
DDoS detection based
on tra�c pro�les

by

Morten Kråkvik

Agder University College
Faculty of Engineering and Science

Grimstad, Norway
May 2006

Master's Thesis in Information and Communication Technolog y

Abstract

Distributed denial of service attacks has become a signi�ca nt threat against
Internet resources. These attacks aims at disrupting the vi ctim's service by
commanding a massive number of compromised sources to send u seless
data towards the victim. The distributed nature of these att acks usually
makes mitigation a time consuming process, and the risk of co llateral dam-
age is high.

In this thesis I propose a method for detecting and identifyi ng the sources
of DDoS attacks based on research in the �eld of network tra�c measure-
ment and source IP address monitoring. The method consists o f two parts;
a network tra�c collector and a tra�c pro�le analyser, where the �rst part
is responsible for creating tra�c pro�les representing the network pattern
over certain time periods, and the second part responsible f or the analysis.

A novelty in this thesis is the usage of learning automata for tracking
the behaviour of source- IP addresses and subnets.

I have shown that when using a speci�c reinforcement algorit hm for
the learning automata, the proposed method is able to correc tly identify-
and distinguish sources participating in distributed deni al of service attacks
and sources generating normal tra�c. It has also been shown t hat this
algorithm is robust against attacks based on IP spoo�ng.

Due to the fact that the method is tracking both source IP addr esses as
well as their subnets, more e�cient �ltering rules can be cre ated based on
subnets instead of multiple IP addresses.

Preface

This thesis is submitted to Agder University College, Facul ty of Engineer-
ing and Science, in partial ful�lment of the degree of Master of Science in
Information and Communication Technology.

This work has been carried out in collaboration with Telenor Security
Services in Arendal, under the supervision of Nils Ulltveit -Moe at Agder
University College and Per Kristian Johnsen at Telenor Secu rity Services.

I would like to thank my supervisors, Nils Ulltveit-Moe and P er Kris-
tian Johnsen for their valuable suggestions and constant he lp during the
research. I also want to thank associate professor Ole-Chri sto�er Granmo
at Agder University College for helpful discussions and adv ices on learning
automata.

Grimstad, May 2006.

Morten Kråkvik

i

Contents

Preface i

1 Introduction 1
1.1 Thesis de�nition . 3
1.2 Delimitations . 4
1.3 Report outline . 4

2 Related work 6
2.1 An overview of denial of service attack methods 6

2.1.1 Source address spoo�ng . 6
2.1.2 DDoS attacks . 6

2.2 Tra�c measurement and accounting 7
2.2.1 Sample and hold . 7
2.2.2 MULTOPS . 9

2.3 Source IP Monitoring . 11
2.4 An introduction to learning automata 11

2.4.1 Learning algorithms . 12

3 Network tra�c collector 14
3.1 Requirements . 14
3.2 Delimitations . 14
3.3 Creating tra�c pro�les . 15
3.4 Sampling algorithm . 15
3.5 Data-structure . 16
3.6 Exporting tra�c pro�les . 21

4 Tra�c pro�le analyser 22
4.1 Attack characteristics . 2 2
4.2 Source IP Monitoring . 23
4.3 Monitoring source IP addresses and subnets 23

5 Experimental setup and simulations 27
5.1 Network setup . 27

5.1.1 System con�guration . 27
5.2 Tra�c simulations . 28

5.2.1 Simulating normal tra�c 28
5.2.2 Generating high speed tra�c 29

ii

CONTENTS

5.2.3 Simulating a distributed denial of service attack 29
5.3 Experiments . 29

6 Results 31
6.1 Network tra�c accounter performance 3 1
6.2 Tra�c pro�le analyser . 31

7 Discussion 35
7.1 Tra�c simulations and characteristics 35
7.2 Data-structure . 36
7.3 Source behaviour monitoring and learning automata algo rithms 37

7.3.1 Learning automata algorithms 37
7.3.2 IP spoo�ng . 38
7.3.3 Sources changing behaviour 38
7.3.4 Increasing the number of learning automata 38
7.3.5 Expiration of learning automata states 3 9

8 Conclusion and further work 40
8.1 Conclusion . 40
8.2 Further work . 41

References 42

Glossary 44

Appendices 46

A MULTOPS extended Record-structure 46

iii

List of Figures

1.1 An illustration of a typical DDoS attack 3

2.1 DNS ampli�cation attack . 8
2.2 MULTOPS . 10
2.3 A learning automaton interacting with the environment 12

3.1 Extending MULTOPS . 17
3.2 Building a tra�c pro�le . 20
3.3 Exporting tra�c pro�les . 21

5.1 Network setup . 28

6.1 Accounting overview during an attack. 32
6.2 Two IP addresses sharing a /8-subnet 3 3
6.3 Pro�le development . 34

iv

List of Algorithms

1 The sample-and-hold algorithm . 9
2 Creating tra�c pro�les . 15
3 Record updating algorithm . 19
4 Accounting phases . 19
5 Expansion algorithm . 19
6 Linear reward-inaction updating algorithm 25

v

Chapter 1

Introduction

Distributed Denial of Service attacks, also known as DDoS attacks, has be-
come a threat against anyone on the Internet.

Especially, these attacks are an increasing threat against companies and
organisations who expose services for their customers, and who rely on the
Internet to conduct their everyday businesses.

Most attackers involved in computer criminality seek to bre ak into sys-
tems in an attempt to install their software and steal secret user informa-
tion, such as your passwords and credit card numbers. The goa l and e�ect
of a denial of service attack, however, di�ers from these kin ds of attacks.
No data is stolen and no software will be installed on the vict im host. The
one and only goal is to take down the victim's service.

So, how can an attacker take down your service? As illustrate d in �g-
ure 1.1 on page 3, the attacker has typically broken into seve ral thousand
personal computers, located all around the world, and turne d them into bot
agents , or zombies . By doing this, the attacker creates a botnet allowing
him, or her, to gain full control over the compromised comput ers from a
central location known as the botnet server . By connecting to this server,
the attacker then issues commands to all bot agents at once, t elling them to
attack a speci�c address on the Internet. What follows is a st orm of useless
data from all bot agents headed against the victim, causing l egitimate data
to the victim to be dropped.

Individually, each compromised host is usually not able to s uccessfully
attack a victim due to limited bandwidth. However, when ther e are several
thousands of bot agents, together they aggregate massive bandwidth, being
able to knock most networks o�-line.

The complex nature of these attacks usually makes mitigatio n a di�cult-
and time consuming process, and might cause the victims both �nancial
and reputational damages.

Telenor[15], being one of the largest ISP's in Scandinavia, wi sh to look at
possible solutions for quickly detecting DDoS attacks, and identifying the
sources participating in the attacks.

The �eld of DDoS contains many attack- and defence methods, a nd [8]
attempts to give a structured overview of the knowledge in th is �eld. Of

1

CHAPTER 1. INTRODUCTION

particular interest, considering this thesis, are the sect ions on response
strategies for victim hosts reacting to attacks, as opposed to preventing
attacks. The di�erence in reacting to versus preventing DDoS attacks, is
that the former method aims at alleviating the impact of an at tack while
the latter method aims at eliminating the possibility of an a ttack. Although
this thesis will not focus on how to actually mitigate attack s, but rather on
attack detection and identi�cation of sources, it will be ke pt in mind during
the work that a reactive method like applying IP address �lte ring on routers
will be used in the case of an attack.

Methods for defending against attacks, like [1, 4, 5], sugges ts replacing
network devices, such as routers, with new «intelligent» ha rdware which
does real-time tra�c pro�le analysis and mitigation in addi tion to their in-
tended task. A downside of these methods are that in case of an attack, or
just under heavy load, such devices could use more resources on analysing
the tra�c rather than doing it's intended task, which might a �ect the over-
all network performance. Also, in cases where the network is very large
and complex, replacing network hardware might not be a �nanc ially real-
istic option. In this thesis, the proposed solution will con sist of a passive
sensor located near the victim network. By passive, it means that the device
will not a�ect the network tra�c directly, it will only recei ve a copy of the
tra�c and not be able to block anything itself.

[8] divides detection methods into two sections; anomaly- and pattern-
based detection. Anomaly-based detection creates pro�les of the network
tra�c and uses this as a base to spot anomalies and identify po tential at-
tacks. Proposed solutions taking advantage of this method i ncludes [1, 5].
Pattern-based detection, on the other hand, uses prede�ned signatures to
recognise attack tra�c, typically by looking at the packet p ayload. An ex-
ample of a system using pattern-based detection is the netwo rk intrusion
detection Snort [12]. In this thesis, the detection method will be based on
anomaly detection.

A �eld which is closely related to DDoS detection is network t ra�c ac-
counting. Tra�c accounting has primarily been used for usag e-based net-
work billing and bandwidth provisioning. Applications per forming tra�c
accounting, which usually are the routers, sees the tra�c as a collection
of �ows which needs to be measured. However, as the tra�c rate and the
number of �ows increases (which is the case under an attack), ke eping track
of the �ows becomes very expensive in terms of memory and CPU.

