

Test-Driven Development of Ajax

enabled web applications on the Java
platform

by

Jørgen Andersen
Jan Roar Edvardsen

Thesis in partial fulfilment of the degree of
Master in Technology in

Information and Communication Technology

Agder University College
Faculty of Engineering and Science

Grimstad
Norway

May 2006

 2

ABSTRACT

The introduction of new technologies is often based on a response to the

obstacles their predecessors could not overcome. In the history of the World

Wide Web, the last years has provided us with new technologies presenting new

possibilities for web application development. Among these technologies we find

a breed of new technologies labeled under the expression Rich Internet

Applications.

Created to enhance the web with the power of traditional desktop

applications the RIA technologies present the next generation of the Web, the

Web 2.0. Among these technologies we find a new arrival, Ajax.

To aid developers in software development the usage of defined

methodologies are guiding lights. In our thesis we have studied and introduced

the Agile software methodology Test Driven Development.

In this thesis we will introduce the challenges connected to usage of TDD

on Ajax enabled web development. We will also introduce the Ajax architecture,

and the impact of Design Patterns to improve design.

We will also discuss Ajax and eventual standardization issues to prevent

developers from compatibility and lock-in situations.

It is expected much of the next generation of web applications, keeping a

close eye on the architecture and using TDD can help development and structure

to applications. This can also be combined with design patterns and framework

to help development even further.

 3

PREFACE

This thesis is submitted in the partial fulfilment of the requirements for the

degree Master of Science at Agder University College, faculty of Engineering and

Science. The thesis has been completed at Agder University College under the

supervision of associate professor Ole-Christoffer Granmo, and co-supervisor

Asle Pedersen, InterMedium.

We wish to thank Ole-Christoffer Granmo and Asle Pedersen for the

guidance and expertise shared with us throughout the project period.

We would also thank our families, our co-students and Agder University

College.

Grimstad, May 2006

Jørgen Andersen and Jan Roar Edvardsen

 4

CONTENTS

Abstract ..2

Preface...3

Contents...4

List of figures..8

List of tables ...9

Code examples ..10

1 Introduction ...11

1.1 Thesis definition..11

1.2 Delimitations ...13

1.3 Methodology ...13

1.4 Report outline ...13

2 Background ...15

2.1 Web 2.0 ..15

2.2 RIA (Rich Internet Applications)..16

2.2.1 Introducing the term RIA ..16

2.2.2 A brief look at existing RIA technologies18

2.2.2.1 Macromedia Flash/Flex ...18

2.2.2.2 Java (Applet, Web Start) ...20

2.2.2.3 Ajax (Asynchronous JavaScript and XML)22

2.3 Introducing Ajax..23

2.3.1 The Ajax architecture ...23

2.3.2 Ajax, under the hood ..26

2.3.2.1 JavaScript and DOM ...27

2.3.2.2 CSS (Cascading Style Sheets)..28

2.3.2.3 XML and XMLHttpRequest ..29

2.3.3 The Ajax engine, frameworks and tool support29

2.3.3.1 Direct Web Remoting (DWR)...29

2.4 Agile software development..30

 5

2.4.1 Agile software development ...30

2.4.2 Software testing ...31

2.4.2.1 Unit testing...32

2.4.2.2 Integration testing ..33

2.5 TDD, basic ingredients ...34

2.5.1 TDD and design ...37

2.5.1.1 Agile Draw basics ..38

2.5.2 Unit testing, frameworks and mock objects..............................40

2.5.2.1 JUnit ..41

2.5.2.2 JsUnit ..42

2.5.2.3 Script.aculo.us ...42

2.5.2.4 J3Unit ..42

2.5.2.5 Mock objects..42

2.5.3 A decent portion of TDD knowledge...43

3 TDD and Ajax..44

3.1 Identifying the challenges ...44

3.1.1 Choosing a unit testing framework for JavaScript44

3.1.2 Testing asynchronous communication in JavaScript................49

3.1.2.1 The waitForAWhile solution...49

3.1.2.2 The mock object approach ..52

3.1.3 Ajax and integration testing..55

3.2 Summarizing the challenges...56

4 Ajax ...57

4.1 Making a Ajax request ..57

4.2 Processing the request and response. ...58

4.3 Design Patterns ..61

4.3.1 The Facade design pattern ..62

4.3.2 The Model-View-Controller design pattern...............................66

4.3.2.1 The View ...67

4.3.2.2 The Controller..67

4.3.2.3 The Model..68

 6

4.4 Frameworks and Direct web remoting (DWR)68

5 Web standards ..70

5.1 standardizing the web...70

5.2 Why standardization ...73

5.3 Standardizing Ajax..74

5.3.1 JavaScript ..74

5.3.2 XML..74

5.3.3 CSS..75

5.3.4 DOM...75

5.3.5 XMLHttpRequest..75

6 Results ..78

6.1 Results, TDD and Ajax challenges ...78

6.1.1 The main challenges ..78

6.1.2 A testing framework for JavaScript...78

6.1.3 Asynchronous request/response in the unit test phase79

6.1.3.1 The waitForAWhile solution...79

6.1.3.2 The mock object approach ..79

6.1.4 A test framework in the integration test phase79

6.2 Results, Ajax architecture and design patterns..........................80

6.3 Results, Ajax and web STANDARDIZATION.............................80

7 Discussion and future work ...81

7.1 Discussion, Ajax and TDD challenges ..81

7.1.1 The main challenges ..81

7.1.1.1 Selecting a test framework for JavaScript81

7.1.1.2 The waitForAWhile solution...82

7.1.1.3 The mock object approach ..82

7.1.1.4 A test framework for integration testing83

7.2 Ajax architecture and Design patterns..83

7.3 Ajax and web standardization...84

7.4 Future work...84

8 Conclusion ..86

 7

Appendix A Glossary & abbreviations ..87

Appendix B References ...89

 8

LIST OF FIGURES

Figure 1: RIA, Macromedia vision ..18

Figure 2: The Flash/Flex architecture...20

Figure 3: Java Web Start/Applet architecture...21

Figure 4: Classic versus Ajax web application model...............................24

Figure 5: Classic web application model (synchronous)25

Figure 6: Ajax web application model (asynchronous)26

Figure 7: Ajax, the building blocks..27

Figure 8: Adaptive versus predictive methodologies31

Figure 9: The development and test cycle ...33

Figure 10: The TDD cycle ..35

Figure 11: Agile Draw, basic components..39

Figure 12: Running JsUnit tests from the Eclipse platform.......................46

Figure 13 JsUnit test suite, browser screenshot.......................................48

Figure 14: JsUnit test suite, Eclipse screenshot.......................................48

Figure 15: XMLHttpRequest mock object for JavaScript54

Figure 16: Detailed UML sequence diagram of the Ajax architecture.61

Figure 17: Facade Pattern diagram..66

Figure 18: Diagram of how DWR can be put to use69

Figure 19: The original WWW architecture diagram, 1990.......................71

Figure 20: Browser statistics April 2006 ...76

 9

LIST OF TABLES

Table 1: The core principles of Agile Draw...38

Table 2: Points, description ..39

Table 3: Connectors, description..39

Table 4: JUnit, assertion methods..41

Table 5: Mock object patterns ..53

Table 6: TDD - Ajax challenges..56

Table 7: The possible values of the readyState property59

 10

CODE EXAMPLES

Code example 1: Initialize a XMLHttpRequest object46

Code example 2: The testPage.html ..47

Code example 3: The waitForAWhile.js script..49

Code example 4: Testing the asynchronous request50

Code example 5: Waiting for the XMLHttpRequest response52

Code example 6: JavaScript event handler example57

Code example 7: The getZipData function...58

Code example 8: Java servlet example ...59

Code example 9: XMLHttpRequest, callback handler60

Code example 10: Creating a XMLHttpRequest object............................63

Code example 11: Seperation of View and the Controller........................68

 11

1 INTRODUCTION

This thesis is based on an initial initiative from the software company

InterMedium. The background was to consider a new technology Ajax, and its

relation to the Java platform and TDD.

Based on the initial initiative, we have in collaboration with our supervisors

defined a thesis definition presented in Section 1.1.

The main goals of this thesis are presented as questions in the

background thesis, and will serve as the basis guidelines in our proposed

solutions, results and discussions.

Ajax is a new technological approach that is able to create dynamic web

applications with the strengths of traditional desktop applications. We will

throughout this thesis introduce Ajax, its architecture, and looked into how Ajax

enabled web development and TDD fits together.

The thesis will also discuss the usage of design patterns, and show how

they can improve software design. It will also discuss possible standardization

issues in elucidation of web standardization.

1.1 THESIS DEFINITION
The full title of this thesis is “Test-Driven development of Ajax enabled web

applications on the Java platform - Challenges and solutions.” The background

for this thesis is the following definition.

Traditionally, web applications have been "page oriented" with a series of

request-responses between client (web browser) and server, usually resulting in

whole page updates. Introduction of Rich Internet Applications (RIA) technologies

such as Ajax has made it possible to create “frame oriented” web applications,

updating parts of the user interface view. Test-Driven Development (TDD) is a

technique based on the conformity of functional code to written tests. Ajax

represents a new technological approach, and use of TDD can add structure,

 12

improve design and ensure correctness.

The main goal of this investigation is to look into TDD of Ajax enabled web

applications on the Java platform. The following factors have been identified that

affect the development process with TDD and Ajax which are of particular

interest to this project:

• Testability: to follow the TDD paradigm the application and framework

must be simple to test.

• Efficiency and quality: to efficiently develop applications of high quality

proper tools are important.

• Best Practice: to avoid traps concerning new technology, adopting the

right design patterns are important.

• Standardization: when dealing with new technologies standardization

is important and lack of such might lead to problems with lock-in,

compatibility and reuse of components.

The following questions arise:

1. What challenges does Ajax introduce to TDD?

2. Is there a need for Ajax adapted tool support to address these

challenges?

3. What kind of architecture do Ajax applications have and which design-

patterns are important to consider.

4. How does Ajax relate to current and future web/Java standards?

During this investigation a prototype using Ajax technology will be

developed. The experience gained during this development, and literature

studies will be used to answer the above questions. The prototype is to be

developed with Java in Eclipse.

 13

1.2 DELIMITATIONS
The prototype developed will not be introduced as a standalone

application. To answer the questions from the thesis background we will develop

only necessary code, and present this as examples throughout the report.

1.3 METHODOLOGY
To answer the questions asked in the thesis background we will go

through a literature study of the involved technologies and elements identified

from the literature study. We will also use our prototype development to gather

experience to answer the background questions.

1.4 REPORT OUTLINE

Chapter 1
In this chapter we introduce the thesis and the background definition. We

also present delimitations set, and what methodology we have used to answer

the background definition.

Chapter 2
In this chapter we will introduce information gathered from our literature

study. There will be information attached to Ajax, TDD and an introduction of all

the elements we have identified during the thesis.

Chapter 3
 In this chapter we will introduce the main challenges identified when using

TDD to develop Ajax enabled web applications.

Chapter 4
In this chapter we will introduce a in-depth look at the Ajax architecture,

and how usage of Design Patterns can help to improve the software design.

 14

Chapter 5
In this chapter we investigate possible issues found when looking at Ajax

and web standardization.

Chapter 6
In this Chapter we present the results achieved.

Chapter 7
In this chapter we discuss the results presented in Chapter 6, and

introduce future work that can be done.

Chapter 8
In this Chapter we present the conclusion of the work we have done.

 15

2 BACKGROUND

 The technological implementation of the WWW has over the past decades

revolutionized the way literature and media can be presented to the end users.

Together with accessibility to affordable and high bandwidth, the amount of users

has increased rapidly, and introduced a new world of possibilities for both

ordinary people, companies and governments. The possibilities are only limited

to creativity and technological barriers. As new technologies enter, they present

both possibilities and challenges. As they grow old, new or evolved technologies

is born, all driving the evolution of the web further.

