
Data Management and
Concurrency Control in

Broadcast based Asymmetric
Environments

Thesis in partial fulfilment of the degree of

Master in Technology in
Information and Communication

Technology

Spring 2006

Agder University College

Faculty of Engineering and Science

Huazhong University of Science and Technology

School of Computer Science and Technology

Supervisors:
Professor Guohui Li (HUST)

Ass. Prof. Ole-Christoffer Granmo (HiA)

Authors:
Arild Finne

Erik Trædal

Pages: 70 (including this page)

Modified date: 2006-09-18

Keywords: Concurrency Control, Data Management, Mobile Computing, Data Dissemination,
Data Broadcast

Abstract:

Tens of millions of users have personal handheld devices with several network interfaces built-in, and the
number of users and of network interfaces included are only increasing. This growth suggests a need for
new methods to disseminate data to multiple clients, and cyclic broadcast is one approach. We do a
survey on the various data management protocols that describe how to broadcast the data, and the
concurrency control protocols that make sure all access to the database is consistent. The various data
management and concurrency control techniques deals with the restrictions in asymmetric broadcast
environments and improves the performance. As part of the survey, we made a simulation platform and
implemented several data management techniques and four concurrency protocols, BCC-TI, FBOCC,
PVTO and STUBcast. We also implemented a technique we call “partial restart” into FBOCC. Simulation
results shows nearly a 30% decrease in transaction execution time when the transaction length is 6. The
survey and the simulations helped us to make a qualitative characterization framework, which categorize
the protocols based on the environments they apply to and qualities they possess. We offer the source
code to the simulation models and the protocols we implemented which can be used as a base to
implement new protocols.

Project home page: http://www.arild.finne.googlepages.com/masterthesis.html

License:
This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-sa/2.5/ or send a letter to Creative Commons, 543
Howard Street, 5th Floor, San Francisco, California, 94105, USA.

http://www.arild.finne.googlepages.com/masterthesis.html

Table of Contents
1 Executive Summary...1

2 Introduction..2

2.1 Motivation...2

2.2 Review...2

2.3 Claim and Project Definition...3

2.4 Report Structure...3

3 Introduction to Asymmetric Broadcast Environments...4

3.1 Asymmetric Bandwidth...4

3.2 Asymmetric Broadcast Networks...4

3.3 Wireless Networks...4

3.4 Handheld Devices..5

3.5 Characteristics and Challenges in Asymmetric Broadcast Environments...5

3.6 Dissemination of Data in Asymmetric Broadcast Environments...6

3.7 Examples of Data Dissemination Applications...7

4 Data Management...8

4.1 Introduction..8

4.2 Data Access...9

4.2.1 Push [5]..9

4.2.2 Pull...9

4.2.3 Hybrid...9

4.3 Data Dissemination..9

4.3.1 Scheduling...10

4.3.2 Broadcast Methods..10

4.3.3 Invalidation Lists...12

4.3.4 Propagation [28]...12

4.3.5 PA [29]..12

4.3.6 SGT [27]..13

4.4 Index..13

4.4.1 Latency Optimal [4]..13

4.4.2 Tuning Optimal [4]..14

4.4.3 (1, m) [4][20]..14

4.4.4 Distributed Indexing [4][20]..15

4.5 Caching..15

4.5.1 General Methods...16

4.5.2 Real Time...17

4.6 Compression..17

5 Concurrency Control..18

5.1 Introduction to Concurrency Control and its Protocols...18

5.1.1 Timestamp Ordering..18

i

5.1.2 Serialization Graph Testing [19]...19

5.1.3 Certifications and Optimistic approach...19

5.2 Some Concrete Examples of Concurrency Control..20

5.3 Concurrency Control Protocols Characteristics..21

5.3.1 Client Update Transactions Versus Client Read-only Transactions..21

5.3.2 Real-time Versus None Real-time..22

5.3.3 Various Correctness Criteria..23

5.4 Datacycle [3]..24

5.4.1 The Old Datacycle..24

5.4.2 The New Datacycle..24

5.5 Certification Reports [50]..25

5.6 Read-only Transaction Processing [52]..25

5.7 APPROX, F-Matrix and R-Matrix [7]...25

5.8 UFO,Update-First with Order [18]..26

5.9 BCC-TI [44], [49]..27

5.9.1 BCC-FV...27

5.9.2 BCC-TI...27

5.10 STUBcast, [42]...28

5.11 PVTO [37] [45]..29

5.12 OCC-TI [43], OCC Based on Timestamp Interval..29

5.13 FBOCC [10]...30

5.14 EOCC [53]..30

5.15 Concurrency Control Protocol Summary..31

5.15.1 The CI and its Contents...31

5.15.2 The Placement of the CI..32

5.15.3 Partition of Broadcast Cycle Into Sub Periods and Several Sub CIs..32

5.15.4 Real-time and Server Update Transactions...33

5.15.5 Partial Restart..33

5.15.6 EOCC Fake Restart Improvement...33

5.15.7 Server Validation Answer on Dedicated Back Channel or Broadcast Channel...........................33

6 Simulation Platform and Simulations..34

6.1 CSIM..34

6.1.1 CSIM Limitations..34

6.2 The Platform Structure...35

6.2.1 The Server Structure..35

6.2.2 The Client Structure...36

6.2.3 The Broadcast Channel...36

6.2.4 Caching..36

6.2.5 Concurrency Protocols...36

6.3 Protocol Implementations...36

6.3.1 Data Management...37

6.3.2 Broadcast Disks...37

ii

6.3.3 Concurrency Control Protocols..37

6.3.4 FBOCC..38

6.3.5 Partial Restart in FBOCC...38

6.3.6 STUBcast...39

6.3.7 PVTO...39

6.3.8 BCC-TI...40

6.3.9 Broadcast Disk with Concurrency Protocols...40

6.4 Simulation Settings..40

6.4.1 Environment...41

6.4.2 Simulations..41

6.5 Evaluation, Tests and Results..42

6.5.1 Transaction Length..42

6.5.2 Transaction Length for Qualitative Characterisation Framework..47

6.5.3 Number of clients...48

6.5.4 Database size..49

6.5.5 None uniform access distribution...49

6.6 Conclusion...50

7 Qualitative Characterization Framework..51

7.1 Data Management...51

7.1.1 Broadcast Methods..51

7.1.2 Indexing Methods...52

7.1.3 Caching Methods...52

7.2 Concurrency Control..52

7.2.1 Electrical Power Consumption...53

7.2.2 Validation Algorithm Complexity...53

8 Discussion...54

8.1 Project Outcomes..54

8.1.1 Survey..54

8.1.2 Qualitative Characterization Framework..54

8.1.3 Simulations..54

8.2 Evaluation..55

9 Conclusion...57

9.1 Further Work..57

Appendix...59

A1 Glossary & Abbreviations...59

A1 References..60

iii

List of Tables
Table 5.1: Overview of Datacycle characteristics..24

Table 5.2: Overview of Certification Reports characteristics..25

Table 5.3: Characteristics overview of read-only approaches by Pitoura...25

Table 5.4: Overview of APPROX characteristics...25

Table 5.5: Overview of UFO characteristics..26

Table 5.6: Overview of BCC-TI characteristics..27

Table 5.7: Overview of STUBcast characteristics..28

Table 5.8: Overview of PVTO characteristics..29

Table 5.9: Overview of OCC-TI characteristics...29

Table 5.10: Overview of FBOCC characteristics...30

Table 5.11: Overview of EOCC characteristics..30

Table 5.12: All protocols supports update transactions, unless “read-only” is written......................................31

Table 6.1: Environment variables..41

Table 6.2: Variance in test results..42

Table 6.3: Mapping table for average transaction time with transaction length 6...47

Table 7.1: Comparison of broadcast methods...51

Table 7.2: Comparison of indexing methods...52

Table 7.3: Comparison of caching methods..52

Table 7.4: A framework for concurrency control protocols...53

iv

List of Illustrations
Illustration 4.1: Tuning time compared to latency..8

Illustration 4.2: How data is divided to create a cyclic broadcast in broadcast disks..11

Illustration 4.3: Example of a simple flat index..13

Illustration 4.4: Latency of the Latency optimal method...14

Illustration 4.5: Tuning time of the Latency Optimal method..14

Illustration 4.6: Latency in tuning optimal indexing..14

Illustration 4.7: Latency of the Tuning optimal method..14

Illustration 4.8: Tuning time of the Tuning optimal method..14

Illustration 4.9: Latency of the (1, m) method...15

Illustration 4.10: Tuning time of the (1, m) method..15

Illustration 4.11: Optimal value of m..15

Illustration 4.12: Calculation of the PIX value..16

Illustration 4.13: Tag-team caching with 4 data items and cache size of 2..17

Illustration 5.1: History H1 and its serializable equivalent..20

Illustration 5.2: History H2 and its serializable equivalent..20

Illustration 5.3: History H3 having a write-read conflict..21

Illustration 5.4: History H4 with dependent write-read conflict...21

Illustration 5.5: Example of how EOCC avoids fake conflicts..31

Illustration 5.6: Extreme case of delayed broadcast of new value when CI is placed before the new values. .32

Illustration 6.1: The structure of the simulation model...35

Illustration 6.2: Effectiveness of partial restart versus normal restart..39

Illustration 6.3: Graph of FBOCC with and without partial restart..43

Illustration 6.4: Transaction time with inter server transaction set to 1000 and 5000 time ticks.......................43

Illustration 6.5: Number of committed transactions for server transaction set to 1000 and 5000 time ticks.. . .44

Illustration 6.6: Transaction time in standard environment without server transactions...................................44

Illustration 6.7: Average number of restarts per transaction..45

Illustration 6.8: Relationship between the amount of client restarts and server restarts..................................45

Illustration 6.9: Number of accepted (committed) transactions during one simulation run..............................46

Illustration 6.10: Transaction time in percent of all transactions (Transaction time histogram)........................46

Illustration 6.11: Transaction time when the transaction length change...47

Illustration 6.12: Transaction time when the number of clients increase...48

Illustration 6.13: Restarts when the number of clients increase..48

Illustration 6.14: Transaction time when the database size increases...49

Illustration 6.15: Restarts when the database size increases..49

Illustration 6.16: Average transaction restart rate in a none uniform environment...50

Illustration 6.17: Average transaction duration in a none uniform environment...50

v

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

1 Executive Summary
New to this topic, we first had to study a big amount of literature, then we wrote a survey as an introduction
for others, made a simulation model and implemented some state-of-the-art protocols and analysed the
simulation results. We present a framework in order to categorize the protocols based on their qualities,
and we suggest one improvement to the existing protocols.

The environment of interest has asymmetric bandwidth, which means the bandwidth from the client to the
server (upload speed) is much smaller then the bandwidth from the server to the client (download speed).
When the server (information source) broadcasts a message, all the clients will be able to receive this one
message. The typical example of this kind of environment are wireless networks. And because most
wireless networks have mobile handheld units as clients, restrictions such as low processing ability and
limited battery power must be considered.

The data management defines how the data should be broadcasted. Three fundamental ways to do it is
push based, pull based or a hybrid of the two first. Pull based data dissemination is broadcasting of data
which are specifically requested, where as push based is to broadcast all information in cycles. The latter
has received most attention because when most clients only read data (which is in the definition of data
dissemination), the push approach is very scalable with respect to the number of clients.

To prevent the clients from wasting battery power when listening to the broadcast channel in search of a
data value, an index is broadcasted for each cycle. After it has read the index and found the time when the
desired value is broadcasted, the clients can turn off the wireless interface while waiting. The time it takes
for a client to find out when a data item is broadcasted (the time it takes to find the index and read the
index), is called tuning time. The time it takes to find, wait for, and read a data value is called latency time.
Other data management techniques are caching, compression, prefetching and data dissemination.

Broadcast disks is an approach that assume some data is more frequently accessed then others. The data
is divided into two or more disks based on their probability of being used, and the frequently accessed disk
is broadcasted more often then the low probability accessed data.

The concurrency control protocol makes sure the clients get a consistent view of the data set, when the
data base set is updated, either by the server itself or other clients in between the operations. The level of
consistency is defined by a correctness criteria. The normal notion is serializability, but to achieve better
performance some protocols choose a weakened correctness criteria. Also, some protocols support real
time, which mean transactions can be prioritized based on time restrictions and deadlines.

We made a simulation platform in order to test and compare four protocols, BCC-TI, FBOCC, PVTO and
STUBcast. The protocols represent a wide spectre regarding the various environments they apply to. We
discovered that FBOCC performs very good in most environments. BCC-TI performs best in client read-
only environments, because BCC-TI is made for read-only. STUBcast uses a relaxed correctness criteria
(which makes it accept more transaction) so it has the best performance, especially on long transactions.
But STUBcast has several drawbacks that makes it not suitable for battery powered devices. Our final
discovery was the usage of a new approach we name partial restart. Partial restart will only rollback to the
operation that causes the conflict instead of restarting all the operations in a transaction. The simulations
result showed a good improvement, especially for long transactions (almost 50% shorter transaction
execution time when the transaction length is 12).

Based on the test results and the survey, we made a qualitative characterization framework. It categorize
the protocols based on their qualities. For data management protocols the following characterization criteria
were chosen, Method, Latency, Processing, Size Increase and Tuning Time. Processing defines the
amount of CPU power the protocols need and Tuning time defines how long a client has to listen on the
broadcast to find an item. Electrical power usage, Performance, Real-time, Correctness Criteria and Client
Update Transactions were chosen for the concurrency protocols. Electrical power usage indicates how
battery consuming the protocol is (by looking at network and CPU usage) and Performance only indicates
the performance relatively to the other protocols.

We have succeeded in getting familiar with the current topic, and even managed to find a new approach to
improve performance. The survey gives a soft introduction at the same time as it goes deeper into some
parts. The focus is on the performance increasing techniques and categorizing so it is easier to get an
overview. The framework follow up this categorizing. The simulation platform will be useful in future
research, and we regret we did not have more time to test out and compare even more protocols. But
extensive simulation testing was out of the scope.

1

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

2 Introduction
In the upcoming sections we give a little introduction to the research area of broadcast based asymmetric
environments. In chapter 2.1 we discuss the motivation for doing research on this topic. Chapter 2.2 gives a
quick review of earlier published research on the topic. In chapter 2.3 we present our claim and the project
definition. Defining what this project try to accomplish. And chapter 2.4 gives explains how this report is
structured.

2.1 Motivation
Tens of millions of users have personal handheld devices with several network interfaces built-in, and the
number of users and of network interfaces included are only increasing. At the same time the availability of
wireless networks increases, so the users use them more frequently. This leads to a higher load on the
servers providing the information, and the networks transferring it. Especially in high density populated
areas, the number of clients (users) can be very high, so an efficient technique to disseminate data should
be found.

The problem of many users is not restricted to wireless networks but is also present in wired networks,
where both multiple servers and big bandwidth lines are needed in order to serve all the clients. The
problem is just more visible in wireless networks because the bandwidth is smaller and physically limited in
respect of available frequencies. Wired networks have in general a lot bigger bandwidth, and can add
another physical link if more bandwidth is needed. Wireless networks have additional limitations due to the
mobile client devices such as limited battery and processing power.

Data dissemination is defined as the delivery of data from a set of producers to a larger set of clients where
the bandwidth is asymmetric. All data disseminating applications communicates in a pattern with a small
data packet requesting for information followed by a big sized reply containing the information. An example
is a traffic information system. A user requests traffic information for a specific area, and receives data
describing the traffic in the whole area.

The solution in handling the big group of clients, without congesting the network or overloading the server
(information provider), is to broadcast all the information continuously in cycles. This push based data
dissemination is particularly scalable when the clients mostly access the data in a read-only fashion.

The wireless networks have physical support for broadcast and the data dissemination needed by most
applications mainly consists of read-only accesses, so the solution fits good to the wireless environment.

2.2 Review
Data dissemination through cyclic broadcasting is an old technology, used for instance in Teletext (reviewed
in [1] and chapter 3.7), invented and launched in the 70's [2]. In 1987, Herman et al. [3] introduced
Datacycle for broadcasting in high throughput wired networks. But it was first in 1994 when Imielinski et. al.
[4] introduced a cyclic way to broadcast data in wireless environments, that the research in this area was
intensified. Soon after, Acharya et. al. [5] extended the work of Imielinski et al. and named it broadcast
disks. They introduced caching and multiple disks to take into account none uniform access patterns. While
several different ways to improve indexing and caching has been proposed, broadcast disks has been a
kind of standard in this research area. But in 2005 Chang et. all. [6] improved broadcast disks by solving an
empty slot problem that could occur under certain conditions.

It is normal to use a database as a concrete example of the central information source, so the concurrency
control use the terminology used in databases. The concurrency control in asymmetric broadcast
environments were first introduced by [7] when Shanmugasundaram et al. presented the APPROX
algorithm. They proposed to decrease the level of the correctness criteria in order to get a good performing
solution. A relaxed correctness criteria allows more transaction to be committed, but the consistency can
not be guaranteed any more.

Later approaches have found inspiration in various database technology, such as real-time, distributed and
conventional databases. The concept of OCC (Optimistic Concurrency Control) was developed in the early
80's by Kung et al. ([8]) and was later implemented as a basis for most of the concurrency control protocols
in broadcast based environments.

The researchers constantly try to increase the performance and scalability, and new improvements are
suggested each year. The newest scientific paper in the area is by Guohui et al. [9] and presents the
concurrency control protocol EOCC. In the simulation results presented in the same paper, EOCC
outperforms FBOCC from Lee et al. [10]. When other protocols are proposed, they usually only compare

2

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

the proposed protocol with old protocols. Also, different authors use different environment parameters in the
simulations and it is therefore difficult to compare their performance out from the information given in the
papers.

The protocols are many, and some are very complex. They possess various qualities and are special
adapted for different environments, which makes comparison even more difficult. In order to structure and
simplify comparison, some means to categorize the protocols based on their qualities is needed.

Several surveys have been written within the area of mobile databases and mobile transactions. Barabara
[11] wrote a survey in 1999 about mobile computing and database. It deals with amongst others data
dissemination and data consistency. The data dissemination introduces the basic of the broadcast disk etc.
and the data consistency part review a few concurrency control protocols which are old by now. Many new
protocol suggestions have been development the last 7 years since this survey.

Several surveys are even older, and others do only briefly touch the topic of cyclic broadcast and
concentrate more on other topics of mobile computing (such as location awareness).

2.3 Claim and Project Definition
The environments we look at are asymmetric broadcast environments. By that we mean all networks where
the server can reach all the clients with one message (broadcast) and the clients have less bandwidth up to
the server than down from the server (asymmetric). The most common type of such a network is a wireless
network. We will therefore use wireless networks as basis for most of our research, but the results are still
applicable for other asymmetric broadcast based networks.

The project description states that we will make a survey, simulation model and a framework for
categorizing. And although considerable amounts of work and money have been put into the research of
this topic, we should also try to find improvements and new approaches.

None of the existing surveys cover the latest work in the topic of data management and concurrency control
in broadcast based asymmetric environments. Fairly many approaches exists for both data management
and concurrency control, and for people new to the topic it is difficult and a lot of unnecessary work to get a
good overview of the topic. Therefore we mean a survey for this topic is useful.

To get better in-depth understanding of the protocols and to compare their performance, we made a
simulation model. We implemented four concurrency control protocols and several techniques for data
management. The performance of these protocols have not been compared in earlier work, so we made
several simulations to find more out about the performance in various environment settings. We also
present the source code to the simulation model, the implemented protocols and a basic framework which
can be used as a base or platform to implement new protocols.

We also offer a qualitative characterization framework which gives a terminology to describe area of use
and qualities of the protocols. The framework is helpful when choosing a protocol for a specific
environment.

2.4 Report Structure
The third chapter introduces asymmetric broadcast environments and gives an explanation of the
asymmetry. The focus is on the special characteristics and challenges, especially for wireless network and
its clients. The last part presents some examples of data dissemination in broadcast environments.

Fourth chapter is about data management, and covers the research work that has to do with the structuring
of the broadcasted data. Common terms such as latency, tuning time and broadcast disks are explained,
and topics such as caching, index and data dissemination are reviewed.

Concurrency control is introduced in the fifth chapter. It defines three characteristics in order to categorize
the protocols according to their qualities and suitability for various environments. The characteristics are
later used in a framework, presented in chapter seven. The last sections review and summarize
concurrency control protocols proposed for asymmetric broadcast environments.

The simulations are presented in chapter six. The structure of the simulation platform is described, as well
as the protocols we implemented and the tests we executed.

The qualitative characterization framework is described in chapter seven, and defines criteria to describe
the qualities to either a concurrency control or data management technique.

Chapter eight quickly present, discuss and evaluate the work we have done and our findings. The
conclusion is in chapter nine, and it presents our final thoughts and suggest future work.

3

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

3 Introduction to Asymmetric Broadcast Environments
Many networks have the possibility to broadcast, that is the ability to send a message from one peer to all
the others local peers. But the most interesting broadcasting networks in these days are wireless broadcast
networks because of the huge increase of wireless capable handheld devices.

Wireless networks can be viewed as normal broadcast networks that have some additional constraints. So
by focusing on wireless networks, the solutions can also be applied on normal broadcast networks. The
solutions might be be too restrictive and therefore slow, but it should be easier to adjust to less restrictive
than more restrictive. Therefore wireless networks will be given special focus in the rest of this report.

This chapter will introduce asymmetric broadcast environments by focusing on its characteristics and the
special considerations that must be taken because of them. Chapter 3.1 introduces wireless networks and
the special constraints that this kind of networks have. In chapter 3.2 we write about how bandwidth are
allocated in asymmetric networks. After that, in chapter 3.3 we discuss handheld devices, and the
limitations these special low power devices put on the broadcast system. Chapter 3.4 specifies
characteristics and challenges in asymmetric broadcast environments. Followed by 3.5, where the data
dissemination types are explained. And it is all rounded off by chapter 3.6 where some typical examples of
broadcast environments are mentioned.

3.1 Asymmetric Bandwidth
Asymmetric bandwidth means the transfer rate from the server to the clients (downlink) is much bigger then
the transfer rate from a client to the server (uplink). The downlink:uplink ratio is typically in terms of 4:1 to
10:1 depending on the environment. This asymmetry is quite common, partly because it fits good with many
applications and partly because broadcast networks are inherently like this.

Most applications transmit a small amount of data, like a request, in the upload direction and receives a
larger amount of data in response in the download direction. This is the case for many of the traditional
network services and the bandwidth is therefore often divided in a way to fit this environment. This is
especially the case in networks where the bandwidth is shared among both the uplink and the downlink.
This applies to networks where the same media is used to send data in both directions, wireless
communication is an typical example of this but it also applies to networks where the same wires are used
for both directions. In these networks it is possible to allocate more bandwidth to communication in one
direction than the other, for instance one timeslot for sending data and 9 timeslots for receiving. Also,
having one server and many clients leads to asymmetry. The clients must be careful not to swamp the
server with requests. [12]

If a broadcast network has the total upload rate equal to the total download rate, the bandwidth will still be
asymmetric in one sense. The server can reach all the clients with one message, while the clients must
share the same bandwidth among them. The upload bandwidth per client is therefore much less than the
download bandwidth, hence asymmetry.

An environment in which clients have no backchannel is an extreme example of network asymmetry. Less
extreme examples include wireless networks with high-speed downlinks but slow uplinks (e.g. cellular), and
home Internet connection through ADSL.

3.2 Asymmetric Broadcast Networks
Asymmetric broadcast environments have limited upload bandwidth (because of the asymmetry). The
clients can be either battery powered or have an permanent power connection. Battery powered devices
are typically for wireless networks, and will be further described in the next section. For battery powered
devices it is important to reduce the amount of network traffic to save power. The upload link is already
reduced, so it is the downlink, or amount of access to the broadcast channel that must be reduced.

Two typical examples of asymmetric broadcast networks are cable TV and satellite.

