
Incremental Web Crawling as a Competitive
Game of Learning Automata

by

Svein Arild Myrer
Morten Goodwin Olsen

Master Thesis in
Information and Communication Technology

Agder University College

Grimstad, May 2005

Abstract

There is no doubt that the World Wide Web has lived up to it’s hype of
being the world’s central information highway through the past years. An
increasing amount of versatile services keeps finding their way onto the Web
as information providers continue to embrace the possibilities that the Web
can offer. Especially the possibility of producing dynamic content has been an
accelerant factor and is the reason why we now conveniently can participate
in online auctions or see the latest development of our favorite stocks in near
real-time from our own living rooms.

However, for automated data mining applications that deploy crawlers to
continuously capture the information provided by this new breed of services,
the highly dynamic nature of the content is not convenient at all. As a matter
of fact, a complete new set of challenges emerges where traditional crawling
strategies are shown to be sub-optimal. Accordingly a new class of methods
for crawling operations are clearly needed. Nonetheless, the problem area
has so far been given limited attention in literature.

In this thesis we address the new problem area of monitoring highly dy-
namic data sources of different importance. We use the concept of an incre-
mental web crawler as a basis for our novel approach where we consider the
incremental crawling task as a continuous learning problem where schedul-
ing of monitoring tasks is combined with parameter estimation in an on-line
manner. By mapping the problem to two variants of the so called knapsack
problem we propose two solutions based on a machine learning technique
known as learning automata.

We show empirically that our proposed solutions continuously improve
their performance through a learning process and that they are capable of
operating in non-stationary environments. We also show their performance
in comparison to alternative algorithms where, most notably, our schemes
are shown to outdo the traditional uniform crawling scheme by factors up to
550% in certain situations.

1

Preface

This thesis is submitted in partial fulfillment of the requirements for the
degree Sivilingeniør / Master of Science at Agder University College, Faculty
of Engineering and Science. This work was carried out under the supervision
of associate professor Ole-Christoffer Granmo.

First of all we wish to thank our main supervisor Ole-Christoffer Granmo
for first-class guidance throughout the project period. His insight and ana-
lytical skills has been greatly appreciated in numerous interesting discussions
regarding the problem area targeted in this thesis.

We also wish to thank professor John B. Oommen for his role as a co-
supervisor and for putting us on the track of the object partitioning solution.

Finally we wish to thank Head of Studies Stein Bergsmark for his advice
regarding thesis writing and of course all of our co-students.

Grimstad, May 2005.

Svein Arild Myrer and Morten Goodwin Olsen

Contents

1 Introduction 6
1.1 Thesis definition . 8
1.2 Report outline . 8

2 Learning automata 10
2.1 Learning automata . 10

2.1.1 Environment . 10
2.1.2 The learning automaton 12
2.1.3 Stochastic learning automata 12

3 The web environment and the objectives of learning 14
3.1 Web change characteristics . 14
3.2 Environment model definition 15

3.2.1 General environment model 15
3.2.2 Environment where updated information disappear at

once . 16
3.2.3 Environment where changes overwrite information . . . 17

3.3 The knapsack problem . 17
3.3.1 The fractional knapsack problem 18
3.3.2 The binary knapsack problem 19

3.4 The objectives of learning . 19

4 Related learning algorithms 21
4.1 Parameter Optimization Problem 21

4.1.1 Stochastic searching on the line 21
4.1.2 Learning mechanism 22

4.2 Object Partitioning Problem 23
4.2.1 Equipartitioning problem 23
4.2.2 Object Migration Automaton 23

5 Proposed learning algorithms 26
5.1 Competitive Game of Learning Automata (CGLA) 26

5.1.1 Learning automaton description 27
5.1.2 Competitive game . 29

2

CONTENTS 3

5.2 Fixed Partitioning Automaton (FPA) 31
5.2.1 Learning automaton description 31

6 Prototype 35
6.1 Requirements . 35
6.2 Graphical user interface . 36

7 Simulation results and discussion 38
7.1 Simulation setup . 38
7.2 Performance metric . 39
7.3 Results and discussion of the results 40

7.3.1 Identifying good parameters 40
7.3.2 Comparison to alternative algorithms. 44
7.3.3 Adaptability . 50

8 Conclusion and further work 54
8.1 Conclusion . 54
8.2 Further work . 55

List of Figures

2.1 General environment . 11

3.1 Probability of discovering an update over time 16

4.1 Object Migration Automaton 24

5.1 Fixed structure stochastic automaton 28
5.2 Fixed Partitioning Automaton 34

6.1 Prototype . 36

7.1 Update probability distribution 39
7.2 Varying N in the Competitive Game of Learning Automata . 41
7.3 Small N and f resolutions with Fixed Partitioning Automaton 42
7.4 Large N and f resolutions with Fixed Partitioning Automaton 43
7.5 Retrieved importance-value when changes overwrite information 46
7.6 Retrieved importance-value when updated information disap-

pear at once . 46
7.7 Number of polls for the proposed solutions 50
7.8 Automata performance in a non-stationary environment . . . 51

4

List of Tables

2.1 Response set models . 11

3.1 Fractional knapsack problem in relation to the incremental
crawling task . 18

3.2 Binary knapsack in relation to the incremental crawling task . 19

5.1 Classes of R in the Fixed Partitioning Automaton 31

6.1 Explanation of simulation settings 36

5

Chapter 1

Introduction

Data mining applications often utilize crawlers (or spiders or robots or agents)
in order to maintain an indexed and searchable local copy of the data sources
which they monitor. An important property of this local copy or repository
is to maintain data that are up to date at any given time. Ideally this means
that changes in the data sources should be detected instantly and the local
copies updated accordingly. This is however not feasible to accomplish for
applications that monitor a large set of data sources, such as search engines,
as they are most likely to encounter restrictions in form of available band-
width and/or computational power. A general focus has therefore been to
find and incorporate policies for crawling that can meet the various demands
of data mining applications, such as the degree of consistency of the local
copies [1].

There are two main strategies in use for keeping the local copy up to date.
One is to simply repeat the initial crawling process and replace the old copy
with the new one when the desired number of pages have been downloaded.
The other is to update the local copy by selectively update parts of it in an
incremental and continuous fashion. This re-crawling strategy is referred to
as incremental crawling and crawlers that operates in this mode are so called
incremental crawlers.

The concept of an incremental crawler was introduced by Junghoo Cho
and Hector Garcia-Molina in [2], where they presented a general architecture
for this type of crawlers. The architecture suggested that available resources
should be selectively distributed through a refinement process, granting more
resources to monitor some data sources and less to others. In [2] they also
investigated the implications of an incremental crawler. Important issues
such as bandwidth savings, faster discovery and retrieval of new data and
improvement of the freshness of the local copy were pointed out to be the
main advantages of the incremental scheme.

6

7

There have been many previous studies regarding incremental crawlers
[3, 4, 5, 2, 6] since the concept was introduced. These efforts have in most
cases been motivated by the need of search engines where maximizing the
”freshness level”1, or related metrics, are considered important.

However, a growing trend on the Internet for the past years is that infor-
mation is becoming more and more dynamic [7]. This poses a new challenge
for data mining operations since information now only might be available
for a limited period of time as it either rapidly changes, gets replaced or
becomes part of the deep Web2. The problem is especially significant for
services where it is vital to deliver up to date information and to maintain a
complete update history.

Companies that deliver such services often deploy so called continuous
query engines that continuously monitor data streams in order to respond
with relevant data to the query maker when given criteria are fulfilled. As an
example we can look at the business intelligence industry. Their customers
subscribe to certain information which are of value to them. A query can for
instance be ”notify me when my company is mentioned in the media”. In
order to respond to such type of queries the query engines have to interpret
data streams emerging from a number of data sources. These data streams
are most commonly created by a crawler that periodically visits and retrieves
data from the sources of interest as the data sources seldom offer a push-based
data feed.

For this new problem area traditional crawling strategies are generally
sub-optimal. Their focus is to maximize the percentage of the local copy
that is consistent at all times. In order to do so, fast changing data sources
are not prioritized as these only contribute to keep consistency in a very
limited period of time. A new class of methods are therefore needed.

We have in this thesis focused our work on solving the incremental crawl-
ing task when monitoring highly dynamic data sources of different impor-
tance. To our knowledge [8] and [9] are the only other related work done on
this area.

[8] showed that traditional crawling schemes are not optimal when we
monitor fast changing data sources. They also proposed new metrics that
reflected the state of the information retrieved instead of the state of the local
copy. Their suggested algorithm were designed to target only data sources
of with very high probability of change.

[9] expanded the work in [8] by formalizing several update models for

1The freshness level give the percentage of the local copy that is up to date at any
given time

2Data from the deep Web is dynamically produced only in response to a direct request
to searchable databases

1.1. Thesis definition 8

fast changing data sources. They also suggesting a basic greedy algorithm
for the distribution of available resources.

Both of these approaches focus strictly on the scheduling of monitoring
tasks. They assume that some important parameters, such as the frequency
of change of the monitored data sources, are given and does not address
methods for estimation of these parameters. The practical effectiveness of
the proposed algorithms is in other words restrained by the effectiveness of
unknown underlying algorithms. Accordingly, these approaches only offer a
partial solution to the incremental web crawling problem.

In contrast to previous solutions, we will in this thesis consider incre-
mental web crawling as a continuous learning problem where scheduling of
monitoring tasks is combined with parameter estimation in an on-line man-
ner. In particular our goal is to create an adaptive scheme that is able to
respond as quickly as possible to behavioral changes in the monitored data
sources. This is for instance important when reacting in real-time to e.g.
stock market changes or increases of maximum bids of online auctions.

Our novel approach maps the incremental crawling task to the so called
knapsack problem. We propose two solutions to the resulting knapsack prob-
lems based on the concept of learning automata. We also show the effec-
tiveness of the suggested solutions in a non-stationary environment and in
comparison with other algorithms in a stationary environment.

The thesis definition and further outline of the thesis is given in the next
section.

1.1 Thesis definition

The final thesis definition is formulated like this:
The students will approach the new problem area of monitoring highly dy-

namic data sources of different importance in the context of an incremental
web crawler. By mapping the incremental crawling task to the knapsack prob-
lem the students will explore the use of learning automata in order to solve
this problem. They will furthermore evaluate the performance of the resulting
learning algorithms in a non-stationary environment and by comparing them
with other relevant algorithms in a stationary environment.