In [3], Estan et al. claims that the currently state-of-the-ar t accounting
methods, Cisco IOS's NetFlow [2], which count periodically sampled packets
are slow, inaccurate and resource intensive. A novel sampli ng method has
been proposed in [3] which aims at identifying large �ows and ignoring the
small. This sampling method has been adopted in this thesis a nd will be
described in detail in section 2.2.1 on page 7.

A data-structure called MULTOPS has been proposed in [5] by Gil et al.
This data-structure was primarily designed for network dev ices for detect-
ing DDoS attacks by monitoring incoming- and outgoing tra�c rates. If a
dis-proportionality occurred between receive- and transm it-rate, the event

2

CHAPTER 1. INTRODUCTION

was �agged as anomalous. The core of this data-structure has been adopted
and expanded in this thesis due to its performance and �exibi lity. The
MULTOPS data-structure and the extension will be described in detail in
sections 2.2.2 on page 9 and 3.5 on page 16, respectively.

A novelty in this thesis is the usage of learning automata [9] for source
identi�cation. Learning automata are small decision makin g devices which
are able to operate under non-deterministic environments a nd improve their
performance using past experience. Based on whether a sourc e address ap-
pears to be a part of a possible attack, or not, the automaton f or the given
source address can be rewarded or penalised according to it' s updating al-
gorithm. By using this approach, I aim to identify source add resses and
subnets participating in an attack, and which are or not. Thi s method will
be further discussed in detail in section 4.3 on page 23.

Figure 1.1: An illustration of a typical DDoS attack

1.1 Thesis de�nition

The �nal thesis de�nition was formulated like this:

«In this thesis, we will approach the problem of detecting DDo S
attacks by constructing tra�c pro�les representing the tra �c pat-

3

CHAPTER 1. INTRODUCTION

tern over time. By evaluating these tra�c pro�les, we aim to l ook
for anomalies and identify potential attacks. »

This de�nition has been broken into two parts, where both wil l be ad-
dressed in this thesis:

1. Network tra�c accounting
In order to detect an attack, network data needs to be capture d. The
capturing, or the accounting, needs to perform real-time mo nitoring
of the network device and store this data in a sensible format for later
analysis. This format, will later be referred to as the tra�c pro�le .
The tra�c pro�le and the network tra�c accounter will be deve loped
as a part of the thesis work. Previous research in the area of t ra�c
measurement and accounting will be outlined in chapter 2 on p age 6.

2. Tra�c pro�le analyser
A tra�c pro�le analyser, TPA, will be developed as a part of the thesis
work. The purpose of the TPA is to continuously analyse the pr o�les
as they are created by the network tra�c accounter. These pro �les will
serve as a base to determine if a network is under attack or not , and to
determine who is participating in the attack and who is not. P revious
research in the area of DDoS detection will be outlines in cha pter 2 on
page 6. My contribution in this �eld of research will be explo ring the
usage of learning automata for DDoS attack source identi�ca tion.

1.2 Delimitations

Due to limited resources, this thesis will only focus on dete cting distributed
denial of service attacks against victim networks. This mea ns that SYN
�ood attacks, which are typically aimed at exhausting the re sources of a
speci�c victim server, and not the network resources itself , are not covered
in speci�c in this thesis. However, if a SYN �ood attack alloc ates enough
bandwidth to threaten the network infrastructure, the atta ck is considered
an attack against the network.

This thesis also focuses on detecting attacks near the victi m, as opposed
to near source end.

1.3 Report outline

Chapter 1 is the introduction chapter, which you are currently readin g.

Chapter 2 covers the related work this thesis has been based on. This
includes an overview of DDoS attacks and defence methods, re search on
tra�c measurement and DDoS tra�c characteristics.

Chapter 3 is dedicated to the development of the network tra�c collect or.
This includes requirements and delimitations of the collec tor followed by

4

CHAPTER 1. INTRODUCTION

the choice of sampling algorithm. Next, the extension of the MULTOPS data-
structure is described and how this is used to create a tra�c p ro�le.

Chapter 4 is dedicated to the development of the tra�c pro�le analyser .
This chapter discusses the choice of attributes that are int eresting consid-
ering indications of a DDoS attack. This chapter also covers the use of
learning automata for tracking source address behaviour.

Chapter 5 describes the experiment setup and simulations of the netwo rk
tra�c accounter and tra�c pro�le analyser.

Chapter 6 presents the results of the simulations.

Chapter 7 discusses the results achieved in this thesis.

Chapter 8 is the �nal chapter which concludes the thesis in addition to
looking at possible further work.

5

Chapter 2

Related work

This chapter is a short introduction to DDoS attacks coverin g the mainly
used attacker techniques in addition to relevant defence me thods.

2.1 An overview of denial of service attack methods

2.1.1 Source address spoo�ng

Source address spoo�ng, also known as IP spoo�ng, is a techni que which is
commonly used by attackers. This technique can, in some case s, be used to
gain unauthorised access to a computer by sending messages w ith an IP ad-
dress indicating that it is coming from a trusted host. This i s accomplished
by modifying the source IP address �eld in the packet's IP hea der. However,
this technique can also be very useful when engaging a denial of service
attack. By using this technique you can make a denial of servi ce attack with
very few hosts, look distributed to the victim. On a single ho st, with one IP
address, you can replace the source IP address of any packet w ith a random
address. For an attacker, this has the following advantages :

• at the victim, it looks like the attack is distributed, whic h makes it
very di�cult to �lter based on IP address.

• the actual IP address of the attacking host is not revealed, causing pre-
ventive methods like shutting down the attacking host very d i�cult.

Another advantage (for the attacker) for using IP spoo�ng is t hat it can
be used to exploit known weaknesses of IP protocols, such as T CP and UDP.
This technique is called re�ection attack, and will be descr ibed in the fol-
lowing section.

2.1.2 DDoS attacks

In this section I will describe some of the mainly used DDoS at tack methods.

6

CHAPTER 2. RELATED WORK

SYN-�ooding

SYN-�ood attacks are based on exploiting a well known weakne ss in the im-
plementation of the TCP protocol. By starting the �rst phase of the three-
way handshake, which is done by sending a single SYN-packet a gainst the
server, a resource allocation is made on the server. If this h andshake is
never completed, these resources are not freed until a timeo ut has been
reached. If an attacker rapidly sends multiple SYN-packets against the vic-
tim, this might result in a resource exhaustion at the victim , causing a de-
nial of service e�ect. This technique is usually combined wi th IP spoo�ng,
which makes sure the handshake is never completed as the spoo fed source
will simply discard an out-of-state packet from the victim s erver.

UDP-�ooding

UDP-�ooding attacks are classi�ed as bandwidth attacks. Th ese types of
attacks aims at simply �ooding the victim's network pipe, ca using packets
to be dropped.

Re�ection and ampli�cation attacks

Re�ection attack is a result of IP spoo�ng and is probably the most popular
attack method today. This attack aims at �ooding the victim w ith useless
packets by sending request packets to innocent third-party servers using
the victim's source address. These servers faithfully resp onds to these
packets by sending them back to the spoofed victim. If there a re many
such servers, with well provisioned links, this will e�ecti vely cause a denial
of service at the victim.

Especially, DNS-servers are very popular considering re�e ction attacks.
By sending a valid DNS request with spoofed source IP address , the re-
sponse will be sent to the victim host. If this DNS server is (mi s-)con�gured
to accept recursive requests, it can be tricked to cache a ver y large DNS
record, which in turn will be sent to the victim. This is known as a DNS
ampli�cation attack and is illustrated in �gure 2.1 on the ne xt page. Unfor-
tunately, there are many DNS servers which accept recursive requests, and
they are usually well provisioned as well. And since this is a ll legal tra�c,
blocking these requests and responses without in�icting co llateral damage
is very di�cult. A study of these attacks has been carried out in [17].

2.2 Tra�c measurement and accounting

2.2.1 Sample and hold

As described in [3], the easiest way to identify large �ows is t hrough sam-
pling, however with a twist. As with common sampling methods such as
[2], each packet is sampled with a probability. If a packet is sa mpled and
the �ow it belongs to is not in the memory, a new �ow-entry is cr eated.

7

CHAPTER 2. RELATED WORK

Figure 2.1: DNS ampli�cation attack

8

CHAPTER 2. RELATED WORK

When a �ow-entry has been created, unlike [2], the sample-and-hold algo-
rithm will update the �ow statistics for every packet in this �ow. Another
di�erence from [2] is that the probability of sampling a pack et is a func-
tion of the packet size. The sampling probability for packet with size s is
p s ƒ 1 � „1 � p…s � 1 � e� sp which can be approximated by p s ƒ p � s.
This sampling algorithm can be described with the pseudo cod e shown in
algorithm 1.

