

Peer-to-Peer Programming with Wireless Devices

By

Tore Mørkved

Master Thesis in Information and Communication Technology

University of New South Wales, Sydney Australia

&

Agder University College, Grimstad Norway

Sydney, June, 2005

Peer-to-Peer Programming on Wireless Devices

 I

Abstract
Peer-to-Peer programming (P2P) has in recent years become a widely explored

research area. With the evolution of wireless technology such as mobile phones, the

idea to bring these two technologies together gives a new dimension to P2P

communication, collaboration and resource sharing.

 This master thesis explores the domain of Mobile Peer-to-Peer networking and

proposes a Peer-to-Peer System with Wireless Devices. The system is based on an

open, protocol-based P2P platform called JXTA. It allows any connected device on

the network ranging from sensors and cell phones to personal computers and servers

to communicate and collaborate in a Peer-to-Peer manner. It is platform and network

independent and designed to be implemented on any networking device.

 JXTA for J2ME (JXME) is a lightweight version of JXTA that gives P2P functionality

to constrained wireless devices. The technology, which is open source, is under

development by the JXTA community, and this thesis focuses on the development of

JXME for the Connected Limited Device Configuration (CLDC).

 The system proposed uses the JXME API, but suggests a more specific approach

to implement different Peer operations such as Peer discovery, resource advertising

and file transfer. Because of the limitations of wireless devices, one or more powerful

Peers need to participate in the network as Proxy Services. This gives both the

advantages of a fixed P2P network and the mobility of a wireless device.

 The prototype developed demonstrates the P2P system with simple collaboration

and file sharing. The application has been successfully tested on phone emulators,

and network tests show that the system works in a controlled environment. Large file

transfer is stable, but highly limited by memory constraints of the device.

Peer-to-Peer Programming on Wireless Devices

 II

Preface
This report contains the documentation of the master thesis “Peer-to-Peer

Programming with Wireless Devices” which was conducted during 20 weeks from

February to June 2005. The thesis was written in Sydney, Australia for the University

of New South Wales (UNSW) for Agder University College, Grimstad, Norway.

 My supervisor at UNSW has been Mr. Nandan Paramesh Parameswaran, and my

contact at Agder University College has been Mr. Magne Arild Haglund.

I would like to thank my girlfriend, Bella, for her support during the writing process.

Tore Mørkved

Sydney, June 2005

Peer-to-Peer Programming on Wireless Devices

 III

Table of Contents

ABSTRACT.. I
PREFACE... II
TABLE OF CONTENTS..III
LIST OF FIGURES .. VI
LIST OF TABLES .. VII
1 INTRODUCTION.. 1

1.1 MOTIVATION... 1
1.2 PROBLEM SPECIFICATION .. 1
1.3 OBJECTIVES AND LIMITATIONS ... 2

1.3.1 Objectives ... 2
1.3.2 Limitations.. 2

1.4 READER’S GUIDE .. 3
2 LITERATURE STUDY... 4

2.1 INTRODUCTION.. 4
2.2 MOBILE DEVICES... 4

2.2.1 Introduction .. 4
2.2.2 Constraints ... 5

2.3 JAVA 2, MICRO EDITION (J2ME)... 6
2.3.1 Introduction .. 6
2.3.2 Overview of the Java 2 Platform .. 6
2.3.3 Configuration Layer ... 7
2.3.4 Profile Layer... 9
2.3.5 MIDlet Memory .. 10
2.3.6 Summary... 11

2.4 PEER-TO-PEER (P2P) NETWORKING.. 11
2.4.1 Introduction .. 11
2.4.2 What is P2P? .. 11
2.4.3 Client/Server Architecture .. 13
2.4.4 P2P Network Architectures .. 14
2.4.5 Resource Discovery .. 17
2.4.6 Why Peer-to-Peer networking .. 18

2.5 PROJECT JXTA.. 19
2.5.1 Introduction .. 19
2.5.2 JXTA Architecture .. 21
2.5.3 Terminology.. 22
2.5.4 JXTA Protocols... 26
2.5.5 Advantages and Disadvantages of JXTA .. 27
2.5.6 Summary... 28

2.6 PROJECT JXME... 29
2.6.1 Introduction .. 29
2.6.2 JXME API... 30
2.6.3 JXME Proxy Service... 32
2.6.4 JXME Proxyless.. 33
2.6.5 Summary... 33

2.7 PROJECT TINI ... 34
2.7.1 Introduction .. 34
2.7.2 The TINI Binding.. 34

2.8 SUMMARY ... 34
3 SYSTEM DESIGN... 35

3.1 INTRODUCTION.. 35
3.2 NETWORK ARCHITECTURE.. 35

Peer-to-Peer Programming on Wireless Devices

 IV

3.2.1 JXME Peer.. 36
3.2.2 JXME Proxy Service... 37

3.3 P2P OPERATIONS .. 38
3.3.1 Network Establishment ... 38
3.3.2 Peer Discovery ... 39
3.3.3 Advertising Resources .. 40
3.3.4 Sharing large files .. 41
3.3.5 Summary... 43

4 PROTOTYPE DESIGN... 44
4.1 INTRODUCTION.. 44
4.2 SCENARIO.. 44

4.2.1 Preconditions.. 44
4.2.2 Goals .. 44
4.2.3 Normal action sequence ... 45

4.3 REQUIREMENT SPECIFICATION.. 46
4.3.1 Functional requirements... 46
4.3.2 Non-Functional Requirements.. 53

4.4 CLASS DIAGRAM.. 54
4.5 SEQUENCE DIAGRAMS ... 55

4.5.1 Connect to Network .. 56
4.5.2 Exit Application .. 58
4.5.3 Update Peer.. 58
4.5.4 Add new Emergency ... 59
4.5.5 Download image... 60
4.5.6 Send image.. 60
4.5.7 Image request ... 61
4.5.8 Receive image... 61

4.6 PROTOCOLS... 62
4.7 SUMMARY ... 63

5 PERFORMANCE RESULTS ... 64
5.1 INTRODUCTION.. 64
5.2 USER INTERFACE... 64
5.3 APPLICATION SOURCE CODE... 67
5.4 FUNCTIONALITY TEST ... 68

5.4.1 Testing environment ... 68
5.4.2 Test results.. 68
5.4.3 Summary... 69

5.5 NETWORK TEST ... 69
5.5.1 Testing environment ... 69
5.5.2 Test results.. 70

5.6 TESTING LARGE FILE TRANSFER .. 71
5.6.1 Testing environment ... 71
5.6.2 Variables... 71
5.6.3 Test results.. 72

5.7 SUMMARY ... 73
6 DISCUSSIONS... 74

6.1 INTRODUCTION.. 74
6.2 RESEARCH DISCUSSION ... 74
6.3 P2P SYSTEM DESIGN... 75
6.4 THE PROTOTYPE.. 76
6.5 TEST RESULTS ... 76

6.5.1 Functional requirement testing... 76
6.5.2 Network testing... 76
6.5.3 Large File Transfer test .. 77

6.6 OTHER EXPERIENCES .. 77
6.6.1 Keeping the Peer Connected .. 77
6.6.2 Advertisements and Peer Discovery ... 78

Peer-to-Peer Programming on Wireless Devices

 V

6.7 SUMMARY ... 78
7 CONCLUSIONS AND FUTURE RESEARCH .. 80

7.1 CONCLUSIONS ... 80
7.2 FUTURE RESEARCH.. 81

REFERENCES.. 82

Peer-to-Peer Programming on Wireless Devices

 VI

List of Figures
FIGURE 1 - JAVA 2 MICRO EDITION PLATFORM ... 7
FIGURE 2 - VARIANTS OF THE JAVA PLATFORM FOR EMBEDDED DEVICES .. 7
FIGURE 3 - RELATIONSHIP BETWEEN J2SE AND THE J2ME CONFIGURATIONS ... 8
FIGURE 4 - CLIENT/SERVER ARCHITECTURE.. 13
FIGURE 5 - CENTRALIZED NETWORK ARCHITECTURE.. 14
FIGURE 6 - DECENTRALIZED ARCHITECTURE... 15
FIGURE 7 - HYBRID ARCHITECTURE... 16
FIGURE 8 - VIRTUAL MAPPING OF A JXTA NETWORK .. 19
FIGURE 9 - THE JXTA THREE-LAYER ARCHITECTURE.. 21
FIGURE 10 - STRUCTURE OF A PEERGROUP ADVERTISEMENT.. 22
FIGURE 11 - UNICAST AND PROPAGATE PIPES ... 25
FIGURE 12 - THE JXTA PROTOCOL STACK. .. 27
FIGURE 13 - JXTA NETWORK WITH JXME DEVICES ... 29
FIGURE 14 - JXME API ... 30
FIGURE 15 - MESSAGE ELEMENTS .. 31
FIGURE 16 - THE JXME PROXY SERVICE MESSAGE FLOW.. 32
FIGURE 17 - MOBILE P2P ARCHITECTURE, PHYSICAL AND LOGICAL LAYER .. 36
FIGURE 18 - JXTA SHELL CONFIGURATIONS... 37
FIGURE 19 - PEER CONNECTING TO THE NETWORK... 38
FIGURE 20 - PEER DISCOVERY ... 40
FIGURE 21 - FILE DISCOVERY... 41
FIGURE 22 - FILE TRANSFER REQUEST AND RESPONSE IN THE JXME NETWORK.. 42
FIGURE 23 - USE CASE 1: USER STARTS APPLICATION .. 47
FIGURE 24 - USE CASE 2: PEER OPERATIONS... 48
FIGURE 25 - USE CASE 3: EMERGENCY REPORT .. 49
FIGURE 26 - USE CASE 4: IMAGE OPERATIONS... 50
FIGURE 27 - CLASS DIAGRAM .. 54
FIGURE 28 - SEQUENCE DIAGRAM, USER CONNECT .. 56
FIGURE 29 - SEQUENCE DIAGRAM, USER EXITS ... 58
FIGURE 30 - SEQUENCE DIAGRAM - PEER MOVES.. 58
FIGURE 31 - SEQUENCE DIAGRAM - REPORT EMERGENCY... 59
FIGURE 32 - SEQUENCE DIAGRAM, USER DOWNLOADS IMAGE.. 60
FIGURE 33 - SEQUENCE DIAGRAM - SEND IMAGE .. 60
FIGURE 34 - SEQUENCE DIAGRAM, RECEIVING IMAGE REQUEST .. 61
FIGURE 35 - SEQUENCE DIAGRAM, RECEIVING IMAGE DATA ... 61
FIGURE 36- SCREENSHOTS: USER CONNECTS... 65
FIGURE 37 - SCREENSHOTS: REPORT EMERGENCY ... 65
FIGURE 38 - SCREENSHOTS: REQUEST IMAGE .. 65
FIGURE 39 - SCREENSHOTS: REMOVE EMERGENCY.. 66
FIGURE 40 - SCREENSHOTS: RECEIVING IMAGE REQUEST .. 66
FIGURE 41 - SCREENSHOTS: DOWNLOADING IMAGE .. 66
FIGURE 42 - SCREENSHOTS: SENDING IMAGE... 67
FIGURE 43 - SCREENSHOTS: RECEIVING IMAGE ... 67
FIGURE 44 - NETWORK TEST 1 ... 70
FIGURE 45 - NETWORK TEST 2 ... 70
FIGURE 46 - NETWORK TEST 3 ... 70
FIGURE 47 - NETWORK TEST 4 ... 71
FIGURE 48 - DIAGRAM OF FT-01.. 72
FIGURE 49 – DIAGRAM OF FT-02... 73

Peer-to-Peer Programming on Wireless Devices

 VII

List of Tables

TABLE 1 – MOBILE PHONES, SPECIFICATIONS .. 5
TABLE 2 - PACKAGES IN THE CLDC - BASED PROFILES... 10
TABLE 3 - FUNCTIONAL REQUIREMENT 01: CONNECT TO NETWORK ... 47
TABLE 4 - FUNCTIONAL REQUIREMENT 02: EXIT APPLICATION... 47
TABLE 5 - FUNCTIONAL REQUIREMENT 03: ADD PEER .. 48
TABLE 6 - FUNCTIONAL REQUIREMENT 04: UPDATE PEER .. 48
TABLE 7 - FUNCTIONAL REQUIREMENT 05: REMOVE PEER.. 49
TABLE 8 - FUNCTIONAL REQUIREMENT 06 ADD NEW EMERGENCY.. 49
TABLE 9 - FUNCTIONAL REQUIREMENT 07: REMOVE EMERGENCY .. 50
TABLE 10 - FUNCTIONAL REQUIREMENT 08: REQUEST AN IMAGE ... 50
TABLE 11 - FUNCTIONAL REQUIREMENT 09: REMOTE IMAGE REQUEST... 51
TABLE 12 - FUNCTIONAL REQUIREMENT 10: DOWNLOAD IMAGE .. 51
TABLE 13 - FUNCTIONAL REQUIREMENT 11: SEND IMAGE... 51
TABLE 14 - FUNCTIONAL REQUIREMENT 12: RECEIVE IMAGE ... 52
TABLE 15 - SUMMARY OF FUNCTIONAL REQUIREMENTS AND PRIORITIES ... 52
TABLE 16 - PEERDISCOVERY MESSAGE... 62
TABLE 17 - PEERINFO MESSAGE.. 62
TABLE 18 - IMAGEREQUEST MESSAGE .. 62
TABLE 19 - IMAGERESPONSE MESSAGE... 62
TABLE 20 - REPORT EMERGENCY MESSAGE .. 63
TABLE 21 - REMOVE EMERGENCY MESSAGE... 63
TABLE 22 - MAP REQUEST MESSAGE .. 63
TABLE 23 – TEST, USE CASE 1: CONNECT TO NETWORK.. 68
TABLE 24 – TEST, USE CASE 2: PEER OPERATIONS ... 68
TABLE 25 – TEST, USE CASE 3: EMERGENCY REPORT ... 68
TABLE 26 – TEST, USE CASE 4: IMAGE OPERATIONS ... 68
TABLE 27 - NETWORK TEST 1 .. 70
TABLE 28 - NETWORK TEST 2 .. 70
TABLE 29 - NETWORK TEST 3 .. 70
TABLE 30 - NETWORK TEST 4 .. 71
TABLE 31 - FILE-TRANSFER TEST FT-1.. 72
TABLE 32 - FILE-TRANSFER TEST FT-2.. 73

Peer-to-Peer Programming on Wireless Devices

 1

1 Introduction

1.1 Motivation

Peer-to-Peer programming (P2P) has in recent years become a widely explored

research area and gets a lot of attention in both media and the computer industry. It

has changed the way we communicate, collaborate and share resources.

Implementations such as MSN Messenger or Skype have become almost mandatory

for internet users, enabling instant communication in a way that makes E-mail appear

antiquated. Internet traffic is now mainly dominated by P2P networks for file sharing,

such as Gnutella and BitTorrent [6].

 Personal wireless devices such as mobile phones have evolved from pure cell

phones to small all-in-one devices that, in addition to being phones, contain camera,

radio, mp3 player and the ability to connect to the Internet. The computing resources

are constantly increasing, unlocking a great potential; to have personal wireless

devices participate as Peers on a Peer-to-Peer network!

 The obvious possibilities of instant messaging and file sharing can very likely

become as popular as they have on a traditional P2P network, but an additional

property will lead to new possibilities; the mobile phone is a personal device. It is

always with us, it defines us and represents us at all times, wherever, whenever. This

can be exploited in many ways, for instance in collaboration over large distances to

solve a common problem, or personal monitoring in medical situations.

1.2 Problem specification

P2P programming paradigm is increasingly becoming a dominant mode of resource

sharing and cooperative problem solving. Traditionally, a peer is a computing device

with substantial amount of computing power and resources. However, it will be an

interesting idea if small wireless devices (such as mobile phones and wireless

sensors) are also made peers. In this context, programming wireless devices has

many challenges. The primary objective of this thesis work is to build a P2P system

consisting of wireless devices only.

 In particular, we plan to investigate the following problems:

1. How do the limitations of the wireless devices (such as total power remaining in

the battery, losing communication with other peers at anytime, small displays, and

Peer-to-Peer Programming on Wireless Devices

 2

limited CPU power and memory) affect the solutions to a problem, and how do they

affect the program logic?

2. In dynamic emergency situations, how is programming or computing distributed

amongst the other wireless peers so that in case of power failure or disruption in

communications, the network can ensure a graceful degradation?

