefore not due to limitations in the J2ME itself, but rather in the willingness of

the mobile device manufacturers to agree amongst them selves to implement standard APIs.

51

Application development using J2ZME — Evaluation of intrinsic platform limitations

4.3 The future of JZME on Symbian OS

The 2™ of February 2005, Symbian Limited today announces the launch of Symbian OS™
version 9, the latest evolution of the world’s leading smartphone operating system. According
to the executive vice president of marketing at Symbian, Marit Deving: “Symbian’s strategic
focus is to ensure that Symbian OS is the ideal choice for Symbian OS licensees’
development of smaller, less expensive and more powerful smartphones,” said Marit Deving,

Executive Vice President, Marketing at Symbian [20].

Regarding J2ME support on Symbian OS, they are still supporting the newest configurations
and profiles [21] in the coming versions of the OS and Symbians intention is clearly to make

J2ME a first class citizen in the Symbian OS environment.

The fact that Symbian is now aiming for the masses, instead of just high-end mobile phones is
a certain sign that the Symbian OS is expanding its territory. And with Symbians efforts to
stay in front with J2ME technology, we believe J2ME will evolve and mature alongside with
the Symbian OS.

52

Application development using J2ZME — Evaluation of intrinsic platform limitations

PART TWO - INTRINSIC PLATFORM LIMITATIONS

5 Technical Review

5.1 Access to Device Hardware

Access to device hardware can basically be provided in three different ways, through classes
provided in MIDP 2.0, through Optional Packages provided from the JCP or from native
Symbian services. Only a few classes are included in MIDP 2.0 itself, so there will only be
limited access to hardware without the use of any other APIs. Using Optional Packages in
addition to the MIDP will give much more functionality and will allow developers to create
much more versatile applications. This option however depends on that the package you are
using is actually supported by the OS. This obstacle can be avoided using the last option,
namely use native C++ APIs. Only the method using socket communication will be described

regarding access to native Symbian services.

5.1.1 Access via Optional Packages

J2ME did not have access to that many resources in the earlier stages, MIDP 2.0 and the
Optional Packages has however seen to that this is no longer the reality. At first 2ME based
programs could only do basic things that involved little or no access to the device hardware.
Now there are APIs that provide access to Bluetooth, SMS, MMS, file system, camera and
much more. This chapter will not go in detail in the description of the Optional Packages

since this have been done chapter 2.3.

5.1.2 Access via native Symbian services

This type of access is described briefly in 2.7.3, this chapter however will describe this

method in more details. [14]

Even tough the Java Optional Packages has provided access to most of the features that the
handheld devices has to offer, native C++ applications still have more access. This access can
also be exploited by the MIDlets, using socket programming. To be able to do this one has to

implement a C++ application that works as an interface between the MIDlet and the native

53

Application development using J2ZME — Evaluation of intrinsic platform limitations

services. This application is called a daemon and it has direct access to the hardware through
its native C++ APIs. The application will basically consist of a framework that handles the
socket communication and the native functions that handle the access to the native services.
Once the framework is implemented, one or more native functions may easily be added. The
native application uses a ServerSocket to listen for incoming connections on 127.0.0.1:8100,
and once a connection is detected it is handed over to a socket. This socket receives the

request, accesses the native services and writes a response.

When the native application is implemented one obviously need a MIDIet that can use the
provided services. This MIDlet basically has to connect to 127.0.0.1:8100 and open an output
and an input stream, write a command to the socket and finally read from the socket. In order
for the MIDlet to establish contact with the daemon, the daemon has to be running at boot or

be started by the user.

Sockel Commumnication

= C++ Native Application

/' (Daemon)

Access (o Services — T T ——— Access to Services

MIDlet

Socket Communication

Mative Services

Figure 5.1 A MIDlet communication with a native C++ damon

5.2 JZ2ME Security

There are many threats to consider in a mobile environment. Some of these threats are not that
relevant in e.g. a desktop environment while other threats can be just as relevant in all
environments. This chapter will describe some of the common threats in the J2ME

environment and the security mechanisms that J2ME is enhanced with.

The J2ME security mechanism can be divided into two different categories, low- and high

level security. The Low level security is designed to handle threats related to semantics of the

54

Application development using J2ZME — Evaluation of intrinsic platform limitations

Java language while the high level security is designed to handle threats from the internet and

networking environment and also direct physical threats to the device.

5.2.1 Security threats in the J2ME environment

There are many different threats to a device that are connected to some sort of network,
especially when connected to the internet [22]. I will not describe every possible threat that is

out there, but merely give a brief description of some of the most common threats.

A phone can easily confronted with confidentiality attacks like eavesdropping of the network
traffic and information theft from the client. Integrity attacks include modification of user data
and network traffic and Trojan horse software. Mobile devices are usually connected to some
mobile network and provide connectivity through e.g. GPRS. All these network technologies
and related protocols introduce security threats for the mobile applications. One particular
threat for users and mobile operators in mobile networks is related to unauthorized network

connections.

In addition to network threats, mobile phones are also extremely vulnerable to theft. Most
computers have the advantage that they are situated inside buildings with limited access.
Mobile phones are operating in a more exposed environment and must have counter measures
against these kinds of threats as well. MIDlets are truly mobile code, they can be downloaded
from the network and executed in mobile devices. An important factor is to know where the

application comes from and what it actually contains.

5.2.2 J2ME Low level security

The low level security ensures that the applications running in the virtual machine follow the
semantics of the Java language, and that an ill-formed or maliciously-encoded class file does
not crash or in any other way harm the target device. This process is divided into two phases
on CLDC devices because of the limited resources. These phases are called preverification
and in-device verification. “The preverify tool is responsible for inlining all subroutines and
adding special stack map attributes into class files to facilitate runtime in-device verification.

The preverifier inserts special attributes into Java class files. The in-device verification is

55

Application development using J2ZME — Evaluation of intrinsic platform limitations

carried out by the KVM class file verifier, which utilizes the information generated by the

preverify tool. [25].

