
DDoS detection based

on traffic profiles

by

Morten Kråkvik

Agder University College

Faculty of Engineering and Science

Grimstad, Norway

May 2006

Master’s Thesis in Information and Communication Technology

Abstract

Distributed denial of service attacks has become a significant threat against

Internet resources. These attacks aims at disrupting the victim’s service by

commanding a massive number of compromised sources to send useless

data towards the victim. The distributed nature of these attacks usually

makes mitigation a time consuming process, and the risk of collateral dam-

age is high.

In this thesis I propose a method for detecting and identifying the sources

of DDoS attacks based on research in the field of network traffic measure-

ment and source IP address monitoring. The method consists of two parts;

a network traffic collector and a traffic profile analyser, where the first part

is responsible for creating traffic profiles representing the network pattern

over certain time periods, and the second part responsible for the analysis.

A novelty in this thesis is the usage of learning automata for tracking

the behaviour of source- IP addresses and subnets.

I have shown that when using a specific reinforcement algorithm for

the learning automata, the proposed method is able to correctly identify-

and distinguish sources participating in distributed denial of service attacks

and sources generating normal traffic. It has also been shown that this

algorithm is robust against attacks based on IP spoofing.

Due to the fact that the method is tracking both source IP addresses as

well as their subnets, more efficient filtering rules can be created based on

subnets instead of multiple IP addresses.

Preface

This thesis is submitted to Agder University College, Faculty of Engineer-

ing and Science, in partial fulfilment of the degree of Master of Science in

Information and Communication Technology.

This work has been carried out in collaboration with Telenor Security

Services in Arendal, under the supervision of Nils Ulltveit-Moe at Agder

University College and Per Kristian Johnsen at Telenor Security Services.

I would like to thank my supervisors, Nils Ulltveit-Moe and Per Kris-

tian Johnsen for their valuable suggestions and constant help during the

research. I also want to thank associate professor Ole-Christoffer Granmo

at Agder University College for helpful discussions and advices on learning

automata.

Grimstad, May 2006.

Morten Kråkvik

i

Contents

Preface i

1 Introduction 1

1.1 Thesis definition . 3

1.2 Delimitations . 4

1.3 Report outline . 4

2 Related work 6

2.1 An overview of denial of service attack methods 6

2.1.1 Source address spoofing . 6

2.1.2 DDoS attacks . 6

2.2 Traffic measurement and accounting 7

2.2.1 Sample and hold . 7

2.2.2 MULTOPS . 9

2.3 Source IP Monitoring . 11

2.4 An introduction to learning automata 11

2.4.1 Learning algorithms . 12

3 Network traffic collector 14

3.1 Requirements . 14

3.2 Delimitations . 14

3.3 Creating traffic profiles . 15

3.4 Sampling algorithm . 15

3.5 Data-structure . 16

3.6 Exporting traffic profiles . 21

4 Traffic profile analyser 22

4.1 Attack characteristics . 22

4.2 Source IP Monitoring . 23

4.3 Monitoring source IP addresses and subnets 23

5 Experimental setup and simulations 27

5.1 Network setup . 27

5.1.1 System configuration . 27

5.2 Traffic simulations . 28

5.2.1 Simulating normal traffic 28

5.2.2 Generating high speed traffic 29

ii

CONTENTS

5.2.3 Simulating a distributed denial of service attack 29

5.3 Experiments . 29

6 Results 31

6.1 Network traffic accounter performance 31

6.2 Traffic profile analyser . 31

7 Discussion 35

7.1 Traffic simulations and characteristics 35

7.2 Data-structure . 36

7.3 Source behaviour monitoring and learning automata algorithms 37

7.3.1 Learning automata algorithms 37

7.3.2 IP spoofing . 38

7.3.3 Sources changing behaviour 38

7.3.4 Increasing the number of learning automata 38

7.3.5 Expiration of learning automata states 39

8 Conclusion and further work 40

8.1 Conclusion . 40

8.2 Further work . 41

References 42

Glossary 44

Appendices 46

A MULTOPS extended Record-structure 46

iii

List of Figures

1.1 An illustration of a typical DDoS attack 3

2.1 DNS amplification attack . 8

2.2 MULTOPS . 10

2.3 A learning automaton interacting with the environment 12

3.1 Extending MULTOPS . 17

3.2 Building a traffic profile . 20

3.3 Exporting traffic profiles . 21

5.1 Network setup . 28

6.1 Accounting overview during an attack. 32

6.2 Two IP addresses sharing a /8-subnet 33

6.3 Profile development . 34

iv

List of Algorithms

1 The sample-and-hold algorithm . 9

2 Creating traffic profiles . 15

3 Record updating algorithm . 19

4 Accounting phases . 19

5 Expansion algorithm . 19

6 Linear reward-inaction updating algorithm 25

v

Chapter 1

Introduction

Distributed Denial of Service attacks, also known as DDoS attacks, has be-

come a threat against anyone on the Internet.

Especially, these attacks are an increasing threat against companies and

organisations who expose services for their customers, and who rely on the

Internet to conduct their everyday businesses.

Most attackers involved in computer criminality seek to break into sys-

tems in an attempt to install their software and steal secret user informa-

tion, such as your passwords and credit card numbers. The goal and effect

of a denial of service attack, however, differs from these kinds of attacks.

No data is stolen and no software will be installed on the victim host. The

one and only goal is to take down the victim’s service.

So, how can an attacker take down your service? As illustrated in fig-

ure 1.1 on page 3, the attacker has typically broken into several thousand

personal computers, located all around the world, and turned them into bot

agents, or zombies. By doing this, the attacker creates a botnet allowing

him, or her, to gain full control over the compromised computers from a

central location known as the botnet server . By connecting to this server,

the attacker then issues commands to all bot agents at once, telling them to

attack a specific address on the Internet. What follows is a storm of useless

data from all bot agents headed against the victim, causing legitimate data

to the victim to be dropped.

Individually, each compromised host is usually not able to successfully

attack a victim due to limited bandwidth. However, when there are several

thousands of bot agents, together they aggregate massive bandwidth, being

able to knock most networks off-line.

The complex nature of these attacks usually makes mitigation a difficult-

and time consuming process, and might cause the victims both financial

and reputational damages.

Telenor[15], being one of the largest ISP’s in Scandinavia, wish to look at

possible solutions for quickly detecting DDoS attacks, and identifying the

sources participating in the attacks.

The field of DDoS contains many attack- and defence methods, and [8]

attempts to give a structured overview of the knowledge in this field. Of

1

CHAPTER 1. INTRODUCTION

particular interest, considering this thesis, are the sections on response

strategies for victim hosts reacting to attacks, as opposed to preventing

attacks. The difference in reacting to versus preventing DDoS attacks, is

that the former method aims at alleviating the impact of an attack while

the latter method aims at eliminating the possibility of an attack. Although

this thesis will not focus on how to actually mitigate attacks, but rather on

attack detection and identification of sources, it will be kept in mind during

the work that a reactive method like applying IP address filtering on routers

will be used in the case of an attack.

Methods for defending against attacks, like [1, 4, 5], suggests replacing

network devices, such as routers, with new «intelligent» hardware which

does real-time traffic profile analysis and mitigation in addition to their in-

tended task. A downside of these methods are that in case of an attack, or

just under heavy load, such devices could use more resources on analysing

the traffic rather than doing it’s intended task, which might affect the over-

all network performance. Also, in cases where the network is very large

and complex, replacing network hardware might not be a financially real-

istic option. In this thesis, the proposed solution will consist of a passive

sensor located near the victim network. By passive, it means that the device

will not affect the network traffic directly, it will only receive a copy of the

traffic and not be able to block anything itself.

[8] divides detection methods into two sections; anomaly- and pattern-

based detection. Anomaly-based detection creates profiles of the network

traffic and uses this as a base to spot anomalies and identify potential at-

tacks. Proposed solutions taking advantage of this method includes [1, 5].

Pattern-based detection, on the other hand, uses predefined signatures to

recognise attack traffic, typically by looking at the packet payload. An ex-

ample of a system using pattern-based detection is the network intrusion

detection Snort[12]. In this thesis, the detection method will be based on

anomaly detection.

A field which is closely related to DDoS detection is network traffic ac-

counting. Traffic accounting has primarily been used for usage-based net-

work billing and bandwidth provisioning. Applications performing traffic

accounting, which usually are the routers, sees the traffic as a collection

of flows which needs to be measured. However, as the traffic rate and the

number of flows increases (which is the case under an attack), keeping track

of the flows becomes very expensive in terms of memory and CPU.