1.2 Report outline

This thesis is outlined in the following way:

1.2. Report outline 9

Chapter 1 is the introduction which is the current chapter.

Chapter 2 covers the basic theory about learning automata as a founda-
tion for understanding the later proposed solutions.

Chapter 3 defines the environment model which our learning algorithms
are going to operate in. This chapter also maps the incremental crawling
task to two variants of the knapsack problem and defines the objectives of
learning.

Chapter 4 summarizes previous learning automata solutions to the para-
meter optimizing problem and the object partitioning problem.

Chapter 5 extend the learning automata solutions summed up in chapter
4 and proposes solutions for the fractional and binary knapsack problem in
the context of the incremental crawling task.

Chapter 6 describes the prototype developed for simulation purposes.

Chapter 7 presents the simulation setup, the chosen performance metric,
the results from our simulations and a discussion of the results.

Chapter 8 gives the conclusion of our work. We also look at possible
further work this thesis may be a basis for.

Chapter 2

Learning automata

This chapter introduces the basic background theory of learning automata
and is fundamental for understanding our proposed solutions.

2.1 Learning automata

The work on learning automata was pioneered by M.L Tsetlin and his co-
workers in the Soviet Union in the 1960s. There have since then been many
advances in both the theory itself and the application of the theory [10].
Learning automata are a part of the field of artificial intelligence known as
machine learning where the behavior of computer programs is not fixed, but
the result of a learning process. In the field of psychology they define learning
as ”behavioral modification especially through experience or conditioning.”
[11]. For a learning automaton the behavioral modification happens through
repeatedly interaction with an environment and the feedback this results in.

2.1.1 Environment

The correlation between actions taken by the automaton and resulting feed-
back from the environment is considered to be hidden. This includes all time
varying changes that may occur. The only way an automaton can explore
its environment is through its finite set of available actions. These actions
are considered as input to the environment from which the environment pro-
duces a random output or response from its set of available responses, as
illustrated in figure 2.1. The feedback is either favorable or unfavorable and
is probabilistically related to the performed action.

To formally describe the environment we will use the definition stated
in [12]. This definition is also commonly used in the literature.

10

2.1. Learning automata 11

Figure 2.1: A general illustration of an environment taken from [12]

The environment is defined mathematically by a triple {α, c, β}.

• α = {α1, α2, ..., αr} represents a finite set of actions being the input to
the environment

• β = {β1, β2} represents an output set, in this case binary.

• c = {c1, c2, ..., cr} is a set of penalty probabilities, where ci of c corre-
sponds to one input action αi.

To elaborate, when an action α(n), belonging to the set a, is performed
at time n the environment produces a response β(n), belonging to the bi-
nary set β. The most basic response set β is defined to be {0, 1} where 1
indicate a penalty and 0 a reward. The element ci of c can now be defined
mathematically as

Pr(β(n) = 1|α(n) = αi) = ci (i = 1, 2, ..., r)

This definition tells us that the probability of penalty when choosing action
αi is ci. When all elements in c are constant over time we consider the
environment to be stationary. Otherwise we consider it to be non-stationary.

So far we have only looked at a binary response set. This is known in
literature [12] as the P-model. There exists two other models that define
other types of response sets. The characteristics of these two models and the
P-model is summarized in table 2.1. The S-model and the Q-model will not
be considered further in this paper.

Model name Values
P-Model Either 0 or 1
S-Model Continuous values in the range (0, 1)
Q-Model Finite set of discrete values in the range (0, 1)

Table 2.1: Response set models

2.1. Learning automata 12

2.1.2 The learning automaton

To formally describe a learning automaton we will use the definition stated
in [12]. This definition is also commonly used in other literature. The au-
tomaton is defined mathematically by the quintuple {Φ, α, β, F (•, •), H(•, •)}

1. The state of an automaton at any instant n, denoted by φ(n), is an
element of the finite set Φ = {φ1, φ2, ..., φs}

2. The output or action of an automaton at the instant n, denoted by
α(n), is an element of the finite set α = {α1, α2, ..., αr}

3. The input of an automaton at the instant n, denoted by β(n), is an
element of the set β. This set could either be a finite set or an infinite
set, such as an interval on a real line. β = {β1, β2, ..., βm} or β =
{(a, b)} where a,b are real numbers.

4. The transition function F (•, •) determines the automaton state at the
instant (n+1) in terms of the state and input to the automaton at the
instant n, i.e, we get φ(n+1) = F [φ(n), β(n)]. F can also be described
as a mapping from Φ x β → Φ and can either be deterministic or
stochastic.

5. The output function H(•, •) maps the current state and input into
the current ouput. However, if the current output depends on only the
current state, the automaton is referred to as a state-ouput automaton.
In such a case we replace H(•, •) with G(•) : Φ → α. Also expressed
as α(n) = G[Φ(n)] and can also either be stochastic or deterministic.

2.1.3 Stochastic learning automata

We have a stochastic automaton if either one of the F and G mappings are
stochastic.

If F is stochastic, it can be defined in terms of transition probabilities fβ
ij

The value of fβ
ij gives us the probability of moving from φi to φj given input

β. Mathematically this is expressed as:

fβ
ij = Pr {φ(n + 1) = φj|φ(n) = φi, β(n) = β} (i, j = 1, 2..., s β = β1, β2, ..., βm)

If G is stochastic, it can be defined in terms of output probabilities gij.
The value of gij gives us the probability of performing action αj given that
the automaton is in φi. Mathematically this is expressed as:

gij = Pr {α(n) = αi|φ(n) = φi} (i, j = 1, 2..., r)

2.1. Learning automata 13

The stochastic learning automaton has two variants, namely the fixed
structure automaton and the variable structure automaton. If the probabili-
ties of fij and gij does not vary over time we have a fixed structure automata.
If this is not the case, we have a variable structure automata. The variable
structure automata updates its probability values through a given reinforce-
ment scheme. As it is beyond the scope of this thesis to further explain
the properties of fixed structure and variable structure and other variants of
learning automata we refer the reader to [12] for an extensive view of the
topic.

Chapter 3

The web environment and the
objectives of learning

To determine the environment and its characteristics is fundamental when
designing a learning algorithm. We will in this section first look at web
change characteristics that previous studies have discovered. We will then
formally define the environment our automata solutions are going to operate
in. Furthermore we relate the incremental crawling task to two variants of the
so called knapsack problem and define the goals of our learning algorithms
based on these variants.

3.1 Web change characteristics

For an incremental crawler to effectively prioritize its available resources it
must have some notion of the update behaviors of the data sources which
it monitors. This problem has been the origin of several larger and smaller
scale studies on how the web evolves over time [13, 14, 2, 15, 16] and whether
the update patterns of web pages could be modeled mathematically through
a unified model.

The findings in [2] suggested that the update patterns of web pages fol-
lowed a memoryless Poisson process. This assumption was to some extent
confirmed in [15] and has been the de facto model for several studies on es-
timating the frequency of change [17, 18, 6]. However, later studies on web
change characteristics has although shown that the assumption of a Poisson
process in many cases is not correct. Brewington and Cybernenko under-
mines the findings of J. Cho and H. Garcia-Molina in [2] by showing that
65 percent of the documents in their observed subset of the Web changes
during US working hours (5 a.m. to 5 p.m., Pacific Standard Time) [14] and

14

3.2. Environment model definition 15

accordingly suggest to model web document change as a so called renewal
process.

Studies directed toward web pages that serves highly accessed web sites
with highly dynamic content, such as news service web sites, real-time stock
market figures, show that the update processes can span over a high range
of statistical models [13, 16]. We can therefore neither assume an underlying
Poisson model nor a renewal process for these kind of situations. Instead a
quasi deterministic model were each web page has an associated probability
of change at each time slot has been shown to be sufficient to model frequently
updated data sources [16, 13]. This model has been the underlying model
for the work done in [9, 8] which is directly related to our problem.

3.2 Environment model definition

3.2.1 General environment model

We model the world wide web as a set of data sources or nodes with indepen-
dent update behaviors as no studies show any conclusive correlation between
the update patterns of different web pages. Note that in this model each
node can either represent a single web page or even a set of web pages. Fur-
thermore we disregard the hyperlink structure of the web as the re-crawling
process works by a set of already discovered urls. Last we consider the num-
ber of data sources to be fixed.

Now, let D be the set of nodes di we wish to monitor. As we want to
design a learning system for fast changing dynamic environments we apply
the quasi deterministic model explained in 3.1 to define the update behavior
of these nodes

Consider a sequence of discrete time slots T = {t1, t2, ..., tj}. Each node
has an associated probability pi,j which determines the probability that an
update of data source i at time slot j occurs. This probability of change
is considered hidden for anyone but the node itself. For simplicity, we have
chosen pi,1 = pi,2 = pi,3 = pi,j for any j.

Attached to each node di there is a cost denoting the resources needed
to visit and download its content. Lets denote this cost as ci. The cost is
considered equal for all nodes; di, c1 = c2 = ci = 1 for any i, as typical in
other related work [9, 8].

Each node has also an associated importance-value ωi ∈ [0, 1] denoting
the importance of capturing any changes to this node. This importance-value
is set during the first download of a page by using appropriate relevance
measures. The importance-value is considered to be known.

3.2. Environment model definition 16

As defined, an update may occur with a certain probability at a given
time slot. The model described so far does however not delineate whether
the new information is still present or just disappears at the next time slot.
We therefore split the environment definition in two in order to address these
two important sub-models individually.

Figure 3.1: Discovery of an update happens in time slot 4 and 7. Figure
shows the probability of finding an update if we crawl data source di at time
j given the probability of update pi,j. Note that we operate with discrete time
slots so we also have discrete probability values of discovering an update, not
continuous as the figure might indicate.

3.2.2 Environment where updated information disap-
pear at once

If updates are only present in the time slot they occur, the probability of
discovering an update is constant and only related to pi,j. This can for
instance be time-limited offers at online-shops which only spans the length
of the period defined for each ti ∈ T

3.3. The knapsack problem 17

We will in this model always have a constant probability of discovering
an update at each time slot. This is illustrated in figure 3.1 where pi,j = 0.3.

3.2.3 Environment where changes overwrite informa-
tion

In this environment an update overwrites the information posted by the pre-
ceding update. This can for instance be the case when monitoring maximum
bid for online auctions and stock auctions. Note that when pi,j = 1 we get
the same situation as in 3.2.2.