3.3 Wireless Networks
Wireless networks are the most interesting type of broadcast networks, because of the high increase in
number of users the recent years as well as its challenging limitations such as limited bandwidth, frequent
disconnections etc. In addition, the wireless networks are inherently broadcast based. Data sent to one
peer can in general be sensed by all the surrounding peers. That is, the core structure of the network
makes the cost of a data broadcast to be exactly the same as the cost of sending a normal data package.

4

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

Even though it is self evident, we must mention for the sake of correctness, the ad hoc networks are not
considered. They are constructed between peers “met by chance” and do therefore not contain any form for
servers with big processing abilities. The non ad hoc wireless networks on the other hand are controlled by
a base station who can reach all the peers through one broadcast message. This report will use the general
term wireless network when in fact non ad hoc wireless networks is meant.

The wireless networks are different from wired networks in several areas. The transmission medium is
more unreliable and have a much bigger bit-error rate. This unreliability can lead to frequent
disconnections, for example when an external object blocks the signals. [13]

The bandwidth is physically limited by a finite number of frequencies. New techniques to modulate and
compress the signals may be found, but the wireless bandwidth will continue to be a scarce resource [14].

3.4 Handheld Devices
Since wireless networks in general have lower bandwidth than wired networks, it is typically used in
environments where it is unpractical to use a wired connection. In these environments battery powered
devices are the main contributor. Even though the performance and network capacity on these devices
have increased greatly the last years, the battery capacity is still almost the same as it was 10 years ago.
This calls for methods to conserve power in all ways possible to maintain a good operation time while using
the devices.

Most new consumer electronic use Lithium-ion batteries. This because of their long life cycle and high
specific energy and energy density, and the fact that these batteries do not have the memory effect seen in
other kind of batteries. Even though there have been some advancement in battery technology, there are
new trends with smaller devices and requirement of low weight. This puts the capacity of the batteries at
roughly the same capacity as they was 10 years ago. Even though both the weight to energy ratio and the
volume to energy ratio has doubled the last 15 years [15], the main development has been done from the
middle of the 90s to the early years in the 2000. The development has now flattened out and there is no
reason to expect any radical change in the capacity of Lithium-ion batteries, most research are focused on
finding new types of batteries and especially liquid fuel cell batteries.

There are many power draining components in the handheld devices. Display and storage is responsible
for a big part of the total power consumption, but this is not affected by the broadcast traffic in any way so
we can just ignore these factors. The factors that are affected by broadcast traffic is the usage of CPU
power, and of course the usage of the network controller. While it can be argued that the access to storage
can be affected by the broadcast the increased power consumption form that is so small that it can be
ignored (especially when solid state storage is used).

The Intel produced PXA270 processor [16] is a widely used processor in PDAs which can run on various
frequencies to save battery power. A high load on the CPU will cause it to use more power and a low CPU
load will cause it to use less power. A PXA270 CPU clocked at 520 MHz uses 747 mW in active mode and
222 mW in idle mode. If it is possible to avoid any processing of data and put the CPU into 13 MHz idle
mode (15.4mW) or maybe into standby mode (1.7mW, with the LCD controller turned off) the battery time
would be greatly improved.

WLAN interface is quite common in wireless devices. A WLAN client device can reduce it's power
consumption by turning off the WLAN device while waiting for the data to be broadcasted. The Philips
BGW211 WLAN SiP [17] is a new 802.11g device that takes aim to cut down the power consumption of
using WLAN. This chip is a fully integrated WLAN device so there will be no additional power consumption
by external circuits for processing or amplifying. In receive mode the chip consumes 400 mW (802.11g),
while standby mode consumes less than 2mW. Given the factor that we have a 1/200 ration in power
consumption we can conclude that this is a good way to conserve power. An important factor is the power
cost of sending data that is very high. In addition to the 400 mW needed to receive data there is a cost of
600 mW (802.11g at 15 dBm) for sending data. And the cost of sending greatly increases when the
distance increases.

Mobile devices are more prone to disconnections than other devices, partly because moving out of area
wireless networks cover and also because it will be disconnected to conserve power. This creates a need
for special caching methods to take in consideration this special behaviour.

3.5 Characteristics and Challenges in Asymmetric Broadcast Environments
Most asymmetric broadcast environments consists of wireless networks with handheld devices as clients.
This environment has the following characteristics and challenges:

5

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

• Wireless broadcast networks are characterized by:

• Frequent disconnections

• Low bandwidth

• Asymmetric bandwidth where upload is expensive

• Server can send broadcast messages to all the clients at the same cost as sending to one
client

• And the following is the characteristics of the handheld clients:

• Limited battery power

• Limited processing power

• The data dissemination applications have the following properties:

• Many read-only transactions compared to update transactions

• One (or more) central information source(s)

• Potentially very many clients

So the challenges with data dissemination is to :

• Limit the use of upload bandwidth

• Avoid battery consuming operations (CPU and wireless components) on the handheld device

• Avoid overloading the server

• Handle frequent disconnections

And at the same time as addressing the above points keeping the performance as good as possible.
Performance is measured in how quick the broadcast items can be accessed, and how many transactions
gets committed.

These characteristics are for wireless broadcast networks with battery powered handheld devices as
clients. Other asymmetric broadcast environments have some of the same characteristics but are in
general less restrictive. The clients can for example be continuously connected to a power outlet, and do
therefore not need optimization to reduce the power usage.

3.6 Dissemination of Data in Asymmetric Broadcast Environments
The traditionally way of data dissemination is on-demand [18], also called pull based [12]. The clients
requests the data they want and the server responds with the data. It is simple, but do not scale with a large
number of clients. The waiting time for a data item can be very long if there are many transactions waiting
for different data items. Also, the risk of the server being overloaded will increase with the number of
clients.

In the broadcast approach [18], also called push based [12], the information server periodically and
continuously broadcasts data items to the clients. If a transaction is waiting for a data item, it will wait for it
to appear on the broadcast and then fetch it down. No matter how many clients there is, the same
bandwidth and processing at the server is required, which is indeed very scalable.

To find the correct data item quickly, it is important with good data management. The data can be indexed
so it is easy to find and power can be saved while waiting for the right time to read the item on the
broadcast channel. Cache techniques can also be used to greatly decrease the latency. This is explained in
detail in the next section, Data Management.

If the data items are allowed to be updated (which it is in practically all cases) and the clients have some
requirements for consistency or integrity of the data, then concurrency control must be used. Consistency
comes in many degrees [19] which is explained in more detail in chapter 5, Concurrency Control. The level
of consistency is defined by a correctness criteria. The concurrency control makes sure all data is
consistent according to the correctness criteria. Many protocols are suggested for optimizing performance.
The major ones are also presented in chapter 5 Concurrency Control.

6

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

3.7 Examples of Data Dissemination Applications
And old example of data broadcast is Teletext where televisions with a special decoder (most TV's have
that built-in now) can receive text info from the spare line of the vertical synchronization blanking line. This
enables the opportunity to show text pages on a TV. Pages consisting of 40x28 characters [2] are
broadcasted together with the TV-signal. Memory was a very expansive part in the time when teletext
started to be implemented, so to keep the device cost down the decoders only had space to store one page
(1 kbyte for B/W, 2-4 kbyte for colour) at the time. A teletext system may consist of many hundred pages of
text. These are sent out in a cyclic chain [1] where it might take from 5 to 30 sec to get the requested page.
This can be seen on as a storage in the air, because the devices only have a limited amount of memory
and therefore have to wait until the data is broadcasted to be able to show it.

There are also other examples like ATIS (Advanced Traveller Information Systems) where information are
broadcasted to inform about important events that might have interest for a big number of people, like
information about traffic jams or detours. Stock market tickers are also an good example of data
dissemination. There are a finite number of different stocks on a stock market, in most markets ranging
from a few hundred to a few thousand, these can be propagated to all clients instead of having the clients
make a connection and request the price for each stock. Of course there is a need for methods to optimize
broadcast for these kinds of environments, techniques that are discussed in the later chapters.

Other examples of applications are weather information, auction, sensor networks etc. in general
environments where a huge number of clients need to read the same data.

7

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

4 Data Management
Data management (DM) in broadcast environments consists primarily of choosing an efficient method for
broadcasting data. How this is chosen depends on what kind of clients there is in the network, and on the
characteristics of the data that is to be broadcasted. This provides the basis for concurrency control, which
is discussed further in chapter 5. Many of the mature solutions already describe how caching is to be done
to improve performance or they may describe the caching as a part of the protocol. In addition it might be
possible to gain extra performance by compressing blocks of data. This is often left for further study when a
new protocol is described.

First we give a introduction to the area of data management. In chapter 4.2 we explain different means of
data access. Chapter 4.3 shows different ways to disseminate data to the clients. Chapter 4.4 describes
different methods of indexing. In chapter 4.5 different caching methods are discussed and in the end
chapter 4.6 quickly explains how compression may be used.

4.1 Introduction
In data management we have two very important measurement of performance, namely latency and tuning
time [4]. Latency defines the total amount of time the client application need to wait for the data after a
request. This number might be quite high in broadcast based environments and client side caching of often
used data items is often used to try to keep the latency as low as possible. With other words, latency
includes the time that is needed to actually receive the data, in addition to the time that is needed to locate
the data. If the client actively listens to the broadcast or not, while waiting for the broadcast of a specific
item, does not affect this value.

Some of the proposed methods requires synchronized clocks, this could be a challenge in the earlier days
of computers. But now quartz based clock technology is cheap, and most devices have components for it,
[20]. This opens the possibility for the usage of timing in algorithms.

Each dissemination period is called a broadcast cycle, this is the time it takes to broadcast all items in the
database. And the broadcast content is called broadcast (bcast). The smallest logical unit of a broadcast is
called a bucket. Broadcasts may also be divided into larger units like pages. Broadcast time is the time it
takes to broadcast one bucket.

Tuning time defines the time it takes to locate the data. That means the time a client have to listen to be
able to locate the data. For battery powered devices, this parameter is very important, since the parameter
is the main factor for how long the battery power will last. The tuning time will affect the latency in some way
or anther, but they are only indirectly linked to each other. Illustration 4.1 Shows the relationship between
tuning time and latency. In environments where the devices have a low cost on the usage of power the
latency is the important part. But on battery powered devices the tuning time combined with the time
needed to fetch down the data is of greater importance.

Hot data is defined as data that is useful for a numerous number of clients, while cold data is data that is
needed by only a limited amount of clients, or no clients at all.

Illustration 4.1: Tuning time compared to latency

Request for
data

Index
arrives

Requested
data arrives

Tuning time

Latency

Finished
receiving
data

Broadcast

8

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

4.2 Data Access
There are three different ways a client can access data in an asymmetric broadcast based environment.
One might be better for one kind of access patterns, but another may fit better for another. We here
describe different methods of data access that are possible to use in asymmetric broadcast based
environments.

4.2.1 Push [5]
The data is sent out to the clients without any need for communication back. This is an extreme example of
an environment where the client has severely limited upload bandwidth or no upload capacity at all. Some
traffic information systems works in this way.

For push based environments to be efficient, good knowledge about the access pattern of the clients is
required so that the broadcast data can be arranged for optimal performance.

The advantage with push based data access is that it scales exceptionally good. The load on the
connection and server will be the same, totally independent on the number of clients.

In handheld devices push based communication can help to greatly increase battery time, since sending
data use a lot more power than receiving [21]. And the power needed for sending data greatly increases
with the distance, due to the need for signal amplification [22].

4.2.2 Pull
Pull based environments are environments where all data is sent out solely based on requests from clients.
This will typically result in a lower latency than push based methods up to a certain threshold. It might be
done in two ways, either by broadcasting it on request or sending it on a dedicated channel to the client that
request it. So if no requests for data are made no data will be sent.

While this works quite good in traditional RPC (Remote Procedure Calls) environments it does not scale
very well. With many clients the bandwidth needed for the data requests can fast exceed the connection
limit. And the load on the server can fast become a bottleneck since it has to keep track of a great number
of connections.

4.2.3 Hybrid
Hybrid solutions are solutions where the hot data is broadcasted while cold data have to be fetched using a
pull based method. This is a combination of both push and pull based communication and can result in
better performance. But good algorithms are needed to determine whether the data is hot enough to be
broadcasted. The requests are sent to the server on a dedicated backchannel. The response can be sent in
two ways. Either it can be sent directly to the client using a own channel. This can result in a very low
latency, but with lots of clients it will also result in high load on the server, and usage of much bandwidth.
The other way is often called on-demand, where the requested data gets queued to be broadcasted. By
requesting data that will not appear on the broadcast for a long time the latency can be reduced. But this
again raises problems with how large a queue there should be on the server, a too large cue can result in a
to long latency. But a too small queue can result in that the server will have to drop requests when the
queue is full.

Acharya et. al proposes IPP (Interleaved Push Pull) [12] which uses a threshold for how many requests a
client can send for missed data. So only data that would otherwise have a long waiting time, is requested.
When a request is received, the request is appended to the queue if it is not already there. A predetermined
limit decides how much of the broadcast that can be sent out, due to incoming requests. If this limit is set to
0% we have a standard push based broadcast.

4.3 Data Dissemination
Broadcast techniques generally depend on two important factors, the latency and the tuning time. This will
often be a trade-off, by reducing latency you increase the tuning time and vice versa. This often makes
comparison between different broadcast techniques hard, since different methods perform better in certain
environments. When a method is made it usually targets a very specific environment, and to make it
perform good in another environment requires modification to the protocol.

While most techniques only describes how to do broadcast using one channel it is often possible to extend
the specifications to also be applicable in environments using multiple broadcast channels. In most cases
multiple channels can just be multiplexed into a single virtual channel and be treated in just the same way
as a single channel.

9

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

4.3.1 Scheduling
Scheduling is how to decide what data to send first, some data might have a higher priority and have a
greater cost when it is delayed.

There are many approaches for scheduling, that means that different methods calculate using different
costs. Some use linear scales, but other take into account that waiting for the first elements might have way
higher cost than it would have when waiting for the 20th element.

4.3.1.1 Linear
The cost for waiting for an item is equal all the time. Wither this is the first item, or the twentieth does not
matter. This is very simple to implement, and requires no calculations at all to decide the schedule.

4.3.1.2 Polynomial
In [23] it is proposed to use polynomial functions to calculate the cost of having a cache miss. This means
that when the cost is calculated a miss on the first few elements will weight more than a miss on the 20th

element.

The paper also does an theoretical analyzation on the performance of four common scheduling methods:

• The random algorithm

• The Halving algorithm

• The Fibonacci (golden ratio) algorithm

• The Greedy algorithm

While this might increase the waiting time for some elements the responsiveness of the clients will
increase.

4.3.2 Broadcast Methods
The standard approach to data broadcast is using a flat pattern that is broadcasted in cycles. Given the
data “A”, “B”, “C”, “D” and “E” it will be broadcasted like this “A B C D E A B C D E A ...”.

In [24] M. H. Ammar and J. W. Wong use Markovian Decision Process (MDP) to prove that an optimal
method of data dissemination in a push based environments is a cyclic one.

4.3.2.1 Broadcast Disks[5]
Acharya et al. propose using multiple in air disks, spinning at different speeds. The fastest disk contains the
hottest data, while cold data is placed on a slower spinning disk.

From [5]:

The algorithm has the following steps (for simplicity, assume that data items are “pages”, that is, they are of
a uniform, fixed length):

1. Order the pages from hottest (most popular) to coldest.

2. Partition the list of pages into multiple ranges,where each range contains pages with similar access
probabilities. These ranges are referred to as disks.

3. Choose the relative frequency of broadcast for each of the disks. The only restriction on the relative
frequencies is that they must be integers. For example given two disks, disk 1 could be broadcast
three times for every two times that disk 2 is broadcast, thus, rel_freq(1) = 3, and rel_freq(2) = 2.

4. Split each disk into a number of smaller units. These units are called chunks (Cij refers to the jth

chunk in disk i). First, calculate max_chunks as the Least Common Multiple (LCM) of the relative
frequencies. Then, split each disk i into num_chunks(i) = max_chunks / rel_freq(i) chunks. In the
previous example, num_chunks(1) would be 2, while num_chunks(2) would be 3.

5. Create the broadcast program by interleaving the chunks of each disk in the following manner:

01 for i := 0 to max_chunks - 1

02 for j := 1 to num_disks

03 Broadcast chunk Cj,(i mod num_chunks(j))

04 endfor

05 endfor

10

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

This gives us an efficient method for broadcasting data in a cyclic manner, and it is quite simple to
implement, but fine tuning of the disk speeds needs to be done to make it fit different environments.
In hybrid environments broadcasts disks might be seen on as in air cache that removes the need for a pull
request.

4.3.2.2 A Binary Approach (BNB) [6]
Broadcast disks suffers from an empty slot problem, where some of the timeslots will be unused if the
broadcast is divided into parts that can not be equally distributed. A proposed solution to this is GBNB
where the data is divided up in a different manner.

GBNB have some requirements to be implementable:

1. Each data item is in one page of the same size.

2. The client population and their access patterns do not change.

3. Data is read-only.

4. Clients make no use of their upstream communications capability.

5. When a client switches to the public channel, it can retrieve data pages immediately.

6. A query result contains only one page.

7. The server broadcasts pages over a single channel.

The disk frequency in GBNB is calculated based on the client access probability thus giving us an optimal
disk frequency where there are no empty slots. This gives an method that performs better, or equally good
as broadcast disks in all cases, but puts some extra restrictions on the implementation.

4.3.2.3 Multiversion
The approach contains several versions of a data value, so if two items are updated and only one of them
were read before it was updated, the other item can still be read consistent by choosing the old value. In
other approaches restart would be the only option.

The drawback is obviously the huge overhead of maintaining several values for each item, and in broadcast
environments the overhead is especially associated with broadcasting many times of extra data (although
techniques to optimize exists).

Making multiple versions might be done in two ways, either distributed horizontally or vertically [25]. This
might affect how efficient it is to do compression on the data and should therefore be weighted before
choosing what method to use.

4.3.2.4 TC-AHB [26]
In TC-AHB (Time critical adaptive hybrid broadcast) the broadcast is divided into two parts, the periodic
broadcast and the on-demand broadcast. This is dynamically adjusted to fit the actual user access
frequency distribution. The server performs an classification of all the data at the end of each broadcast

11

Illustration 4.2: How data is divided to create a cyclic
broadcast in broadcast disks

a

b c d e f g

Hot data Cold data

4:2:1 frequencya

b d a c e a b a cf g

Minor cycle

Major cycle

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

cycle to determine which ones to broadcast in the next broadcast cycle. These decisions are based on the
access distribution from the last broadcast cycle and bandwidth cost for sending each item. The items that
are expected to save bandwidth by being periodically broadcasted instead of broadcasted on demand are
scheduled for broadcast during the cycle. To prevent starvation there will always be left a small amount of
the bandwidth for on-demand broadcast.

While the method does not specify any special indexing method, there is need for one so that the clients
can decide wither the data will appear on the broadcast, or if they have to request it to be sent on-demand.

This works good, but when the broadcast program gets more and more accurate to the clients need the
less information the server will get about the user access distribution. To cope with this problem, it is
possible to cut the broadcast of the items for a short period of time, so that the clients will request the hot
data again, and we will have new values for the classification of the data items.

4.3.3 Invalidation Lists
Invalidation lists are lists that are sent out from the server to indicate that a data value have changed, and
that the clients need to download the updated version. While it is possible to send out the invalidation lists
at any time during the broadcast, many methods choose to do it at the start of it.

[27] does some research on invalidation lists. The performance of invalidation lists are measured in
different environments, using cache, multiversion and SGT (Serialization-Graph Testing).

Invalidation lists prove to be efficient in environments where there are a lot of updates and rapid changing
data.

4.3.4 Propagation [28]
Instead of sending lists over what data that has changed, propagation simply sends the new value of the
changed data. This way the clients will stay close to the steady state, since they do not have to wait for the
invalidated data to reach it. But it will also be a waste of bandwidth to propagate data that is not used by any
clients, or very few. The updates may be sent at any time during the broadcast sequence. While
propagation works very good in environments with few updates it suffers from the problem that in update
intensive environments the propagation can take up too much of the broadcast bandwidth.

Data propagation my be scheduled in many different ways, dependent on the environment some might be
more efficient than others. [28] Proposes the following three propagation methods.

4.3.4.1 Server Offset
Propagates the versions that the server think is mostly used. With increasing noise the server assumption
drift more and more away from the real client situation.

4.3.4.2 Slow Disk
Only propagate the items on the slow disk, where it would impose a long waiting time for the data to be
broadcasted again.

4.3.4.3 Threshold
The data is propagated only if the next sending time is larger than a given threshold. This threshold is given
as a percentage size of the broadcast size. The method is highly dependant on what part of the pages that
gets updated most frequently. If the most frequently accessed pages also are the most updated ones the
best threshold is at 10%. With other update patterns different thresholds provide the optimal propagation
level.

4.3.5 PA [29]
PA (Predeclaration and Autofetching) uses an preprocessor in the beginning of each broadcast cycle to
determine which data that is needs to fetch. This results in a bit longer minimum delay, but gives a lower
average delay.

PA outperforms both IM and MA when the update rate is high or the transaction length becomes longer than
five data items. This because PA will always fetch the data within two broadcast cycles totally independent
of transaction length or how many of the data items that have been updated. But PA suffers in
environments where there are few updates, since it has to wait until the start of the next broadcast to start
the prefetching. To solve this problem PA2 was made, this is the same as PA, except that it works
asynchronous and starts the prefetching immediately and therefore will in some cases be able to complete
within less than one broadcast cycle.

12

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

4.3.6 SGT [27]
In SGT (Serialization-Graph testing) the client maintains a copy of the serialization graph with all the read
operations. Updates are integrated into the local copy. Read operations are accepted as long as they do not
create a cycle in the local graph. On the server side there might be a different kind of concurrency control,
such as two-phase locking.

The usage of SGT requires the serialization-graph and control info to be sent at some time during the
broadcast cycle. Then typically at the beginning of each broadcast.

SGT requires quite a lot of storage space at both the clients and the server since the SG have to be stored
to be able to check against it. While it in most cases is possible to simplify the SG there must still be
reserved enough space for the full graph in special cases where that might be necessary.

SGT requires quite a lot of processing at the client side to check the graph, this might be a limiting resource
and have therefore to be be taken into consideration.

4.4 Index
Indexes are used to give a description of the placement of the broadcasted data. While there are numerous
different kinds of indexes, some seem to perform better in broadcast environments than others.

Caching of the index is a good way to cut down on tuning time, but when data is cached it is important that
there are methods for invalidation if the structure of the broadcast should change.

To make the data easily accessible it is
important to have a structure of the
data. Dependent on what kind of
indexing method that is going to be
used, different requirements for the
index structure applies. The simplest
one is the one dimensional structure,
where the index is just stored in a
sequence one after another. Multilevel
indexes arrange the data in structures
that makes it easy to find. A good
example of this is the commonly used
index tree where a structure of leaf
nodes makes up a big tree. An
important part when making these kinds
of trees is to get the structure balanced.
And some of the the following
theoretical formulas here in this chapter
rely on a balanced tree for the
theoretical values to be correct.

Indexes may appear in two different forms, clustered and none clustered [20]. In clustered indexes similar
kinds of data are grouped together but in none clustered they are spread around on the whole index. As
might be expected, none clustered performs worse or in best cases equally good as clustered ones.

4.4.1 Latency Optimal [4]
This is not an index method, but rather a technique the other index methods can be compared against. It
defines the latency optimal method of data broadcast. This is done by keeping the broadcasted data as
small as possible. Therefore all indexes are omitted.

As given by the name of this method, this makes the latency very small, and it is the simplest method since
it in reality is what you get when you do not implement any indexing method at all. Even though this might
work good in some environments the constant listening on the network traffic would often drain to much
power from battery powered devices. But it is a good method to compare how close the techniques come to
the optimal latency.