In [3], Estan et al. claims that the currently state-of-the-art accounting

methods, Cisco IOS’s NetFlow[2], which count periodically sampled packets

are slow, inaccurate and resource intensive. A novel sampling method has

been proposed in [3] which aims at identifying large flows and ignoring the

small. This sampling method has been adopted in this thesis and will be

described in detail in section 2.2.1 on page 7.

A data-structure called MULTOPS has been proposed in [5] by Gil et al.

This data-structure was primarily designed for network devices for detect-

ing DDoS attacks by monitoring incoming- and outgoing traffic rates. If a

dis-proportionality occurred between receive- and transmit-rate, the event

2

CHAPTER 1. INTRODUCTION

was flagged as anomalous. The core of this data-structure has been adopted

and expanded in this thesis due to its performance and flexibility. The

MULTOPS data-structure and the extension will be described in detail in

sections 2.2.2 on page 9 and 3.5 on page 16, respectively.

A novelty in this thesis is the usage of learning automata[9] for source

identification. Learning automata are small decision making devices which

are able to operate under non-deterministic environments and improve their

performance using past experience. Based on whether a source address ap-

pears to be a part of a possible attack, or not, the automaton for the given

source address can be rewarded or penalised according to it’s updating al-

gorithm. By using this approach, I aim to identify source addresses and

subnets participating in an attack, and which are or not. This method will

be further discussed in detail in section 4.3 on page 23.

Figure 1.1: An illustration of a typical DDoS attack

1.1 Thesis definition

The final thesis definition was formulated like this:

«In this thesis, we will approach the problem of detecting DDoS

attacks by constructing traffic profiles representing the traffic pat-

3

CHAPTER 1. INTRODUCTION

tern over time. By evaluating these traffic profiles, we aim to look

for anomalies and identify potential attacks.»

This definition has been broken into two parts, where both will be ad-

dressed in this thesis:

1. Network traffic accounting

In order to detect an attack, network data needs to be captured. The

capturing, or the accounting, needs to perform real-time monitoring

of the network device and store this data in a sensible format for later

analysis. This format, will later be referred to as the traffic profile.

The traffic profile and the network traffic accounter will be developed

as a part of the thesis work. Previous research in the area of traffic

measurement and accounting will be outlined in chapter 2 on page 6.

2. Traffic profile analyser

A traffic profile analyser, TPA, will be developed as a part of the thesis

work. The purpose of the TPA is to continuously analyse the profiles

as they are created by the network traffic accounter. These profiles will

serve as a base to determine if a network is under attack or not, and to

determine who is participating in the attack and who is not. Previous

research in the area of DDoS detection will be outlines in chapter 2 on

page 6. My contribution in this field of research will be exploring the

usage of learning automata for DDoS attack source identification.

1.2 Delimitations

Due to limited resources, this thesis will only focus on detecting distributed

denial of service attacks against victim networks. This means that SYN

flood attacks, which are typically aimed at exhausting the resources of a

specific victim server, and not the network resources itself, are not covered

in specific in this thesis. However, if a SYN flood attack allocates enough

bandwidth to threaten the network infrastructure, the attack is considered

an attack against the network.

This thesis also focuses on detecting attacks near the victim, as opposed

to near source end.

1.3 Report outline

Chapter 1 is the introduction chapter, which you are currently reading.

Chapter 2 covers the related work this thesis has been based on. This

includes an overview of DDoS attacks and defence methods, research on

traffic measurement and DDoS traffic characteristics.

Chapter 3 is dedicated to the development of the network traffic collector.

This includes requirements and delimitations of the collector followed by

4

CHAPTER 1. INTRODUCTION

the choice of sampling algorithm. Next, the extension of the MULTOPS data-

structure is described and how this is used to create a traffic profile.

Chapter 4 is dedicated to the development of the traffic profile analyser.

This chapter discusses the choice of attributes that are interesting consid-

ering indications of a DDoS attack. This chapter also covers the use of

learning automata for tracking source address behaviour.

Chapter 5 describes the experiment setup and simulations of the network

traffic accounter and traffic profile analyser.

Chapter 6 presents the results of the simulations.

Chapter 7 discusses the results achieved in this thesis.

Chapter 8 is the final chapter which concludes the thesis in addition to

looking at possible further work.

5

Chapter 2

Related work

This chapter is a short introduction to DDoS attacks covering the mainly

used attacker techniques in addition to relevant defence methods.

2.1 An overview of denial of service attack methods

2.1.1 Source address spoofing

Source address spoofing, also known as IP spoofing, is a technique which is

commonly used by attackers. This technique can, in some cases, be used to

gain unauthorised access to a computer by sending messages with an IP ad-

dress indicating that it is coming from a trusted host. This is accomplished

by modifying the source IP address field in the packet’s IP header. However,

this technique can also be very useful when engaging a denial of service

attack. By using this technique you can make a denial of service attack with

very few hosts, look distributed to the victim. On a single host, with one IP

address, you can replace the source IP address of any packet with a random

address. For an attacker, this has the following advantages:

• at the victim, it looks like the attack is distributed, which makes it

very difficult to filter based on IP address.

• the actual IP address of the attacking host is not revealed, causing pre-

ventive methods like shutting down the attacking host very difficult.

Another advantage (for the attacker) for using IP spoofing is that it can

be used to exploit known weaknesses of IP protocols, such as TCP and UDP.

This technique is called reflection attack, and will be described in the fol-

lowing section.

2.1.2 DDoS attacks

In this section I will describe some of the mainly used DDoS attack methods.

6

CHAPTER 2. RELATED WORK

SYN-flooding

SYN-flood attacks are based on exploiting a well known weakness in the im-

plementation of the TCP protocol. By starting the first phase of the three-

way handshake, which is done by sending a single SYN-packet against the

server, a resource allocation is made on the server. If this handshake is

never completed, these resources are not freed until a timeout has been

reached. If an attacker rapidly sends multiple SYN-packets against the vic-

tim, this might result in a resource exhaustion at the victim, causing a de-

nial of service effect. This technique is usually combined with IP spoofing,

which makes sure the handshake is never completed as the spoofed source

will simply discard an out-of-state packet from the victim server.

UDP-flooding

UDP-flooding attacks are classified as bandwidth attacks. These types of

attacks aims at simply flooding the victim’s network pipe, causing packets

to be dropped.

Reflection and amplification attacks

Reflection attack is a result of IP spoofing and is probably the most popular

attack method today. This attack aims at flooding the victim with useless

packets by sending request packets to innocent third-party servers using

the victim’s source address. These servers faithfully responds to these

packets by sending them back to the spoofed victim. If there are many

such servers, with well provisioned links, this will effectively cause a denial

of service at the victim.

Especially, DNS-servers are very popular considering reflection attacks.

By sending a valid DNS request with spoofed source IP address, the re-

sponse will be sent to the victim host. If this DNS server is (mis-)configured

to accept recursive requests, it can be tricked to cache a very large DNS

record, which in turn will be sent to the victim. This is known as a DNS

amplification attack and is illustrated in figure 2.1 on the next page. Unfor-

tunately, there are many DNS servers which accept recursive requests, and

they are usually well provisioned as well. And since this is all legal traffic,

blocking these requests and responses without inflicting collateral damage

is very difficult. A study of these attacks has been carried out in [17].

2.2 Traffic measurement and accounting

2.2.1 Sample and hold

As described in [3], the easiest way to identify large flows is through sam-

pling, however with a twist. As with common sampling methods such as

[2], each packet is sampled with a probability. If a packet is sampled and

the flow it belongs to is not in the memory, a new flow-entry is created.

7

CHAPTER 2. RELATED WORK

Figure 2.1: DNS amplification attack

8

CHAPTER 2. RELATED WORK

When a flow-entry has been created, unlike [2], the sample-and-hold algo-

rithm will update the flow statistics for every packet in this flow. Another

difference from [2] is that the probability of sampling a packet is a func-

tion of the packet size. The sampling probability for packet with size s is

ps = 1 − (1 − p)s ≈ 1 − e−sp which can be approximated by ps = p ∗ s.

This sampling algorithm can be described with the pseudo code shown in

algorithm 1.

Algorithm 1 The sample-and-hold algorithm

Require: Probability p for sampling a packet

Require: Packet size s

for each arriving packet do

if packet has a flow-entry then

increment flow byte count with packet size

else

add new flow-entry with probability ps = p ∗ s

end if

end for

2.2.2 MULTOPS

In [5] Thomer M. Gil et al. proposes a heuristic and a data-structure for net-

work devices, such as routers and network monitors, to detect and mitigate

DDoS attacks. Their method proposes to maintain a data-structure called

MULTOPS on each network device. Using this data-structure, they attempt

to monitor incoming and outgoing packet rates. As shown in figure 2.2 on

the next page, MULTOPS (MUlti Level Tree for Online Packet Statistics) is

basically a tree of tables and records, where each record contains packet

rate statistics for a subnet prefix at different aggregation levels. The data-

structure will always have a root Table, containing references to 256 subnet

Records (i.e [0-255.*.*.*]). Now, if the packet rate statistics for a sub-

net exceeds a given threshold value, the tree will expand to include more

detailed statistics for this subnet (i.e granularity will be increased). And if

the packet rate statistics should go below a given threshold, the tree will

contract. This behaviour can be seen as «zooming in and out», respectively.