 We propose to create a mobile P2P scenario and build a prototype in Java based

on the system design using phone emulators.

1.3 Objectives and Limitations

1.3.1 Objectives

The main objective of this thesis is to build a Peer-to-Peer system for wireless

devices. The system design will be based on an open, protocol-based P2P platform

called JXTA, which enables the developer to focus on the end-system instead of the

extensive task of creating the P2P network. The prototype will be developed in Java

for the Java 2 Micro Edition (J2ME) platform.

 Firstly, J2ME, P2P networking and the JXTA technology will be investigated. Based

on this a Mobile Peer-to-Peer system will be designed and simple a prototype will be

implemented using phone emulators such as Sun’s Wireless Toolkit.

 Next, the application will be tested to see how it performs in a scalable network and

how it performs when transferring large files.

1.3.2 Limitations

The p2p system will not be tested in a large scale due to resource and time

constraints. Non-functional testing, such as stability, security and usability are not

prioritised, but should be explained and considered if time and resources allow it.

Peer-to-Peer Programming on Wireless Devices

 3

1.4 Reader’s Guide

This reader’s guide is included to give an overview of the report by summarising the

chapters and describing how they relate to one other. It gives an overview of the

report, making it easy to find the parts the reader is interested in without reading

through the whole report.

Chapter 1 Introduction: This chapter is an introduction to the report. It contains

motivation, problem specification, objectives and limitations, in addition to this

reader’s guide.

Chapter 2 Literature Study: Review of background information I have researched

before designing the P2P system. The main topics are Mobile devices, J2ME, P2P,

JXTA and JXME.

Chapter 3 System Design: Contains the design of a proposed P2P system for

mobile phones. The foundation for this chapter is Chapter 2.

Chapter 4 Prototype Design: Contains the design of a prototype application. It is

based on Chapter 3, the System Design.

Chapter 5 Performance Results: This chapter presents the results of the prototype

designed in chapter 4, with test documents for functionality test, network test and

large file transfer test.

Chapter 6 Discussions: Analyzes and discusses my contribution to this thesis

(chapter 3 4 and 5) ,in regards to the problem specification in chapter 1 and literature

study in chapter 2.

Chapter 7 Conclusions: The conclusions for this thesis. It continues and concludes

the discussions in chapter 6. Also, it proposes future work on the domain.

Peer-to-Peer Programming on Wireless Devices

 4

2 Literature Study

2.1 Introduction

This chapter will summarise topics that have been explored as a foundation for my

own contribution to this thesis. References to relevant sources with domain

elaboration are referred to and found in the References chapter.

 I have investigated today’s research and development in the area of Mobile devices,

Java 2 Micro Edition (J2ME), P2P technology and the JXTA framework. Some topics

have been explained in more detail for the reader to better understand the remainder

of the thesis.

2.2 Mobile devices

2.2.1 Introduction

The Mobile phone has become a necessity in our lives; it is always with us, it is

always on. It has become so much more than just a phone; it has become an

extension of who we are. As the mobile phone development continues its astonishing

progress, we are now experiencing a fusion of technology into a mobile device, not

only being able to make phone calls, but also including radio, music player, mega

pixel camera, camcorder and internet connection to name a few properties.

 In this chapter I will give a short overview of today’s mobile phones’ constraints and

limitations.

Peer-to-Peer Programming on Wireless Devices

 5

2.2.2 Constraints

A mobile phone still has many constraints compared to larger computing devices,

such as personal computers. In the Table below, I have listed a few mobile devices

with relevant constraints and possibilities. Even though more powerful phones exist,

this table represents what is considered modern phones at the time of writing (June

2005). Interesting properties are:

- Screen resolution, size and colour

- Data transfer type

- Memory size, Heap memory (RAM)

- Memory size, persistent memory to store files such as images or music.

- Maximum JAR size, determines how large an application can be.

- Supported APIs

The information is extracted from [33] and all the images of the phones are taken

from this website.
Table 1 – Mobile phones, specifications

Name Nokia 6110 Heap size 512 kB

Screen size 128x160 Max JAR size 128 kB

Colours 65 000 Memory size 3,5 MB

Data EDGE Supported API CLDC 1.1, MIDP 2.0

Name Nokia 6680 Heap size Dynamic

Screen size 176x208 Max JAR size Dynamic

Colours 262 000 Memory size 10 MB

Data 3G Data Supported API CLDC 1.1, MIDP 2.0

Name Motorola V220 Heap size 800 kB

Screen size 128x128 Max JAR size 100 kB

Colours 65 000 Memory size 2 MB

Data GPRS Supported API CLDC 1.0, MIDP 2.0

Name Sony Ericsson K700 Heap size 1.5 MB

Screen size 176x220 Max JAR size 300 kB

Colours 65 000 Memory size 32 MB

Data GPRS Class 10 (48 kbps) Supported API CLDC 1.1, MIDP 2.0

Name Nokia 6630 Heap size Dynamic

Screen size 176x208 Max JAR size Dynamic

Colours 65 k Memory size 10 MB + Memory Card

Data 3G Data Supported API CLDC 1.1, MIDP 2.0

Name Nokia 6230i Heap size 512 kB

Screen size 128.128 Max JAR size 128 kB

Colours 65 000 Memory size 3,5 MB + memory card

Data EDGE Supported API CLDC 1.1, MIDP 2.0

Peer-to-Peer Programming on Wireless Devices

 6

 2.3 Java 2, Micro Edition (J2ME)

2.3.1 Introduction

This chapter gives an introduction to the Java 2 Micro Edition platform, with focus on

its capabilities as a Peer-to-Peer application platform, its possibilities and its

limitations. I will examine the Connected Limited Device Configuration (CLDC) and

the Mobile Information Device Profile 2.0 (MIDP 2.0), which is the newest addition to

the J2ME platform.

 The Java programming language was originally developed for consumer electronic

devices, but over the years it evolved into a set of technologies used primarily to

develop desktop and server-based applications.

 So, in a way, you can say that the latest contribution to Sun’s Java Platform, the

Java 2 Micro Edition (J2ME) is returning to the very origins of Java technology. J2ME

is descending from several early java platforms for small devices: The Oak part of the

Green project (early 1990’s), Java Card (1996), Personal Java (1997),

EmbeddedJava (1998) and the Spotless System and the K virtual machine (1999).

The Java Card technology is still separated from the J2ME platform, and remains an

important technology based on smart cards [14].

2.3.2 Overview of the Java 2 Platform

Java 2 Micro Edition is a subset of the Java 2 Platform. It is a platform for small

embedded devices and consumer devices, unlike the other two Java 2 platforms;

J2SE (Standard edition) “provides a runtime environment and a complete set of APIs

for desktop applications, and defines a core set of functionality for the other editions”

[14].The third platform is the J2EE (Enterprise edition), which is a superset of the

J2SE. It supports “scalable, transaction-oriented and database-centred enterprise

programming” [14].

Unlike J2SE, J2ME is not a piece of software, nor is it a single specification. J2ME is

a collection of technologies and specifications that are designed for different parts of

the device market. To be able to provide a specialised solution to different devices,

J2ME is divided into configurations, profiles, and optional packages.

Figure 1 shows the J2ME platform Layer stack with the J2EE, J2SE and Java Card

Layer stack.

Peer-to-Peer Programming on Wireless Devices

 7

Figure 1 - Java 2 Micro Edition Platform

J2ME has a software layer stack consisting of three layers on top of the Operating

System of the device; the Java Virtual Machine (JVM) Layer, Configuration Layer and

Profile Layer. However, before we go deeper into the different layers of the J2ME, it

is important to understand where J2ME is standing with respect to other Java

technologies for embedded devices.

Figure 2 - Variants of the Java Platform for Embedded Devices

As figure 2 demonstrates, Java offers EmbeddedJava, PersonalJava, J2ME and

Java Card. EmbeddedJava and PersonalJava has gone through the Sun “End of

Life” (EOL) process and all developers are encouraged to move to the J2ME family of

products, since these technologies are being migrated into J2ME, and are no longer

supported by Sun Microsystems [15], [16]. Finally, Java Card technology supports

development on Java based smart cards [17].

2.3.3 Configuration Layer

A configuration defines a basic, lowest-level J2ME runtime environment. This

includes the virtual machine and a set of core classes derived primarily from J2SE.

As seen in figure 4 and 5, J2ME has been divided into two configurations, the

Connected Device Configuration (CDC) [18], [19], [20] and the Connected Limited

Device Configuration (CLDC) [21], [22], [23].

J2SE 1.1.X Java 2 Platform, Micro

Edition

Java Card

EmbeddedJava PersonalJava CDC Profiles

(FP, PBP, PP)

CLDC Profiles

(MIDP, IMP)

JavaCard framework,

security and RMI APIs

CDC CLDC

Java Virtual Machine CardCM

Java
Card
APIs

Java 2
Enterpris
e Edition
(J2EE)

Java 2
Standard
Edition
(J2SE)

Optional
Packages Optional

Packages

Foundation
Profile

CDC

CVM

CLDC

KVM

MID
Profile

PDA
Profile

Java 2 Platform, Micro Edition

Personal
Profile

Peer-to-Peer Programming on Wireless Devices

 8

Figure 3 - Relationship between J2SE and the J2ME configurations

The Connected Device Configuration (CDC)

The Connected Device Configuration (CDC) is designed for more powerful devices,

such as high-end cell phones and PDAs and the more sophisticated devices such as

set-up boxes, or car navigation systems.

These devices have 32-bit processors, at least 2MB of main memory, 2.5 MB of

ROM, and some type of network connectivity. The CDC uses a Java Virtual Machine

with full J2SE capabilities.

As figure 3 shows, the CDC is a superset of CLDC; it includes the CLDC classes,

including those not included in J2SE, and has additional classes that CLDC does not

have.

The Connected Limited Device Configuration (CLDC)

CLDC is a minimal J2ME configuration for devices with substantial constraints on

computing power, battery life, memory and bandwidth. The CLDC 1.1 specification

[22] assumes these technical requirements and characteristics for a device:

- At least 160 kb of total memory available for the Java platform

- Processor speed starting from 8 – 32 MHz.

- 16/32 bit processor.

- Limited power, usually battery operation.

- Connectivity to some type of network, although with possibly limited (9600 bps

or less) bit rate.

- High-volume manufacturing (possible millions of units)

- User interfaces with varying degrees of sophistication down to and including

none.

The Specification addresses the scope of CLDC1.1 to include:

- Java language and virtual machine features

J2SE
CDC CLDC

-java.lang
-java.io
-java.util

-javax.microedition.io

Peer-to-Peer Programming on Wireless Devices

 9

- Core Java libraries (java.lang.*, java.util.*)

- Input/Output (java.io.*)

- Security

- Networking: General framework for network connection

- Internationalization: Handles different character encodings

Also, it specifies the CLDC1.1 to not include:

- Application installation and life-cycle management

- User interface functionality

- Event handling

- High-level application model (the interaction between the user and the

application

These features are to be addressed by the profiles implemented on top of the CLDC;

the most common used is the Mobile Information Device Profile (MIDP), which will be

described in the next subchapter.

2.3.4 Profile Layer

The Profile Layer defines the minimum set of APIs available on a device family, for

example a mobile phone or a PDA. The profile usually includes more domain-specific

libraries than what is included in the configuration. As a result, applications are

written for a particular profile and implicit use the configuration the profile is built

upon. Different profiles exist for different types of devices. The two profiles existing

for the CLDC are the Information Module Profile (IMP) and Mobile Information Device

Profile (MIDP).

 Mobile Information Device Profile (MIDP) [27] was the first J2ME profile, and is

the most mature and widely used, with millions of deployments around the world,

mainly on PDA’s and on cell phones and other handheld communicators. The new

MIDP 2.0 [30] has enhanced the profile’s capabilities concerning new networking

(TCP Sockets and UDP datagrams, secure connections), and also a robust security

API to support TCP socket streams, and even API’s for gaming.

 Information Module Profile (IMP) [28] targets devices with little or no capabilities

for user interface, such as headless embedded devices in vending machines. The

new IMP-NG (Next Generation) will take advantage of MIDP 2.0’s new security and

networking types and APIs.

Peer-to-Peer Programming on Wireless Devices

 10

The table below summarizes the packages available in MIDP and IMP 1.0 [14].

Table 2 - Packages in the CLDC - Based Profiles
Name Description MIDP

1.0
MIDP
2.0

IMP
1.0

Java.lang MIDP subset of the core Java programming language X X X
Java.util Small subset of utility classes X X X
Java.io MIDP subset of system input and output through data streams X X X
javax.microedition.io Networking support using the Generic Connection Framework;

includes new socket, UDP, serial, and secure connection types,
and push functionality

X X X

javax.microedition.lcdui MIDP classes for user interface X X
javax.microedition.lcdui.game Gaming classes such as sprites, game canvas, and layer

manager
 X

javax.microedition.media Interfaces for controlling (Control) and rendering (Player) audio–
sound classes compatible with the Mobile Media API
specification [37]

 X

javax.microedition.media.control Sound-control classes (ToneControl and VolumeControl) -
compatible with the Mobile Media API specification [37]

 X

javax.microedition.midlet The application interface, its life-cycle classes, and its
interactions with the runtime environment and the application
manager

X X X

javax.microedition.pki Public key class for certificates used to authenticate information
for secure connections

 X X

javax.microedition.rms Classes for storing and retrieving persistent data X X X

2.3.5 MIDlet Memory

Memory is always a resource constraint when we develop applications on handheld

devices. There are in fact three memory types on a MIDP device; program memory,

heap memory and persistent storage [32].

Program Memory

This memory is available to store a MIDlet on the device. Some device

manufacturers limit the allowed size of each MIDlet. This changes from device to

device. Table 1 shows some examples of program memory limits.

Heap Memory

This is the runtime memory, or the RAM of the device. When the application is

running, all local variables and member variables are allocated from the heap

memory. On a J2SE device, the heap can constitute hundreds of megabytes, but on

J2ME devices it is very limited. Table 1 lists heap size on several mobile devices.

Persistent Storage

This memory is used for record stores in MIDP called Record Management System

(RMS). If a File Connection API [35] is available, the application can use resources

on the phone’s file system and memory cards.

Peer-to-Peer Programming on Wireless Devices

 11

2.3.6 Summary

J2ME has, with the CLDC and MIDP 2.0 specifications, set a standard for mobile

phones to follow. This chapter has listed some of the most important possibilities and

limitations of mobile devices implementing J2ME.

2.4 Peer-to-Peer (P2P) Networking

2.4.1 Introduction

This chapter defines and introduces the domain of Peer-to-Peer (P2P) networking. It

gives a short overview of the evolution of different P2P systems and how resource

discovery can be implemented. At the end of this chapter, it summarises some

advantages and disadvantages of P2P compared to traditional client/server

architecture.

2.4.2 What is P2P?

Wikipedia, the free encyclopaedia [31] defines Peer-to-Peer as:

“A peer-to-peer (or P2P) computer network is a network that relies on computing

power at the edges (ends) of a connection rather than in the network itself.”

(…)

“A pure peer-to-peer file transfer network does not have the notion of clients or

servers, but only equal peer nodes that simultaneously function as both "clients" and

"servers" to the other nodes on the network.”

 The P2P concept is currently sweeping through both the computing industry and the

media, and the implementation is commonly seen in instant messaging (IM)

applications such as ICQ or MSN Messenger, and different file sharing applications,

such as Kazaa or Gnutella. Conceptually, P2P is much more – or much less – than

that; P2P can simply be two or more PCs that are connected and share resources

without going through a separate server. At the other extreme, one could say that the

entire Internet operates very similar to a giant P2P network. From a broad

perspective, the whole Internet it self consists of networked computers containing a

wide selection of geographically separated data, communicating directly with one

other. [4]

 P2P could be explained by answering the question: “How can you connect a set of

devices in such a way that they can share information, resources, and services?” [12]

Peer-to-Peer Programming on Wireless Devices

 12

It seems like an easy question, but if we dig deeper, we learn that this basic question

derives more complex challenges:

How does one device learn from another device’s presence, that is, how do we deal

with discovery?

- How do devices organize groups of common interest?

- How does a device advertise its resources?

- How do we uniquely identify a device?

- How do devices exchange data?

 Many P2P solutions have been created to provide answers to these questions. The

problem is that they all have their own answer hard-coded into the implementation,

giving no room for flexibility and interoperability. To evolve P2P into a mature solution

platform, developers need to agree on a solid, well-defined base language to

communicate and perform the fundamentals of P2P networking.