Algorithm 1 The sample-and-hold algorithm
Require: Probability p for sampling a packet
Require: Packet size s

for each arriving packet do
if packet has a �ow-entry then

increment �ow byte count with packet size
else

add new �ow-entry with probability p s ƒ p � s
end if

end for

2.2.2 MULTOPS

In [5] Thomer M. Gil et al. proposes a heuristic and a data-str ucture for net-
work devices, such as routers and network monitors, to detec t and mitigate
DDoS attacks. Their method proposes to maintain a data-stru cture called
MULTOPS on each network device. Using this data-structure, they attempt
to monitor incoming and outgoing packet rates. As shown in �g ure 2.2 on
the next page, MULTOPS (MUlti Level Tree for Online Packet Sta tistics) is
basically a tree of tables and records, where each record con tains packet
rate statistics for a subnet pre�x at di�erent aggregation l evels. The data-
structure will always have a root Table , containing references to 256 subnet
Record s (i.e [0-255. * . * . *]). Now, if the packet rate statistics for a sub-
net exceeds a given threshold value, the tree will expand to i nclude more
detailed statistics for this subnet (i.e granularity will be increased). And if
the packet rate statistics should go below a given threshold , the tree will
contract. This behaviour can be seen as «zooming in and out», respectively.

The heuristic in this method is based on that under normal tra �c, the
packet �ow in one direction is proportional to the �ow in the o pposite di-
rection.

This method uses disproportional packet rates to or from hos ts and
subnets to detect and stop attacks. This packet rate statist ic can be used
to (1) identify the victim of a DDoS attack or (2) identify the so urces of an
attack. These modes are called victim-oriented mode and attacker-oriented
mode, respectively.

The di�erence between these modes are important when it come s to
blocking tra�c. In victim-oriented mode, attack mitigatio n is done by drop-
ping packets against the victim. In attacker-oriented mode , the mitigation

9

CHAPTER 2. RELATED WORK

Figure 2.2: MULTOPS

10

CHAPTER 2. RELATED WORK

is done by dropping packets from the sources.
In victim-oriented mode, the method will determine if an IP a ddress or

subnet is under attack by looking at the ratio of incoming vs o utgoing pack-
ets. If this ratio becomes greater than a given threshold (i.e incoming pack-
ets >> outgoing packets), dropping packets against this destination address
will mitigate the attack. However, this method will also cau se «collateral
damage», which means both malicious packets and legitimate packets will
be dropped. This technique is also called black-holing or null-routing a des-
tination.

In attacker-oriented mode, the method will determine the so urces of an
attack by looking at the ratio of received and sent packets fr om a source's
point of view. If the ratio of received packets vs sent packet s is below a
given threshold (i.e sent packets >> received packets), dropping these pack-
ets might mitigate the attack. This method, on the other hand , is vulnerable
to IP spoo�ng.

2.3 Source IP Monitoring

In [11], Peng et al. proposes a method for detecting distribut ed denial of
service attacks based on �ndings in [6] by Jung et al. This met hod aims
at detecting attacks by monitoring the increase of new IP add resses. The
method contains two parts; an o�-line training part, where I P addresses are
added to a database, as they are shown to be legitimate. In ord er to decide if
an address is legitimate or not, a simple rule such as connect ions with less
than 3 packets is considered anomalous. The second part is th e detection
engine, which is based on monitoring the number of IP address es within a
time interval. This number is compared with the database, an d then the
number of new hosts is calculated. If the number of new hosts e xceeds a
given threshold, an alarm is set to indicate a possible attac k. If an attack
is not detected, the new IP addresses are added to the databas e, assuming
they are shown to be legitimate. In the case of an attack, no IP addresses
are added to the database.

2.4 An introduction to learning automata

An automaton[9] is a mechanism that simply makes a decision. N ow, let us
assume there is someone who gives feedback and tells the auto maton if its
decision was good or bad, then the automaton has the possibil ity to learn
from its actions.

Learning can be de�ned as change in behaviour through experi ence. So,
by learning one can improve the behaviour over time.

A learning automaton is a decision making device which is abl e to oper-
ate in an unknown– and non-deterministic environment. It is able to learn
by interacting with the environment and updating its strate gy for choosing
the next action based on the response from the environment. T he automa-

11

CHAPTER 2. RELATED WORK

ton chooses from a set of actions, and the response from the en vironment
is positive or negative . Figure 2.3 illustrates the interaction between a two-
action automaton and its environment. The automaton update s its proba-
bility for choosing its next action based on the response fro m the environ-
ment.

Figure 2.3: A learning automaton interacting with the envir onment

2.4.1 Learning algorithms

There are several algorithms for how to learn. The most resea rched clas-
si�cation is the reinforcement algorithms . These algorithms are based on
the automaton being under constant supervision, ie. the aut omaton will al-
ways get a response from the environment for every action. Ho wever, it is
assumed that the responses are not always correct, ie «the te acher» is not
always correct. In real life, this situation is not uncommon . The teacher
does not always give the student a correct answer, and the ans wer does not
necessarily have to be correctly interpreted by the student . The following
paragraphs cover the mainly used reinforcement algorithms .

Linear Reward Inaction

The linear reward inaction algorithm, or the L RI algorithm, updates the
probabilities only when it receives positive response from the environment.
In the case of negative response from the environment, penal ty will be ig-
nored.

This algorithm is said to be expedient and � -optimal in stationary ran-
dom environments, which means that it performs better than c hoosing
purely random actions. However, because of its non-ergodic behaviour, it
is possible to get stuck in an absorbing state. This typicall y occurs when
a probability tend to one. If the behaviour pattern should ch ange at this
point, it would take a long time to adapt the probability valu es to the envi-
ronment. This algorithm is also sensitive to its initial pro bability values.

12

CHAPTER 2. RELATED WORK

Linear Reward Penalty

The linear reward penalty algorithm, or the L RP algorithm, updates the prob-
abilities for both positive and negative responses. This al gorithm has also
shown to be expedient, but it is also ergodic. This means that it will not get
stuck in an absorbing state, and it is not sensitive to its ini tial probability
values. This behaviour can be an advantage in non-stationar y environment,
as it quickly adapts when the environment changes.

Linear Reward � -Penalty

This algorithm is similar to the L RP algorithm, except that the penalty learn-
ing rate is lower than the reward learning rate. Because of th is, the be-
haviour changes to � -optimal as well as ergodic, which means it will perform
as optimal as it can.

13

Chapter 3

Network tra�c collector

The network tra�c collector is the �rst part of the proposed s olution. Its
objective is to perform high speed network tra�c accounting and create
tra�c pro�les for later analysis.

3.1 Requirements

The following requirements were set for the network tra�c co llector:

• Must be able to run on the i386 Linux platform.
As Telenor[15] provided me with this hardware, the prototype will be
developed on this platform.

• Must be able to do real-time packet capturing.
The packet capturing must be done in real-time by listening o n net-
work interface card(s).

• Must be able to handle gigabit/s packet rate without signi� cant drops.
DDoS attacks are performed by sending packets in very high sp eed. In
this thesis, the hardware limitations are set to 1-2Gbit/s.

• Must be able to decode packets up to transport layer (layer 4).
For analysis purposes, the proposed method should perform d etailed
accounting up to transport layer, which include TCP, UDP, IC MP, etc.

• Must be able to export captured data.
The data has to be exported as a tra�c pro�le for later analysi s by the
tra�c pro�le analyser .

3.2 Delimitations

The network tra�c collector will only handle IPv4 packets. P ackets using
another network layer protocol will be ignored by the collec tor.

14

CHAPTER 3. NETWORK TRAFFIC COLLECTOR

3.3 Creating tra�c pro�les

A tra�c pro�le attempts to describe the tra�c pattern at a spe ci�c location,
in a speci�c time slot. The goal of the network tra�c collecto r is to create
these pro�les.

In order to describe tra�c, a set of attributes must be select ed. For
the tra�c pro�le proposed in this thesis, the following attr ibutes will be
included:

• Packet and byte count for sent- and received IP packets.

• Packet and byte count for sent- and received TCP packets.

• Packet and byte count for sent- and received UDP packets.

• Packet and byte count for sent- and received ICMP packets.

• Packet and byte count for sent- and received for OTHER layer 4 proto-
cols.

These statistics will be collected during a 1 minute time win dow. At the
end of each tra�c pro�le, a new 1-minute-pro�le will be creat ed, and the
recently populated pro�le will be exported to a database for analysis. This
process is described in algorithm 2.

Algorithm 2 Creating tra�c pro�les
Require: Pro�le currentPro�le
Require: Pro�le previousPro�le

loop
currentPro�le init new pro�le
repeat

populate currentPro�le
until time interval is reached
previousPro�le currentPro�le
export previousPro�le {non-blocking}

end loop

3.4 Sampling algorithm

DDoS attacks are usually aimed at a speci�c victim. Therefor e, it is likely
that under an attack, most of the tra�c against the home netwo rk is di-
rected against the victim. The optimal sampling solution in the case of
detecting the attack would be sampling all packets against t he victim. Since
it is very di�cult to know this prior to an attack, another sol ution could be
sampling all packets on the network. The downside of this met hod is that
it would exhaust the resources of the monitoring device on a b usy network.

15

CHAPTER 3. NETWORK TRAFFIC COLLECTOR

The sample-and-hold algorithm described in section 2.2.1 on page 7,
aims at identifying large �ows and ignoring the small and is w ell suited
for this kind of application. I will use this sampling algori thm in order to
identify the «popular destination» in the home network.