Phase 1 Phasge 2

Myhdidlet java - Myhfidlet class

.--"ff
!
I
'.
'.
l

Idshdidlet class |
Myhdidlet class
. . —~ .fl
Developer's Space Target Device

Figure 5.2 The CLDC/MIDP Verification Process [25]

5.2.3 J2ME high level security

The J2ME standard is equipped with some high level security mechanisms in addition to the
low level security. The responsibility of these mechanisms is to prevent many of the threats
mentioned in chapter 5.2.1 to become a reality. One of the most important security
mechanisms is the Sandbox model. The Sandbox is the environment where the MIDlets are
executed in and its task is to make sure that application does not have access to any privileged

system resources without permission.

MIDP 1.0 has a simple security architecture with very few countermeasures, on the other

hand this MIDP version only allows the MIDlets to run inside the sandbox.

56

Application development using J2ZME — Evaluation of intrinsic platform limitations

MIDlet —_—

MIDIlets are only allowed to run inside the
sandbox which means no access to privileged Sandbix
resources. Very few additional security
measures are available,

Figure 5.3 MIDP 1.0 Security model

MIDP 2.0 also uses the Sandbox principle, but in addition to this it allows so called trusted
MIDlets to run outside the Sandbox. Applications with the status trusted can only be preset by
the phone manufacturer or the operator. Public Key Infrastructure (PKI) is used to sign the
MIDlet and lets the user know whether this is a trusted MIDlet or not. Third party applications
will allways prompt the user and make him/her to choose between different permission

options, namely blanket, session, oneshot or no access...

57

Application development using J2ZME — Evaluation of intrinsic platform limitations

MIDlet

K

Signed with manufacturer or

Signed with 3rd party status? |=—— No-
& party 2 operator status?

[.,
Mo Yag

i S
Prompt user to set Prompt user to set
muissions for the rmissions for the
s ; B : o Yes, full aceess
unsigned MIDlet signed MIDlet
[\ 3
'-. Fefused access Refused access Limited access
| y Y Y
No access Acces to resource
4
.I..imited access

if the resource permits it

Figure 5.4 MIDP 2.0 Security model

The Recommended Security Model (RSP) is a framework for MIDP 2.0 security model which
GSM/UMTS compliant devices are expected to comply with. The RSP defines different
protection domains, which is a set of permissions determining access to protected APIs or
functions [6]. The protection domain is divided into two main groups, unsigned and signed
MIDlets. The unsigned group consists of MIDlets that are considered untrusted and the signed
group consist of MIDlets that are from a trusted 3"party or the manufacturer/operator. The
security domains may vary with the different devices, but this is the setup of RSP compliant

devices. MIDP 1.0 MIDlets are automatically set to untrusted.

In order to make it easier to define access, RSP introduces the concept function groups. A
function group is a predefined group that consists of different APIs or resources. E.g. the local

connectivity function group consists of resources like Bluetooth and Infra Red connectivity.

58

Application development using J2ZME — Evaluation of intrinsic platform limitations

A permission is either set to allowed or to user. The term allowed means that the MIDlet will
automatically be granted access to the specified resource. The term user means that the user
will be prompted to allow access to the requested resource. There are four types of access
levels, blanket, session, oneshot and no access. Blanket means that the MIDlet will have full
access to available resources until the user changes the permissions. Sessions means that the
MIDlet has full access to the requested resource for one session. Oneshot will prompt the user
every time the MIDlet tries to use the requested resource, even tough if it is in the same
session. No access means of course that the MIDlet is refused to access the requested
resource.

Only MIDlets developed by the

(] (@]

@7 Ml
WBE

@7 fl
WBE

pp.manager

manufacturer/operator can Pp. mdi flEIEf

=
=

automatically be granted with Application access Application access
the permission allowed. The
) Hot allowed
default setting of trusted Z'Hot allowed sk every time
rd @ fisk every time sk first time
3"party and untrusted MIDlets Criisk first time @ filways allowed

is that the user will always be

prompted to give access. Some QK Cancel OK Cancel
resources however may not be Figure 5.5 Some permission settings in the Application Manager [24]
available at all for untrusted

MIDlets. By accessing the Application Manager on a Symbian OS phone, the user can

change between available access levels for the MIDlet.

All the protected classes that the MIDlet is going to request during runtime have to be added
to the MIDlet Permission list in the JAD and or Manifest file. If any of these requests are not
recognized by the device or the security level does not provide access, the MIDlet will never

be allowed to be installed on the device.

59

Application development using J2ZME — Evaluation of intrinsic platform limitations

5.2.4 MIDlet signing and verification

The MIDlet signing is a part of the trusted MIDlet concept in MIDP 2.0 It is used to verify the
source of the application. Applications are signed and verified based on PKI which is issued
by a CA. Each device has a set of root certificates stored either on the device itself or on the
Subscriber Identity Module (SIM). The result of a signing process is encoded and inserted
into MIDlet application description file. When the MIDlet suite is downloaded to the device,
the device verifies the MIDlet signature against appropriate root certificates and possibly an
additional certificate chain that might be included in the application description file.
Verification includes certificate path validation, signature checks and expiration checks for

the certificates [22].

5.2.5 Security protocols

MIDP 2.0 is enhanced with the Secure Hypertext Transfer Protocol (HTTPS) which makes it
possible to establish a secure connection between two points. HTTPS is basically HTTP over
Secure Socket Layer (SSL). SSL can also be used in relation with other protocols to set up

secure connections.

5.3 Relevant Projects and Research

5.3.1 MIDP 2.0 security enhancements [22]

This research paper is published by Otto Kolsi and Teemupekka Virtanen from the Helsinki
University of Technology. This paper describes many of the threats in the mobile
environment and how these can be handled. This paper also describes the security

improvements from MIDP 1.0 to 2.0.