 In the next chapter, I will have a look at one solution to this problem, a project called

JXTA. But first, different network architectures will be presented; from the traditional

client/server architecture to the ever evolving P2P architectures.

Peer-to-Peer Programming on Wireless Devices

 13

2.4.3 Client/Server Architecture

In the traditional client/server architecture the client sends a request to the server,

which handles most of the processing involved in delivering the requested service,

leaving the clients relatively unburdened.

Figure 4 - Client/Server Architecture

Client:

- Sends query request (Q)

- Receive response (R)

Server:

- Receive query request (Q)

- Processes service requests

- Sends the result as a response to the client (R)

This architecture has major drawbacks. As the number of clients increase, the load

on the server also increases, until the bandwidth or the processing power reaches its

limits, preventing the server from handling additional clients. The advantage however,

is that the client is left with very little responsibility, thus it does not require high

computing power. Ultimately, this means that almost any device with a network

connection can act as a client and receive server data.

Server

Client1

Client3

Q

R

Client2

Peer-to-Peer Programming on Wireless Devices

 14

2.4.4 P2P Network Architectures

There are mainly three network models of P2P, namely Centralized, Decentralized

and Hybrid models.

 Centralized Architecture

The first generation Peer-to-Peer system was initiated by the launch of Napster in

May 1999. When this infamous application was at its peak in February 2001, it had

29.4 million registered users who shared 2.79 billion files in the same month [6].

Napster was based on a centralized index, which ultimately led to its downfall in late

2001, when it was forced by the record industry to shutdown.

 Centralized network architecture uses a centralized indexed server to maintain a

database of all the content and users at any time. The database is updated whenever

a peer logs on to the network.

Figure 5 - Centralized Network Architecture

Peer A sends a query request to its index server. The index server uses the search

request to query the database. If matches are found, the server returns the result to

node A, telling him which node has the file, in this example, Peer B. Node A uses this

information to start download from Node B.

Evaluation

This architecture allows a fast search response time, and is easy to implement and

maintain. It provides a high degree of performance and resilience, but has a single

point of failure. Because of this, it is vulnerable to censorship and technical failure.

Popular data may become less accessible because of the load of the requests on a

central server. Another disadvantage is that its central index might be obsolete,

because the database is only refreshed periodically.

R

Q Index
server

Peer A

Peer B

Download

Peer-to-Peer Programming on Wireless Devices

 15

Decentralized Architecture

Second generation P2P uses a decentralized, distributed architecture to avoid the

centralized weakness, “single-point-of-failure”. Instead of central servers, each peer

acts as an index server, searches and holds its own local resources, and as a router,

relaying queries between peers. An example is the Gnutella network.

Figure 6 - Decentralized Architecture

Node A sends a query message to the peers it is directly connected to. These peers

check their local list of resources to match the query and forward the query to the

peers they are connected to on the network. This process continues, spreading the

query across the network. If a peer, in this example Peer B, matches the query with

its local resource, it returns a response message back across the network to Peer A.

Peer A then downloads the resource directly from Peer B

Evaluation

Each peer is directly connected to a number of other peers. Relaying queries and

result messages between peers generates large network traffic (chatter). It also

results in slow information discovery compared to a centralized architecture. The

system avoids single point of failure, which means it is resistant to crashing and

shutdowns. It also scales inherently.

R

QPeer A

Peer B

Download

Q
Q

R

Q

Peer-to-Peer Programming on Wireless Devices

 16

Hybrid Architecture

Third generation P2P is a hybrid of centralized and distributed, combining the best of

both architectures. It deploys a hierarchical structure by establishing a backbone

network of Super Nodes that take on the characteristics of a central index server.

When a client logs on to the network, it makes a direct connection to a single Super

Node which gathers and stores information about peer and content available for

sharing. An example of a hybrid P2P network is the Direct Connect (DC) network.

Figure 7 - Hybrid Architecture

Peer A sends a query message to its local Super Node. The Super Node runs the

query in its own index and disseminates the query to other Super Nodes on the

network. The query response are returned to Super Node which in turn relays the

results to Peer A. Peer A then downloads the resource directly from Peer B.

Evaluation
The use of Super Nodes improves the search response times and generates less

overhead traffic on the network than decentralized networks. The Super Nodes also

reduce the workload on central servers in comparison with fully centralized indexing

systems such as Napster. The single point of failure or control diminishes as the

number of Super Nodes increases.

Peer B

Peer A

Q

Q

Q

Q

Super Nodes

Q

Q

Q

R

R

R

Download

Peer-to-Peer Programming on Wireless Devices

 17

2.4.5 Resource Discovery

Discovering resources can be handled in several ways. Brendon Wilson [12] implies

three main methods: No discovery, direct discovery and indirect discovery.

No discovery

Peers relay on a cache of previously discovered advertisements.

This reduces network traffic, but the information can become obsolete and increase

network traffic by trying to discover a resource that no longer exists at given peer and

then resort to active discovery.

To reduce the possibility of a given advertisement becoming obsolete, a cache can

make advertisements expire, thereby removing them from the cache based on the

probability that a given advertisement is still valid.

Direct Discovery

Peers that exist on the same LAN might be capable of discovering each other directly

without relying on an intermediate rendezvous peer to aid the discovery process.

Direct discovery requires peers to use the broadcast or multicasting capabilities of

their native network transport.

 Unfortunately, this discovery technique is limited to peers located on the same local

LAN segment and usually can’t be used to discover peers outside the local network.

Discovering peers and advertisements outside the private network requires indirect

discovery conducted via a rendezvous peer.

Indirect Discovery

Indirect discovery requires the use of a Super Peer to act as a source of known peers

and advertisements, and to perform discovery on a peer’s behalf.

This technique can be used by peers on a local LAN to find other peers without using

broadcast or multicast capabilities, or by peers in a private internal network to find

peers outside the internal network.

Peer-to-Peer Programming on Wireless Devices

 18

2.4.6 Why Peer-to-Peer networking

The potential of P2P reaches far beyond the recent years media focus on the area,

namely through distribution of copyrighted material such as mp3’s and movies.

 The advantages and disadvantages of P2P are usually compared to the traditional

client/server technology. Some advantages are:

 Distributed computing power: In his book, Brendon Wilson [12] presents this

example to show the enormous amount of potential computing power and storage we

have on client machines around the globe:

“Assume, with a lot of modesty, that 10 million 100 MHz machines are connected to

the Internet at any time, each possessing only 100MB of unused storage space,

1000bps of unused bandwidth, and 10% unused processing power. At any time,

these clients represent 10 petabytes (1015 bytes) of available storage space, 10

billion bps of available bandwidth, and 105 GHz of wasted processing power! P2P is

the key to realizing this potential” [12].

 No single point of failure: Removing the centralized server, which can be subject

to crash, failure or overload would provide a more robust system which could

withstand major disasters or other events that would result in downtime.

 Distributed search: The Internet is a network of under utilized resources, partly

due to the traditional client-server computing model. Take web searching for

instance; no single search engine can locate and catalogue the ever-increasing

amount of information on the Web at an acceptable speed [1]. Google claims that it

searches over 8 billion web pages (June 2005), but this is just a small part of the

World Wide Web. Consider all the private storage on client machines, and all the

databases containing data the web engines have no access to. Using P2P

technology and giving each Peer a responsibility to search its own domain would

produce a much larger, more accurate and more updated search result.

Peer-to-Peer Programming on Wireless Devices

 19

2.5 Project JXTA

This chapter introduces the JXTA technology, gives a brief overview of JXTA

architecture and defines concepts and terminology. It also looks at advantages and

disadvantages of JXTA as a P2P platform.

2.5.1 Introduction

JXTA [3] is derived from the word Juxtapose, meaning side by side. “It is a

recognition that peer-to-peer is juxtaposed to client - server or Web based computing

– what is considered today's traditional computing model“[12].

 JXTA technology is a set of open protocols that allows any connected device on the

network ranging from cell phones and wireless PDAs to PCs and servers to

communicate and collaborate in a P2P manner. JXTA technology is now distributed

under an open-source license, and as such, is being co-developed by a larger

community of users interested in P2P computing [9].

JXTA peers create a virtual network where any peer can interact with other peers and

resources directly even when some of the peers and resources are behind firewalls

and NATs or are on different network transports [3].

Figure 8 - Virtual mapping of a JXTA network

TCP/IP

Physical
Network

Peer
Peer

Peer
Peer

Peer

Peer

Peer

Virtual Mapping

Peer

Firewall

NAT

JXTA Virtual
Network

HTTP

Peer-to-Peer Programming on Wireless Devices

 20

Project JXTA was conceived with a set of objectives intended to address the

shortcomings of the peer-to-peer systems already in existence or under

development, such as:

- Interoperability. “JXTA technology is designed to enable interconnected

peers to easily locate each other, communicate with each other, participate

in community-based activities, and offer services to each other seamlessly

across different P2P systems and different communities” [9]. Wikipedia [31]

lists over 60 different P2P networks and all of these have their own

communities, and few are able to operate together, even though they have

the same purpose. If the underlying infrastructure and protocols had been

standardised, all communities would have been able to communicate and

collaborate.

- Platform independence. “JXTA technology is designed to be independent

of programming languages (such as C or the Java programming

language), system platforms (such as the Microsoft Windows and UNIX

operating systems), and networking platforms (such as TCP/IP or

Bluetooth)” [9]. The majority of P2P solutions today assumes the use of

TCP, and can not operate in any other environment. Flexible P2P solutions

need a language that explicitly declares all of the variables in any P2P

solution.

- Ubiquity.” JXTA is designed to be implemented on any device with a

digital heartbeat, including sensors, consumer electronics, mobile phones,

PDAs, appliances, network routers, desktop computers, servers, and

storage systems.” [9] In doing so, the technology is set for the future vision

of interconnecting all sorts of electronic devices.

Peer-to-Peer Programming on Wireless Devices

 21

2.5.2 JXTA Architecture

The JXTA architecture can be broken into three layers, The Core, the Services and

the Applications, as seen in the figure below.

Figure 9 - The JXTA three-layer architecture

Each layer is built on the capabilities of the layer below.

The Core Layer

The core layer provides the essential elements of a P2P platform. These are the

elements that ideally would be agreed upon and shared by all P2P solutions:

- Peers

- Peer Groups

- Network Transport (Pipes, Endpoints, Messages)

- Advertisements

- Entity Naming (Identifiers)

- Security and Authentication Primitives

- Protocols (communication, discovery, monitoring)

All these elements are described in the next chapter; the terminology. Note that

JXTA’s six main protocols are implemented as services, but located at the Core layer

to distinguish them from the service solutions in the Service layer. All the other

aspects of a JXTA P2P solution are built on this core layer.

The Services Layer

The services layer provides optional P2P services, such as the following:

- Searching for resources at a Peer

JXTA Community Applications

Sun JXTA
Applications JXTA Applications

JXTA Community Services

Sun JXTA
Services JXTA Services

Peer
Commands

JXTA Shell

Peer Groups Peer Pipes
JXTA Core

Peer Monitoring

Security

Peer-to-Peer Programming on Wireless Devices

 22

- Sharing documents from a Peer

- Performing peer authentication

“Services are built on top of the JXTA platform to provide specific capabilities that are

required by a variety of P2P applications and can be combined to form a complete

P2P solution” [12]. This is also the layer where community-specific services can be

developed to extend the services already given by JXTA.

The Applications Layer

This layer contains the common P2P applications we know, such as file sharing and

instant messaging applications. The applications layer is built on the capabilities of

the services layer, and provides a user interface for the user to invoke the services.

The JXTA shell is shown as both an application and a service because it is a

collection of services invoked as peer commands, providing only a minimal user

interface.

2.5.3 Terminology

This is an introduction to the terminology and concepts of JXTA, and their relation to

the general framework that is common to all P2P networks. JXTA uses a certain

terminology that requires a familiarity with in order to understand the framework.

Advertisements

All network resources in JXTA, such as Peers, PeerGroups, Pipes and Services are

represented by advertisements. Advertisements are “language-neutral metadata

structures resource descriptors represented as XML documents” [13].

 The figure below shows a PeerGroup Advertisement (jxta:PGA):

Figure 10 - Structure of a PeerGroup Advertisement

The element tag <GID> is the unique PeerGroup ID. <MSID> is the module

specification ID which identifies the advertisement that describes all services

<?xml version="1.0"?>

<!DOCTYPE jxta:PGA>

<jxta:PGA xmlns:jxta="http://jxta.org">

<GID> urn:jxta:jxta-NetGroup</GID>

<MSID>urn:jxta:uuid-DEADBEEFDEAFBABAFEEDBABE000000010206</MSID>

<Name>NetPeerGroup</Name>

<Desc>NetPeerGroup by default</Desc>

</jxta:PGA>

Peer-to-Peer Programming on Wireless Devices

 23

available in this PeerGroup. <Name> is the name of the group, and <Desc> is the

optional description of the group.

JXTA ID’s

Every network resource (Peer, Pipe, data, PeerGroup etc.) is assigned a unique

JXTA ID. These ID’s are abstract objects enabling multiple ID representations (IPv4,

IPv6 or MAC addresses) to coexist in the same JXTA network. It is using 128-bit

random UUIDs allowing each peer to generate its own IDs.

 A single peer supporting multiple network interfaces (Ethernet, Wi-Fi, etc.) will have

the same Peer ID, even if they switch between networks.

Peers
Peers are nodes on a P2P network. A Peer is not limited to act as an application

running on a computer connected to a network; the JXTA definition suggests that a

peer might just as well be an application distributed over several machines, or that it

might be a smaller device, such as a mobile phone, that connects indirectly to the

network. A single machine or a single application might even be responsible for

running multiple peer instances.

 The JXTA book [12] defines a peer as follows:

“Any entity capable of performing some useful work and communicating the results of

that work to another entity over a network, either directly or indirectly”

There are three possible types of peer in a P2P network:

Simple Peers

- Serving a single end user

- Typically hidden behind a firewall or Native Address Translation (NAT)

equipment

- Have very little responsibility on a P2P network

Rendezvous Peers

- Rendezvous means “gathering” or “meeting place, implying that a rendezvous

peer provides peers with a network location to discover other peers and

resources.

- Forwards messages to all its known peers

- Can cache information to improve responsiveness and reduce network traffic.

Router Peers

Peer-to-Peer Programming on Wireless Devices

 24

- Enables other peers to communicate through a firewall or NAT.

- This Peer provides routing information to perform mapping between a unique

ID specifying a remote peer and a representation that can be used to contact

the peer via router peer.

PeerGroups

The JXTA book [12] defines a PeerGroup as:

“A set of peers formed to serve a common interest or goal dictated by the peers

involved. PeerGroups can provide services to their member peers that aren’t

accessible by other peers in the P2P network.”

 The main purpose of peer groups is to subdivide the JXTA space into smaller, more

private parts, which is necessary considering that all P2P applications would share

the same protocols. For example, a messenger application might use one group, and

a file sharing application, such as Gnutella, would use another group. The groups are

divided based on the following [12] [13]:

 Mutual interest: Peers who connect with the same goal, or are using the same

application or service may want to form a group to keep the service private among

the group members and to avoid unnecessary network traffic.

 Security: A peer group can create restrictions by employing authentication services.

It limits the access to the peer group and to its services.

 Monitoring: Peer groups permit monitoring of peers for any purpose, for instance

heart condition, status information or traffic introspection.

 On boot time, every peer joins the NetPeerGroup, which is the root group that every

peer belongs to initially. A peer group provides a set of core services specified by

JXTA:

- Discovery Service

- Membership Service

- Access Service

- Pipe Service

- Resolver Service

- Monitoring Service

If these core services are inadequate for a more demanding PeerGroup, additional

services can be developed for specific group purposes.

Peer-to-Peer Programming on Wireless Devices

 25

Pipes

The network transport layer handles the data transmission over the network,

including breaking the data into manageable packets, adding appropriate headers

and, in some cases, ensures packet arrival to its destination. The transport protocol is

not fixed; it can be low-level, such as TCP or UDP, or high-level, such as HTTP or

SMTP.

 JXTA handles the communication through Pipes. Pipes are virtual communication

channels used to send and receive messages. They create the illusion of virtual in

and out pipes that a peer can send data on or listen to. Pipes can connect to one or

more endpoints referred to as input pipes (the receiving end) and output pipes (the

sending end)

 Pipes are published and discovered using Pipe Advertisements, and have a unique

Pipe ID. A Pipe offers two modes of communication: Unicast Pipe, which connects

two pipe ends with a unidirectional and asynchronous channel, and Propagating

Pipe, which connects one output pipe to multiple input pipes. The two communication

modes are visualized in the figure below.