With this model the probability of discovering an update will increase
from the last time we checked for an update. Let the function L(di) give us
the latest time slot where we visited node di. A formal expression for the
probability of finding an update of data source di in time slot tj can now be

defined as P (L(di), tj) = 1−
∏tj

L(di)
(1− pi,j).

This model illustrated in figure 3.1 where pi,j = 0.3

3.3 The knapsack problem

The ideal situation for any crawler is to have enough resources available so
it can constantly revisit all of its monitored data, capturing all occurrences
of updates. The crawling task would then be considered trivial. However,
this ideal situation is not feasible to assume in a real world situation due to
constraints in form of bandwidth and/or computational power.

The so called knapsack problem is a popular combinatorial optimization
problem which arises whenever we meet a resource allocation problem im-
posed by some constraint. This classical problem is often illustrated by a
thief having a knapsack with a given capacity C. He has just broken into
a museum and can choose from a set of J items having different volumes,
wi > 0 , and different values, vi > 0. How can he fill his knapsack with the
most valuable set of items without exceeding the capacity of his knapsack?
Or, seen in relation to the incremental crawler, how should we spend our
available resources on the data sources we monitor in order to maximize the
utilization according to the set goals?

There exist several variants of the knapsack problem. All of these relate
somewhat to the incremental crawling task as they impose the same con-
straints and goals. However, the two variants we are going consider are the
fractional knapsack problem and the binary knapsack problem as these deal
with single instances of each item of each kind, just as a crawler only deals
with one web page of each kind, not multiple instances of the same web page.

3.3. The knapsack problem 18

3.3.1 The fractional knapsack problem

Symbol Knapsack Web
C Knapsack size Crawler capacity
xi Fraction of item i Polling rate of web page
vi Value of item i Update rate of page weighted against

its importance value
wi Volume of item i Cost of polling web page i
J Number of items Number of web pages

Table 3.1: Fractional knapsack problem in relation to the incremental crawl-
ing task

With the fractional knapsack problem the thief does not necessarily need
to put a whole item in his knapsack, only a fraction of it. Each of the items
the thief wishes to steal can be related to an external data source, such as
a web page, which is a candidate for polling and downloading. The value of
an item can be seen as a page’s probability of change weighted against its
given importance-value. Additionally, a polling frequency of a certain web
page is similar to selecting a certain fraction of an item. As an example, if
we choose a fraction of 100% of an item, we choose to poll it every time slot.
Similarily, choosing a fraction 1

N
of a web page means that we poll a page on

average every N
1

time slot. Furthermore the size of the knapsack is similar
to the available capacity of a crawler and the weight of an item is seen in
relation to the cost of polling a given web page.

Table 3.1 summarizes the relations between the fractional knapsack prob-
lem and the incremental crawling task.

A general solution for solving the fractional knapsack problem is by using
the following greedy algorithm: Take as much as possible of the material
that is most valuable per unit volume. If there is still room, take as much
as possible of the next most valuable material. Continue until the knapsack
is full. However, the above strategy can clearly not be used in our mapping
of the fractional knapsack problem as the item values are connected to the
update rates of the monitored web pages which are unknown. The item values
must then be considered to be random variables with unknown distribution
that also may change over time. This extension of the fractional knapsack
has to the best of our knowledge not been addressed in the literature before
and we will in section 5.1 propose a solution for filling such a knapsack.

3.4. The objectives of learning 19

3.3.2 The binary knapsack problem

Symbol Knapsack Web
C Knapsack size Crawler capacity
xi 1 if item i is put in knapsack, 1 if web page i is always

0 otherwise polled, 0 otherwise
vi Value of item i Update rate of page weighted against

its importance value
wi Volume of item i Cost of polling web page i
J Number of items Number of web pages

Table 3.2: Binary knapsack in relation to the incremental crawling task

The binary knapsack problem enforces us to either entirely put an item in
the knapsack or not put it in at all. We must still, as with the fractional
knapsack problem, consider the item values as random variables with un-
known distribution as they are connected to the unknown update rates of
web pages here as well. As we in section 3.2 defined the cost of polling a web
page to be equal for all web pages, the binary knapsack problem related to
the incremental crawling task is solved by identifying the most valuable web
pages to put in the knapsack. All resources will then be spent on polling
these pages. A proposed solution for solving this problem is presented in
section 5.2.

3.4 The objectives of learning

The objectives of our learning algorithms are naturally connected to the
common constraints and goals imposed by the knapsack problem which we
related to the incremental crawling task in 3.3

First, let yi,j denote whether we choose to visit node i at time j. This is
a binary value and is defined as

yi,j =

{
1 if node i is crawled at time instance j
0 otherwise.

As we consider each node to have equal cost the resource constraint can
now be formally expressed as ∑

i∈Di

yi,j = C

3.4. The objectives of learning 20

where C denotes the total number of monitoring tasks available at time
j, or the capacity of the knapsack.

We define a poll to be the process of downloading a web page and putting
it in a the local repository. An successful poll is considered to happen when
we download a web page that has been altered since the last time it was
polled. We call this as a hit and define it as a function H(•, •)

H(di, j) =

{
1 if di was updated since the last visit
0 otherwise.

We can now formally define the goal of maximizing the retrieved importance-
value as ∑

di∈D

ωiyi,jH(di, j)

working under the constraint of C at each time slot j.

Chapter 4

Related learning algorithms

This chapter summarizes two previously proposed learning algorithms for
solving the so called parameter optimization problem and the object par-
titioning problem by using learning automata. As we in chapter 5 extend
these algorithms to solve the fractional knapsack problem and binary knap-
sack problem in relation to the incremental crawling task, it is essential to
get an understanding of how these algorithms operate.

Section 4.1 summarize the parameter optimization problem and a learning
automata solution initially presented by Oommen in [19].

In 4.2 we go on and sum up the object partitioning problem and learning
automata solution presented by Oommen and Ma [20].

4.1 Parameter Optimization Problem

The parameter optimization problem plays a role whenever it is wishful to
accomplish a given task with minimum cost or maximum benefit, and the
cost or benefit is dependent on one or more incoming parameters, as in image
processing and neural networks [19].

4.1.1 Stochastic searching on the line

One possible solution to the parameter optimization problem was introduced
by John B. Oommen in [19] by demonstrating a learning mechanism deter-
mining a point on a line in a random environment where the environment
gives possible erroneously guidance by directing the movement of the point.

The scheme involved discritizing the space and performing controlled ran-
dom walks on this space. The solution presented is ε-optimal, meaning that
if there exists a parameter providing the best result, the schema will con-

21

4.1. Parameter Optimization Problem 22

verge toward a value arbitrarily close to this parameter. The next section
elaborates the learning mechanism.

4.1.2 Learning mechanism

As mentioned, the goal of the learning mechanism is to find the optimal value
of a parameter λ where the unknown value of which it should adapt to is
λ∗. Even though the mechanism does not know the value of λ∗ it receives
guidance from an intelligent environment which is capable of informing the
mechanism with the information of whether the chosen λ is too big or too
small.

However the environment might respond with biased feedback as long as
the feedback is correct with a probability p > 0.5. p reflects the effectiveness
of the environment, as p close to 1 will indicate that the environment gives
the correct feedback most of the time. In contrast p close to 0.5 will indicate
that the environment gives the correct feedback on average only every second
time. The larger p is, the faster the mechanism will converge.

Additionally, the mechanism assumes that λ is a number in [0, 1] and

discritizes the [0, 1] interval into N steps {0, 1
N

, 2
N

, ..., (N−1)
N

, 1} where N is
the resolution of the schema. This means that a larger N will give a more
accurate λ, however it might converge slower than a small N .

The mechanism can be presented as an automaton defined as the follow-
ing:

1. The states are defined as φ = {φ1, φ2, ..., φN}

2. The actions are defined as α = {α1, α2, ..., αN}

3. The input β is defined as {0, 1} where 0 suggests a decrease of λ and 1
suggests an increase

4. The transition matrix of F (φ(n), β(n)) is defined as:

β(n) = 1

{
φ(n + 1) = φ(n) + 1 if 0 < φ(n) < N − 1
φ(n + 1) = φ(n) if φ(n) = N

β(n) = 0

{
φ(n + 1) = φ(n)− 1 if 0 < φ(n) < N
φ(n + 1) = φ(n) if φ(n) = 0

5. The output function G(φ(n)) is defined as φi → αi

Each state has a corresponding action with an assumption of λ. A given
state, say state φi, has the corresponding action αi with the assumption of λ
at i

N
. In other words the states can be organized in a chain {0, 1, 2, 3, ..., N−

1, N} corresponding to values for λ as {0, 1
N

, 2
N

, 3
N

, ..., N−1
N

, 1}.

4.2. Object Partitioning Problem 23

However if λ is not in the interval [0, 1], λ can clearly be transformed
by a normalizing function. As an example; if the parameter that should be
optimized, λ, lies between λmin and λmax, the normalization transitions will
be defined as:

• λnorm = λ−λmin

λmax−λmin

• λ = λnorm ∗ (λmax − λmin) + λmin

4.2 Object Partitioning Problem

The object partitioning problem arises when there exists a set of W ob-
jects, Ω = {A1, ...AW}, which should be partitioned into a set of R classes,
{P1, ..., PR}. The overall intention is to partition the objects which are ac-
cessed more frequently together into the same class, and at the same time
partition the objects which are less frequently accessed together in different
classes. Object partitioning plays a role in situations such as physical distrib-
ution of attributes, distributed databases, partition allocation and document
placement in a libraries [20, 21, 22], or whenever there exists an underlying
physical grouping of the objects Ω. The object partitioning problem has
been shown to be NP-hard [22].

4.2.1 Equipartitioning problem

Generally the object partitioning problem does not dictate whether the par-
titions should be of equal or fixed size. However, a variant of the object
partitioning problem is called the equi-partitioning problem. This problem
appears when there exists a set of W objects, Ω = {A1, ..., AW}, which
should be partitioned into a set of R = {P1, ..., PN} classes with fixed and
equal amount of objects in each class.

4.2.2 Object Migration Automaton

A solution to the equipartitioning problem using deterministic learning au-
tomata was presented by Oommen and Ma in [20]. The solution involved an
introduction of a new automaton named the object migration automaton.

The object migration automaton is defined as a quintuple (α, φ, β, F,
G) where

1. α = {α1, ..., αW} is defined as the set of available action, whereas each
action represents a class. The abstract objects must choose from one
of these actions.