5.3.2 Adam Gowdiak, breaking the Sandbox [23]

There are examples on people that have managed to escape the Sandbox on J2ME enabled
mobile phones. One of these is Adam Gowdiak, a security researcher from the

Supercomputing and Networking Center. He presented his experiences on this issue at the

60

Application development using J2ZME — Evaluation of intrinsic platform limitations

Hack In The Box security conference 4-7"October 2004. I will give a brief introduction on his

approach on escaping the Sandbox and what security threats this may include.

Every device and computer that is running programs written in Java has a bytecode verifier.
This verifier ensures that bytecodes and other items stored in class files cannot contain illegal
instructions, cannot be executed in an illegal order, and cannot contain references to invalid
memory locations or memory areas that are outside the Java object memory. The KVM
bytecode verifier, which is used in mobile devices, does not check whether the target of the
goto instruction is within the code limits of the current method. Since the bytecode verifier
operates in on a single method basis, it is possible to escape the KVM sandbox and execute
from the unverified execution path. In order to retrieve full access to the device memory, the

memory safety has to be broken.

mitab=new byte[12];

* set table size 1o 2°32-1 %/
mtab[8]=mtab[9]=mtab[10]=mtab[11 |=(byte)0xff:
* get addr of fake array obj header */

int base=BlackBox.cast2int(mtab) +Ox0c;

* do the cast */

static int mem| J=castZarrayOfBytesibase);

Figure 5.6 Breaking memory safety using a table of bytes

((int)memf ADDR-base-0x0c])&0xftcan be now read or written, which will result in a read or

write access to the memory location ADDR.

To be able to do something malicious with this access, like sending SMS or use WAP, reverse
engineering has to be conducted on the devise in order to use the internal operation of the
underlying OS. Adam Gowdiak has shown that it is possible to use internal operations to e.g.
send a SMS message. The devices he reversed engineered is a Nokia 63101, a so called closed
system. Gowdiak said that it would probably be much harder to reverse engineer systems like
Symbian and Windows mobile, but that these systems could alsobe at risk. I will not go into
more detail on how the reverse engineering since this is outside the scope of this thesis. Adam
Gowdiak has also said: “I would like to emphasize that although escaping the KVM sandbox
and breaking Java type and memory safety is almost straightforward, conducting malicious

actions on a given device is rather difficult as it usually requires deep knowledge about the

61

Application development using J2ZME — Evaluation of intrinsic platform limitations

internal operation of the underlying OS (I spent four months reverse engineering Nokia OS
63101 before I could do anything malicious from Java appplication on my phone)” [26].
Mikko Hypponen, the director of anti-virus research at Finnish AV firm F-Secure,

commended the quality of Gowdiak's research [27]

5.3.3 The Java Community Process

JSR 177 Security and Trust Services API for J2ME [10]

This specification provides J2ME applications with APIs for security and trust services
through the integration of a Security Element. The API in this specification is defined in four
optional packages that can be implemented independently. The two most relevant packages

are described below.

SATSA-PKI Optional Package
The SATSA-PKI optional package defines an API to support application level digital

signature signing (but not verification) and basic user credential management.

This optional package has the following features:

A J2ME application uses CMSMessageSignatureService to sign messages with a private key.
Messages may be signed for authentication or non-repudiation. Authorization of the use of a
key in a security element will be governed by the policy of the security element, for example,
PIN entry required. A J2ME application uses UserCredentialManager to perform the

following tasks:

- Formulate a certificate enrollment request, which may be sent to a certificate registration
authority

- Add a certificate or a certificate URI to a certificate store

- Add a certificate or a certificate URI to a certificate store

- Remove a certificate or a certificate URI from a certificate store

SATSA-CRYPTO Optional Package

62

Application development using J2ZME — Evaluation of intrinsic platform limitations

The SATSA-CRYPTO optional package defines a subset of the J2SE cryptography API. It

provides basic cryptographic operations to support message digest, signature verification,

encryption, and decryption.

The SATSA-CRYPTO optional package has the following features:

A J2ME application uses the MessageDigest class to access the functionality of a message
digest algorithm.

A J2ME application uses the Signature class to access the functionality of a digital
signature algorithm for verifying a digital signature.

A J2ME application uses the Signature class to access the functionality of a digital
signature algorithm for verifying a digital signature.

A J2ME application uses the Cipher class to access the functionality of a cryptographic
cipher for encryption and decryption. The SATSA-CRYPTO optional package does not
include an API to create a private key object. Asymmetric cipher using a private key is not
supported.

A J2ME application uses the KeyFactory class to build an opaque public key object from
a given key specification (transparent representations of the underlying key material).

A J2ME application uses the SecretKeySpec class to construct an opaque secret key object
from the key material that can be represented as a byte array and have no key parameters

associated with them.

6 Testing and Proposed Solutions

6.1 Testing the Trusted MIDlet Concept

The purpose of this test is to show how the MIDP 2.0 security model handles access to

privileged resources via Java APIs on a Symbian OS device and what access levels the

protection domains provide to the different function groups on a Series 60 device. I have used

Nokia Developer Suite 3 and a Nokia 6630 mobile phone to conduct this testing.

63

Application development using J2ZME — Evaluation of intrinsic platform limitations

6.1.1 The Test Setup

The Nokia Developer Suite 3 is equipped with different emulators and the one used here is the
Prototype MIDP 2.0 S60. This emulator includes the possibility to simulate the different
protection domains for the different function groups. This allows us to investigate the

relations between the resources, the function groups and the access level on Series 60.

—Secunty Simulation Lewvel [requires restart)

) Real Life

(5 Simulated :.Trusted Zrd Party w |
Pratected Function Permizzion

Metwark Acocess Azk firgt time ~

Auto-ztart Azk firgt time

Mezzading Azk evern time

Connectivity Azk firgt time

Multimedia Bec. Azk firgt time 3

Dezcription

Trusted 3rd Party level iz a simulated behaviour, where the MIDlet
iz treated as certified by a trusted third party.

[] Enable S5L certification checking

Figure 6.1 The series 60 emulator security center

The MIDlet used to conduct this testing is the registration application RegApp that has been
implemented in the first part of the thesis.