Figure 11 - Unicast and Propagate Pipes

Peer A

Input Pipe

Output Pipe

Peer B

Unicast (Point-to-point) Pipe

Peer A

Peer B

Peer C

Peer D

Propagate Pipe

Peer-to-Peer Programming on Wireless Devices

 26

2.5.4 JXTA Protocols

Protocols are used to dictate what data is sent and to recognize the data on a

receiving peer.

Project JXTA has defined a set of six protocols divided into two categories; the Core

Specification Protocols and the Standard Service Protocols. Each protocol addresses

one fundamental aspect of P2P networking. The JXTA v2.0 Protocols Specification

[13] describes the protocols like this:

Core Specification Protocols
- Endpoint Routing Protocol (ERP) is used to discover a route used to send

messages between peers. If the network topology changes, the peer can use

the ERP to discover new routes that are known by other peers.

- Peer Resolver Protocol (PRP) is the protocol by which a peer can send a

generic resolver query to one or more peers, and receive one or many

responses to the query.
Standard Service Protocols

- Rendezvous Protocol (RVP) is the protocol by which peers can subscribe or

be a subscriber to a propagation service. Within a PeerGroup, a peer can be a

rendezvous peer or listen to rendezvous peers. RVP is used by the PRP in

order to propagate messages.

- Peer Discovery Protocol (PDP) is used by a peer to publish advertisements or

discover advertisements such as peers, groups, pipes or content from other

peers. PDP uses the PRP to send the messages.

- Peer Information Protocol (PIP) is used to obtain status information about

peers, such as state, uptime, traffic load, capabilities, etc. PIP uses the PRP

for message sending.

- Pipe Binding Protocol (PBP) is used by a peer to establish a virtual

communication channel (pipe) between one or more peers. PBP uses the PRP

to send messages.

 The protocols are semi-independent of the others, so a peer can choose to

implement only some of the protocols to provide functionality, and to rely on default

behaviour for those not used. The next figure illustrates the use of protocols between

two peers, and how the layers of the protocol stack are built to rely on each other.

Peer-to-Peer Programming on Wireless Devices

 27

Figure 12 - The JXTA protocol stack.

Each protocol is divided into two parts; one part handles sending messages, the

other part handles incoming messages. The protocols are written in XML, have low

overhead and are easy to implement on any transport [13].

2.5.5 Advantages and Disadvantages of JXTA

The JXTA technology started out as the ultimate solution to the P2P paradigm, and

the interest from the developer community was enormous. Now, after letting the hype

settle, the advantages and disadvantages of JXTA become more apparent. In [12],

the advantages of JXTA are defined as:

- As stated above, interoperability seeks to provide a standard way to

communicate in a P2P network.

- JXTA does not limit development to a specific language, environment or

networking platform.

- JXTA is available for peers behind firewalls and NATs.

- P2P functionality is provided to “every device with a digital heartbeat”, from

supercomputers to digital sensors.

Peer Discovery
Protocol (PDP)

Peer Information
Protocol (PIP)

Peer Binding
Protocol (PBP)

Peer Resolver
Protocol (PRP)

Rendezvous
Protocol

Peer Endpoint
Protocol (PEP)

Network Transport

Peer Discovery
Protocol (PDP)

Peer Information
Protocol (PIP)

Peer Binding
Protocol (PBP)

Peer Resolver
Protocol (PRP)

Rendezvous
Protocol

Peer Endpoint
Protocol (PEP)

Network Transport

Via the Peer Resolver Protocol

Via the Peer Resolver Protocol

Via the Peer Resolver Protocol

Via the Endpoint Routing Protocol

Via the Endpoint Routing Protocol

Via installed Network Transports

Via installed Network Transports

Local Peer Remote Peer

Peer-to-Peer Programming on Wireless Devices

 28

- XML as a way of writing messages is widely understood and compatible for

the majority of platforms available. It brings the advantages of XML, such as

semi structured, easy and well defined language, to the P2P developer.

However, Brendon Wilson [12] also lists some disadvantages to the JXTA platform:

- Many claim that the P2P technology needs more time to mature before

developing a P2P standard. Therefore, the JXTA initiative may have come

before its time.

- The extensive framework of JXTA may be too complex to learn. A developer

may find it too time consuming and unnecessarily hard to keep track of its

specification.

- JXTA does not attempt to address how community services are invoked.

Several standards for service invocation exist, such as the Web Services

Description Language (WSDL), but none has been specifically chosen by the

JXTA Protocols Specification.

- The network overhead of XML messaging might be more trouble than it’s

worth for small standalone applications. It might just be easier for the

developer to create their own protocols if they have no intention of taking

advantage of JXTA’s capability to incorporate other P2P services into the

application.

All these pros and cons highlight a need for balance between flexibility and

performance when implementing a P2P application. JXTA seems to be more suited

for developing P2P solutions that have the flexibility to grow in the future. For a

smaller, more specific P2P application, JXTA may not be efficient enough.

Nevertheless, a P2P developer who uses the JXTA platform does not have to start

from scratch, and can focus his work on the design of his application, not the P2P

networking.

2.5.6 Summary

In this chapter I have explored the JXTA platform and given an insight to the

technology, different definitions and the terminology. This terminology is widely used

in this thesis, and this chapter can be helpful to understand different concepts used in

my contribution. I have also listed some of the advantages and disadvantages of

JXTA as a P2P Platform.

Peer-to-Peer Programming on Wireless Devices

 29

2.6 Project JXME

This chapter looks closer at the JXTA for J2ME (JXME) API, and how it can be used

as a foundation for a P2P system for mobile phones.

2.6.1 Introduction

The JXTA for J2ME (JXME) Project [8] aims to provide JXTA compatible

functionalities on constrained devices using the Connected Limited Device

Configuration (CLDC) or the Connected Device Configuration (CDC) and the Mobile

Information Device Profile (MIDP).

 Using JXME, any MIDP device will be able to participate in P2P activities with other

devices within the JXTA network. The project is also an open source effort by the

JXTA community, and is under constant development and testing.

 The first JXME implementation was done in J2ME/MIDP 1.0 to implement a

compatible JXTA implementation for J2ME. Due to the constraints of the mobile

devices and the J2ME platform, it is not feasible to implement a complete JXTA edge

peer on a MIDP device. This is solved by moving all of the heavy workload to a relay

peer, which is also required due to limited networking support and because the

devices may be behind firewall or NAT. This relay Peer, who is called a JXME Proxy

Service, runs on a JXTA Rendezvous peer. This Peer has substantial computing

power, e.g. a normal desktop computer.

 The figure below shows wireless devices that are members of a JXTA network

connect through JXTA relays, communicating independently of underlying network

protocols and network carriers. [9]

Figure 13 - JXTA Network with JXME devices

JXME
peers JXTA

Proxy
Service

JXTA
Proxy
Service

JXTA PeerJXTA Peer

Peer-to-Peer Programming on Wireless Devices

 30

2.6.2 JXME API

The JXME API consists of 3 classes, PeerNetwork, Message and Element. Since the

MIDP API doesn’t support XML, the Message and Element classes replace this

structure, giving the developer a sense of structured messaging similar to xml.

PeerNetwork

GROUP : String
PEER : String
PIPE : String
DEFAULT_GROUP : String

+close
+connect
+createInstance
+listen
+poll
+search
+send
+create

Message

«create»
+Message
 getElementCount
+getSize
+getElement

Element

«create»
+Element
+getData
+getMimeType
+getName
+toString
+getNameSpace

Figure 14 - JXME API

Element class
An element represents a single JXME message element, which is used by the JXME

implementation to author JXME messages. This class is also used by the developer

to customize his/her own JXME messages. A namespace is used to group elements,

like in XML. The JXTA messages use a private namespace, namely the “jxta”

namespace. The developers are free to create their own namespaces for the

message elements.

 The Element class takes 4 parameters:

- name – the name of the Element

- data – the data which is to be transported over the network

- nameSpace – The Element uses, like XML, a namespace to categorize the

elements

- mimeType – the mime type of the data. Default is “application/octet-stream”.

Peer-to-Peer Programming on Wireless Devices

 31

Message class
The message class represents a JXTA

Message, which is composed of an array of

elements. Certain elements are reserved for

use by the JXTA network, which use the

private namespace “jxta”. The Message object

is sent between the relay and JXME device,

and a method for traversing the Message for

elements must be created on each side. The

Figure to the right shows the Elements of a

JXME Message.

 The interesting part here is the body of the

message, which describes the different

elements sent between the JXME client and

the JXME Proxy Relay.

Figure 15 - Message elements

PeerNetwork class
The PeerNetwork class handles all the communication with the relay, such as

connecting to the JXTA network, creating and searching for different advertisements.

The PeerNetwork hides the low-level communication, giving the developer simple

methods to create a JXTA Peer for the J2ME device:

- createInstance() .- Creates a new instance of the PeerNetwork

- connect() : Connects to the relay

- create() : Creates a new Peer, PeerGroup or Pipe

- join() : Asks the proxy to join a PeerGroup. Application can then use the

createInstance() method to create a new instance which would be a member

of the group.

- listen() : Opens a Pipe for input.

- search() : searches for Peers, PeerGroups or Pipes.

- send() : Method for sending data to a specified Pipe.

- poll() : polls the proxy for new messages.

Peer-to-Peer Programming on Wireless Devices

 32

2.6.3 JXME Proxy Service

The JXME project defines four tasks for the JXME Proxy Service [8]:

- Compacts Advertisements. A JXTA for J2ME peer doesn't have enough

memory to store all the incoming advertisements. As a result, JXTA for J2ME

relay service needs to filter unnecessary advertisements. It also strips down

an incoming advertisement to the bare minimum as per JXTA for J2ME peer's

requirement.

- Translates Messages. The service translates JXTA XML messages into binary

messages understood by JXTA for J2ME peer and vice versa.

- Acts as a proxy. The proxy acts on behalf of a JXTA for J2ME peer. It

o Creates, publishes and discovers Pipe Advertisements

o Creates, joins and discovers Groups

- Relays messages. JXTA uses relays for NAT traversals. For JXTA for J2ME, a

relay stores all the incoming messages for a JXTA for J2ME peer. A J2ME

peer periodically polls the relay to get all the incoming messages for it. For

better performance, JXTA for J2ME tries to get back data on each outbound

connection, if there is any data queued at the relay for that peer.

Figure 16 - The JXME proxy Service message flow

The Proxy peer belongs to the JXTA network as a normal peer, but also handles all

requests to and from the mobile device in its name, just like a web proxy.

 The JXME device communicates with the proxy service through a J2ME HTTP

connection, and sends some predefined commands in the request headers to tell the

proxy what it wants to be done. This can be found in JXTA operations like creating a

pipe, joining a group, sending a message to a pipe, etc.

The proxy Service then processes the request and interacts with the JXTA network to

perform the operation.

JXTA
NETWORK

JXME
Proxy
Service

1. Request

3. Response

2. Interaction
with network

Peer-to-Peer Programming on Wireless Devices

 33

Any result from the operation is sent back to the JXME peer as a response message

to the HTTP request. This can be a search result, a confirmation message or an error

message. It also keeps a queue of messages for the JXME Peer that is sent when

the Peer polls for messages.

2.6.4 JXME Proxyless

The next step for the JXTA development community is to create a proxy less version

of the JXME implementation for CLDC devices, which removes the need for a proxy

service to communicate with the JXTA network.

With the release of MIDP2.0, sockets and datagram connection (UDP transport) has

been implemented for J2ME, removing the limitations of a HTTP connection and

opening server functionality for mobile devices. Also, the computing power of mobile

phones has evolved and will continue to improve, giving a mobile device more

flexibility and peer responsibility.

 At the moment, only the CDC version of JXME Proxyless is prioritized, and a beta

version was released in June 2005 and is available at the project homepage [8] for

download and exploration. The CLDC version depends on community effort, and the

project status is not defined at the time of writing.

2.6.5 Summary

JXTA for J2ME is a project still under development and has therefore not been fully

implemented and tested. The goal is to let small connected devices participate as

equal Peers in the JXTA network. The project is ongoing, and is divided into a CDC

implementation, for devices such as PDA’s, and a CLDC implementation, for devices

such as mobile phones. The JXME Proxyless API requires powerful resources, and is

therefore first implemented on CDC devices. A Proxyless version for CLDC devices

is still not implemented, and is depending on volunteer community effort.

Peer-to-Peer Programming on Wireless Devices

 34

2.7 Project TINI

This chapter gives a brief introduction to the TINI project, which can enable sensors

to participate on a JXTA P2P network.

2.7.1 Introduction

The TINI (Tiny Internet Interface) Project [10] is also a sub-project of the JXTA

community. It enables even smaller wireless devices, such as wireless sensors to

participate as Peers on the JXTA network. I want to briefly describe this to show that

the JXTA technology can be implemented on sensors, which is mentioned in the

problem specification.

2.7.2 The TINI Binding

The TINI (Tiny Internet Interface) [10] is a Java virtual machine on a SIMM sized

printed circuit board.

A sensor must have these properties:

- Ethernet interface and TCP/IP stack.

- Various I/O ports, such as 1-Wire, CAN, I2C, serial, and others

- CPU with Java virtual machine

The TINI binding for JXTA is an ongoing project to include small sensors as peers on

the JXTA network. The TINI lets you Internet-enable such sensors, and JXTA gives it

Peer-to-Peer capabilities. A combination gives you Peer-to-Peer appliances; small

sensors contributing to a larger P2P network, or a network consisting of appliances

collaborating, such as a refrigerator and a freezer to track inventory.

Another use of sensors is in medical monitoring. Body Area Networks (BAN) is a

huge field of research, and enabling these as Peers in a P2P network is a huge

advantage for patient monitoring over large distances.

2.8 Summary

In this chapter, I have presented some of my theoretical research in a literature study.

The goal is to introduce important concepts and terminology to the reader and justify

my decisions in the next chapter

Peer-to-Peer Programming on Wireless Devices

 35

3 System Design

3.1 Introduction

In this chapter I will propose a P2P system for wireless devices using the JXTA

platform. The system will be based on what I have learned in my research around

P2P and JXTA, and also what I have come to experience during testing – what is

possible in theory and what actually works. This is closely related to the possibilities

and constraints of today’s mobile phones, the J2ME technology and wireless

network. I will also point out what makes the JXTA framework suitable for this

system.

3.2 Network Architecture

Creating a P2P System design is not easy due to its complex nature. One of the

goals of the JXTA Project is to ease this heavy load off the developer, so that they

can spend more time developing the actual application. Unfortunately, the JXME

Project is an ongoing process and is not fully complete. Being a lightweight version of

JXTA, JXME can only perform the most basic P2P operations.

 I based my Mobile P2P design on my literature research and constant functionality

testing. I did not want to design a system that only worked in theory; I wanted

everything to be actually working, with today’s technological possibilities and

limitations. So, with this in mind, I have implemented many small mobile P2P

applications to test different aspects of P2P, such as Peer discovery, instant

messaging and file sharing. As a result, I present a Mobile P2P System based on

JXME, but with my own solutions to operations not working or not supported by the

JXME framework.

 Even though the evolution of mobile technology is impressive, today’s mobile

phones still have substantial constraints which we must take into consideration when

developing a mobile P2P design. As discussed in the literature study, a phone will

need the help of a Proxy Service to work as an adequate peer on a JXTA network.

This is also the main reason a mobile P2P network can not consist of mobile devices

only. The routing and rendezvous tasks demand more computing power, memory

and bandwidth than today’s mobile phones can provide.

Peer-to-Peer Programming on Wireless Devices

 36

 A mobile P2P system with only mobile phones as peers will need assistance from

more powerful peers, like personal computers, to handle the message routing and

rendezvous tasks. The mobile devices act only as leaf nodes with basic peer

capabilities. The figure below shows the relationship between the physical and virtual

network layer of my P2P architecture.

Figure 17 - Mobile P2P Architecture, physical and logical layer

Peers are nodes on the P2P network – They can have different responsibilities, and

some peers are not even visible on the virtual network layer, they just relay and route

messages for the leaf peers.

3.2.1 JXME Peer

A JXME Peer is a mobile phone, or a phone emulator executed on a computer. It is

called a JXME Peer because it uses the JXME API to communicate with the P2P

network.