4.2. Object Partitioning Problem 24

2. Φ = {φ1, ..., φWN} is a set of WN states. Each action αp has N associ-
ated states.

3. β = {1, 0} is the set of inputs from the environment.

4. The transition matrix F is defined as followed:

β = 0

{
εk = εk − 1 if (εk mod n) 6= 1, for k=i,j
εk = εk if (εk mod n) = 1, for k=i,j

β = 1


εk = εk + 1 if (εk mod n) 6= 0, for k=i,j
εk =

⌈
εk

N

⌉
∗N if (εk mod n) = 0, for k = i,j

for m=i,j
for k 6= m

Where εi and εj is the states of the abstract object Oi and Oj and the
query is (Ai, Aj).

5. The output matrix G is defined by
p =

⌈
εk

N

⌉
for 1 ≤ i ≤ W

where Oi is in state εi and αp is the action Oi is in.

The heart of the automaton involves creating an abstract object for each
physical objects, and letting the abstract objects move around within a fixed
number of classes. Each class represents an action and contains an equal
amount of abstract objects. Additionally the actions have a set of states
ranging from the most internal state to a so called boundary state.

An object migration automaton with two actions and N states for each
action is outlined in figure 4.1. In the figure φm1 and φk1 are the most
internal states while φmN and φkN are boundary states. Each state in figure
4.1 contains zero or more abstract objects, while the number of abstract
objects in φk equals the number of abstract objects in φm.

Figure 4.1: Object Migration Automaton with two actions and 2N states

When two physical objects are accessed together, the abstract objects
are rewarded if they lie in the same class, and punished otherwise. If two
abstract objects are rewarded they move one state closer toward the most
internal state. However if the two objects are punished, say Oi and Oj, there
are several possible outcomes depending on the states of the abstract objects.

4.2. Object Partitioning Problem 25

1. If neither Oi nor Oj are in boundary states they move one step closer
to the boundary state.

2. If exactly one of the abstract objects is in a boundary state, only the
other object is moved toward the boundary state of its class.

3. If both are in boundary states one of the abstract objects, say Oi will
be moved to the boundary state of the class of Oj. In addition an
abstract object from the class of Oj, which is in boundary state and is
not Oj, will be moved to the class of Oi.

When every object have been positioned in internal states the automaton
has converged and the objects can be physically organized according to the
position of the abstract objects of the automaton.

In [20] the object migration automaton is shown to be expedient and
indicated to be ε optimal in addition to quicker than the best known equi-
partitioning algorithms in literature.

Chapter 5

Proposed learning algorithms

In this chapter we present algorithms that provide adaptive schemes for the
recrawling-policy of an incremental web crawler. Our aim has been to develop
algorithms that are able to work in a non-stationary environment and that
improves their performance through a learning process.

In section 5.1 we propose a scheme using fixed structure stochastic learn-
ing automata connected together in a competitive game making the automata
compete for the available resources provided by the crawler environment.
This solution is constructed to solve the fractional knapsack problem seen in
relation to the incremental crawling task as described in 3.3.1.

Additionally, we propose in section 5.2 a scheme using a Fixed Partition-
ing Automaton distinguishing which of the monitored data sources that are
most valuable and focusing our capacity on polling these sources. Here we
propose a solution to the binary knapsack problem seen in relation to the
incremental crawling task as described in 3.3.2.

5.1 Competitive Game of Learning Automata

(CGLA)

The algorithm presented in this section is an extension of the learning al-
gorithm elucidated in section 4.1.2 for solving the parameter optimization
problem.

In this algorithm we link fixed structure stochastic learning automata to
each of the monitored nodes working together in a competitive game. From
a parameter optimization point of view each automaton is then responsible
to find a fraction of total available resources that should be used in order
to monitor it’s corresponding data source. However it is essential that the
total number of polls does not exceed the available capacity provided by

26

5.1. Competitive Game of Learning Automata (CGLA) 27

the crawler environment. This is ensured by connecting the automata in a
competitive game and let them compete for the available capacity.

In relation to the fractional knapsack problem we attempt to fill the frac-
tional knapsack with fraction xi of each available item i where 1 ≤ i ≤ n
and n is the number of elements. Our aim is therefore to maximize the ex-
pected total value of the fractions without exceeding the size of the knapsack
(
∑

i xi ≤ C) by connecting the fraction amount of each item with a learning
automaton.

5.1.1 Learning automaton description

For the sake of clarity we will in this section only focus on explaining the
functionality of one automaton interacting with an environment. This means
that we will only focus on adapting to feasible fractions based on the feedback
received from the environment and not focus on the functionality of several
automata interacting. A connection of the automata will be described in
section 5.1.2, where the environment feedback is based on the restrictions by
the knapsack size.

To further elaborate, the automaton attempts to adapt a parameter λ
to the most feasible fraction amount guided by an intelligent environment.
Additionally it is implicit that when λ is close to λ∗ the parameter is close
to the most feasible solution. As the solution to the parameter optimization
problem suggests, we discretize the possible values of λ into fractions of
{ 1

N
, , ..., (N−1)

N
, 1} where N is the resolution of the scheme. This means that

when the automaton is in state φi it chooses fraction i
N

. Note that our
discretization differs somewhat from the solution summarized in 4.1 as the
minimum fraction is defined to be 1

N
and not 0. A minimum fraction of

0 would result in an absorbing scheme as we never would chose to poll an
external data source if we assign this fraction to it. The scheme would
therefore not be suitable for a non-stationary environment.

Learning mechanism
We consider the environment to produce responses from the binary re-

sponse set defined by the P-model described in section 2.1.1. Whenever
β = 1 the automaton has chosen to poll a data source which has not been
updated since the last poll, which for that reason is considered to be an indi-
cation that the fraction amount should be decreased. In contrast, whenever
β = 0, the automaton has decided to poll an external data source which
has been updated since the last poll, and this is interpreted as the fraction
amount is exactly correct or should increase.

5.1. Competitive Game of Learning Automata (CGLA) 28

As a node di has a corresponding importance-value ωi ∈ [0, 1] , and we
wish to prioritize the nodes with the highest values of ωi, the transitions
should take the received feedback, β, and node’s importance-value into ac-
count. It should be easier to increase the fraction of a node with a high
importance-value, than increasing the fraction of a node with low importance-
value.

As a consequence, the automaton choses a state with a corresponding
action higher than the current state whenever β = 0 with the probability
ωi and choses the same state with probability 1 − ωi. This ensures that it
is easier for the automata to increase the fraction amount whenever ωi is
high. In contrast whenever β = 1 the automaton chooses a state with the
corresponding lower action with the probability 1. If we assume that the
automaton is in state φj, β = 0 leads to the next state being φj+1 with the
probability ωi, while β = 1 leads to the next state being φj−1.

Additionally, the automaton can not choose states higher than φN or
lower than φ0. When the current state of the automaton is φN and β = 0 the
next state will never be φN+1 but φN . Furthermore, whenever the automaton
is in state φ0 and β = 1 the next state will not be φ0−1 but φ0.

The transition function F (φ(n), β(n)) would therefore be defined as:
β(n) = 1 { φi(n + 1) = φi(n) + 1 if φi(n) < N with the probability ωi

β(n) = 0 { φi(n + 1) = φi(n)− 1 if φ(n) > 1
φi(n + 1) = φi(n) otherwise

while the fraction corresponding with each state would be φi(n)
N

.
Figure 5.1 shows a graphical representation of the fixed structure stochas-

tic automaton.

Figure 5.1: Fixed structure stochastic automaton

5.1. Competitive Game of Learning Automata (CGLA) 29

5.1.2 Competitive game

By connecting each item with a learning automaton without any further
limitations, some unwanted situations may emerge. It is possible, and even
likely, that the knapsack size in general would be exceeded as the sum of
each fraction chosen could be greater than the knapsack size. Additionally
it is also possible that the entire knapsack is never utilized.

If the automata mostly receive β = 0, they will at most time slots increase
their fraction amounts. This could easily lead to an average of

∑
i xi > C,

which clearly is an unwanted situation as the knapsack would be exceeded at
most time slots. In contrast, if the automata mostly receive β = 1, they will
at most time slots decrease their fraction amounts. This would in general
lead to

∑
i xi < C, which is an unwelcome situation as we wish to fill the

knapsack as tightly as possible.
In order to avoid these situations, we organize the automata in a com-

petitive game making the automata compete for the available capacity.
The competition is governed by two situations:

• There is still room in the knapsack

• The capacity of the knapsack has been exceeded

The competition is as following; rewards are handed out whenever there
is still room in the knapsack and in contrast punishments are only handed
out while the capacity has been exceeded. A direct result of this is that each
automata can only decrease the fraction amount whenever the capacity is
exceeded and increase the fraction amount whenever there is still room in
the knapsack.

This results in a competitive game of learning automata as there is only
a certain amount of capacity available and each automata competes for the
available capacity.

In order to clarify we present the possible scenarios in the game of au-
tomata.

Scenario 5.1.1 The knapsack is not exceeded
The knapsack is not exceeded, meaning that the sum of each fraction is less
or equal than the capacity of the knapsack (

∑
i xi ≤ c). Whenever each au-

tomaton receives a reward they increase their fraction amount. Punishments
are never handed out when the knapsack is not exceeded.

Scenario 5.1.2 The knapsack is exceeded
The knapsack is exceeded, meaning that the sum of each fraction is greater
than the capacity of the knapsack (

∑
i xi > c). Whenever each automaton

5.1. Competitive Game of Learning Automata (CGLA) 30

receives a punishment they decrease their fraction amount. Rewards are never
handed out when the knapsack is exceeded.

Scenario 5.1.3 The knapsack is nearly filled
The knapsack is nearly filled and there is only room for one automaton to
increase its fraction amount without the knapsack being exceeded. Several
outcomes can emerge from this situation depending on how many automata
increase their fraction amount.

• If two or more automata receive hits they will increase their fraction
amount. This will result in the knapsack being exceeded and only pun-
ishments will be handed out of which the automata can again only de-
crease their fraction amount. This is the most common outcome and
will result in the sum of the fractions fluctuating around the knapsack
size.

• Only one automaton receives a hit and increase its fraction amount. In
this scenario the knapsack will not be exceeded and additional automata
may increase their fraction amount at the next time slot.

