LOVENY

& o
3 O g
T ”)

CO\\QJ%
727versity

Analysis and description of an open
source janitor project

by

Hakon Lgvdal

Master Thesis in
Information and Communication Technology

Agder University College

Grimstad, June 13, 2006

Abstract

The objective of this study is to describe the inside and chp&the Linux Kernel
Janitor Project. To describe and discuss how such janitirityccan be useful for
others is also an objective. The Linux Kernel Janitor Prioje@ project defined to
perform maintenance of the Linux kernel source, often tglon tasks that nobody
else will be doing. The patches produced by the janitors baes analysed and some
of the effects and properties of the work the project hasiedrout are described.
Analysis show that janitor activity reduces the amount afewhile still keeping the
same functionality or improving it. The patches that aredpiced are kept in a backlog
where typically 10-15% of them are replaced from one reldaste next release.
The process and rules/guidelines that the project usesafticypation are described.
Some of the participants of the Linux Kernel Janitor Projeate been interviewed.
Comparison with other open source projects that have soni@ijactivity has been
performed.

Keywords: Linux, kernel, janitor, software maintenance

Preface

This thesis was done as part of the degree Master of Sciendgdar University
College, Faculty of Engineering and Science. It was suped/by Mikael Snaprud at
Agder University College, Parastoo Mohagheghi at Norwediaiversity of Science
and Technology, NTNU and Bruce Perens.

| would like to express my gratefulness for the help | havenesd from my supervi-
sors, without whom | would have been completely lost. Thaokall of the janitors
that answered my questions, both on the mailing list andenrterview.

Grimstad, May 2006

Hakon Lgvdal

Table of Contents

[1__Introduction 9
d . 9
[1.2 Research QUESHONS v o v e e 10
1.3 Researchmethdds 11
1.4 _Sources ofinformatibn 12

[2__Theoretical Background and History 14
.1 Programming and software enginegring 14

’ i WS . . . e 14
i C . s, 15
[2.1.3 People more important than protess 15

[2.1.4 The linux developers take at software developmerntgs® . 16

2.1.5 Industrv standards for software develomlnent T I 4

D21 Whatislinud?, 21

2.2 Whoisdevelopingthekernel? 21
.2.3 Patches - the heartbeat of the | inux kernel developmen . 22

024 linuxdevelopmentbranches 23
225 Version Control SYSteMo 26
2.3 The Linux Kernel Janitor Proi@ct o v v v v i 27
= = -
27

TABLE OF CONTENTS

2.3.3 JanitorPatchsbts 28
.34 The Trivial PatchMonkky 29
I3 Software development proceks 30
B.1 KernelJanitor Procasso 30

B.1.1 Linux Kernel Janitor Project mailing list activity 31
3.1.2 _Toals used by the L inux Kernel Janitor Praject32

B4 _Summaly 34
4__lnterviewd 36
.1 __Selection of interview Darticioahts 36
KU 1.1 _Probability samplidg 36
4.1.2 Non-probability samplifg 37
K4.1.3 Criteriaforselection 37
M2 _Interview responses oi e 39
K3 SUMMALY . . . o o oe e 41
I5__Analysis of janitor patche$ 43
5.1 _Paossible quantitative aspects that could be analysed 43
Z@ . e e e e e e e e 44
521 _Frequenty o ovovovo 44

E.LLA\L&L&.Q.E_iiie 46
5.3 Maintenance typesS oo e 47

I6_Discussioh 51
6.1 Weaknesses and uncertainties in the results 51
I6.2 How is janitor work different from normal develoomdnt? 52
6.3 Starting vour own janitor proje¢t? 52

16.3.1 Open source ProjelctSo 52
6.3.2 Proiects develooing proprietary softare 53
70) 54

6.5 What oualltv mechanlsms areused? 4 5

6.6 _Suggestions forimprovements 5 5
6.6.1 Better feedback on patches for new jaritors 56

[Z__Conclusiom 57
F1 Resulls., 57
2 Recommendatibn 57

TABLE OF CONTENTS

[A_Interview Questions 61
IA.1 Connection Between Interview Questions and Reseacktine . . 61
[6.2 Questiods 61

64
IB.1 _Example of a corrective patch 64
IB.2 Example of a perfective patch 64
B.3_FExample of apreventivepalch 64
IB.4 Example of an adaptivepatch 65
B.5_Example ofaninvalidpatch 65
IC_BibTeX entry for this thesid 66
[nde 67

List of Figures

0.6 Farlierand current patchdets

2.7 _Earlier and current patchset repositories

B.1 Process for submitting patches in the Linux Kernel daffitojedt

B_zJ;ha.n,g_&oj_mailinglist participants overtlme
3.3 Process for submitting patchesinWine

5.1 __Total number of patches and number of unchanged phtches. .. .