The JXME Peer is always a leaf peer, with a minimum of P2P responsibilities. Due to

its constraints, it must leave the heavy responsibility to the larger peers. A peer can

communicate with the network in three ways:

JXME
Proxy Service

JXME Proxy
Service

JXME
Proxy Service

Physical Network

Virtual Network

Firewall

JXME Peers Firewall

Peer-to-Peer Programming on Wireless Devices

 37

- Send pre-defined messages to the JXME Proxy (such as connect, create pipe,

join PeerGroup)

- Send a Unicast (direct) message to another Peer

- Send a Propagate (broadcast) message to all Peers on the Network

Since the JXME Peer uses HTTP Connection to communicate, it can not listen for

new messages. HTTP is a request / response protocol, so the Peer needs to send a

request to get data from the Proxy Service. To simulate listening, the Peer polls the

Proxy Service at a given interval to check if it has any messages pending. The Poll

message is an empty JXME Message.

3.2.2 JXME Proxy Service

The JXME Proxy Service was described in the literature study of JXTA and acts

mainly as a message relay for the JXME Peer(s). One JXME Proxy Service can be

connected to many JXME Peers at the same time, and it can also have Relay-

properties, which lets it communicate with the JXTA Network over a Firewall or NAT.

It can connect to a Rendezvous Peer or directly to another Proxy Service.

 This peer can also be a Rendezvous Peer itself, so, for a simple network, the Peer

can act as a JXME Proxy Service, Relay Peer and Rendezvous Peer at the same

time. This is what I propose for the JXME Proxy Service. One simple way to

implement this is to use the JXTA Shell application which can be downloaded from

shell.jxta.org. The working configurations for my design are explained here (JXTA-

Shell version 2.3.3):

These settings enable the JXTA

Shell to act as a relay,

rendezvous and JXME Proxy.

The IP-address is the local

computer’s IP, from which the

JXME Peer connects to. The Port

number the JXME Peer uses is in

this case 9700, which is set in the

HTTP settings.

 On the Rendezvous/Relays tab,

the “Use a Relay” checkbox

should be checked.

Figure 18 - JXTA Shell Configurations

Peer-to-Peer Programming on Wireless Devices

 38

3.3 P2P Operations

In the literature Study, foundational P2P properties for a Peer were established. I will

now propose a way to realize this in my design. I will divide the tasks into:

- Network Establishment

- Peer Discovery

- Advertising Resources

- Sharing large files

3.3.1 Network Establishment

The Peer connects to the JXME Proxy Service via the JXME API. It first creates a

new instance of the PeerNetwork class, and then uses this to send a connect request

to the proxy. After this, the peer can start performing its initial P2P operations. The

messages between the Peer and the Proxy Service are illustrated in the figure below:

Figure 19 - Peer connecting to the network

To separate one implementation or area of interest from the rest of the JXTA

network, PeerGroups are used. The founding Peer creates a new PeerGroup and

joins it. Other Peers joins the existing group.

 A propagate pipe is created by the founding Peer, which starts listening on it. Other

Peers searches for it and starts listening. This is the common communication

channel; a broadcast channel.

 Unicast Pipes are created by all Peers; one unique Pipe for each Peer. This is the

personal communication channel for a Peer.

JXME
Proxy
Service

Success

Connect request

Mobile
peer Result

Create / Search PeerGroup

Success

Join PeerGroup

Result

Create / Search for Propagate Pipe

Success

Create Unicast Pipe

Success

Listen to Unicast and Propagate Pipes

Peer Discovery Request

Result(s)

Peer-to-Peer Programming on Wireless Devices

 39

 To address the loss of connectivity problem, the Peer will not lose connection if it is

temporarily disconnected by the phone network. As soon as it is connected again, it

will be able to continue with the Peer operations on the network. All messages it may

have missed during the time offline have been cached by the JXME Proxy Service,

and are sent to the Peer as soon as it Polls for new messages.

3.3.2 Peer Discovery

Searching for other peers on the network with common interests can be managed in

many ways. The JXME API lets you create Peer Advertisements, and search for

other Peer Advertisements, by name or the id of the advertisement. After the Peer

has been discovered, a search for the Peer’s pipe must be executed before any

communication between Peers can begin.

 To minimize the network traffic, I have left out Peer Advertising from the system,

only discovering Peers by the Pipes they advertise. So, when a Peer connects to a

network, it creates a new Unicast Pipe, and uses this as its peer advertisement and

unique ID on the network.

 So, we know what to search for, but another question is how do we search for it,

and how often? A mobile phone is considered to have a very unreliable connection

and may connect/disconnect all the time. This is a huge issue in mobile P2P

computing. Having all peers broadcasting a pipe discovery at all times would result in

huge network traffic overhead, and relying on cached advertisements would not give

a real-time image of the peer network. There must be a balance between the need

for up-to-date data and the available network capacity.

 In my research, I described three types of discovery; no discovery, direct discovery

and indirect discovery. The JXTA technology aims to use indirect discovery to save

network traffic, but this does not work very well in JXME, since the resource

advertisements are not removed when a Peer leaves the network.

 This design wants to attach importance to real-time peer discovery. Since we are

dealing with mobile peers, we have a network of peers connecting and disconnecting

more frequently than on a wired network. The battery may run out, the device may be

out of range and so on. My proposal is to propagate a discovery request at a given

interval and re-populate the peer list with the responses. The interval may change

from application to application, according to their need for real-time update, and the

probability of changes.

Peer-to-Peer Programming on Wireless Devices

 40

Figure 20 - Peer Discovery

The request message is an empty message with a simple Peer-Discovery-Request

header. The response message could include anything, but should be as small as

possible. A pipe id and the name of the peer should be included.

 The location of a JXME Proxy Service consists of an IP address and a Port number.

This is the gateway for the Peer to the P2P network, so finding the JXME Proxy

Service is a basic feature of a P2P application. There is no way to search for the

Proxy; the Peer needs to know the address statically.

 This makes the peer vulnerable to a single-point-of-failure; if the Proxy Service

crashes, the peers connected to it become disconnected. A way to solve this issue is

to have the address of many JXME Proxy Services, so if one crashes, the peer

automatically tries to connect to another. To find the addresses of active JXME Proxy

Services, a peer could check a web URL, which could be a repository for active

Proxy peers, with dynamic updating.

3.3.3 Advertising Resources

The JXME API lets you create resource advertisements and search for them in the

same way you create and discover Peers, PeerGroups and Pipe advertisements. The

advertisement is sent to the JXME Proxy Service, and stored in its cache memory.

However, this solution creates the same problem as any cached advertisements on

the proxy. Once it is advertised, it stays in the cache even if the Peer has removed

the advertised resource on its phone.

 In my design, I let the mobile peer have some responsibility in resource advertising

and discovery. The peers themselves must check their local repository and respond

to a search request. This gives the peer more control, but slows down the search

process, since all search messages must go out to all leaf peers.

JXME
Proxy
Service

3. Zero or more
responses

2. Propagating
discovery request

4. Zero or more
responses

1. Propagating
discovery request

Mobile
peer

JXTA
NETWORK

Peer-to-Peer Programming on Wireless Devices

 41

Figure 21 - File discovery

3.3.4 Sharing large files

Another aspect of mobile P2P computing is large file sharing. Sharing and

downloading large files has become the most popular Peer-to-Peer activity on wired

network, besides Instant Messaging of course. The main reason for this is the large

bandwidth available. Mobile Peer-to-Peer on the other hand, is not suited to this. The

reasons are three-folded; the connectivity of the mobile devices is highly unreliable

compared to a wired network, the memory is very limited, and the bandwidth is low.

 The bandwidth problem will depend on the network type. With the implementation of

the 3G network, the mobile phone network will have capabilities to transfer large

amounts of data faster than ever before. The General Packet Radio Service (GPRS),

which provides moderate data speed on the GSM network, is fully functional and has

a theoretical data rate of 170 kbit/s. A realistic bit rate would be closer to 30 – 70

kbit/s according to Wikipedia encyclopaedia [31].

 The memory problem: Since many phones already come with memory-cards, the

problem is not persistent storage, but runtime memory and available memory for a

J2ME application. As discussed in the literature study, the CLDC 1.1 specification

[22] assumes a minimum of 160 Kbytes of persistent memory and at least 32 Kbytes

of volatile memory. Each mobile phone limits the maximum amount of data a MIDlet

can store. Table 1 lists some of these properties for new Mobile Phones.

Mobile
peer 1

JXME
Proxy
Service

JXME
Proxy
Service

Mobile
peer 4

JXME
Proxy
Service

Mobile
peer 3

Mobile
peer 2

JXTA
NETWORK

Propagating Search

Zero or more results

Peer-to-Peer Programming on Wireless Devices

 42

 The File Connection API [35] is an optional package that many phones now contain.

It allows Java to access the device file system, such as image folder or memory stick.

Saving data to the file system enable the application to free the Heap memory.

 The connectivity problem can be a serious issue when transferring large files

between peers. This is a problem out of our control; we can only deal with it and find

a solution that ensures data integrity and resends corrupt or lost data packets.

 The JXME platform sends data as Messages, with elements of bytes. Unlike the

JXTA API, JXME has no support for large Message segmentation. JXTA socket for

example, creates a new JXTA message every time the buffer becomes full or the

buffer is explicitly flushed by the application. In JXTA, the default buffer size is 16 Kb

[24]. However, JXME does not implement this functionality; it sends the Message as

one large stream of data. This causes problems in the JXME Proxy Service, because

it can only hold a limited amount of data for each Message in its buffer. In the testing

chapter, this buffer size will be investigated and tested to find the best performance.

 I propose a design where large file transfer is possible for JXME devices. Once a

peer has got a response to its file discovery request, it can request a file transfer from

the source peer, which can start sending the file to the input pipe of the receiving

peer.

Figure 22 - File transfer request and response in the JXME Network

If a file is larger than the buffer size, the Message will be segmented and sent as

chunks of smaller Messages. The receiving peer must be able to store and assemble

the segmented Message in a correct manner.

 If the receiver fails to receive some of the segments, the file will be corrupted. There

are many ways to handle this. The easiest way – but also the slowest and most

Mobile
peer 1

JXME
Proxy
Service

JXTA NETWORK

JXME
Proxy
Service

Mobile
peer 2

Propagating Search

Zero or more data messages

Peer-to-Peer Programming on Wireless Devices

 43

resource demanding – is to ask for the whole file again if the file is corrupted. Since a

large file is segmented into many small segments, it would be desirable to just ask for

the missing chunks. This can be achieved if the Messages contain info about where

this chunk fits into the bigger picture – a start value and an end value.

 In JXME, Elements can only contain byte streams, so all data must be converted to

byte arrays. This is easy to implement with strings of text messages, but J2ME does

not convert an Image class to a byte array. To transfer image files, one must

preserve the image data as bytes.

3.3.5 Summary

In this chapter I have described how a P2P System can be created using JXME. The

services not working in JXME or not implemented have been highlighted and an

alternative way to implement this has been designed. In the next chapter, I will show

such a system can be implemented in a prototype.

Peer-to-Peer Programming on Wireless Devices

 44

4 Prototype Design

4.1 Introduction

This chapter describes the design process of the prototype application. A

requirement specification is extracted from a proposed disaster scenario where all

user interactions are mapped and modelled using UML diagrams. Class diagrams

and sequence diagrams have been modelled to show how objects interact. This work

has been developed alongside the implementation process. Finally, the protocols

used are listed and explained.

4.2 Scenario

“Medical Emergency and Cooperation System (MECA)”
Large natural disasters or terrorist attacks create a medical emergency which

demands fast response and large supply of emergency personnel. Often the

emergency is spread over a wide area and has innumerable potential victims. Such

emergencies are often difficult to control and comprehend, and a need for instant

communication between personnel is important; constant update of the situation and

sharing of important information to map the situation and distribute help to the right

areas.

 With this scenario, I will propose a way to use Mobile P2P to assist in large

emergencies, and I will also develop a prototype based on this scenario.

4.2.1 Preconditions

Preconditions for the scenario include a wireless connected device that the users

carry around at all time, which has enabled packet based network data transport,

java support and a graphical user interface. Another precondition is that the disaster

area has network connectivity.

4.2.2 Goals

- Report injured people (emergencies)

- Mapping of emergency personnel

- Sharing visual information (Images) of injuries, damages to help comprehend

the extent of the emergency.

Peer-to-Peer Programming on Wireless Devices

 45

- Utilize the fact that the peers are personal mobile devices, and share location

information.

4.2.3 Normal action sequence

200 miles outside the coast of India the Arabian and Indian tectonic plates suddenly

shift, tearing the sea floor apart. The displacement of water created by the undersea

cliff causes a shockwave which is displaced into a huge wave moving through the

ocean on all sides. A Tsunami.

 The destruction on the coastline of Oman by the Arabian Sea is devastating, leaving

a disaster area of great proportions. Thousands of houses, hotels and infrastructure

are destroyed by the enormous power of the Tsunami, leaving a huge area in

desperate need of help.

 The international community immediately responds and several countries send

rescue squads to the disaster area. A Peer-to-Peer network is established and all

rescue personnel start their Medical Emergency Cooperation Application (MECA)

which connects to the network.

 Lisa, a volunteer from the Red Cross, arrives at the island of Masirah outside the

Oman mainland and starts her MECA application. She downloaded and installed the

MECA wirelessly on her mobile phone at the morning meeting and got a brief

introduction to the system. After successfully logging in, the application requests a

map of the area from one of the other Peers on the network. After successfully

receiving the file, the main screen shows an empty satellite map. The application

immediately broadcasts a message with her coordinates to all other Peers. All Peers

in the rescue group for Masirah island receive the Message from Lisa, and a

response message with their coordinates is sent back to her application. After a

while, the map starts to populate with Peers, giving an overview of the rescue

personnel distributed on the island.

 After a while, Lisa enters an area clearly hit hard by the disaster. She sees many

people with an immediate need for medical attention, and use the mobile to report

the situation. She sends coordinates and the level of emergency, yellow, orange or

red, where red is the highest level of emergency.

 Soon, she senses the mobile vibrating, indicating that she has received a direct

request message. The message is from another rescue person. It is a request for an

image of the emergency she reported. The application has switched to camera mode,

Peer-to-Peer Programming on Wireless Devices

 46

so she snaps a picture, and presses the “send image” button to send it back. She

takes a new look at the map, and observers that since last time she looked, the map

has been populated with several icons, indicating injured people. She can see the

rescue personnel interactively moving towards the icons to help where it is most

needed.

 After having control of the situation in her area, she removes the emergency state

from the map by broadcasting a message to remove the emergency sign. She is now

available to assist in other emergencies, and checks the map. She observes many

emergency signs north of her position and decides to move north to assist.

4.3 Requirement Specification

The Requirement Specification describes what shall be developed, not how it should

be implemented. The requirements of this system can be divided into two parts;

Functional and Non-functional Requirements. Functional requirements specify what

services the system should provide, how it should react to particular inputs and

events.

 Non-functional requirements are constraints on the system or functions offered such

as particular device constraints, look and feel, usability or security.

4.3.1 Functional requirements

This section will describe the functional requirements for the prototype based on the

scenario created above. I will describe each requirement in free-text, with an identifier

in the format “FR-##”, where ## is a sequential number, and illustrate the

requirements with Use Case Diagrams.

 I will use Unified Modelling Language (UML) to construct and visualize the artefacts

of the system. Use Case diagrams are a good way to describe what the system does

from the standpoint of the observer. This is closely connected to the scenario, and I

will build Use Case diagrams to summarize my scenario in chapter x, and then

determine requirements from this.

Peer-to-Peer Programming on Wireless Devices

 47

My Peer

Connect to
network

Exit Application

Figure 23 - Use Case 1: User Starts Application

Table 3 - Functional Requirement 01: Connect to network
FR-01: Connect to network
Actor My Peer
Summary The user connects to the Peer-to-Peer network
Precondition The application is started and the JXME Proxy Service is

running
Basic course of events 1. The user sets his peer name and JXME Proxy Service

URL.
2. The user executes the “connect” command
3. The application connects to the Service and joins the

PeerGroup.
4. The application creates communication channels
5. A new Peer object is created (See FR-03) and the

application sends the Peer advertisement to the
network.

6. The Application requests the Map.
7. The application starts listening to incoming messages

Alternate paths In step 6, if the application is a founding Peer (first Peer in the
PeerGroup), then he must download the Map from a web
server. If not, he requests the Map from the first Peer he
discovers.