6.1.2 Testing the Trusted MIDIlet Concept

As described in the technical review, each of the protection domains includes a different set of

permissions for each resource.

The first part of the testing:

This part of the testing was conducted using the emulator. I started to gather all the different
permissions available for the different function groups using the three security levels,
manufacturer/operator, trusted 3"party and untrusted. These values can be seen in (table 6.2).

The MIDlet was executed under the three different conditions in order to see what permission

64

Application development using J2ZME — Evaluation of intrinsic platform limitations

that where actually given. The purpose of this test is to find out how the J2ME platform
handles a MIDlet which will try to get access to the camera, sound recording, read and write

access and network access.

Second part of the testing:

This part of the testing is done using the Nokia 6630 device and the Application Manager that
is shipped with the mobile phone. By entering the Application Manager I managed to gather
all the information about available permission setting for the different resources. These values
can be seen in (6.3). This part however was only conducted by using the security level
untrusted. A certificate would have been obtained in order to check MIDlet against the trusted
3"party level. The manufacturer/operator security level would of course have been impossible
to attain with our MIDlet. After retrieving the acquired information I executed the application

in order to see what resources it actually managed to access.

Third part of the testing:

The most important part of the testing is to compare the results from the assumed permissions
and actually permissions. Restricted access to resources is the key mechanism in the J2ME
security, the test results should therefore not deviate. The results and findings is described in

chapter 6.1.3

6.1.3 Test results

The information gathered from the emulator and the Nokia 6630 is presented table 6.2 and
table 6.3 respectively. The first permission mentioned in each group is the default one. E.g.

the group network access with an untrusted MIDlet has OneShot set as the default permission.

Protection Domain
Unsigned Signed
Untrusted Trusted 3rd Party | Manufacturer
Functional Groups /Operator
Network Access ONESHOT SESSION ALWAYS
SESSION ALWAYS
DENIED ONESHOT

65

Application development using J2ZME — Evaluation of intrinsic platform limitations

Figure 6.2 Protection domains on MIDP 2.0 S60 emulator

66

Application development using J2ZME — Evaluation of intrinsic platform limitations

Read User Data Access ONESHOT
DENIED
Write User Data Access DENIED
ONESHOT

Figure 6.3 Untrusteed protection domain on Nokia 6630

The results from actual behaviour did not deviate from the results in assumed behaviour. The
MIDlet behaved accordingly to the permissions that were set prior to running, both on the
mobile phone and on the emulator. E.g. each time the MIDlet tried to write to a file I was

prompted by the phone to give permission.

If there actually had been deviation between assumed behaviour and actually behaviour, then
the J2ME would have a had a serious flaw.
If the outcome would have been anything else than this then the security mechanism would

have had a serious flaw.

6.2 Proposed Solutions for JZME Security Threafs

This chapter will briefly give suggestions to how some of the security issues J2ME is facing
could be avoided. Some of these suggestions are based on the technical review while others

are based on the testing that was done in the previous chapter.

6.2.1 Escaping the Sandbox

The only way to ensure that the sandbox is not broken is to be sure that installed MIDlets do
not contain any malicious code. The easiest way to avoid this is to only run MIDlets that are

signed.

6.2.2 Malicious MiDlets in general

Unsigned MIDlets containing malicious could impose security threats to the device. Even
though the MIDlet only are allowed to access privileged resources by prompting the user, a
thought-through application could actually manage to fool the user into allowing access. This

threat could be solved by using signed MIDlets only.

67

Application development using J2ZME — Evaluation of intrinsic platform limitations

6.2.3 Safe network transfer

Threats regarding tapping network traffic can be solved by implementing HTTP or use other
protocols on top of SSL.

6.2.4 Protecting sensitive data

Protecting sensitive data from theft and other kinds of intrusion can be solved by

implementing encryption provided in the Security and Trust Services package.

7 Discussion

7.1 Concerns Regarding Access fo New Java APls

The J2ME functionality and security has evolved a lot since the standard was first introduced
by Sun in 1999. One of the most important resources for the MIDP environment when
developing versatile applications is the extensive use of additional APIs like WMA and
MMAPI. These new resources are of course good news for those who whish to develop more
than just basic applications, but does this access actually result in new security threats or

functionality issues for MIDP enabled mobile phones?

J2ME is equipped with both low and high level security features that are designed to cope
with different kind of threats. The most important feature directly related to hardware access
is the trusted MIDlet concept. This is a proactive security mechanism that guaranties that all
signed applications originate from secure sources with no malicious intentions. In other
words, signed applications that are installed on the mobile phone will most likely not impose
a direct security threat to the mobile phone. This of course relies on the recognized PKI and
CA concept. I will not discuss the PKI concept further since this is outside the scope of this

thesis.

Unsigned MIDlets however can not be trusted because their origin is impossible to determine.
The test results from chapter 6 shows that the security of unsigned MIDlets will have to rely
on the users’ decision into a much larger extent than with signed MIDlets. This kind of
MIDlets have potentially access to exactly the same privileged resources, the only difference

is that it is up to the user to decide whether he trusts the application enough to allow it to

68

Application development using J2ZME — Evaluation of intrinsic platform limitations

access the requested resources. This is of course a brilliant idea as long as the user makes
competent decisions regarding whether the requests are harmless or not. On the other hand if
the user allows every request without any critical judgement, then the whole security

mechanism will be insufficient.

We could take a look at a simple scenario where someone downloads an unsigned MIDlet
called FunnyFootball. This MIDlet contains malicious code that will try to send as many SMS
messages as possible via the WMA. Some people would probably deny the MIDlet to send
messages because they do not see any purpose for this game to use the SMS function. Others
would probably deny access after while since the MIDlet continues to asks to send messages.
This is just a simple malicious MIDlet that probably only would do limited damage. However
it is relatively easy to develop a much more thought-through MIDlet which combines
different resource accesses that are related to the functionality of the application. The access

might seem harmless to the user, but such an application could impose a genuine threat.