List of Tables

4.1 __Selection criteria and strata distribution 38
I5.1 __Number of patches in | inux Kernel Janitor Project Daded:iBIeasés . 48
5.2__Number offiles changed inpatches 9

5.3 Distribution of maintenance types in patchset relea@d 2-rc3-Kj . 50

Chapter 1

Introduction

1.1 Background

During software evolution preventive maintenance is regflito prevent declining
guality and to compensate for increasing complexity adogrtb Lehman’s software
evolution laws (see chapterZ1l.1 on phge 14).

One project that in some way does this is the Linux Kerneltdarﬁ?rojeclﬂ which
states as its mission stateméwfe go through the Linux kernel sources, doing code
reviews, fixing up unmaintained code and doing other clearaul API conversion.

It is a good start to kernel hacking"So the Linux Kernel Janitor Project has both a
quality improving purpose and a mentor purpose. This thessslooked into both the
mentor and quality aspects, although mainly at the quasipeats.

The Linux Kernel Janitor Project was started in 2001 andyoSigears after the start it
has become a strong and mature project. The concept of anggféanitor projects has
not however spread significantly to other open source ptej&hich is a bit surprising

since | agree with Linux Weekly News’s concludicthat many other projects would
likely benefit from it. Perhaps this thesis could inspire dtée increase.

A few other projects have however defined some tasks as Jdmsiks. Although
these projects do not have janitor activity as a separategeybct, this thesis tries
to compare them to the Linux Kernel Janitor Project when ihigelevant. When
searching for such projects at the start of writing this thego such was found, wirte

and Asterisil.

1Also sometimes referred to just as Kernel Janitors and afsiesl KJ.

2See chaptdr2.3.2 on pdgd 27.

3Wine is an open source implementation of the Windows API grofoX11 and Unix.
http://www.winehg.org/

4Asterisk is an open source PBX (Private Branch eXchange).
http://www.asterisk.org/

http://www.winehq.org/
http://www.asterisk.org/

1.2. RESEARCH QUESTIONS

1.2 Research questions

The motivation for choosing to describe the Linux KernelittarProject was partly
that this is not done before as far as | can tell, and thus islssoovered white spot on
the knowledge map. But also because | believe that this tipetivity and organising
could be useful for others, both for other open source pt@saevell as for commercial
development of proprietary products.

This leads to two main objectives, one of generally deseghanitor activity and
another of describing how this can be used by others. Thargseuestions where
thus defined to be:

How can a janitor project be characterised in terms of :

e participants
— Who is participating and why?
process (model)
— How can the process be described?
impact
— What is the result of the janitor work? (product metrics)
performance
— What is the effect of the janitor work? (process/projectnias}
tools used
— What tools are used?
— How important are they for the project?
frequency of patches
— How often are patches produced?
— How many patches are produced?
type of patches
— What type of change does the patches represent?

What elements of the janitor project can be reused in other pojects :

e Scalability issues
— How large does a project have to be before starting a separater
subproject? Is it suitable for your hello world project?
e Determine aspects of an other project to evaluate the usesid of a Janitor
project
— What generalisations can be made?
— Which criteria are there for starting a janitor project?
e Cost benefit analysis
— What are the benefits of janitor projects?
— What are the costs of janitor projects?
e Quality requirements
— What criteria are set for accepting patches in a janitorguotsj

10

1.3. RESEARCH METHODS

1.3 Research methods

This study have used a combination of both qualitative arahtjtative methods to
gather data about the Linux Kernel Janitor Project. Themaits shown in FigurE_Tl 1.