Exception paths In step 3, the application can’t connect, and returns to the
connect screen with an error message.

Post condition The user stays connected to JXME Proxy Service
Author Tore Mørkved
Date 19 May 2005

Table 4 - Functional Requirement 02: Exit Application
FR-02 Exit Application
Actor My Peer
Summary The user terminate the application
Precondition
Basic course of events 1. The user executes the exit command.

2. The application sends a disconnect message to the
network.

3. The application is exited
Alternate paths N/A
Exception paths N/A
Post condition The application is exited and memory flushed.
Author Tore Mørkved

Peer-to-Peer Programming on Wireless Devices

 48

Date 19 May 2005

Add Peer

Other Peers

Update peer

Remove peer

My Peer

Figure 24 - Use Case 2: Peer Operations

Table 5 - Functional Requirement 03: Add Peer
FR-03 Add Peer
Actor My Peer, Other Peers
Summary A new Peer object is created and added to the map
Precondition The application is connected to network and listening to

incoming messages
Basic course of events 1. My Peer connects or Peer Advertisement is received

2. Application creates a new Peer object
3. The peer is added to the map
4. The peer object is sent to the network.

Alternate paths If the event is triggered by Other Peers, step 4 will be avoided.
Exception paths N/A
Post condition A new Peer is registered and painted on the map
Author Tore Mørkved
Date 19 May 2005

Table 6 - Functional Requirement 04: Update Peer
FR-04 Update Peer
Actor My Peer, Other Peers
Summary Peer information is updated.
Precondition The peer is repainted on the map
Basic course of events 1. A peer has changed position

2. The application searches for the peer in its list
3. The application replaces the old Peer info with the new

information
4. The map is repainted

Alternate paths In step 2, if the Peer is not in the list, the peer will be added
instead

Exception paths N/A
Post condition The Peer has moved on the map or added.

Peer-to-Peer Programming on Wireless Devices

 49

Author Tore Mørkved
Date 19 May 2005

Table 7 - Functional Requirement 05: Remove Peer
FR-05 Remove Peer
Actor My Peer, Other Peers
Summary Removes the Peer from the Peer list and map
Precondition Peer exists in the list
Basic course of events 1. A disconnect message has been received from the

network
2. The application removes the Peer from the Peer list.
3. The application repaints the map

Alternate paths N/A
Exception paths N/A
Post condition The Peer is removed and no longer visible on the map
Author Tore Mørkved
Date 19 May 2005

Add new
emergency

Remove emergency

Other PeersMy Peer

Figure 25 - Use Case 3: Emergency Report

Table 8 - Functional Requirement 06 Add new emergency
FR-06 Add new emergency
Actor My Peer, Other Peers
Summary Adds a new emergency icon to the map
Precondition My Peer is connected to the network.
Basic course of events 1. The application receives a new emergency

advertisement.
2. The map list is updated.
3. The map is repainted.

Alternate paths N/A
Exception paths N/A
Post condition The new emergency icon is shown in the map
Author Tore Mørkved
Date 19 May 2005

Peer-to-Peer Programming on Wireless Devices

 50

Table 9 - Functional Requirement 07: Remove emergency
FR-07 Remove emergency
Actor My Peer, Other Peers
Summary Removes an emergency icon from the map
Precondition My Peer is connected to the network.
Basic course of events 1. The application receives an emergency advertisement

with coordinates (-1,-1)
2. The emergency is removed from the list.
3. The map is repainted.

Alternate paths N/A
Exception paths N/A
Post condition The emergency icon is removed from the map.
Author Tore Mørkved
Date 19 May 2005

Request an
image

Remote image
request

My Peer

Receive image

Send image

Download image

Other Peers

Figure 26 - Use case 4: Image Operations

Table 10 - Functional Requirement 08: Request an image
FR-08 Request an image
Actor My Peer
Summary My Peer sends a request to receive an image to another Peer on

the Network
Precondition My Peer is connected to the network.
Basic course of events 1. The user writes a short message describing what kind of

image he wants
2. The user selects which Peer to receive the request
3. The user executes the send command
4. The application sends the message
5. A “message sent” confirmation is shown

Alternate paths N/A
Exception paths If the message is not sent successfully, an error message

replaces the message in step 5.

Peer-to-Peer Programming on Wireless Devices

 51

Post condition The request message is sent to the remote Peer
Author Tore Mørkved
Date 19 May 2005

Table 11 - Functional Requirement 09: Remote image request
FR-09 Remote image request
Actor Other Peers
Summary The application receives an image request from the

network
Precondition My Peer is connected to the network.
Basic course of events 1. An image request is received

2. The application notifies the user
3. The application is set to image mode

Alternate paths N/A
Exception paths N/A
Post condition The application is ready to take a picture
Author Tore Mørkved
Date 19 May 2005

Table 12 - Functional Requirement 10: Download image
FR-10 Download image
Actor My Peer
Summary The user downloads an image from a web server
Precondition 1. My Peer is connected to the network and is on the

image screen.
Basic course of events 2. User enters the URL of the image file

3. User presses the “Snap!” button
4. Application downloads image from the web server

Alternate paths N/A
Exception paths If the image cannot be downloaded, an error screen

appears.
Post condition The image is displayed
Author Tore Mørkved
Date 19 May 2005
Date 19 May 2005

Table 13 - Functional Requirement 11: Send image
FR-11 Send image
Actor My Peer
Summary My Peer sends an image to another Peer on the Network
Precondition My Peer is connected to the network.
Basic course of events 1. The user chooses which Peer to be the receiver

2. The user executes the send command
3. The application sends the image to the remote

Peer
4. A confirmation of image sent is presented to the

user
Alternate paths N/A
Exception paths If the image is not sent correctly, then an error message is

Peer-to-Peer Programming on Wireless Devices

 52

shown in step 4
Post condition The image is sent to the remote Peer
Author Tore Mørkved
Date 19 May 2005

Table 14 - Functional Requirement 12: Receive image
FR-12 Receive image
Actor Other Peers
Summary The application receives image data from the network
Precondition My Peer is connected to the network.
Basic course of events 1. Image data is received from the network

2. The application assembles the data to an image
3. The application displays the image

Alternate paths N/A
Exception paths If the image is corrupt, an error message is displayed.
Post condition The image is displayed
Author Tore Mørkved
Date 19 May 2005
Date 19 May 2005

Summary

The table below summarizes the Functional Requirements and a priority is set to

signify what is most important. “H” means high priority, and will be implemented first.

“M” means medium priority, and will be prioritized next. “L” means low priority. It has

the least importance and will be developed last.

Table 15 - Summary of Functional Requirements and priorities

ID Description Priority
FR-01 Connect to network H
FR-02 Exit Application M
FR-03 Add Peer H
FR-04 Update Peer H
FR-05 Remove Peer L
FR-06 Add new emergency H
FR-07 Remove emergency L
FR-08 Request an image M
FR-09 Remote image request M
FR-10 Download image M

FR-11 Send image M
FR-12 Receive image M

Peer-to-Peer Programming on Wireless Devices

 53

4.3.2 Non-Functional Requirements

The qualities desired for the prototype other than those concerning its functionality

should also be identified. Non-functional requirements describe properties such as

the applications robustness, its usability, reliability, interoperability, scalability and

security. Due to the time constraints of this project, the non-functional requirements

have not been prioritized. This is a time consuming part of application development,

often requiring testing on real users and real usage. Nevertheless, I have tried to

keep these requirements in mind when developing the application.

Usability
Usability describes the impact a system has on the end-user. In general, it refers to

the efficiency with which a user can do their tasks with the product, and their overall

satisfaction with that process.

 My system should be easy to learn, navigate and use, so that users with no

knowledge of the system should be able to use it with only a few minutes of training.

The menu must be logically set up, and new messages from the network to the user

must be notified using sound, vibration and/or message windows. When large

network operations, such as large image transfer or downloading, are executed,

interactive feedback should be displayed to the user.

Reliability
The system must be reliable, that is, it must handle and should recover from failures

that may occur, such as loss of connectivity, or corrupt data transfer. This is very

important when dealing with wireless connected devices. One should expect that the

device will loose connectivity, even for a short time, due to power failure, if the

network out is of range or other unexpected incidents.

Portability
The application should be able to run on different mobile phones, with the hardware

and software requirements fulfilled. The application will be tested on emulators

mainly, but if the resources are available, it will also be tested on real phones.

Security
Security is not a priority beyond JXTA security concept, considering the type of

application and time constraints.

Peer-to-Peer Programming on Wireless Devices

 54

4.4 Class diagram

Class diagrams are used to describe the Classes of the system and their

relationships to each other. My design recognizes three main tasks for the system;

GUI interactions, network tasks and data handling. By separating these operations

into different classes, we are able to change parts of the application without changing

the application logic. For instance, if we want to change network connection, this can

be done in the Connection class, leaving the rest of the application as it is. This type

of layer programming can save time and preserves the idea of network

independence.

P2PMain
P2PScreen

P2PMap

P2PConnection

Peer Emergency

Figure 27 - Class diagram

P2PMap Class
This class extends the Canvas class, and is responsible for painting and updating the

Map with emergencies and peers. It also listens for user input events, which it

forwards to the P2PMain Class for handling.

P2PScreen Class
This class handles all the GUI interactions with the user, such as displaying forms,

buttons and messages. It listens to user input and forwards the event handling to the

P2PMain Class.

P2PConnection Class
This class handles all communication with the network, either directly or via the

JXME API. All incoming messages are forwarded to the P2PMain Class for handling.

Peer-to-Peer Programming on Wireless Devices

 55

P2PMain Class
The P2PMain class is the main execution class and the engine of the application. It

calls on the P2PScreen Class for all GUI operations to the user, and calls the

P2PConnection Class for all communication with the network. It processes all

network messages, and decides what to do in each case. The P2PMain Class also

stores a list of Peer and Emergency objects.

Peer Class
Instances of this class contain all information about a Peer on the network.

Emergency Class
Instances of this class contain information about an emergency.

4.5 Sequence diagrams

To demonstrate how the classes collaborate, I have created UML Sequence

Diagrams that reflect the message flow initiated by the events described in the Use

Cases. For each sequence diagram, I will point out which requirements that have

been fulfilled. The diagrams describe these events:

- Connect to Network

- Exit Application

- Update Peer

- Add new emergency

- Download image

- Send image

- Image request

- Receive image

Peer-to-Peer Programming on Wireless Devices

 56

4.5.1 Connect to Network

Goal: Connect to the network and perform initial Peer operations.

Fulfilled requirements: FR-01, FR-03
map:P2PMap myPeer:Peerscreen:P2PScreen engine:P2PMain myCon:P2PConnection

2.1.9 start polling

join peergroup:boolean

1.2 construct myCon

construct myCon

2.1.5 construct myPeer

1 startApp

construct myPeer:boolean

create propagate pipe:boolean

2 Connect command

2.1.8 send peer information

2.1.7 setMapScreen

send peer information

1.1.1 construct map

construct map
construct screen

2.1 connect

2.1.6 create propagate pipe

create unicast pipe:boolean

2.1.1 setWaitScreen

2.1.4 create unicast pipe

2.1.3 join peergroup

1.1 construct screen

2.1.2 connect(url, peername)

connect(url, peername)

Figure 28 - Sequence Diagram, User Connect

This sequence diagram actually shows two user actions; firstly when the user starts

the Application and secondly when the user chooses the connect command.

When the application executes, it constructs and initiates the different classes, and

then displays the settings screen.

The connect command initiates a series of network events at the P2PMain Class to

enable the Peer on the network:

1. Establish a JXME Proxy Service Connection to be able to send messages to

the Proxy

2. Join PeerGroup. The peer searches for a PeerGroup, joins it and reconnects

with the new PeerGroup as the active group.

Peer-to-Peer Programming on Wireless Devices

 57

3. Creates a Unicast Pipe and opens it for incoming messages from other

Peers.

4. Constructs a new Peer Object to represent the user.

5. Starts listening on Propagate Pipe to be able to receive broadcast

messages from other Peers.

6. showMapScreen displays the Map to the user.

7. Send Peer Information broadcasts own Peer information to all Peers listening

on the Propagate Pipe.

8. Start Polling. Finally, if all steps above are successful, the application starts

polling the Proxy for messages.

Peer-to-Peer Programming on Wireless Devices

 58

4.5.2 Exit Application

Goal: Add the incoming emergency to the Emergencies List.

Fulfilled requirements: FR-02

myCon:P2PConnectionengine:P2PMainscreen:P2PScreen

1
User terminates
application

1.1 quitApp

1.1.1 send(peerQuitMessage)

1.1.2 destroyApp

Figure 29 - Sequence Diagram, User exits

When the user terminates the application, the quitApp method in the engine is

executed. Before the application closes, a Message is propagated to the network

telling everyone that the peer has left.

4.5.3 Update Peer

Goal: Update peer information and display peer at new position on the Map.

Fulfilled requirements: FR.03, FR-04

myPeer:Peermap:P2Pmap engine:P2PMain myCon:P2PConnection

1.1.3 repaint

1.1 movePeer(dx, dy)

1 User move

1.1.1 setPos(x, y)

1.1.2 sendPeerInfo(message)

sendPeerInfo(message)

Figure 30 - Sequence Diagram - Peer Moves

When the user moves his Peer icon on the map, a movePeer message is sent to the

P2PMain class, which first updates own Peer information (setPos(x,y)) and then tells

the P2PConnetion Class to send a PeerInfo Message on the Propagate Pipe. Finally,

the Map is repainted with the new Peer coordinates.

Peer-to-Peer Programming on Wireless Devices

 59

4.5.4 Add new Emergency

Goal: Add the incoming emergency to the Emergencies List.

Fulfilled requirements: FR-06

Figure 31 - Sequence Diagram - Report Emergency

When the user reports a new Emergency, the P2PScreen Class notifies the P2PMain

Class, which constructs a new Emergency object, and creates a new Report to be

sent. The sending is handled by the P2PConnection class.

m
ap:P

2P
m

ap
engine:P

2P
M

ain
m

yCon:P
2P

Connection
em

ergency:E
m

ergency
screen:P

2P
screen

1
G

o to report m
enu

1.1
setReportS

creen

construct:E
m

ergency
2.1.2

sendReport(E
m

ergency)

sendReport(E
m

ergency)

2
User reports em

ergency

2.1.1
construct

2.1
reportE

m
ergency(x, y,

level)

Peer-to-Peer Programming on Wireless Devices

 60

4.5.5 Download image

Goal: Download an image from a web server

Fulfilled requirements: FR-10

screen:P2Pscreen myCon:P2PConnectionengine:P2PMain

4.1.1 getImage(url)

4.1 downloadImage(url)

4.1.2 showAlert(Image)

4 Download image

getImage(url):byte[]

Figure 32 - Sequence Diagram, User Downloads image

This sequence is executed when the user or the system wants to download a byte

stream of image data. The P2PMain asks the P2PConnection Class to download an

image at a given URL and return a byte array of data. The image is shown in an

Alert.

4.5.6 Send image

Goal: Sends an image to a remote Peer

Fulfilled requirements: FR-11

myCon:P2PConnectionengine:P2PMainscreen:P2Pscreen

sendImageSegment(id, message):id

5.1
sendDataSegments(nam
e, data, id)

5.1.1
sendImageSegment(id,
message)

5 Send image

Figure 33 - Sequence Diagram - Send Image

If the image is larger than the allowed segment size, the image is sent as a sequence

of segments, which have to be re-assembled at the receiver.

Peer-to-Peer Programming on Wireless Devices

 61

4.5.7 Image request

Goal: Display image screen

Fulfilled requirements: FR-12
P2PScreen[screen] P2PMain[engine] P2PConnection[myCon]

1 Image request

1.1.1 showAlert(alertmessage)

1.1
handleIncomingMsg(Mes
sage, id)

1.1.2 setImageScreen

Figure 34 - Sequence Diagram, receiving image request

When the user receives an image request, the application displays an alert and then

the image screen.

4.5.8 Receive image

Goal: Handle incoming image data

Fulfilled requirements: FR-12

P2PConnection[myCon]P2PMap[map] P2PScreen[screen] P2PMain[engine]

loop (imagereceived<totalimagesize)

if Image = Map

else

1.1
handleIncomingMsg(Mes
sage, id)

1 Image response

1.1.1 setMap

1.1.2 showImage(Image)

Collects image
segments until
the whole file is
received.