7.2 The JZME Strategy and Future Application Development

J2ME is foreseen to be the future development platform for mobile devices. The question is
whether the J2ME standard with its device independent strategy will encounter huge obstacles
in the future that will limit the development possibilities, or whether the standard will
continue to prosper. Many native C++ programmers would probably claim that C++ is the
best programming environment because of its easy access to device resources via native APIs.
C++ has been the dominant environment for application development on Symbian OS
devices, especially for more sophisticated programs. Over the last few years J2ME has
however proven itself to be a force to be reckoned with. MIDP applications are dependent on
that the JCP continues to provide support for new phone features. It has been a problem that
the OS vendors do not integrate support for new APIs fast enough though. However the
cooperation between the Java community and the OS vendor, in this case Symbian, has
picked up dramatically lately; something that of course effects the integration time. The J2ME
and the Symbian evolution shows that new phone features are supported and ready to be
implemented much faster than they used to be. The number of Java APIs and MIDP enabled
mobile phones has clearly increased over the last few years, which means that J2ME has

strengthened its position as a professional development tool for mobile devices. The MIDlet

69

Application development using J2ZME — Evaluation of intrinsic platform limitations

signing concept has one disadvantage that has to be mentioned, it costs money. This could of

course have a negative effect because it is harder for the community to produce freeware.

In addition to the optional packages, MIDlets may also access native C++ resources. This
means that in cases where there might not be an optional package for the desired resource or
when the device lacks support for the package, the developer may use this option instead. This
should merely be used as a secondary solution since the application looses its platform
independence because of the C++ daemon. Security risks regarding this will not be discussed

in this paper.

When discussing future J2ME development one also has to keep the security aspect in mind.
J2ME has solved many of the security threats mentioned in chapter 6.2 by including support
for SSL, encryption and MIDlet signing. However, mobile phones operate in a harsh
environment and have relatively little security, compared to e.g. desktop environments, are
constantly exposed to new threats. There has been at least one successful attempt on actually
breaking out of the sandbox using the flaw in the bytecode verifier described in chapter 5.3.2.
Specific research has to be done in order to determine whether this attack could be done on
MIDP 2.0 devices as well. There are however little indications on that this flaw has been

corrected. If this is true many MIDP enabled devices could be at risk.

7.3 Conclusion

7.3.1 Concerns regarding access to new Java APls

This part of the thesis has focused on whether access to new Java APIs could impose new
security threats. The question I have aimed to answer is whether the security model handles
access to privileged resources in a safe manner. The testing of the untrusted MIDlet concept
in chapter 6 shows that J2ME actually have an effective way of granting and denying access
to privileged resources. Only highly trusted MIDlets may be granted access without the user’s
permission. However there is one element involved in this process that is very critical, namely

the user. The security mechanism has no way of knowing the user’s judgement, something

70

Application development using J2ZME — Evaluation of intrinsic platform limitations

that could lead to different security issues. The security however is maintained assuming that

the user do not use unsigned MIDlets.

It is my opinion that optional packages are handled in a safe manner by J2ME, and that future
application development should not be intimidated by using these packages due to the user

concerns.

7.3.2 The J2ME Strategy

There are many indications on that J2ME will continue to develop in the right direction. OSs
like Symbian has embraced J2ME as a development environment that they are willing to use
as one of their main implementation platforms. The standard have a lot of things going for
them like enriched APIs, a security model that protects the device and of course better
cooperation between the Java community and Symbian which means faster support for new
features. There are of course also downsides like the security issues mentioned, and the fact

that signing MIDlets actually costs money.

In order for J2ME to continue to prosper it is dependent on several factors, the first being that
JCP will continue to enrich the standard with new APIs and also that OSs like Symbian are
willing to support these APIs. Many of the ongoing projects in the JCP are done by people
from e.g. Symbian, Nokia, Sony Ericsson and Motorola. This does not only show that all
these companies have a lot of thrust in J2ME as a development platform, but also that phone
manufacturers and OSs vendors cooperates closely to integrate support. In addition to this, It
is my opinion that J2ME will consolidate its position as a. extensive development platform for

new services on mobile phones.

The second factor is how J2ME will handle security issues. As of today J2ME is equipped
with a security mechanism that is designed to handle different kind of threats. Most of these
threats are solved by using provide features like secure transfer protocols, encryption and
signed MIDlets. I would say that the J2ME security in general is acceptable, even though
some issue like the sandbox attack is very critical. If this turns out be a huge problem in the
java mobile environment then J2ME will have a serious security issue. The only effective way
to solve this as of today is to use signed MIDlets. I will not draw any conclusion on to what

extent the sandbox attack will impose a threat, but I will leave it for future work.

71

Application development using J2ZME — Evaluation of intrinsic platform limitations

Bibliography

[1] 3G Americas, “Java Technical Recommendations for Handsets”, June 2005. Available:
biz.yahoo.com/prnews/050623/sfth006.html

[2] Symbian, “History”. Available: symbian.com/about/history.html

[3] Canalys, " Global smart mobile device sales surge past 10 million in quarter”. April 2005.
Available: canalys.com/pr/2005/r2005041.pdf

[4] Symbian, “Symbian OS version 8.0 product sheet”. Available:
www.symbian.com/technology/symbianOSv8 ds 0204.pdf

[5] Symbian, “Symbian OS phones”. Available: symbian.com/phones/index.html

[6] Author: Martin de Jode, “Programming J2ME on Symbian”, chapter 1.1.1, 2004.