The expected latency in the Latency Optimal method is calculated by taking the time it takes to broadcast a
single data item and multiply that with the number of items that are being broadcasted. This gives us the
total time to broadcast all the data. If a client requests a totally random data there is an equally chance for it
to be any of the items, and since the items are equally spaced on the broadcast the average time it takes

Illustration 4.3: Example of a simple flat index

c f a d g h b i j e
Unindexed data

a 3
b 7
c 1
d 4
e 10
f 2
g 5
h 6

Elem
ent

Position

A flat index describing the
position of the data

Index Index

13

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

will be the item in the middle of the broadcast. So therefore we divide on two to find average latency for an
item. And we have to add the time it takes to receive the data.

Illustration 4.4: Latency of the Latency optimal method

Since the client has to listen to the broadcast at all time to find an item the tuning time is calculated in the
same way as the latency, except that the tuning time do not include the time that is needed to receive the
data.

Illustration 4.5: Tuning time of the Latency Optimal
method

4.4.2 Tuning Optimal [4]
This method defines the shortest possible tuning time for an environment where the data access is totally
random. To accomplish this an index describing the layout of the pages are broadcasted. This index is
broadcasted in the start of every broadcast cycle. This gives a high latency, since all page requests need to
wait for the index broadcast to see when to fetch the data. Each broadcast have a pointer to the next index
which is the first element in the broadcast. Therefore the expected tuning time will be half of the time it
takes to broadcast one data item plus the time it takes to receive the index. Just like latency optimal this is
a method created to do performance evaluation on other methods, and is in most cases not a practical
method since it gives a very high latency.

To calculate the latency we know that on average we will be in the middle of the broadcast when we start
looking for an item, so we first have to wait half a broadcast cycle to receive the index, then we on average
have to wait another half broadcast cycle before the data is sent on the broadcast and a broadcast cycle is
the same as the broadcast time multiplied with the database size. We also have to add the time it takes to
receive the index, and the time it takes to receive the data.

Illustration 4.7: Latency of the Tuning optimal method

Illustration 4.8: Tuning time of the Tuning optimal method

4.4.3 (1, m) [4][20]
In (1, m) indexing, a full index is broadcasted once for every m items. This method keeps both tuning time
and latency in mind, at the extra cost of a few broadcast slots for broadcasting duplicates of the index.

The procedure for the (1, m) indexing method is as following.

• Tune into the broadcast.

Latency=Broadcast time×Database sizeTime to recieve the indexTime to recieve the data

Tuning time=Broadcast time
2

Time to recieve the index

Illustration 4.6: Latency in tuning optimal indexing

a b c d I a b c d I a b

Get
index

Request
item C

Receive
item C

Wait for
index

Latency

14

Latency=Broadcast time×Database size
2

Time to recieve the data

Tuning time=Broadcast time×Database size
2

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

• Fetch when the next index will be broadcasted.

• Turn off receiver until the time for index broadcast.

• Read index and get the time for when the page is to be broadcasted.

• Turn off receiver until the time for the page broadcast

• Retrieve the required data.

(1, m) is a simple and good method, but the overhead from sending the full index each time is high. But in
environments where the index occupies only one bucket or less, this performs very well.

To calculate the expected latency we first find the time it takes to receive first index. Then we add up the
time we have to wait before the item appears. Again on average the data will appear after half a broadcast
cycle and we have to add up the indexes that will appear in between too.

Illustration 4.9: Latency of the (1, m) method

Illustration 4.10: Tuning time of the (1, m) method

The tuning time for (1, m) is calculated as in Illustration 4.10 First we need a probe to find the next index,
then the client can stop listening on the network traffic until the index appears and we have to follow the
tree in the index and download the item that describes our requested data.

Illustration 4.11: Optimal value of m

It is also possible to calculate an optimal value of m using the formula in Illustration 4.11. This formula is
made by solving the formula in Illustration 4.9 with respect to m.

4.4.4 Distributed Indexing [4][20]
When the data is ordered in a directory structure there is only need to broadcast the index for the upcoming
data. So what distributed indexing does, is to improve (1, m) indexing by cutting down on the replication of
the data.

Distributed indexing may take three forms:

• Non-replicated distribution

• Entire path replication

• Partial path replication

The different types describes how much of the directory structure is replicated. Where the non-replication
and the entire replication are both two extreme cases of replication. The full method is explained in
Imielinski et al. [4][20]

While this method is fairly complicated to implement, it is very efficient and performs better than (1, m) in all
cases except when the index is small enough to fit within a single broadcast bucket.

4.5 Caching
Caching of data on the client side may often prove efficient on the performance of the clients. Different DM
methods may make it possible to turn of the data receiving interface and just use cached data for periods of
time, to save battery power. The efficiency of caching often depend heavily on how rapid data changes. If
data rarely changes or does not change at all a big cache would greatly improve performance. But for
caching to work efficiently there is need for methods to decide the validity of the data.

Latency=1
2
×indexsize of broadcast

m 1
2
×m×index size of broadcastTime to recieve the data

Optimalm=Size of data
Size of index

15

Tuning time = probe time + time to follow the index and download it

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

The lack of bandwidth and the high disconnect rate in mobile environments makes page based caching
unsuitable since the cost of replacing a full page is to high. That leaves us to two types of caching, attribute
based and object based. Where an object is a collection of one or more different attributes that has some
kind of a relation to each other. A hybrid version where both object and attribute based caching is used is
also possible. Which one that performs best greatly relies on the environment it used in.

Conventional caching methods often keeps track of the clients and sends invalidation messages when the
data changes. This is not suitable/feasible in these environments where the clients may disconnect often
and freely.

There is an possibility to use lease based caching. But that leaves us with the problem of deciding the lease
time. If the time is too short, it would lead to wasted bandwidth. But then again if the time is too long it will
give a greater chance of invalid data. Leased based caching is therefore not practical.

Cache have warm up time where the cache is not stable and values that should have been cached might
be swapped out with with another value that have a lower access rate. This state is called the warm up
phase. Different caching methods have a different length of warm up time and in environments with very
rapid disconnections this warm up time might play a role in the access time. When a client reaches the
state where the cache is stable it is called the steady state [12].

Acharya et al. [5] describes that it is wasteful to frequently broadcast pages that are highly likely to be in the
clients cache. When the client has reached the steady state. While this is totally true it is also something
that is hard to avoid in mobile environments where we have rapid disconnection and the clients might roam
to areas out of coverage.

4.5.1 General Methods
A wide range of caching methods has been proposed for mobile environments. Some are specific for a
given kind of broadcast others are more general methods that can be implemented and extended for use in
broadcast schemes and transaction control that has yet to include caching in the model. In the following
sections a few of these are presented.

4.5.1.1 PIX [30]
Idealized algorithm, and implementation is hard, if not impossible, as it requires exact knowledge of the
access probability of the client. A PIX value is calculated (Illustration 4.12) for each element in the cache by
dividing the frequency of broadcast with the access probability. It woks by always replacing the cached data
with the lowest PIX value, something that requires a comparison between each element each time new
data is received on the broadcast. This puts a severe load on the clients who perform the caching, this
makes PIX a more theoretical caching method.

Probability of access over frequency of broadcast

Illustration 4.12: Calculation of the PIX value

4.5.1.2 LIX [28]
Since PIX is often looked on as a none implementable algorithm LIX was developed as an approximation of
PIX. It is very similar to the well known LRU, but instead of just removing the last link of the chain PIX
calculates a cache hit value between the multiple disk and removes the one with the lowest cache hit value
and puts the new link in the chain corresponding to the disk it belongs to.

There will be one chain for each disk on the broadcast. These chains will contain the entire cache memory.
When a new item arrives, a calculation will be done for the last item on each chain and the new item. The
item with the lowest value will be replaced. And the new item will be put in the chain corresponding to the
disk it resides on. If the number of broadcast disks are reduced to one LIX will be reduced to LRU.

A small problem with LIX is that none updated items flush to the end of the chain faster. Since a item is
moved to the top of the chain when it is updated.

4.5.1.3 PT [30]
As another theoretical caching method we have PT. This is a prefetching method that takes into account
the time it will take before the data appears on the air again. For this to be possible a PT value has to be
calculated for each element each time an element is received on the broadcast. These calculations does of
course put way to much load on the clients and are therefore not really implementable in a real life situation.

PIX=
P
X
, P= frequncy of broadcast , X=access probability

16

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

There is also a need for exact knowledge about the access probability for all the elements on the
broadcast.

4.5.1.4 Tag-team [30][31]
Tag-team caching uses a 180 degree algorithm to always cache the items that it takes the longest before
they appear on the broadcast again. Therefore cutting the cost of a miss. Illustration 4.13 Shows and
example of an broadcast with four elements and a cache size of two elements, the items that will arrive
again soonest on the broadcast is swapped out with the one that it takes the longest time before it will
appear again. This method is made solely for reducing the penalty when a cache miss occurs, it does not
improve the hit ratio compared to standard caching methods.

4.5.2 Real Time
Real time cache methods are the cache management techniques made specifically for real time
environments, where transactions have to be performed within a given deadline to be accepted.

4.5.2.1 LDF [32]
LDF (Largest First Access Deadline Replaced) is created for use in real-time environments where
transactions have a deadline they have to reach. It works by constructing a deadline for the latest time an
data item can be read to be able to reach its deadline. LDF defines many ways to do this calculation, but
performance wise they all give very similar results. While this seems simple it requires to know quite a few
parameters in advance:

• The exact number of data items

• The sequence of the items

• The data id

• The soft data-deadline

Although LDF seem to perform way better than PIX in environments with deadline restrictions it seems like
the performance improvement decreases when the cache size goes up and also we can see that the
performance of PIX get way better when it is applied on a broadcast containing multiple broadcast disks.

4.6 Compression
Compression divides the data into blocks that becomes compressed by using different kinds of methods.
What method and the size of these blocks is dependent on the environment its to be used in. Usually the
main factor that affects the efficiency rate of caching is the randomness of the data. If many data values
contains the same data a greater rate of compression can be achieved.

The problem with compression techniques in these environments is that it is often a bit CPU intense to
perform the calculations for compression [25]. So this might actually be a trade off between network
receiving time and CPU time.

17

Illustration 4.13: Tag-team caching with 4 data items and cache size of 2

a

c

bd Data
broadcast

a d

a b

c b

c d

Cache contents

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

5 Concurrency Control
Concurrency Control (CC) protocols are important to maintain the consistency of a database and to make
sure the clients reads consistent data.

In the middle of the 90's, small wireless devices started to be common, and asymmetric broadcasted
environments became a bigger topic. To deal with, amongst others the limited upload bandwidth, some new
concurrency control protocols were searched for. Many of the concurrency control protocols from the
traditionally database processing were then adapted to the asymmetric broadcast environment. Therefore it
is important with some knowledge of concurrency control in traditional databases. The first section in this
chapter focus on the concurrency control protocols for traditional databases that makes the foundation for
many of the concurrency control protocols in the broadcast environments.

Section 5.2 explains the importance of concurrency control and give examples of problems without
concurrency control and how concurrency control can prevent these. The third section 5.3 defines three
characterisation criteria of concurrency control protocols for asymmetric broadcast environments. They
describe the environment the concurrency control can be used in and are later used in the characterisation
framework.

The sections from 5.4 to 5.14 review various concurrency control protocols suggested for the environment
in question. Only a selection of the protocols will be reviewed, and also only the interesting features will be
explained. The reviews focus on the functionality and techniques used for better performance. For a
complete understanding of the protocols, the reader is referred to the cited scientific papers.

5.1 Introduction to Concurrency Control and its Protocols
A database management system (DBMS) is a collection of software and hardware that support commands
(operations) to access the database [19]. A simple DBMS would execute each operation atomically and
sequentially, but most of today's DBMS can execute operations concurrently. That is, many transaction can
be committed concurrently as long as the final effect is the same as a sequential execution. Operations can
be executed concurrently if they operate on different data items.

Concurrent transactions that do operate on the same items will in most cases lead to inconsistency in the
database. The operations causing the inconsistency is called conflicting operations, and conflicting
operations cause a conflict. The task of concurrency control is to avoid conflicts in order to ensure the
consistency of the data. Various concurrency control protocols ensures different degrees of consistency.
The degree of consistency is often (and so also in this report) described as a correctness criteria. The
concurrency control protocols will accept different kinds of concurrent transaction depending of the
correctness criteria. Correctness criteria will be described in more detail in section 5.3.2.

The two major techniques for concurrency control are lock based and non-lock based. Lock-based was
used in the first DBMS and it ensures consistency by putting a lock on the data items accessed by the
operations. A lock reserves a data item and is not released before the transaction is committed, which in
turn efficiently avoids conflicting operations and an inconsistent database (more on lock based can be read
in Bernstein et al., [19]). The approach is simple, but has many drawbacks, where some are deadlocks and
poor support for real time transactions [19]. Especially in asymmetric broadcast environments, lock based
protocols have many drawbacks . They require extensive bi-directional communication which uses too
much of the uplink capacity. A large population of clients will also overload the server with read locks [7]. In
addition, locks would be held for a long time because transactions are longer in broadcast environments
(the clients have to wait for the correct broadcast item). And in case of disconnection some locks could end
up not being released.

Because of these drawbacks and the emerging of new database types such as real time, distributed, and
object oriented databases, new non-lock based techniques were invented such as multiversion, timestamp,
serialization graph and optimistic concurrency control. The non-lock based techniques are the best
protocols for broadcast environments [7], and will therefore be more detailed described in the coming
sections. Multiversion and serialization graphs are introduced in the previous chapter so they are only
shortly mentioned here.

5.1.1 Timestamp Ordering
A unique timestamp is assigned to each transaction. It is indeed problematic to generate an unique
timestamp in a distributed fashion, but some techniques are already described in chapter 3.11 in [19]. The
timestamp can for example be generated by a counter (possible a synchronized clock) plus a unique
number given to each client (or just a random number assuring uniqueness even if two transactions were

18

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

started at the same time). In many cases it is not necessary to have an unique timestamp, so a broadcast
cycle number can be used.

Dynamic timestamps were introduced by [33]. The principle is to adjust the timestamps in such a way the
transactions will be consistent.

5.1.2 Serialization Graph Testing [19]
A serialization graph is used to detect conflicts in the history of transactions, and is a graph consisting of
transactions and their operations. Most of the papers presenting new concurrency control protocols use
serialization graphs in formal correctness proofs. If no cycles occur in the graph, the history of transactions
is serializable.

In serialization graph testing, the serialization graph is maintained at the server with the following
modifications. The graph does not contain very old transactions (because of space and speed
considerations) and the graph contains active non committed transactions in addition. This modified graph
is therefore called stored serialization graph (SSG).

Transactions are only accepted if SSG is still acyclic. The drawbacks are the substantial length of the SSG
(although techniques to shorten it exist) and the computing power required. Although this approach is not
suitable for the asymmetric broadcast environment at all, an approach using SSG does exist for broadcast
environments [34].

5.1.3 Certifications and Optimistic approach
The concept of certifications was first developed by Thomas in 1979 [35]. The certification approach
accepts all operations and checks for conflicts later. It must at minimum check when the transaction
commits [19]. This approach was also developed by H. T. Kung independently in 1981 [8], but he called it
an optimistic approach, which indeed it is. All operations are executed with the optimistic idea that no
conflicts will arise. First later, maybe as late as the time of commit, the protocol will check for conflicts.

Transactions in OCC have three phases [8], read, validation and write. In the read phase, all operations are
scheduled. Write operations are written to a local temporary storage. The validation can be done several
times but must at least be done when the transaction commits. The transaction is checked for conflicting
operations up against earlier committed and/or active transactions. If the validation succeeds, the
transactions commits successfully and is written to the database. In case of conflict and rejection, the
transaction is aborted or restarted. In order to discover conflicts early, validation can be done on the first
operations before the last operation has started. If a conflict is discovered, the transaction can restart and
avoids wasting resources on the remaining operations.

OCC were later split by Härder [36] into Forward Validation (OCC-FV) and Backward Validation (OCC-BV).
OCC-FV turned out to be suitable for real time databases because of its ability to prioritise transaction by
letting a high prioritized transaction be committed before low prioritized transactions. OCC in general turns
out to be a very good approach for wireless networks. As earlier stated, the data dissemination applications
has most read-only transactions and the asymmetric environment has a low uplink transfer rate. OCC
works best in environments with few conflicts, which is the case when most transactions are read-only.
Secondly, OCC can be used without sending any information on the uplink before validation. The other
approaches requires sending of lock requests etc. So OCC reduces the use of the uplink if not too many
conflicts arises.

OCC-BV validates the transaction up against the already committed transactions. The set of operations in
the validating transaction is compared with the write set of committed transactions in the time space from
the start of the validating transaction. It is not necessary to compare up against older committed
transactions.

OCC-FV validates the transaction up against the active transactions (those which have not yet committed).
Forward validation gives the opportunity to choose which transaction should be restarted. Either the
validating transaction or the conflicting active transaction must be restarted. The choice can be done based
on some prioritizing scheme. In addition, forward scheme generally detects and resolves data conflicts
earlier than backward validation, and hence it wastes less resources and time [10].

But even conventional OCC has it drawbacks in broadcast environments [37]. For a client it takes a long
time to know if a validation has failed. The restart of the failed transaction is therefore consequently
delayed. A serious conflict that leads to a transaction abort can only be detected in the validation at the
server. Then transactions destined to restart after the first operations are fully executed. This wastes time,
resources and bandwidth. Also, the ineffectiveness of the validation process at the server leads to many
unnecessary transaction aborts.

19

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

5.2 Some Concrete Examples of Concurrency Control
In order to illustrate the need for concurrency control, this part will show some examples of database
inconsistency caused by concurrent transactions. First some serial executions are given and then the
typical write -read conflict are illustrated in several forms.

To express a read operation or write operation on an item x by a transaction T1 we write T1r(x) or T1w(x)
respectively. C(T1) means T1 is committed successfully into the database set. A sequence of operations is
called a history and is denoted with H. For example, H1: T1:read(a), T2:read(a), T1:write(a). The order of the
operations illustrates the order of the execution in time.

5.2.1.1 Two examples of serializable executions
H1: T1r(a), T2w(b), C(T2), T1r(b)

There is no difference if T1 reads a before or after T2 writes b. The value a is independent of the T2

transaction, hence no conflicts. The same example is illustrated once more in Illustration 5.1 in a different
way for clarity.

An alternative example illustrating the same point is a transaction where item a is written by T2 instead of
item b, like this:

H2: T1r(a), T2w(a), C(T2), T1r(b)

H2 will also be serializable. It is clearly seen that there are no conflicts, because both values read by T1 are
old. T2 do not update the value of b, so the transaction is still valid. See also Illustration 5.2 for clarity.

The lesson learned is that if an operation is moved in time within an interval where the operation do not
conflict with any other operations on the same item, then the same serial execution is achieved. In the last
example, T1r(b) can be moved before and after T2w(a), without changing the result, because the two
operations are independent and not conflicting.

5.2.1.2 Write – Read conflict example
The write-read conflict is very common and easy to misunderstand. If a value x is read by T1 right before it
is updated by another transaction T2, most would think it is a conflict. But even though the value read by T1

is old, the consistency is not necessary threatened. First when T1 accesses another item updated by T2, the
consistency is broken.

We give a history H3 where transaction T1 reads data item a. Then T2 updates and commit data item a and
b, and finally T1 reads b. Illustration 5.3 gives a nice overview of the operation order.

H3: T1r(a), T2w(a), T2w(b), C(T2), T1r(b)

Illustration 5.1: History H1 and its serializable equivalent

r(a)

Commit w(b)

time
T1 :

r(b)

T2 :

r(a)

Commit w(b)

time
T1 :

r(b)

T2 :

is serial equal to:

Illustration 5.2: History H2 and its serializable equivalent

r(a)

Commit w(a)

time
T1 :

r(b)

T2 :

r(a)

Commit w(a)

time
T1 :

r(b)

T2 :

is serial equal to:

20

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

T1 will read inconsistent values, because the value to data
item a is old and the value to data item b is new. The
inconsistency arises because items a and b are related, and
a serial execution is not possible. The data item a and b are
assumed to be related because they were accessed in the
same transaction. A transaction is a series of operations on
items where one operation is dependent of the other.

Solutions in case of H3, is to read the old value to b (which
can be done with multiversion), or read the new value to a. If
the last option is chosen, it is not enough to only read item a
again, because the next operation (in this case read item b)
is (potentially) based on the value of the current operation (in
this case item a). So the whole transaction must be restarted.

If T1r(a) was not the first operation, it would strictly be enough
to only restart from the point of where the conflict was found. The normal approach is to start the
transaction from the beginning again, but since the first operations before the conflict still are valid, it is not
necessary to do those again. We name this approach partial restart and investigate it later in the end of this
chapter.

5.2.1.3 Dependent write-read conflict example
H4: T1r(a), T2w(a), T2w(b), C(T2), T3r(b), T3w(c), C(T3), T1r(c)

In H4, Transaction T2 makes a dependency between item a and b, and T3 gives a dependency between
item b and c. So when T1 wants to read c, the value is inconsistent with the value read for a.

Various concurrency control protocols deal with these inconsistency problems in many different ways. In
last example the lock-based protocols would deny T2w(a) until T1 committed. Optimistic protocols would
allow all operations, in the optimistic hope of no inconsistency, until the validation of T1. They would then
discover the inconsistency and restart T1. A third solution is to use the old value for c in the last operation
T1r(c) when the inconsistency is discovered. Multiversion, shortly described in previous chapter, offers this
opportunity.

5.3 Concurrency Control Protocols Characteristics
The concurrency control protocols for broadcast environments have many different characteristics. This
chapter tries to point out three important differences that will make it easier to see which environment they
are suitable for. The protocols have support for:

• client update transactions (or not)

• real-time transactions or not

• serializable consistency or other weaker correctness criteria

The next three sections will discuss these properties, and later in the report, these properties are used to
categorize the concurrency control protocols.

5.3.1 Client Update Transactions Versus Client Read-only Transactions
All protocols assume there are update transactions. If not, the database set will be the same the whole time
and no concurrency control is needed. These update transactions can be committed by the server or the

Illustration 5.3: History H3 having a write-read
conflict

r(a)

Commit w(a), w(b)

time
T1 :

r(b)

T2 :

The operations of T1, r(a) and
r(b), reads inconsistent values

Illustration 5.4: History H4 with dependent write-read conflict

r(a)

Commit w(a), w(b)

time
T1 :

r(c)

T2 :

r(a) and r(c) reads inconsistent values

Commit r(b), w(c)T3 :

21

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

clients. But not all protocols allows the clients to perform update transactions. In fact, many applications do
not need the clients to update data, but want the clients to be read-only peers. Example of such is a
weather forecast or traffic information service. The clients only need to read information. On the other hand,
an expanded version of the application is also thinkable, which lets the clients send the local weather or
traffic conditions to the server for updated information.

There are two important differences between the server update transactions and client update transactions.
The server usually updates an item based on information from a sensor (temperature sensor, traffic sensor,
etc.). The value will then be committed independently of other values (blind write). Secondly, the server can
quickly communicate with the database, while the clients must wait for the correct data item on the
broadcast channel. Therefore server transactions do not need special adapted concurrency control but can
use traditional locking based concurrency control. Still, the data set must be kept consistent, also for server
transactions.

Because almost all the protocols implement server update transactions, we will sometimes use the
expression update transactions when client update transactions is meant. If server update transactions is
meant, it will be specifically specified. We will use the expressions read-only protocols and update
protocols to represent protocols which support respectively only read-only and both (read-only and update)
transactions.

It is natural to believe the read-only protocols will perform better in client a read-only environment (because
it is special adapted for this environment) than an update protocol in a client read-only environment
(because it is not special adapted for the environment). But most update protocols implement the read-only
transactions separately from the update transactions because in most cases it is more efficient to use
special algorithms which take advantage of the knowledge that the transaction only read ([38], [39]).
Therefore we believe most read-only protocol implementations also can be expanded to an update
protocol, and consequently the performance will be equal for the update protocols and read-only protocols
in a client read-only environment.

If so, then supporting client update transactions is viewed as a stronger characteristic than not update
compatible. That is, the update protocols are an extension of read-only protocols.