3.5 Data-structure

The data-structure used in the collector is based on the MULT OPS data-
structure, which is described in detail in section 2.2.2 on p age 9. One of the
biggest advantages of the MULTOPS data-structure is the O„ 4…lookup per-
formance for a single IP address. In order to keep the number o f «dropped»
packets to a minimum, an e�cient lookup algorithm is therefo re important
when performing high speed tra�c accounting.

Another advantage of the MULTOPS data-structure is that it k eep statis-
tics for subnet pre�xes at di�erent aggregation levels. Thi s allows me to
manage the IPv4 address space using CIDR notation, which is m ore e�cient
than handling signi�cally larger sets of single IP addresse s when consid-
ering reactive methods such as IP �ltering on routers. The mo re �lters
you apply on your router, the more it a�ects the router's perf ormance. If
you wish to deny tra�c from 192.168.0.[0..255] , clearly it makes more
sense to block the 192.168.0.0/24 subnet rather than blocking single IP
addresses 192.168.0.0 , 192.168.0.1 , 192.168.0.2 , . . . , 192.168.0.255 .

As previously mentioned, the original MULTOPS heuristic mo nitored
real-time packet rate statistics. For this method I have cho sen to collect
more detailed statistics, such as the protocol distributio n. Therefore, as
shown in �gure 3.1 on the following page, the following exten sions to the
data-structure has been made:

• The Record will include the following statistics:

– Received IP packet count

– Sent IP packet count

– Received IP byte count

– Sent IP byte count

– : : : (same for TCP, UDP, ICMP and OTHER.

A complete list of the Record structure attributes can be found in ap-
pendix A on page 46.

Also, unlike the original MULTOPS heuristic, which continu ously mon-
itor incoming- and outgoing packet rates, the algorithm pro posed in this
thesis will collect detailed tra�c statistics for a given ti me interval and ex-
port this as a tra�c pro�le. At the end of each interval, the tr a�c pro�le
will be exported to a database, while a new pro�le is created a nd initialised
for further accounting.

As mentioned in section 2.2.2 on page 9, the original MULTOPS method
has two «operating modes»; victim-oriented mode or attacke r-oriented mode.

16

CHAPTER 3. NETWORK TRAFFIC COLLECTOR

Figure 3.1: Extending MULTOPS

17

CHAPTER 3. NETWORK TRAFFIC COLLECTOR

Both of these modes has their strengths and weaknesses, whic h is described
in section 2.2.2 on page 9. The method proposed in this thesis attempts to
take advantage of both of these modes by splitting the accoun ting process
in two phases.

The �rst phase operates in victim-oriented mode by performi ng detailed
accounting on IP addresses de�ned by the home network. When a packet
destined for an IP address located in the home network, recor d attributes
such as:

• ip_recv_pkt

• ip_recv_bytes

• tcp_recv_pkt

• tcp_recv_bytes

• : : :

are incremented. And for outgoing packet originating from t he home net-
work, the following record attributes are updated:

• ip_sent_pkt

• ip_sent_bytes

• tcp_sent_pkt

• tcp_sent_bytes

• : : :

The second phase of the accounting algorithm is attacker ori ented. How-
ever, I have chosen to call this mode «selective» attacker mode as it is not
equal to MULTOPS attacker mode. The di�erence between the tw o modes is
that selective attacker mode only does accounting for source addresses tha t
are connected to destinations accounted in victim mode. Thi s is due to the
chosen sampling algorithm described in section 3.4 on page 1 5. Source ad-
dresses of packets not directed against a sampled destinati on will therefore
not be accounted. In other words, only source addresses that send packets
to a top destination will be sampled. The Record updating algorithm can be
described with the pseudo code shown in algorithm 3 on the nex t page, and
algorithm 4 on the following page shows how the two accountin g phases are
combined. Figure 3.2 on page 20 gives an illustration of how t he algorithms
work together to build a tra�c pro�le.

The tree behaviour is similar to the behaviour described in 2 .2.2 on
page 9. There is one signi�cant di�erence however, since I am not tracking
packet rate statistics in a continuous manner, but rather sa mpling packet
statistics (incrementing values) in discretised time slots , the tree will never
contract at any time, only expand within a pro�le's time slot . The tree will
expand when a packet count or packet byte count exceeds a thre shold value
for the given tra�c pro�le. The expansion algorithm can be de scribed with
the pseudo code given in algorithm 5 on the next page.

18

CHAPTER 3. NETWORK TRAFFIC COLLECTOR

Algorithm 3 Record updating algorithm
Require: Record rec
Require: Packet pkt

if incoming then
increment rec's ip_recv_pkt
add pkt.size to rec's ip_recv_bytes
increment rec's tcp_recv_pkt
...

else {outgoing}
increment rec's ip_sent_pkt
add pkt.size to rec's ip_sent_bytes
increment rec's tcp_sent_pkt
...

end if

Algorithm 4 Accounting phases
Require: Record recDestination
Require: IP destination

if sample all packets to destination then
recDestination get record for destination
update recDestination {phase 1}
update recDestination's MULTOPS source tree {phase 2}

end if

Algorithm 5 Expansion algorithm
Require: Record rec
Require: Table recParent

if rec's ip_recv_bytes > limit then
if rec has no child table and recParent is not deepest level then

create new child table under rec
end if

end if

19

CHAPTER 3. NETWORK TRAFFIC COLLECTOR

Figure 3.2: Building a tra�c pro�le

20

CHAPTER 3. NETWORK TRAFFIC COLLECTOR

3.6 Exporting tra�c pro�les

As the tra�c pro�les are created by the network tra�c collect or, they need
to be exported to a database for further analysis. The tra�c p ro�le database
is very simple and is built up by 5 tables; src_acc which holds «attacker ori-
ented» accounting statistics, dst_acc containing «victim oriented» statis-
tics, a profile table holding start- and end time-stamps for each pro�le,
and src and dst tables holding source IP addresses with ip pre�x and des-
tination addresses, respectively. Their relations are ill ustrated in �gure 3.3.

Figure 3.3: Exporting tra�c pro�les

21

Chapter 4

Tra�c pro�le analyser

The second part of this thesis consists of developing a tra�c pro�le anal-
yser. Its task is to iterate through all pro�les generated by the network
tra�c collector and look for anomalies and indications of at tack tra�c.

4.1 Attack characteristics

In order to detect an attack, some characteristics of hostil e tra�c is needed.
Based on personal experience as a security analyst at Teleno r Security Op-
eration Centre[15] (TSOC), DDoS tools found on compromised ho sts and
the increased popularity in recursive DNS attacks[17], larg e UDP packets
against a victim with very few, or none, packets in opposite d irection can
be considered as attack tra�c with high probability. This is of course not
necessary valid for all tra�c on the Internet, so a few false p ositives should
be taken into account.

Considering the TCP protocol, connections with less than 3 p ackets can
also be �agged as possible attack tra�c. This is also one of th e rules used
by Peng et al. in [11].

Another characteristic of attack tra�c, as observed near th e victim, is a
sudden rise in incoming packets. This can be detected by moni toring the
changes in packet- and byte count for each popular destinati on. However,
this method is prone to false positives in the case of a �ash crowd . A �ash
crowd event occurs when a large amount of hosts are visiting t he same
web site simultaneously, and will therefore have the same ch aracteristics
as an attack, considering incoming packet- and byte count. I n an attempt
to distinguish �ash crowds from actual attacks, we make an as sumption
that normal tra�c packet rate in one direction is proportion al to the packet
rate in the opposite direction. If a dis-proportionality oc curs, this can be
considered as a possible attack.

In [6], Jung et al. has observed that in the case of a �ash crowd, m ost of
the source addresses are already known, ie. they have visite d the web site
previously, while in the case of a DDoS attack, most of the sou rce addresses
are new to the web site. This is also a characteristic which wi ll be taken into
account in the proposed method.

22

CHAPTER 4. TRAFFIC PROFILE ANALYSER

4.2 Source IP Monitoring

In [11], Peng et al. proposed a method of detecting DDoS attack s using
source IP address monitoring. This method is based on the �nd ings in [6],
and monitors the increase in new addresses over a certain per iod. The
method is described in detail in section 2.3 on page 11 and has some sim-
ilarities with the method proposed in this thesis. We both mo nitor source
IP addresses and, at some point, decides whether they are par ticipating in
an attack or not. However, an important di�erence between th e two is that
the method proposed in [11] only monitor single IP addresses, while in this
method, due to the MULTOPS datastructure, source IP address es in addition
to their subnets are monitored.

Because of the mentioned di�erence between the method propo sed in
[11] and this method, another learning- and decision method m ust be used
regarding the source IP address monitoring. Consider the fo llowing exam-
ple: A host at 192.168.3.25 is visiting a web site at the protected network.
The method proposed in [11] sees this as a new source, recogni ses this as
legitimate tra�c and is therefore added to the database of kn own source IP
addresses. Now, if we try to combine this with the tra�c pro�l e proposed
in this thesis, 192.168.3.0/24 , 192.168.0.0/16 and 192.0.0.0/8 , de-
pending on expansion threshold values, will be added to the l ist of known
source IP addresses. Next, assume that an attack is initiate d from multiple
sources in the following range; 192.127.0.0/16 . These hosts will not be
recognised as attackers since 192.0.0.0/8 is already in the database of
known source IP addresses.