In this chapter we will introduce a new breed of web technologies, Rich

Internet Applications. We will also introduce the Ajax and TDD

2.1 WEB 2.0
The web has proven itself to be an excellent medium to present

information on, and accessibility is probably one of the key factors. Everyone with

access to an internet service provider, a computer and a web browser have

access to billions of web pages. Only in Norway it is estimated that four out of ten

households have broadband access, and six out of ten internet access. [1] In a

statistical report by Eurostat it is estimated that one quarter of the European

households and two-thirds of the enterprises has broadband internet access. [2]

With such amounts of potential users with access to high-speed internet, the web

community has reached a new maturity level.

The huge success of the web has turned it into an increasingly more

important platform to distribute information, services and increasingly complex

applications. Providing users with a web application instead of a desktop

program simplifies distribution as one would only have to distribute the URL. The

user would not require any special tools to use the application. They can

continue to use the browser that they are already familiar with. Update becomes

easier too since no installing would be required on the user client side, all that is

 16

needed is to replace files on the web server. Another tread in recent years has

been the use of application service provider, ASP, applications, where the

applications a company or organization would use are offered to users from

servers. Often large parts of the application will be executed on the server while

only the user interface is updated on the client side. ASP applications and web

applications is in that aspect closely related. Connecting to servers from

specialized clients is however not always with out it hassles and this is something

one would avoid with web applications, pushing the drive for Web 2.0 even

further.

2.2 RIA (RICH INTERNET APPLICATIONS)
 And as a response, the industry has developed technologies to drive the

evolution one step further. Some are now using the conception Web 2.0, the next

generation of web technology. One thing is for sure, the generation shift will

come, and in this process we believe a collection of new web technologies

assembled in the conception RIA will be of great importance when standards are

to be decided on.

2.2.1 Introducing the term RIA

Now what is RIA technology? In a report on RIA technologies, Tom Noda

and Shawn Helwig describe the term like this: “Rich Internet Application

capitalize on the strengths of both web and desktop applications.” [3, section 2]

Approaching the possibilities of desktop applications, RIA technologies make it

possible for developers to develop more advanced web applications. RIA

technologies introduce new possibilities both in visual richness, and usability.

Traditional desktop applications have several advantages over web

applications:

• Richer user experience (Audio, video, communications)

• No page reloading

• Support both online and offline

• Enable more complex applications (e.g. MS Outlook versus Web mail)

 17

• More responsive and interactive

Introducing technologies that remove these limitations, RIA is the first

steps towards the Web2.0.

The leading marketing intelligence bureau IDC points out in an article

written by Joshua Duhl [4, page 1], that the market demands more complex web

applications. They have provided a list that concludes that RIA technology:

• Provide a very viable technology capable of addressing a broad range

of internet, intranet and corporate application needs without requiring

wholesale replacement of existing Web application investments.

• Empower companies to create wholly new kinds of engaging,

innovative user experiences and applications with features or

capabilities that in most cases would be extremely difficult or

impossible for a developer to create using traditional Web

technologies.

• Deliver a variety of substantial business benefits including: highly

qualified lead generation, increased sales, increased brand loyalty,

longer stays on sites, more frequent repeat visits, reduced bandwidth

costs, reduced support calls, and deepened customer relationships.

• Offer the potential for a fundamental shift in the experience of Internet

applications, leading to applications that come closer to delivering on

the promise of the Internet.

The IDC article was written in 2003 and show that several companies

have both increased sales revenues and improved product user appeal

considerably using the RIA technology Macromedia Flash compared to the use

of traditional web technology.

Being the pioneer company, Macromedia presented the term RIA in 2002.

Their vision was and is to combine the best of desktop software, the best of the

web, and the best of communications in one term RIA. The original RIA figure is

represented in Figure 1.

 18

Figure 1: RIA, Macromedia vision

Using RIA technologies like Flash, Ajax or Java (Applet, Web Start) it is

now possible to approach the goals of this vision.

2.2.2 A brief look at existing RIA technologies

There are currently 3 technologies that are of particular interest when we

are addressing the term RIA. The three are Macromedia Flash/Flex, Java

(Applet, Web Start) and AJAX.

2.2.2.1 Macromedia Flash/Flex
Being inventor of the term RIA, Macromedia Flash introduced amazing

graphics, audio and video to the end user via a downloadable browser plug-in.

After developing their own script language, Action Script, and a high end

development platform Macromedia quickly established itself as one of the major

actors on web technology.

The core architecture of the original Flash player is server – client

oriented, where the user must download a Flash plug-in to the preferred web

browser. Information from the server is downloaded in a compressed binary

format as *.swf files, and run in the client web browser. On a mobile platform,

using the Flash lite player, XML is used to structure the information.

 19

Later Macromedia introduced their RIA Presentation Server Macromedia

Flex. Flex provides an XML-based development platform that supports seamless

middleware integrations such as Web Services, .NET and J2EE. Web

development is also supposedly easier with the Flex platform than with the

traditional Flash platform. Figure 2 shows the Flex architecture against a Flash

lite player, on a mobile platform, and a Flash player inside a web browser. The

server uses the XML format when communicating with the Flash lite client, and

.swf if the client is a ordinary Flash player.

 20

Figure 2: The Flash/Flex architecture

2.2.2.2 Java (Applet, Web Start)
Java has for years provided technology for RIA development. Even before

Macromedia introduced the term RIA, Java provided enchantments for the web

through Java Applets. Later on they have introduced the technology Java Web

Start.

The Java web technologies Java Applet and Java Web Start operate on

the Java Runtime library. In order to run Java programs the user would have to

download and install a version of the Java Runtime Environment. While Java

Applets are run in a container specific location in the web browser, Java Web

Start is run via a Java Web Start plug-in from the operating system. Where Java

Applets are prohibited to access the local system, Java Web Start provide full

access to the Java library, and makes it possible to develop advanced

 21

applications that can be allowed to interact with the local system. Java Web Start

applications are deployed on the web server, and are after download installed in

a temporary folder on the user’s machine. Internet connection is not a

requirement to start and use the application, as they act like traditional Java

applications. This allows the possibility to present them as shortcuts on the user

desktop. When a Java Web Start application is executed, it will try to connect to

the web server and look for newer versions. This is indeed a very effective way to

distribute updates to the application users. Being run outside the browser Java

Web Start applications use Java Applets to communicate with the web browser

environment. This makes it possible to overcome the traditional barriers when

using Java Applets. Figure 3 shows the communication between client and

server for both Java Web Start and Java Applet. This is achieved using RIM,

IIOP and HTTP. [5]

Figure 3: Java Web Start/Applet architecture

 22

Using the UI library Swing, JSP, JSF and numbers of compatible open

source frameworks, Java developers have a rich selection of web development

tools available. Access to a wide and comprehensive open source environment,

low cost development tools and environments like the Eclipse platform makes

Java a popular and powerful choice.

2.2.2.3 Ajax (Asynchronous JavaScript and XML)
Being the newcomer among the RIA technologies Ajax has surely gotten

its fare share of attention over the last year. Since Jesse James Garret, the

founder of the web site adaptivepath.com baptized this new technological

approach Ajax, Asynchronous JavaScript and XML, numbers of Ajax enabled

web sites have been born. If one should try to explain the hype surrounding this

technological approach we believe that one good explanation simply is the

possibility to achieve asynchronous communication between the web server and

the web browser without the need for a browser plug-in. Ajax makes it possible to

refresh defined parts of the user interface without the need for a full refresh of the

whole web page It is possible to update parts of the page while the user plunders

with some other site functionality.

Another explanation is perhaps what Google has managed to do with

applications like Google Maps and Google Suggest, where they use a variant of

the Ajax technology to make web applications that has impressed web

developers and users world wide.

More explanations could be the growing Ajax community, supportive

frameworks, and broad attention from world leading companies like Sun, IBM,

Microsoft and others. And let us not forget that Ajax build on well know

technologies like JavaScript, Cascading Style Sheets (CSS), XML,

XMLHttpRequest and Document Object Model (DOM) to take advantage of the

unrealized potential already present in modern web browsers.

Being a newcomer Ajax is still fresh, and this is indeed a challenge when

companies consider Ajax as a new technological approach.

 23

2.3 INTRODUCING AJAX
In this thesis investigating Ajax and the standard relating to Ajax is

important. This section will present a closer look at Ajax architecture and its

relationship to other web standards.

As we already have mentioned, Ajax is a technological approach building

on already existing technologies. The approach makes it possible to achieve

asynchronous communication, and this way enabling the possibilities to update

selected parts of the user interface while others remain at their current state. No

more need for a complete page request, just the information you need or want to

refresh. Since Ajax is built on well know web technologies like JavaScript, DOM

and XMLHttpRequest there is no need for a browser adapted plug-in to make it

work. Just JavaScript enable your web browser and Ajax will work as it is

intended to.

The name Ajax was indeed defined by the now well known Jesse James

Garret, but the core technological approach was invented earlier. The summer of

2000, Brent Ashley wrote the client-side libraries JavaScript Remote Scripting

(JSRS) and Remote Scripting Lite (RSLite). The libraries were built to achieve

asynchronous communication between the web page and the server without

refreshing the page. The core technological approach was built on letting

Dynamic HTML (DHTML) elements make hidden remote procedure calls to the

server. The result was asynchronous communication. Ashley’s work indeed

made developers aware of the possibilities of asynchronous communication, and

he is indeed on of the real founders of the Ajax approach. [6]

2.3.1 The Ajax architecture

Figure 4 visualizes traditional web communication versus Ajax enabled

web communications.

 24

Figure 4: Classic versus Ajax web application model [7]

In the classic web application model we see a traditional web transaction

between a web server and a web browser. The user connects to the web server

by sending HTTP requests, and the server responds with the requested page.

This interaction is repeated each time the web browser sends a new HTTP

request to the server. Figure 5 visualize a typical synchronous communication

between a web server and a web browser.

 25

Figure 5: Classic web application model (synchronous) [7]

As the figure shows, user activity is only allowed between server response

and the next server request. Usually a request-response action is executed very

quickly, and not very problematic for the user. The problem emerges when the

developer wants to refresh parts of the page, while the user is using the

application and not disturb the user in this process.

Using the Ajax approach, it is possible to overcome this problem. Figure 6

visualize communication between the web server and the web browser, using an

Ajax engine.

 26

Figure 6: Ajax web application model (asynchronous) [7]

We see that the main difference from the classic model is the Ajax engine.

While the user is working with the web application, the requests sent to and from

the server are handled by the Ajax engine. To handle the requests and updates

from and to the user interface, the engine uses JavaScript. This enables the

possibility to alter information in a specific web control, and no page refresh is

needed.

2.3.2 Ajax, under the hood

The fundamentals of Ajax are JavaScript, DOM, CSS and

XMLHttpRequest. All four technologies have been around for a while, and all but

the XMLHttpRequest technology has been standardized. We will look a bit closer

at Ajax and standardization issues later in the report, but knowing that the W3C

has put together a working group to make a standard for the XMLHttpRequest

technology is in our opinion a great leap in the right direction.

So knowing the ingredients of the Ajax recipe, we draw the conclusion that

developing Ajax enabled web applications demands some skill in all of the

 27

fundamental technologies. A closer look at them, and Figure 7, might reveal the

complexity.

Figure 7: Ajax, the building blocks [9, p.63]

2.3.2.1 JavaScript and DOM
A vital part of Ajax is JavaScript, which is a prototype-based scripting

language, with a syntax that is loosely based on C. The language is dependent

on the host environment, and is executed directly in a supportive web browser.

 28

Fundamental for the technology is the ECMA-262 specification, the

standardization of ECMAScript, and the fact that all major web browsers currently

support it.

JavaScript offers ways to interact with the DOM (Document Object Model)

of a web page, and make it possible to execute script commands that can alter

the presentation of the web content, and even build the page from scratch. DOM

is standardized by the W3C as a standard, portable way to access all of the

elements and text within and HTML document. This way JavaScript have access

to all document content in a web page, and this is indeed needed when Ajax

functionality is being deployed. So the first step when considering the core Ajax

approach is to gain some JavaScript knowledge, and examine the possibilities of

DOM. An alternative is to consider the various Ajax frameworks available. We will

look closer at this in section 2.3.3, but can reveal that there exist several

frameworks that can simplify Ajax development.