5.3.2 Real-time Versus None Real-time
Real-time databases have time constraints associated to some of the transactions. They must be
committed within the limit of this time constraint which can be in form of a deadline. The transaction
correctness in real-time is defined as meeting its time constraints and using data that is absolutely and
relatively timing consistent [40]. If the deadline is exceeded, the transaction is usually aborted, because
there is no need to commit it. None real-time transactions do not have a deadline and can still be correct
even though it is delayed for a long time before it is committed. In that case the latency will be very bad, but
it is always a wish to complete the transaction.

The real-time support is given by prioritizing the transactions by giving the transactions priorities based on,
amongst others, their deadline. When a conflict is found, one or more transactions must restart. In a real-
time system, the transaction with shortest upcoming deadline might be committed while a transaction with
long time before the expiry of its deadline is restarted. Of course many more factors play a role when
choosing which transaction to restart, such as how many transaction must be restarted if one other is
allowed to continue, and a transaction's probability to complete within its deadline. Another fact that should
be considered is that the cost or restart is very different for an update transaction from the server versus an
update transaction from a mobile client.

Many applications needs real-time support because they are real-time in nature [10]. For instance in stock
trading a delay of a transaction past a time constraint can lead to financial loss or opportunity loss.

The real-time support in the proposed protocols are of various degree. We categorize them as real-time
supporting or optimizing if the scientific paper proposing it claims so.

Real-time is the stronger criteria because by simple first-serve-as-first-come prioritizing, the effect is as an
environment without real-time. Some concurrency control techniques is not able to support real-time, but
they may be faster in non-real time environments. It might therefore be a waste to use a real-time
supporting protocol in a non real-time environment. Another possibility is that real-time protocols perform
just as well as the non real-time protocols, even in non real-time environments. The reason for this
assumption is to believe that the cost for real-time comes for nothing. Not prioritizing in a real-time protocol
will not degrade performance.

22

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

5.3.3 Various Correctness Criteria
The correctness criteria decides how strict the transactions should be validated before they are committed,
in order to maintain the database. The correctness criteria can be expressed in many ways, and often
terms as serializability, consistency and currency are used.

In one sense, the clients view on the database can be described as snapshots of the central database.
However, the states of a snapshot on one client does not necessarily correspond to the same on another
client. If they do, they are mutually consistent and belong to the same consistency group. Currency is
another term commonly used, and it refers to to how current or up-to-date a data set is. [41].

The most normal notion of correctness is global serializability [19] or just serializability as it is usually called.
Under many circumstances, the costs of enforcing serializability is too high. This is especially true in real-
time databases where it is often better to produce a useful result on time with a non-serializable schedule
than producing it too late with a serializable schedule. [40]. In applications where the serializability is not
important, it is preferable to have many non-serialized transactions committed then few serialized
transactions. Therefore some researchers search for other more relaxed correctness criteria than
serializability.

The next parts will review some correctness criteria and their characteristics.

5.3.3.1 Serializability
Serializability makes sure the results produced by the interleaved execution of a set of transactions should
be identical to one produced by executing the transactions in some serial order [19]. This is one of the
strictest correctness criteria, and do therefore allows fewest transactions.

Another issue, is how to implement the serializability control. The pursuit of guaranteeing serializability may
lead to the rejection of many serializable transaction because of a bad implementation.

Most papers argue strongly for or against the use of serializability in asymmetric broadcast environments.
Those against mean it is too expensive to use serializability because it will lead to many unnecessary
restarts [7], [42], [43]. They mean many serializable transactions can be rejected in the pursuit of
guaranteeing serializability. And because serializability is a global property, all the concurrent transactions
should be executed as in some serial order, which is difficult to achieve.

The other front claims it is not expensive to use serializability, and they also have results that supports this
assumption [10], [44], [45]. Any weakened correctness criteria should still implement currency, and then it is
not so easy to find a protocol which performs better [29]. Also, they argue with the importance for certain
application types to have a serializable schedule. Such as trading where a buy/sell trade will be triggered to
exploit the temporary pricing relationships among stocks. From the trader's perspective, the inability of
maintaining serializability may lead to important financial consequences [46]. For instance, if the users who
submitted multiple read-only transactions communicate and compare their query results, they may be
confused [38].

5.3.3.2 Update Consistency
Shanmugasundaram et al. [7] introduced a correctness criteria called update consistency by [47] and
external consistency in [48]. It ensures the consistency of all update transactions and each read-only
transaction is serializable with respect to the subset of update transactions it reads from. That is, it ensures
mutual consistency on the central database and the data read by the clients, and currency on the data read
by the clients. To decide if a history is update consistent is a NP-problem. So to implement the criteria, they
made an algorithm which accepts a proper subset of update consistent histories.

5.3.3.3 Single Serializability and Local Serializability
Huang et al. [42] looked at single serializability and local serializability in search for a relaxed correctness
criteria. Single serializability is when all the update transactions and any single read-only transaction are
serializable. Local serializability, on the other hand, is when all the update and read-only transactions on
one client side are serializable.

This is only a small selection of correctness criteria. Global serializability is the stronger criteria, but
protocols supporting it may have reduced performance compared to more relaxed criteria, in environment
where global serializability is not needed.

23

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

5.4 Datacycle [3]
Datacycle is presented in [3] and [46] and is
the first concurrency control technique
published in the literature aimed at
broadcast environments, according to our
knowledge and to Shanmugasundaram et
al. in [7]. It is not aimed for asymmetric
networks, but high-speed broadcast networks. It supports client update transactions, do not support real-
time and uses serializability as correctness criteria (see Table 5.1).

Later Lee et al. [49]proposed a new protocol with similarities to the one just mentioned, and therefore called
it Datacycle too. From now on we will call the Datacycle protocol presented in Herman et al. for the Old
Datacycle and the newest one for simply Datacycle or new Datacycle. For the sake of correctness,
Datacycle was also mentioned and used in relation to R-matrix in [7], but we do not refer to that one.

5.4.1 The Old Datacycle
The Old Datacycle was aimed at high-speed fibre networks for propagation of broadcast data, specifically
telephone network data such as name-address translation. The broadcast technique was used because it
scaled good. It was developed to be able to handle the huge data requests over 10 000 transactions per
second on databases with 10 millions of items. By letting the clients itself do the queries the server would
not be overloaded. It uses a certification based concurrency control algorithm and it ensures that all
transactions executing at clients and the server are globally serializable.

Each broadcast cycle has a beginning and a start and no updates are committed in this period. That way
the data set in one broadcast cycle are always consistent and read-only transactions can be done locally as
long as they only access data within one broadcast cycle. In the telephone network it is no problem to
complete a read-only transaction within one cycle, but for handheld devices it is difficult because of limited
cache size, processing power and battery power.

For update transactions a certification based protocol is used.

5.4.2 The New Datacycle
In a paper presenting concurrency control protocol BCC-TI [49] the new Datacycle is also presented for
comparison to BCC-TI. And since BCC-TI is a read-only protocol, so is the Datacycle. The essence
consists of committing client read-only transactions locally, without communication to the server. If a read-
only transaction can complete its execution with no conflicts with committed transactions during its
execution, then it can commit autonomously (alone and independent) without the need to abort any active
transactions.

The difference to the Old Datacycle is that the new is not required to execute a whole transaction within one
broadcast cycle. Control information (CI) is sent for each broadcast cycle such that a transaction can span
multiple cycles. CI contains the write set to the transactions committed during the previous broadcast cycle,
and the CI is broadcasted right before the start of a new broadcast cycle. The CI is a kind of invalidation list,
which was reviewed in chapter 3.

When a transaction is committed, it is not broadcast at once in the current broadcast cycle. The committed
transactions write set is recorded and put in the next CI, which is broadcasted before the next cycle. The
new committed values are broadcasted in the following cycles. In other words, the CI contains the write set,
which is the data items with new values in the coming cycle. That means each broadcast cycle only
broadcast consistent data, and by looking at the CI, the client can determine if its read set is consistent into
the next broadcast cycle.

The client (read-only) transactions checks its current read set up against the broadcasted write set (CI). If
any conflicts are detected, the transaction aborts. As long as a transaction is executing/active, it is checked
up against all broadcasted CI's. The transactions can start at whatever time it wants in the broadcast cycle
(obviously) and stop when it wants. There is no need to wait for the last CI, because that is only needed if
some elements in the next cycle is read.

The advantages of CI and the new Datacycle is the autonomously committing of read-only transactions,
and partly solution to the late restart problem (late discovery of conflicts which leads to transactions
destined to be rejected are not restarted before the final validation). The technique of using CI has been
used by most new approaches, in order to process read-only transaction locally and get an early restart of
conflicting transactions.

Update transactions: Yes for the Old Datacycle and

No for the new Datacycle

Real-time: No

Correctness criteria: Serializability
Table 5.1: Overview of Datacycle characteristics.

24

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

5.5 Certification Reports [50]
Certification reports uses a modified version of OCC and it
uses conflict information to perform the validation and
hence guaranteeing the serializability. The schedulers
name is WoundCertifier. It supports update transactions
and serializability, but have no considerations for real-time
(see Table 5.2).

The key to the protocol is the use of certification reports (CR), which is information sent on the broadcast
channel that the clients can use to validate its active transactions. The CR contains read and write set to
recently committed transactions and the result of the validation (accept/reject). The CR is analogous to the
CI.

It is required that the clients listen to the broadcast channel continuously during an active transaction.
Read-only transaction are not mentioned especially, so they must be validated as all other transactions at
the server (Although it looks like it is not necessary as long as the CR information is available).

Conflicts are discovered early, and Barbara claim 90% are discovered at the client side. This saved upload
bandwidth and time, because an early restart can be done.

In [51] by Das et al., the server validation verifier WoundCertifier is replaced with COREV and R2COREV.
The replacements accept more transactions, but still maintains the serializability.

In addition the server validation answer is sent directly to the client through a dedicated back channel. Then
the answer is guaranteed received (because of handshake) as opposed to reply on the broadcast channel
which can be lost because of a small signal error. Also the client do not have to listen to uninteresting
information about other transactions that is accepted or rejected.

They also conclude that if all the transactions were validated at the server, each would stand a chance of
being re-ordered in case of conflict. But bandwidth, client power usage and scalability is wasted in such a
case. If all transactions were validated at the client, the throughput would not be optimum. So there is a
trade-off between performing the transaction validation on the server versus on the client.

5.6 Read-only Transaction Processing [52]
Pitoura suggests three ways of supporting read-only
transactions at the client without contacting the server and
still maintain the consistency. Real-time and client update
transactions are not supported, as Table 5.3 indicates.

Multiversion broadcast (covered in previous chapters) and
invalidation-based consistency is suggested. The latter
broadcast invalidation lists to the clients, so they can decide the consistency. Two approaches are
suggested, namely conflict serializability and invalidation-only broadcast.

For the conflict-serializability method, both the mobile clients and the server have to maintain a copy of the
serialization graph for conflict checking. It incurs high overheads to maintain the serialization graph. The
integration of updates into the local copy of the serialization graph and the cycle detection may be too
computation intensive for portable mobile computers.

In the invalidation-only broadcast, a read-only transaction is aborted if any data item that has been read by
the read-only transaction is updated at the server, and it results in low concurrency.

5.7 APPROX, F-Matrix and R-Matrix [7]
[7] is, to the knowledge of Lam et al. [18],
the first study on concurrency control in
broadcast environments that uses a control
matrix for concurrency checking. They
introduce a polynomial time approximation
algorithm named APPROX, as well as two
implementations of it, namely F-matrix and
R-matrix.

Shanmugasundaram et al. argue for a simpler correctness criteria, and introduce update consistency in
order to satisfy mutual consistency and currency. See Table 5.4.

Update transactions: Yes

Real-time: No

Correctness criteria: Serializability

Table 5.2: Overview of Certification Reports
characteristics

Update transactions: Yes

Real-time: No

Correctness criteria: Mutual consistency and currency

Table 5.4: Overview of APPROX characteristics

25

Update transactions: No

Real-time: No

Correctness criteria: Serializability

Table 5.3: Characteristics overview of read-
only approaches by Pitoura

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

The control matrix contains the broadcast cycle number for the latest committed transaction on the
database items. The control matrix is broadcasted for each broadcast cycle, and the clients validates their
transactions using the control matrix. The validation checks for conflicts between the latest committed
transactions and the validating transaction. If a read-only transaction does not have any conflicts, it is
committed locally in contrast to the update transactions which are sent to the server. For any conflicts, the
transactions are aborted. The update transactions write to a local copy at the client before it is committed,
such that the server traffic can be kept to a minimum. This approach is widely used by most of the
protocols.

The control matrix is the predecessor to the CI (Control Information) used in most newer protocols. For F-
matrix (Full matrix) it consists of a n x n matrix, where n is the number of items in the database. An element
C(i, j) is the cycle number (timestamp) for the latest committed transaction. C(i, j) is the latest cycle number
in which some transaction that affects the latest committed value of item(j) and also writes to item(i),
commits.

In order to avoid huge cycle numbers in CI, the maximum number of cycles a transaction can last is
defined. Then CI can contain the value of “cycle_number mod maximum_cycle_numbers”, and hence save
space.

The server broadcasts the latest committed values of all data items in the beginning of each broadcast
cycle. And at the end is a control matrix which help the clients to know if read-only transactions are valid.
The server validates the transaction and updates the control matrix and the database set if the transaction
is committed.

Instead of viewing each item as a separate entity, several items can be viewed as a group. R-matrix is the
extreme case where all the rows in the F-matrix is combined into one row, thus all items are viewed as one
unit. The advantage is the much smaller CI, but the disadvantage is poorer performance because of worse
granularity.

The F-matrix has bigger overhead when sending the control matrix, but it accepts most transactions
because of the fine granularity. The R-matrix has less overhead, but will therefore reject more transactions
because of bigger granularity.

The major drawback is the maintenance of the matrix and the size of it when it is broadcasted. The
considerably size can lead to long delays. Another drawback is the weakened correctness criteria, because
several applications are dependent of the serialized transactions.

Their simulation results showed F-matrix as the better one in nearly all the tests, but they did only simulate
client read-only transactions and not client update transactions.

An advantage with local read-only validation is the clients can validate with algorithms adapted to their
correctness criteria. Different clients may have different currency requirements and even for a given client,
there mar be different currency requirements for different data items. Since the invalidation of the cache at
clients is purely local, the invalidation interval can be tailored on a per client, per object basis and the
invalidation performed accordingly. Thus, clients with vastly different currency requirements can coexist in a
broadcast medium without any need for extra communication.

The major drawback of this approach is the large overhead needed to maintain the matrix for concurrency
control and conflict checking. The matrix will use up a substantial percentage of broadcast bandwidth
especially when the size of data item is small or the size of the database is large. Therefore using such a
large matrix is impractical in many real-life applications. Maintaining the control matrix also involves
complicated processing at the server.

5.8 UFO,Update-First with Order [18]
UFO is a read-only protocol which implements
serialization as correctness criteria. It has no sense of
real-time and only the server can commit update
transactions (Table 5.5).

A maximum number of broadcast cycles the transactions can last is defined. If a transaction lasts longer, it
is dropped. This same principle was used by F-matrix and R-matrix in order to keep the data field for the
broadcast cycle low.

UFO divides into two phases, that is execution phase and update phase. The transactions can span several
broadcast cycles because of the rebroadcasting of the updated values. That is, the server updates are
broadcasted right away. To ensure the consistency within one broadcast cycle, the items that are updated
after they are broadcasted are re-broadcasted. The items are re-broadcasted at once they arrive, which

Update transactions: No

Real-time: No

Correctness criteria: Serializability

Table 5.5: Overview of UFO characteristics

26

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

leads to a not constant size on the structure of the broadcast. With other words, the clients must listen to
the broadcast channel the whole time. This issue is mentioned as feature work in the paper.

The UFO algorithm can maintain the serializability of update transactions at the database server and the
read-only mobile transactions. The algorithm has minimal overhead and can be applied in different
broadcast models.

Other than data re-broadcast, the UFO algorithm does not affect the basic mechanism of the underlying
broadcast algorithm. Furthermore, an advantage of the re-broadcast is that every time a data item is being
broadcast, it will be the most updated version.

If the data conflict is high, the number of re-broadcast would be significant and have much impact on the
broadcast model. In this case, the UFO algorithm should be enhanced to minimize bandwidth required for
re-broadcast. One possibility is to broadcast invalidation message for the update item instead of re-
broadcast the update item itself in order to save bandwidth.

5.9 BCC-TI [44], [49]
Lee et al. introduced the term BCC (Broadcast
Concurrency Control), and propose the two new
concurrency protocols BCC-FV and BCC-TI. Both
use serializability as correctness criteria and has
optimizations for transactions with a deadline (real-
time). The protocols do only support read-only transactions from the clients (Table 5.6).

BCC-TI is a optimisation of BCC-FV. Both broadcast control information so the clients can validate
transactions locally.

They focus on avoiding the late restart problem. And suggest avoiding sending the read-only transactions to
the server for validation, because a read-only transaction do not have any writes, and will therefore not
cause any read-write conflicts, based on the principle of forward validation. Write-read is the only conflict
possible.

BCC-TI expands Datacycle, and use timestamps to order the serialization order, so a read-only transaction
can precede an update transaction. It avoids unnecessary restarts.

5.9.1 BCC-FV
Broadcast Concurrency Control with Forward Validation (BCC-FV) is based on OCC-FV on the server side.
It takes advantage of the fact that read-only transactions committed to the server will not cause any other
transactions to restart because read-only transactions does not contain any write set. (Remember OCC-FV
uses the write set to a committing transaction and checks it up against current active transactions).
Therefore the read-only transactions only have to be validated locally.

Forward Validation is used to avoid the late restart problem, which is late discovery of conflicts and
transactions destined to be restarted are not restarted before they sent for final validation.

The local validation concerns write-read conflicts with the write set to the committed transactions. Therefore
the write set to the transactions committed in last cycle is broadcasted in the Control Information. If the
write set in the CI intersects with the read set from the read-only transaction, it will restart. The late restart is
partly solved and the read-only transactions can be processed/committed locally.

However, BCC-FV suffers from the unnecessary restart problem. Therefore an optimization of BCC-FV was
also presented, namely BCC-TI.

5.9.2 BCC-TI
Broadcast Concurrency Control using Timestamp Interval (BCC-TI) uses timestamps to avoid the
unnecessary restart problem. To easier describe the protocol, this terminology can be used:

● WS(U), write set of an update transaction U

● TS(U), final timestamp of U

● WTS(d), largest timestamp of committed update transaction that has written data object d.

When a transaction U commits, TS(U) is given the current timestamp and for all elements d in WS(U) the
WTS(d) is set equal TS(U). That is, all items that is written to by the committing transactions gets its WTS
set to the current timestamp. The TS(U) and WS(U) are recorded into the CI.

Update transactions: No

Real-time: Yes

Correctness criteria: Serializability

Table 5.6: Overview of BCC-TI characteristics

27

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

The broadcast consists of the CI followed by the data items with their belonging WTS.

At the client each transaction is given an initial timestamp interval [0, ∞> to determine if the transaction is
valid. For each read operation of item d, the lower bound (LB) is set to WTS(d) if bigger then the current
LB. The validation is done continuously as long as the transaction is active, by comparing the current read
set against the write set in the CI. The upper bound (UB) is adjusted by comparing the current read set to
the write set in the CI. If the read set intersects with an item in WS(U), the UB is adjusted to the minimum of
UB current value and TS(U). After the adjustment, the LB must be compared to the UB. The transaction
must be restarted if LB >= UB.

The protocol offers autonomy between the clients and the server, because they can work independently. It
also offers flexibility by adjustments of the timestamps. The unnecessary restart problem is partly solved.
These benefits comes with the cost of managing timestamps and broadcasting them.

In the end of each broadcast cycle is control information (CI) broadcasted. The CI contains the committed
WS during the current broadcast cycle. Then the client can validate its read-only transactions and restart
them at once when a conflict is discovered. If LB >= UB, a conflict is registered and the transaction must be
restarted. Early data conflict is detected.

5.10 STUBcast, [42]
STUBcast supports update transactions at
the client side, but do not natively support
any kind of server transactions. This can
easily be implemented by using a local two
phase locking and performing the same procedure as with an update transaction from a client. STUBcast
has no optimizations for real-time, but this is written to be a feature research area in the scientific paper. It
introduces two new correctness criteria, namely single serializability (SS) and local serializability (LS) as
shown in Table 5.7. The clients can commit read-only transactions locally.

STUBcast is a quite complex protocol and validates operations through the use of timestamps. Its
performance compared with other protocols is not known.

SS ensures all update transaction and any read-only transaction to be serializable. LS requires all the
update transactions in the system and all read-only transaction at one client side to be serializable. SS and
LS is weaker but easier to achieve than global serializability, and they do guarantee the consistency and
correctness at the server database.

STUBcast implements SS and LS by dividing broadcast operations into primary broadcast (pcast) and
update broadcasting (ucast). The pcast broadcast all the database items with their value, while ucast
broadcast committed transactions and is inserted into the ongoing pcast whenever a transaction is
committed. The protocol consists of three parts, client side read only serialization protocol (RSP), client side
update tracking and verification protocol (UTVP), and server side verification protocol (SVP).

RSPss accepts read-only transactions if and only if it confirms to SS (all update transactions and any single
read-only transaction are serializable). Conflict cycles are avoided by maintaining a conflict array (CFA).
The CFA is maintained with data from the ucast. If a read-only transaction wants to read an item that is in
the CFA, an cycle is implied, and the transaction must be aborted.

UTVP records the write operations and other important information (such as read operations and
timestamps) in a RECarray, and submits it to the server for final validation. The RECarray is maintained
and validated with data from the update transaction and ucast. The exact behaviour is described in [42] but
a simple policy is to abort when a written item occurs in a ucast and the timestamp to the ucast is bigger.

SVP validates the RECarray by checking the serializability to already committed transactions. If serializable,
the data is written to the database and the items written to are all assigned the current timestamp. Then a
ucast broadcast is prepared and inserted into the broadcast.

Together they guarantee SS or LS in all accepted transactions. A server timestamp is broadcasted with
each data item. The server timestamp describes the time the item was last updated. RSP takes care of
read-only transactions at the client side, UTVP takes care of update transaction from the client and SVP
takes care of the incoming update transactions at the server side. SS or LS is decided by choosing RSPss
or RSPls.

The simulations show in the paper are done with RSPss with only one client and one server. To simulate
several clients they use a short inter transaction time (short time between each transaction). We mean it is
important to have several clients when simulating update transactions because concurrent update
transactions leads to conflicts. We understand one client as only one transaction is sent at a time. The next

Update transactions: Yes, but natively not from the server!

Real-time: No

Correctness criteria: Single and local serializability

Table 5.7: Overview of STUBcast characteristics

28

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

is not sent before the first is received. Even if several transactions were sent concurrently from one client,
the concurrency of the transactions will be different. One clients that starts transactions with a uniform time
between them, will always remain uniform. By having several independent clients, the transactions can after
a while be sent all at once (bursts) and sometimes none, like a real environment.

The simulation results are compared with no concurrency control, and gives results close to that when the
transactions are shorter than 12. STUBcast is not compared with other concurrency protocols.

The mobile clients must listen to the whole broadcast during a transactions, because there exist no way to
know when next ucast will come. This is also listed as a future optimization, and can be fixed by using a
tradeoff of how quick the ucast must be broadcasted.

5.11 PVTO [37] [45]
PVTO uses OCC with partial validation and timestamp
ordering, where PV represents the OCC part with partial
validation and TO represents the timestamp ordering.
PVTO supports client update transactions, uses real-
time optimizations and uses serializability as correctness
criteria (see Table 5.8).

The new updated values are not broadcasted right away, but first in the following cycle after the CI is
broadcasted. The CI states the rejected and accepted client transactions in previous cycle, the read set
(CT_ReadSet) and write set (CT_WriteSet) of transactions committed and accepted in the last cycle, and
finally RTS(x), WTS(x) and FWTS(x) which is read, write and first write timestamps to data items x found in
CT_ReadSet and CT_WriteSet.