The heuristic in this method is based on that under normal traffic, the

packet flow in one direction is proportional to the flow in the opposite di-

rection.

This method uses disproportional packet rates to or from hosts and

subnets to detect and stop attacks. This packet rate statistic can be used

to (1) identify the victim of a DDoS attack or (2) identify the sources of an

attack. These modes are called victim-oriented mode and attacker-oriented

mode, respectively.

The difference between these modes are important when it comes to

blocking traffic. In victim-oriented mode, attack mitigation is done by drop-

ping packets against the victim. In attacker-oriented mode, the mitigation

9

CHAPTER 2. RELATED WORK

Figure 2.2: MULTOPS

10

CHAPTER 2. RELATED WORK

is done by dropping packets from the sources.

In victim-oriented mode, the method will determine if an IP address or

subnet is under attack by looking at the ratio of incoming vs outgoing pack-

ets. If this ratio becomes greater than a given threshold (i.e incoming pack-

ets >> outgoing packets), dropping packets against this destination address

will mitigate the attack. However, this method will also cause «collateral

damage», which means both malicious packets and legitimate packets will

be dropped. This technique is also called black-holing or null-routing a des-

tination.

In attacker-oriented mode, the method will determine the sources of an

attack by looking at the ratio of received and sent packets from a source’s

point of view. If the ratio of received packets vs sent packets is below a

given threshold (i.e sent packets >> received packets), dropping these pack-

ets might mitigate the attack. This method, on the other hand, is vulnerable

to IP spoofing.

2.3 Source IP Monitoring

In [11], Peng et al. proposes a method for detecting distributed denial of

service attacks based on findings in [6] by Jung et al. This method aims

at detecting attacks by monitoring the increase of new IP addresses. The

method contains two parts; an off-line training part, where IP addresses are

added to a database, as they are shown to be legitimate. In order to decide if

an address is legitimate or not, a simple rule such as connections with less

than 3 packets is considered anomalous. The second part is the detection

engine, which is based on monitoring the number of IP addresses within a

time interval. This number is compared with the database, and then the

number of new hosts is calculated. If the number of new hosts exceeds a

given threshold, an alarm is set to indicate a possible attack. If an attack

is not detected, the new IP addresses are added to the database, assuming

they are shown to be legitimate. In the case of an attack, no IP addresses

are added to the database.

2.4 An introduction to learning automata

An automaton[9] is a mechanism that simply makes a decision. Now, let us

assume there is someone who gives feedback and tells the automaton if its

decision was good or bad, then the automaton has the possibility to learn

from its actions.

Learning can be defined as change in behaviour through experience. So,

by learning one can improve the behaviour over time.

A learning automaton is a decision making device which is able to oper-

ate in an unknown– and non-deterministic environment. It is able to learn

by interacting with the environment and updating its strategy for choosing

the next action based on the response from the environment. The automa-

11

CHAPTER 2. RELATED WORK

ton chooses from a set of actions, and the response from the environment

is positive or negative. Figure 2.3 illustrates the interaction between a two-

action automaton and its environment. The automaton updates its proba-

bility for choosing its next action based on the response from the environ-

ment.

Figure 2.3: A learning automaton interacting with the environment

2.4.1 Learning algorithms

There are several algorithms for how to learn. The most researched clas-

sification is the reinforcement algorithms. These algorithms are based on

the automaton being under constant supervision, ie. the automaton will al-

ways get a response from the environment for every action. However, it is

assumed that the responses are not always correct, ie «the teacher» is not

always correct. In real life, this situation is not uncommon. The teacher

does not always give the student a correct answer, and the answer does not

necessarily have to be correctly interpreted by the student. The following

paragraphs cover the mainly used reinforcement algorithms.

Linear Reward Inaction

The linear reward inaction algorithm, or the LRI algorithm, updates the

probabilities only when it receives positive response from the environment.

In the case of negative response from the environment, penalty will be ig-

nored.

This algorithm is said to be expedient and ǫ-optimal in stationary ran-

dom environments, which means that it performs better than choosing

purely random actions. However, because of its non-ergodic behaviour, it

is possible to get stuck in an absorbing state. This typically occurs when

a probability tend to one. If the behaviour pattern should change at this

point, it would take a long time to adapt the probability values to the envi-

ronment. This algorithm is also sensitive to its initial probability values.

12

CHAPTER 2. RELATED WORK

Linear Reward Penalty

The linear reward penalty algorithm, or the LRP algorithm, updates the prob-

abilities for both positive and negative responses. This algorithm has also

shown to be expedient, but it is also ergodic. This means that it will not get

stuck in an absorbing state, and it is not sensitive to its initial probability

values. This behaviour can be an advantage in non-stationary environment,

as it quickly adapts when the environment changes.

Linear Reward ǫ-Penalty

This algorithm is similar to the LRP algorithm, except that the penalty learn-

ing rate is lower than the reward learning rate. Because of this, the be-

haviour changes to ǫ-optimal as well as ergodic, which means it will perform

as optimal as it can.

13

Chapter 3

Network traffic collector

The network traffic collector is the first part of the proposed solution. Its

objective is to perform high speed network traffic accounting and create

traffic profiles for later analysis.

3.1 Requirements

The following requirements were set for the network traffic collector:

• Must be able to run on the i386 Linux platform.

As Telenor[15] provided me with this hardware, the prototype will be

developed on this platform.

• Must be able to do real-time packet capturing.

The packet capturing must be done in real-time by listening on net-

work interface card(s).

• Must be able to handle gigabit/s packet rate without significant drops.

DDoS attacks are performed by sending packets in very high speed. In

this thesis, the hardware limitations are set to 1-2Gbit/s.

• Must be able to decode packets up to transport layer (layer 4).

For analysis purposes, the proposed method should perform detailed

accounting up to transport layer, which include TCP, UDP, ICMP, etc.

• Must be able to export captured data.

The data has to be exported as a traffic profile for later analysis by the

traffic profile analyser.

3.2 Delimitations

The network traffic collector will only handle IPv4 packets. Packets using

another network layer protocol will be ignored by the collector.

14

CHAPTER 3. NETWORK TRAFFIC COLLECTOR

3.3 Creating traffic profiles

A traffic profile attempts to describe the traffic pattern at a specific location,

in a specific time slot. The goal of the network traffic collector is to create

these profiles.

In order to describe traffic, a set of attributes must be selected. For

the traffic profile proposed in this thesis, the following attributes will be

included:

• Packet and byte count for sent- and received IP packets.

• Packet and byte count for sent- and received TCP packets.

• Packet and byte count for sent- and received UDP packets.

• Packet and byte count for sent- and received ICMP packets.

• Packet and byte count for sent- and received for OTHER layer 4 proto-

cols.

These statistics will be collected during a 1 minute time window. At the

end of each traffic profile, a new 1-minute-profile will be created, and the

recently populated profile will be exported to a database for analysis. This

process is described in algorithm 2.

Algorithm 2 Creating traffic profiles

Require: Profile currentProfile

Require: Profile previousProfile

loop

currentProfile ← init new profile

repeat

populate currentProfile

until time interval is reached

previousProfile ← currentProfile

export previousProfile {non-blocking}

end loop

3.4 Sampling algorithm

DDoS attacks are usually aimed at a specific victim. Therefore, it is likely

that under an attack, most of the traffic against the home network is di-

rected against the victim. The optimal sampling solution in the case of

detecting the attack would be sampling all packets against the victim. Since

it is very difficult to know this prior to an attack, another solution could be

sampling all packets on the network. The downside of this method is that

it would exhaust the resources of the monitoring device on a busy network.

15

CHAPTER 3. NETWORK TRAFFIC COLLECTOR

The sample-and-hold algorithm described in section 2.2.1 on page 7,

aims at identifying large flows and ignoring the small and is well suited

for this kind of application. I will use this sampling algorithm in order to

identify the «popular destination» in the home network.

3.5 Data-structure

The data-structure used in the collector is based on the MULTOPS data-

structure, which is described in detail in section 2.2.2 on page 9. One of the

biggest advantages of the MULTOPS data-structure is the O(4) lookup per-

formance for a single IP address. In order to keep the number of «dropped»

packets to a minimum, an efficient lookup algorithm is therefore important

when performing high speed traffic accounting.