2.3.2.2 CSS (Cascading Style Sheets)
CSS offers the possibility to style a document by defining a set of

standardized rules that can be applied to individual elements on a web page.

CSS provide rules that can alter color, borders, background images,

transparency, and size of elements. It is even possible to add simple user

interactivity. In traditional web applications CSS has been used to provide a set

of web pages with the same style. In Ajax applications this is not necessary

changed, but some Ajax enabled web applications will be presented as one

page, only updated by user interaction, and defined functionality that refresh that

single page with information from the web server. Even so, CSS provide us with

a comprehensive repository of predefined styles that can be applied to elements

dynamically with a minimum of code.

CSS is currently standardized by the W3C and is constantly being

enhanced with new functionality. The latest working draft, the CSS 2.1

Specification was published the 11th of April this year.[8] [10]

 29

2.3.2.3 XML and XMLHttpRequest
To transfer data to and from the web server, Ajax applications use the

XMLHttpRequest object. XMLHttpRequest is an API that can be used by a

scripting language to transfer data in XML format or plain text if preferred. The

real Ajax magic is dwelling on the asynchronous possibilities of data transfer the

XMLHttpRequest object is capable of delivering.

As mentioned earlier W3C is also working on a specification for the

XMLHttpRequest API. A set of minimum requirements will be defined, and it will

be up to the browser manufacturers to follow them.

2.3.3 The Ajax engine, frameworks and tool support

Now that we have had a brief look under the Ajax hood we perhaps see

that Ajax development might turn out to be a complex and time consuming affair.

A complex Ajax site will be dwelling on loads of JavaScript code, and several

XMLHttpRequest objects constantly demanding information from the server. Now

this is where an Ajax engine would come in handy. And they exist, in form of

several frameworks, developed to make the development process easier for you.

Now, in our report we are looking for frameworks that can help us develop

Ajax applications using the Java platform. And in this process we have noticed

that there exist several frameworks, not only for Java, but also for other platforms

like DOT.NET, Pearl, PHP, Python and Ruby. In this process we have chosen

one of these, Direct Web Remoting (DWR)

2.3.3.1 Direct Web Remoting (DWR)
DWR is an open source library with Ajax adapted tool support. The

concept behind DWR is to make it possible to run Java functions from a web

server via the web browser. This is done by letting a Java Servlet run on the

server, processing requests and respond back to the browser. The browser

contacts the server using JavaScript, and dynamically updates the page based

on the response from the web server. DWR is marshalling the data

communication between the browser and the web server.

 30

2.4 AGILE SOFTWARE DEVELOPMENT
TDD is considered as one of the agile software methodologies. In this

section we will introduce both agile methodology and TDD. We will also look at

software testing, and have included information connected to the design phase of

TDD.

Initializing a large scale software development process requires a defined

goal, and guidelines on how to reach the goal. In some cases the process itself

could be a part of the secondary goals, but for most software companies, the end

result in terms of profit is what really matters. As an old expression say, there are

many roads that lead to Rome, and there are also many ways to organize a

software project.

In this section we will start looking at agile software development and

continue with a look at TDD. In addition we will look at some of the testing

phases of a software project, and take a closer look at TDD and the pre design

phase.

2.4.1 Agile software development

TDD is defined as one of the agile software development methods, and

shares its fundamental ideology. The agile methods try to minimize the risk by

developing software in short time boxes, or in other words iterations. Each

iteration is given a short period and must be completed before a new is started.

An iteration can be viewed as a miniature software project on its own, and might

consist of all standard software stages like planning, requirements analysis,

design, coding, testing and documentation. The difference is that the result is just

a part of the whole software project. Communication is preferably done face-to-

face, and working code is more important than documentation. The agile teams

are often organized in a bullpen, including all people necessary to finish the

software. This includes at a minimum programmers and customers. It can also

consist of testers, interaction designers, technical writers and managers. [11]

While the agile software development methods are often classified as

adaptive methods, traditional and more disciplined methods are represented as

 31

predictive development methods. Figure 8 visualize by setting agile software

methods up against the waterfall method.

Figure 8: Adaptive versus predictive methodologies

On the figure we see the iterative arrow, with the adaptive development

methods on the left, and the predictive on the right. While agile teams are

focusing on code, verbal communication and small iterations, they can more

quickly adapt to changes. But on the other hand, this might require that your staff

has some experience, and have the fundamental knowledge to make the

adaptive process successfully. On the right side the waterfall method represent

the fulfillment of a predictive method. Using a step by step ideology, and doing

this in a strict-planned sequence, waterfall is dwelling on order in form of

analyzes and written documentation.

2.4.2 Software testing

Testing software is a requirement in most of the development

methodologies. The question is really if you should test the code after you have

implemented it, or before. As we see it, there is no final answer to this question,

as it all depends on the developers working with the project, their experience,

level of discipline and work routines. We believe a team of experienced and

disciplined programmers will do quite well in either setting, and the reason is that

both testing first or last demands discipline and experience. In a TDD scenario

 32

the programmer is strictly writing a test before the code is implemented, following

the cycle shown in Figure 10. If this is done properly the result will be software,

tested with a test framework, refactored code, and let us not forget the test suite,

consisting of detailed information on all the classes and methods of the project.

In a test later scenario the developers will typically start their implementation after

doing detailed specification and requirement documents. The test phase will be

done in the latter stages of the project. Now given that you don’t need a very

comprehensive documentation, TDD will leave you with enough to understand

how the software is working down to the level of out/input values. If you on the

other hand are dependent on a comprehensive documentation, the unit test suite

might lack the weight of traditional specification and design documents. If the

goal is to get the software shipped as fast as possible, TDD might be the thing.

Software testing is really a wide term, and if we cannot possibly cover it all

in this project. In our investigation we will cover the phase of unit testing and look

briefly at the integration test phase.

2.4.2.1 Unit testing
Unit testing is an expression often combined with the agile software

methodologies. The philosophy is to write tests that are testing at a low level, e.g.

a class containing of various attributes and methods. By using a unit test

framework that supports your chosen programming environment, you will then be

able to run the tests automatically. The feedback will be either success, or failure,

with a response attached to the method failing. A unit framework will give you

access to a set of methods, developed to test your code.

In Kent Beck’s original testing framework paper on eXtreme programming,

he describes unit testing like this: “I recommend that developers write their own

unit tests, one per class. The framework supports the writing of suites of tests,

which can be attached to a class. I recommend that all classes respond to the

message "testSuite", returning a suite containing the unit tests. I recommend that

developers spend 25-50% of their time developing tests.” [12]

 As we have mentioned earlier, one of the advantages of TDD is that the

 33

produced test suite, the set of unit tests attached to the software, is working as

documentation. In a scenario where you at a latter stage need to change some

code, the test suite will let you know if you break dependencies and other code in

the process. At the same time, TDD is about testing first, so the result will be a

revised test suite, updated with all recent changes.

 Figure 9 visualize the development and test cycle of a software project. If

we study this model we see that each of the development phases is closely

related to the test phases. In a TDD project most of the development will be done

on the unit test phase. In a predictive software methodology like Waterfall the

design phase will be adjacent to the unit test phase in a TDD project.

Figure 9: The development and test cycle

2.4.2.2 Integration testing
As unit testing is done on design level, integration testing is executed on

architecture level. The modules produced in the unit test phase are grouped, and

fed with simulated interaction. The results are analyzed based on the expected

 34

response from the tests. George Ellen is defining the goals of integration testing

like this in his article: [13]

“Ultimately, the goals of integration and test are to:

• Bring together the multiple pieces of a system

• Find and fix defects that couldn’t be found earlier

• Ensure that the requirements of the system are met

• Deliver a product of predictable quality that meets the business’s

quality objectives as well as the customer’s quality expectations.”

To reach the goals Ellen defines we need a framework that can help us

test our software on this level. In this report we will focus on testing in the Unit

test phase, but will recommend a testing framework that can help you achieve

integration testing in Ajax.

2.5 TDD, BASIC INGREDIENTS
In this section we take a closer look at some of the basic ingredients we

have found important to be aware of when considering TDD.

As TDD is among the agile software methodologies, we can draw some

basic conclusions. The software development process is divided into short period

iterations, and the goal of each period is to achieve working software. Functional

code is preferred over written documentation, and communication between the

team participants are mostly verbal and direct.

TDD is a way to define how to organize how to produce code within the

development phase. In Figure 10 we see the TDD cycle.

 35

Figure 10: The TDD cycle

In an article discussing TDD, Dan North has this to say about it: “The point

of TDD is to drive out the functionality the software actually needs, rather than

what the programmer thinks it probably ought to have.” [38] With this in mind let’s

explain the TDD cycle from Figure 10.

Instead of programming the specific code that is needed to implement the

target software, we start with step 1, writing test code as if the implemented code

already exists. Then we jump to step 2 and try to satisfy the test writing the

minimum amount of code needed to compile. If the result don’t satisfy the test we

 36

do step 2 once more, if on the other hand satisfactory is achieved we move to

step 3 and refactoring. The refactoring done in step 3 is all about making the

code as simple and clean as possible. And out of the cycle is a part of the

software, tested and quality checked. “TDD is not about the tests, it’s about

seeing how little you actually need to do and how cleanly you can do it!” [18]

The next citation is taken from the web site agiledata.org and Scott W.

Ambler: [14]

"Kent Beck, who popularized TDD in eXtreme Programming, defines two

simple rules for TDD. First, you should write new business code only when an

automated test has failed. Second, you should eliminate any duplication that you

find. Beck explains how these two simple rules generate complex individual and

group behavior:

• You design organically, with the running code providing feedback

between decisions.

• You write your own tests because you can't wait 20 times per day for

someone else to write them for you.

• Your development environment must provide rapid response to small

changes (e.g. you need a fast compiler and regression test suite).

• Your designs must consist of highly cohesive, loosely coupled

components (e.g. your design is highly normalized) to make testing

easier (this also makes evolution and maintenance of your system

easier too).

For developers, the implication is that they need to learn how to write

effective unit tests. Beck’s experience is that good unit tests:

• Run fast (they have short setups, run times, and break downs).

• Run in isolation (you should be able to reorder them).

• Use data that makes them easy to read and to understand.

• Use real data (e.g. copies of production data) when they need to.

• Represent one step towards your overall goal."

This short presentation of TDD shows that it is part of the agile software

methods, and inherits the fundamental behavior of the agile software

 37

methodology. We also see how the TDD cycle can help developers write clean

and working code.

When we at first started this project we had very limited background

knowledge about the TDD methodology. This led to a period where we tried to

understand the concept of TDD. During this process we have identified what set

of basic ingredients TDD require to achieve success. The list is based on our

own experience and our experience is built upon literature study and prototype

development.

We have identified the following basic ingredients:

• A simple pre design technique.

• A unit testing framework.

• A decent portion of TDD knowledge.

2.5.1 TDD and design

In our study we noticed that TDD was heavily based on the TDD cycle,

see Figure 10, and left little room for a pre design phase. After a while this really

felt a bit lacking. Our concern was that a software project, without a proper

design paper, quickly could get out of control.

As we continued to study TDD, we were after a while made aware of a

modeling technique named Agile Draw. We decided to look it up. What we

discovered was a very simple modeling technique. Simple but yet seemingly

powerful enough to make high level models covering all but the detailed part of

design and code level phases of the project. Se Figure 9. This could be exactly

what we were looking for.

The agile draw team vision is: “The primary goal of Agile Draw is to serve

as the simplest modeling technique that is pleasingly natural, provides design

freedom, requires the most basic tools, promotes modeling creativity, fosters

better communication, and complements existing standards. A secondary goal

for Agile Draw is to give developers the confidence to do freeform modeling.” The

Agile Draw technique is closely related to the principles of Agile Modeling. [15]

The founder of agilemodeling.com, Scott W. Ambler serves as one of the

 38

contributors to the Agile Draw modeling technique. Table 1 shows the core

principals of the Agile Draw technique.

Table 1: The core principles of Agile Draw [39]

1 Simple: Many complex models can be communicated using a set of

simple shapes, connectors and minimal notations. Shapes denote the

type of entity, connectors denote the relationships and notations to

decorate and add additional constraints and meaning.