+ o s +

| Mentor aspects | Quality improvement |
+ + S +
I I I I
| I + |
I |/ v
| | (process/method) |
| |\ oo : I
| Qualitative | fommmmees / \-mommmm e ’ |
| | (interview)-m-mmmm e -
| | \ / tools)|
| I et ’ "
I I I I
+ + S +
I I I I
| I + |
I |/ v
| | (developer activity) |
| |\ I
I I + I
| Quantitative | | |
| | e —— o
| | | / frequency and size of |\ |
| | | (Janitor patches relative) |
| | | \ to ordinary patches /A
| | | e S
I I I I
| I | yrmmmmenmeaneees . I
| | | / measure \ |
| | | (maintenance type) |
| | | \ distribution / |
| I | fomrennennnnnen s ’ |
I I I I
+ + S S — +

Figure 1.1: Research methods used and areas covered

The qualitative methods used included an examination ofrélcent history of the

mailing list as well as the patches produced by the projectdier to make description
of the process and methods that make up a janitor projecs. Was done with respect
to both mentor aspects and quality improving aspects. Apeicison of the tools that
the janitors used as sources for generating janitor tasé solve them was done. An
interview was performed, asking both current janitor pebjparticipants and some
participants that had participated earlier but no longdr @his interview was done to
investigate the janitor process, mentor aspects and tcalgeu

The maliling list was also analysed quantitative to get attarastics that could describe
the janitor project. The patches that have been made wasiegdrior properties like
how often they are made and of the size. Changes can be @dssifilifferent types
as described in chapter Z11.6 on pagk 19, and such a classifiodthe patches was
done on some of the patches.

11

1.4. SOURCES OF INFORMATION

1.4 Sources of information

The two main sources of information has been the archivdsedfinux Kernel Janitor
Project mailing list kernel-janitors@lists.osdl.orgratp://lists.osdl.org/
pipermail/kernel-janitors/ as well as the ftp server storing the kernel jan-
itor patchsetsitp://coderock.org/Kj/ . Interviewing the janitor participants
was also an important source of information.

Mailing list archives for Wine and Asterisk was examined. aldition information
was fetched from the home page to the different projects

e |http://janitor.kernelnewbies.orqg/ for the Linux Kernel Janitor
Project.
e |http://www.winehq.org/ for Wine.
e |http://www.asterisk.org/ for Asterisk.
The Kernel Traffic websitéhttp://www.Kerneltraffic.org/ , contains sum-

maries of the discusion on the main Linux kernel mailing, IlsKML, and has been
a very valuable source of general information about the kxikernel development.
Linux Weekly News has a section about the progress and spatilne Linux kernel
development in the weekly editions which has been used as@miation source.

1.5 Limitations of scope of this thesis

While both Wine and Asterisk have some janitor activity ishreot been very as easy
to extract information about it, at least compared to theukiKernel Janitor Project.
When information about Wine or Asterisk janitor activityrdao find, the effort has
been put on the Linux Kernel Janitor Project since the mata$dias been on that.

No economical evaluations of in what amount this is apple&tr commercial envi-
ronments has been done.

Only the current state has been examined. No attempt hasnb&e® in looking into
how things were before compared to now.

For some aspects it would clearly have been intersting topementhe janitor activity
with the ordinary development. However | choose to consgéaton only the janitor
activity.

1.6 Report outline

ChaptefR gives an technical and historical backgroundiferéest of the thesis. Chap-
ter[3 describes software development process in the cootéxbhux kernel develop-

12

http://lists.osdl.org/pipermail/kernel-janitors/
http://lists.osdl.org/pipermail/kernel-janitors/
ftp://coderock.org/kj/
http://janitor.kernelnewbies.org/
http://www.winehq.org/
http://www.asterisk.org/
http://www.kerneltraffic.org/

1.6. REPORT OUTLINE

ment and for the Linux Kernel Janitor, Wine and Asterisk pobg.

Requirements and criteria used for the interview as weluasrsary of the responses
are contained int chapt€ét 4. In chapiér 5 the results of trentipative analysis of

the patches produced by the Linux Kernel Janitor Projectesgnted. Discussion of
the findings of this thesis and possible further work is danehaptef. Chaptéd 7
contains the conclusion.

13

Chapter 2

Theoretical Background and History

2.1 Programming and software engineering

2.1.1 Lehman’s software evolution laws

The following two laws, which are selected from “the laws ofta/are evolution” as
specified byl[lL], are those that most directly relates tovgmi maintenance.