Another advantage of the MULTOPS data-structure is that it keep statis-

tics for subnet prefixes at different aggregation levels. This allows me to

manage the IPv4 address space using CIDR notation, which is more efficient

than handling significally larger sets of single IP addresses when consid-

ering reactive methods such as IP filtering on routers. The more filters

you apply on your router, the more it affects the router’s performance. If

you wish to deny traffic from 192.168.0.[0..255], clearly it makes more

sense to block the 192.168.0.0/24 subnet rather than blocking single IP

addresses 192.168.0.0, 192.168.0.1, 192.168.0.2, . . . , 192.168.0.255.

As previously mentioned, the original MULTOPS heuristic monitored

real-time packet rate statistics. For this method I have chosen to collect

more detailed statistics, such as the protocol distribution. Therefore, as

shown in figure 3.1 on the following page, the following extensions to the

data-structure has been made:

• The Record will include the following statistics:

– Received IP packet count

– Sent IP packet count

– Received IP byte count

– Sent IP byte count

– . . . (same for TCP, UDP, ICMP and OTHER.

A complete list of the Record structure attributes can be found in ap-

pendix A on page 46.

Also, unlike the original MULTOPS heuristic, which continuously mon-

itor incoming- and outgoing packet rates, the algorithm proposed in this

thesis will collect detailed traffic statistics for a given time interval and ex-

port this as a traffic profile. At the end of each interval, the traffic profile

will be exported to a database, while a new profile is created and initialised

for further accounting.

As mentioned in section 2.2.2 on page 9, the original MULTOPS method

has two «operating modes»; victim-oriented mode or attacker-oriented mode.

16

CHAPTER 3. NETWORK TRAFFIC COLLECTOR

Figure 3.1: Extending MULTOPS

17

CHAPTER 3. NETWORK TRAFFIC COLLECTOR

Both of these modes has their strengths and weaknesses, which is described

in section 2.2.2 on page 9. The method proposed in this thesis attempts to

take advantage of both of these modes by splitting the accounting process

in two phases.

The first phase operates in victim-oriented mode by performing detailed

accounting on IP addresses defined by the home network. When a packet

destined for an IP address located in the home network, record attributes

such as:

• ip_recv_pkt

• ip_recv_bytes

• tcp_recv_pkt

• tcp_recv_bytes

• . . .

are incremented. And for outgoing packet originating from the home net-

work, the following record attributes are updated:

• ip_sent_pkt

• ip_sent_bytes

• tcp_sent_pkt

• tcp_sent_bytes

• . . .

The second phase of the accounting algorithm is attacker oriented. How-

ever, I have chosen to call this mode «selective» attacker mode as it is not

equal to MULTOPS attacker mode. The difference between the two modes is

that selective attacker mode only does accounting for source addresses that

are connected to destinations accounted in victim mode. This is due to the

chosen sampling algorithm described in section 3.4 on page 15. Source ad-

dresses of packets not directed against a sampled destination will therefore

not be accounted. In other words, only source addresses that send packets

to a top destination will be sampled. The Record updating algorithm can be

described with the pseudo code shown in algorithm 3 on the next page, and

algorithm 4 on the following page shows how the two accounting phases are

combined. Figure 3.2 on page 20 gives an illustration of how the algorithms

work together to build a traffic profile.

The tree behaviour is similar to the behaviour described in 2.2.2 on

page 9. There is one significant difference however, since I am not tracking

packet rate statistics in a continuous manner, but rather sampling packet

statistics (incrementing values) in discretised time slots, the tree will never

contract at any time, only expand within a profile’s time slot. The tree will

expand when a packet count or packet byte count exceeds a threshold value

for the given traffic profile. The expansion algorithm can be described with

the pseudo code given in algorithm 5 on the next page.

18

CHAPTER 3. NETWORK TRAFFIC COLLECTOR

Algorithm 3 Record updating algorithm

Require: Record rec

Require: Packet pkt

if incoming then

increment rec’s ip_recv_pkt

add pkt.size to rec’s ip_recv_bytes

increment rec’s tcp_recv_pkt
...

else {outgoing}

increment rec’s ip_sent_pkt

add pkt.size to rec’s ip_sent_bytes

increment rec’s tcp_sent_pkt
...

end if

Algorithm 4 Accounting phases

Require: Record recDestination

Require: IP destination

if sample all packets to destination then

recDestination ← get record for destination

update recDestination {phase 1}

update recDestination’s MULTOPS source tree {phase 2}

end if

Algorithm 5 Expansion algorithm

Require: Record rec

Require: Table recParent

if rec’s ip_recv_bytes > limit then

if rec has no child table and recParent is not deepest level then

create new child table under rec

end if

end if

19

CHAPTER 3. NETWORK TRAFFIC COLLECTOR

Figure 3.2: Building a traffic profile

20

CHAPTER 3. NETWORK TRAFFIC COLLECTOR

3.6 Exporting traffic profiles

As the traffic profiles are created by the network traffic collector, they need

to be exported to a database for further analysis. The traffic profile database

is very simple and is built up by 5 tables; src_acc which holds «attacker ori-

ented» accounting statistics, dst_acc containing «victim oriented» statis-

tics, a profile table holding start- and end time-stamps for each profile,

and src and dst tables holding source IP addresses with ip prefix and des-

tination addresses, respectively. Their relations are illustrated in figure 3.3.

Figure 3.3: Exporting traffic profiles

21

Chapter 4

Traffic profile analyser

The second part of this thesis consists of developing a traffic profile anal-

yser. Its task is to iterate through all profiles generated by the network

traffic collector and look for anomalies and indications of attack traffic.

4.1 Attack characteristics

In order to detect an attack, some characteristics of hostile traffic is needed.

Based on personal experience as a security analyst at Telenor Security Op-

eration Centre[15] (TSOC), DDoS tools found on compromised hosts and

the increased popularity in recursive DNS attacks[17], large UDP packets

against a victim with very few, or none, packets in opposite direction can

be considered as attack traffic with high probability. This is of course not

necessary valid for all traffic on the Internet, so a few false positives should

be taken into account.

Considering the TCP protocol, connections with less than 3 packets can

also be flagged as possible attack traffic. This is also one of the rules used

by Peng et al. in [11].

Another characteristic of attack traffic, as observed near the victim, is a

sudden rise in incoming packets. This can be detected by monitoring the

changes in packet- and byte count for each popular destination. However,

this method is prone to false positives in the case of a flash crowd. A flash

crowd event occurs when a large amount of hosts are visiting the same

web site simultaneously, and will therefore have the same characteristics

as an attack, considering incoming packet- and byte count. In an attempt

to distinguish flash crowds from actual attacks, we make an assumption

that normal traffic packet rate in one direction is proportional to the packet

rate in the opposite direction. If a dis-proportionality occurs, this can be

considered as a possible attack.

In [6], Jung et al. has observed that in the case of a flash crowd, most of

the source addresses are already known, ie. they have visited the web site

previously, while in the case of a DDoS attack, most of the source addresses

are new to the web site. This is also a characteristic which will be taken into

account in the proposed method.

22

CHAPTER 4. TRAFFIC PROFILE ANALYSER

4.2 Source IP Monitoring

In [11], Peng et al. proposed a method of detecting DDoS attacks using

source IP address monitoring. This method is based on the findings in [6],

and monitors the increase in new addresses over a certain period. The

method is described in detail in section 2.3 on page 11 and has some sim-

ilarities with the method proposed in this thesis. We both monitor source

IP addresses and, at some point, decides whether they are participating in

an attack or not. However, an important difference between the two is that

the method proposed in [11] only monitor single IP addresses, while in this

method, due to the MULTOPS datastructure, source IP addresses in addition

to their subnets are monitored.

Because of the mentioned difference between the method proposed in

[11] and this method, another learning- and decision method must be used

regarding the source IP address monitoring. Consider the following exam-

ple: A host at 192.168.3.25 is visiting a web site at the protected network.

The method proposed in [11] sees this as a new source, recognises this as

legitimate traffic and is therefore added to the database of known source IP

addresses. Now, if we try to combine this with the traffic profile proposed

in this thesis, 192.168.3.0/24, 192.168.0.0/16 and 192.0.0.0/8, de-

pending on expansion threshold values, will be added to the list of known

source IP addresses. Next, assume that an attack is initiated from multiple

sources in the following range; 192.127.0.0/16. These hosts will not be

recognised as attackers since 192.0.0.0/8 is already in the database of

known source IP addresses.