2 Less is more: In many cases, models with large number of artifacts,

relationships, and constraints eventually become so complex that most of

developers simply refuse to use them. Furthermore, as software changes,

it is hard to update the models. Keeping the models light and clean is an

effective way to manage complexity.

3 Light-weight tools: Modeling should not require sophisticated tools and

products. An easy to use diagramming tool and a pragmatic approach

where the team can collaborate, exchange and modify the models is all

you need.

4 Easy to understand: Agile Draw maintains its simplicity by using an

intuitive approach to modeling that also makes it easy for users to

understand the design and concepts behind the model.

So to achieve this, Agile Draw introduces a modeling technique that

seems able enough to provide us with a light, high level conceptual design of the

system. Let’s look at the Agile Draw basics.

2.5.1.1 Agile Draw basics
The Agile Draw premise is that data can be identified in two ways:

1. In motion

2. Stored

Based on this premise, two shapes, circles and boxes are founding the

 39

basics to present data in motion. Communication and/or relation between the

shapes are visualized through simple lines. Minimal usage of text is used to

describe the shapes and the lines. The Agile Draw terminology refers to these as

points, connectors and text. So as Figure 11 shows, the basic Agile Draw

components are points (circles, boxes), connectors (lines), and text.

Figure 11: Agile Draw, basic components [16]

A deeper understanding of when to use what of the components is

described in Table 2 and Table 3. In addition it is also important to remember that

use of text should be minimal.

Table 2: Points, description

Shape Depicts When to use it

Circle Movement/Infinity “Listeners” such as application servers, web

server, database server, messaging servers,

listener classes.

Boxes Fixed/Rigidity Hardware, classes, entities/tables, user

interface, or just about anything.

Table 3: Connectors, description

Style Depicts When to use it

Solid Concrete,

synchronous, tight

association, etc.

Synchronous communication, entity-

relationship, etc.

 40

Dashed Abstract,

asynchronous, loose

association, etc.

Asynchronous communication, extending

abstract class, etc.

Agile Draw offers a simple way to design the project before you start

writing your tests. We believe that this technique is here to stay, and the reason

is the simple and yet working design techniques it offer to agile software

development methods.

2.5.2 Unit testing, frameworks and mock objects

TDD is all about the tests. The most important of the TDD ingredients is a

framework to help you run your tests. If we look back at Figure 9 we see that the

second phase, just after the compiler has finished doing its job is the unit test

phase. Unit testing is done on low level, and forms the basic when test are to be

written in a TDD cycle, se Figure 10. To help us write and run our tests there are

several frameworks available, supporting many languages. A common name on

these is xUnit frameworks.

The xUnit frameworks offer a set of defined methods you can use to

design your tests, and in addition, most of them also offer a graphical GUI, where

you can receive feedback on the tests running.

To test Java code the main unit test framework is JUnit. When developing

JavaScript there are several alternatives.

When performing unit testing you might be facing a situation where you

have to make tests that use databases, communication devices, user interfaces

or any external application. In these situations the solution could be a simulated

object of the real instance, or a mock object.

We will introduce JUnit, the JavaScript alternatives and mock objects in

the Sections below.

 41

2.5.2.1 JUnit
JUnit is the main unit testing framework for the java platform. In our case it

came with bundled with Eclipse, and we didn’t have to do much to make it run.

JUnit is shipped with methods to test code behavior, and a test suite to present

test results to the developer. To use it you must know of the basic set of

assertion methods it provide, and how to set up tests for your code. We have

provided an overview of the basic methods in Table 4.

Table 4: JUnit, assertion methods

Method Description

assertEquals(Object expected, Object

actual)

assertEqual(String text, Object

expected, Object actual)

Check that two objects are equal by

using the Object.equal() method.

assertTrue(Boolean condition)

assertTrue(String text, Boolean

condition)

Check that a value evaluates to true.

assertFalse(Boolean condition)

assertFalse(String text, Boolean

condition)

Check that a value evaluates to false.

assertNull(Object value)

assertNull(String text, Object value)

Check that a value is null.

assertNotNull(Object value)

assertNotNull(String text, Object value)

Check that a value is not null.

assertSame(Object expected, Object

actual)

assertSame(String text, Object

expected, Object actual)

Check that two values are the same –

that is, the same reference.

assertNotSame(Object expected,

Object actual)

assertNotSame(String text, Object

Check that two values are not the

same reference.

 42

expected, Object actual)

fail()

fail(String text)

Fail the test.

2.5.2.2 JsUnit
JsUnit is one of the unit testing frameworks developed for JavaScript

testing. The development of JsUnit was initialized in January 2001. JsUnit is

essentially a port of JUnit to JavaScript, and offer a platform for automating the

execution of tests on multiple browsers. The framework also provides a plug-in

developed for integration with the Eclipse platform. [17]

2.5.2.3 Script.aculo.us
Script.aculo.us is first and foremost a JavaScript/Ajax framework, and not

a testing framework. The reason it fits in here is that it provides a set of classes

and methods for JavaScript unit testing. To write unit test cases they have

provided a utility class. The development of test cases is structured in a XHTML

page, and run via a web browser. Testing is only supported via the Firefox web

browser. [18]

2.5.2.4 J3Unit
J3Unit is an object-oriented unit testing framework for JavaScript. It is built

on the work done in both JsUnit and Script.aculo.us. The test cases are written in

the utility class provided by Script.aculo.us. J3Unit is currently in beta, and

supports testing in Firefox 1.5 and Jetty 6.0.0 beta. [19]

2.5.2.5 Mock objects
Mock objects are fake objects made to simulate the behavior of a real

object. Examples are databases, communications devices, user interfaces and

external applications. Instead of ending up with long messy unit tests, a mock

object can make a virtual instance, and simulate the behavior of the target

 43

instance.

2.5.3 A decent portion of TDD knowledge

We believe that the third ingredient for a successful TDD experience is a

decent portion of TDD knowledge. You need to know what you are doing, what

you should test and how you can implement the code to succeed the test. There

are good literature and several web sites available. Our advice would be to have

a look at some of these.

 44

3 TDD AND AJAX

3.1 IDENTIFYING THE CHALLENGES
Based on our literature study, we started to analyze both Ajax and TDD to

identify any possible challenges. To reach this phase we first had to understand

in detail the architecture and building blocks of the Ajax architecture. At the same

time we needed basic understanding of how to use the TDD methodology, not

only in theory, but in practice.

In this chapter we will introduce the work we have done to identify

challenges attached to TDD of Ajax enabled web applications. We will introduce

the challenges identified and suggest possible solutions.

The solutions presented will only cover the phases where TDD and Ajax

introduce challenges, and will not cover the web development phase and TDD as

a whole.

3.1.1 Choosing a unit testing framework for JavaScript

When developing Ajax enabled web applications you will most surely end

up with a good amount of JavaScript code. JavaScript is a script language, and

can be rather messy to start working with, especially if you are used to stricter

and object oriented languages like Java, C++ or C#. In section 4.3 we will look at

ways to structure design through the usage of design patterns.

In the TDD development process we have already identified the need for a

unit testing framework. When we started looking for a supportive testing

framework for JavaScript we wanted a framework that was mature and easy to

use. As testing framework we ended up with JsUnit.

Considering the alternatives, Script.aculo.us and J3Unit we chose JsUnit

based on the maturity, the simplicity and the Eclipse plug-in tool support.

The JsUnit project was started in January 2001, and is unit testing

framework for client-side, in-browser JavaScript. One of the neat features we

 45

found appealing with JsUnit was a plug-in developed for the Eclipse platform.

Even though JsUnit can be run through the Eclipse plug-in it demands a

defined web browser to do the job. In Figure 12 we see how JsUnit works.

If you use Eclipse, and have installed the plug-in properly you will be able

to run a chosen html page as a JsUnit test from Eclipse. If you are not using

Eclipse you will have to run the testRunner.html page provided with the JsUnit

distribution. As Figure 12 show, the plug-in will launch the testRunner.html page,

run the testPage.html page, and then run the tests defined in the testPage.html.

With the Eclipse plug-in, this is automatically done. Without it you will have

to define what page to test in the testRunner.html page.

The JsUnit testing suite then will look up the tests defined in your test

page. In Figure 12 we have visualized the JavaScript to be tested as separate

files, Collection1.js, Collection2.js and so on. Putting your JavaScript in separate

collections is a good way to improve the design of your project. In a TDD

perspective you will have high level figures, or at least a notion about what you

are trying to implement. A suggestion is really to use information provided by

either specification or ideas to build your JavaScript collections.

 46

Figure 12: Running JsUnit tests from the Eclipse platform

To make a unit test case for JsUnit you first of all need an html page

where you can write your unit tests. In Figure 12 we have called this page

testPage.html. To make the JsUnit test suite aware of your test, their name must

start with test, and then something of your own choosing. Let’s say you have a

function that initialize your XMLHttpRequest object, and want to check if it is

created. In Code example 1, we show a function that initialize a XMLHttpRequest

object based on the web browser that is calling the function. We have put this

function in a file that we have called request.js.

Code example 1: Initialize a XMLHttpRequest object
function initXmlHttpRequest(){
 var XMLHttpRequestObject = false;
 if (window.XMLHttpRequest) {
 XMLHttpRequestObject = new XMLHttpRequest();

 47

 } else if (window.ActiveXObject) {
 XMLHttpRequestObject = new
ActiveXObject("Microsoft.XMLHTTP");
 }
 return XMLHttpRequestObject;
}

The code showed in Code example 2 shows how this simple test can be

coded. Worth noticing is that you will need the jsUnitCore.js file from the JsUnit

distribution defined in the file where you will create your test suite. First of all we

create a variable that we call XMLHttpRequestObject. This is yet only a variable,

and we have defined that it is null. The real test is happening when the JsUnit

test suite discovers the function testXMLHttpRequestObject(). First we make the

assertion that our created object should be null, and not have any value attached

to it. Then we initialize the initXmlHttpRequest() function, see Code example 1,

where the variable will be defined as real XMLHttpRequestObject. If the test is to

pass now, the variable must have been instantiated, and we make an assertion

that will fail if it still is null.

Code example 2: The testPage.html
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-
1">
<title>Test-Suite</title>

<script language="javascript" src="/jsunit/app/jsUnitCore.js"></script>
<script src="JS/request.js" type="text/javascript"></script>

</head>
<body>
<script language="javascript" type="text/javascript">

var XMLHttpRequestObject = null;

function testXMLHttpRequestObject(){
 assertNull(XMLHttpRequestObject);
 XMLHttpRequestObject = initXmlHttpRequest();
 assertNotNull(XMLHttpRequestObject);
}

</script>

 48

</body>
</html>

The result is shown in both browser view, se Figure 13, and inside Eclipse

similar to JUnit, se Figure 14.

Figure 13 JsUnit test suite, browser screenshot

Figure 14: JsUnit test suite, Eclipse screenshot

 49

3.1.2 Testing asynchronous communication in JavaScript

After choosing a proper testing framework for JavaScript we tried to test

some basic Ajax communication, executed by JavaScript. Our concern was that

it could be difficult to test that the response from the server was returned before

the test was finished. As we tried to solve this problem we first tried to make a

solution we have named, the waitForAWhile solution.

3.1.2.1 The waitForAWhile solution
The first thing that ran through our heads when encountering this problem

was to force the test case to wait until the asynchronous response was done, and

then try to analyze the result. After reading an article discussing this matter, but

referring to a different testing framework, Selenium, we decided to see if it could

be possible to make such a script for the unit testing phase. [20] [21]

The reason we could not use the Selenium testing framework instead of

JsUnit is that Selenium is designed specifically for the acceptance testing

requirements of agile teams. If we look back to the development and test cycle

figure in Figure 9, Selenium will fit in under the integration and system test

phases. We will look a bit closer at this in Section 3.1.3.

We then started working out a simple test for our JsUnit test suite, and

made use of a script that did exactly what we wanted it to do, force the test to

wait for a chosen time. [22] The script used is shown in Code example 3.