Figure 35 - Sequence Diagram, Receiving image data

When image data arrives, the application collects all data segments until the data

received equals the total file size, and then displays the image. If the image is the

background map, it will be set in the P2PMap class.

Peer-to-Peer Programming on Wireless Devices

 62

4.6 Protocols

My messages in this application extend the basic JXME Messages and are

necessary to fulfil my requirements. These are application-specific and not a part of

the JXTA core services. The messages are listed and explained below.

Table 16 - PeerDiscovery Message
Element Value
poll myPipeId

The PeerDiscovery Message is sent on the Propagate Pipe to all Peers listening on

the network. It is a simple “poll” message, which contains the source Peer’s Unicast

Pipe ID. This is used when each receiving Peer responds with the PeerInfo Message,

described below.

Table 17 - PeerInfo Message
Element Value
Peername Name of my peer
Peerid The pipeId of my peer
Peerxpos The X coordinates of my peer
Peerypos The Y coordinates of my peer

The PeerInfo Message contains all information about a Peer, and is a response

message to the PeerDiscovery Message. The PeerInfo Message is sent on a

Propagate Pipe after user connects to the network, and is sent on a Unicast pipe

upon Peer request, as stated above.

Table 18 - ImageRequest Message
Element Value
ImgRequest myPipeId

The ImageRequest Message is a simple request for an image, sent on a Unicast

Pipe to a specific Peer. The response to this is the ImageResponse Message, stated

below.

Table 19 - ImageResponse Message
Element Value
ImgResponseName Name of image to be transferred
ImgReponseData The data of the image segment
ImgResponseStart Startvalue of image segment
ImgReponseEnd End value of image segment
ImgResponseSize Size of the entire image file

Peer-to-Peer Programming on Wireless Devices

 63

This Message contains image name, data and segment information. If the image is

larger than allowed message size, the image is segmented and sent as data chunks.

By using the last three elements, the receiver can re-assemble the image segments

into one large image again in a correct manner.

Table 20 - Report Emergency Message
Element Value
reportX X coordinate of reported emergency
reportY Y coordinate of reported emergency
reportLevel Level of emergency

The Report Message is simply a message sent to all Peers with information about a

new Emergency. The X and Y are map coordinates, and reportLevel is the level of

emergency, ranging from index 0 to 2, where 0 is the highest. A value of -1 indicates

that the emergency is to be removed.

Table 21 - Remove Emergency Message
Element Value
reportX X coordinate of removed emergency
reportY Y coordinate of removed emergency
reportLevel -1

When users want to remove an emergency, they send the same Message as when

they report an emergency, but the level element value is -1, indicating that the

emergency should be removed.

Table 22 - Map Request Message
Element Value
mapRequest My Pipe ID

A request sent to a Peer asking it to transfer the background map. The response is

sent as an Image Response Message with image name “Map”.

4.7 Summary

This chapter has presented the prototype design, which is based on the System

Design in chapter 3. All requirements for the application have been extracted from a

proposed scenario. Next chapter will present the implemented application and test

documentation.

Peer-to-Peer Programming on Wireless Devices

 64

5 Performance Results

5.1 Introduction

The Prototype was implemented in Java using the J2ME Wireless Toolkit 2.2 [31],

which is very helpful when developing mobile applications. It emulates a mobile

device and offers tools to compile and test MIDP applications.

 In this chapter the developed application is described through a user interface

walkthrough and tested regarding to functional requirements, network and large file

transfer.

5.2 User Interface

The prototype is a simple MIDlet with few screens. The options for the user are

mainly limited to reporting or removing emergencies and requesting image transfers.

To better understand the application, a visual representation of the User Interface will

be presented in a simple walk-through of the application.

 The first screen the user meets after starting the application is the settings screen.

The user enters his Peer name and the IP-address and Port number of the JXME

Proxy Service it wants to connect to, and then presses the “Connect” button.

 This executes a series of network events deeply described in the prototype design.

Sending messages over the network is more time demanding than other events, and

it is therefore important to give the user some feedback while the application is

communicating with the P2P Network. A wait screen displays an icon and some

information text to let the users know what is going on, giving them a sense of

progression.

 After connecting, the map image is requested. If this is the Peer starting the group,

the image will be downloaded from a web server over a HTTP connection. If the Peer

is not an initiator of the network, a request to transfer the map is sent to the first Peer

discovered.

Peer-to-Peer Programming on Wireless Devices

 65

Figure 36- Screenshots: User connects

After successfully connecting and downloading the map, the application displays the

map screen. This screen is continuously updated when new Peers or Emergencies

are discovered, updated or removed. At the top of the screen, a scrolling ticker

displays miscellaneous information. On the menu bar, there are three alternatives,

namely “Report Emergency”, “Request image” and “Remove emergency”. The “Exit”

button sends a disconnect message to the network and then terminates the

application.

Report emergency

Figure 37 - Screenshots: Report emergency

Pressing the Report Emergency button displays the Emergency screen, where the

user can choose the level of emergency, and then send the report on the Propagate

Pipe. After sending the report, the Map screen is displayed again, now updated with

the new emergency.

Request image

Figure 38 - Screenshots: Request image

Peer-to-Peer Programming on Wireless Devices

 66

Pressing the Request image button displays a list of known Peers. The user chooses

the Peer he wants an image from, and sends the image request message by

pressing “Send”.

Remove emergency

Figure 39 - Screenshots: Remove emergency

Pressing this button sends a message to the network to remove an emergency. The

coordinates are taken from the Peer’s position.

Receiving image request

Figure 40 - Screenshots: Receiving image request

If users receive an image request, the application displays an alert, telling them

someone requests him to snap an image and return it.

After the user presses the “Done” button, the Image screen is displayed. There are

two menu choices here; “Snap!” and “Send”.

Snap an image (Download)

Figure 41 - Screenshots: Downloading image

“Snap!” substitutes the camera-function, simulating snapping an image by

downloading an image from a web server. The intended idea would be to invoke the

camera on the mobile device, but this was not implemented due to time constraints.

Peer-to-Peer Programming on Wireless Devices

 67

When the image is downloaded, it is displayed to the user before the Image screen is

displayed again.

Send

Figure 42 - Screenshots: Sending image

The second choice is “Send”, which sends the downloaded image to the requesting

Peer. If the image is larger than the buffer size, the image will be segmented and

sent as smaller data-pieces. On the receiving side, the data-pieces are re-assembled

and put together to an image. To give the user, both the sending Peer and the

receiving Peer, a sense of progress, the user interface displays a progress bar

informing the user how many bytes are sent or received.

Receiving image

Figure 43 - Screenshots: Receiving image

 When a Peer receives an image, a progress bar shows the progress of the

download. This is for demonstration purposes only; a better solution would be to let

the download continue seamlessly in the background. After all the image pieces are

received by a Peer, the image is shown in an Alert display.

5.3 Application Source Code

The source code of the prototype is found in the CD attached with this report. The

code contains comments describing the program logic.

Peer-to-Peer Programming on Wireless Devices

 68

5.4 Functionality Test

This test focuses on the program logic according to the functional requirements.

5.4.1 Testing environment

Functionality tests have been performed between two Peers and a JXME Proxy

Service on a local computer. This is a good environment to test program functionality,

but not to test the P2P network.

5.4.2 Test results

I have set up a simple test document for the functionality testing where test cases

and desired results have been added along with the implementation. The test cases

follow the Use Cases and functional requirements set for the prototype to detect

possible errors or deviations from the desired behaviour of the system.

Table 23 – Test, Use Case 1: Connect to network
No. Test case Desired result Result
T-1.1 Connect as a founding Peer (P). The “Map” screen appears, showing a map

image and the Peer icon at a random spot on
the Map.

OK

T-1.2 Connect as a joining Peer (Px). The “Map” screen appears, showing a map
image and the Peer icon at a random spot on
the Map.

OK

T-1.3 User presses the Exit button The application closes. OK

Table 24 – Test, Use Case 2: Peer Operations
No. Test case Desired result Result
T-2.1 Add new Peer object Add new Peer to the Peer List, which is

displayed on the Map at given coordinates.
OK

T-2.2 Update Peer object Update the Peer with new coordinates and
show the changes on the Map.

OK

T-2.3 Remove Peer object Delete Peer from Peer List and not show the
Peer anymore on the Map

OK

Table 25 – Test, Use Case 3: Emergency Report
No. Test case Desired result Result
T-3.1 Add new emergency New emergency added to the Emergency List

and displayed on the Map with given
coordinates and emergency level

OK

T-3.2 Remove emergency Remove emergency at given coordinates. OK

Table 26 – Test, Use Case 4: Image Operations
No. Test case Desired result Result

Peer-to-Peer Programming on Wireless Devices

 69

T-4.1 User presses the “Request
image” button

The application displays a Peer List and a
“send” button

OK

T-5.2 User chooses a Peer and presses
the “Send” button

An image request message is sent to the
selected Peer.

OK

T-5.3 User receives an image request
from a remote Peer

Application displays an alert on the screen
and the phone vibrates. After the alert, the
Image screen is displayed

OK

T-5.4 User chooses an image URL and
presses “snap!” button.

The Wait screen is displayed until the image
is downloaded. Then, an alert showing the
image is displayed.

OK

T-5.5 User has done T-2.4 and presses
“Send” button

Application starts sending the downloaded
image and displays a progress bar showing
how many bytes have been transferred. When
finished, Map screen is displayed.

OK

T-5.6 User has not done T-2.4 and
presses “Send” button

An information alert tells the user he must
snap a picture first.

OK

T-5.7 An error occurs when trying to
download image

An error alert is displayed to the user, and
then return to the Image screen

OK

T-5.8 User receives an image Application displays a progress bar showing
bytes downloaded. After successfully
downloading image, it is displayed.

OK

5.4.3 Summary

The application works within the range of functional requirements, but it has not been

tested properly for exception handling and has not taken every possible combination

of events into consideration. This is just a prototype application, and some limitations

had to be set because of the time constraints of the project.

5.5 Network test

5.5.1 Testing environment

During most of the implementation process, the network is often created and tested

on a local host, with only one JXME Proxy Service and a number of Peers. To test

the scalability, a larger network has been set up with different Proxy Services on

different hosts, with many Peers connected to each of these Proxy Services. First of

all, it would be interesting to see that this works in practice, but secondly we should

examine what happens when we drastically increase the number of Peers. It is

difficult to measure network performance in such a network. My primary goal is to set

up large networks with many Peers, and see how the P2P application performs

regarding to Peer discovery, if and how fast the Map is updated when the Peers

interact by moving around or reporting emergencies.

Peer-to-Peer Programming on Wireless Devices

 70

5.5.2 Test results

Table 27 - Network Test 1
Test ID NT-01
Condition One JXME Proxy Service and two Peers on same host.
Illustration

Figure 44 - Network test 1

Performance
results

All Peers found each other and communicated. Very low network delay.

Table 28 - Network Test 2
Test ID NT-02
Condition Two JXME Proxy Services on same host, three Peers connected to each Proxy

Service.
Illustration

Figure 45 - Network test 2

Performance
results

All Peers connected and discovered by other Peers. All Peer operations were
updated on other Peers within 1-2 seconds.

Table 29 - Network Test 3
Test ID NT-03
Condition Three different hosts on a local area network (LAN) with one JXME Proxy Service

on each host. Three Peers on each Proxy Service, all from different host machines.
Illustration

Figure 46 - Network test 3

Performance
results

All Peers were connected and discovered. However, not all messages are received
on all Peers at all times. Randomly, some of the Peers do not always update Peer
movement or new Emergencies. The rate of this is not extensible tested, but from
this test about 1 of 10 operations failed on about 1 of 10 Peers.

Proxy

P1 P2

Proxy1

P1
P2

Proxy2

P4

P6

P3
P5

 Proxy1

P3

P2 Proxy2

P7

P8

Proxy3 P4

P5

P1

P6

P9

Peer-to-Peer Programming on Wireless Devices

 71

Table 30 - Network Test 4
Test ID NT-04
Condition Three hosts setting up a JXME Proxy Service at different locations on the Internet.

Increasing number of Peers
Illustration

Figure 47 - Network test 4

Performance
results

Peers are able to connect to a remote Proxy on the Internet. The Proxies are able to
discover each other and share advertisements. All Peers are able to discover each
other and share information.

5.6 Testing large file transfer

To check the transfer speed of image data and optimize the data transfer rate it

would be interesting to measure transfer speed at different criteria. The influencing

variables are the size of the file, the amount of data sent in each segment (buffer

size) and also the network topology (routing, bandwidth).

 I created a test-version of my Prototype for this purpose, which transferred an image

between two Peers many times, and each time with an increased buffer size. The

program timed each transfer – from transfer start to the peer got a response that the

whole file was successfully received – and then printed the result in seconds.

5.6.1 Testing environment

The testing will be performed in a sequence of image request / response messages

between two Peers running the application. The major testing will be performed with

both Peers and JXME Proxy Service running on a local computer. This will reveal the

JXME Proxy Service’s ability to forward large amounts of data. We will also test if

there is a large difference if we have a more distributed network with Peers at

different hosts on the internet.

5.6.2 Variables

Buffer size is the most interesting variable to change, since this decides how much

data is sent in each segment. The JXTA specification implies that the upper limit of

Proxy1

P3

P2

Proxy2

P5

P4

P1

P6

Internet

Peer-to-Peer Programming on Wireless Devices

 72

data a relay Peer, such as the JXME Proxy Service, can handle in each Message is

60 kB. Even though the limit of a Message is this high, we want to keep the Message

size as low as possible to avoid long processing time with the Relay, which should be

able to handle multiple requests simultaneously.

 So, what we are looking for is a small data segment size that results in fast file

transfer. The size of the file should set between 50 kB and 150 kB to give a

reasonable testing scenario without exceeding the memory limits of a MIDlet. I will

perform the tests on two files, the first one is 73 kB and the second is 138 kB. I will

increase the buffer size for each test, and perform each test three times to ensure the

test results are reliable and not affected by single-events such as random computer

memory blocks or network congestion. All in all, both files were transferred 21 times

during the tests.

5.6.3 Test results

The test results are presented in a data table, with Buffer size in kilo bytes and

transfer time in seconds. To better interpret the results, I used MS Excel to create a

diagram, drawing a graph for each test.

 The results will be analyzed and discussed in the Discussions chapter.

Test ID: FT-1

Buffer size: 4 – 52 kilobytes, with interval of 4 kilobytes

File size: 73 kB
Table 31 - File-transfer Test FT-1
Buffer
(kB)

Test1
(sec)

Test2
(sec)

Test3
(sec)

4 117 112 115
8 65 71 73
12 50 44 53
16 40 44 44
20 28 36 33
24 33 36 37
28 31 27 29
32 31 31 29
36 36 31 32
40 28 25 27
44 26 26 30
48 28 30 30
52 30 31 32

Map1.png, 73kb

0

20

40

60

80

100

120

140

4 8 12 16 20 24 28 32 36 40 44 48 52

Buffer Size (kiloBytes)

Tr
an

sf
er

 ti
m

e
(s

ec
on

ds
)

Serie1
Serie2
Serie3

Figure 48 - Diagram of FT-01

Peer-to-Peer Programming on Wireless Devices

 73

Test ID: FT-2

Buffer size: 4 – 52 kilobytes, with interval of 4 kilobytes

File size: 138 kB
Table 32 - File-transfer Test FT-2
Buffer
(kB)

Test1
(sec)

Test2
(sec)

Test3
(sec)

4 199 201 200
8 129 102 119
12 84 78 81
16 65 68 71
20 61 62 59
24 48 53 55
28 47 42 47
32 49 47 47
36 42 42 41
40 50 47 49
44 51 51 50
48 42 43 44
52 46 42 45

Tsunami2.png, 138 kB

0

50

100

150

200

4 8 12 16 20 24 28 32 36 40 44 48 52

Buffersize (kiloBytes)

Tr
an

sf
er

 ti
m

e
(s

ec
on

ds
)

Serie2

Serie3

Serie4

Figure 49 – Diagram of FT-02

5.7 Summary

This chapter has presented three test documents for the prototype application;

functionality test, network test and large file transfer test. The results will be analyzed

and discussed in next chapter; the discussion.

Peer-to-Peer Programming on Wireless Devices

 74

6 Discussions

6.1 Introduction

In Chapter 2, different technologies were presented. They were used to design a P2P

system for wireless devices. Chapter 3, 4 and 5 contain my contribution to this thesis,

where I first described how such system could be realized and created a small

prototype which was tested it in a small domain. The results indicate that mobile

phones can act as leaf Peers, but is still dependent on a fixed P2P network to handle

the heavy workload.