In an attempt to solve this issue, I have chosen to let learning automata

help to decide whether a source- IP address or subnet is legitimate or not.

This method will be described in the following section.

4.3 Monitoring source IP addresses and subnets

To summarise, the following characteristics are considered when looking

for attack traffic:

• Sudden increase in incoming packets

• Incoming/outgoing packet rate dis-proportionality

• Very short/incomplete TCP connections

• Increase in new source IP addresses

As mentioned in section 2.4 on page 11, learning automata are deci-

sion making devices that are able to operate under an unknown- and non-

deterministic environment – which is an environment that matches the In-

ternet. The purpose of the automaton to be used in this thesis is to decide

whether a source IP address or subnet is participating in an attack or not.

23

CHAPTER 4. TRAFFIC PROFILE ANALYSER

For an automaton to be able to learn, it needs a teacher. This teacher

will be an analyser that operates similar to the decision engine proposed by

Peng et al. in [11]. The analyser will iterate through all records in the traf-

fic profile and will consider disproportional packet rates and suspiciously

short TCP connections as a sign of possible attack traffic. In addition, the

analyser will consider large amount of ICMP packets and various rare pro-

tocols (OTHER) as anomalous.

The analyser, or the teacher, should recognise typical attack traffic pat-

terns based on the accounting information given in the traffic profiles. This

includes packet statistics on IP, TCP, UDP, ICMP and OTHER.

I assign one learning automaton to each source IP address or subnet.

This automaton will represent the threat value for the given source IP ad-

dress or subnet. Theoretically, I could assign four automata to each source

IP address or subnet, each representing the threat value for TCP, UDP, ICMP

and OTHER protocol for the given source, respectively. The advantages of

«splitting» the automaton into four parts is to differentiate between, for

example, legitimate TCP traffic and hostile UDP traffic. However, by using

a single automaton per source, all protocols above IP will «share» threat

value, which will simplify the analysis later on. This will be discussed fur-

ther in section 7.3.4 on page 38.

The automaton work with the analyser as follows: When a new traffic

profile has been created, each automaton will, based on its internal state

(ie. threat value), decide whether its assigned source address is «good» or

«bad». Next, the analyser looks at the actual traffic profile statistics, con-

sidering IP, TCP, UDP, ICMP and OTHER, and either agrees or disagrees with

the automaton on its decision. If the automaton and the analyser consent,

the analyser will give positive feedback to the automaton for job well done.

If they, on the other hand, do not consent, the analyser will give negative

feedback.

Based on whether the automaton receives positive or negative feedback

from the analyser, this will affect the next decision it makes. How the

automaton handles the feedback depends on its updating algorithm. In

section 2.4.1 on page 12, I have given an overview of the mainly used re-

inforcement algorithms that are of interest. In this thesis I am using the

LRI algorithm, which means that on positive feedback, the automaton is re-

warded, but will ignore negative feedback. The LRI updating algorithm used

in this thesis can be described with the pseudo code given in algorithm 6

on the next page. The reason for choosing this algorithm will be discussed

in the following paragraph.

As described in section 2.4.1 on page 12, the LRI algorithm has an ab-

sorbing behaviour, which is generally not suitable for dynamic environ-

ments. However, in this thesis I make the assumption that a source does

not (usually) change its behaviour from «good» to «bad», or vice versa. As

this algorithm has an absorbing behaviour, it is also sensitive to its start-

ing conditions. This fits very well with the proposed method. The starting

condition for the automaton is the «threat value», which is a value between

0 and 1. Threat values close to 0 indicates low probability of «bad» source,

24

CHAPTER 4. TRAFFIC PROFILE ANALYSER

Algorithm 6 Linear reward-inaction updating algorithm

Require: Decision α

Require: LearningRate a

Require: State p {probability of choosing bad traffic}

Require: Feedback β

if β is positive and α is bad traffic then

p = p + a∗ (1.0− p)

else if β is positive and α is good traffic then

p = p − a∗ p

else {β is negative}

ignore negative feedback

end if

while values close to 1 indicates high probability of «bad» source. I have

chosen a starting value of 0.5, which means that all new source IP addresses

and subnets will get a threat value of 0.5 once they are detected.

Once a new source is detected, the learning automaton will decide whether

it is a «bad» or a «good» source. With a starting condition of 0.5, it will

guess «bad» with a probability of 50%. Depending on whether the analyser

consents with this decision, the automaton will be rewarded and updates

its threat value, or it will simply ignore the feedback and stay at 0.5.

Next time the source appears in a traffic profile, the automaton will de-

cide between «good» or «bad», based on its current threat value. If this

value is below 0.5, it will choose «good» with a higher probability than

choosing «bad».

Let us consider the example from section 4.2 on page 23 again where a

host at 192.168.3.25 is visiting a web site. This host will now be detected

as a new source, as well as its subnets 192.168.3.0/24, 192.168.0.0/16

and 192.0.0.0/8, and they all initially get a threat value of 0.5. As this

source appears in several traffic profiles over time, its threat value will

decrease, and the probability of choosing «good» increases. Next, an at-

tack is initiated from the 192.127.0.0/16 network. The automaton at

192.0.0.0/8 will most likely decide «good» source because of its history,

which is reflected by the threat value, but the analyser will not consent,

and the automaton ignores the feedback. However, at some point, the au-

tomaton for 192.0.0.0/8 will choose «bad», and the analyser will consent,

causing the automaton to be rewarded according to its updating algorithm.

Note that the automaton will choose «good» with a higher probability than

choosing «bad». At the same moment, 192.127.0.0/16, 192.127.*.0/24

and 192.127.*.* are detected as new sources (depending on the expansion

threshold values), and will have an initial threat value of 0.5. Now, these

new sources has a higher probability of choosing «bad» than 192.0.0.0/8,

which means that the new sources will increase their threat values above

0.5.

In order to block this attack, you want to create filtering rules. How-

ever, you want to maintain network performance, so you want to apply as

25

CHAPTER 4. TRAFFIC PROFILE ANALYSER

few filtering rules as possible, but still be able to block the attack. Let

us assume there was 10,000 hosts participating in the attack behind the

192.127.0.0/16 network. Instead of creating 10,000 filtering rules, it is

obvious that you rather create one rule for the entire 192.127.0.0/16 net-

work, or maybe even the 192.0.0.0/8 network if the attack was coming

from the 192.129.0.0/16 network as well. In the latter case, depending on

how much legitimate traffic was coming from 192.0.0.0/8, it could be rea-

sonable to block the entire network. However, if there was much legitimate

traffic from the 192.168.0.0/16 network, this would be reflected in the

192.0.0.0/8 threat value, indicating that blocking the entire 192.0.0.0/8

network would cause collateral damage.

As a final note, I will summarise some of the key points of this chapter.

The idea behind using learning automata is to combine characteristics, such

as packet rate dis-proportionality and occurrence of new sources, with the

traffic profiles provided by the network traffic accounter. The point is that

each automaton will be able to adapt itself to the traffic profiles and give

an indication of whether a source is participating in an attack, or not. The

unique properties of the learning automaton makes it able to handle «noise»

(ie. when the analyser makes wrong decisions) quite well. As a consequence

of the chosen LRI algorithm, this also makes the method robust considering

IP spoofing.

26

Chapter 5

Experimental setup and

simulations

In this chapter I will describe the experimental setup and simulations con-

ducted with the network traffic accounter and the traffic profile analyser.

This includes my network setup and configuration in addition to simulat-

ing normal traffic and DDoS attack traffic.

5.1 Network setup

The following hardware was provided by Telenor[15]:

• 3 x IBM xSeries 1U servers equipped with Broadcom 1000SX network

interface cards.

• 2 x Linksys gigabit switches using 1000SX.

Using this hardware I created a network environment as shown in fig-

ure 5.1 on the following page. I dedicated one server for traffic profiling,

normal traffic generation and attack traffic generation, respectively.

The server dedicated to traffic profiling was equipped with two Broad-

com 1000SX network interface cards, each receiving normal traffic and hos-

tile traffic, respectively. In a production environment, it might not be rec-

ommended using a port mirroring solution as described in figure 5.1 on the

next page due to a potential loss in network performance on the affected

switch. A more appropriate solution would be using a passive network tap,

such as the ones provided by [10], in order to eliminate this loss of per-

formance. However, using a passive tap causes incoming packets to be re-

ceived on one card, while the outgoing traffic would be received by a second

card.

5.1.1 System configuration

Another advantage of assigning incoming- and outgoing packets to a ded-

icated network interface card is the «load balancing» of interrupts. Under

27

CHAPTER 5. EXPERIMENTAL SETUP AND SIMULATIONS

Figure 5.1: Network setup

an attack, the number of packets arriving at the card is massive, and this

causes many interrupts to the CPU.