Code example 3: The waitForAWhile.js script
function waitAWhile(millis)
{
date = new Date();
var curDate = null;

do { var curDate = new Date(); }
while(curDate-date < millis);
}

We tried this out by requesting a simple text file from the server with only

 50

the string value, working.

As you see in

Code example 4, we call up the waitAWhile() script, and do an

assertEquals() on our response, the variable asyncResponse. The

asyncResponse variable is created in our pre made test page, and is used to

represent the response from the server.

Code example 4: Testing the asynchronous request
function testAsynchronousResponse()
{
 getDataOnly('http://localhost:8080/TestRunner/data.txt',
XMLHttpRequestObject);

 waitAWhile(1000);

 assertEquals("Testing if the response from the server is
correct.","working",asyncResponse);
}

The reason this could even work out at all is the nature of the

asynchronous request. As we se in

 51

Code example 5, the function calls up a call back handler that is starting up a

new process in a new thread. This thread is running until the XMLHttpRequest

objects ready state = 4. We will look a bit closer at this in Chapter 4. So stopping

the script would not stop the response from being created.

The results we got from this from this were quite confusing really. As we

tried to run different tests we noticed that the response from the server often took

quite some time to receive. At some occasions our test received a response from

the server in less than 1 second. This seemed however not to be stable. Even a

wait value set to 2 seconds sometimes gave test failure.

Another error we encountered was connected to the Eclipse plug-in. The

JsUnit test unit runner didn’t manage to run the test properly at test launch. This

is of most importance when using the Eclipse plug-in. The reason is that when a

new test is run by executing a new JsUnit test on the chosen test page, the

results are reported back to the Eclipse JsUnit view. If the test fails on the first

try, the test will show as a failure in the Eclipse view. In our case the tests always

failed at execution, but did work when we refreshed the web browser to try again.

 52

Code example 5: Waiting for the XMLHttpRequest response
function getDataOnly(dataSource, XMLHttpRequestObject)
{
 XMLHttpRequestObject.open("GET", dataSource);
 XMLHttpRequestObject.onreadystatechange = function()
 {
 if (XMLHttpRequestObject.readyState == 4 &&
 XMLHttpRequestObject.status == 200)
 {
 asyncResponse =
XMLHttpRequestObject.responseText;
 }
 }
 XMLHttpRequestObject.send(null);
}

After struggling for a while with this solution we realized that it was not

satisfying. Realizing that this was no good solution we had to find a different

approach to the challenge.

3.1.2.2 The mock object approach
If we look at our effort done in the last secion, we can only imagine how

slow a test suite will run with many asynchronous request/response calls. In

addition, in a large software project, ambiguous errors and unstable results is not

acceptable. The developer should not have to worry about such matters, and in

most languages he doesn’t have to. To help developers cope with these kinds of

problems there exist several mock object frameworks, able to simulate

databases, Java Servlets and other objects that need a working and running

instance to be able to test.

We have briefly explained what mock objects are earlier in the report. To

fresh up a bit, mock objects are fake objects that’s intension is to simulate the

behavior of a real object. There are several defined patterns made for mock

object creation, and each pattern try to solve a simulation of a specific problem.

In a document by Matthew A. Brown and Eli Tapolcsanyi several patterns for

mock object creation is introduced. Se Table 5 for a list of the mock object

patterns presented in their document. [40]

 53

Table 5: Mock object patterns

Pattern Name Synopsis

MockObject Basic mock object pattern that allows

for testing a unit in isolation by “faking”

communication with collaborating

objects.

MockObject via Factory A way of generating mock objects,

utilizing existing factory methods.

Self Shunt Unit Test code serves as the mock

object by passing an instance of itself.

Pass in Mock Collaborator Pass in a mock object in place of the

actual collaborating object.

Mock Object via Delegator Creates a mock implementation of a

collaborating interface in the Test class

or mock object.

An example could be using mock objects knowing that the class and the

methods you are writing unit tests for will be dependent on other classes and

methods that are not yet implemented. A solution will in this case be to make a

mock object that wraps the interface of the class you are dependent on. This way

you can override the internal methods, and define a set of response/requests

manually.

 In most of the platform environments, like the Java platform, it is possible

to get hold of mock frameworks, and use these to implement mock objects that

can simulate several elements. In JavaScript however, such frameworks seem to

be of non existence.

We tried to analyze the challenge with Ajax, TDD and JavaScript again,

and saw that we needed a mock object that simulated the XMLHttpRequest

object. In Figure 15 we have tried to visualize the problem, and how it could be

 54

solved. If it was possible to encapsulate the XMLHttpRequest object with a

wrapper function, we perhaps could override the methods that initialized the

response/request communication with the server. Instead we could define a

response being sent back to the requesting JavaScript function.

Figure 15: XMLHttpRequest mock object for JavaScript

So a very good solution to the Ajax – TDD challenge in JavaScript would be such

a mock object, simulating the XMLHttpRequest object. Making the object, on the

other hand, is another story.

Identifying the object to be mocked, we tried to see if we could develop a

mock object for the XMLHttpRequest object. So we started to look at the

possibilities in JavaScript. This was in fact quite encouraging, as we quickly were

reminded on the limitations in JavaScript. First of all, JavaScript is a script

 55

language, there is in built support for object oriented development, inheritance,

interface building and so on. As mock patterns heavily rely on these to work, we

decided to only document this matter, and not try to develop a mock object on

our own.

3.1.3 Ajax and integration testing.

As we encountered the challenge connected to the asynchronous

request/response in the unit test phase, we also understood that this would make

both integration and system testing of Ajax enabled web applications challenging.

Even though we have defined the unit test phase to be of importance in

this report, we will suggest a possible solution to the integration test phase.

As with unit testing, integration testing is dependent on a proper

framework that can help you test your software. In integration testing you might

want to test components of the whole system, but in contrast to unit testing, the

test has to be run against a working system. With a working system we mean the

complete component, with its dependencies, web server, database etc.

Integration testing of a web page or perhaps only a part of the page is done by

simulating user behavior on it.

To overcome the asynchronous behavior produced in Ajax applications

you will need an integration testing framework that can do the job. While we were

searching for testing frameworks, we encountered the Selenium testing tool for

web applications. [26]

Selenium is built to run directly in web browsers. It supports Internet

Explorer, Mozilla and Firefox, and allow the developer to write tests in Java,

.NET, Perl, Python and Ruby.

To test Ajax enabled web applications the developer must download and

include an extension to the Selenium framework named waitForCondition. The

extension allows the developer to run a chosen JavaScript, and set a timeout that

terminates the condition after a chosen amount of time. If the script finished

before the timeout is reached, the waitForCondition will be evaluated to true, and

will stop waiting.

 56

The waitForCondition script will make the integration test run as quickly as

possible, and this is exactly what is needed when testing Ajax applications.

3.2 SUMMARIZING THE CHALLENGES
Our work done both through literature study and prototype development

has helped us to identify the challenges connected to TDD and Ajax

development. These are listed in Table 6.

Table 6: TDD - Ajax challenges

1 Ajax is heavily dependent on JavaScript, and requires a testing framework

that is able to test JavaScript.

2 Ajax introduces asynchronous communication between the web client and

the web server. In a TDD – Ajax scenario this cause problem connected to

unit testing of the JavaScript code.

3 The asynchronous communication introduces similar challenge in the

integration and system test phase.

 57

4 AJAX

Previously in chapter two we presented a brief look at the technologies

behind Ajax. In this chapter we will present the Ajax architecture in more detail

and look at a sample prototype.

4.1 MAKING A AJAX REQUEST
A user would interact with an Ajax application through a web interface, so

let’s start by looking at some html code.

Code example 6: JavaScript event handler example
...
<script language="javascript" src="Customer.js"></script>
...
<tr><th>Zip:</th>
 <td>
 <input onblur="getZipData(this.value)" type="text" name="zip"/>
 </td>
</tr>
<tr><th>City:</th>
 <td><input id="city" type="text" name="city"/></td></tr>
...

 The code in Code example 6 defines two inputs elements with the names

zip and city. To the zip-field we have registered the JavaScript event handler

onblur which handles the blur event thrown by the web browser when another

area gets focus. The onblur attribute is special from other html attributes in that it

can take JavaScript code as its parameter. The code “getZipData(this.value)” is a

JavaScript call to the function getZipData in the associated JavaScript file

Customer.js. This function is listed below in code listing 2. Calling a JavaScript

function in this way is how one would initiate the core of an Ajax application. After

this we are ready to start making the request back to a server.

 58

Code example 7: The getZipData function
var xhr;
function getZipData(zipCode){
 xhr = new XMLHttpRequest();
 xhr.onreadystatechange=processZipData;
 xhr.open("POST", "zip.do", true);
 xhr.setRequestHeader("Content-Type",
 "application/x-www-form-urlencoded");
 Xhr.send("zipcode="+zipCode);

The function getZipData will create an object that is used for

communication with the server. To do this we use the XMLHttpRequest object

and create a new object named xhr in the code above. When the send method of

this object is invoked a new connection is opened in another tread. The

invocation returns immediately and continues executing the rest of the code in

the getZipData function. This means that the JavaScript code does not wait for

the servers response, instead we have to register a callback handler using the

onreadystatechange property of the XMLHttpRequest object. The callback

handler in Code example 7 is a function called processZipData. This function is

in its turn called when the value of the readystate property of the

XMLHttpRequest object changes. Processing the request in another thread and

the use of callback handlers is what makes Ajax asynchronous and vital to the

architecture of Ajax applications. Unfortunately the XMLHttpRequest object is not

a part of the official JavaScript standard [23]. The code in Code example 7 will

only work in browsers like Mozilla Firefox and Opera. This will affect the way the

way Ajax applications are written and possibly cause standardization issues. We

will come back to this in later chapters.

4.2 PROCESSING THE REQUEST AND RESPONSE.
In an Ajax application you would typically need to process user data on

the server or fetch new data from the server. In the example in Code example 6

and Code example 7 we send back a zip code to the server that the user has

 59

entered in the web browser. In Code example 8 we show the web service that

the open method of the XMLHttpRequest calls when sending the data.

Code example 8: Java servlet example
protected void doPost(HttpServletRequest request,
 HttpServletResponse response)

throws ServletException, IOException {

String zipcode = request.getParameter("zipcode");
 String city = getCity(city);

 response.setContentType("text/xml");
 response.getWriter().write(
 "<zip>" +"\r\n" +
 "<postalAddress>" +"\r\n" +
 "<zipcode>"+ zipcode +"</zipcode> " +"\r\n" +
 "<city>"+ city +"</city>" +"\r\n" +
 "</ postalAddress>" +"\r\n" +
 "</zip>" +"\r\n
);

The java servlet in Code example 8 shows how a web service in java can

handle Ajax requests. The servlet extracts the data that the user sends from the

request, and process the data by using the zip code to find the matching city. An

xml document is then created and sent back. While this is done the readystate

property of the XMLHttpRequest object are changing and each time the callback

handler is called. When the response has been received properly, this property

will have the value 4. The other values are listid in table 7.

Table 7: The possible values of the readyState property [41, page 55]

Value State

0 Uninitialized

1 Loading

2 Loaded

3 Interactive

4 Completed

 60

Code example 9: XMLHttpRequest, callback handler
function processZipData() {
 if (xhr.readyState == 4) { // if the request is completed
 if (xhr.status == 200) { // and if the responese completed
 // succesfully
 var CityNodes =
 xhr.responseXML.getElementsByTagName("zipcode");
 var city = cityNodes[0].firstChild.nodeValue;
 document.getElementById("city").value = city; }
 else {
 document.getElementById("Error").innerHTML = "Error";
 }
 }

 The JavaScript code in Code example 9 is the callback handler that was

previously registered to handle the response of the XMLHttpRequest object. It is

the task of the client side JavaScript to navigate the returned xml-document and

find the data that will be used to update the webpage.

 The figure below illustrates how the components that makes up an Ajax

application relates to each other. The figure is based on [24] but modified to

show the complete Ajax process and adapted to fit the prototype

 61

Actor

Web page Java servlet Application logicEvent handler XMLHttpRequest
processZipData

Callback handler

2:Raises DOM event
blur

3: new
XMLHttpRequest
object

4: Create callback
function

5: Register callback

6: Calling
xhr.send 7: Send HTTP request (POST/GET)

 8: Callbackhandler called
when the connections

 readystate changes

 9: Serverside
processing

10: Send response as XML

11: Parsing response.