No. Brief Name| Law

II' | Increasing Complexity An E-typ@ system evolves its complexity in
creases unless work is done to maintain or reduce
it.

Vil Declining Quality| The quality of E-type systems will appear to be de-
clining unless they are rigorously maintained and
adapted to operational environment changes.

While some studies show that the development of the Linuredas quite optimal,

[

We have examined the growth of Linux over its six year lifaspaing
several metrics, and we have found that at the system levgtdatvth has
been superlinear. This strong growth rate seems surprigue . . .

Other studies show that the problems described by the lasgeadlso are affecting
Linux. In [3] an architectural discovery and repair was peried on the Linux kernel
where the authors achieved the following

The repair actions narrowed the gap between the conceptlatecture
and the concrete architecture from 502 anomalies down to 40.

1E-type software is software that is Embedded in a real-wenldronment.

14

2.1. PROGRAMMING AND SOFTWARE ENGINEERING

2.1.2 Orders of ignorance

One particular interesting article about software devedept is The Laws of Software
Process by Phillip G. Armour,J4] which has a telling obs¢ioa

In some circles, software process is considered tthbéssue that needs
to be resolved to fix “the software crisis.” Improving prosésms become
an article of faith in some corners, while avoiding it hasusmsed the status
of guerrilla warfare in others.

The author states that

Perhaps our problem isn’t process, it's what we are askinggss to do,
and when and where we apply it.

He then formulates three laws of software process based an lvéhdefines as “The
Five Orders of Ignorance”

00l - Lack of Ignorance. You know something.

10I - Lack of Knowledge. You know that you do not know someghin

20I - Lack of Awareness. You do not know that you do not know stinmg.

30l - Lack of Process. You have no method of converting 2Qi @ither 101 or 0OI.
40I - Meta Ignorance. You do not know about the Five Ordergobrance.

Oth Order Ignorance, 00I, represents when you have the auiaswlel Ol represents that
you have a well defined question that can be answered. Fa tiveslevels detailed,
well defined processes work well. On the other hand, for 2Gdtaited process, based
on some pre-existing knowledge which might or might not bevant, does not make
sense. The different levels of ignorance must thereforednelled differently.

The challenge is all projects have different quantities ©f,0LOI, 20l,
and even 30lI, and therefore require different types of (sses.

2.1.3 People more important than process

Some people argue that people are more important than grotiesopleware: Pro-
ductive Projects and Teams” by Tom DeMarco and Timothy kistea book about
software management, often characterised as a classsat) idis a strong emphasis
on people:

The major problems of our work are not so much technologisaaio-
logical in nature.

15

2.1. PROGRAMMING AND SOFTWARE ENGINEERING

DeMarco has also written other books about software dewedmp where he expresses
a skepticism over a too strong focus on process:

The danger of standard process is that people will miss dsatactake
important shortcubs — “Deadline”

Process obsession is the problem. Process obsessionustatjanomaly
that occurs now and again. It is an epidemic. — “Slack”

The Manifesto for Agile Software Development, which is acfgtrinciples signed by
the members of The Agile Alliance, states thae have come to value ... Individuals
and interactions over processes and tool# literature review made for “Integration
of human factors for user interfaces into the software dgwmlent life cycle”, [5]
contains a separate chapter “8. People more important tioge$s” which has several
references to relevant literature.

The outermost variant of this view is that only people areonignt and that the process
is neglectible.

“Hell, there are no rules here — we're trying to accomplisimsthing.”
— Thomas A. Edison

2.1.4 The Linux developers take at software development poess

The Linux kernel developers are typically opposed to usimdustry standards for
software development. This is not to say that the developersvorking without
guidelines or rules, but these are then rather made up by seéras and only when
they feel that there is a need to.

No major software project that has been successful in a genarket-
place (as opposed to niches) has ever gone through thoséfeayeles
they tell you about in CompSci classes. — Linus Torvalds

When the suggestion of using CMM came up on the main Linux &edeveloper
mailing list, the following was one of the replies:

With SEI CMM level 3 for the kernel, complete testing and doeun-
tation, we’'d be able to release a new kernel every 5 monthit, mew

2 Refer toArmour’s observation on software process [4]),

What all software developers really want is a rigorous, @lad, concrete, hidebound,
absolute, total, definitive, and complete set of processrtiley can break.