In this setup I had a dual Intel Xeon CPU with HyperThreading enabled,

which allowed me to work against four logical CPUs in Linux. By overriding

the kernel IRQ load balancing, I assigned a logical CPU to each network

interface card. By doing this, the assigned CPUs would never be interrupted

by anything else than network activity on their respective cards.

A third logical CPU was assigned to the traffic profiler application. Any

other interrupt request was handled by the last logical CPU, which included

the traffic profile analyser and general management.

5.2 Traffic simulations

Using the network setup as described in previous sections, simulations of

network activity was needed. I will describe how this traffic was created in

the following sections.

5.2.1 Simulating normal traffic

In order to simulate normal traffic, I used the DARPA IDS evaluation datasets[7]

as a base. This traffic was injected into the gigabit link using tcpreplay[14],

which is a tool designed to do exactly this.

In order to achieve high speed, I had to speed up the traffic, assuming

that this would not affect the correctness of my experiment.

28

CHAPTER 5. EXPERIMENTAL SETUP AND SIMULATIONS

5.2.2 Generating high speed traffic

The Linux kernel offers a module called the Linux packet generator, or

pktgen[16] for short. This is a tool for generating packets at a very high

speed at the kernel level, which I used for testing the network traffic ac-

counter performance.

However, the packets generated by this tool does not resemble «nor-

mal» attack traffic. To simulate a distributed attack, we want our source ad-

dresses to be random. Although this tool can be configured to use random

source addresses, the traffic pattern it generates is too predictable because

of its single threaded nature. The packet generator will generate a fixed

number of packets with a random source address, then it will choose an-

other source address and generate a fixed number of packets again. From

the victim’s point of view, it looks like the attacking sources are sending

their packets in turn, and once an attacker is finished, it never sends a

packet again. In real life, however, the sources are sending their packets

simultaneously.

5.2.3 Simulating a distributed denial of service attack

To simulate a distributed denial of service attack, I first made a quick anal-

ysis of a DDoS attack tool which has been found on a compromised web

server. This was a tool that generated small, non-spoofed UDP packets with

random destination ports, depending on parameters given at startup time.

However, I have also experienced that UDP packets being part of an at-

tack, are often much larger than packets generated by the tool mentioned

above, eg. [17].

Therefore, in an attempt to make my simulated traffic blend in with

normal traffic, I set the packet size to be approximately 600 bytes.

In order to make my traffic look distributed, I have to spoof the source

address. Spoofing a packet’s source address can be done with a tool called

hping[13], which is a tool designed to create any arbitrary packet. Using

this tool I created mid-size UDP packets with a spoofed source.

The remaining issue is to make hping continuously send packets with

different source addresses. For this I wrote a small multi-threaded script

which created a large array of random IP addresses. For each IP address

in this array, I started a new thread with hping, generating UDP packets

against my victim host with random destination port and with the given IP

address as source.

5.3 Experiments

In this section I will describe the conducted simulations.

1. Background traffic replay

In this experiment, I will measure the replay packet rate of the DARPA

IDS evaluation datasets using two computers simultaneously.

29

CHAPTER 5. EXPERIMENTAL SETUP AND SIMULATIONS

2. Packet generation using pktgen

In this experiment, I will measure the network traffic accounter per-

formance using the pktgen tool from two computers simultaneously.

3. Combining background and attack traffic

In this experiment, I will measure the network traffic accounter per-

formance using two computers, each generating attack- and replaying

background traffic, respectively.

4. Distributed denial of service attack

In the last experiment, I will test the traffic profile analyser by replay-

ing background traffic during the entire experiment from one com-

puter. After 30 minutes, I will initiate a distributed denial of service

attack from the second computer. The attack will last for 15 minutes.

30

Chapter 6

Results

In this chapter I will present the results of the conducted simulations de-

scribed in the previous chapter.

6.1 Network traffic accounter performance

The network traffic accounter was confirmed to process background traffic

(1) at a rate of ∼600 Mbit/s, with an average packet size of ∼520 bytes.

This was the maximum packet rate for the background traffic I was able to

replay. On the other hand, I achieved a much higher packet rate for the

attack traffic. Using the pktgen module from the Linux 2.6 kernel (2), I was

able to achieve a constant bit-rate of 1.24Gbit/s, with spikes up to 1.8Gbit/s.

Combining the background traffic and the pktgen generated traffic (3), I

was able to generate/replay packets at a rate of ∼1.0GBit/s. Combining

background traffic and the multi-threaded hping DDoS simulation, I was

able to generate/replay packets at a rate of ∼700MBit/s. All of the cases

above were processed by the network traffic accounter without significant

packet drops.

6.2 Traffic profile analyser

When it comes to general attack detection, the attack simulation conducted

in this thesis was easily spotted by a simple bandwidth graph for each popu-

lar host. As shown in figure 6.1 on the following page, which is taken from a

simple web-based bandwidth monitor interface developed during this work,

we see a sudden increase in bandwidth for the victim at 172.16.114.50.

We also see that other hosts in the same network was experiencing a sig-

nificant packet drop. The host on top in figure 6.1 is being attacked, while

other hosts (shown below) are experiencing significant packet drops.

During the traffic profile analyser test (4), all actions made by the learn-

ing automata were recorded for analysis. In this experiment, ∼1400 differ-

ent sources were detected (this includes /8, /16, /24 and /32 IP prefixes).

For simplicity, I will focus on two IP addresses in the same /8 subnet, one

31

CHAPTER 6. RESULTS

Figure 6.1: Accounting overview during an attack.

32

CHAPTER 6. RESULTS

generating normal traffic, while the other one is participating in the attack;

161.181.250.169 and 161.80.155.233, respectively. Figure 6.2 illustrates

how the two IP addresses share the same /8 subnet and its learning automa-

ton.

Figure 6.2: Two IP addresses sharing a /8-subnet

In this experiment, the threshold value for expanding the data-structure

was set to 1 packet. This means that when a packet from 161.181.250.169

arrived, 161.0.0.0/8 was accounted, next 161.0.0.0/8 and 161.181.0.0/16,

and so on. Because of this, we see all subnets of the IP address already at

the first profile (since it sent 4 or more packets). Each subnet, as described

in section 4.3 on page 23, has its own learning automaton.

Figure 6.3 on the following page shows how the two IP addresses’ and

subnets’ learning automata developed over time. In the first 30 profiles,

we only see the subnets connected to the 161.181.250.169 address, as ex-

pected. We also see that this traffic is recognised as normal traffic, and that

the automata were rewarded when they made the correct decision (accord-

ing to the analyser). Sometimes, the automata made the wrong decisions,

in these cases penalties were ignored and the threat values remained un-

changed.

Since there is nothing else affecting the learning automata for

161.181.250.169 and its subnets, they will eventually converge to the

same threat value.

33

CHAPTER 6. RESULTS

Figure 6.3: Profile development

After the 30th profile, 161.80.155.233 is added to the source list. As

expected with new sources, the threat value was initialised to 0.5. And,

as with 161.181.250.169, all subnets were added within the same profile,

however the 161.0.0.0/8 is already existing.

As expected, 161.80.0.0/16, 161.80.155.0/24 and

161.80.155.233/32 increased their threat values as their traffic was recog-

nised as hostile. On the other hand, 161.0.0.0/8 was now affected by

both attack traffic and normal traffic. During the attack period, we see that

161.0.0.0/8 is increasing slightly. However, due to its history it will not

increase in the same speed as 161.80.*.*/*. It is also considered a bad

candidate for blocking due to the low threat value.

Once the attack period is over, we see that 161.0.0.0/8 is instantly de-

creasing its threat value. 161.181.0.0/16, 161.181.250.0/24 and

161.181.250.169/32 has during the attack period been recognised as nor-

mal traffic, which is reflected by their decreasing threat values.

34

Chapter 7

Discussion

In this chapter I will discuss the work that has been done in this thesis, and

the results that were achieved during the simulations.

7.1 Traffic simulations and characteristics

The background traffic simulations conducted in this thesis was based on

the DARPA IDS evaluation datasets from 1999. Based on the signatures/rules

of the traffic profile analyser, none of the background traffic was detected

as possible attack traffic. However, in a production environment which has

an up to date traffic scenario, including «new» services such as Voice over

IP, P2P and streaming traffic, one should expect false positives (ie. noise)

due to some dis-proportionality in the protocols. E.g. when streaming au-

dio/video from a server, most of the packets are incoming, from a client’s

point of view. This can probably be handled by creating rules for these traf-

fic patterns, but it requires a more in-depth study on those protocols than

what has been conducted in this thesis.