As seen, the CI is quite complex and so is the rest of the protocol. Also, all (included read-only) transactions
must be sent to the server for validation.

Each data item in the database is assigned a read timestamp, RTS(x), and a write timestamp WTS(x).
They represent the youngest committed transaction that respectively read and wrote the item. Just like
BCC-TI, each active transaction, TA, is associated with a timestamp interval (TI) which is initialized [0, ∞>,
TI lower bound, TILB(TA) = 0 and TI upper bound, TIUB(TA) = ∞.

The timestamp ordering has the same function as in BCC-TI, so if the interval is shut out (TILB >= TIUB) the
transaction is restarted.

Timestamp makes sure unnecessary restarts are avoided. Partial validation detects data conflict on an
early stage, thus avoiding a late restart.

The timestamps are dynamic. That means a transaction may be committed after another transaction, but
because it read old values it is serialized before by dynamically adjusting the timestamps.

Each transaction, also read-only transactions, are transferred to the server for validation. This consumes
more upload bandwidth and may swamp the server with requests. But in environments where performance
in form of response time is very important, a small increase in performance is achieved with this method
compared to FBOCC. This in trade with more consumption of upload bandwidth, client timestamp
management and server processing (validation).

5.12 OCC-TI [43], OCC Based on
Timestamp Interval
U. Lee et al. suggested this approach which supports
weak consistency. Updates transactions are supported
and no optimizations are made for real-time (Table
5.9). The approach uses timestamp interval with upper
and lower bound to validate the transactions.

The protocol uses the broadcast channel to announce accepted and rejected transactions. The protocol is
similar to PVTO and BCC-TI but uses a weaker correctness criteria, and should therefore perform better.
Unfortunately no performance is available, but the protocol is described good and verified formally.

Update transactions: Yes

Real-time: Yes

Correctness criteria: Serializability

Table 5.8: Overview of PVTO characteristics

Update transactions: Yes

Real-time: No

Correctness criteria: Weak consistency

Table 5.9: Overview of OCC-TI characteristics

29

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

5.13 FBOCC [10]
FBOCC has all the strong characteristics such as
serializability, client update transactions and real-time
optimization (see Table 5.10). It uses forward
validation at the server up against active transactions,
and backward validation at the client based on the
information received from a small CI. In addition the
server does a quick backward validation of client update transactions when the they are sent to the server
for final validation. The client read-only transactions are committed locally.

The CI is broadcasted in the beginning of each broadcast cycle, and it contains the set of data objects
committed (updated) in the last cycle and a identification (cycle timestamp). The new updated values are
not broadcasted right away, but first in the following broadcast cycle, after the CI have “announced” their id.

The partial backward validation at the clients is a check of all current read operations (the read operations
made at the client in one transaction) up against CI which contains the last broadcast cycle's committed
write sets. If a conflict is found, the client transaction will be restarted. The read set at the client must be
checked against each CI as long as the transaction is active. If the transaction is an update transaction, the
write values are written to a temporary storage at the client, and the transaction is sent to the server for
validation. In case of any committed writes after the client sends the transaction for validation at the server,
it checks the read set when it arrives. This is called the final validation. At the end at the forward validation,
the write values to the validation transaction TV are checked up against the read set of the active
transactions at the server.

The read-only transactions can be completely autonomously validated and committed by the client by
checking against the CI constantly during its execution phase.

The update transactions must record the broadcast cycle they send the validation. By help of the partial
validation at the server, the transaction is guaranteed to have no inconsistency up to the point of the last
checked partial validation against the write set in CI. By sending the broadcast cycle timestamp, the server
can do the final validation (backward validation) and validation (forward validation) against current active
transactions. This is when the prioritizing for real-time can be performed.

The special optimizing for the server update transactions is to restart the server instead of clients. Because
clients are expensive to restart. This approach can be implemented in other protocols as well.

The simulation results in presented in the proposal of FBOCC ([10]) only shows a comparison up against
conventional OCC.

5.14 EOCC [53]
EOCC is a variant of OCC and supports all the strong
characteristics as shown in Table 5.11. Like the others,
it processes read-only separately from the update
transactions.

Guohui et al. separates severe conflict and fake
conflicts. Severe conflicts are real conflicts, while fake conflicts are when the read-set intersects with the
committed write-set but is in fact not a collision. An example is the serializable history H2: T1r(a), T2w(a),
T1r(b), shown in chapter 5.2. The read set to T1 is {a, b} which intersects with {b} (the write set to T2). Many
protocol reports this as a conflict because of weaknesses. EOCC reduces the number of restarts because
of less fake restarts.

Illustration 5.5 shows an example of how EOCC avoids fake restarts with transaction T1: w(x), w(c) and T2:
r(c), r(a). First T1 commits, then T2 starts. In the upper example (the old approach) is the new value to item
c not broadcasted before next cycle. Therefore the old value is read, which causes a restart when next CI is
broadcasted. This restart is fake because the value a is still consistent with the old value of c.

The lower part of the illustration and the new approach, the new values to a committed transaction are
ready for broadcast right away. Therefore the new value to c is read, next a is read and T2 commits
successfully. The fake restart is avoided.

If T1 committed after T2 read c, then c would obviously be the old value. The new value given by T1 would
not be broadcasted before next cycle, but then T2 would already be finished except for the last validation.
The validation for T2 at the last CI would announce that the value for c in the previous broadcast was new.
As far a we understand, this last validation will lead to a restart, because the read set in T2 intersects with
the write sets in the last CI. So there are still some room for improving and avoiding more fake restarts. We

Update transactions: Yes

Real-time: Yes

Correctness criteria: Serializability

Table 5.10: Overview of FBOCC characteristics

Update transactions: Yes

Real-time: Yes

Correctness criteria: Serializability

Table 5.11: Overview of EOCC characteristics

30

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

discuss this optimisation in the last section of
this chapter.

The broadcast cycle is divided into many sub
periods (SP). Between each SP a fixed space
is reserved for the CI. The previously
committed values since last CI are
broadcasted in the CI. If it is filled up over the
reserved space, then a bit is used to indicate
that the rest of the CI is put in the next
reserved space. The committed write set is
included in the broadcast cycle immediately.
This technique is discussed in the last section
of this chapter.

The reducing of fake conflicts and the partition
of the broadcast cycle into sub periods leads
to good performance. The simulations in [53]
shows comparison between EOCC, FBOCC
and conventional OCC, and EOCC has the
best performance.

The backside of the protocol is the fixed
reserved size for the CI. In times with few
updates, the CI will be nearly empty, and
therefore waste space. In times of many
updates, the CI will be overloaded. In a stable
environment with a steady rate of transactions,
the size of the CI can be chosen in such a way that little space is wasted, but in environments with bursts of
transactions, the size must be chosen big enough to avoid CI info to be delayed too long (for example one
broadcast cycle). The selection of the number of sub periods and CI size is marked as future research in
the scientific paper by Guohui et al.

5.15 Concurrency Control Protocol Summary
A summary of the characteristics to the reviewed protocols is shown in Table 5.12.

Real-time Not real-time
Serializable: EOCC, FBOCC, PVTO

Read-only: BCC-TI

Certification Reports

Read-only: UFO, Multiversion

Mutual consistency and currency: F-Matrix, R-Matrix, (OCC-TI)

Local and Single serializability: STUBcast

Table 5.12: All protocols supports update transactions, unless “read-only” is written

In order to get better performance, more transactions should be committed, and less rejected. The
approaches we have seen to accomplish this is to :

• Relax the correctness criteria

• Have better evaluation algorithms to guarantee the correctness criteria will:

• Avoid unnecessary restarts

• Detect conflicts early in order to avoid late transaction restart [44]. Wasting of upload bandwidth is
also avoided when the conflict is detected on the client side.

Other techniques are summarized and discussed throughout the rest of this chapter.

5.15.1 The CI and its Contents
The review showed us it is efficient and scalable to let the clients process and commit the read-only
transactions locally. This can be done by transferring CI (control information) to the clients in the broadcast.
The CI contains information about the recently committed transactions, such as write set. The amount of

Illustration 5.5: Example of how EOCC avoids fake conflicts

31

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

data in the CI varies from protocol to protocol, but in general a small CI is desirable so the broadcast cycle
is smaller.

The CI is essential for early restart detections, and helps the clients to validate its own transactions and
commit them locally. Client autonomously and committing locally is very scalable.

5.15.2 The Placement of the CI
Two techniques are possible when it comes to the placement of the CI. The first option is to broadcast it
before the recent committed updates, such as FBOCC, PVTO, APPROX (F- and R-matrix), Datacycle and
BCC-TI, and announce the data items that are new in the next broadcast cycle. The second option is to
broadcast the CI after the recent committed updates, such as EOCC and STUBcast, and announce the
data items that were new in previous broadcast cycle.

The first approach has the advantage that once the broadcasting of one cycle starts, the data set is
consistent, and new updates are not broadcasted in this cycle. With other words, the data set in one
broadcast cycle is always consistent, and by looking at the CI, the consistency when reading the next
broadcast cycle can be determined. The backside is the late propagation of new values, because they are
in a worst case delayed almost two whole broadcast cycles (see Illustration 5.6).

The second approach has the advantage of propagating new values straight away. If the new values are
broadcasted in a special kind of CI (or ucast as STUBcast names it), then the client must listen constantly
to the channel because it does not now when the update arrives. If the new value is simply put out on the
channel, and not announced as a new value before the CI, then the clients must always wait for the CI to
check for consistency before committing. That again will lead to a burst of transactions at the server after
each CI. When the service gets swamped some clients have to wait for others to be finished with their
transaction commit.

By broadcasting many small CIs in one cycle (like EOCC does), the burst will disappear as well as the
clients must not wait so long before it can validate the results. The use of many sub periods and CIs is
covered separately in the next part.

5.15.3 Partition of Broadcast Cycle Into Sub Periods and Several Sub CIs
The newest protocol (EOCC) is the only one which has many small CIs distributed equally on the broadcast
cycle. Each CI has reserved space for the write set to recently committed transactions. The simulation
results they presented showed a performance increase. The clients do not have to wait so long for the last
CI and validation. The transactions are therefore committed faster and conflicts are detected earlier. The
burst effect is also eliminated since the CIs are distributed equally over the broadcast cycle.

The number of sub periods and size of CIs have a big impact on performance and must therefore be
chosen carefully. With many sub periods the clients must tune in more times during an active transaction
but for a shorter time.

If the time it takes to tune in to the channel is big, then the CIs shoulc not come too close. The 802.11g has
an overhead at 20 μs to tune in where as 802.11b has an overhead of maximum 192 μsec [54]. In addition,
higher layer header (20 bits for IPv4 and 40 bits for IPv6, plus 4 bit checksum for both IP versions) must be
considered. If the database has 1000 items and is broadcasted in 1 second, then one item is broadcasted
in 1 msec. So the time it takes to tune in to the broadcast channel is almost neglectable for 802.11g.

When the broadcast cycle is divided into four sub periods, then the clients have to wait four times shorter in
average. To shorten the time four times more, the sub periods must be expanded to 16 (a quadratic

Illustration 5.6: Extreme case of delayed broadcast of new value when CI is placed before the new values

CI a b c d e CI a b c d e CI
write e new value e Broadcast e

BC
2 x BC – 2 x CI

32

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

increase). The number of sub periods should therefore not be exaggerated, since the decrease in time is
much less then the increase of times the clients must tune in to the channel.

5.15.4 Real-time and Server Update Transactions
Another feature worth to notice is the forward validation at the server side in FBOCC. It is a nice way to
integrate prioritizing of restarts (real-time) and to treat the server transactions because they can be
restarted early.

5.15.5 Partial Restart
When a transaction discovers a conflict, it means one or more of its operations are invalid. The normal
approach is to restart the whole transaction, and start it from the beginning again. We suggest to only
restart a part of the transaction. The effect of executing fewer operations in a partial restart in comparison
to a total restart, is a lower transaction time (total time to complete a transaction, see 6.4 Simulation
Settings for full definition). Less operations cause the battery powered devices to use less electricity, and
lower transaction time leads to bigger probability for more real-time transactions to meet their deadlines.

Because the operations in a transaction is decided out from the value of the preceding operations, it is not
enough to restart only the conflicting operation. The value of the conflicting operation has changed, so the
following operations are probably no longer done on the correct data items.

But the operations before the conflicting transaction are still the same, and as long as they are valid it is not
necessary to read them again. We define partial restart as the following approach:

Instead of restarting the whole transaction when a conflict is discovered, it is only necessary to restart from
the operation that caused the conflict. If several conflicts arise, the transaction should restart from the
oldest operation (earliest in the transaction order) that causes a conflict.

This approach will always maintain the serializability as long as the non-restarted operations have valid
values. That is self-evident. The challenge of assuring the correctness to the non-restarted operations is
dependent of the protocol the approach should be implemented in. Several of the reviewed protocols can
implement partial restart fairly easy. We show an implementation into FBOCC in 6.5.5 Partial Restart in
FBOCC. There the CI is used to guarantee the correctness of the non-restarted operations.

Techniques similar to this approach are rollback recovery and checkpoint scheme.

Rollback recovery is an old technique used in databases to rollback operations done by a failing process
and Fussel et al. [55] used rollback to remove deadlocks in lock-based database systems, instead of
restarting transactions.

Checkpoints are used to reduce the loss of computation in the case of failure in a distributed system [56].
The checkpoints are a point which all the processes can fall back to in case of a failure, but in contrast to
partial restart the checkpoints is a global state of messages in a distributed system (for instance mobile
clients). The partial restart applies to a database set that is shared by many users. The values can change
at any time, so it is hard to guarantee serializability.

5.15.6 EOCC Fake Restart Improvement
Here we continue the discussion of fake restart avoidance in 5.14 EOCC from the last case where T1

committed after T2 read c. Since T2 only read item a as a last operation and do not have any operations on
c this last cycle, it could have committed successfully. The reason for the restart is in case another value y
are read later, a dependent conflict could arise between c and y.

For example if another transaction T3 did r(x) and w(y), and T2 did a r(y) afterwords, the conflict of y would
not be discovered. The conflict graph would be T2r(c) -> T1w(c) -> T1w(x) -> T3r(x) -> T3w(y) -> T2r(y), or
simplified as T2 -> T1 -> T3 -> T2 which is clearly cyclic.

So if r(a) was not the last operation, then a restart should be done. If r(a) was the last operation, the
transaction could commit.

5.15.7 Server Validation Answer on Dedicated Back Channel or Broadcast Channel
PVTO and UFO assumes there is no dedicated back channel (from server) to the clients, so the answer of
the validation is sent on the broadcast channel. This is of course the only alternative in case there is no
back channel, but when such a channel is available, is it more efficient to use it? We have not conducted
any tests on this area, but by sending the result directly, the client would get the answer faster. Also, the
broadcast cycle would be slightly smaller because no space for accept and reject messages needs to be
reserved.

33

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

6 Simulation Platform and Simulations
This chapter describes the structure of the simulation model. The simulation engine (CSIM) that were used
to make the simulation model is first introduced. Then the structure of the simulation model is described,
part for part, explaining how the various components are implemented and defending the correctness of it.
The description of how the testbed is set up with multiple runs and new random seed is last in this section.

6.1 CSIM
The simulation model is built by using the simulation engine CSIM18 from Mesquite Software [57]. CSIM is
a commercial product written in C, and is a library of functions, procedures and header files. The choice of
simulation tool fell on CSIM18 because it was the only one available to us from the university. It is a much
used tool in this research environment and no free alternatives exist. CSIM18 is available for a multiple
number of platforms, amongst them both Microsoft Windows and Linux. We were given the Windows
version and used Microsoft Visual Studio 6.0 as development environment.

CSIM version 18 provides simulation components such as processes, mailboxes, events, random numbers
and tables. An in-depth description of these components is found can be found in the CSIM documentation
[58].

• A process is an independent thread of execution and in simulation the processes appear as
running in parallel.

• Mailboxes are used to interchange information between processes. A mailbox has an identifier and
can only transfer a long value. In order to transfer bigger amounts of data, the long value is used as
a pointer to a structure. All processes can read and write to all mailboxes. The messages will be
queued up until they are read. When a message is read, it is also removed from the queue.

• Events are used to synchronize actions of different processes. Processes can wait for an even to
happen, and when this happens the process will continue running again and the event will be
cleared.

• Random numbers can be generated for 18 different distributions families (such as uniform,
poisson, or exponential) and by changing the parameter values most distributions are available. For
each execution of the simulation model, the same random number is chosen. This makes it easy to
reproduce a specific run or error. In order to get new random values (which is indeed necessary to
get statistical material for calculation of average values), a new seed can easily be inserted.

• Tables are used to collect data values and to report on their statistical properties. A standard report
can be generated and histograms and confidence intervals can be requested. Normal procedure in
the research environment is to use the numbers generated by the tables to generate a graph in a
third-party program (such as an advanced spreadsheet application).

Time is simulated with time ticks and is defined as a double value. The time stands still when a process is
executing and advances when a process is not active. To be exact, the time advances when a process
executes a hold(double ticks) statement, or receive(MAILBOX mbox) when no messages are in the queue
and the timeout is more than zero if it is present. This is explained in more detail in the following text.

A process is exclusively executed until it executes a hold statement or a receive statement which receives
from a mailbox without any messages. When a message is sent into the mailbox, the receiving process will
get the thread of execution and be active within the same time tick. One exception is by the use of timeout.
Then the receiving process will get the focus back after it has waited the time specified by the timeout. If
the timeout is zero, the process will check for a message, and continue right away without ever being task
switched.

6.1.1 CSIM Limitations
Some technical issues must be remembered when programming in CSIM. For example is the following
taken from the CSIM documentation [58]

“The process manager preserves the correct context for each instance of every process. In particular,
separate versions of all local variables (variables resident in the runtime stack frame) and input arguments
for a process are maintained. CSIM accomplishes this by saving and restoring process contexts (segments
of the runtime stack) as processes suspend themselves and as processes are "resumed" (restored). A
consequence of this kind of operation is that if one processes passes an address of a local variable to
another process, it is likely that when this address is referenced, the reference will be invalid. The reason is

34

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

that when a process is not actually computing (using the real CPU), its stack frame with the local variables
will not be physically located in the correct place in memory. This is not a major obstacle to writing efficient
and useful models; it is a detail which must be remembered as CSIM models are developed.”

To go around this limitation, some variables are declared global instead of local.

CSIM documentation also states the following;

“A message can be either a single long integer or a pointer to some other data object. If a process sends a
pointer, it is the responsibility of that process to maintain the integrity of the referenced data until it is
received and processed.”

Which means it is possible to send a pointer to a local variable, as long as that process maintains its
integrity.

In the beginning we discovered wrong execution of the CSIM model when using compiler optimization. We
reckon it might have something to do about how the context switching is done to simulate multiple
processes.

Later we received some memory access violation in the CSIM code during execution. Because CSIM is a
commercial simulation tool, we only have access to the precompiled library, and are therefore unable to
debug error that occurs inside the library code. In our case it turned out that accidentally a statement
overwrote a piece of the memory area used by CSIM variables, which in turn caused the CSIM to execute
falsely. But if errors exist in the CSIM code, a big limitation is that it is impossible to fix without the source
code.

6.2 The Platform Structure
The simulation model consists of one server with one
database, one or more clients, and a structure to simulate
the broadcast channel.

The structure of processes and mailboxes are shown in
Illustration 6.1. Each process is drawn as a rectangle and a
mailbox as an arrow. It is easy to see that for each new
client, a total of 3 new mailboxes and 2 new processes is
needed. For each new process one new event is possible.

6.2.1 The Server Structure
The server consists of two processes, one main process for
transaction processing and one process for the broadcast
control. The broadcasting process only puts correct data on
the broadcast channel, so therefore it works independently
of the rest of the server and needs no communication
except to read next broadcast data from the database.

The two server processes access the same database which
contains all the data items. The broadcast process takes
this data and makes an broadcast item out of it. The
simplest way to do this is just broadcasting the data in a
cyclic manner, but it is also possible to divide it into multiple
broadcast disks as proposed in [5] and [6]. The database is
modelled as a global array to make it accessible by all the
server processes and still guarantee consistency when
CSIM copies the memory areas to simulate multiple
processes running simultaneously.

In some protocols (e.g. FBOCC [10]) the clients requires the transaction validation answer directly from the
server, and not through the broadcast channel. The server can send messages to the clients through
message boxes, one dedicated for each client.

To deal with server update transactions, a new process was made. The process has the task of creating
and processing server transactions. These transactions are then again validated against the running client
transactions and if collisions occur actions are taken according to what the protocol describes. The server
transactions gets validated against all the running client transactions, as well as the database items.

35

Illustration 6.1: The structure of the simulation
model

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

6.2.2 The Client Structure
The client consists of two processes, one main process for transaction processing and one to process
cache and broadcast access. The two client processes communicates through two message boxes, one for
each way. A transaction starts at the client main process and requests for values are sent to the cache and
broadcast process. The mailbox cacheMailbox is used for this communication. In order to keep the same
structure on all messages independent of the protocol in use, a pointer to a structure called sinternClient is
sent as payload of the message each time. The structure consists of a char to define type of message and
a new pointer to the real message. The message corresponds to the type which is defined in type. This way
a more general model is achieved and it is easier to implement other protocols. This strategy is used
several places.

The clients send transactions to the server through a mailbox that is common for all the clients. Since we
are working in a virtual time created by CSIM it is only needed to have a single threaded server. A multi
threaded server can be simulated by reducing the transactions validation time.

Several other simulations models made for concurrency protocols, in e.g. [7], use only one client. They
defend this choice by saying several clients can be simulated by reducing the waiting time between each
transaction. This assumption works only for some read-only environments or if one client can execute
several transactions concurrently and without interaction between the active transactions on the client
(because an assumption in the broadcast environment is that there are no communication or
synchronisation between the clients). PVTO [45] seems to use one client which can execute several
transactions concurrently and independently. We need to simulate conflicts between the client transactions.
To do this we create multiple processes of the client type, this is both quite easy to do and it will provide a
real life situation, but at the cost of a longer simulation run time.

6.2.3 The Broadcast Channel
The broadcast channel is modelled as a global structure. An element which is to be broadcasted is put in
the broadcast structure by the server broadcast process. The clients then reads from the structure at one
specific time defined as the broadcast time. This is right after the server has broadcasted. The data is read
in one instant, but the client must still wait one broadcast time before reading next element (in order to
simulate the time it takes to read the value on the fly from the air.). Therefore the result will be as close to a
real environment as possible.

The broadcast items are read from the item database. The server must make sure that the data that is
copied out is consistent. This problem is taken care by CSIM because a process is exclusive executed until
otherwise specified with a hold or receive statement. That means a transaction is fully executed at the
server process before another process takes over.

6.2.4 Caching
Each request for a database element is done through the client cache process. If the element is in the
cache, the element is returned instantly. Else, the element must be found at the broadcast channel. An
element found from the broadcast channel can be put into the cache database, depending on the cache
algorithm. The caching database is modelled as a local array.

The mailbox from the main client process is checked for each time tick at the cache client process. The
check has a zero time tick timeout something that means it will just check the message queue and take the
first message there if there are any waiting, else wise it will just continue the program progress immediately.
This to make sure that the broadcasted items gets stored in the cache if the cache algorithm specifies it.

6.2.5 Concurrency Protocols
The concurrency protocols must be implemented at both the client and server side. The main validation is
usually at the server side (main server process), and pre- or forward validation is at the client side (main
client process). The pre validation is done on basis of control information which is broadcasted by the
server. So also the broadcast data needs to be adjusted. The validation answer is sometimes given in the
broadcast data (e.g. PVTO [45]) and sometimes directly through a dedicated channel (e.g. FBOCC [10]).