16

2.1. PROGRAMMING AND SOFTWARE ENGINEERING

drivers 2 years after release of the device, and supportdarplatforms
2-3 years after their availability, as opposed to 1-2 yeafste (IA-64, for
instance...)

We'd also kill off all the advantages that the bazaar-stydggaetopment
style actually has, while gaining nothing in particularcegt for a slow
machinery of paper-work. No thanks. — David Weinehall

| think this can be viewed as that the kernel developers &mega bottom-up approach
to defining the software development process while the imgistandards are most
certainly using a top-down approach.

2.1.5 Industry standards for software development

A process is a description what to do and how to do it. The |IEtaBdard 610, IEEE
Standard Computer Dictionary, defing®cessandsoftware development process

process A sequence of steps performed for a given purpose.

software development processThe process by which user needs are translated into
a software product. The process involves translating useds into software
requirements, transforming the software requirementsdesign, implementing
the design in code, testing the code, and sometimes, ingtalhd checking out
the software for operational use.

Software development process is alternatively also catdtivare engineering pro-
cesssoftware life cycleor justsoftware processThe IEEE and ISO standards for this
are “IEEE/EIA 12207.0-1997 Standard for Information Teclugy — Software Life
Cycle Processes” and “ISO/IEC 12207 Information Technple§oftware Life-Cycle
Processes”. These standards are quite high level frameamarkas to be accompanied
with more detailed process models or methodologies.

Exactly what constitutes a process/model/methodologytgzh/framework/mecha-
nism/recommendation/discipline/practice/method/eteat a clear cfitand 1 will not
try to draw any borders. The following is a brief list of somewell, methodologies or
whatever they are. Many of these are heavily tailored to 6jquts whose developers
are full time workers at the same location. This does notadmvery well with the
great diversity in geography, time and stake in the opencgodevelopment of Linux.
See [6] for an excellent overview and comparison of some @flifferences between
various processes and methods.

3For instance the Wikipedia article about Extreme Prograngnji] says thatExtreme Program-
ming (XP) is a software engineering methodology for the ldgwveent of software projectswhile Ron
Jeffries (one of the creators of XP) does not call it a metbgy

17

2.1. PROGRAMMING AND SOFTWARE ENGINEERING

agile development
http://agilealliance.orqg/ ,
http://en.wikipedia.org/wiki/Agile software develop ment

CMM- The Capability Maturity Model
http://www.sel.cmu.edu/cmmi/ |
http://en.wikipedia.org/wiki/Capability Maturity Mo del

Crystal family
http://www.arches.uga.edu/~cjupin/ ,
http://agile.csc.ncsu.edu/crystal.html

DSDM - Dynamic Systems Development Method.
http://www.dsdm.org/ ,
http://en.wikipedia.org/wiki/Dynamic_Systems Develo pment Method

iterative development
http://en.wikipedia.org/wiki/lterative and Iincremen tal development

PSP - Personal Software Process
http://www.sel.cmu.edu/tsp/ |
http://en.wikipedia.org/wiki/Personal Software Proc ess

RUP- Rational Unified Process

http://www-106.1bm.com/developerworks/rational/libr ary/content/
Rationaledge/jlanO1l/WhatistheRationalUnifiedProcessJ an01.pdf
http://en.wikipedia.org/wiki/Rational Unified Proce SS

TSP - Team Software Process
nttp://www.sel.cmu.edu/tsp/

waterfallﬁ

http://en.wikipedia.org/wiki/Waterfall model

XP- eXtreme Programming
http://en.wikipedia.org/wiKi/Extreme Programming

SCRUM
http://en.wikipedia.org/wiki/Scrum %Z8management%Z29 |
http://en.wikipedia.org/wiki/Scrum %Z8development¥%? 9,

Yes, except that | wouldn’t even call XP a method or methogdwplo

XP is a community of software development practice whichdras/n up around a partic-
ular combination of ideas (values, practices, principlasich Kent Beck named Extreme
Programming.

XP is a way of approaching doing software development. loisarecipe, nor a formula.
It is not a methodology as | understand the word, and frankfyriot sure what other
things WTH would call methodologies. Neither CMM nor RUP arethodologies. What
things can we name that are methodologies?