12:Interrogate
Response
DOM

13: Update HTML page14:User reads
webpage

1:
User interaction
with web page

Figure 16: Detailed UML sequence diagram of the Ajax architecture.

4.3 DESIGN PATTERNS
Design patterns are an approach where one considers recurring design

problems and tries to find a solution to these problems. In computer engineering

a common approach is to break down functionality into classes. Patterns are

often specific solutions to specific problems. According to E. Gamma; “Patterns

are distilled from the experiences of experts. They enable you to repeat a

successful design done by someone else. By doing so you can stand on the

shoulders of the experts and do not have to re-invent the wheel” [25]

 62

Implementing a pattern can help significantly to solve a programming problem in

a particular context.

Many of the design patterns that exist for Ajax focus on the user interface

part e.g. drag-and-drop where the user is allowed to rearrange elements on the

page. Many of these patterns existed before the Ajax term was coined and the

problems can be related back to DHTML. However, in this chapter we will take a

closer look at patterns that are more important when creating Ajax applications.

4.3.1 The Facade design pattern

The Facade design pattern is about creating a class or function if you like

so that a new class is offered to the programmer with a simpler interface. It can

also be a way of abstracting away some code handling issues so that the

programmer will have fewer objects to handle. In this section we take a closer

look at how such a pattern can be applied in our prototype.

The most common non-gui pattern that we have found is the creation of

the XMLHttpRequest object. As mentioned previously in this chapter this

JavaScript object is not a standard part of JavaScript. It is up to the various

browser makers to decide in which way they want to implement such

functionality. For an Ajax developer this presents a problem because he can not

any longer just create the needed object but has to consider what browser the

user uses and how this browser has implemented the needed functionality.

In Code example 7 we showed how the XMLHttpRequest object was

initialized and used. As discussed, the code would any work in some browser. To

account for other browser we could instead implement an XMLHttpRequest

object of our own which would return a usable object based on the users

settings.

 63

Code example 10: Creating a XMLHttpRequest object
function XMLHttpRequest() {
 var xmlreq = false;

 if (window.XMLHttpRequest) {
 // XMLHttpRequest object suited for Mozilla Firefox
 // and Opera
 xmlreq = new XMLHttpRequest();
 }

 else if (window.ActiveXObject) {
 try {
 // XMLHttpRequest object suited for newer versions

// of Internet Explorer
 xmlreq = new ActiveXObject("Msxml2.XMLHTTP");
 }
 catch (e1) {
 try {
 // XMLHttpRequest object suited for older
 // versions of Internet Explorer
 xmlreq = new
 ActiveXObject("Microsoft.XMLHTTP");
 }
 catch (e2) {
 // Unable to create an XMLHttpRequest
 // by any means
 xmlreq = false;
 }
 }
 }
 return xmlreq;
}

In

 64

Code example 10 we show an implementation of a design pattern that allows the

programmer to keep the code in Code example 7 unchanged. The new function

in

 65

Code example 10 will handle all the trouble of creating the proper object and

returns it to the calling function. By using the facade design pattern the

programmer no longer need to worry about the problem and can focus his effort

on the actual task, communicating with the server. Using this pattern in the way

we described resembles object oriented techniques something that simplifies the

use of design patterns. If we would need our Ajax application to support other

browsers this could easily be fixed bye replacing the function in

 66

Code example 10 without changing the core of our application. Writing

JavaScript in an object oriented way would also help write better structured and

easier to understand applications.

Figure 17: Facade Pattern diagram, [26, page 80]

4.3.2 The Model-View-Controller design pattern

In normal desktop applications the Model-View-Controller design pattern

(MVC) is a common way of writing programs. As Ajax applications in time are

expected to have many of the features that desktop applications have, applying

the MVC pattern to Ajax becomes important. We will in this section see how MVC

can be applied to the client side of an Ajax program.

The traditional MVC pattern divides responsibility for the application in

three components, the View, the Controller and the Model. Each component is

supposed to handle its own logic without interference from the other components.

 67

If followed strictly this means that each part could be developed independently.

4.3.2.1 The View
The View component provides the user interface. The view is tasked with

providing the user the possibility to talk with the Controller but also to update the

user interface according to changes in the Model usually through communicated

through the Controller.

In our prototype the View is the equivalent of the html-page sent to the

user seen in Code example 5. One problem however with this code is that is

mixes the View logic with the Controller logic. Separating these two could be a

very good idea and would allow the designer of a web application to focus purely

on what the application would look like. The html code as it is now, describes

what event that is to occur and what function that should handle this event. This

is part of the Controller logic.

4.3.2.2 The Controller
The Controller handles user input and is composed of event handlers. As

we saw in the previous section our code mixes the View and the Controller

because this html-tag: <input onblur="getZipData(this.value)" type="text"

name="zip"/>

 The onblur attribute tells the View which function that will handle the user

event. Writing the code in this way requires that the designer is aware of the

Controller components. Instead these could be separated by creating or adding

the event handler dynamically in a separate JavaScript function, a Controller

class if you like.

 68

Code example 11: Separation of View and the Controller

4.3.2.3 The Model
The Model is the component responsible for storing contents and state of

the application. Another way of saying this is that the Model “consists of the

business domain objects” [26, page 122]

Interacting with the server and passing information back to the Controller

is another of the Models responsibilities. See Code example 9 for how we

previously dealt with sending information to the server. What happens in Code

example 6 is that we update the View based on changes in the Model.

4.4 FRAMEWORKS AND DIRECT WEB REMOTING (DWR)
As with design patterns, frameworks exist to simplify the programming job.

The main difference is that a framework offers you methods or even a API based

on the platform you are using, you then code using the provided framework API.

With design patterns you will get the necessary code, or idea of how to program,

so that you can modify it and adapt it yourself to your context.

A interesting framework that exist for Ajax on the Java platform is Direct

Web Remoting, DWR. DWR aims to let the programmer use call java methods

on the server from JavaScript functions in the browser. In order to use DWR it

must first be installed on the web server that will host the web application. The

framework will generate JavaScript files to be included on the client side. The

generated JavaScript functions will be based on the java classes to the web

* HTML

<input type="text" name="zip"/>

* JavaScript

Windown.onload=function(){

 var inputController = document.getElementByID("zip")

 inputController.onblur=getZipData(this.value)

}

 69

application. The DWR framework will handle all the code required to

communicate between the browser and web server, the developer can then use

the java methods in the JavaScript functions as if it was java. DWR is a remoting

framework as it handles all the calls to the remote web server. For the same

reason DWR is known as a proxy-framework, as it creates the objects that

communicate.

Figure 18: Diagram of how DWR can be put to use [27]

 70

5 WEB STANDARDS

In this chapter we will look at web standardization, and possible

standardization issues connected to Ajax development. We will start with an

introduction to the standardization in context of the World Wide Web history, and

continue with a look at the Ajax approach, and its collection of fundamental

technologies.

5.1 STANDARDIZING THE WEB
Since the World Wide Web architecture was proposed in 1989, and the

first web browser written in NeXTStep (October-December 1990) saw the dawn

of light, the term web has grown to be a term well known by most people. [28]

The technological implementation of the web has over the past decades

revolutionized the way literature and media can be presented to the end users.

It started with the proposal of the World Wide Web architecture, as shown

in Figure 19, invented by the now famous Tim Berners-Lee. The WWW

architecture was built on the combination of four basic ideas:

• Hypertext

• Resource Identifiers

• The Client-Server model

• Markup language

If we take a closer look at Figure 19 we see that the pink arrow shows the

common standards: URL, and HTTP, with format negotiation of the data type.

[28]

 71

Figure 19: The original WWW architecture diagram, 1990 [28]

The four ideas evolved into the transfer protocol HTTP (Hyper Text

Transfer Protocol) and URL (Uniform Resource Locator). Later on the IEFT

(Internet Engineering Task Force) published HTML (Hyper Text Markup

Language).

To begin with, web applications offered a static way to present text,

pictures and sound. The hyperlink technology made it possible to navigate

between web resources, and as various web applications were born, hyperlinks

and search engines “webbed” it all together.

Supportive web browsers were developed, first the NCSA Mosaic

browser, originally a UNIX based browser, but later ported to both Apple

Macintosh and Microsoft Windows. Then, after the Mosaic success, Marc

Andreessen, the leader of the Mosaic team at NCSA decided to give up his

position, and formed the company Netscape Communications Corporation. The

result was the well known Netscape Navigator, launched October 1994. [28] [29]

To ensure compatibility and agreement among industry members in the

adoption of new standards, Berners-Lee the same year founded the W3C (World

 72

Wide Web Consortium). Since then both Berners-Lee and W3C has had a

significant role in defining web standards for the web.

Netscape Navigator was quickly challenged by Microsoft and their Internet

Explorer, and resulted in years of war between the two major competitors. The

battle was fought on fields where web standardization differences were used as

bullets. This resulted in proprietary extensions to the HTML language, and they

both launched technologies supported only by their own browser. This struggle

did however result in the technologies CSS (Cascading Style Sheets) and

JavaScript.

The introduction of JavaScript in the Netscape Navigator, December 1995,

gave developers new possibilities developing their web applications. JavaScript

was a prototype-based scripting language, and its syntax was loosely based on

C. JavaScript is dependent on the host environment, or in other words, browser

compatibility. JavaScript offered ways to interact with the DOM (Document

Object Model) of the web applications, and made it possible to execute script

commands that could alter the presentation of the web content. [30]

As expected, Microsoft did not sit on the fence for long. In 1996, with the

Internet Explorer 3 they countered Netscape by launching Jscript, and CSS.

CSS was originally proposed by Håkon Wium Lie, in 1994, and later

standardized by the W3C. CSS made it possible to add defined styles and

layouts to web applications, while Jscript offered ways to alter the DOM similar to

JavaScript. The combination of CSS and Jscript was a golden combination for

Microsoft. [31]

Netscape tried to counter CSS by launching their own style sheet

language, JSSS, (JavaScript Style Sheets) in 1996, but gave this up for CSS as

it was never accepted as a formal standard by W3C.

A little bit earlier, during 1995, Sun Microsystems developed the Java

language, and introduced a new technology, the Java Applet for the web

community. The Java Applet was developed to provide interactive features to

web applications. Sun developed the JVM (Java virtual machine), and the idea

was that every web browser should have JVM installed, and thus support the

 73

Java Applet technology. This new approach made it possible to make interactive

applications run via the web browser. The Applet was built to run in a sandbox in

the web browser, secure from interacting with the local file system.

Making their own version, Microsoft for a while shipped their Internet

Explorer with MSJVM (Microsoft Java Virtual Machine), and added some extra

functionality into it. The MSJVM supported the Java Applet technology, but the

additional functionality was closed, and thus not possible to run using JVM. Sun

sued Microsoft, and the MSJVM project was frozen.

To make one historical leap in time, Microsoft won the battle, and

Netscape Navigator slowly faded out of the picture. A resurrection of the

Navigator is today however alive in form of the Mozilla Firefox. [32]

5.2 WHY STANDARDIZATION
If we look back at the history of the web in section 5.1.1, we first of all see

that the World Wide Web is built on several competitive and collaborating

technologies. It all started with the initial concept, the WWW and the fundamental

ideas, the HTTP protocol, the HTML scripting language, URL, and the client –

server model.

The entry of the competitive web browsers Internet Explorer and Netscape

Communicator introduced new technologies, and compatibility problems. To fight

each other, they used browser adapted technology as ammunition. The result

was that internet users had to either have both Netscape and Explorer to be able

to browse different web pages.

Dealing with such issues, the W3C, with Tim Berners-Lee started working

with the web technologies to form common standards. The standards produced

defined a fundamental concept of the technology being standardized. The

standards were open, and developers could easily access the standardization

documents.