6.3 Protocol Implementations
All the protocols have special features which requires some special programming. They all have different
structures of the messages transferred between the processes and the broadcast. Therefore we were
unable to present a basis framework ready for implementation of a new protocol. Also various data
management protocols must be very closely integrated with the concurrency protocols. So each
implementation must adjust and tweak variables and structures all over the model. For future

36

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

implementations we offer the implementation of the current state of the art protocols we chose to
implement. They can be used as a base to implement new protocols, and can be used as reference and
comparison foundation.

In the specific implementation of a protocol it is usually only to follow the pseudo code provided in the
description of the protocol. Sometimes it is convenient to do some shortcuts to simplify the implementation.
They are in that case described in the comments.

In this section we describe an overview of the implementation and special considerations of the protocols
we chose to implement. We will also write a few words about our experience of implementing the protocol.
For a more technical and specific information about the implementations, we refer to the source code and
its comments. It is assumed the reader have read about the protocols in chapter 4 and 5.

All protocols are processed until they are committed. If they receives an abort, the same transaction is
restarted.

6.3.1 Data Management
As a basis, broadcast disks were implemented. Since it can be theoretically derived that binary-based
broadcast performs better, or equally good in all cases. And we know that they perform equally good when
broadcast disks have no empty slots. So by choosing the right values for the disk frequency it is known that
we get the same result with both methods. It is easier to implement broadcast disk, and we can just
conclude that the performance of the broadcast can be increased by using binary-based broadcast instead.

The indexing methods (1, m), tune optimal and latency optimal were implemented. And small tests were
conducted to test the validity and performance of these to confirm that the results correspond to the
expected theoretical values.

Latency optimal, tuning optimal and (1, m) indexing were also implemented. This to test how they would
impact the performance gain gotten from using broadcast disks compared to a normal cyclic broadcast.

But there were no groundbreaking results when we simulated these data management methods, and there
are quite a few good comparisons published already. So the simulations in the report focus on the
concurrency control protocols, but the simulations is still a part of the source code package so the
simulations might be run if needed.

6.3.2 Broadcast Disks
We implemented a broadcast disks with two active disks. The frequency and the size of the disks can be
changed easily. We conducted some tests together with the concurrency protocols. The tests are described
in 6.3.9 Broadcast Disk with Concurrency Protocols.

6.3.3 Concurrency Control Protocols
We decided to implement BCC-TI, FBOCC, PVTO and STUBcast. There were tested against each other
with different environment parameters.

We chose FBOCC because it is state-of-the-art and one of the best performing protocols. EOCC performs
better according to [53], but in order to implement EOCC we would first have to implement FBOCC and
make an expansion to it. If we had more time, we should have implemented EOCC too.

PVTO was chosen since the performance looked like it was as good as FBOCC and sometimes even
better when looking at the simulations results presented in [45].

STUBcast is a relatively new protocol and it is not compared with other protocols (as far as our knowledge
goes). And most of all, STUBcast uses a relaxed correctness criteria in order to increase performance.
Many scientific papers have discussed if it is useful to relax the correctness criteria or not, and if it has any
performance increase at all. We chose to implement and compare STUBcast, in the search of the answer
to these questions.

BCC-TI is a read-only protocol, and we wanted to see how it performed in comparison to more general
protocols. By general protocols we mean those who apply to more or all defined environments in chapter 5.
Examples are FBOCC and PVTO, which support client update transactions, real-time, and global
serializabliity.

All of the protocols in the following chapters are implemented with normal cyclic broadcast. The full source
code for all the implementations are distributed together with this report.

37

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

6.3.4 FBOCC
This was the first protocol we implemented, and therefore also the most time consuming part. This is also
what we used as a basis for our further implementations. It has both forward and backward validations.
Forward validations with the ongoing server transactions and backward validation against the previous
transactions. To make the backward validation possible it is needed to have an memory that stores the old
transactions and the size of this memory is dependent on how long a client needs to be able to complete an
transaction. One possibility is to say that if the transaction is to old to have a backlog to compare it against it
should just be rejected. But this could seriously hurt environments where there is a great overload on the
server. Our approach is to just have the size as a static size and just print out a message if we get any
transactions that are older than the backlog. This makes it possible to just ignore the fact that we only have
a part of the backlog for the item. If the backlog is of a decent size this should not provide any problem at
all, since the transaction would probably be rejected anyway. And it would only be a very small number of
the measurements that are affected by this so the results would still be valid.

To simplify the implementation of the server transactions we used globals for communication between the
server process and the serverTransaction process. This simplifies the process and saves us from creating
an extra thread. And the serverTransaction process also have direct access to the database and control
information so everything is just manipulated directly without any need to go trough the server process.

Since FBOCC uses control information we needed to add an additional broadcast message. This message
is sent in the start of each broadcast cycle and describes what items that have been invalidated during the
last broadcast cycle. The client then checks its ongoing transaction against the control information to see if
there are any conflict. If there are conflicts the transaction is restarted.

6.3.5 Partial Restart in FBOCC
We have implemented partial restart in FBOCC to measure the performance increase and to show an
example of how to implement it. FBOCC can easily implement partial restart because it is know which item
that cause the conflict and the CI provide information enough to decide the correctness of the non-
restarting operations.

The partial restart can be done both at the client and the server. The server must reply with a rejection
message including the conflicting operation id. We have only implemented partial restart on the client side
because this technique was discovered late in the project period and time was limited. Write operations are
first validated at the server side, so we will only look at the read operations on the client side. (In case blind
write is not allowed, a write operation will always be preceded by a read operation. Then the read operation
will implicitly evaluate for the write operation). The implementation on the client side in FBOCC is enough to
illustrate how to implement the technique as well as indicating the performance increase.

FBOCC sends a CI in the beginning of each broadcast cycle with the write set of committed transactions in
previous cycle. A client restarts when it finds an intersection between the local read set and the write set
from the CI. The intersecting read operation is the one that causes the conflict. In case of several conflicts,
the oldest operation must be chosen as the conflicting one.

So instead of restarting the whole transaction as normally, the operations before the oldest conflicting
operation are kept, and the oldest conflicting operation is read again (restarted).

In order to guarantee the correctness of the non restarting transactions, the client must listen to all the CI
and do the validation.

An example of a transaction T2 with a conflict is shown in Illustration 6.2. Two alternative restarts are given,
normal and partial. T2 does the following operations; r(b), r(a), r(d), r(c), r(e), and is restarted before the last
operation r(x) can be done. Another transaction commits w(d) and w(e) in the third broadcast cycle, which
causes a conflict for T2. The CI write set intersects with T2 read set, T2 [RS] ∩ CI[WS] ≠ {}, which indicates a
conflict, so T2 is restarted.

The partial restart is from the oldest conflicting operation. In this case both r(d) and r(e) caused conflicts, so
the transaction is rolled back to r(d) because it is first in the history of the two, and hence the oldest. The
new value to item d is read, and the next operation is determined out from the value of d. In this case, the
next operation turned out to be e. The value to b and a is not re-read because it is the same as long as no
conflict is discovered in the CI information. If a conflict arises in the next CI for let say item b, then the
partial transaction will roll back and restart from r(b), which in this case is the same as a normal restart.

In Illustration 6.2, the normal restart wastes resources and time by reading the same values for item b and
a again.

38

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

6.3.6 STUBcast
By cutting down on the serialization requirements STUBcast tries to get an better performance in
environments where less restrictive serialization requirements are possible. We wanted to implement this
method since it is not compared against other methods. The environment the authors used to test it is
totally different from how other methods are tested, so we implement it and test it against other methods in
similar environments. By doing this we hope to be able to test if this cut down on serializability can help on
performance.

STUBcast is implemented in the standard framework we made, and some minor adjustments needed to be
made for it to work. First of all we needed to make support for the data propagation STUBcast uses. The
broadcast process needed to receive the data from the server process and send it out to the clients as
soon as possible. This required two additional message types on the broadcast. One for the data
propagation and one for the UBE (message that describes the reads in the transaction and also signals that
the data propagation is finished). The client receives these and stores the timestamp in a array. So at all
times the client have an array with the timestamp for all the data items. There were also need for quite a
few extra arrays to store information, but the model were never made with memory conservation as a
guideline so in many places we use indexed arrays to save simulation time. But the method still uses quite
a lot more memory on the client side than most others.

Since STUBcast does not define how server transactions are to be implemented we just have to reckon
that they are absent or performed in a way that does not affect the client transactions at all.

6.3.7 PVTO
The characteristics of PVTO is the high amount of data values, (such as validation set, TOR and
timestamps), which must be maintained and transferred. The validation process is quite complex too. The
client validation is done at the cache and broadcast process, because the validation must be done
continuously for each control information. The operations are initiated by the client main process and a
request for a data value is sent to the cache and broadcast process. For each request, the reply can be
either the value or a SIGNAL_ABORT. At the end is the data values (validation set, TOR, etc.) sent back to
the client main process.

39

Illustration 6.2: Effectiveness of partial restart versus normal restart

CI a b c d e CI a b c d e CI a b c d e CI a b c d e CI a b c

r(b) r(a) r(d) r(c) r(e)

T1 commit: w(d), w(e)

T2 [RS] ∩ CI[WS] ≠ {}, local
operations intersect with new
committed items.

T2:

Restart, normal procedure: a b c d e CI a b c

r(b) r(a)

d e

d e

r(d)

new
values

old
value

old
value

new
value

a b c d e CI a b c

r(e)

d

new operation
because value of d

changed

new
value

r(d)

Restart, partial restart:

r(e)
Restart all operations. The same values
are read for b and a, because they have
not changed (nothing is reported in CI).

Restart from oldest conflicting operation
which is item d.

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

The server validates and broadcast data and control information. The accept and reject set in the control
information only contains the client number because only one transaction can be active at one time at one
client.

6.3.8 BCC-TI
BCC-TI is a read-only protocol, and have relatively easy validation. All validation is done autonomously on
the client. The validation is done in the same way as for PVTO, that is on the cache and broadcast process.

The server do only accept transactions from the serverTrans (Server Transaction) process and propagate
new values to the broadcast channel. Each server transaction is assumed to be committed with a lock
based protocol. We implement this by letting only one transaction to be active at a time, and the duration of
one server transaction non-existent. It is executed and committed atomically. The important thing is that the
database set gets new values, such that conflicts arise at the clients. This is accomplished.

6.3.9 Broadcast Disk with Concurrency Protocols
We implemented broadcast disk with BCC-TI, FBOCC, FBOCCpr and PVTO. We also had to change to
model to include support for a none uniform access pattern for broadcast disks to have any effect. We
implemented two disks, one slow and one fast. The item distribution among these can be easily adjusted
and the same with the disk frequency that controls how fast the disks spin compared to each other.

6.4 Simulation Settings
The simulations are performed using the environment variables described in Table 6.1 and we compare
how the different methods perform when we change the transaction length. It is important to notice that
some protocols will in many cases get very good results compared to the other methods because of more
loose restrictions in form of serializability, server transactions etc.

We measure four different results:

• Item wait time
The time it takes to get an item from the broadcast when it is requested. This value is only affected
by the size of the broadcast and will therefore only vary if the broadcast size is increased because
other messages than just the data are broadcasted.

• Transaction time
The time it takes to get a transaction accepted. This time also includes the time spent on restarts of
the transaction. Both client side restarts and server side restarts.

• Transaction throughput
This describes how many transactions that gets accepted per time unit.

• Number of restarts
We also measure the restarts. Two kinds of restarts are measured, first we have the restarts made
at the client side. These restarts will increase the waiting time for a client, but will not affect the load
on the server in any way. We also measure the number of restarts that occurs when the server
validates the transactions. This kind of restarts means that the server eventually will have to do
another validation and therefore this kind of restarts will result in both increased load on the server
and increased waiting time for the client.

We look at how the different protocols perform compared to each other when the transaction length
increases. This performance is measured in number of restarts, where a low number is the better one.

The ratio between read and update transactions is set to 1:1 so half of the transactions are purely read only.
While this is a very high ratio of update transactions compared to a real life environment. We argue with the
fact that read only transactions do not put any additional load on the server in most of the protocols and we
can therefore have a high update ratio to avoid having to use so many clients to be able to get good
simulation results.

We use a flat scheduling for all the tests since we have no real time considerations so there is no way to
decide what items is the most critical to broadcast. And we want to measure the performance of the
concurrency protocols so using an advanced scheduler would just introduce another source for errors.

The access distribution in our tests is uniform so all the items are equally hot. This will typically result in
better results than an none uniform distribution would give, but this is something that affects all the

40

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

protocols in more or less the same way. To improve performance in a none uniform environments we could
use broadcast disks instead of the simple cyclic broadcast pattern as we describe in chapter 6.3.9
Broadcast Disk with Concurrency Protocols.

6.4.1 Environment

All the common environment variables are declared in a separate header file named “platform.h”. The
environment settings for one protocol can easily be changed in this file. If a protocol requires some
additional environment variables then these will be declared at the top of the C file.

Table 6.1 lists the environments variables and a short description of their purpose.

We study the effect on an increased number of clients and how that will affect the performance. And we
also use different length on the client transactions to see how this will affect performance to.

We have not implemented any real-time deadline on the transactions. The number of restarts will indicate
how many transactions will meet their deadline. If the transactions miss their deadline or not is highly
dependent on the ability to prioritise critical transaction in front of others.

6.4.2 Simulations
We run the simulation for 5,000,000 time ticks for each sample and with 100 clients. That gives us between
120,000 and 170,000 accesses to the broadcasted data, dependent on how much other information that is
broadcasted. And we also get between 5,000 and 80,000 transactions, this will of course vary a lot
dependent of the transaction length and what kind of method that is used. This big sample space gives a
very good confidence interval and eliminates errors that occur because of badly generated random data.
We can also argue that we perform sufficient runs to get good measurement values since the model itself
provides a bigger source for errors.

To ensure the correctness of our tests we did 10 runs of the same test on BCC-TI, each with a different
random seed so that the test were run with different random data. Table 6.2 Shows us the different results
from these tests, from these we can conclude that all the different results fall into an area that is 0.5% of
the average from all the runs and can therefore conclude that a single run will provide good enough results
alone. By comparing the results against the other tests of the same protocol and looking at trends we can
also identify potential errors caused by erroneous input parameters.

Name of environment variable value Description

Environment variables

NUMBER_OF_CLIENTS 100 The total number of clients that should be started

TIME_PERIOD 5000000 How many time ticks the simulation will run

Client variables

READ_ONLY_TRANSACTIONS 0.5 Percentage of the the transactions that should be read only

MEAN_INTER_OPERATION_DELAY 20 Delay between each operation in a transaction

MEAN_INTER_TRANSACTION_DELAY 200 Delay between each transaction at a client

TRANSACTION_LENGTH 6 Transaction length

Server variables

BROADCAST_TIME 20 The total time it takes after a broadcast is sent out until the
next broadcast is sent out

DATA_BASE_SIZE 300 Total number of data items in the broadcasted database

SERVER_TRANSACTION_LENGTH 8 Length of the server transactions

SERVER_MEAN_INTER_OPERATION_DELAY 1 Delay between each operation in a transaction on the server
transactions

SERVER_MEAN_INTER_TRANSACTION_DELAY 1000 Delay between each sever transaction

TRANSACTION_VALIDATION_TIME 10 The time it takes to validate an transaction

Table 6.1: Environment variables

41

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

A small test were performed to test the effect of warm up time (the time it takes for the simulation to
stabilize) in the simulations to make sure our results would be valid. This could be an important factor.,
specially with very long transactions. But it seemed like the results were not affected by the warm up time at
all, there were less variance in the results when we removed the warm up time than there were with a
different random seed. We also used the built-in functions in CSIM to calculate confidence intervals for the
results, this to provide a certainty that the results were correct. If the results had a to big confidence interval
we either rejected the results, or we had to do a longer simulation.

The results from the tests were collected and compared against each other to make sure that no erroneous
results occur in them. The results from the tests were then again plotted in a graph using OpenOffice Calc
[59].

6.5 Evaluation, Tests and Results
In the following sections we have the results of the various tests and discussion over the results. We adjust
the transaction length, finds a performance measurement for our framework, adjust the number of clients,
adjust the database size, and test out none uniform client access on the database (multiple broadcast
disks).

BCC-TI is a read-only protocol, and therefore needs server transactions to get the database set updated.
STUBcast do not have server transactions in the model, so BCC-TI and STUBcast can not be compared
directly. We suggest one alternative approach to overcome this problem in 6.5.2 Transaction Length for
Qualitative Characterisation Framework.

All simulations are done with a standard environment values(given in 6.4.1 Environment) if nothing else is
stated. All transactions are executed until they are committed. So for each abort, the transaction is
restarted.

Because of the huge average transaction time on some of the methods we were not able to get a
confidence interval for them, but the samples will still be shown to give a general view on what values to
expect.

6.5.1 Transaction Length
One of the environment variables that affect the performance the most is the transaction length. An
increase in the transaction length will always lead to a great increase transaction time and when the
environments has updates, the abort rate will increase as well.

For high values of the transaction length, very few transactions are committed, so the confidence interval is
not satisfactorily. We show the values anyway, because they do indicate the direction. For transaction
length 8 the confidence interval is 90%, and as the transaction length increase, the confidence interval
decrease.

Test number Average
transaction time

Average transaction time for
transactions without restarts

Percentage of client
transactions accepted

1 12656,99 11601,66 95,09
2 12688,90 11636,64 95,15
3 12657,04 11586,90 95,06
4 12662,00 11647,11 95,34
5 12644,93 11629,64 95,31
6 12694,20 11603,54 95,03
7 12667,92 11607,47 95,11
8 12692,27 11612,14 95,05
9 12685,18 11636,15 95,20

10 12666,01 11639,27 95,30
Variance 49,27 60,21 0,31

Percentage variance
from the average 0,38% 0,51% 0,33%

Table 6.2: Variance in test results

42

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

6.5.1.1 Partial Restart
Illustration 6.3 shows that the longer transaction there is, the better the improvement is with partial restart.
This is also logic, because the longer the transaction, the greater chance of getting a conflict. And as long
as the conflict do not appear on the first operation partial restarts will save some time.

6.5.1.2 Client read-only with server transactions
We tested the read-only protocols with the time between each server transaction (inter server transaction
time) set to 1000 and 5000 time ticks (Illustration 6.4).

PVTO and FBOCC had a too bad confidence interval for the longest transactions, so the values are not
shown in the graphs. For inter server transaction time equal 1000 BCC-TI seems to give the best
performance, while FBOCCpr gives the better performance for inter server transaction time equal 5000.

For transaction lengths below 12, it seems like the performance is similar for all except PVTO.

43

Illustration 6.3: Graph of FBOCC with and without partial restart

2 4 6 8
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

Transaction time

FBOCC with Partial
Restart
FBOCC without Parti-
al Restart

Transaction length

Ti
m

e
tic

ks

Illustration 6.4: Transaction time with inter server transaction set to 1000 and 5000 time ticks

4 8 12 16 20 24
0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

Transaction time
Inter server transaction wait time 5000 time ticks

PVTO
FBOCC
FBOCCpr
BCC-TI

Transaction length
4 8 12 16 20 24

0

250000
500000
750000

1000000
1250000
1500000

1750000
2000000

2250000
2500000
2750000

3000000
3250000

Transaction time
Inter server transaction wait time 1000 time ticks

Transaction length

Tr
an

sa
ct

io
n

tim
e

in
 ti

m
e

tic
ks

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

Illustration 6.5 shows the number of committed transactions during one simulation run. The results are very
similar for all protocols except PVTO. The only thing worth to notice is that FBOCC struggles a bit more
when the server transactions comes as often as each 1000 time tick. In general, the performance sinks
drastically when the transaction length is increased.

6.5.1.3 Client Update Transactions Without Server Transactions
Illustration 6.6 shows how the transaction time increases when the transaction length increases. A linear
increase in the transaction time is expected if there were no updates in the database set. To read 16 items
would take twice the time it takes to read 8 items. But since the updates cause transaction aborts, and the
likelihood for inconsistent data increases the longer a transaction lasts, the number of aborts increase.
When the aborts increase, so do the transaction time before the transaction is committed. (Remember that
all transactions are processed until they are committed, and when they get an abort then they restart.)

The graph in Illustration 6.6 shows STUBcast as the one with lowest average transaction time. It increases
almost linear, whereas the other increase quite rapidly when the transaction length exceeds 12. FBOCC
with partial restart (FBOCCpr) decreases less then FBOCC. The reason why PVTO starts to flatten out

44

Illustration 6.6: Transaction time in standard environment without
server transactions

4 8 12 16 20 24
0

50000

100000

150000

200000

250000

300000

350000

400000

450000

Transaction execution time

PVTO
FBOCC
FBOCCpr
STUB-

Transaction length

Tr
an

sa
ct

io
n

tim
e

Illustration 6.5: Number of committed transactions for server transaction set to 1000 and 5000 time ticks

4 8 12 16 20 24
0

5000

10000

15000

20000

25000

30000

35000

40000

Committed transactions
Inter Server TL=5000

PVTO
BCC-TI
FBOCC
FBOCCpr

Transaction length

N
um

be
r o

f c
om

m
itt

ed
 tr

an
sa

ct
io

ns
4 8 12 16 20 24

0

5000

10000

15000

20000

25000

30000

35000

40000

Committed transactions
Inter Server TL=1000

Transaction length

N
um

be
r o

f c
om

m
itt

ed
 tr

an
sa

ct
io

ns

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

after transaction length 16 and STUBcast at length 24 is because of the bad confidence interval. In general,
the values with transaction length over 16 should not be taken too seriously.

Illustration 6.7 shows the average number of restarts per transaction. FBOCC has most restarts, and in
average more then one restart per transaction already for transaction length 4. The rate for FBOCCpr is of
course the average number of partial restarts per transaction. Each restart leads to longer transaction time,
so STUBcast's efficiency can clearly be seen here. PVTO has extremely many restarts, even for low values
of the transactions length. This might suggest some error in the implementation we have done, because on
the paper it should perform better. On the other hand, in the performance results of PVTO we did not
manage to understand how many clients were simulated. The protocol might perform good in environments
with few clients.

The three graphs in Illustration 6.8 shows the amount of restarts done at the client and server side. The
more restarts performed at the client, the better, because early abort reduce the waste of bandwidth, server
processing and time. FBOCC have more than 80% restarts on client side, which indicates the use of a
stricter validation criterion on the client side. The consequence is that a serializable transaction might be

aborted, but when a transaction first gets through the validation at the client side, it has a very high
probability of being accepted at the server.

STUBcast and PVTO aborts most transaction on the server which waste time etc.. In return, they have
much less restarts overall.

The number of accepted transactions per simulation run measures the effectiveness and the saturation
limit. That is, the amount of transactions that can be accepted. Illustration 6.9 shows FBOCCpr with most
transactions committed and FBOCC and STUBcast following on a shared second place. PVTO has a very
poor performance for all transaction lengths.

45

Illustration 6.7: Average number of restarts per transaction

4 8 12 16 20
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Transaction restarts

STUBcast
FBOCC
PVTO
FBOCCpr

Transaction length

A
ve

ra
ge

 n
um

be
r o

f r
es

ta
rts

 p
er

 tr
an

sa
ct

io
n

Illustration 6.8: Relationship between the amount of client restarts and server restarts

4 8 12 16 20 24

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1,1

STUBcast

Server
restarts
Client
restarts

Transaction length

P
ro

ce
nt

 o
f r

es
ta

rts

4 8 12 16 20 24

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1,1

PVTO

Pr
oc

en
t o

f r
es

ta
rts

Transaction length
4 8 12 16 20 24

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1,1

FBOCC

Transaction length

P
ro

ce
nt

 o
f r

es
ta

rts

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

It seems contradictory that STUBcast has the shortest average transaction time, while FBOCC has most
transactions accepted during the simulation time. When the average time to get a transaction accepted is
short, we assumed it would have most transactions accepted during the simulation time, because once one
transaction is finished, the next can continue and so on. The explanation to the behaviour we see lays in
the distribution of the transaction time, and is not seen in the average.