[7] Author: Qusay H. Mahmoud, ” J2ME Luminary Antero Taivalsaari”’, January 2004.
Available: developers.sun.com/techtopics/mobility/midp/luminaries/taivalsaari/

[8] Aouthor: Lauri Aarnio, "Small scale Java virtual Machines”. Available:
cs.helsinki.fi/u/campa/teaching/j2me/papers/Small.pdf

[9] Sun, ”The CLDC HotSpot Implementation Virtual Machine”. Available:
java.sun.com/products/cldc/wp/CLDC_HI WhitePaper.pdf

[10] Java Community Process, Available: jcp.org

[11] Author: Michael Kroll, Stefan Haustein. “Java 2 Micro Edition Application
Development”, chapter Introduction, June 2002

[12] Author: C. Enrique Ortiz. “The Generic Connection FrameworkAvailable:
developers.sun.com/techtopics/mobility/midp/articles/genericframework/

[13] Author: Martin de Jode, “Programming Java 2 Micro Edition on Symbian OS”,
chapter 1.4, 2004

[14] Author: Arvind Gupta and Martin de Jode. “Extending the Reach of MIDlets: how
MIDlets can access native services®, June 2005.

[15] Sun, "Mobility overview". Available:
developers.sun.com/techtopics/mobility/overview.html

[16] Author: Qusay H. Mahmoud, "J2ME Low-Level Network Programming with MIDP
2.0", April 2003. Available: developers.sun.com/techtopics/mobility/overview.html

[17] Author: Qusay H. Mahmoud. "Getting Started with the FileConnection APIs",
December 2004. Available: developers.sun.com/techtopics/mobility/overview.html

[18] Author: Qusay H. Mahmoud. "MIDP GUI Programming". Available:
scmad.gayanb.com/tutorials/midp-gui-programming-part-1.php

72

Application development using J2ZME — Evaluation of intrinsic platform limitations

[19] Forum Nokia. "What’s in MIDP 2.0: A Guide for Java™ Developers", September
2003. Available: forum.nokia.com

[20] Symbian Press Release. "Latest version of Symbian OS targets smartphones for mass
market", February 2005. Available: symbian.com/news/pr/2005/pr20051892.html

[21] Symbian. "Symbian OS v9.1 functional description". Available:
symbian.com/technology/symbos-v91-det.html

[22] “Authors: Otto Kolsi and Teemupekka Virtanen, MIDP 2.0 Security Enhancements”,
2004

[23] Author: Adam Gowdiak, “Java 2 Micro Edition Security Vulnerabilities”, 2004.

[24] Forum Nokia: “Tutorial on Signed MIDlets v1.0”, May 2004, Available:
forum.nokia.com

[25] Author: Qusay Mahmoud “Wireless Java Security”, January 2002

[26] Available: archives.java.sun.com/cgi-bin/wa? A2=ind0410&L=kvm-
interest&F=&S=&P=14509

[27] Available: theregister.co.uk/2004/10/22/mobile java peril/

73

Application development using J2ZME — Evaluation of intrinsic platform limitations

Appendix A — The Sybmian OS Evolution

Version 7.0

Symbian OS v7.0 was released in 2002 Building on 2.5G GSM / GPRS support in previous
versions, Symbian OS v7.0 includes support for multimode and 3G mobile phones, enabling
manufacturers to bring out Symbian OS phones worldwide, across all networks, with the
ability to reuse their application side software. Symbian OS v7.0 includes Enhanced
Messaging Service (EMS) and MMS, providing key revenue generating services for network
operators. More networking capabilities have been added, including both IPv6 and IP Security
(IPSEC) technologies, extending the abilities of mobile phones to communicate securely with
each other on a peer to peer basis. V7.0 incorporates Java MIDP, extending mobile phone
capabilities to run the millions of Java applications and services designed specifically for
mobile phones, and Synchronization Markup Language (SyncML), allowing convenient Over

The Air (OTA) synchronisation of data.

Version 7.0s

Symbian OS v7.0s was released in 2003 and provides new functionality providing a fit-for-
purpose platform for the 3G market and enabling the OS for 3GPP compliance, enabling the
delivery of 3G services. It has Lightweight multi-threaded multimedia framework and support
for Wideband Code Division Multiple Access (W-CDMA). More Java functionality has also
been added like the Java MIDP 2.0, Bluetooth® 1.1 and Wireless Messaging API (WMAPI)
1.0 profiles. V7.0s has been given support for multiple primary/secondary Packet Data
Protocol (PDP) contexts.

Version 8.0

Symbian OS v8.0 was released in the beginning of 2004 and has improved kernel architecture
with hard realtime capabilities, and it introduces SyncML compliant device management
framework. Significant support for Java has been added including CLDC 1.1, MobileMedia
API (MMA), Mobile 3D Graphics API, Personal Information Management (PIM) and
FileConnection (FC). Symbian OS v8.0 is provided in application compatible two variants.
The first variant, v8.0a uses the legacy kernel (EKA1) as per Symbian OS v6.1, v7.0 and
v7.0s. The second variant v8.0b adopts the new hard realtime kernel (EKA2). V8.0 also has
the addition of the Media Device Framework (MDF) which provides a Hardware Abstraction

Layer for multimedia hardware acceleration.

74

Application development using J2ZME — Evaluation of intrinsic platform limitations

Version 8.1

Symbian OS v8.1 was released in 2004 and delivers extensions to CDMA 1S95 / 1xRTT
Telephony, Networking and SMS technology that are standard to all operators. It provides
new customisation and configurability options with support for multiple displays and scalable
user interfaces. It has continued alignment with standards including Java PIM, Bluetooth®

1.2, Bluetooth® Personal Area Network (PAN) and USB Mass Storage.

Version 9.1

Symbian OS v9.1 was released in the beginning of 2005 and is the newest contribution to the
Symbian OS familly. V9.1 provides a native Realtime Transfer Protocol (RTP) stack. This
stack can be used by licensee and 3rd party applications without the need for a separate RTP
stack. Features which give network operators and enterprises new capabilities to manage
phones in the field are also provided. This includes Open Mobile Alliance (OMA) Device
Management 1.1.2 support and OMA Client provisioning 1.1. V9.1 continues to add
Bluetooth innovations to the operating system. In this release support for Bluetooth extended
Synchronous Connection Oriented (eSCO) and Bluetooth Stereo headset profiles are
implemented. Symbian OS v9.1 is built using the ARM RVCT 2.1 compiler. This compiler is
compliant with the ARM EABI standard. This allows compatibility with the latest ARM
compliers and reduces the Symbian OS footprint while enhancing performance. Symbian OS
v9.1 provides a proactive defence mechanism against malware. The platform security
infrastructure uses a capability based model which ensures that sensitive operations can only
be accessed by applications which have been certified by an appropriate signing authority.
Data caging allows applications to have their own private data partition. This allows for
applications to guarantee a secure data store. This can be used for e-commerce, location

applications and others.