In an attempt to solve this issue, I have chosen to let learnin g automata
help to decide whether a source- IP address or subnet is legit imate or not.
This method will be described in the following section.

4.3 Monitoring source IP addresses and subnets

To summarise, the following characteristics are considere d when looking
for attack tra�c:

• Sudden increase in incoming packets

• Incoming/outgoing packet rate dis-proportionality

• Very short/incomplete TCP connections

• Increase in new source IP addresses

As mentioned in section 2.4 on page 11, learning automata are deci-
sion making devices that are able to operate under an unknown - and non-
deterministic environment – which is an environment that ma tches the In-
ternet. The purpose of the automaton to be used in this thesis is to decide
whether a source IP address or subnet is participating in an a ttack or not.

23

CHAPTER 4. TRAFFIC PROFILE ANALYSER

For an automaton to be able to learn, it needs a teacher. This t eacher
will be an analyser that operates similar to the decision eng ine proposed by
Peng et al. in [11]. The analyser will iterate through all reco rds in the traf-
�c pro�le and will consider disproportional packet rates an d suspiciously
short TCP connections as a sign of possible attack tra�c. In a ddition, the
analyser will consider large amount of ICMP packets and vari ous rare pro-
tocols (OTHER) as anomalous.

The analyser, or the teacher, should recognise typical atta ck tra�c pat-
terns based on the accounting information given in the tra�c pro�les. This
includes packet statistics on IP , TCP, UDP, ICMP and OTHER.

I assign one learning automaton to each source IP address or s ubnet.
This automaton will represent the threat value for the given source IP ad-
dress or subnet. Theoretically, I could assign four automat a to each source
IP address or subnet, each representing the threat value for TCP, UDP, ICMP
and OTHERprotocol for the given source, respectively. The advantage s of
«splitting» the automaton into four parts is to di�erentiat e between, for
example, legitimate TCP tra�c and hostile UDPtra�c. However, by using
a single automaton per source, all protocols above IP will «share» threat
value, which will simplify the analysis later on. This will b e discussed fur-
ther in section 7.3.4 on page 38.

The automaton work with the analyser as follows: When a new tr a�c
pro�le has been created, each automaton will, based on its in ternal state
(ie. threat value), decide whether its assigned source addres s is «good» or
«bad». Next, the analyser looks at the actual tra�c pro�le st atistics, con-
sidering IP , TCP, UDP, ICMP and OTHER, and either agrees or disagrees with
the automaton on its decision. If the automaton and the analy ser consent,
the analyser will give positive feedback to the automaton fo r job well done.
If they, on the other hand, do not consent, the analyser will g ive negative
feedback.

Based on whether the automaton receives positive or negativ e feedback
from the analyser, this will a�ect the next decision it makes . How the
automaton handles the feedback depends on its updating algo rithm. In
section 2.4.1 on page 12, I have given an overview of the mainl y used re-
inforcement algorithms that are of interest. In this thesis I am using the
LRI algorithm, which means that on positive feedback, the autom aton is re-
warded, but will ignore negative feedback. The L RI updating algorithm used
in this thesis can be described with the pseudo code given in a lgorithm 6
on the next page. The reason for choosing this algorithm will be discussed
in the following paragraph.

As described in section 2.4.1 on page 12, the L RI algorithm has an ab-
sorbing behaviour, which is generally not suitable for dyna mic environ-
ments. However, in this thesis I make the assumption that a so urce does
not (usually) change its behaviour from «good» to «bad», or vi ce versa. As
this algorithm has an absorbing behaviour, it is also sensit ive to its start-
ing conditions. This �ts very well with the proposed method. The starting
condition for the automaton is the «threat value», which is a value between
0 and 1. Threat values close to 0 indicates low probability of «bad» source,

24

CHAPTER 4. TRAFFIC PROFILE ANALYSER

Algorithm 6 Linear reward-inaction updating algorithm
Require: Decision �
Require: LearningRate a
Require: State p {probability of choosing bad tra�c}
Require: Feedback �

if � is positive and � is bad tra�c then
p ƒ p ‚ a � „1:0 � p…

else if � is positive and � is good tra�c then
p ƒ p � a � p

else {� is negative}
ignore negative feedback

end if

while values close to 1 indicates high probability of «bad» s ource. I have
chosen a starting value of 0 :5, which means that all new source IP addresses
and subnets will get a threat value of 0 :5 once they are detected.

Once a new source is detected, the learning automaton will de cide whether
it is a «bad» or a «good» source. With a starting condition of 0 :5, it will
guess «bad» with a probability of 50%. Depending on whether t he analyser
consents with this decision, the automaton will be rewarded and updates
its threat value, or it will simply ignore the feedback and st ay at 0 :5.

Next time the source appears in a tra�c pro�le, the automaton will de-
cide between «good» or «bad», based on its current threat val ue. If this
value is below 0 :5, it will choose «good» with a higher probability than
choosing «bad».

Let us consider the example from section 4.2 on page 23 again w here a
host at 192.168.3.25 is visiting a web site. This host will now be detected
as a new source, as well as its subnets 192.168.3.0/24 , 192.168.0.0/16
and 192.0.0.0/8 , and they all initially get a threat value of 0 :5. As this
source appears in several tra�c pro�les over time, its threa t value will
decrease, and the probability of choosing «good» increases . Next, an at-
tack is initiated from the 192.127.0.0/16 network. The automaton at
192.0.0.0/8 will most likely decide «good» source because of its history ,
which is re�ected by the threat value, but the analyser will n ot consent,
and the automaton ignores the feedback. However, at some poi nt, the au-
tomaton for 192.0.0.0/8 will choose «bad», and the analyser will consent,
causing the automaton to be rewarded according to its updati ng algorithm.
Note that the automaton will choose «good» with a higher prob ability than
choosing «bad». At the same moment, 192.127.0.0/16 , 192.127. * .0/24
and 192.127. * . * are detected as new sources (depending on the expansion
threshold values), and will have an initial threat value of 0 :5. Now, these
new sources has a higher probability of choosing «bad» than 192.0.0.0/8 ,
which means that the new sources will increase their threat v alues above
0:5.

In order to block this attack, you want to create �ltering rul es. How-
ever, you want to maintain network performance, so you want t o apply as

25

CHAPTER 4. TRAFFIC PROFILE ANALYSER

few �ltering rules as possible, but still be able to block the attack. Let
us assume there was 10,000 hosts participating in the attack behind the
192.127.0.0/16 network. Instead of creating 10,000 �ltering rules, it is
obvious that you rather create one rule for the entire 192.127.0.0/16 net-
work, or maybe even the 192.0.0.0/8 network if the attack was coming
from the 192.129.0.0/16 network as well. In the latter case, depending on
how much legitimate tra�c was coming from 192.0.0.0/8 , it could be rea-
sonable to block the entire network. However, if there was mu ch legitimate
tra�c from the 192.168.0.0/16 network, this would be re�ected in the
192.0.0.0/8 threat value, indicating that blocking the entire 192.0.0.0/8
network would cause collateral damage.

As a �nal note, I will summarise some of the key points of this c hapter.
The idea behind using learning automata is to combine charac teristics, such
as packet rate dis-proportionality and occurrence of new so urces, with the
tra�c pro�les provided by the network tra�c accounter. The p oint is that
each automaton will be able to adapt itself to the tra�c pro�l es and give
an indication of whether a source is participating in an atta ck, or not. The
unique properties of the learning automaton makes it able to handle «noise»
(ie. when the analyser makes wrong decisions) quite well. As a consequence
of the chosen L RI algorithm, this also makes the method robust considering
IP spoo�ng.

26

Chapter 5

Experimental setup and
simulations

In this chapter I will describe the experimental setup and si mulations con-
ducted with the network tra�c accounter and the tra�c pro�le analyser.
This includes my network setup and con�guration in addition to simulat-
ing normal tra�c and DDoS attack tra�c.

5.1 Network setup

The following hardware was provided by Telenor[15]:

• 3 x IBM xSeries 1U servers equipped with Broadcom 1000SX net work
interface cards.

• 2 x Linksys gigabit switches using 1000SX.

Using this hardware I created a network environment as shown in �g-
ure 5.1 on the following page. I dedicated one server for tra� c pro�ling,
normal tra�c generation and attack tra�c generation, respe ctively.

The server dedicated to tra�c pro�ling was equipped with two Broad-
com 1000SX network interface cards, each receiving normal t ra�c and hos-
tile tra�c, respectively. In a production environment, it m ight not be rec-
ommended using a port mirroring solution as described in �gu re 5.1 on the
next page due to a potential loss in network performance on th e a�ected
switch. A more appropriate solution would be using a passive network tap,
such as the ones provided by [10], in order to eliminate this lo ss of per-
formance. However, using a passive tap causes incoming pack ets to be re-
ceived on one card, while the outgoing tra�c would be receive d by a second
card.

5.1.1 System con�guration

Another advantage of assigning incoming- and outgoing pack ets to a ded-
icated network interface card is the «load balancing» of int errupts. Under

27

CHAPTER 5. EXPERIMENTAL SETUP AND SIMULATIONS

Figure 5.1: Network setup

an attack, the number of packets arriving at the card is massi ve, and this
causes many interrupts to the CPU.