Illustration 6.10 shows the histogram of the transaction time of FBOCC, FBOCCpr and STUBcast with
transaction length 6. The peak right before 20 000 time ticks is the same for all the protocols. Then the
graph flattens out, and at the end both FBOCC and FBOCCpr raises quickly. That is only to illustrate the
number of transactions that use more than 72 000 time ticks to complete a transaction.

STUBcast raises slower to the first peak right before 20 000 time ticks, and is also a bit slower to fall down.
That means it has generally longer transaction time than the other. But at 30 000 time ticks it falls down and
before 40 000 time ticks, STUBcast has 97,5% of its transactions. FBOCC on the other hand has only 80%
of its transactions before 40 000 time ticks, and FBOCCpr has 89%. With other words FBOCC and

FBOCCpr are very quick to commit a major part of its transactions (around 80%), but the rest are very long
and contribute to a higher average. STUBcast is a bit slower (but still quick) than FBOCC on the quickest
transactions and have very few transaction that takes a long time.

46

Illustration 6.9: Number of accepted (committed) transactions during one simulation run

4 8 12 16 20 24
0

2500
5000
7500

10000
12500
15000
17500
20000
22500
25000
27500
30000
32500
35000
37500

Accepted transactions

PVTO
FBOCC
FBOCCpr
STUBcast

Transaction length

N
um

be
r o

f a
cc

ep
te

d
tra

ns
ac

tio
ns

Illustration 6.10: Transaction time in percent of all transactions (Transaction time histogram)

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,18

0,2

Transaction Time in percent of all transacions

FBOCC
FBOCCpr
STUBcast

0 20000 40000 60000 72000
Transaction Time in time ticks

Pe
rc

en
t o

f a
ll

tra
ns

ac
tio

ns

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

The effect is that FBOCC gets many transactions committed because the major part commits fast, but a
minor part is very long and case a higher average. The fact that some transactions gets a very long
transaction time, which is caused by many restarts, is disturbing. The phenomenon of constantly being
restarted is not acceptable in most environments. It does not matter if 95% of the users experience an
excellent service, as long as 5% must wait for ages to get a response.

6.5.2 Transaction Length for Qualitative Characterisation Framework
In order to have the same performance measurement criterion for all protocols, we tried to find an attribute
to compare them all.

The problem of comparing them is that STUBcast do not have server transactions in our implementation,
while BCC-TI needs server transactions in order to be measured (unless the database will be static and all
transactions will be accepted). The trick is to find the right ratio for client update transactions, such that the
number of updates are approximately the same as the server transactions in a read-only environment.

We tried FBOCC with standard environment settings but without server transactions, and we got results
similar to FBOCC with server transactions in a read-only environment. (See Illustration 6.11 and Table 6.3).
The values are far from an exact match, but they works as an indication of the transaction time.

BCC-TI is measured with inter server transaction time equal 5000.

We use transaction time for transaction length 6 as the standard measurement.
Protocol With server transactions (RO) Without server transactions

STUBcast NA 18 669
FBOCC 21 018 31 488
FBOCCpr 19 398 21 838
PVTO 67 503 57 300
BCC-TI 19 687 NA

Table 6.3: Mapping table for average transaction time with transaction length 6

Table 6.3 shows the error of our mapping from “read-only” environment to “no server transaction”
environment. FBOCC have 10 000 time ticks less in the read-only environment where as PVTO has 10 000
time ticks more in the read-only environment. We are therefore satisfied with the mapping and believe we
must tolerate the big error because of the protocol differences. In general, the mapping is difficult because
the rate of the server transactions are quite stable, where as the rate of the client update transactions are
very variable. The client update transaction are much fewer when many conflicts and restarts occur. PVTO
has in general a very bad commit rate, and does therefore perform better without server transactions.
FBOCC has a very good commit rate, and do therefore suffer without the server transactions.

47

Illustration 6.11: Transaction time when the transaction length change

4 8 12 16 20 24
0

50000

100000

150000

200000

250000

300000

350000

400000

450000

Transaction time

STUBcast
FBOCC without
server transac-
tions
FBOCCpr without
server transac-
tions
BCC-TI

Transaction lengthA
ve

ra
ge

 n
um

be
r o

f t
im

e
tic

ks
 p

er
 tr

an
sa

ct
io

n

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

The best solution would have been to implement server transactions in STUBcast, but on the other side, as
with STUBcast, the authors did not specify how it should be implemented.

When values for both environments are available, we choose the values from without server transactions
for the framework. We think the server transactions is simply a special case of a client, and feel it is a
disturbing factor in our measurements (another aspect of uncertainty).

We want to emphasise the criterion's weaknesses as a performance measurement. A protocol's average
transaction time for transactions with length 6 gives a poor description of the protocols performance. The
criterion do not say anything about factors such as the distribution of the transaction time (continuous
restart might occur often or not at all no matter what the average transaction time is), or maximum
transactions before saturation. We only suggest this criterion in lack of better alternatives.

6.5.3 Number of clients
When the number of clients increase, the performance of the different protocols vary. We made a test to
gauge how the performance is affected when this happens. Compared to the other protocols we
implemented PVTO perform quite poor in our standard environment so it is omitted in this test. We also
omit BCC-TI since it is read only and is therefore incomparable to the others. We therefore test FBOCC,
FBOCCpr and STUBcast against eachother.

Illustration 6.12 Shows how the transaction
time increase when the number of clients
increases, it is important to note how the
increment of the transaction time in STUBcast
slows down compared to the others. This is
because of the loose restriction on the
serializability, while the other protocols suffer
when the number of updates increases. We
see that FBOCCpr outperform the normal
FBOCC as the number of clients increase and
with a low number of clients it even
outperforms STUBcast.

When we look at the restarts in Illustration 6.13 we can see that STUBcast fast reach a high percentage of
restarts when the number of clients increases. This happens since there is such a loose restriction on the
serializability as can be seen in the table over the client side restarts where STUBcast has by far the lowest
amount of restarts. It is also worth noticing that in FBOCCpr we also have this trade-off where an
decreased amount of client restarts result in more restarts on the server side.

Again we can conclude that the decreased serializability of STUBcast results in an increased performance
in form of a reduced transaction time. We also see that FBOCCpr keeps an increasingly better
performance than normal FBOCC as the number of clients increase.

48

Illustration 6.12: Transaction time when the number of
clients increase

10 50 100 150
0

2500
5000
7500

10000
12500
15000
17500
20000
22500
25000
27500
30000
32500
35000
37500
40000

Changing number of clients

FBOCC
FBOCCpr
STUBcast

Number of clients

Tr
an

sa
ct

io
n

tim
e

Illustration 6.13: Restarts when the number of clients increase

10 50 100 150
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85

Server side restarts

FBOCC
FBOCCpr
STUBcast

Number of clients

P
er

ce
nt

ag
e

10 50 100 150
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

Client side restarts

FBOCC
FBOCCpr
STUBcast

Number of clients

P
er

ce
nt

ag
e

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

6.5.4 Database size
With the increased database size the number of conflicts will decrease, but the item wait time will increase
and therefore the transaction time will also increase. We did a test in our heavily updated standard
environment to see how a change in the broadcast database size would affect the transaction time and the
number of restarts.

From Illustration 6.14 we can see that there
are big differences, especially when we have a
small database. When the database size is
300 PVTO have reached the limit where the
advantage of getting the data items faster is
outweighed by increased number of restarts. It
is also worth noticing that both FBOCC and
FBOCC with partial restarts (FBOCCpr) have
roughly the same transaction time when the
database is small and we have a lot of
restarts. But when the database size increases
and the number of restarts goes down
FBOCCpr gets near to the performance
achieved by STUBcast

In Illustration 6.15 we can clearly see how a
small database greatly increases the number
of restarts, both on the client side and on the
server side.

6.5.5 None uniform access distribution
Most real environments do not have a totally random access pattern so we implemented broadcast disks
with some of the concurrency protocols. This to see wither it would affect the performance of some
methods better than others. We look on BCC-TI and FBOCC, both with the standard environment
mentioned earlier. But to be able to compare the results we used a read only environment, since BCC-TI is
a read only protocol.

Illustration 6.17 shows the comparison between the average transaction time and it is seen that BCC-TI
perform better than FBOCC both with and without broadcast disks and the performance gain from the
usage of broadcast disks is almost the same in both protocols.

In Illustration 6.16 we see that the read only optimized BCC-TI keeps the average number of restarts per.
transaction at a lower level than FBOCC. This explains why BCC-TI perform better, as we noticed when
comparing the average transaction time.

49

Illustration 6.14: Transaction time when the database size
increases

300 600 900
0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

Changing database size

STUBcast
FBOCC
FBOCCpr
PVTO

Database size

Tr
an

sa
ct

io
n

tim
e

Illustration 6.15: Restarts when the database size increases
300 600 900

0

10

20

30

40

50

60

70

80

90

100

Server restarts

300 600 900
0

10

20

30

40

50

60

70

80

90

Client restarts

STUBcast
FBOCC
FBOCCpr
PVTO

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

We can conclude that broadcast disks can lead to a general performance increase by cutting down on the
item wait time, but this might in some cases result in a longer broadcast cycle so that the control
information used in some protocols gets delayed. It also raises the question if the control information should
be sent after a major or a minor broadcast cycle.

6.6 Conclusion
First of all we can conclude that the drop in serializability used in STUBcast can decrease the latency. By
doing so there will be a lot less conflicts and therefore more resistant to restarts in environments with a lot
of updates and long transactions. In environments with a lot of restarts STUBcast manage to keep the
number of server side restarts quite low, and do most of the restarts on the client side, saving the server
from becoming swamped.

BCC-TI seems to perform very well when the environment is read-only and outperform the others in such
environments, but STUBcast also performs almost equally well. When the drop in serializability is not an
option FBOCCpr will perform the best. And the performance increment of FBOCCpr compared to normal
FBOCC seems to increase with increasing transaction length.

50

Illustration 6.17: Average transaction duration in a
none uniform environment

BCC-TI
bdisk

BCC-TI FBOCC
bdisk

FBOCC

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

Transaction duration
Tr

an
sa

ct
io

n
tim

e

Illustration 6.16: Average transaction restart rate in a
none uniform environment

BCC-TI
bdisk

BCC-TI FBOCC
bdisk

FBOCC
0

0,025

0,05

0,075

0,1

0,125

0,15

0,175

0,2

0,225

0,25

Transaction restart rate

A
ve

ra
ge

 n
um

be
r o

f r
es

ta
rts

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

7 Qualitative Characterization Framework
Based on the knowledge from the survey and simulation tests, we present a qualitative characterization
framework. Its goal is to classify the various techniques to make it is easier to find the most efficient
protocols for a specific environment.

The framework is divided into two distinctive parts, one describes the data management with the core
functions like broadcast type, indexing and cache. The other describes the more complete concurrency
control solutions.

7.1 Data Management
We define four different ways to categorize data management methods:

• Latency defines the total waiting time from an item is requested until it is fully received. A low value
is better here as it reduces the total waiting time for a client. It is not possible to put a number on
the latency unless you know the environment variables, but a general idea can be made to define
whether it is high or low.

• Processing is how much CPU processing that is needed to perform the necessary calculations in
the protocol. Little processing means less power usage at the clients and is therefore an important
factor in battery powered devices, and devices with limited processing power.

• Size increase is how much the broadcast size will increase because of the method. Typically for
indexing methods this varies a lot.

• Tuning time is how long time the client have to listen to the broadcast to be able to locate the
requested item. The usage of network devices and processing of data has a high cost on some
devices, it is therefore important to keep the tuning time as low as possible. This enables the client
to sleep while waiting for the item to appear on the broadcast. This value will also vary a lot with the
environments and is closely connected to the latency.

Table 7.1, 7.2 and 7.3 Shows the different characteristics of different data management parts. This again is
divided into three parts, broadcast methods, indexing and cache. The following sections discuss the
findings and gives a short explanation of its meaning.

7.1.1 Broadcast Methods
Out of the four methods three of them is made for the same environment. Broadcast disks and binary
based broadcast is both made for environments where there is a none uniform access pattern where some
data items are hotter than others. Broadcast disks is a bit easier to implement, and as long as the
frequency of each data is chosen correctly it will perform equally good as the binary based method. But it is
also the case that the binary based method will always perform equally good or better than broadcast disks,
at the cost of a bit more complicated implementation. When it comes to the amount of processing needed
for the methods they both perform equally well. At the price of more computation TC-AHB might be used
but since it is a hybrid method it will need feedback from the client to perform good. It also performs good in
environments where the access distribution may change over time. Something that both broadcast disks
and binary based broadcast fail to adjust to.

In environments where a high rate of concurrency is needed multiversion might be used, if there are
enough versions this method will have the highest grade of concurrency. But this is at the cost of an
increased broadcast size and increased latency.

Method Latency Broadcast size increase Processing
Broadcast disks Decreases in none uniform

distributions
Only by broadcasting hot data more
frequently

Low

BNB Decreases in none uniform
distributions

Only by broadcasting hot data more
frequently

Low

Multiversion Some increase, but dependent of
transaction length

Very large, but dependent of number
of versions

Moderate

TC-AHB Low for hot items Fixed, but how much that is
broadcasted on demand varies

Moderate

Table 7.1: Comparison of broadcast methods

51

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

7.1.2 Indexing Methods
Latency optimal is as the names says the indexing method that gives the best latency, simply by not having
any index at all, but it is still a possible choice in environments where the tuning time is totally irrelevant.

The most useful methods are (1, m) and distributed indexing. (1, m) is very simple and easy to implement
and gives a good performance. Distributed indexing is more complicated to implement, but offers a smaller
increase in the broadcast size since it cuts down on the replication of data.

Method Latency Tuning time Broadcast size increase Processing
Latency optimal Very low Very high, same

value as the latency
No size increase None

Tuning optimal Very high Very low small Low

(1, m) Average, but
dependant on the
value of m

Very Low From small to big,
dependent of the value of
m. If optimal m is used
then it is low

Low

Distributed
Indexing

Average to low Low Depending on
implementation, but
generally of moderate size

Low

Table 7.2: Comparison of indexing methods

7.1.3 Caching Methods
Both PIX and PT is not easily implementable without making modifications to them because of the high
processing needed. That leaves us with LIX, tag-team and LDF.

LIX performs very good in environments where there is a none uniform broadcast of data and the need for
processing is low.

In environments where it is hard to predict the access pattern tag-team cache will help to greatly reduce the
cost of a cache miss and therefore help a great deal on the latency.

And LDF performs very good when there exists deadlines that have to be meet.
Method Latency Tuning time Processing

PIX Decreases, especially good when used
with broadcast disks

Decreases Extremely high

LIX Decreases, especially good when used
with broadcast disks

Decreases Low

PT Decreases a lot Decreases Extremely high

Tag-team Decrease, especially good when cache
miss appears

Decreases Low

LDF Decreases, good when deadlines apply Decreases Moderately high

Table 7.3: Comparison of caching methods

7.2 Concurrency Control
To categorize concurrency control methods, we use the three characterisation terms defined in 5.3
Concurrency Control Protocols Characteristics and in addition we define the following:

• Electrical power usage is measured by a combination of amount of access to the broadcast
channel, upload link and CPU processing. It is mainly decided by the amount of access to the
broadcast channel, because all protocols are very conservative in the use of the upload link and
they are pretty similar in the use of CPU.

• Performance should be measured with respect to latency, restart rate and total time to complete a
transaction. These measurements varies dependent on the environment settings, so we will use
the criteria and values defined in 6.5.2 Transaction Length for Qualitative Characterisation

52

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

Framework. The values are denoted Tt, for “Transaction time”. For protocols we have not tested,
we will use a text based on the performance presented in scientific papers.

Some of the reviewed protocols we know little about the performance criteria because we did not do any
simulations measurements, and no other results were found. Those protocols are therefore not included in
the Table 7.4.

Method Electrical power usage Performance Real-time Client update
transaction

Correctness
criteria

F-matrix Big CI leads to more accesses
on bc-channel

Poor No Yes Mutual
consistency
and currency

BCC-TI Conservative Very good,
Tt=19867

No No Serializability

STUBcast Clients must listen to the
broadcast channel constantly
during an active transaction

Very good

Tt=18669

No Yes Single and
local
serializability

PVTO Client must use uplink for read-
only transactions.

Poor, Tt=57300 Yes Yes Serializability

FBOCC Conservative OK, Tt=31488 Yes Yes Serializability

EOCC Conservative Better than
FBOCC (OK)

Yes Yes Serializability

Table 7.4: A framework for concurrency control protocols

7.2.1 Electrical Power Consumption
Constant listening to the broadcast channel during an active transaction is required by some of the
protocols because of the non static size of the broadcast, and the fact that update messages can be
broadcasted at any time. The new updated data is faster disseminated in such cases, but the power
consumption at the client side is increased. Thus, those approaches (UFO and STUBcast) are not suitable
for battery powered handheld devices. Another backside is the vulnerability for bad data channel. If the
client loose the signals for a small moment during an active transaction, the client do not know if an update
has been broadcasted or not. In the case of updates being broadcasted in CI at scheduled time, it is only
important to listen at this exact point of time. Of course, signal loss at this time will cause the same
problems, but the probability for signal loss during one time unit is smaller then for loss during one hundred
time units.

In Table 7.4, conservative means the amount of accesses to the broadcast channel and upload link is at a
minimum and so is the demand for processing power. Conservative is the best value, which means one of
the least power consuming. As previously stated, the CPU processing has little impact on the power
consumption because the CPU usage is pretty similar for all the protocols, and the same goes for the use
of the upload bandwidth.

7.2.2 Validation Algorithm Complexity
The complexity of the validation algorithm do not count for the clients, but it do counts for the server. If the
server receives many validating transactions, it will be overloaded faster if the validating algorithms are
complex. Also the response time will increase. Some protocols are quite complex, but with indexing and
other optimization techniques it is difficult to know how complex without real implementation. We decided
not to dwell upon this topic, but some work should be done to see how many transactions a server can
handle before congestion.

53

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

8 Discussion
This chapter summarize the report, and look at the work we have done. The work is compared up against
our initial task description in 8.1, and in 8.2 the work is evaluated for relevance and reliability.

8.1 Project Outcomes
This project have several contributions to the research field, namely the survey, characterization framework,
simulation platform with many implemented techniques, and the proposal of a new technique that optimizes
the transaction restart.

8.1.1 Survey
The first requirement in our task description was to survey the topics of data management and concurrency
control in broadcast based asymmetric environments. We have done that by focusing on techniques used
for performance increase. The survey is relevant for people totally new to the area because it gives a soft
introduction. Nevertheless some parts are more technical, and is directed on people with some experience
within the field. The reader new to the topic can skip these parts. The techniques are surveyed and
summarized.

8.1.2 Qualitative Characterization Framework
As part of the survey, some criteria describing the characteristics to the protocols were found. These criteria
are useful for categorizing and were used in the characterization framework. The categories makes it easier
to compare techniques against each other and select techniques for a specific environment. It is also easy
to see which protocols are the best fit for each environment, just by looking at the framework. But since we
did not simulate all solutions we do not know the performance of all the protocols. The framework was
made on the knowledge from surveying the topic and the results from the simulations we performed, which
was a requirement from the thesis description.

8.1.3 Simulations
Our thesis description stated we would make a simulation platform in CSIM, and that we did. The
simulation platform is a tool that can be used in further research within the area. With the basic framework,
new protocols can be implemented and compared with the already implemented protocols.

The simulation tests we performed gave us deeper knowledge of the protocols. We chose to implement a
wide diversity of protocols. Within concurrency control we chose one read-only protocol (BCC-TI), one with
reduced correctness criteria (STUBcast), and two quite new protocols that are for all environments (FBOCC
and PVTO). In addition we implemented an improved restart technique in FBOCC which we named partial
restart.

In read-only environment BCC-TI had the shortest average transaction time. FBOCC with partial restart
followed right behind, where as normal FBOCC was slightly worse. PVTO did bad in all our tests. STUBcast
had the shortest average transaction time in environments without need for serializability, real-time
transactions, battery powered devices, and server transactions (because STUBcast did not implement that
in our simulations). But FBOCC with partial restart has actually more accepted transactions during one
simulation run, and normal FBOCC has the same as STUBcast. Still, we think STUBcast performs the
best, because it is most important with short transaction time. The distribution of the transaction times was
also more concentrated than FBOCC. For all other environments FBOCC is the best, and of course
FBOCC with partial restart is even better.

We did not implement EOCC, but we know from Li et al. [53] it performs better than FBOCC. It is hard to
say if it performs better that STUBcast, but it is a chance it does. EOCC and FBOCC is a protocol that
supports the strongest criteria, such as restrictive battery usage, serializability, client update transactions,
and real-time. This makes it applicable to all environments in question. If EOCC performs better than BCC-
TI and STUBcast, it is most likely the best performing concurrency control protocol for all the environments.
That makes it easier to choose protocol.

Our new proposed technique, partial restart, shows great performance increase on the transaction time. To
implement partial restart, the protocol must be able to know which operation caused the conflict. BCC-TI,
STUBcast and PVTO have some problems knowing this since they use a timestamp interval to indicate a
conflict. Some modifications must be done in the implementation in order to use the partial restart.

54

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

8.2 Evaluation
This survey introduce and review the work done the last decade. The previous survey touching this topic
was published 7 years ago, so we think this survey is a useful contribution. The focus on both data
management and concurrency control leads to a good integration of these two sub-areas. Little work that
combines these techniques have been found, although the topics are closely related.

The categorizing done in the characterization framework is useful because it gives a better overview. It
presents the protocols in such a way that they are easy comparable. The criteria we chose for categorizing
are based on the limiting factors in the protocols. We do not claim we have chosen the most correct criteria,
so they should be viewed as a suggestion open for improvement. At least the measurements can be
improved, especially for the performance criteria under concurrency control.

We had visions of constructing a unique way to measure the performance, but since the protocol properties
are so changing, it turned out to be difficult. For example BCC-TI and STUBcast is not directly comparable,
because BCC-TI relies on server transactions to get conflicts (remember that clients are read-only in BCC-
TI) and STUBcast do not have server transactions. One solution is to implement some server transactions
in STUBcast too. Only one performance measuring unit is most likely to little descriptive because there are
so many changing variables.

We finally ended up with average transaction time for a standard environment (transaction length = 6,
database size = 300, server transaction delay = 5000, etc.). Read-only protocols were measured with
server transactions and update protocols were measured without server transactions. We think it is
describing enough, although it does not tell anything about the maximum transaction time some clients may
experience.

The simulation platform we made worked fine for our protocol implementations. The protocols varies quite
much, so many changes is necessary from one protocol to another, but a framework remains. Our
framework contains the processes, mailboxes and structures (showed in Illustration 6.7). In addition it
contains the statistics measurement (which must be placed in the right place in the code to measure right
values), the cyclic broadcast and the transaction creation.

In all of the simulations we use CSIM's built-in ability to generate a confidence interval. This to be confident
that our data is within a acceptable range. In some protocols it were hard to acquire a good confidence
interval with long transaction lengths. In some cases it just took to long to acquire good enough results to
get a good confidence interval. One reason was because the protocol had so many rejections that very few
transactions were committed during a long time interval. Then the confidence interval concerning number of
transactions committed were very bad. Other reasons were the big variance in some sample data which
would require a very large number of data to be collected.

We performed test with the protocols with some extreme values on the environment variables. The tests
was on transaction length, number of clients, database size and non-uniform client access distribution.

The transaction length went from 4 to 24 with steps of 4 operations. With 100 clients and time between
each server transaction at 1000, the environment was very demanding. We wanted to see a congestion,
and we did. Only the scientific paper presenting STUBcast had shown simulation results with such high
transaction length. Most applications do not need such many operations in one transaction, so the
relevancy can be argued. But by testing extreme, more knowledge of the behaviour is achieved. After the
tests were done, we did realize that the longest transactions were unnecessary to test for, because the
confidence interval was very poor. Full congestion or very near full congestion occurred. Still, it was useful
to see this.