The work of W3C, and others, has made it possible to browse the internet

using a web browser by choice. There are still some compatibility issues that are

not solved; the .NET framework from Microsoft is one of them. But if we look

 74

back at the 90’thies we se that progress has been achieved. As we now see the

introduction of new technologies, new standardization issues evolve.

5.3 STANDARDIZING AJAX
Throughout this report we have introduced Ajax as both a new technology

and a technological approach. If we again analyze Ajax, we see that the

fundament is other independent technologies, see Figure 7. These technologies

are together forming an approach that has been baptized Ajax. [7]

So what standardization issues does Ajax rise? To be able to answer this

we will have to look at the fundamental technologies, JavaScript, XML, CSS,

DOM and XMLHttpRequest. We refer to section 2.3.2 for additional information

about the technologies.

5.3.1 JavaScript

JavaScript was first present as Jscript in Internet Explorer, and JavaScript

in Netscape Navigator. The introduction of the standard ECMA-262 [30]

composed by ECMA (The European Computer Manufacturer’s Association)

resulted in a standard with elements of both Jscript and JavaScript. The latest

editions of the Internet Explorer, Mozilla Firefox and Opera are fully compliant

with the ECMA-262 standard.

5.3.2 XML

XML was standardized the 10th of February 1998 as the XML 1.0

recommendation from W3C. This has later evolved into the 1.0 (Third Edition),

and XML 1.1 the 4th of February 2004. Using XML to structure the data

communicated in Ajax applications seem to be a good choice when considering

eventual standardization issues.

 75

5.3.3 CSS

CSS is at this point standardized by the CSS level 1 standard. The CSS

level 2, revision 1, is still a candidate W3C recommendation, and CSS level 3 is

under development. [33] Even thou the core Ajax communication is not reliable

on CSS to work, we see that CSS can add visual enhancement by creating

structured style sheets. We also notice that the technology has been around for a

while, and is steadily evolving.

5.3.4 DOM

DOM was standardized as the Document Object Model level 1, the 10th of

October 1998. The latest recommendation is the Document Object Model level 3,

of the 7th April 2004. The DOM specification is supported in all the major web

browsers.

5.3.5 XMLHttpRequest

As we briefly mentioned in section 2.3.2.3, the W3C has began working on

a draft to define a basic recommendation for the XMLHttpRequest object. In their

introduction section they introduce the standardization problem like this:

“The XMLHttpRequest object is an interface exposed by a scripting engine

that allows scripts to perform HTTP client functionality, such as submitting form

data or loading data from a remove Web site.

The XMLHttpRequest object is implemented today, in some form, by many

popular Web browsers. Unfortunately the implementations are not completely

interoperable. The goal of this specification is to document a minimum set of

interoperable features based on existing implementations, allowing Web

developers to use these features without platform-specific code. In order to do

this, only features that are already implemented are considered. In the case

where there is a feature with no interoperable implementations, the authors have

specified what they believe to be the most correct behavior.” [34, 1.Introduction]

A final specification for the XMLHttpRequest object will perhaps solve

 76

eventual compatibility problems, as it has with the rest of the fundamental Ajax

technologies. But defining a specification is in our view not enough. The real

issue is what the major web browser companies will do to follow the

recommendation.

If we look at the current market situation we see that the Internet Explorer,

with its versions IE7, IE6 and IE5 April 2006 had a marked share of 62,3%, see

Figure 20. On the 2nd place we find the Mozilla based Firefox with 25,7% of the

total marked share. [35]

0

10

20

30

40

50

60

Browser Statistics

IE7
IE6
IE5
Firefox
Netscape
Opera
Other

Figure 20: Browser statistics April 2006

The statistics show that there are two dominant web browsers on the

marked, Internet Explorer and Mozilla Firefox. Based on the major share

represented by the IE browsers we believe that possible standardization issues

attached to Ajax development first and foremost will rely on what decisions

Microsoft make in the latter stages of the IE7 development phases.

 Looking at the feature list provided by Microsoft, we see that they indeed

have decided to improve the browsers handling of the XMLHttpRequest object in

the IE7 browser. Under the section improved platform and manageability in IE7

 77

feature list, they have a defined feature improvement on Ajax support:

“IE7 improves the implementation of the XMLHTTP Request as a native

JavaScript object for rich AJAX-style applications. While Internet Explorer 6

handled XMLHTTP requests with an ActiveX control, Internet Explorer 7 exposes

XMLHTTP natively. This improves syntactical compatibility across different

browsers and allows clients to configure and customize a security policy of their

choice without compromising key AJAX scenarios.”

Based on the information we have introduced in this chapter we conclude

that Ajax introduce a challenge to current web standards by using a non

standardized technology, the XMLHttpRequest object to make request/responses

from and to the server. If we on the other hand should consider the future of Ajax

and possible standardization issues, we see that this is evolving in a positive

direction. W3C is working on a specification, and IE7 will be launched with

improved Ajax support by releasing the XMLHttpRequest object from ActiveX.

Our only concern is attached to Microsoft’s participation in the making of the

XMLHttpRequest recommendation. As we reviewed the list of participating

organizations and authors of the W3C working draft, we could not find Microsoft

on the list. [34, B]

Our suggestion to Ajax developers, based on this information would to

monitor the progress done in the standardization process of the XMLHttpRequest

object to avoid future lock-in and compatibility situations.

 78

6 RESULTS

In this chapter we will introduce the results received from the literature

study, and prototype development.

6.1 RESULTS, TDD AND AJAX CHALLENGES
In Section 3 we introduced the work we have done to identify challenges

attached to use of TDD when developing Ajax enabled web applications. The

results we have gained from this process are the identification of three main

challenges, and two possible solutions.

6.1.1 The main challenges

In Table 6 we present the three main challenges to the use of TDD in an

Ajax development phase. The three main challenges we have identified are:

1. Ajax is heavily dependent on JavaScript, and requires a testing

framework that is able to test JavaScript.

2. Ajax introduces asynchronous communication between the web client

and the web server. In a TDD – Ajax scenario this cause problem

connected to unit testing of the JavaScript code.

3. The asynchronous communication introduces similar challenge in the

integration and system test phase.

6.1.2 A testing framework for JavaScript

The first of our identified challenges was to find a proper testing

framework that could help us write unit tests in JavaScript. The framework we

decided to use was JsUnit. Using this framework we were able to develop unit

tests to test our JavaScript code. JsUnit also offered a plug-in to the development

platform Eclipse.

 79

6.1.3 Asynchronous request/response in the unit test phase

The identification of the asynchronous request/response challenge

resulted in the two following suggested solutions.

6.1.3.1 The waitForAWhile solution
Our first solution is shown in Section 3.1.2.1. The solution is based on the

usage of a script, waitForAWhile.js, see Code example 3: The waitForAWhile.js

script. The waitForAWhile script makes it possible to insert pauses in a test case,

and define the length of the pause in milliseconds. In

Code example 4 we show the usage of this script in a test case.

 We managed to test the request/response from the server using the

waitForAWhile solution. The results was however unstable, and resulted in

occasional test failures.

6.1.3.2 The mock object approach
The second solution is shown in Section 3.1.2.2. The solution is based on

the theory of using mock objects to simulate the behavior of another object.

We identified the XMLHttpRequest object as the main challenge in the unit

test phase, and tried to see if it was possible to make a mock object of the

XMLHttpRequest object.

The result was not successful. We found JavaScript not suitable for mock

object creation. In Figure 15 we have presented a possible mock object

implementation of the XMLHttpRequest object. The lack of object oriented

support in JavaScript made it difficult to develop the mock object.

6.1.4 A test framework in the integration test phase

In Section 3.1.3 we present a possible solution attached to the integration

test phase of a software project.

We see that the challenges attached to unit, integration and system

phases are related to asynchronous request/response. Our solution is to use a

testing framework that makes it possible to test this communication.

 80

The result from this investigation is to use the Selenium framework in the

integration test phase. Selenium is possible to extend with the possibility to test

asynchronous request.

6.2 RESULTS, AJAX ARCHITECTURE AND DESIGN PATTERNS
Ajax has a more complex architecture then ordinary web applications, it

asynchronous nature makes it harder to know when the web client will receive

responses from the web server. In chapter 4 we showed how an Ajax application

could be structured including the implementation on the server side and how the

data transfer relates to the architecture.

We have also seen the benefits of applying design patterns. Using design

patterns would help structure applications and add a new level of abstraction so

that the programmer can solve certain problems independently without changing

much of the remaining code.

Various frameworks exists that could help the developer. We have

particularly looked at one framework that allows the programmer to write the

JavaScript code for the client in a Java-manner. Frameworks can be off great

help but can hide parts of the architecture and make changes in the code

dependent on the framework.

6.3 RESULTS, AJAX AND WEB STANDARDIZATION
In Chapter 5 Web standards we have presented the standardization status

of the technologies Ajax is built upon. The studies performed show that all

technologies except from the XMLHttpRequest object are standardized and well

supported in the major web browsers. The XMLHttpRequest object is currently

being standardized, and the W3C is organizing this process.

We have also identified that Internet Explorer 7 will include better support

of the XMLHttpRequest object.

 81

7 DISCUSSION AND FUTURE WORK

In this chapter we will discuss the results from Chapter 6. To form the

basis of the discussion we will use the questions defined our thesis definition

from Section 1.1:

1. What challenges does Ajax introduce to TDD?

2. Is there a need for Ajax adapted tool support to address these

challenges?

3. What kind of architecture do Ajax applications have and which design-

patterns are important to consider.

4. How does Ajax relate to current and future web/Java standards?

7.1 DISCUSSION, AJAX AND TDD CHALLENGES
In this section we will discuss the results introduced in Section 6.1.

7.1.1 The main challenges

In Table 6 we have presented the main challenges we identified attached

to TDD and Ajax. Our motivation behind them is question 1 and 2 from our thesis

background. Based on literature study and prototype development we identified

three challenges.

7.1.1.1 Selecting a test framework for JavaScript
In our literature study we introduce TDD and the need for a unit testing

framework in Section 2.5. In 2.3.2.1 we introduce JavaScript as one of the

building blocks in the Ajax approach.

Based on our literature study, we started looking for a unit testing

frameworks for JavaScript. The result was the unit testing framework JsUnit.

The reason behind the selection of JsUnit is the possibilities the

framework offered. The unit test cases were intuitive and easy to build and the

 82

test suite was integrated in the Eclipse platform via a plug-in.

If we consider the alternatives, Script.aculo.us and J3Unit, we chose

JsUnit based on the maturity status, the simplicity of unit test creation, and the

tool support provided via the Eclipse plug-in. Script.aculo.us was compared to

JsUnit not as easy to use, and was outmaneuvered by the simplicity and the

Eclipse plug-in. J3Unit looked was a bit more appealing, but its beta status, and

lack of tool support made JsUnit our choice.

7.1.1.2 The waitForAWhile solution
As we tried to test our JavaScript, we encountered a challenge in the

asynchronous request/response communication between the web client and the

server. In our first solution to solve this problem, we tried to force the JavaScript

code to wait for a chosen time, and then see if we had received the response

from the server.

This approach turned out to be unstable. In our literature study of TDD in

Section 2.5, we see that unit tests should run fast with short setups, run times

and break downs. In a large scale project, with several asynchronous

request/responses the waiting time will increase for each one, and make testing

a time consuming operation. Our unstable results using the waitForAWhile

solution made us look for other solutions.

7.1.1.3 The mock object approach
In our first solution we have mentioned that one of the main factors of unit

testing is that they can be run quickly. In our waitForAWhile solution, tests would

increase the run time for each asynchronous request/response test included. As

we started to look for other solutions we discovered a technique called mocking.

The technique was built on the theory of making objects that could simulate the

behavior of other objects.

After looking at existing mock objects we saw that they were built using

the object oriented possibilities of languages like Java, C# and other object

oriented languages. Making mock objects in JavaScript following defined mock

 83

object patterns was not achieved. We identified the object to be mocked to be the

XMLHttpRequest object. The creation of a mock object of the XMLHttpRequest

object will theoretically reduce the run time on unit tests as the tests not will have

to wait for the server to respond physically to the asynchronous request.