• If no automata receive hits, no automata will increase their fraction
this will result in the total knapsack size not being exceeded.

In scenario 5.1.3 it is clearly most beneficial that only one automaton
increases its fraction amount, since this is the only outcome where the knap-
sack is filled and the outcome giving the most value. In other words only
one automaton can increase its fraction amount without the knapsack being
exceeded demonstrating the competition for the available capacity between
the automata.

By extending the transition function F (φ(n), β(n)) presented in 5.1.1 with
the knapsack limitations, we are able to arrange the automata as a compet-
itive game.

β(n) = 0 { φi(n + 1) = φi(n) + 1 with probability ωi if φi(n) < N and
∑

xi ≤ C
β(n) = 1 { φi(n + 1) = φ(n)− 1 if φi(n) > 1 and

∑
xi > C

φi(n + 1) = φi(n) otherwise

5.2. Fixed Partitioning Automaton (FPA) 31

5.2 Fixed Partitioning Automaton (FPA)

In this chapter we extend the Object Migration Automaton summarized in
chapter 4.2 in order to solve the binary knapsack problem in relation to
the incremental crawling task described in section 3.3.2. We call the new
automaton the Fixed Partitioning Automaton, as we design it to partition
objects into fixed sized classes.

To elaborate we wish to partition the set of nodes, D, into R classes
where R = {P1, P2} and P1 has the size M and P2 has the size N −M . In
this case N is the number of nodes or the size of D and M the size of the
knapsack.

Note that this problem resembles the equi-partitioning problem. However
the equi-partitioning problem is defined as partitioning N objects into R
classes where each class in R is of fixed and equal size. In contrast P1 and
P2 are of fixed, but not necessarily equal, size.

The overall goal in the Fixed Partitioning Automaton in the relation to
the incremental crawling task is to partition the nodes into classes according
to their probabilities weighted against their importance-value. We wish to
partition the N −M nodes with the smallest values and M nodes with the
highest values into different classes, and utilize the available capacity in such
a way that the M nodes with the highest values are polled at each time slot.

To clarify we set up a table to explaining the relation between the pre-
sented automaton and the binary knapsack.

Class Size Description
P1 M (Knapsack size) Objects to be

placed in binary knapsack
P2 N −M (Number of objects - M) Objects not to

be placed in binary knapsack

Table 5.1: Classes of R in the Fixed Partitioning Automaton

5.2.1 Learning automaton description

The heart of our automaton solution involves, for each item, to create an
abstract object to move around within the automaton. Each abstract object
is located within two fixed classes (R = {P1, P2}), where P1 contains the
items currently chosen to be in the knapsack while P2 contains the items
chosen to be left out of the knapsack. Each abstract objects must be either

5.2. Fixed Partitioning Automaton (FPA) 32

in class P1 or P2. Additionally an object in P1 is connected to action α1

while an object in P2 is connected to α2. In our case the actions (α1 and α2)
determine whether the associated nodes should be polled or not.

Each action class has a fixed number of states (φ = {φi0..φiN}) where
φi0 is the most internal state and φiN is the boundary state. The closer an
abstract object is to the internal state, the more certain it is that the object
is located in the correct class. In contrast, the closer an abstract object is to
the boundary state the less certain it is that the associated class is correct.
Initially each abstract object is placed in the boundary states of its class.

In difference to the Object Migration Automaton, the presented scheme
does not involve distributing the access of the items into tuples of two and
comparing the accessed items. In our proposed scheme each abstract ob-
ject works independently as long as the abstract objects are not located in
boundary states. The solution to the equi-partitioning problem requires that
all object are accessed and that there exists an underlying optimal solution.
Our case differs from the equi-partitioning solution as the actions connected
to each class within the automaton decides when each objects should be ac-
cessed, whereas the Object Migration Automaton does not controll any of
the accesses of the objects.

It is therefore essential to divide the accesses between the classes P1 and
P2. This means that most of the capacity, used to access objects, should be
focused on P1 as the goal is to fill P1 with the most valuable objects. However
to ensure that the scheme at all times has the possibility to improve, it is
necessary that some part of the available capacity is used on the items not
in the P1.

We approach the problem by defining a constant f ∈ [0, 1] to help us
divide the available capacity between the two classes. The size of P1 and
the number of objects in P2 accessed at each time slot should sum to the
available capacity. This means that M + f(N − M) = C, where C is the
size of the knapsack. In other words all the objects in P1 should be accessed
while only f(N − M) of the objects in P2 should be accessed all the time.
The objects in P2 are therefor accessed with a round robin scheme selecting
f(N −M) objects at each time slot.

Whenever the objects are accessed, they receive input from the environ-
ment as β ∈ {1, 0}. When an external source has been updated since last
access β will always be equal to 0, in contrast when an external source has
not been updated β will always be equal to 1.

As a value of a node is decided by both the probability of change and
the defined importance-value, we must ensure that both the ωi of the node i
and the β received when object i is taken into consideration in the transition
function. For this to be the case we must use ωi as part of the rewards in

5.2. Fixed Partitioning Automaton (FPA) 33

the transaction function.
We use the following scheme in order achieve our goals:
When β= 0:

1. If Oi is in class P1

Move Oi one state closer to the most internal state with the probability
ωi if possible.
Stay in the current state with probability 1− ωi.

2. If Oi is in class P2 and not in a boundary state
Move Oi one state closer to the boundary state with the probability ωi.
Stay in the current state with the probability 1− ωi.

3. If Oi is in class P2 and in a boundary state
Oi should move from P2 to P1 with the probability ωi and switch place
with an object placed in P1. The candidates to move from P1 to P2 is
the objects located in the boundary states of P1 and at the current time
slot received β = 1. If no objects are in boundary states the objects
closest to the boundary state are candidates. An arbitrary object from
the candidates are selected, say Oj, and Oi and Oj switch places. If no
objects in P1 at at the current time slot received β = 1, no transition
will occur.
Stay with the probability 1− ωi

In contrast if Oi receives an input of β = 1 the rules are almost reversed,
however no importance-value is considered.

When β= 1:

1. If Oi is in class P2

Move Oi one state closer to the most internal state if possible

2. If Oi is in class P1 and not in the boundary state
Move Oi one state closer to the boundary state

3. If Oi is in class P1 and in a boundary state
Oi should move from P1 to P2 and switch place with an object placed
in P2. As in the latter rule the candidates to move from P1 to P2 are in
the boundary state of P1 and at current received β = 0 or the objects

5.2. Fixed Partitioning Automaton (FPA) 34

Figure 5.2: Fixed Partitioning Automaton

closest to the boundary state. An arbitrary object from the candidates
is chosen and switched place with Oi. If no objects at the current time
slot received β = 0, no transitions will occur.

Figure 5.2 shows a graphical representation of the Fixed Partitioning
Automaton with the boundary states 1, N and 2, N , while the most internal
states being 1, 1 and 2, 1. Note that in order for an object to move from P1

to P2 or reversed, a corresponding object must move the other way.

Chapter 6

Prototype

To evaluate the performance of our learning algorithms we implemented a
test environment that simulated the environment a crawler interacts with.

6.1 Requirements

We set the following requirements

• Must simulate web page update patterns so the learning algorithms can
be evaluated in a realistic environment.

• Must support both fixed and non-stationary environments in order to
show the properties of the proposed solutions in different settings.

• Must support visualization of the simulation results in order to get a
convenient look on how the learning algorithms improve their perfor-
mance over time.

• Must support a possibility to deploy different reinforcement schemes so
we can easily see how the learning algorithms perform with respect to
these.

• Must be able to set the number of web pages that shall be monitored
so we can see how the algorithms perform when dealing with different
numbers of data sources.

• Must be able to set the capacity of the crawler so we can see how
the algorithms perform when they are met with the constraints of the
crawler capacity.

• Must be able to serialize the simulation runs for later merging and
analysis.

35

6.2. Graphical user interface 36

6.2 Graphical user interface

The graphical user interface and the underlying simulation environment was
implemented with Python and the WxPython package. Figure 6.1 shows the
application. The general options for the simulation are listed in table 6.1.

Figure 6.1: Simulation settings

Simulation name Name given to the simulation.
Save location Location where simulation result will be saved.
Simulation period Number of discrete time slots - length of simulation.
Number of nodes Number of autonomous nodes simulating web pages.
Confusion time Environment’s penalty probabilities change after the

given time has progressed.
Number of states Number of states in the active learning automata.
Scheduler Which scheduler to use.
Scheduler plugin Each scheduler may have a set of available learning

algorithms. These are the actual learning automata.
Forget updates If updates disappear at once or remain until the next

update occurs.
”Reinforcement” Define when penalties and rewards shall be regarded.

Table 6.1: Explanation of simulation settings

The application is able to produce a set number of autonomous nodes
which the simulated crawler interacts with. The crawler is controlled by a
scheduler that interacts with the learning algorithm. At each time slot the
scheduler feeds the crawler with pages to visit based on the decision of the
learning algorithm. The scheduler then forwards feedback to the learning

6.2. Graphical user interface 37

algorithms based on the outcome of the action inflicted. During simulations
the application also visualized real time progress of several measurements.

Chapter 7

Simulation results and
discussion

In this chapter we first present the setup and performance metric chosen for
the simulations conducted. This is covered accordingly in section 7.1 and 7.2

We then go on and present the actual simulation results, combined with
a discussion of the results, in section 7.3

7.1 Simulation setup

R=|D|: Number of monitored nodes we wish to monitor for change. This
value is set to 1000 if otherwise not stated.

C: The capacity available each time slot, equivalent to the knapsack size.
This is set to 100 for all simulations.

Update probability distribution As defined in section 3.2 each node has
an attached probability pi,j which denotes the probability that an update oc-
curs at time j. The update probability distribution is chosen according to
a zipf distribution [23], as done in other work [8, 16]. We create our up-
date probability distribution by letting θ randomly vary between 0 to 2 so
we remain a skewed distribution, but get a larger part of the nodes to have
a mid-range probability of update, as illustrated in figure 7.1. This is in
contrast to related work [8] which used an extremely skewed distribution in
their experiments. We feel that our approach yields a more realistic set-
ting, although it gives the problem more complexity as it makes it harder to
prioritize between the nodes for our learning algorithms.

38

7.2. Performance metric 39

Figure 7.1: Update probability distribution of 100 nodes

Importance-value distribution The importance-value of a node, ωi, is
chosen in relation to its probability of change in a random biased manner.
This assumption is done according to the findings in [24] were more dynamic
pages are shown to be more popular (indicating more importance) than other
pages.