We think the tests on the number of clients are very relevant, because no other simulations report any
number of clients or similar. We are probably the first to make a simulation platform simulating multiple
clients. Most of the others use one multi threading client that runs many transactions concurrently. The end
effect can be the same, if the client runs each transaction thread independently the whole simulation run. If
the transaction threads are started on new and ended for each transaction, then the natural distribution of
the transactions, with bursts and then no traffic, is difficult to simulate. Nevertheless, the number of
transaction threads are not given, only the time between each transaction.

Our tests was with 10, 50, 100 and 150 clients. These numbers do not represent a normal number of
clients, because our clients produce very many transactions in order to stress the environment. A normal
number would have been 1000 or 10 000 dependent on the access pattern for each client. But such many
clients would have taken very long time to simulate. We therefore decided to have more active and fewer
clients. The changing in number of clients gives a good impression of the scalability with regards to the
number of clients.

55

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

The simulation tests use a standard environment with a database consisting of 300 data items. That is a
very small database, but helpful to create a hotspot effect and a stressful environment without increasing
the simulation execution time. Just to show other values, we tested for size 300, 600 and 900 database
items. The transaction time increase steadily with bigger database, because the broadcast cycle gets
bigger and needs more time to do a cycle.

The performance increase with partial restart in FBOCC is especially high in our tests because the
environment have a very high load with many restarts naturally. The more restarts, the bigger will the
improvement be with partial restart. In an optimal environment, there will be no restarts and in such a case
partial restart will have no performance effect at all. But an optimal environment will never occur in practical
cases, and even tough most transactions are not restarted, some transactions are unlucky and might
experience several restarts. Even in environments with little load, some few transactions had several
consecutive restarts. Therefore we argue that it is always useful to use partial restart whenever possible.
The performance will not always increase so much, but it will always increase or in worst case be equal.

56

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

9 Conclusion
The survey gives an introduction to this research topic, and focus on the recent advances within techniques
for performance increase. The focus on the techniques lead to the development of partial restart. which
leads to almost 30% faster transaction execution time when the clients have a transaction length of 6
operations. The longer the transaction length is, the better performance increase is given by the partial
restart.

Protocols are categorized such that it is easier to see which environments or qualities they adhere to. This
work showed us that the most general protocols, that is, those who apply to most environments, do actually
perform very good. In read-only environments BCC-TI performs best, but FBOCC with partial restarts
performs almost equally well. Under normal update environments FBOCC (and FBOCCpr) is the protocol
that performs best, but if a relaxed serializability criteria is possible STUBcast manage to perform even
better. But STUBcast have the disadvantage of demanding that the client must listen to the broadcast
channel continuously during an active transaction. Therefore it is not suitable for environments with battery
powered handheld devices.

This report presents some performance results which gives an impression of the effectiveness of the
various protocols. Makes it easier to choose and make data management and concurrency control
protocols for a specific environment and application. Nevertheless we can not say exactly when to use one
thing, and when to use another. It aims at giving the reader an understanding and hopefully intuition for
what to choose, depending on the type of application and environment. The reader can find more in-depth
information in the references about the protocols presented.

9.1 Further Work
An interesting topic for further research would be to identify when the different protocols gets saturated. At
some point there will be to many updates and the number of restarts will become intolerable. This would of
course be dependent of the transaction length, database size and the number of updates. It is also possible
that there exist some limit on how many transactions a server can handle, dependent of how much
processing that is needed to validate the transactions on the server side.

When we implemented the protocols in CSIM we experienced many errors. In order find more errors and to
guarantee the correctness of the protocol we would have liked to implement a check of the correctness
criteria. The simulations provides test results that appear to be valid and CSIM indicate no errors during
runtime. But due to the complexity of the models, errors might exist that affect the results in some way or
another, even though great heed has been taken to prevent it. A correctness layer could help in insure the
correctness of the simulation code, to avoid getting incorrect simulation results due to implementation
errors. If a protocol guarantees serializability, then the global time tick should be associated with each
operation and checked for serializability. Then it is also possible to measure if a protocol rejects
transactions which in reality are serializable.

In most environments it is more applicable to use a hybrid version with both push and pull based data
dissemination than a pure pull based. It would be interesting to do some research on how this could be
implemented in combination with different concurrency protocols and how it would affect the performance.

We would also have liked to implement more protocols, especially EOCC so we could have done some
more comparisons. We could also have looked for improvements by combining various techniques.

In addition we would have liked to do more extensive work on the simulation platform. The environment
should be configurable to make it more realistic. For instance it should be easy configurable to change
settings such as a delay on the upload link and the broadcast channel. Some clients close to the base
station would get the signals earlier then some clients far away. Real life values should be used.

The optimistic concurrency control protocols suffer from many restarts. We did not write so much about it,
but even though the load is low, one transaction might restart several times just because it is unlucky. In
terms of probability, this can happen all the time no matter what the load is, only the probability might be a
bit smaller. We present partial restart as one improvement for restarts, but other approaches should also be
found in order to avoid a transaction being constantly restarted. Some prioritizing scheme could be made
for transactions that already restarted once. The partial restart is a future research area because an
general approach supported by a framework should be made to simplify the implementation in any
protocols.

57

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

A protocol might look good on the drawing board or in the simulations, but in real life unforeseen
complications usually arise. Best of all is a real implementation of the protocols. The survey by Barbara [11]
also announced this need.

Finally, EOCC which is possibly the best protocol available for any environment also suffer from some fake
conflicts. So even more improvements are possible.

58

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

Appendix

A1 Glossary & Abbreviations
Short definitions of terms used and references to further relevant glossary sources

Ad Hoc Network constructed between peers without any managed infrastructure

ADSL Asymmetric Digital Subscriber Line

Asymmetric Bandwidth from server to client is bigger than from client to server

Backchannel A channel back, either from server to client or client to server, dependent on the context

BCC Broadcast Concurrency Control

BCC-TI Broadcast Concurrency Control with Timestamp Interval

BCC-FW Broadcast Concurrency Control with Forward Validation

Broadcast One peer can reach all other local peers with one message

CC Concurrency Control, used to keep the dataset consistent

CSIM Commercial software for simulation

CI Control Information, used in CC to inform clients of recently updated data items

Consistent data Keep the data as if all transactions execute serially and not concurrently

DBMS Data base management system

Dissemination Distribution of data from one (or more) central source(s) to very many users

DM Data Management, techniques for structuring the broadcasted data

EOCC Efficient Optimistic Concurrency Protocol, a concurrency control protocol for broadcast env.

FBOCC Forward Backward validation OCC, a concurrency control protocol for broadcast env.

History A sequence of transactions

Index Used in DM to inform the clients where to find a data item in order to decrease tuning time

Latency Time it takes for a client to find and receive a data item

OCC Optimistic Concurrency Control, non-lock based concurrency control protocol

OCC-BV OCC Backward Validation, validates up against already committed transactions

OCC-FV OCC Forward Validation, validates up against the currently active transactions

Operation A read or write action on one data item

Partial Restart Technique used to optimize the restart in OCC protocols, by only restarting the invalid part

PDA Personal Digital Assistant, small handheld computer

PVTO Partial Validation and Timestamp Ordering, another BCC protocol

Serializability A correctness criteria requiring the execution of a history to be equal a serial execution

SGG Stored Serialization Graph, contains committed transaction history and is used to validate
new transactions

Transaction Operations with dependences, an operation is decided from the value of the preceding one

Transact. time Time it takes for a client to complete a transaction from start to successfully commit

Trans. length Number of operations in a transaction

Tuning time Time it takes for a client to find only the location of a data item

UFO Update First with Ordering, a read-only BCC protocol

WLAN Wireless Local Area Network

59

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

A1 References
1: A. J. Biggs. "Teletext systems: a review". Physics in Technology 10, Page 11-19, 1979

2: G. Childs. "United Kingdom Videotex Service and the European Unified Videotex Standard".
British Telecom Res. Labs, Suffolk, England, Page 245-249, 1983

3: G. Herman, G. Gopal, K. C. Lee, A. Weinrib. "The Datacycle Architecture for Very High
Throughput Database Systems". Proc. ACM SIGMOD Conf., San Francisco, Page 97-103,
May 1987

4: T. Imielinski, S. Viswanathan, BR. Badrinath. "Energy efficient indexing on air". ACM SIGMOD
Record, Page 25-36, 1994

5: S. Acharya, R. Alonso, M. Franklin, S. Zdonik. "Broadcast disks: data management for
asymmetric communication environments". In Proceedings of ACM SIGMOD Conference,
Page 199-210, 1995

6: Y. I. Chang, C. N. Yang, J. H. Shen. "Binary-Number-Based Approach to Data Broadcasting in
Wireless Information". International Conference on Wireless Networks, Communications and
Mobile Computing, Page 1, 2005

7: J. Shanmugasundaram, A. Nithrakashyap, R. Sivasankaran, K. Ramamritham. "Efficient
Concurrency Control for Broadcast Environments". ACM SIGMOD International Conference
on Management of Data, Page 85-96, June 1999

8: H. T. Kung, J. T. Robinson. "On optimistic methods for concurrency control". ACM TODS,
Page 213-226, June 1981

9: L. Guohui, Y. Bing, C. Jixiong. "Efficient optimistic concurrency control for mobile real-time
transactions". Proceedings. 11th IEEE International Conference on Embedded and Real-Time
Computing Systems and App, Page 443-446, August 2005

10: V. C. S. Lee, K. W. Lam, T. Kuo. "Efficient validation of mobile transactions in wireless
environments". Journal of Systems and Software 69(1-2), Page 183-193, January 2004

11: D. Barbara. "Mobile Computing and Database--A Survey". IEEE Transactions on Knowledge
and Data Engineering, Vol. 11, No. 1, Page 108-117, January/February 1999

12: S. Acharya, M. Franklin, S. Zdonik. "Balancing push and pull for data broadcast".
ACMSIGMOD '97, Page 183-194, 1997

13: G. H. Forman, J. Zahorjan. "The Challenges of Mobile Computing". IEEE Computer, 27(6),
Page 38-47, April 1994

14: E. Pitoura, B. Bhargava. "Building Information Systems for Mobile Environments".
Proceedings of 3rd International Conference on Information and Knowledge Management,
Page 371-378, 1994

15: D. Linden, T. B. Reddy. "Handbook of Batteries (3rd Edition)". McGraw-Hill, 2003

16: Intel. "Electrical, Mechanical, and Thermal Specification". Intel® PXA270 Processor, Page 1-
126, 2005

17: Philips Semiconductors. "Complete, single-package 802.11g solution for mobile phones &
portable cons". BGW211 Low-power WLAN SiP, Page 1-4, 2005

18: K. Lam, M. Au, E. Chan. "Broadcast of Consistent Data to Read-Only Transactions from
Mobile Clients". Proceedings of Second IEEE Workshop on Mobile Computing Systems and
Applications, Page 193-204, 1999

19: P. A. Bernstein, V. Hadzilacos, N. Goodman. "Concurrency Control and Recovery in Database
Systems". Addison-Wesley Publishing Company, 1987

20: T. Imielinski, S. Viswanathan, BR. Badrinath. "Data on air: organization and access".
Knowledge and Data Engineering, IEEE Transactions on, Page 353-372, 1997

21: Philips Semiconductors. "Complete, single-package 802.11g solution for mobile phones &
portable cons". BGW211 Low-power WLAN SiP, Page 1-4, 2005

60

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

22: J. Ebert, S. Aier, Gr Kofahl, A. Becker, B. Bur. "Measurement and simulation of the energy
consumption of an WLAN interface". Technical University Berlin Telecommunication Networks
Group, Page 1-23, 2002

23: A. G. Bar-Noy, B. G. Patt-Shamir, I. G. Ziper. "Broadcast Disks with Polynomial Cost
Functions". Wireless Networks, 2004 - Springer, Page 157-168, 2004

24: M. H. Ammar, J. W. Wong. "On the Optimality of Cyclic Transmission in Teletext Systems".
IEEE Transactions on computing, Page 68-73, 1987

25: O. Shigiltchoff, PK. Chrysanthis, E. Pitoura. "Adaptive multiversion data broadcast
organizations". Information Systems, 2004 - cs.uoi.gr, Page 26, 2004

26: JJ. Fernandez, KJ. Ramamritham. "Adaptive Dissemination of Data in Time-Critical
Asymmetric Communication En". Mobile Networks and Applications, 2004 - Springer, Page
491 - 505, 2004

27: E. Pitoura, PK. Chrysanthis. "Scalable processing of read-only transactions in broadcast
push". Distributed Computing Systems, 1999. Proceedings. 19th IEEE International
Conference on, Page 432-439, 1999

28: S. Acharya, M. Franklin, S. Zdonik. "Disseminating Updates on Broadcast Disks". Proceedings
of the 22th International Conference on Very large databases, Page 12, 1996

29: S. K. Lee, M. Kitsuregawa, C. Hwang. "Efficient Processing of Wireless Read-only
Transactions in Data Broadcast". Proceedings of the 12th International Workshop on
Research Issues in Data Engineering, Page 101-111, February 2002

30: S. Zdonik, R. Alonso, N. Franklin, S. Acharya. "Are "disks in the air" just pie in the sky?".
Mobile Computing Systems and Applications, 1994. Proceedings., Workshop on, Page 12-19,
1994

31: S. Acharya, M. Franklin, S. Zdonik. "Dissemination-based data delivery using broadcast
disks". ersonal Communications, IEEE, Page 50-60, 1995

32: Y. Huang, YH. Lee. "Caching Broadcasted Data for Soft Real-Time Transactions". Department
of Computer Information Science Engineering University of Florida, Page 6,

33: C. Boksenbaum, M. Cart, J. Ferrié, J. F. Pons. "Concurrent certifications by intervals of
timestamps in distributed databas". IEEE Transactions on Software Engineering, Page 409-
419, 1987

34: E. Pitoura, PK. Chrysanthis. "Scalable processing of read-only transactions in broadcast
push". Distributed Computing Systems, 1999. Proceedings. 19th IEEE International
Conference on, Page 432-439, 1999

35: R. H. Thomas. "A Majority Consensus Approach to Concurrency Control for Multiple Copy
Data". ACM Transaction on Database Systems, 4 (2), Page 180 - 209, June 1979

36: T. Härder. "Observation on Optimistic Concurrency Control Schemes". Information Systems,
9(2), Page 111-120, June 1984

37: V. C. S. Lee, K-W. Lam, S. H. Son. "Real-time transaction processing with partial validation at
mobile clients". Seventh International Conference on Real-Time Computing Systems and
Applications (RTCSA'00), Page 473-477, December 2000

38: H. Garcia-molina, G. Wiederhold. "Read-only transactions in a distributed database". ACM
Transactions on Database Systems, 7(2), Page 209-234, June 1982

39: K. W. Lam, S. H. Son, V. Lee, S. L. Hung. "Using Separate Algorithms to Process Read-Only
Transactions in Real-Time Sy". Technical Report 98-10, Department of Computer Science,
City University of Hong Kong, Page 50-59, 1998

40: J. A. Stankovic, S. H. Son, J. Hansson. "Misconceptions about Real-Time Databases". IEEE
Computer, 32(6), Page 29-36, June 1999

41: H. Guo, P-Å. Larson, R. Ramakrishnan, J. Goldstein. "Relaxed currency and consistency :
How to say "good enough" in sql". SIGMOD Conference Paris, France, Page 815-826, June
2004

42: Y. Huang, Y. Lee. "STUBcast - Efficient Support for Concurrency Control in Broadcast-based
Asy". Submitted to ICCCN 2001, Page 6, 2001

61

Data Management and Concurrency Control in Broadcast based Asymmetric Environments

43: U. Lee, B. Hwang. "Optimistic Concurrency Control Based on Timestamp Interval for
Broadcast En". Proceedings of the 6th East European Conference on Advances in Databases
and Information Systems, Page 106-119, September 2002

44: V. C. S. Lee, K-W. Lam, S. H. Son. "Maintaining data consistency using timestamp ordering in
real-time broadcas". Proceedings of the 6th IEEE International Conference in Realtime
Computer Systems and Applications, Page 29-36, 1999

45: V. C. S. Lee, K-W. Lam, S. H. Son, E. Y. M. Chan. "On transaction processing with partial
validation and timestamps ordering i". IEEE Transactions on Computers, 51(10), Page 1196-
1211, 2002

46: T. F. Bowen, G. Gopal, G. Herman, T. Hickey, K. C. Lee, W. H. Mansfield, J. Raitz, A. Weinrib.
"The Datacycle Architecture". Communications of the ACM, vol. 35, no. 12, Page 71-81, 1992

47: P. M. Bober, M. J. Carey. "Multiversion Query Locking". Proceedings of the VLDB Conference,
Vancouver, Canada, Page 1-34, August 1992

48: W. Weihl. "Distributed Version Management for Read-Only Actions". IEEE Transactions on
Software Engineering, 13(l), Page , January 1987

49: V. C. S. Lee, K-W. Lam, S. H. Son. "Concurrency Control Using Timestamp Ordering in
Broadcast Environments". The Computer Journal 45(4), Page 420-422, 2002

50: D. Barbara. "Certification Reports: Supporting Transactions in Wireless Systems". Proc. IEEE
Int. Conf. Distributed Computing Systems, Page 466,

51: A. Das, K. Y. Kai. "Tradeoff between Client and Server Transaction Validation in Mobile
Environment". Proc. IEEE Int. Database Engineering & Application Symposium, Page 265-
272, 2001

52: E. Pitoura. "Supporting Read-Only Transactions in Wireless Broadcasting". Proceedings of the
DEXA98 International Workshop on Mobility in Databases and Distributed Systems, Page
428-433, August 1998

53: G. Li, B. Yang, J. Chen. "Efficient optimistic concurrency control for mobile real-time
transactions". Proceedings. 11th IEEE International Conference on Embedded and Real-Time
Computing Systems and App, Page 443-446, August 2005

54: Texas Instruments Incorporated. "Low Power Advantage of 802.11a/g vs. 802.11b". White
Paper, Page 1-11, December 2003

55: D. Fussell, Z. M. Kedem, A. Silberschatz. "Deadlock Removal Using Partial Rollback in
Database Systems". Proc. ACM SIGMOD int. conf. on Management of data, Page 65-73,
1981

56: G. Li, H. Wang. "A novel min-process checkpointing scheme for mobile computing systems".
Journal of Systems Architecture: the EUROMICRO Journal, Page 45-61, 2005

57: H. Schwetman. "CSIM18 - The Simulation Engine". Simulation Conference Proceedings,
1996, Page 5, 1996

58: H. Schwetman. "CSIM User's Guide (Version 18)". MCC Corporation, Page , 1998

59: OpenOffice.org. "Open Office 2". , Page , 2006

62

	1 Executive Summary
	2 Introduction
	2.1 Motivation
	2.2 Review
	2.3 Claim and Project Definition
	2.4 Report Structure

	3 Introduction to Asymmetric Broadcast Environments
	3.1 Asymmetric Bandwidth
	3.2 Asymmetric Broadcast Networks
	3.3 Wireless Networks
	3.4 Handheld Devices
	3.5 Characteristics and Challenges in Asymmetric Broadcast Environments
	3.6 Dissemination of Data in Asymmetric Broadcast Environments
	3.7 Examples of Data Dissemination Applications

	4 Data Management
	4.1 Introduction
	4.2 Data Access
	4.2.1 Push [5]
	4.2.2 Pull
	4.2.3 Hybrid

	4.3 Data Dissemination
	4.3.1 Scheduling
	4.3.1.1 Linear
	4.3.1.2 Polynomial

	4.3.2 Broadcast Methods
	4.3.2.1 Broadcast Disks[5]
	4.3.2.2 A Binary Approach (BNB) [6]
	4.3.2.3 Multiversion
	4.3.2.4 TC-AHB [26]

	4.3.3 Invalidation Lists
	4.3.4 Propagation [28]
	4.3.4.1 Server Offset
	4.3.4.2 Slow Disk
	4.3.4.3 Threshold

	4.3.5 PA [29]
	4.3.6 SGT [27]

	4.4 Index
	4.4.1 Latency Optimal [4]
	4.4.2 Tuning Optimal [4]
	4.4.3 (1, m) [4][20]
	4.4.4 Distributed Indexing [4][20]

	4.5 Caching
	4.5.1 General Methods
	4.5.1.1 PIX [30]
	4.5.1.2 LIX [28]
	4.5.1.3 PT [30]
	4.5.1.4 Tag-team [30][31]

	4.5.2 Real Time
	4.5.2.1 LDF [32]

	4.6 Compression

	5 Concurrency Control
	5.1 Introduction to Concurrency Control and its Protocols
	5.1.1 Timestamp Ordering
	5.1.2 Serialization Graph Testing [19]
	5.1.3 Certifications and Optimistic approach

	5.2 Some Concrete Examples of Concurrency Control
	5.2.1.1 Two examples of serializable executions
	5.2.1.2 Write – Read conflict example
	5.2.1.3 Dependent write-read conflict example

	5.3 Concurrency Control Protocols Characteristics
	5.3.1 Client Update Transactions Versus Client Read-only Transactions
	5.3.2 Real-time Versus None Real-time
	5.3.3 Various Correctness Criteria
	5.3.3.1 Serializability
	5.3.3.2 Update Consistency
	5.3.3.3 Single Serializability and Local Serializability

	5.4 Datacycle [3]
	5.4.1 The Old Datacycle
	5.4.2 The New Datacycle

	5.5 Certification Reports [50]
	5.6 Read-only Transaction Processing [52]
	5.7 APPROX, F-Matrix and R-Matrix [7]
	5.8 UFO,Update-First with Order [18]
	5.9 BCC-TI [44], [49]
	5.9.1 BCC-FV
	5.9.2 BCC-TI

	5.10 STUBcast, [42]
	5.11 PVTO [37] [45]
	5.12 OCC-TI [43], OCC Based on Timestamp Interval
	5.13 FBOCC [10]
	5.14 EOCC [53]
	5.15 Concurrency Control Protocol Summary
	5.15.1 The CI and its Contents
	5.15.2 The Placement of the CI
	5.15.3 Partition of Broadcast Cycle Into Sub Periods and Several Sub CIs
	5.15.4 Real-time and Server Update Transactions
	5.15.5 Partial Restart
	5.15.6 EOCC Fake Restart Improvement
	5.15.7 Server Validation Answer on Dedicated Back Channel or Broadcast Channel

	6 Simulation Platform and Simulations
	6.1 CSIM
	6.1.1 CSIM Limitations

	6.2 The Platform Structure
	6.2.1 The Server Structure
	6.2.2 The Client Structure
	6.2.3 The Broadcast Channel
	6.2.4 Caching
	6.2.5 Concurrency Protocols

	6.3 Protocol Implementations
	6.3.1 Data Management
	6.3.2 Broadcast Disks
	6.3.3 Concurrency Control Protocols
	6.3.4 FBOCC
	6.3.5 Partial Restart in FBOCC
	6.3.6 STUBcast
	6.3.7 PVTO
	6.3.8 BCC-TI
	6.3.9 Broadcast Disk with Concurrency Protocols

	6.4 Simulation Settings
	6.4.1 Environment
	6.4.2 Simulations

	6.5 Evaluation, Tests and Results
	6.5.1 Transaction Length
	6.5.1.1 Partial Restart
	6.5.1.2 Client read-only with server transactions
	6.5.1.3 Client Update Transactions Without Server Transactions

	6.5.2 Transaction Length for Qualitative Characterisation Framework
	6.5.3 Number of clients
	6.5.4 Database size
	6.5.5 None uniform access distribution

	6.6 Conclusion

	7 Qualitative Characterization Framework
	7.1 Data Management
	7.1.1 Broadcast Methods
	7.1.2 Indexing Methods
	7.1.3 Caching Methods

	7.2 Concurrency Control
	7.2.1 Electrical Power Consumption
	7.2.2 Validation Algorithm Complexity

	8 Discussion
	8.1 Project Outcomes
	8.1.1 Survey
	8.1.2 Qualitative Characterization Framework
	8.1.3 Simulations

	8.2 Evaluation

	9 Conclusion
	9.1 Further Work

	Appendix
	A1 Glossary & Abbreviations
	A1 References