Appendix B - Other development platforms on Symbian

There are three main options regarding programming on Symbian OS based phones: C++,

OPL and .NET [ref: symbian.com]

75

Application development using J2ZME — Evaluation of intrinsic platform limitations

B.2 - C++ Nalive programming

C++ is the native language of Symbian OS. All non-privileged system facilities are directly
accessible via C++ APIs available in the C++ Software Development Kit. C++ is suitable

when high performance and comprehensive functionality is required.

Programs written in native C++ usually offers best performance in memory use and execution
speed. In addition to offering good performance, certain types of applications have to be
written using C++ because of restricted access to system resources. Instances of this type of
applications are servers, certain type of plug-ins and device drivers. Such programs either
manage system resources, extends existing Symbian OS framework or interacts with the

kernel.

B.3 - Open Programming Language

Open Programming Language (OPL) is a simple, easy to learn programming language that
allows developers to rapidly create powerful applications for Symbian OS phones. OPL is an
interpreted language that requires a translation phase before execution so is made up of two
major components. To allow users to run an OPL application, the OPL runtime environment

needs to be installed on their Symbian OS phone.

B.3 - Visual Studio .NET

AppForge Crossfire enables Microsoft® Visual Studio® .NET developers to use their existing
skills to create applications for Symbian OS phones. Crossfire integrates directly into Visual
Studio .NET, so developers can jump right into mobile phone application development using
the language, debugging tools and interface they already know. Crossfire is an integral part of
the AppForge Enterprise Developer Suite (EDS) which is designed for enterprise
organizations and system integrators who wish to leverage their Microsoft .NET and Visual
Studio resources for mobile and wireless application development. Appforge Crossfire makes

it possible to write applications with Visual Studio .Net using C++, C#, Visual Basic.

76

Application development using J2ZME — Evaluation of intrinsic platform limitations

Appendix C — Test Application

AudioRecordingScreen

I_ _____________________ SessionData
_____________________ ::,
Lol i i e e o e e e e -~
[
PreviewScreen
Lo L o O N e S8 ~{a
[_
Lo RegAppMIDiet J’l\
<_ R R OO
Ed = O [N
[_
|
P s beess
T SendScreen | |
| I |
[. -
Lo ~ 1 | |
| | |
bl Lol A A
| I DisplayCanvas CameraCamvas
| i
|
|1 CommentScreen :
: = r r
I |
| |
| |
| |
|

Figure 0.1 Class diagram for test application

RegAppMIDlet
This is the core class of the application. It displays the main menu, and organizes the

application.

SessionData

Keeps track of the data registered by the user, i.e. image, audio and comments.

PreviewScreen
Displays the data registered by the user. Except the audio comments because this function was

omitted.

SendScreen
Displays different options for sending the data, i.e. by HTTP, TCP and UDP.

71

Application development using J2ZME — Evaluation of intrinsic platform limitations

CommentScreen

Textbox where the user can write comments.

AudioRecordingScreen

Screen for managing audio recording. Includes start and stop recording.

DisplayCanvas
Canvas for displaying the snapshot taken by the user.

CameraCanvas

Canvas for displaying the video from which the snapshot is taken.

78

Application development using J2ZME — Evaluation of intrinsic platform limitations

Appendix D — Development Tools

D.1 - Toolkits and emulafors

J2ME applications must pass through a pre-verification process before being deployed on an
actual device. Pre-verification allows the desktop compiler to verify that the compiled code

can be run with J2ME's virtual machine. It is also helpful to do testing on emulators that will
provide a reasonably real testing environment for a J2ME application. J2ME toolkits include

tools that handle this, and they also often provide sample programs and documentation.

D.1.1 - Sun J2ME Wireless Toolkit 2.2

The J2ME Wireless Toolkit is a toolbox for developing wireless applications. It provides the
basic tools needed for MIDP development, and for the time being it is free of charge. It does
not provide the developer with a text editor or advanced debugging facilities, but it facilitates
the process of compiling, pre-verifying and packaging of MIDlet suites. It also includes

standard emulators for application testing.

= J2ME Wireless Toolkit - RegApp =](E3

File Edit Project Help

@ﬁ Meswy Project .. & Open Project @f Settings ... %I Bl @[} FiLin @ Clear Consale

Device: :I;JefaurtCDIDrF'hn:nne w
Project "Reghpp'™ loaded

Funning with storage root DefaultColorPhone
fExecution completed.

762496 bytecodes executed

10 thread switches

740 classes in the systen (including system classes)
3951 dynamic objects allocated (109200 bytes)

1 garbage collections (0 bytes collected)

Figure 0.1 The Sun Wireless Toolkit

The toolkit's emulator complies fully with the relevant API technology compatibility kits,

ensuring that all the APIs are present and will react consistently with compliant

79

Application development using J2ZME — Evaluation of intrinsic platform limitations

implementations. In standalone mode, users can set individual preferences, build applications,
create Java Archive (JAR) and Java Application Descriptor (JAD) files, and more, using
either the toolkit's friendly KToolbar interface, or its command line. When integrated with an
IDE, the toolkit's utilities and preferences appear in the IDE's menu selections, and also can
be controlled from the IDE's command-line interface. When used with an IDE, the toolkit

supports source-level debugging. []

WTKs friendly user interface lets the user choose what optional packages to include, what
profile and configuration to use and many other useful features. The WTK also auto generates
a JAD file when creating the project. This is very useful when building the project. Network
and memory monitoring are two other very important features included. Because of the
limited amount of resources on the mobile phones, a thorough examination of the memory use
can be very handy when adjusting the application for optimal performance. In the same way
an examination of the network traffic is useful in order to optimize the use of the limited
available bandwidth. All in all the WTK is a very important tool in addition to an IDE when
developing mobile applications. Its features is very useful when tuning, compiling, building

and deploying applications.