In Figure 15 we have visualized a possible mock object for the

XMLHttpRequest object. The figure present what was not possible for us to

make. We could not inherit and wrap the XMLHttpRequest in JavaScript. The

only thing we could do was to visualize the problem.

7.1.1.4 A test framework for integration testing
As integration testing is not unit testing, we did no real test experiments in

this phase. We did however try to cover this phase in our literature study in

Section 2.4.2.2, and suggest a framework that could be used to test Ajax

applications on the Java platform.

 We have suggested Selenium as a test framework in the integration

phase. We encountered Selenium when searching for unit testing frameworks,

and noticed its ability in the integration and system test phases.

7.2 AJAX ARCHITECTURE AND DESIGN PATTERNS
There are many ways an Ajax application could be written. We have

described in detail one possibility that we think would fit most cases. Even if the

approach could be slightly different our prototype describes every part that a

working Ajax application needs. The various components could be changed, like

listening on other or more events, parse more advanced XML documents, or

even other data formats and so on. The same elements would however still be

required in one form or another. The Architecture can become even more

complicated when using frameworks. However if a framework is used, they may

provide a simpler interface and a simpler abstraction level. We would warn

against using too large frameworks as replacing part of the code could become

much more challenging. We believe clearly defined smaller frameworks is

favorable as fewer part of the code would depend on a specific framework.

 84

The same is to a certain degree true for design patterns. Design patterns

like the Facade Pattern helps abstract a problem to separate functions so that

the programmer will have fewer objects to deal with. It could be better to

implement smaller design patterns that solve a specific problem rather then

patterns that try to solve too much.

JavaScript programming is often overlooked when “serious” programming

is discussed. With the drive towards Web 2.0 this is no longer an issue that can

be avoided. Having a clear structure for the web application and using design

patterns, frameworks and other object oriented techniques could be just what

future web applications need.

7.3 AJAX AND WEB STANDARDIZATION
We identified that there was standardization issues connected to the

implementation of the XMLHttpRequest object in different web browsers. We

tried to approach this problem by analyzing the standardization status of

XMLHttpRequest, and by looking on future changes in Internet Explorer. Based

on this information we have suggested Ajax developers to monitor the

XMLHttpRequest object standardization closely to avoid compatibility and lock-in

situations.

7.4 FUTURE WORK
In this report we have identified the need for an XMLHttpRequest mock

object. As we have not been able to make our own implementation we see that

further work could be done in this area. The challenge will thus be how to make

an XMLHttpRequest mock object for JavaScript.

We would also recommend that different frameworks is analyzed and

compared with each other to see what other benefits they can contribute and

what weakness/strengths that the various approaches has.

It could also be interesting with a larger Ajax application and analyze how

the Model on the client side interacts together with the Model on the server side.

 85

In a common web application much of the processing is done on the server but in

a large full scale Ajax application some of this processing could happen on the

client side so a closer look at how this could be coordinated would be of interest.

 86

8 CONCLUSION

We have during this thesis shown the fundamental theory behind both

Ajax and TDD. As a response to the questions asked in the thesis background

we have introduced the main challenges connected to the usage of TDD on Ajax

enabled web applications and suggested tools to address these challenges. The

report also introduces a challenge connected to mock implementation in

JavaScript.

In the report we have introduced the fundamental architecture of Ajax

applications attached to web development on the Java platform. We have also

provided some examples on usage of Design Patterns, and discussed how

usage of Design Patterns can improve the design.

Dealing with a new technology we have also identified a standardization

issue connected to the XMLHttpRequest object. As a response to our study of

this issue, we have suggested developers to monitor the future progress on this

matter closely to prevent eventual compatibility and lock-in situations.

 87

APPENDIX A GLOSSARY & ABBREVIATIONS

Action Script - Script language developed by Macromedia

Ajax - Asynchronous JavaScript and XML

Applet - Java based program that runs in a web browser

ASP - Application Service Provider

CSS - Cascading Style Sheets

DHTML - Dynamic HTML

DOM - Document Object Model

DOT.NET - Development platform from Microsoft

ECMAScript - The official name/standard for JavaScript

Flash - Macromedia based browser plug-in

Flex - RIA Presentation Server from Macromedia

HMTL - Hypertext Markup Language, describes web pages

HTTP - Hypertext Transfer Protocol

IIOP - Internet Inter-Orb Protocol

ISP - Internet Service Provider

J2EE - Java Platform, Enterprise Edition

JRE - Java Runtime Environment

JavaScript - Script language used to manipulate DOM

JSF - Java Server Faces

JSP - Java Server Pages

JSRS - JavaScript Remote Scripting

JsUnit - a Unit Testing framework for JavaScript

Junit - a Unit Testing framework for Java

Mock objects - “false” objects that simulate “real” objects

MVC - Model-View-Controller Design Pattern

Pearl - A development platform

PHP - A development platform / language for web pages.

Python - A development platform

 88

RIA - Rich Internet Applications

RSLite - Remote Scripting Lite

Ruby - A development platform

TDD - Test Driven Development

W3C - The World Wide Web Consortium

XML - Extensible Markup Language

 89

APPENDIX B REFERENCES

[1] “Bruk av IKT i husholdningene, 2005” Statistisk Sentralbyrå,
http://www.ssb.no/emner/10/03/ikthus/

(Current May 29, 2006)

[2] “Internet usage in the EU25 in 2005” Eurostat,
http://epp.eurostat.cec.eu.int/pls/portal/docs/PAGE/PGP_PRD_CAT_PREREL/PGE_

CAT_PREREL_YEAR_2006/PGE_CAT_PREREL_YEAR_2006_MONTH_04/4-

06042006-EN-AP.PDF

(Current May 29, 2006)

[3] Noda T. and S. Helwig (2005) “Rich Internet Applications, Technical

Comparison and Case Studies of Ajax, Flash, and Java based RIA,”

University of Wisconsin-Madison, http://www.uwebi.org/docs/final_1.pdf

(Current May 29, 2006)

[4] Duhl, J (2003) “Rich Internet Applications,” IDC,
http://download.macromedia.com/pub/solutions/downloads/business/idc_impact_of_ri

as.pdf

(Current May 29, 2006)

[5] Steven, K “Java Web Start” IBM, http://www-

128.ibm.com/developerworks/java/library/j-webstart/

(Current May 29, 2006)

[6] “Remote Scripting” Ashleyit.com, http://www.ashleyit.com/rs/main.htm

(Current May 29, 2006)

 90

[7] Garrett, J. J. (2005) “Ajax: A New Approach to Web Applications,”

adaptivepath.com,
http://www.adaptivepath.com/publications/essays/archives/000385.php

(Current May 29, 2006)

[8] “Cascading Style Sheets” wikipedia.org,
http://en.wikipedia.org/wiki/Cascading_Style_Sheets

(Current May 29, 2006)

[9] Crane D., E. Pascarello and D. James (2006) “Ajax in Action” Manning

Publications Co., Greenwich, CT 06830.

[10] “CSS 2.1 Spesification” w3c.org, http://www.w3.org/TR/2006/WD-CSS21-

20060411/

(Current May 29, 2006)

[11] “Agile Software Development,” wikipedia.org,
http://en.wikipedia.org/wiki/Agile_software_development

(Current May 29, 2006)

[12] Beck, K. “Simple Smalltalk Testing: With Patterns” xprogramming.com,
http://www.xprogramming.com/testfram.htm

(Current May 29, 2006)

[13] Ellen, G. “Managing your way through the Integration and Test Black

Hole” methodsandtools.com,
http://www.methodsandtools.com/archive/archive.php?id=13

(Current May 29, 2006)

[14] Ambler, S. W. “Introduction to Test Driven Development” agiledata.org,
http://www.agiledata.org/essays/tdd.html

(Current May 29, 2006)

 91

[15] Ambler, S. W. “Agile Modeling (AM) Principles v2” agilemodeling.com,
http://www.agilemodeling.com/principles.htm

(Current May 29, 2006)

[16] “Agile Draw, semantics” agiledraw.org,
http://agiledraw.org/index.php/Main/Semantics

(Current May 29, 2006)

[17] “JsUnit Introduction” jsunit.net, http://www.jsunit.net/

(Current May 29, 2006)

[18] “Script.aculo.us: test.unit.runner” wiki.script.aculo.us,
http://wiki.script.aculo.us/scriptaculous/show/Test.Unit.Runner

(Current May 29, 2006)

[19] “J3Unit Overview” j3unit.sourceforge.net, http://j3unit.sourceforge.net/

(Current May 29, 2006)

[20] Gheorghiu, G. “Ajax testing for selenium using waitForCondition”

agiletesting.blogspot.com, http://agiletesting.blogspot.com/2006/03/ajax-testing-

with-selenium-using_21.html

(Current May 29, 2006)

[21] “Open QA: Selenium” openqa.org, http://www.openqa.org/selenium/

(Current May 29, 2006)

[22] “JavaScript Delay/Wait/Pause routine” sean.co.uk,
http://www.sean.co.uk/a/webdesign/javascriptdelay.shtm

(Current May 11, 2006)

[23] Crane D., E. Pascarello and D. James (2006) “Ajax in Action” Manning

Publications Co., Greenwich, CT 06830.

 92

[24] “Standard ECMA-262, ECMAScript Language Specification” ecma-

international.org, http://www.ecma-international.org/publications/standards/Ecma-

262.htm

(Current May 29, 2006)

[25] “Build dynamic Java applications” ibm.com, http://www-

128.ibm.com/developerworks/library/j-ajax1/

(Current May 29, 2006)

[26] “How to Use Design Patterns” artima.com,

http://www.artima.com/lejava/articles/gammadp.html

(Current May 29, 2006)

[27] “DWR: Easy AJAX for JAVA” getahead.ltd.uk,

http://getahead.ltd.uk/dwr/overview/dwr

(Current May 29, 2006)

[28] Duhl, J (1996) “The World Wide Web: Past, Present and Future”

W3.org, http://www.w3.org/People/Berners-Lee/1996/ppf.html

(Current May 29, 2006)

[29] “World Wide Web” wikipedia.org, http://en.wikipedia.org/wiki/Web_browser

(Current May 29, 2006)

[30] “JavaScript” wikipedia.org, http://en.wikipedia.org/wiki/JavaScript

(Current May 29, 2006)

[31] “Jscript,” wikipedia.org, http://en.wikipedia.org/wiki/JScript

(Current May 29, 2006)

 93

[32] “Web browser” wikipedia.org, http://en.wikipedia.org/wiki/Web_browser

(Current May 29, 2006)

[33] “CSS Specifications” w3c.org, http://www.w3.org/Style/CSS/#specs

(Current May 29, 2006)

[34] “The XMLHttpRequestObject, W3C Working Draft 05 April 2006”

w3c.org, http://www.w3.org/TR/XMLHttpRequest/

(Current May 29, 2006)

[35] “Browser Statistics” w3c.org,
http://www.w3schools.com/browsers/browsers_stats.asp

(Current May 29, 2006)

[36] North, D “Test driven development is not about testing” java.sys-

con.com, http://java.sys-

con.com/read/37795.htm?CFID=9725&CFTOKEN=D0C8A42E-1472-7BF3-

2F81AD9E5BCC6934

(Current May 29, 2006)

[37] Walnes, J. et al. (2004) “Java Open Source Programming, With

XDoclet, JUnit, WebWork, Hibernate” Wiley Publishing, Inc.,

Indianapolis, Indiana.

[38] North, D “Test driven development is not about testing” java.sys-

con.com, http://java.sys-

con.com/read/37795.htm?CFID=9725&CFTOKEN=D0C8A42E-1472-7BF3-

2F81AD9E5BCC6934

(Current May 29, 2006)

 94

[39] “Agile Draw, about” agiledraw.org, http://agiledraw.org/index.php/Main/About

(Current May 29, 2006)

 [40] Brown M. and E. Tapolcsanyi “Mock Object Patterns” jerry.cs.uiuc.edu,
http://jerry.cs.uiuc.edu/~plop/plop2003/Papers/Brown-mock-objects.pdf

(Current May 29, 2006)

[41] Gethland J, Galbraith B., Almaer D. (2006) “Pragmatic Ajax” The

Pragmatic Bookshelf, Dallas Texas