18

http://agilealliance.org/
http://en.wikipedia.org/wiki/Agile_software_development
http://www.sei.cmu.edu/cmmi/
http://en.wikipedia.org/wiki/Capability_Maturity_Model
http://www.arches.uga.edu/~cjupin/
http://agile.csc.ncsu.edu/crystal.html
http://www.dsdm.org/
http://en.wikipedia.org/wiki/Dynamic_Systems_Development_Method
http://en.wikipedia.org/wiki/Iterative_and_incremental_development
http://www.sei.cmu.edu/tsp/
http://en.wikipedia.org/wiki/Personal_Software_Process
http://www-106.ibm.com/developerworks/rational/library/content/RationalEdge/jan01/WhatIstheRationalUnifiedProcessJan01.pdf
http://www-106.ibm.com/developerworks/rational/library/content/RationalEdge/jan01/WhatIstheRationalUnifiedProcessJan01.pdf
http://en.wikipedia.org/wiki/Rational_Unified_Process
http://www.sei.cmu.edu/tsp/
http://en.wikipedia.org/wiki/Waterfall_model
http://en.wikipedia.org/wiki/Extreme_Programming
http://en.wikipedia.org/wiki/Scrum_%28management%29
http://en.wikipedia.org/wiki/Scrum_%28development%29

2.1. PROGRAMMING AND SOFTWARE ENGINEERING

nttp://www.controlchaos.com/about/

2.1.6 Classification of maintenance types

The ISO standard for software maintenan&9/IEC 12207, Information technology
- Software life cycle processdsas the following classification of maintenance types.

Adaptive

Corrective
Perfective
Preventive

Adaptive maintenancis maintenance done as a response to environment changes.
This might for instance be a new compiler, a new version of x@eraal library or
updates to the operating syste@orrective maintenanceeans correcting some im-
perfect behavior (also known as fixing bugs). When functibne added, changed

or removed this is callegherfective maintenancePreventive maintenands non-
functional changes with the purpose of improving later rrenance. For instance

a large function is split into smaller pieces without changgihe overall functionality

or a self-made sort routine might be replaced with a stanliarary sort function.

The IEEE Standard for Software Maintenance, |IEEE Std 12%8s uhe following
classification of maintenance types:

Corrective
Adaptive
Perfective
Emergency

The three maintenance types corrective, perfective anptaeéavas first described in
[8] by Swanson in 1976. The last type, preventive mainteeavas termed in|9] by
Pressman in 196

Critics of these classifications includés]11] in that thesslficatiori‘depends on the
reason for the change, and not on an objective characterigtthe change” One pro-
posed alternative to the traditional Swanson + Pressmasifization is presented in
[L2] where the authors keeps corrective and adaptive batgheposes a enhancement
category with several sub-categories.

e corrective

4t is worth noting that the waterfall model in the originalgea was presented as a poor model,
one that “is risky and invites failure”. Selettp://tarmo.fi/blog/2005/09/09/dont-
draw-diagrams-of-wrong-practices-or-why-people-stil [-believe-in-
the-waterfall-model/ for more discussion of why the model nevertheless gainedlaoipy.

SPressman notes that the preventive maintenance approadirstaeported as “structured retrofit
by Miller in 1981. See chapter “2.2.5 An explorative defimitiof software maintenance” ifi [1L0] for
more details on the history.

19

http://www.controlchaos.com/about/
http://tarmo.fi/blog/2005/09/09/dont-draw-diagrams-of-wrong-practices-or-why-people-still-believe-in-the-waterfall-model/
http://tarmo.fi/blog/2005/09/09/dont-draw-diagrams-of-wrong-practices-or-why-people-still-believe-in-the-waterfall-model/
http://tarmo.fi/blog/2005/09/09/dont-draw-diagrams-of-wrong-practices-or-why-people-still-believe-in-the-waterfall-model/

2.1. PROGRAMMING AND SOFTWARE ENGINEERING

e adaptive
e enhancement
— Data Handling
— Control flow
— User Interface
— Computation
— Module Interface
— Initialization

2.1.7 Existing studies of distribution of maintenance typs

A study of the distribution of maintenance types in the Lirketnel has been done
before in [I8]. However this study did not include preveatimaintenance, only the
tree other types.