D.1.2 - Sony Ericsson J2ME SDK 2.2.0

The Sony Ericsson J2ME SDK is a modified version of Sun Wireless Toolkit. In addition to
the WTK, more features have been added in order for it to be custom made for Sony Ericsson
and other UIQ products. This SDK supports all existing and newly announced mobile phones
from Sony Ericsson, including the K600, K750, K300 and J300. And of course it includes all
the APIs and emulators for two added JSR's, Java Bluetooth (JSR 82) and PDA Optional
Package for J2ME Platform (JSR 75). A text editor is not included in SDK, but this is of less

importance since it is primarily used in cooperation with an IDE.

D.1.3 - Nokia Developer's Suite 2.2 for J2ME™

As the Sony Ericsson SDK, the Nokia Developer Suite (NDS) is also created mainly to
enhance IDEs such as Borland JBuilder and Sun Java Studio. NDS provides an audio
conversion tool, application signing and features including application deployment to Nokia

devices or FTP servers. Developers can create MIDlets based on the MIDP specifications that

80

Application development using J2ZME — Evaluation of intrinsic platform limitations

can be successfully implemented on Series 60 Nokia devices e.g. using the Series 60 MIDP
SDK’s. There are many Nokia SDKs that comes in addition to the NDS to provide specific
emulators, class libraries and documents targeted the different phone models.

[forum.nokia.com]

£ Nokia Developer's Suite for JZME{TM)

File Emulators Tools Help

X Clnss Informetion | 3¢ defingd Mlethiods)

Create Class
Package: |

|
E Clazs name: | |

Create
Applicatian

Package Interface class: Y

Baze class: |

Sign
Application
Fackage

15

Irparts:;

[>

Dreployrment

el

Start
E mulatars

—

Audio Carverter

[£

Figure 0.2 The Nokia Developer's Suite for JZ2ME

D.2 - Integrated Development Environments

For a full-scale development of production quality applications it is practical to use a fully
Integrated Development Environment (IDE). This thesis focuses on two of the most used and
extensive IDE’s on the market, namely Borland JBuilder X Enterprise Edition and Sun Java

Studio Standard 5.

81

Application development using J2ZME — Evaluation of intrinsic platform limitations

D.2.1 - Borland JBuilder X Enterprise Edition

This JBuilder Enterprise version has integrated a lot of features for the Wireless environment
and many wizards are provided to make development faster and easier. A Developer version
and a Foundation version is also available, the latter is free of charge but does not include
features for the Wireless environment. The Developer version does not include all of the
wizards like the Enterprise version does, but it does contain features for the Wireless

Environment.

JBuilder X Enterprise provides features like code obfuscation and integration of mobile
applications with web services. Like all other IDE’s, JBuilder also provides basic features like
file editing, code completion, class and project browsing and easy-to-configure project

properties.

In order to develop mobile applications the Wireless Toolkit has to be downloaded from the
Sun web site. The Java Development Kit (JDK) path can easily be changed from the standard
development kit to the Wireless Toolkit in the project properties. J2ME features will know be
available as a wizard option when adding new elements to a project. A runable MIDlet can
easily be constructed by the wizard without any code added by the user. The same javac
compiler used for J2SE is used for compiling MIDlets. The only difference is the base Java
classes that the compiler uses to compile the MIDlets against. All this however is transparent
to the user. A built in emulator from the Wireless Toolkit or e.g. the Nokia Developer Suite
will automatically pop up when running the MIDlet. The Tomcat server is also included and

is very handy when developing MIDlets that is e.g. working against Servlets or JSP.

82

Application development using J2ZME — Evaluation of intrinsic platform limitations

€3 JBuilder X - C:fTempiReghpp_first_try/srcifregapp_first_try/CameraCanvas.java

File Edit Search Refactor View Project Run Team ‘Wizards Took ‘Window Help
N-BE-BH@-&|o ~ % E & Moo Y w DB E - K-l - @ =R E

32182 CameraCarves | | #4 DisplayCanvas | % |#% MMSMessans | X P RegapomiDiet| X% SerderThre

1197 public void keyPressediint keyCode) |
if (getGamelction(keyCode) == FIRE) {
] = 121V Thread t© = new Thread() {
CameraCanvas java 122 public woid runi){

{ﬁ DisplayCanvas java
MM SMessage java

{ﬁ RegapphDlet java
Sender Thread java

{ﬁ Send3cresn java

take3napshot () 2
i

Y
t.start():

24 SessionDatajava 127 ¥
-5 Readpp (38 827 bytes) 126]
®._ Structure [l || 1507 private void takeSnapshot(] {
5 | = s = 151 if layer != null) {
ugENEE ¥k i e ’
2 ry

{i‘@ Imports

i byte[] pngImage = videoControl.get3napshot (null) ;
[@ CameraCanvas

midlet . cameraCanvasCaptured (pnglrage)
} catch (MediaException me)] {

messagel = "MedisException:™:
messagez = me.getMessage ()

Figure 0.3 Borland JBuilder X

D.2.2 - Sun Java Studio Standard 5

This IDE supports mobile application development features when installing the Mobile Editon
modules from the Sun One Studio Update Center. This support comes in addition to enterprise
and desktop application development features. It provides integration with the Sun J2ME
Wireless Toolkit 2.2 for MIDlet development. In addition to this an implementation of the
Tomcat server is provided to make communication with JSP and Servlets easier. Some

wizards are also included to speed up and make the development easier.

Sun Java Studio Standard 5 provides full support for MIDP 1.0/2.0 development after

installing the mobile modules.

83