In this setup I had a dual Intel Xeon CPU with HyperThreading e nabled,
which allowed me to work against four logical CPUs in Linux. B y overriding
the kernel IRQ load balancing, I assigned a logical CPU to eac h network
interface card. By doing this, the assigned CPUs would never be interrupted
by anything else than network activity on their respective c ards.

A third logical CPU was assigned to the tra�c pro�ler applica tion. Any
other interrupt request was handled by the last logical CPU, which included
the tra�c pro�le analyser and general management.

5.2 Tra�c simulations

Using the network setup as described in previous sections, s imulations of
network activity was needed. I will describe how this tra�c w as created in
the following sections.

5.2.1 Simulating normal tra�c

In order to simulate normal tra�c, I used the DARPA IDS evalua tion datasets[7]
as a base. This tra�c was injected into the gigabit link using tcpreplay [14],
which is a tool designed to do exactly this.

In order to achieve high speed, I had to speed up the tra�c, ass uming
that this would not a�ect the correctness of my experiment.

28

CHAPTER 5. EXPERIMENTAL SETUP AND SIMULATIONS

5.2.2 Generating high speed tra�c

The Linux kernel o�ers a module called the Linux packet gener ator, or
pktgen [16] for short. This is a tool for generating packets at a very h igh
speed at the kernel level, which I used for testing the networ k tra�c ac-
counter performance.

However, the packets generated by this tool does not resembl e «nor-
mal» attack tra�c. To simulate a distributed attack, we want our source ad-
dresses to be random. Although this tool can be con�gured to u se random
source addresses, the tra�c pattern it generates is too pred ictable because
of its single threaded nature. The packet generator will gen erate a �xed
number of packets with a random source address, then it will c hoose an-
other source address and generate a �xed number of packets ag ain. From
the victim's point of view, it looks like the attacking sourc es are sending
their packets in turn, and once an attacker is �nished, it nev er sends a
packet again. In real life, however, the sources are sending their packets
simultaneously .

5.2.3 Simulating a distributed denial of service attack

To simulate a distributed denial of service attack, I �rst ma de a quick anal-
ysis of a DDoS attack tool which has been found on a compromise d web
server. This was a tool that generated small, non-spoofed UD P packets with
random destination ports, depending on parameters given at startup time.

However, I have also experienced that UDP packets being part of an at-
tack, are often much larger than packets generated by the too l mentioned
above, eg. [17].

Therefore, in an attempt to make my simulated tra�c blend in w ith
normal tra�c, I set the packet size to be approximately 600 by tes.

In order to make my tra�c look distributed, I have to spoof the source
address. Spoo�ng a packet's source address can be done with a tool called
hping [13], which is a tool designed to create any arbitrary packet. Using
this tool I created mid-size UDP packets with a spoofed sourc e.

The remaining issue is to make hping continuously send packets with
di�erent source addresses. For this I wrote a small multi-th readed script
which created a large array of random IP addresses. For each I P address
in this array, I started a new thread with hping , generating UDP packets
against my victim host with random destination port and with the given IP
address as source.

5.3 Experiments

In this section I will describe the conducted simulations.

1. Background tra�c replay
In this experiment, I will measure the replay packet rate of t he DARPA
IDS evaluation datasets using two computers simultaneousl y.

29

CHAPTER 5. EXPERIMENTAL SETUP AND SIMULATIONS

2. Packet generation using pktgen
In this experiment, I will measure the network tra�c account er per-
formance using the pktgen tool from two computers simultaneously.

3. Combining background and attack tra�c
In this experiment, I will measure the network tra�c account er per-
formance using two computers, each generating attack- and r eplaying
background tra�c, respectively.

4. Distributed denial of service attack
In the last experiment, I will test the tra�c pro�le analyser by replay-
ing background tra�c during the entire experiment from one c om-
puter. After 30 minutes, I will initiate a distributed denia l of service
attack from the second computer. The attack will last for 15 m inutes.

30

Chapter 6

Results

In this chapter I will present the results of the conducted si mulations de-
scribed in the previous chapter.

6.1 Network tra�c accounter performance

The network tra�c accounter was con�rmed to process backgro und tra�c
(1) at a rate of � 600 Mbit/s, with an average packet size of � 520 bytes.
This was the maximum packet rate for the background tra�c I wa s able to
replay. On the other hand, I achieved a much higher packet rat e for the
attack tra�c. Using the pktgen module from the Linux 2.6 kernel (2), I was
able to achieve a constant bit-rate of 1.24Gbit/s, with spik es up to 1.8Gbit/s.
Combining the background tra�c and the pktgen generated tra�c (3), I
was able to generate/replay packets at a rate of � 1.0GBit/s. Combining
background tra�c and the multi-threaded hping DDoS simulation, I was
able to generate/replay packets at a rate of � 700MBit/s. All of the cases
above were processed by the network tra�c accounter without signi�cant
packet drops.

6.2 Tra�c pro�le analyser

When it comes to general attack detection, the attack simula tion conducted
in this thesis was easily spotted by a simple bandwidth graph for each popu-
lar host. As shown in �gure 6.1 on the following page, which is taken from a
simple web-based bandwidth monitor interface developed du ring this work,
we see a sudden increase in bandwidth for the victim at 172.16.114.50 .
We also see that other hosts in the same network was experienc ing a sig-
ni�cant packet drop. The host on top in �gure 6.1 is being atta cked, while
other hosts (shown below) are experiencing signi�cant packe t drops.

During the tra�c pro�le analyser test (4), all actions made by t he learn-
ing automata were recorded for analysis. In this experiment , � 1400 di�er-
ent sources were detected (this includes /8 , /16 , /24 and /32 IP pre�xes).
For simplicity, I will focus on two IP addresses in the same /8 subnet, one

31

CHAPTER 6. RESULTS

Figure 6.1: Accounting overview during an attack.

32

CHAPTER 6. RESULTS

generating normal tra�c, while the other one is participati ng in the attack;
161.181.250.169 and 161.80.155.233 , respectively. Figure 6.2 illustrates
how the two IP addresses share the same /8 subnet and its learning automa-
ton.

Figure 6.2: Two IP addresses sharing a /8-subnet

In this experiment, the threshold value for expanding the da ta-structure
was set to 1 packet. This means that when a packet from 161.181.250.169
arrived, 161.0.0.0/8 was accounted, next 161.0.0.0/8 and 161.181.0.0/16 ,
and so on. Because of this, we see all subnets of the IP address already at
the �rst pro�le (since it sent 4 or more packets). Each subnet, a s described
in section 4.3 on page 23, has its own learning automaton.

Figure 6.3 on the following page shows how the two IP addresse s' and
subnets' learning automata developed over time. In the �rst 30 pro�les,
we only see the subnets connected to the 161.181.250.169 address, as ex-
pected. We also see that this tra�c is recognised as normal tra�c, and that
the automata were rewarded when they made the correct decisi on (accord-
ing to the analyser). Sometimes, the automata made the wrong d ecisions,
in these cases penalties were ignored and the threat values r emained un-
changed.

Since there is nothing else a�ecting the learning automata f or
161.181.250.169 and its subnets, they will eventually converge to the
same threat value.

33

CHAPTER 6. RESULTS

Figure 6.3: Pro�le development

After the 30 th pro�le, 161.80.155.233 is added to the source list. As
expected with new sources, the threat value was initialised to 0 :5. And,
as with 161.181.250.169 , all subnets were added within the same pro�le,
however the 161.0.0.0/8 is already existing.

As expected, 161.80.0.0/16 , 161.80.155.0/24 and
161.80.155.233/32 increased their threat values as their tra�c was recog-
nised as hostile. On the other hand, 161.0.0.0/8 was now a�ected by
both attack tra�c and normal tra�c. During the attack period , we see that
161.0.0.0/8 is increasing slightly. However, due to its history it will n ot
increase in the same speed as 161.80. * . * / * . It is also considered a bad
candidate for blocking due to the low threat value.

Once the attack period is over, we see that 161.0.0.0/8 is instantly de-
creasing its threat value. 161.181.0.0/16 , 161.181.250.0/24 and
161.181.250.169/32 has during the attack period been recognised as nor-
mal tra�c, which is re�ected by their decreasing threat valu es.

34

Chapter 7

Discussion

In this chapter I will discuss the work that has been done in th is thesis, and
the results that were achieved during the simulations.

7.1 Tra�c simulations and characteristics

The background tra�c simulations conducted in this thesis w as based on
the DARPA IDS evaluation datasets from 1999. Based on the sig natures/rules
of the tra�c pro�le analyser, none of the background tra�c wa s detected
as possible attack tra�c. However, in a production environm ent which has
an up to date tra�c scenario, including «new» services such a s Voice over
IP, P2P and streaming tra�c, one should expect false positiv es (ie. noise)
due to some dis-proportionality in the protocols. E.g. when streaming au-
dio/video from a server, most of the packets are incoming, fr om a client's
point of view. This can probably be handled by creating rules for these traf-
�c patterns, but it requires a more in-depth study on those pr otocols than
what has been conducted in this thesis.