This study included kernel versions from version 1.0 thtougrsion 2.3.51, which is
from a time when the developed was done on two parallel beschioday the devel-
opment model for the 2.6 kernel is different and uses onlytwaach (see chapter2.p.4
on pagd23). This was also done before Linus started usingesaode control tools
which both has increased productivity and partly changedwhy of working. Un-
doubtfully, the development process (as well as many of éveldpers) is today much
more mature than it was around version 1.0.

So while not certain, these are factors that might changeethdts if the same study
had been redone on todays code, and | think that would have \®g interesting.
However this will probably be a considerable amount of wéhk, authors of [13] used
over 9 months classifying 391 versions of the Linux kernel.

2.1.8 Mentoring

The Wikipedia article, [[T4] has the following descriptiof mentoring: a trusted
friend, counselor or teacher, usually a more experiencegge Some professions
have "mentoring programs" in which newcomers are pairedhwitore experienced
people in order to obtain good examples and advice as thegraxdy and schools
sometimes have mentoring programs for new students orrsisiddno are having dif-
ficulties

The origin to the modern use of the word is from Greek mythgloyientor was
a person who was left in charge of the son of a friend that @ftwar. When the
goddess Athena visited the son, she took form of Mentor algkbehe son and gave
him advise.

Mentoring is generally strongly reccomended both in techirand non-technical pro-
fessions, see for instande [15] andl[16]. Drawbacks of nrergas that is can be time

20

2.2. LINUX KERNEL DEVELOPMENT

consuming for the mentof, [1L7].

2.2 Linux kernel development

2.2.1 Whatis Linux?

Since the Linux Kernel Janitor Project is a part of developtad the Linux kernel
some information about Linux is is appropriate. Howeverpghepose is not to give a
complete listing of all the benefits or features of the Linexriel, only a brief descrip-
tion is given.

Linux is an unix-like operating system that Linus Torvaltsrsed writing for his own

amusement and hobby in 1991. Linux is free for anyone to usdjfynand distribute.

The development of Linux is open so that anyone can contflblihe developmentis
lead by Linus Torvalds.

2.2.2 Who is developing the kernel?

In a recent interview,[]18], Linus Torvalds said the follagi about the people he
communicate with.

| actually only work with a few handfuls so | tend to directhjtéract with
maybe 10 - 20 people and they in turn interact with other p=of®o
depending on how you count, if you count just the core peaple;50
people. If you count everybody who'’s involved; five thousgmewmple —
and you can really put the number anywhere in between... sinpoetty
much all, real work is done over e-mail so it doesn’t matteevehpeople
are.

One of the studies that have been performed on open sourjEeisrds [19], which
provides a model for how the community is divided into diéfet hierarchical groups
as shown in FigurEZ2.1 on the next page. For Linux it is Linus/alls that is the
Project leader, but the division into the other groups asstétical and there are no
clear borders, illustrated quite clearly by the fact that pinoject leader himself cannot
give an exact number of how many developers there are.

An similar model is presented in [20] which is shown in Figl@ on pag€3d3. This
model has split tasks and users, but overall it is quite sintd the one in Figure2.1.

SAlthough there is no guarantee that your changes will begtede

21

2.2. LINUX KERNEL DEVELOPMENT

Bug Reporters
Readers
Passive Users

(Figure from [19])

Figure 2.1: General structure of an open source community

2.2.3 Patches - the heartbeat of the Linux kernel developmén

Since the beginning of the collaborative development of lthux kernel, private
email/mailinglists/news groups has been the main comnatioic channel between
the developers. Distributing complete source code treés modifications to share
development effort is not practical, so the way the devealgbare their work is to
distributechangego a given base of the source code. Such a change is expresaed a
patch. A patch is typically generated with ttiéf program, using the unified format.

FigurelZB on the next page shows an example of a patch whareedued constant is
replaced with a preprocessor token. Such a patch is eastiytiited via email/news.
As an extra feature, if the patch is inserted in-line intobloely of the email/post (i.e.
not as an attachment) it is easy for other developers to sésthe patch and insert
their comments in between the quoted lines or making an &xtraen replying. See
Figure[Z4 on page24 for an example of this.

Actually just calling this an extra feature is too weak besmathis is a very essential
property of a patch. Patches might be rejected on the sole babeing sent as an
attachment instead of inserted in-line.