Expected Change-capacity ratio is the expected number of updates∑
i∈P pi,j, that occur at time instant j, over the number of monitoring tasks

available, C, formally expressed as (
P

di∈D pi,j

C
).

7.2 Performance metric

Retrieved importance-value denotes the proportion of the retrieved
importance-value over the expected total importance-value that is produced
at time instant j. ∑

di∈D ωiyi,jH(di, j)∑
di∈D ωipi,j

To clarify the above expression we must not only choose to poll node di

at time j (yi,j = 1) but also get a hit (H(di, j) = 1) in order to add to the
retrieved importance-value.

7.3. Results and discussion of the results 40

7.3 Results and discussion of the results

In this section we present the results of the simulations conducted in order
to evaluate different aspects of our proposed solutions.

First we address the issue of finding good values for possible performance
critical parameters in 7.3.1.

We go on and evaluate the performance of our proposed solutions in a
stationary environment in comparison to alternative algorithms. Our devel-
oped learning schemes are evaluated using both of the environment models
defined in section 3.2 and according to the performance metric presented in
7.2.

Finally we show how our developed learning algorithms respond to the
same environment models as they turn non-stationary in section 7.3.3.

Each of the 3 different aspects addressed are discussed and summarized
in their corresponding sections.

7.3.1 Identifying good parameters

In this section we address the issue of finding good values for possible per-
formance critical parameters for our automata solutions presented in 5. To
elaborate, we empirically wish to show how different values of given parame-
ters affect both accuracy and speed of convergence. We have also used the
discovered results as a guideline for choosing parameters for the simulations
we present in section 7.3.2 and 7.3.3.

First we present the results for the Competitive Game of Learning Au-
tomata solution where we show how the resolution of the automaton, N ,
affects performance.

We then go on and see how N affects the performance of the Fixed Par-
titioning Automaton. Here we also look at how the capacity distribution, f ,
influences performance.

Observations and discussion

Parameter N of the CGLA In this section we evaluate the parameter
N of the automata presented in 5.1 as a solution to the fractional knapsack
problem in the context of an incremental crawler.

The performance is evaluated with respect to 4 different values of N : 16,
32, 64 and 128. We believe this range of values will give a good indication of
how varying the parameter N affects the results.

Figure 7.2 show the calculated average of 10 simulation runs of each
variant of parameter N .

7.3. Results and discussion of the results 41

Figure 7.2: Performance with different resolutions of N in the automata

The two most notably observations that can be made in figure 7.2 is that
a larger value of N results in better performance with respect to the retrieved
importance-value. However, a larger value of N also slows down the speed
of convergence, i.e. it takes more time to reach the same level when N = 64
as when N = 32. In other words, figure 7.2 gives us an indication that
there exists a trade-off between the accuracy of the result and the speed of
convergence.

The indicated trade-off is although not very surprising. A larger value of
N results in a finer granularity of the fractions we can take of each item. We
will therefore get a better overall performance as each automaton can get
closer to an optimal value.

The different speed of convergence for different values of N is caused by
the fact that larger values of N will result in possible longer walks in order
to reach the optimal value. A large N will therefore decrease convergence
speed.

Both of these observations are in accordance with the observations done
for the learning automaton solution of the parameter optimization problem
summarized in section 4.1

By observing figure 7.2 we see that the performance rate with respect
to the retrieved importance-value does not follow the same model as the
convergence speed. I.e the difference in converging speed when N = 64 as
when N = 128 is about 1.5, but the difference in retrieved importance-value

7.3. Results and discussion of the results 42

is very small. This observation tells us that there is little accuracy to gain by
choosing a large N -value if convergence speed is an issue. A N -value much
smaller than 64, i.e N = 32 or N = 16, as shown in figure 7.2 will although
have a larger impact on the accuracy which cannot be as easily defended by
their respectively speed of convergence.

In the context of an incremental crawler it is natural that we want to
have as rapid increase in performance as possible. Convergence speed does
in other words become an issue here. A feasible solution seems to be when
N = 64 as the trade-off between good accuracy and good convergence speed
is better than shown for the other values of N .

Figure 7.3: Performance when having different values of N and f in the
Fixed Partitioning Automaton when N is small

Parameter N and f of the FPA In this section we evaluate possible
values of the N and f parameters of the automaton presented in section 5.2
as a solution to the binary knapsack problem in the context of an incremental
web crawler.

As initial simulations showed that f and N are not mutually exclusive
parameters with respect to accuracy and convergence speed, we conducted
simulations where performance where shown according to 4 values of N run
over 4 values of f . N was chosen from the set {8, 16, 32, 64} and f was
chosen from the set {0.1, 0.2, 0.5, 0.8}. We believe this range of values will
give a good indication of how varying the parameter N over different values
of parameter f affects the results.

7.3. Results and discussion of the results 43

Figure 7.4: Performance when having different values of N and f in the
Fixed Partitioning Automaton when N is large

The calculated average of 100 simulation runs where R = 100, C = 10 and
with an environment where updates overwrite information can be observed
in figure 7.3 and 7.4.

The most notable observation is how different values of f affect the per-
formance with respect to the retrieved importance-value. As f gets closer to
1 the scheme becomes more and more similar to a uniform scheme as more
and more resources are granted to the round-robin queue that governs the
P2 partition. This is an early indication that the learning algorithm will out-
perform the uniform scheme when operating with accurate parameters. In
contrast we get a better score of the retrieved importance-value as f becomes
0.1.

As a small value of f would grant less resources to the round-robin queue,
used in the learning mechanism to move nodes from the P2 partition, to the
P1 partition we would initially expect that the convergence speed would be
slower. However, we observe that there is little trade-off between convergence
speed when f = 0.1 and f = 0.2, we only achieve a greater accuracy. The
trade-off is however likely to increase as f verges toward 0 as we then would
spend less and less resources to sort out the nodes that should belong in the
active partition P1. We would therefore get a decline in convergence speed.

We assume f = 0.1 to be a good setting as we with this setting seem to
score well with respect to both convergence speed and accuracy.

We have so far not addressed the N -parameter. As observed in figure 7.3
and 7.4 N seem to contribute in a very limited way to accuracy. However, as

7.3. Results and discussion of the results 44

N grows large it contribute less and less. I.e it seems we could just as well
have chosen N = 16 than N = 64 in the case where f = 0.2. Although, if we
decrease N too much it seems that accuracy also decreases, i.e when N = 16
and N = 0.1 vs. N = 8 and N = 0.1.

N = 16 seems therefore like a suitable parameter for the FPA.
A decline in performance would although be expected as N gets close to

1 as the exchange between the two partitions would be of a more random
manner as the items in the active P1 partition would have no form of ranking
since many of them would reside in the same states.

Summary

We wanted empirically to show how different values of given parameters
affect both accuracy and speed of convergence for our proposed automata
solutions. We also wanted to use the discovered results as a guideline for
choosing parameters for the simulations we present in section 7.3.2 and 7.3.3.

The only parameter to alter in the Competitive Game of Learning Au-
tomata solution was the parameter N which controlled each automaton’s
resolution. This parameter were shown to affect both convergence speed and
accuracy of the solution.

N = 64 were shown to have the smallest trade-off between convergence
speed and accuracy compared to the other values that where considered.

We demonstrated the performance of the Fixed Partitioning Automata
by varying both its N and f parameter with respect to each other. N gives
the number of states in each partition while f controls the capacity assigned
to each partition.

f had a clear impact on the retrieved importance-value. As f approached
1 and came closer to a uniform crawling scheme the performance degraded
severely.

f had also some impact on the convergence speed which most likely get
larger as f verge toward zero. The experiments does however not show this
explicitly. A reasonable selection of f seemed to be when f = 0.1

N had only a small effect on accuracy where a suitable value seems to
be N = 16 as a lower value would degrade accuracy and a large value would
not contribute much to accuracy at all.

7.3.2 Comparison to alternative algorithms.

In this section we compare the effectiveness of the proposed solutions to
other relevant algorithms when run under the same simulation setups. These
policies are:

7.3. Results and discussion of the results 45

Uniform Resources are distributed uniformly among the nodes we wish to
monitor. This results in a round-robin scheme for the re-crawling process.

Weighted proportional Resources are allocated in a proportional man-
ner to the pi,j and ωi values. This algorithm assumes that the pi,j and ωi

values are known.

The experiments show the retrieved imoportance-value when the expected
change-capacity ratio changes from 1.5 to 4. The expected change-capacity
ratio of 1.5 results in having 150% updates over the available capacity, while
the expected change-capacity ratio of 4 results in having 400% updates over
the available capacity.

We choose N = 16 and f = 0.1 for the Fixed Partitioning Automaton
and N = 64 for the Competitive Game Of Learning Automata solution as
decided in section 7.3.1.

We first address the performance of the schemes in the environment model
where changes overwrite information. Then we do the same for the environ-
ment model where updated information disappear at once. Finally we discuss
and summarize the results.

Changes overwrite information

Figure 7.5 shows the effectiveness of the proposed schemes as the expected
change-capacity ratio increases in an environment where changes overwrite
information.

From figure 7.5 we observe:

1. The retrieved importance-value decreases as the expected change-ratio
increases, as a natural consequence of the increase in number of up-
dates.

2. Both proposed solutions perform better than the uniform scheduler.
This shows that both schemes are able to adapt to better solutions
than uniformly distributing the capacity among the monitoring nodes,
retrieving more importance-value.

3. The Competitive Game of Learning Automata always performs better
than the weighted proportional scheme in this experiment, while the
Fixed Partitioning Automaton only performs better with larger values
of expected change-ratio.

4. The Competitive Game of Learning Automata always retrieves more
information than the Fixed Partitioning Automaton in this experiment.

7.3. Results and discussion of the results 46

Figure 7.5: Retrieved importance-value when changes overwrite information

Updated information disappear at once

Figure 7.6 shows the effectiveness of the proposed schemes in an environment
where each update disappear at once.

Figure 7.6: Retrieved importance-value when updated information disappear
at once

From this experiment we observe:

7.3. Results and discussion of the results 47

1. The retrieved importance-value decreases as the expected change-ratio
increases, as a natural consequence of the increase in number of up-
dates.