The attack traffic simulations in this thesis was mainly based on ex-

periences from TSOC and DDoS tools found on compromised computers.

Observations of recent DDoS attacks shows that UDP traffic is being used

in combination with DNS reflection- and amplification attacks[17]. In DNS

amplification attacks, the number of attacking hosts (actually legitimate

third-party DNS servers) are usually lower than the number of compromised

hosts in a botnet. However, when it comes to detecting this traffic, the same

method can be applied when detecting any other sources participating in

an attack. There is one catch, though; the «attacking» DNS servers could be

used for legitimate purposes by the victim network. By blocking all traffic

from these DNS servers, collateral damage might be inflicted. In order to

mitigate such attacks, where both attack- and normal traffic is originating

from the same host, a deeper packet inspection could be performed in or-

der to distinguish between «good» and «bad» packets. Since deep packet

inspection like this can not be performed by normal routers, an in-line de-

vice which is able to block packets based on deep packet analysis, is re-

quired. However, deep packet inspection can be very resource intensive,

35

CHAPTER 7. DISCUSSION

and would not perform very well at high speed. In the case of DNS amplifi-

cation attack, another option that would not require an in-line device could

be blocking or rate-limiting unusually large UDP packets, coming from the

respective DNS server. Although this option would likely mitigate attacks

using very large DNS responses, it would also cause some collateral damage

due to cases where legitimate DNS responses in fact are large. On the other

hand, in the case where the DNS server is flooding the victim with normal

sized DNS responses, collateral damage is usually inevitable without a deep

packet inspecting in-line device.

7.2 Data-structure

The data-structure in this thesis is based on MULTOPS. The MULTOPS data-

structure was designed to be a lightweight structure for «live» monitoring

of traffic rates at different aggregation levels. The major difference with

MULTOPS and the data-structure used in this thesis is that MULTOPS op-

erates in a continuous manner with a single instance of the data-structure,

while in this thesis a new data-structure is created at every 1 minute time

slot. Another major difference between the two methods is the amount of

information that is being collected. The method proposed in this thesis

collects information up to the transport layer. By doing this, the traffic pro-

file analyser has a much broader basis for correctly detecting attack traffic

than simply monitoring incoming- and outgoing traffic rates. The reason

for this is that the traffic profile analyser can have multiple signatures or

rules, which describes attack traffic at a more detailed level than the only

rule looking for disproportional traffic rates.

One of the advantages with MULTOPS is that it is able to operate within a

fixed memory budget. To be able to do this, it contracts when it reaches its

upper memory limit. The structure used in this thesis, on the other hand,

does not have this functionality. For each structure that is created in a time

slot, the structure will only expand, until the next time slot arrives. At the

start of each time slot, a new, empty data-structure is created. Because of

this, and the fact that it is collecting much more information, the structure

used in this thesis is more resource intensive. However, I do not find this of

big concern, since the traffic profile computer has a much higher memory

budget than the network devices MULTOPS was originally designed for.

When it comes to response time, MULTOPS will report and react to

anomalous behaviour once it is detected, while the proposed method in

this thesis will not report until it has reached the end of the current time

window. This creates a possible response delay of 1 minute when using 1

minute time slots. The time slots could be decreased for the costs of more

resources, however I find that a 1 minute delay is acceptable.

36

CHAPTER 7. DISCUSSION

7.3 Source behaviour monitoring and learning automata

algorithms

In this section I will discuss the choice of learning automata algorithm used

in this thesis, and how it would react to different types of attacks.

7.3.1 Learning automata algorithms

The learning automata algorithm used in this thesis is the LRI algorithm.

The main reason for choosing this algorithm was because of the assumption

that the behaviour of source IP addresses would not change from «good»

to «bad», or vice versa. This assumption was built on the work by Jung et

al. in [6], which claims that under an attack, most of the sources are new to

the victim.

The LRI algorithm operates in a such way that it only updates its proba-

bility value for choosing an action when it receives positive feedback from

the environment for the chosen action. The consequence of this is that if

an automaton repeatedly chooses action «good traffic», and receives posi-

tive feedback from the environment (ie. the analyser recognises the traffic

as normal) for this action, the probability of choosing action «bad traffic»

moves towards 0. Therefore, in cases where the analyser recognises the

traffic as «bad traffic», the automaton will most likely choose action «good

traffic» (assuming the history stated above). However, it will receive nega-

tive feedback from the environment, causing the probability values to re-

main the same. What just happened is that the automaton interpreted the

«bad traffic» as a mistake by the analyser, or noise, which might occur in

a random environment. In order for the automaton to «change direction»,

the analyser must recognise traffic as «bad traffic» and the automaton must

choose action «bad traffic» despite the lower probability.

An optional algorithm, like the LRP algorithm, updates its probability

values on both positive and negative feedback. A consequence of this is

that the automaton much more quickly adapts to changes in behaviour than

when using LRI. This means that if the automaton’s probability of choosing

action «good traffic» is very close to 1.0 and the analyser recognises traffic

as «bad traffic», the automaton would likely choose action «good traffic»

and receive negative response from the environment. Although it receives

negative response, the automaton will act on this penalty by increasing its

probability of choosing «bad traffic» next time.

A third algorithm, such as the LRǫP, will have the same characteristics as

the LRP. However, in the case of a penalty the learning rate would be lower

than in the case of a reward for the LRǫP. Because of this, automata acting

on penalties can be more sensitive to noise and IP spoofing. I will discuss

the problem of IP spoofing in the following section.

37

CHAPTER 7. DISCUSSION

7.3.2 IP spoofing

Because of this absorbing behaviour of the chosen LRI algorithm, the method

will be fairly robust against IP spoofing attacks, where the goal is to disrupt

normal traffic by attempting to influence the learning automata for the re-

spective sources.

So, let us assume that the attacker has knowledge of how this method

works and what sources are using the target’s services. His goal is to disrupt

the normal activity, so the attacker commands his bots to send arbitrary

packets against the victim, using random source addresses that are known

to the victim. This scenario would contradict the findings in [6] by Jung

et al., however a highly targeted attack could be arranged like this. To the

victim, it appears that visiting hosts has changed their behaviour, and the

learning automata are having a hard time «changing direction» of the source

behaviour.

So how do you mitigate a such highly targeted attack? This is very dif-

ficult. One option could be using another algorithm for our learning au-

tomata, such as the LRP which adapts much more quickly to changes in

behaviour. However, by doing to this, you might end up blocking everyone

who usually visits your site, which in itself causes a denial of service. The

proper way to handle this would be applying ingress filtering on all edge

routers in your (or your upstream ISP) network, which would effectively

drop spoofed packets before doing too much damage.

7.3.3 Sources changing behaviour

Another problem arises if the sources behaviour actually does change, and

not because of a spoofing attack. Although this contradicts the findings

in [6] by Jung et al., it does not mean it can not happen. An important

difference between the two scenarios, targeted IP spoofing and changing

source behaviour, is that the traffic coming from a IP spoofing attack can

potentially generate a much higher traffic rate than sources which happen

to be infected by bot agents in addition to be visitors of the victim site. In

these cases, it might be sufficient to block the sources that are attacking

the victim and being new to the victim, but allowing traffic from the known-

but attacking hosts. If the remaining attack traffic rate is high enough to

sustain the denial of service, another method than the one proposed in this

thesis should be used, or try increasing the number of learning automata

per source as described in the following section.

7.3.4 Increasing the number of learning automata

In cases where you might wish to block hosts generating both attack- and

normal traffic, a possible option could be increasing the number of au-

tomata per source. By doing this, each source could have one automaton

representing the threat value for TCP, one for UDP, one for ICMP and one

for OTHER. This would also require changes to the traffic profile analyser,

38

CHAPTER 7. DISCUSSION

as it would need to reward or penalise the respective automaton, based on

what protocol the traffic is based on. Using several automata per source,

you have the possibility to distinguish between e.g. normal TCP traffic and

attacking UDP traffic from the same source.

7.3.5 Expiration of learning automata states

The method proposed in this thesis does not currently expire the states of

the learning automata. This means that as the time goes by, each source

will have an infinite past experience. Due to expiring DHCP leases, it might

be sensible to expire (ie. reset), the learning automaton’s probabilities if its

respective source has not been observed within a given time period. By not

expiring these states, there is a chance that a source will suddenly «change

its behaviour» because someone else is currently using the IP address due

to the fact that a DHCP lease expired.

39

Chapter 8

Conclusion and further work

8.1 Conclusion

In this thesis I have proposed and developed a method for detecting- and

identifying the sources of a distributed denial of service attack. There

has been much research in these areas and I have taken advantage of sev-

eral previously proposed solutions in the areas of traffic measurement and

detection- and identification of denial of service attacks. I have focused on

their strengths and combined them into a robust and efficient method for

creating- and analysing traffic profiles. The proposed solution consists of

two parts; a network traffic collector and a traffic profile analyser.