The attack tra�c simulations in this thesis was mainly based on ex-
periences from TSOC and DDoS tools found on compromised comp uters.
Observations of recent DDoS attacks shows that UDP tra�c is b eing used
in combination with DNS re�ection- and ampli�cation attack s[17]. In DNS
ampli�cation attacks, the number of attacking hosts (actual ly legitimate
third-party DNS servers) are usually lower than the number o f compromised
hosts in a botnet. However, when it comes to detecting this tr a�c, the same
method can be applied when detecting any other sources parti cipating in
an attack. There is one catch, though; the «attacking» DNS se rvers could be
used for legitimate purposes by the victim network. By block ing all tra�c
from these DNS servers, collateral damage might be in�icted . In order to
mitigate such attacks, where both attack- and normal tra�c i s originating
from the same host, a deeper packet inspection could be perfo rmed in or-
der to distinguish between «good» and «bad» packets. Since d eep packet
inspection like this can not be performed by normal routers, an in-line de-
vice which is able to block packets based on deep packet analy sis, is re-
quired. However, deep packet inspection can be very resourc e intensive,

35

CHAPTER 7. DISCUSSION

and would not perform very well at high speed. In the case of DN S ampli�-
cation attack, another option that would not require an in-l ine device could
be blocking or rate-limiting unusually large UDP packets, c oming from the
respective DNS server. Although this option would likely mi tigate attacks
using very large DNS responses, it would also cause some coll ateral damage
due to cases where legitimate DNS responses in fact are large . On the other
hand, in the case where the DNS server is �ooding the victim wi th normal
sized DNS responses, collateral damage is usually inevitab le without a deep
packet inspecting in-line device.

7.2 Data-structure

The data-structure in this thesis is based on MULTOPS. The MU LTOPS data-
structure was designed to be a lightweight structure for «li ve» monitoring
of tra�c rates at di�erent aggregation levels. The major di� erence with
MULTOPS and the data-structure used in this thesis is that MU LTOPS op-
erates in a continuous manner with a single instance of the da ta-structure,
while in this thesis a new data-structure is created at every 1 minute time
slot. Another major di�erence between the two methods is the amount of
information that is being collected. The method proposed in this thesis
collects information up to the transport layer. By doing thi s, the tra�c pro-
�le analyser has a much broader basis for correctly detectin g attack tra�c
than simply monitoring incoming- and outgoing tra�c rates. The reason
for this is that the tra�c pro�le analyser can have multiple s ignatures or
rules, which describes attack tra�c at a more detailed level than the only
rule looking for disproportional tra�c rates.

One of the advantages with MULTOPS is that it is able to operat e within a
�xed memory budget. To be able to do this, it contracts when it reaches its
upper memory limit. The structure used in this thesis, on the other hand,
does not have this functionality. For each structure that is created in a time
slot, the structure will only expand, until the next time slo t arrives. At the
start of each time slot, a new, empty data-structure is creat ed. Because of
this, and the fact that it is collecting much more informatio n, the structure
used in this thesis is more resource intensive. However, I do not �nd this of
big concern, since the tra�c pro�le computer has a much highe r memory
budget than the network devices MULTOPS was originally desi gned for.

When it comes to response time, MULTOPS will report and react to
anomalous behaviour once it is detected, while the proposed method in
this thesis will not report until it has reached the end of the current time
window. This creates a possible response delay of 1 minute wh en using 1
minute time slots. The time slots could be decreased for the c osts of more
resources, however I �nd that a 1 minute delay is acceptable.

36

CHAPTER 7. DISCUSSION

7.3 Source behaviour monitoring and learning automata
algorithms

In this section I will discuss the choice of learning automat a algorithm used
in this thesis, and how it would react to di�erent types of att acks.

7.3.1 Learning automata algorithms

The learning automata algorithm used in this thesis is the L RI algorithm.
The main reason for choosing this algorithm was because of th e assumption
that the behaviour of source IP addresses would not change fr om «good»
to «bad», or vice versa. This assumption was built on the work by Jung et
al. in [6], which claims that under an attack, most of the sourc es are new to
the victim.

The LRI algorithm operates in a such way that it only updates its prob a-
bility value for choosing an action when it receives positiv e feedback from
the environment for the chosen action. The consequence of th is is that if
an automaton repeatedly chooses action «good tra�c», and re ceives posi-
tive feedback from the environment (ie. the analyser recogni ses the tra�c
as normal) for this action, the probability of choosing acti on «bad tra�c»
moves towards 0. Therefore, in cases where the analyser reco gnises the
tra�c as «bad tra�c», the automaton will most likely choose a ction «good
tra�c» (assuming the history stated above). However, it will r eceive nega-
tive feedback from the environment, causing the probabilit y values to re-
main the same. What just happened is that the automaton inter preted the
«bad tra�c» as a mistake by the analyser, or noise, which migh t occur in
a random environment. In order for the automaton to «change d irection»,
the analyser must recognise tra�c as «bad tra�c» and the auto maton must
choose action «bad tra�c» despite the lower probability.

An optional algorithm, like the L RP algorithm, updates its probability
values on both positive and negative feedback. A consequenc e of this is
that the automaton much more quickly adapts to changes in beh aviour than
when using L RI. This means that if the automaton's probability of choosing
action «good tra�c» is very close to 1 :0 and the analyser recognises tra�c
as «bad tra�c», the automaton would likely choose action «go od tra�c»
and receive negative response from the environment. Althou gh it receives
negative response, the automaton will act on this penalty by increasing its
probability of choosing «bad tra�c» next time.

A third algorithm, such as the L R� P, will have the same characteristics as
the L RP. However, in the case of a penalty the learning rate would be l ower
than in the case of a reward for the L R� P. Because of this, automata acting
on penalties can be more sensitive to noise and IP spoo�ng. I w ill discuss
the problem of IP spoo�ng in the following section.

37

CHAPTER 7. DISCUSSION

7.3.2 IP spoo�ng

Because of this absorbing behaviour of the chosen L RI algorithm, the method
will be fairly robust against IP spoo�ng attacks, where the g oal is to disrupt
normal tra�c by attempting to in�uence the learning automat a for the re-
spective sources.

So, let us assume that the attacker has knowledge of how this m ethod
works and what sources are using the target's services. His g oal is to disrupt
the normal activity, so the attacker commands his bots to sen d arbitrary
packets against the victim, using random source addresses t hat are known
to the victim. This scenario would contradict the �ndings in [6] by Jung
et al., however a highly targeted attack could be arranged like this. To the
victim, it appears that visiting hosts has changed their beh aviour, and the
learning automata are having a hard time «changing directio n» of the source
behaviour.

So how do you mitigate a such highly targeted attack? This is v ery dif-
�cult. One option could be using another algorithm for our le arning au-
tomata, such as the L RP which adapts much more quickly to changes in
behaviour. However, by doing to this, you might end up blocki ng everyone
who usually visits your site, which in itself causes a denial of service. The
proper way to handle this would be applying ingress �ltering on all edge
routers in your (or your upstream ISP) network, which would e� ectively
drop spoofed packets before doing too much damage.

7.3.3 Sources changing behaviour

Another problem arises if the sources behaviour actually does change, and
not because of a spoo�ng attack. Although this contradicts t he �ndings
in [6] by Jung et al., it does not mean it can not happen. An impo rtant
di�erence between the two scenarios, targeted IP spoo�ng an d changing
source behaviour, is that the tra�c coming from a IP spoo�ng a ttack can
potentially generate a much higher tra�c rate than sources w hich happen
to be infected by bot agents in addition to be visitors of the v ictim site. In
these cases, it might be su�cient to block the sources that ar e attacking
the victim and being new to the victim, but allowing tra�c fro m the known-
but attacking hosts. If the remaining attack tra�c rate is hi gh enough to
sustain the denial of service, another method than the one pr oposed in this
thesis should be used, or try increasing the number of learni ng automata
per source as described in the following section.

7.3.4 Increasing the number of learning automata

In cases where you might wish to block hosts generating both a ttack- and
normal tra�c, a possible option could be increasing the numb er of au-
tomata per source. By doing this, each source could have one a utomaton
representing the threat value for TCP, one for UDP, one for ICMP and one
for OTHER. This would also require changes to the tra�c pro�le analyse r,

38

CHAPTER 7. DISCUSSION

as it would need to reward or penalise the respective automat on, based on
what protocol the tra�c is based on. Using several automata p er source,
you have the possibility to distinguish between e.g. normal TCP tra�c and
attacking UDP tra�c from the same source.

7.3.5 Expiration of learning automata states

The method proposed in this thesis does not currently expire the states of
the learning automata. This means that as the time goes by, ea ch source
will have an in�nite past experience. Due to expiring DHCP le ases, it might
be sensible to expire (ie. reset), the learning automaton's pr obabilities if its
respective source has not been observed within a given time p eriod. By not
expiring these states, there is a chance that a source will su ddenly «change
its behaviour» because someone else is currently using the I P address due
to the fact that a DHCP lease expired.