 In this chapter I will analyze and discuss my findings, the possibilities of the system

and limitations I have experienced building the system. The prototype has been

subject to different tests, and the results will be analyzed.

 I will also discuss how the system complies with resource constraints and loss of

connectivity.

6.2 Research discussion

Today’s Mobile devices are not confronted by as many constraints as a few years

ago and the technology is one of the fastest growing in the industry. The devices are

now powerful enough to participate in a P2P network. With memory cards and

dynamic heap memory (RAM), a mobile Peer can send and receive large files such

as images or music files. The introduction of third generation mobile network (3G) will

also enable faster transfer speed at more affordable, hopefully fixed prices.

 P2P systems seem to work best when they combine the idea from first generation

and second generation P2P. Using many, distributed index servers preserve the

advantage of fast resource discovery and decrease network vulnerability against

single-point-of-failure.

 JXTA is a flexible P2P framework. It is platform, device and language independent.

JXME API allows Mobile devices participate as Peers on the JXTA network. Using

this technology to build a P2P system with mobile devices has both advantages and

disadvantages. The framework enables the developer to concentrate on his

application rather than on the core P2P operations. But with ease of work comes lack

of flexibility. The JXTA technology can be unnecessarily extensive for specific P2P

solutions.

Peer-to-Peer Programming on Wireless Devices

 75

 The Mobile P2P system proposed here must use a fixed network to work. This can

be the solution for large mobile P2P networks with thousands of Peers to ease

workload such as message routing and indexed advertisements on mobile Peers. For

smaller solutions, a Proxyless approach would be desirable. This is only possible for

JXME for CDC, such as PDA’s. A CLDC of JXME Proxyless would be highly

interesting, and porting the classes from CDC to CLDC would be a topical thesis

assignment to extend this domain.

6.3 P2P System Design

The P2P System design was based on the literature study and experimenting with

the JXTA technology. It exploits the advantages of JXTA for J2ME and presents a

way to implement different P2P operations. JXTA for J2ME is a work in progress, and

not many commercial applications have been developed with this technology yet. A

stable version of JXME 2.0 has now been released, and I believe we will see more

mobile P2P solutions using JXME in the next few years, even commercially. The

main problems using this platform have been the lack of documentation and tutorials

available. I believe my thesis can give a flying start for those who want to start

developing P2P solutions on JXME; it includes both theoretical background of JXTA,

JXME and working examples of P2P operations.

 My solution is not application specific. From the design, virtually any P2P solution

can be developed, such as mobile multiplayer games, file sharing applications, chat

applications or collaboration programs, such as the one I proposed in my prototype.

Mobile applications still have considerable constraints compared to a conventional

P2P application, but I think these limitations will be minimized within a year or two.

Until then, I suggest the mobile Peer should depend on a fixed Proxy Service to

provide the core P2P operations.

 The disadvantage of a Proxy Service is that the user must provide the IP-address of

one or more relay Peers running on a connected computer. The problem I

experienced was that the Proxy Service needed constant attention, such as memory

flushing to work. This is a considerable problem for the reliability of the system. In my

prototype, the Proxy Service needed to flush its advertisement cache before each

session.

Peer-to-Peer Programming on Wireless Devices

 76

6.4 The Prototype

The application developed is meant as an example on how to implement the P2P

system. The scenario idea was to show how a mobile P2P application can assist in

large, chaotic rescue operations to share information in groups of common interest.

This can assist rescue personnel to locate where resources are most needed.

 Implementing this scenario shows the key potential of a mobile P2P system; the fact

that you can bring you mobile everywhere gives a Peer another dimension. Using the

Location API for J2ME [36] would enable the application to use positioning

coordinates from a GPS or other positioning systems to send its geographical

position to other Peers. I chose to simplify this process by letting the user move his

Peer icon with the arrow-keys, because I only used mobile emulators to test the

system.

 Another useful potential I wanted to simulate was the camera function. Using the

mobile’s camera in the application when a picture is requested is requested would be

possible with the Mobile Media API [37], but this proved to be too time demanding to

implement and difficult to test. A simple image download function simulated image

capturing for my application.

6.5 Test results

6.5.1 Functional requirement testing

The functions of the application work according to its requirement specification. What

this test does not show is if the functions work in every possible situation. Since it is

just a prototype, all possible exceptions are not caught, and error handling has been

set for debugging, and not so much for the users. If this application was to be further

developed for real use, non-functional requirements would be more important to

analyze and test.

6.5.2 Network testing

Testing the prototype in different network environments show that the application

works in larger networks and that the Peers are able to communicate and collaborate

even over large distances globally. The performance of the system has not been

tested on a large scale, and the amount of messages sent between thousands of

Peers may not perform as desired.

Peer-to-Peer Programming on Wireless Devices

 77

 JXME Proxy Services are supposed to relieve some of the workload from the JXME

Peers. This is also the case in my system, but not to the extent desirable.

Advertisements such as Peer info, Pipes and the shared map file should be stored on

this proxy, letting all Peers search for resources on the JXME Proxy Service instead

of the Peer directly. This is the vision of JXTA, but did not work very well in my

application because of the JXTA Shell’s shortcomings. If I had known what I now

know, I would have implemented the JXTA Proxy Service myself, or altered the JXTA

Shell’s source code. This would probably have increased the reliability and usability

of the system.

6.5.3 Large File Transfer test

This was a considerable task, since JXME does not provide this functionality. Unlike

JXTA, JXME does not segment messages, making large file transfer impossible with

the API provided. A JXME Message has a maximum size limit of just above 60 kB.

 My solution enables message segmentation for large file transfer. This was

implemented in the prototype and tested in chapter 3.4.3. The key variable in both of

these file transfer tests was the buffer size. Analyzing diagram 37 and 38 show that

transferring many small segments of data perform much worse than transferring

fewer, larger segments. The graph drops very fast between 4 000 and 12 000 bytes,

and starts to level at 16 000 bytes. Since transferring large segments to the proxy

service are not desirable, choosing the best buffer size would be to find the segment

size at the point when the graph starts to level, which is between 16 000 and 20 000

bytes. This is the best segment size considering both transfer time and memory load

on the Peers on the network.

6.6 Other Experiences

6.6.1 Keeping the Peer Connected

Once the Peer is connected to the network, it will not be disconnected if the device

temporarily looses connectivity. The Pipe Advertisement on the JXME Proxy Service

and his state ID stays as long as the application is running.

 The peer only loses the network if the battery runs out or the application crashes

for some reason, and must then reconnect as a new Peer. One solution to solve this

problem would be to store some key data, such as the Pipe Id and PeerNetwork state

Peer-to-Peer Programming on Wireless Devices

 78

information, in the Record Management System (RMS) on the Mobile device. This

way it could be possible for the Peer to continue as if nothing had happened. All data

waiting to be sent to the Peer is queued at the JXME Proxy Service and sent when

the Peer polls for new data.

 If a Proxy Service goes down, a Peer should be able to connect to another Proxy

Service automatically. This is not implemented, but all that is needed is a list of

working Proxy Services available on the JXME Peer. This should improve network

reliability considerably.

6.6.2 Advertisements and Peer Discovery

As stated in the literature study on JXTA, advertisements are used to advertise

resources such as Peers, Pipes or PeerGroups on the JXTA network. I chose in my

design not to use this for resource discovery, other than to search for own Pipes and

the PeerGroup. The Peer and resource discovery is supposed to be very easy to

handle with advertisements. In theory, one can just search for this on the JXME

Proxy Service, thus avoiding unnecessary communication with the Mobile Peers.

 The problem I met here was that once you have created an advertisement on the

JXME Proxy Service, it could not be removed again by the Mobile Peer. This had to

be done manually on the JXTA Shell by flushing its cache memory. This caused

problems when resources or Peers were removed from the network; for the other

Peers, the resources would still seem available.

 The solution was active discovery. Each Peer broadcasted messages when it

connected and exited the network and asked the Peer directly for resources. This

works fine on a smaller scale, but would cause large overhead traffic on a larger

scale.

Again, the problem lies between the JXME Peer and the JXTA Shell. A better Proxy

Service implementation would solve this problem and improve the system

performance and reliability.

6.7 Summary

Peer-to-Peer programming on wireless devices is an innovative domain with great

potential, and commercial implementations will probably be growing similar to the

popularity of conventional Peer-to-Peer we have seen in the last few years.

Peer-to-Peer Programming on Wireless Devices

 79

 The system I have proposed uses a Proxy Service on a fixed network to ease the

workload on constrained mobile phones. With the increasing power of mobile

phones, a Proxyless version of JXME would be possible, giving developers the

freedom to avoid the fixed JXTA network, enabling pure mobile P2P networks.

 Large file sharing is mostly constrained by a mobiles heap memory; my testing of

file segmentation shows that the images are segmented and re-assembled correctly

as long as the phone has enough available memory.

Peer-to-Peer Programming on Wireless Devices

 80

7 Conclusions and Future Research

7.1 Conclusions

Developing Peer-to-Peer networks for wireless devices is a new and promising

research area, rising with the new mobile technology. With this thesis, I have

proposed a way to implement a mobile Peer-to-Peer system based on the common

protocols of the JXTA technology, an effort to define a common framework for P2P

applications. JXTA is a highly complex P2P framework with many protocols and

concepts to keep track of. . The JXME API is a lightweight version of JXTA, which

lets the developer create mobile P2P solutions fast without extensive knowledge of

JXTA.

 Because of a mobile device’s technological constraints, the best wireless P2P

solution should involve more powerful peers acting as a proxy and relays on a fixed

network. This gives both the advantages of a fixed P2P network and the mobility of a

wireless device.

 Since the JXTA for J2ME technology is under development, the documentation and

tutorials available are very limited. With this thesis, further development based on this

domain should have a solid foundation for understanding the technology and

implementing a P2P system.

 The system designed can be used to develop virtually any mobile P2P application;

mobile multiplayer games, monitoring systems, instant messaging or file sharing to

name a few. Such systems are very likely to grow rapidly with the introduction of third

generation mobile networks and the ever improving memory and computing power on

a mobile phone. I believe mobile P2P technology will be the next big thing in the

technology industry; not only does it enable direct search and sharing of multimedia

content such as images, mobile games, music and video, but mobile devices has the

extra dimension of being a personal device that is with us all the time, and in many

ways defines us as individuals. The challenge will be to take advantage of this fact

and find new areas to utilize the technology.

Peer-to-Peer Programming on Wireless Devices

 81

7.2 Future research

To improve the mobile P2P system, one should look more closely at the JXME Proxy

Service to cope with the problems I have encountered. This would improve the

system functionality and utilize the Proxy Service much more than the proposed

system does.

 The prototype has made a lot of simplifications, and it would be interesting to see

how it performs on real mobile devices. It would be especially interesting to

implement the camera-function to share images taken with the mobile’s camera and

the Location-function to distribute geographical data automatically when the Peer is

moving.

 Even though the system proposed is working, I believe a Proxyless solution would

be more successful in smaller P2P solution and is the right way to go for further

research and development of pure wireless Peer-to-Peer programming. I propose

developers who want to continue this research to join the JXTA community effort to

port the JXME Proxyless implementation from the CDC environment to the CLDC

environment.

Peer-to-Peer Programming on Wireless Devices

 82

References
[1] Gong, Li. Project JXTA: A Technology Overview, Sun Microsystems, Inc, 2002

[2] Biström, Johnny and Partanen, Ville. Mobile P2P - Creating a mobile file-

sharing environment, Helsinki University of Technology, 2004.

[3] JXTA Project,

[web site] http://www.jxta.org

[4] Dochstader, Mark. Peer to Peer Networking: Next Big Boom or Next Big

Bust?, ITtoolbox Networking, 2001-03-12

[5] Galla, Preson. Five Live Ones, Darwin Magazine,

[online] http://www.darwinmag.com, 2001-08-01

[6] [accessed] 2005-05-25

[7] CacheLogic.

[web site] http://www.cachelogic.com.

[accessed] 2005-04-06

[8] Sun Microsystems, Java 2 Platform, Micro Edition,

[online] http://www.java.sun.com/j2me/docs,

[accessed] 2005-06-14

[9] JXME project,

[web site] http://jxme.jxta.org

[10] Arora, Akhil, Haywood, Carl and Kuldip Singh Pabla, JXTA for J2ME™ –

Extending the Reach of Wireless with JXTA Technology. Sun Microsystems

Inc., March 2002

[11] TINI Project,

[web site] http://tini.jxta.org

[12] Unknown. Differences between PersonalJava and MIDP Java Environments,

Symbian,

[online]

www.symbian.com/developer/techlib/papers/PJAE_MIDP/PJAE_MIDP_2.pdf,

[accessed]14-06-2005

[13] Wilson, Brendon. JXTA, New Riders,

[online] http://www.brendonwilson.com/projects/jxta,

[accessed] 2005-06-14

Peer-to-Peer Programming on Wireless Devices

 83

[14] Traversat, Bernard and Arora, Ahkil. Project JXTA 2.0 Super-Peer Virtual

Network, Sun Microsystems, Inc, 25-05-2003

[15] Ortiz, Enrique. A Survey of J2ME Today, Sun Microsystems, October 2004

[16] EmbeddedJava technology,

[online] http://www.java.sun.com/products/embeddedjava/, Sun Microsystems,

[accessed] 2005-05-06

[17] PersonalJava technology,

[online] http://www.java.sun.com/products/personaljava/, Sun Microsystems,

[accessed] 2005-05-06

[18] Enrique Ortiz, An Introduction to Java Card Technology - Part 1, Sun

Microsystems, 2003-05-29,

[online]

http://developers.sun.com/techtopics/mobility/javacard/articles/javacard1

[19] JSR-36 J2ME Connected Device Configuration 1.0.1

[online] http://jcp.org/aboutJava/communityprocess/final/jsr36/

[20] JSR-218 J2ME Connected Device Configuration 1.1

[online] http://jcp.org/aboutJava/communityprocess/final/jsr218/

[21] Connected Device Configuration (CDC),

[online] http://www.java.sun.com/products/cdc/, Sun Microsystems,

[accessed] 2005-05-06

[22] JSR-30 J2ME Connected Limited Device Configuration 1.0

[online] http://jcp.org/aboutJava/communityprocess/final/jsr30/

[23] JSR-139 J2ME Connected Limited Device Configuration 1.1

[online] http://jcp.org/aboutJava/communityprocess/final/jsr139/

[24] Connected Device Configuration (CDC),

[online] http://www.java.sun.com/products/cdc/, Sun Microsystems,

[accessed] 2005-05-06

[25] Antoniu, Gabriel, Hatcher, Phil, Jan, Mathieu and Noblet ,David A.

Performance Evaluation of JXTA Communication Layers, University of New

Hampshire Department of Computer Science Durham, New Hampshire, 2005

[26] Wireless Tool Kit,

[web site] http://www. java.sun.com/products/j2mewtoolkit

[27] Sony Ericsson,

[web site] http://www.sonyericsson.com

Peer-to-Peer Programming on Wireless Devices

 84

[28] JSR-37 J2ME Mobile Information Device profile

[online] http://jcp.org/aboutJava/communityprocess/final/jsr37/

[29] JSR-201 J2ME Information Module profile

[online] http://jcp.org/aboutJava/communityprocess/final/jsr201/

[30] JSR-68 J2ME Platform Specification

[online] http://jcp.org/aboutJava/communityprocess/final/jsr68/

[31] JSR-118 J2ME Mobile Information Device profile 2.0

[online] http://jcp.org/aboutJava/communityprocess/final/jsr118/

[32] Wikipedia, the free encyclopaedia,

[web site] http://wikipedia.org

[33] Jonathan Knudsen, Understanding MIDlet Memory, Sun Developer Network,

2002-06-07,

[online] http://developers.sun.com/techtopics/mobility/midp/ttips/memory,

[accessed] 2005-06-13

[34] Benhui.net, MIDP 2.0 Phone Resources,

[online] http://www.benhui.net/modules.php?name=Midp2Phones,

[accessed] 2005-06-13

[35] JSR-75 File Connection API

[online] http://jcp.org/aboutJava/communityprocess/final/jsr75/

[36] JSR-179 Location API for J2ME

[online] http://jcp.org/aboutJava/communityprocess/final/jsr179/

[37] JSR-179 Mobile Media API

[online] http://jcp.org/aboutJava/communityprocess/final/jsr135/