My contribution to the area of DDoS detection and identification has

been exploring the usage of learning automata for tracking source IP address-

and subnet behaviour over time.

I have evaluated the proposed method in a simulated network environ-

ment using the DARPA IDS evaluation datasets as background traffic, while

simulating a distributed denial of service attack based on existing DDoS

attack tools.

The results of the simulations conducted in this thesis shows that the

information provided by the traffic profiles, created by the network traffic

collector, serves as a satisfying base for detecting attacks.

During the simulations, the traffic profiles also appeared to provide suf-

ficient information for the analyser to separate «good» traffic from «bad»

traffic, with a low error probability. However, it is not confirmed that the

proposed method will work optimally in a production environment with

various new protocols not included in the DARPA IDS evaluation datasets,

without the need of modifying or adding rules for the analyser.

The results also shows that learning automata using the linear reward-

inaction updating algorithm are able to make a clear indication of whether a

source IP or subnet is participating in an attack or not, with satisfying accu-

racy. This algorithm has also shown to be robust against IP spoofing attacks

aimed at influencing legitimate traffic, however the method has shown to be

somewhat vulnerable to sources changing their behaviour from «good» to

«bad». Although, this might be handled by expiring the learning automata

40

CHAPTER 8. CONCLUSION AND FURTHER WORK

states after a while.

In the case of an attack, filtering rules can be created based on the cur-

rent states of the learning automata. Since the proposed method is tracking

source IP addresses and subnets, more efficient rules can be created based

on subnets instead of multiple IP addresses.

8.2 Further work

In this section I will propose a few suggestions for further work.

• Increase the number of automata per source

Currently, there has only been conducted simulations with a single

automaton per source. It would be interesting to see how the method

would perform when mixing attack- and normal traffic from the same

source, using four automata per source.

• Increase level of details in traffic profiles

Some attacks might be easier to detect and identify if other statistics

were available to the analyser, such as port number and time-to-live

distributions. It would be interesting to see how the network traffic

accounter would perform when increasing the level of details.

• Updated network environment

The DARPA IDS evaluations datasets from 1999 is outdated. It would

be interesting to see how the proposed method would perform in a

live production environment.

41

References

[1] Aditya Akella, Mukesh Agarwal, and Ashwin Bharambe. Distributed,

profile-based ddos detection and mitigation in isp networks, 2004.

[2] Cisco. Cisco ios netflow - cisco systems. http://www.cisco.com/.

[3] C. Estan and G. Varghese. New directions in traffic measurement and

accounting, 2001.

[4] S. Floyd, S. Bellovin, J. Ioannidis, K. Kompella, R. Mahajan, and V. Pax-

son. Pushback messages for controlling aggregates in the network.

[5] T. Gil and M. Poletto. Multops: a datastructure for bandwidth attack

detection, 2001.

[6] J. Jung, B. Krishnamurthy, and M. Rabinovich. Flash crowds and denial

of service attacks: Characterization and implications for cdns and web

sites, 2002.

[7] MIT Lincoln Laboratory. DARPA IDS Evaluation Data Sets.

http://www.ll.mit.edu/IST/ideval/.

[8] J. Mirkovic, J. Martin, and P. Reiher. A taxonomy of ddos attacks and

ddos defense mechanisms, 2001.

[9] Kumpati S. Narendra and Mandayam A. L. Thathachar. Learning au-

tomata: an introduction. Prentice-Hall, Inc., Upper Saddle River, NJ,

USA, 1989.

[10] NetOptics. Netoptics: Network taps and aggregation solutions for pas-

sive network access. http://www.netoptics.com/.

[11] T. Peng, C. Leckie, and K. Ramamohanarao. Detecting distributed de-

nial of service attacks using source ip address monitoring, 2002.

[12] Martin Roesch. Snort network intrusion detection system.

http://www.snort.org.

[13] Sourceforge. hping security tool. http://www.hping.org.

[14] Sourceforge. tcpreplay tool, 2000. http://tcpreplay.sourceforge.net/.

[15] Telenor. Telenor Security Services. http://www.telenor.no/bedrift/sikkerhet.

42

REFERENCES

[16] Linus Torvalds. Pktgen: Linux packet generator. http://linux-

net.osdl.org/index.php/Pktgen.

[17] Randal Vaughn and Gadi Evron. Dns amplification attacks, 2006.

http://www.isotf.org/news/DNS-Amplification-Attacks.pdf.

43

Glossary

Amplification attack A reflection attack where the attacker sends a spoofed

«small» packet against a third-party service, where the re-

sponse packet to the victim is larger than the «small» packet

page 7

Bot Agent Compromised host controlled by the attacker. page 1

Botnet A botnet is a large number of compromised computers that

are used to create denial of service attacks or send spam

page 1

Botnet Server A server which acts as a command and control center for a

network of compromised computers. page 1

Collateral damage In networking; unintendedly affecting legitimate network

traffic . page 7

DDoS Distributed Denial of Service Attack page 1

DHCP Dynamic Host Configuration Protocol page 38

Flash crowd A flash crowd event occurs when a large amount of com-

puter hosts are visiting the same web site simultaneously

page 22

Inline device In terms of networking devices, an inline device, as opposed

to a passive device, has the ability to block packets in addi-

tion to monitor. page

35

IP Spoofing A technique used for indicating that a packet is coming from

another host. This is engaged by modifying the source IP

address field in the packet header page 11

Learning automaton A decision making device which is able to operate in

an unknown- and non-deterministic environment. . page 11

P2P Peer-to-peer is a networking type which allows computer

users using the same P2P-protocol exchange files. Often

used for downloading large files, such as movies and mu-

sic . page

35

44

REFERENCES

Reflection attack An attack method based on exploiting weaknsesses of

the IP protocols using the IP spoofing technique page 7

Streaming A technology that enables playback of audio and video with-

out downloading the entire file in advance page

35

TSOC Telenor Security Operation Center page 22

VoIP Technology used to transmit voice conversations over com-

puter networks using the Internet Protocol page

35

Zombie See Bot Agent . page 1

45

Appendix A

MULTOPS extended

Record-structure

struct _Record

{

/* ip packets stats */

u_int32_t ip_recv_pkt;

u_int32_t ip_sent_pkt;

u_int32_t ip_recv_bytes;

u_int32_t ip_sent_bytes;

/* tcp packets stats */

u_int32_t tcp_recv_pkt;

u_int32_t tcp_sent_pkt;

u_int32_t tcp_recv_bytes;

u_int32_t tcp_sent_bytes;

/* udp packets stats */

u_int32_t udp_recv_pkt;

u_int32_t udp_sent_pkt;

u_int32_t udp_recv_bytes;

u_int32_t udp_sent_bytes;

/* icmp packets stats */

u_int32_t icmp_recv_pkt;

u_int32_t icmp_sent_pkt;

u_int32_t icmp_recv_bytes;

u_int32_t icmp_sent_bytes;

/* other packets stats */

u_int32_t other_recv_pkt;

u_int32_t other_sent_pkt;

u_int32_t other_recv_bytes;

u_int32_t other_sent_bytes;

46

APPENDIX A. MULTOPS EXTENDED RECORD-STRUCTURE

/* pointer to child table */

Table *child;

};

47

	Preface
	Introduction
	Thesis definition
	Delimitations
	Report outline

	Related work
	An overview of denial of service attack methods
	Source address spoofing
	DDoS attacks

	Traffic measurement and accounting
	Sample and hold
	MULTOPS

	Source IP Monitoring
	An introduction to learning automata
	Learning algorithms

	Network traffic collector
	Requirements
	Delimitations
	Creating traffic profiles
	Sampling algorithm
	Data-structure
	Exporting traffic profiles

	Traffic profile analyser
	Attack characteristics
	Source IP Monitoring
	Monitoring source IP addresses and subnets

	Experimental setup and simulations
	Network setup
	System configuration

	Traffic simulations
	Simulating normal traffic
	Generating high speed traffic
	Simulating a distributed denial of service attack

	Experiments

	Results
	Network traffic accounter performance
	Traffic profile analyser

	Discussion
	Traffic simulations and characteristics
	Data-structure
	Source behaviour monitoring and learning automata algorithms
	Learning automata algorithms
	IP spoofing
	Sources changing behaviour
	Increasing the number of learning automata
	Expiration of learning automata states

	Conclusion and further work
	Conclusion
	Further work

	References
	Glossary
	Appendices
	MULTOPS extended Record-structure