39

Chapter 8

Conclusion and further work

8.1 Conclusion

In this thesis I have proposed and developed a method for dete cting- and
identifying the sources of a distributed denial of service a ttack. There
has been much research in these areas and I have taken advanta ge of sev-
eral previously proposed solutions in the areas of tra�c mea surement and
detection- and identi�cation of denial of service attacks. I have focused on
their strengths and combined them into a robust and e�cient m ethod for
creating- and analysing tra�c pro�les. The proposed soluti on consists of
two parts; a network tra�c collector and a tra�c pro�le analy ser.

My contribution to the area of DDoS detection and identi�cat ion has
been exploring the usage of learning automata for tracking s ource IP address-
and subnet behaviour over time.

I have evaluated the proposed method in a simulated network e nviron-
ment using the DARPA IDS evaluation datasets as background t ra�c, while
simulating a distributed denial of service attack based on e xisting DDoS
attack tools.

The results of the simulations conducted in this thesis show s that the
information provided by the tra�c pro�les, created by the ne twork tra�c
collector, serves as a satisfying base for detecting attack s.

During the simulations, the tra�c pro�les also appeared to p rovide suf-
�cient information for the analyser to separate «good» tra� c from «bad»
tra�c, with a low error probability. However, it is not con�r med that the
proposed method will work optimally in a production environ ment with
various new protocols not included in the DARPA IDS evaluati on datasets,
without the need of modifying or adding rules for the analyse r.

The results also shows that learning automata using the line ar reward-
inaction updating algorithm are able to make a clear indicat ion of whether a
source IP or subnet is participating in an attack or not, with satisfying accu-
racy. This algorithm has also shown to be robust against IP sp oo�ng attacks
aimed at in�uencing legitimate tra�c, however the method ha s shown to be
somewhat vulnerable to sources changing their behaviour fr om «good» to
«bad». Although, this might be handled by expiring the learn ing automata

40

CHAPTER 8. CONCLUSION AND FURTHER WORK

states after a while.
In the case of an attack, �ltering rules can be created based o n the cur-

rent states of the learning automata. Since the proposed met hod is tracking
source IP addresses and subnets, more e�cient rules can be cr eated based
on subnets instead of multiple IP addresses.

8.2 Further work

In this section I will propose a few suggestions for further w ork.

• Increase the number of automata per source
Currently, there has only been conducted simulations with a single
automaton per source. It would be interesting to see how the m ethod
would perform when mixing attack- and normal tra�c from the s ame
source, using four automata per source.

• Increase level of details in tra�c pro�les
Some attacks might be easier to detect and identify if other s tatistics
were available to the analyser, such as port number and time- to-live
distributions. It would be interesting to see how the networ k tra�c
accounter would perform when increasing the level of detail s.

• Updated network environment
The DARPA IDS evaluations datasets from 1999 is outdated. It would
be interesting to see how the proposed method would perform i n a
live production environment.

41

References

[1] Aditya Akella, Mukesh Agarwal, and Ashwin Bharambe. Dist ributed,
pro�le-based ddos detection and mitigation in isp networks , 2004.

[2] Cisco. Cisco ios net�ow - cisco systems. http://www.cisc o.com/.

[3] C. Estan and G. Varghese. New directions in tra�c measurem ent and
accounting, 2001.

[4] S. Floyd, S. Bellovin, J. Ioannidis, K. Kompella, R. Mahaj an, and V. Pax-
son. Pushback messages for controlling aggregates in the ne twork.

[5] T. Gil and M. Poletto. Multops: a datastructure for bandwi dth attack
detection, 2001.

[6] J. Jung, B. Krishnamurthy, and M. Rabinovich. Flash crowd s and denial
of service attacks: Characterization and implications for cdns and web
sites, 2002.

[7] MIT Lincoln Laboratory. DARPA IDS Evaluation Data Sets.
http://www.ll.mit.edu/IST/ideval/.

[8] J. Mirkovic, J. Martin, and P. Reiher. A taxonomy of ddos at tacks and
ddos defense mechanisms, 2001.

[9] Kumpati S. Narendra and Mandayam A. L. Thathachar. Learning au-
tomata: an introduction . Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1989.

[10] NetOptics. Netoptics: Network taps and aggregation sol utions for pas-
sive network access. http://www.netoptics.com/.

[11] T. Peng, C. Leckie, and K. Ramamohanarao. Detecting dist ributed de-
nial of service attacks using source ip address monitoring, 2002.

[12] Martin Roesch. Snort network intrusion detection syste m.
http://www.snort.org.

[13] Sourceforge. hping security tool. http://www.hping.o rg.

[14] Sourceforge. tcpreplay tool, 2000. http://tcpreplay. sourceforge.net/.

[15] Telenor. Telenor Security Services. http://www.telen or.no/bedrift/sikkerhet.

42

REFERENCES

[16] Linus Torvalds. Pktgen: Linux packet generator. http:/ /linux-
net.osdl.org/index.php/Pktgen.

[17] Randal Vaughn and Gadi Evron. Dns ampli�cation attacks, 2006.
http://www.isotf.org/news/DNS-Ampli�cation-Attacks. pdf.

43

Glossary

Ampli�cation attack A re�ection attack where the attacker sends a spoofed
«small» packet against a third-party service, where the re-
sponse packet to the victim is larger than the «small» packet
page 7

Bot Agent Compromised host controlled by the attacker. page 1

Botnet A botnet is a large number of compromised computers that
are used to create denial of service attacks or send spam
page 1

Botnet Server A server which acts as a command and control center for a
network of compromised computers. page 1

Collateral damage In networking; unintendedly a�ecting legitimate network
tra�c . page 7

DDoS Distributed Denial of Service Attack p age 1

DHCP Dynamic Host Con�guration Protocol page 3 8

Flash crowd A �ash crowd event occurs when a large amount of com-
puter hosts are visiting the same web site simultaneously
page 22

Inline device In terms of networking devices, an inline device, as opposed
to a passive device, has the ability to block packets in addi-
tion to monitor. page
35

IP Spoo�ng A technique used for indicating that a packet is coming from
another host. This is engaged by modifying the source IP
address �eld in the packet header page 1 1

Learning automaton A decision making device which is able to operate in
an unknown- and non-deterministic environment . . page 11

P2P Peer-to-peer is a networking type which allows computer
users using the same P2P-protocol exchange �les. Often
used for downloading large �les, such as movies and mu-
sic page
35

44

REFERENCES

Re�ection attack An attack method based on exploiting weaknsesses of
the IP protocols using the IP spoo�ng technique page 7

Streaming A technology that enables playback of audio and video with-
out downloading the entire �le in advance pag e
35

TSOC Telenor Security Operation Center pag e 22

VoIP Technology used to transmit voice conversations over com-
puter networks using the Internet Protocol pa ge
35

Zombie SeeBot Agent . page 1

45

Appendix A

MULTOPS extended
Record-structure

struct _Record
{

/ * ip packets stats * /
u_int32_t ip_recv_pkt;
u_int32_t ip_sent_pkt;
u_int32_t ip_recv_bytes;
u_int32_t ip_sent_bytes;

/ * tcp packets stats * /
u_int32_t tcp_recv_pkt;
u_int32_t tcp_sent_pkt;
u_int32_t tcp_recv_bytes;
u_int32_t tcp_sent_bytes;

/ * udp packets stats * /
u_int32_t udp_recv_pkt;
u_int32_t udp_sent_pkt;
u_int32_t udp_recv_bytes;
u_int32_t udp_sent_bytes;

/ * icmp packets stats * /
u_int32_t icmp_recv_pkt;
u_int32_t icmp_sent_pkt;
u_int32_t icmp_recv_bytes;
u_int32_t icmp_sent_bytes;

/ * other packets stats * /
u_int32_t other_recv_pkt;
u_int32_t other_sent_pkt;
u_int32_t other_recv_bytes;
u_int32_t other_sent_bytes;

46

APPENDIX A. MULTOPS EXTENDED RECORD-STRUCTURE

/ * pointer to child table * /
Table * child;

};

47

	Preface
	Introduction
	Thesis definition
	Delimitations
	Report outline

	Related work
	An overview of denial of service attack methods
	Source address spoofing
	DDoS attacks

	Traffic measurement and accounting
	Sample and hold
	MULTOPS

	Source IP Monitoring
	An introduction to learning automata
	Learning algorithms

	Network traffic collector
	Requirements
	Delimitations
	Creating traffic profiles
	Sampling algorithm
	Data-structure
	Exporting traffic profiles

	Traffic profile analyser
	Attack characteristics
	Source IP Monitoring
	Monitoring source IP addresses and subnets

	Experimental setup and simulations
	Network setup
	System configuration

	Traffic simulations
	Simulating normal traffic
	Generating high speed traffic
	Simulating a distributed denial of service attack

	Experiments

	Results
	Network traffic accounter performance
	Traffic profile analyser

	Discussion
	Traffic simulations and characteristics
	Data-structure
	Source behaviour monitoring and learning automata algorithms
	Learning automata algorithms
	IP spoofing
	Sources changing behaviour
	Increasing the number of learning automata
	Expiration of learning automata states

	Conclusion and further work
	Conclusion
	Further work

	References
	Glossary
	Appendices