2. Both presented schemes perform better than the uniform scheduler for
any expected change-ratio.

3. Both presented schemes are able to retrieve more information than the
weighted proportional scheme for any expected change-ratio whenever
each updated information disappear at once.

4. In this environment model the Fixed Partitioning Automaton always
performs better than the Competitive Game of Learning Automata.

Discussion

In this section we discuss and evaluate the experiments presented in figure 7.5
and 7.6, comparing both our proposed solutions to other relevant algorithms
and to each other.

CGLA vs. Uniform As is observable in both the latter experiments, the
Competitive Game of Learning Automata performs better than the uniform
scheduler. This shows that it is in our experiments always more beneficial,
when it comes to the retrieved importance-value, to adapt to fractions of
each item based on rewards / punishments and importance-value than to
uniformly distribute the capacity among the nodes.

This indicates that the CGLA always will increase the fractions of an
item i if item i seems beneficial to poll, as it receives β = 0. The competitive
game is in our experiments shown to prioritizes items which contributes to
an increase in the retrieved importance-value over items which do not.

CGLA vs. Weighted proportional The graphs also show that the Com-
petitive Game of Learning Automata performs better than the weighted pro-
portional scheduler in both environments.

A possible reason for this is that CGLA might a more aggressive scheme,
which implies that it adapts to fractions of items slightly higher than weighted
proportional. Slightly higher fractions would lead to slightly higher polling
rates which could contribute to an over all higher retrieved importance-value
when the automata prioritizes the items with the highest importance-value.

If this is the case, it would be amplified when updated information disap-
pear at once, as each change is not detectable after the time slot it appears
and no scheme can benefit from polling an item too late.

7.3. Results and discussion of the results 48

FPA vs. Uniform It is observable that the Fixed Partitioning Automaton
in both of the latter experiments perform better than the uniform scheduler.

This shows that in our experiments it is more beneficial to focus the
capacity on the items believed to have the highest values than to uniformly
distribute all the polls. This is a good indication that the vastly prioritizing
of items believed to have the highest values, as done by the Fixed Partitioning
Automaton, results in a better performance than uniformly distribution of
all polls.

FPA vs. Weighted proportional Our experiments show that the Fixed
Partitioning Automaton has a better performance than the weighted pro-
portional scheduler whenever updates disappear at once. Additionally it is
observable in the experiments that the scheme has a better performance when
updates overwrite information with large values of the expected change-ratio.

This indicates that whenever updates overwrite information the Fixed
Partitioning Automaton will gain from an increase of changes as the P2 class
will detect more changes. This naturally leads a believe that whenever

∑
pi,j

is small, the Fixed Partitioning Automaton will detect few changes from the
nodes in P2 while when

∑
pi,j is large, the scheme will detect many changes

from the nodes in P2.
The weighted proportional scheme is in our experiments shown to gain

less than the Fixed Partitioning Automaton. A likely reason for this is that it
mostly focuses on the nodes with the best values. This implies that the Fixed
Partitioning Automaton scores better than weighted proportional whenever
the expected change-ratio is large, and is less effective than the weighted
proportional when the expected change-ratio is small.

FPA vs. CGLA when changes overwrite information By comparing
the Fixed Partitioning Automaton and the Competitive Game of Learning
Automata, the experiments show that the CGLA will perform better in an
environment where changes overwrite information. This can be observed in
graph 7.5 where the Fixed Partitioning Automaton retrieves less importance-
value than the Competitive Game of Learning Automata.

This indicates that CGLA benefits more from distributing the nodes into
fractions and polling the nodes accordingly, than the FPA does from dis-
tributing the nodes into two classes an polling accordingly. In other words,
when changes overwrite information, the granularity of the polling rates of
the CGLA seems to be more beneficial than partitioning into only two classes.

As the expected change-ratio increases, the gap in retrieved information-
value between the Competitive Game of Learning Automata and the Fixed

7.3. Results and discussion of the results 49

Partitioning Automaton decreases. This is likely do to fact that more up-
dates are detected in the non-prioritized P2 class of the Fixed Partitioning
Automaton.

This implies that it is less beneficial to distribute the polling rates as
more updates occur. However, as long as updates overwrite information, it
is always more beneficial than not doing so.

FPA vs. CGLA when updates disappears at once Figure 7.6 shows
that the FPA performs better than the CGLA whenever the information in
the environment disappears at once.

The results implies that it is most beneficial to focus the majority of the
capacity on polling only a few nodes, not distributing the polls among N
possible polling rates as done by the CGLA.

A likely reason for this is that the items with the highest probabilities
of being changed at time slot j for any j, is in this environment always the
items with the over all highest probability of being changed. As the goal of
the Fixed Partitioning Automaton is to distinguish the items with the over
all highest values (therefore highest probability of update and importance-
value), it is shown to perform better than CGLA when the updated infor-
mation disappear at once.

Summary

Both of our proposed schemes were shown to outdo the uniform scheme and
in most cases the weighted proportional scheme which had the advantage
of knowing the update probabilities of the monitored data sources. Most
noteworthy we outperformed the scheme scheme by factors up to 550% in
certain situations.

Additionally the experiments show that the Fixed Partitioning Automa-
ton and the Competitive Game of Learning Automata perform best in their
alternate environments. The Fixed Partitioning Automaton manages to score
a better retrieved importance-value whenever each updated information dis-
appears at once, as it in this environment is profitable to mainly poll the
items with the highest values.

In contrast, when the changes overwrite information, the Competitive
Game of Learning Automata is shown to have an over all better performance.
This indicates that it in this environment is profitable to distribute the polls
among the items and poll the items with close to the same rate as they
change.

7.3. Results and discussion of the results 50

7.3.3 Adaptability

In this section we expose the Competitive Game of Learning Automata so-
lution and the Fixed Partitioning Automaton to an environment where the
nodes switch importance-value and update probabilities every 2500th time
slot, making the environment non-stationary. Both of the environment mod-
els defined in 3.2 have been considered.

We choose N = 16 and f = 0.1 for the Fixed Partitioning Automaton
and N = 64 for the Competitive Game Of Learning Automata solution as
decided in section 7.3.1.

The goal of these experiments is to empirically show the adaptability of
our proposed schemes and see how they respond to a non-stationary envi-
ronment.

The actual switch which makes the environment non-stationary is done in
the following way: node 1 switches update probability and importance-value
with node n, node 2 switches the same values with node n-1, and so on.

Figure 7.7 and 7.8 show an average of 20 experiments conducted for each
of the environment models.

Figure 7.7: Number of polls

Observations and discussion

The crawler capacity dictates the total number of nodes that can be
polled each time slot. With the The Fixed Partitioning Automata we obey
this rule by choosing f so M + f(N −M) = C. Thus, the number of visits
each time slot becomes fixed, as seen in figure 7.7.

The Competitive Game of Learning Automata solution does however take
a different approach. As we can observe in figure 7.7 this scheme does not
utilize the capacity all the time. This is a consequence of the competitive

7.3. Results and discussion of the results 51

nature of the scheme where one goal is to adapt to a number of polls that
equals the capacity. Initially we can observe that available resources is not
fully utilized as the total number of polls is below the capacity. A similar
situation occurs when we see a shift in the environment and most of the
automata will be in a situation where their believed fraction is not correct.
For an automata this is only observable through the feedback it receives from
the environment, and from figure 7.7 it seems like most of the automata after
a shift receives an increased level of punishment and thereby decrease their
believed fraction. This causes the total number of polls to decrease as well.
However, since the total capacity is no longer utilized we can observe that
the automaton re-adapt until they once again reach the crawler capacity and
on average remains loyal to this constraint. This behavior show that by
governing the situations where the automata are allowed to either increase
or decrease their believed fraction we can control the average total fraction
amount so

∑
xi < C.

The retrieved importance-value is the performance metric chosen in
order to show the performance of the automaton solution. Figure 7.8 show
the development of this value in a non-stationary environment for both of
the environment models defined in 3.2

Figure 7.8: Non-stationary environment

We observe that both the Competitive Game of Learning Automata and
the Fixed Partitioning Automata improve their performance as time pass
until they converge to a certain value. The reached values are in accordance
to the values found in section 7.3.2, but we will not discuss these any further
as we in this section only will evaluate the adaptive behavior.

7.3. Results and discussion of the results 52

After each shift the retrieved importance-value decreases for both schemes
as the item values of the nodes change and the currently chosen polling rates
become unfeasible. As the expected total importance-values remain the same
after a shift, we can assume that the automata solution would adapt to
the same level as before the shift occured. Figure 7.8 show both automata
solutions reaching the same level, as before the shift, in both environment
models and thereby demonstrates the assumed adaptive capability.

In general it can be observed that the Fixed Partitioning Automaton
adapts quicker than the Competitive Game Of Learning Automata solution.
A possible explanation is that, after a shift, the CGLA does not utilize the
available resources 100% as it uses some time to re-adapt to the capacity
limit. A more contributing factor would although most likely be that the
FPA more quickly can separate the best candidates from the worst as the
nodes in the active partition P1 is polled every time slot. Neither does a long
walk from the internal state to the boundry state have to take place before
an exchange between the P1 and P2 partitions happen as the candidates are
picked from the state closest to the boundry state, as described in section
5.2. However, after a the first primary sorting is conducted it becomes harder
to separate the nodes from eachother. This is observed in the environment
model where changes overwrite information as well as in the model where
informations disappears at once. In the prior environment we see this ten-
dency as a rather fluctuating retrieved importance-value. This is caused by
an continious exchange between the partitions where the nodes that are dif-
ficult to separate are involved. We do however not see this fluctation in the
latter environment, but we can observe that it is still hard to separate some
nodes due to the slow increase in performance after the automaton has done
the initial primary sorting. This environment does however give a bit more
precise feedback than the prior as we never can detect an update that hap-
pened in the previous time slot which may confuse the automata. Fluctation
is therefore not as visible here.

The difference in convergence speed must although also be seen in relation
to the behavior of the Competitive Game of Learning Automata. First of
all, a long walk is needed in order to re-adapt to fractions that lay far apart.
If the chosen fraction is 1

N
, it will in average be polled each N time slot. If

the fraction amount optimally should increase, as the automaton receives a
reward, it will in average be polled after 2

N
time slots, then after 3

N
time slots

and so on. If the most feasible fraction is 1 the automata uses in average
1
N

+ 2
N

+ 3
N

+ ... + N−1
N

+ 1 time slots to reach the desirable fraction amount.
Note that we in this example assume that only rewards are handed out, an
optimal situation in this case.

7.3. Results and discussion of the results 53

Secondly we can see it as a direct result of the competitive game where
rewards are ignored when the capacity is exceeded and penalties are ignored
when we the capacity is not exceeded. As a consequence a lot of possible
”learning” is missed which naturally slows the adaptive behavior down.

Summary

It has been shown that both the proposed automata solution, the CGLA
and FPA, are capable of improving their performance over time due to a
learning process and that they are capable of operating in a non-stationary
environment.

The Fixed Partitioning Automata has allthough shown more rapid adap-
tive behavior in comparison to the CGLA. This is somewhat caused by the
nature of the automata itself as well as the nature of the Competitive Game
of Learning Automata solution.

We have also shown that the Competitive Game of Learning Automata
solution is loyal to the constraint given by the crawler capacity as it in average
stays at or below this limit. This is a consequence of the competitive game
where we govern when too give rewards and when too give penalties.

Chapter 8

Conclusion and further work

8.1 Conclusion

In this thesis we have developed and evaluated two new solutions to the
incremental crawling task when monitoring highly dynamic data sources.
This is an issue that has not been addressed much in literature and our
proposed solutions are a contribution in order to replace traditional crawling
schemes that has been shown to be sub-optimal in previous studies.

Our novel approach looked at the incremental crawling task as a contin-
uous learning problem where scheduling of monitoring tasks were combined
with parameter estimation in an on-line manner. We also mapped the prob-
lem to two variants of the so called knapsack problem and based our solutions
on a machine learning technique known as learning automata.

The two variants of the knapsack problem addressed in the context of
the incremental crawling task were the binary knapsack problem and the
fractional knapsack problem. In both variants we considered the item values
to be of unknown distribution and the item weights to be equal.

As a solution to the binary knapsack variant we presented a learning au-
tomaton which we named the Fixed Partitioning Automaton. This algorithm
is an extension on the Object Migration Automaton previously presented as a
solution to the equi-partitioning problem. Our proposed solution is designed
to partition the items into two partitions of fixed, but possibly unequal, sizes
where one partition contains the most valuable items. Although this func-
tionality has not been formally proved in this thesis, simulations show that
the scheme performs very well in an environment where this fixed partitioning
strategy is optimal.

The fractional knapsack variant were approached by extending and con-
necting a learning algorithm used to solve the parameter optimization prob-

54

8.2. Further work 55

lem in a competitive game. This solution were given the name Competitive
Game of Learning Automata. By connecting independent automata into a
competitive game and govern when rewards and penalties should be regarded,
we designed a scheme that were not only able to adapt to a set knapsack /
crawler capacity size, but also create a stochastic competition between the
automata that adaptively improved performance. The result was a distribu-
tion of available capacity / item fractions that in most cases, not regarding
the Fixed Partitioning Automaton, outperformed compared strategies.

The evaluation of the performance of our proposed automata solutions
were done by using two different environment models; one where we consid-
ered updates to disappear at once and another where we considered updates
to remain, but just until the next update occurred. The Fixed Partition-
ing Automata showed greater performance in the prior environment and the
Competitive Game of Learning Automata performed best in the latter.

Both of our proposed solutions were shown to outdo the uniform scheme
and in most cases the weighted proportional scheme which had the advantage
of knowing the update probabilities of the monitored data sources. Most
notably we outperformed the round robin scheme by factors up to 550%
in certain situations. This confirms the findings in previous studies where
traditional crawling schemes were shown to be sub optimal when working
with highly dynamic environments. It also confirms the capabilities of our
proposed schemes.

Our proposed solutions were also shown to successfully being able to
operate in non-stationary environments where the Fixed Structure Automata
showed a faster adaptive behavior compared to the Competetive Game of
Learning Automata in all investigated situations. This is mainly due to
the Fixed Structure Automata nature as more it quickly can separate good
candidates from bad candidates as it continuously focus it’s efforts on only
a small subset of considered items and can thus swiftly do a primary sorting
and migration between the partitions if a shift in the environment happens.

8.2 Further work

The beauty of research is reflected in it’s ability to contribute new thoughts
and approaches to the world which other people may use as a basis for new
ideas and/or in relation to their existing work. We will therefore in this
section briefly introduce a few problems this thesis could be a subject for.

• As of now, the Competetive Game of Learning Automata-solution only
consider the current time-slot when it makes the decision to crawl a

8.2. Further work 56

page or not. It would be interesting to see if it is possible to design
a similar scheme where the automata look further ahead in order to
make the same decision and to see whether this affects performance
either way.

• We have only focused our work toward two environment models and
its possible to expand our work by looking at other relevant models,
i.e. a model where changes are cumulatively added.

• We propose a solution to the binary knapsack problem where we con-
sider the item values to be of unknown distribution and the items hav-
ing equal weight. What if we would consider a situation where the
weight is not equal. How could the proposed scheme be expanded/redesigned
to deal with this new problem?

• The proposed solutions are only tested using syntethic data sets. It
would be interesting to see how the learning algorithms would perform
using a real-world data.

• To prove the convergence results that are demonstrated empirically in
this thesis are subject for further work.

• Improvement of the suggested schemes by introducing new techniques
and algorithms in order to improve speed and accuracy is always valu-
able.

Bibliography

[1] J. Cho and H. Garcia-Molina, “Synchronizing a database to
improve freshness,” 2000, pp. 117–128. [Online]. Available: cite-
seer.ist.psu.edu/cho00synchronizing.html

[2] ——, “The evolution of the web and implications for an incre-
mental crawler,” in Proceedings of the Twenty-sixth International
Conference on Very Large Databases, 2000. [Online]. Available:
citeseer.ist.psu.edu/cho00evolution.html

[3] J. Edwards, K. S. McCurley, and J. A. Tomlin, “An adaptive
model for optimizing performance of an incremental web crawler,”
in World Wide Web, 2001, pp. 106–113. [Online]. Available:
citeseer.ist.psu.edu/edwards01adaptive.html

[4] J. Cho and A. Ntoulas, “Effective change detection using sampling,”
2002. [Online]. Available: citeseer.ist.psu.edu/cho02effective.html

[5] S. K. G. Hadrien Bullot and M. K. Mohania, “A data-mining approach
for optimizing performance of an incremental crawler,” Swiss Federal
Institute of Technology, Lausanne - Indian Institute of Technology, Delhi
- IBM India Research Lab, Tech. Rep.

[6] C. M. Grenville, “Bandwidth efficient web object change interval
estimation.” [Online]. Available: citeseer.ist.psu.edu/666170.html

[7] M. K. Bergman, “The deep web: Surfacing hidden value.” [Online].
Available: citeseer.ist.psu.edu/bergman00deep.html

[8] S. Pandey, K. Ramamritham, and S. Chakrabarti, “Monitoring the dy-
namic web to respond to continuous queries,” in WWW ’03: Proceedings
of the twelfth international conference on World Wide Web. New York,
NY, USA: ACM Press, 2003, pp. 659–668.

[9] W. I. Sources, “Wic: A general-purpose algorithm for monitoring.”
[Online]. Available: citeseer.ist.psu.edu/712654.html

57

BIBLIOGRAPHY 58

[10] M. A. L. Thathachar and P. S. Sastry, “Varieties of learning automata:
an overview.” IEEE Transactions on Systems, Man, and Cybernetics,
Part B, vol. 32, no. 6, pp. 711–722, 2002.

[11] S. R. K. et al., The American Heritage Stedman’s Medical Dictionary,
SECOND EDITION. H.M.

[12] K. S. Narendra and M. A. L. Thathachar, Learning automata: an in-
troduction. Prentice-Hall, Inc., 1989.

[13] V. N. Padmanabhan and L. Qui, “The content and access
dynamics of a busy web site: findings and implicatins,”
in SIGCOMM, 2000, pp. 111–123. [Online]. Available: cite-
seer.ist.psu.edu/padmanabhan00content.html

[14] B. E. Brewington and G. Cybenko, “Keeping up with the changing
Web,” Computer, vol. 33, no. 5, pp. 52–58, 2000. [Online]. Available:
citeseer.ist.psu.edu/brewington00keeping.html

[15] D. Fetterly, M. Manasse, M. Najork, and J. L. Wiener, “A large-scale
study of the evolution of web pages,” Softw. Pract. Exper., vol. 34, no. 2,
pp. 213–237, 2004.

[16] J. L. Wolf, M. S. Squillante, P. S. Yu, J. Sethuraman, and L. Ozsen, “Op-
timal crawling strategies for web search engines,” in WWW ’02: Pro-
ceedings of the eleventh international conference on World Wide Web.
New York, NY, USA: ACM Press, 2002, pp. 136–147.

[17] J. Cho and H. Garcia-Molina, “Effective page refresh policies for web
crawlers,” ACM Trans. Database Syst., vol. 28, no. 4, pp. 390–426, 2003.

[18] ——, “Estimating frequency of change,” in Submitted for publication,
2000. [Online]. Available: citeseer.ist.psu.edu/cho00estimating.html

[19] B. J. Oommen, “Stochastic searching on the line and its applications
to parameter learning in nonlinear optimization.” IEEE Transactions
on Systems, Man, and Cybernetics, Part B, vol. 27, no. 4, pp. 733–739,
1997.

[20] B. J. Oommen and D. C. Y. Ma, “Deterministic learning automata so-
lutions to the equipartitioning problem,” IEEE Trans. Comput., vol. 37,
no. 1, pp. 2–13, 1988.

BIBLIOGRAPHY 59

[21] ——, “Fast object partitioning using stochastic learning automata,” in
Proceedings of the Tenth Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, New Orleans,
Louisiana, USA, June 3-5, 1987. ACM, 1987, pp. 111–122.

[22] W. Gale, S. Das, and C. T. Yu, “Improvements to an algorithm for
equipartitioning,” IEEE Trans. Comput., vol. 39, no. 5, pp. 706–710,
1990.

[23] [Online]. Available: http://www.cs.unc.edu/ṽivek/home/stenopedia/zipf/

[24] A. Wolman, G. M. Voelker, N. Sharma, N. Cardwell, A. R. Karlin, and
H. M. Levy, “On the scale and performance of cooperative web proxy
caching,” in Symposium on Operating Systems Principles, 1999, pp. 16–
31. [Online]. Available: citeseer.ist.psu.edu/article/wolman99scale.html