Without patches being sent between the Linux developerdatielopment would stop
completely (and here git (see chapierd.2.5 on pape 26)tisqusidered to be a special
packaging of patches). So patches are the heartbeat ofrin& kernel development.

22

2.2. LINUX KERNEL DEVELOPMENT

Users

Transition
(Non—developers)‘ ------ Developers

--------- Core developers

: Reporting bugs,‘,i : Suggesting new features : : Reviewing code : : Modifying code ; : Making decisions;E
: Fixing bugs I Il Implementing new features :
(Figure from [20])

Figure 2.2: The classification of open source users and opged

--- linux-2.6.15-git9/drivers/atm/lanai.c 2006-01-13 1 8:21:22.000000000 +0100
+++ linux-2.6.15-git9_patched/drivers/atm/lanai.c 200 6-01-13 18:24:36.000000000 +0100
@@ -1972,7 +1972,7 @@
"(itf %d): No suitable DMA available.\n", lanai->number);
return -EBUSY;
}
- if (pci_set_consistent_dma_mask(pci, OXFFFFFFFF) != 0) {
+ if (pci_set_consistent_dma_mask(pci, DMA_32BIT_MASK) 1= 0) {
printk(KERN_WARNING DEV_LABEL
"(itf %d): No suitable DMA available.\n", lanai->number);
return -EBUSY;

In the unified format the lines prefixed with minus are remowechpared to the origi-
nal, while lines prefixed with plus are added.

Figure 2.3: Example of a patch

2.2.4 Linux development branches

After release 1.0 of the Linux kernel the development wa# spito two tracks, or
branchesstableand development The development releases was numberecidl.1.

"wherez is a sequence number

23

2.2. LINUX KERNEL DEVELOPMENT

On 2006-01-04 at 18:18:19 +0100, Matthew Wilcox <matthew@w il.cx> wrote:

> On Wed, Jan 04, 2006 at 06:01:19PM +0100, Tobias Klauser wro te:

> > diff -urpN -X dontdiff linux-2.6.15/mm/slab.c linux-2. 6.15~tk/mm/slab.c
> > - linux-2.6.15/mm/slab.c 2006-01-03 14:41:57.00000 0000 +0100

> > +++ linux-2.6.15~tk/mm/slab.c 2006-01-04 15:52:41.00 0000000 +0100
> > @@ -921,7 +921,6 @@ static int __devinit cpuup_callback(stru

> > down(&cache_chain_sem);

> >

> > list_for_each_entry(cachep, &cache_chain, next) {

> > - struct array_cache *NC;

> > cpumask_t mask;

> >

> > mask = node_to_cpumask(node);

>

> While this does work, it's quite bad style. Much better to mo ve the

> upper level declaration (line 856) into the block it's used in (line

> 893). BTW, that function is too big at 133 lines and should be split.
Sure. That makes more sense. I'll send a new patch.

Thanks, Tobias

Figure 2.4: Example of discussion of a patch

and these was intended to be the playground where the devslopuld go wild and
work on all their new and exciting features, in support ofufet world dominatiofh
The stable releases had release numbers &arid was meant to be for general use by
“normal” users, where features were frosen and only bugfkesild be done.

A split between a stable and a development branch is a verynmonstrategy in open
source projects, although some use mofde release numbers used is then also often
using a odd/even scheme on the foaab.c wherea is a major release number,

b is even for stable and odd for development anis a sequence release number
(sometimes an additiondlis also used).

The end of the 1.1 development of the Linux kernel resultedstable 2.0 branch. This
was since followed by 2.1, 2.2, 2.3, 2.4, 2.5 branches u#l Linus Torvalds de-
cided that he did not want to have a 2.7 development brand &1is now working as

a combination of both stable and development. The versiambeu has been extended
to support-stable releaseaumbered 2.6.x.y. From the Documentation/HOWTO file
in the Linux source:

2.6.x.y -stable kernel tree

Kernels with 4 digit versions are -stable kernels. They aontelatively
small and critical fixes for security problems or significeggressions dis-

8The phrase “world domination” is a self-ironic phrase usethie Linux community.
See[[Z1] for a discussion of the origin.

9For instance, the XEmacs development is split between tm@eches: stable, gamma, and beta.
Debian uses experimental, unstable, testing and stable.

24

2.2. LINUX KERNEL DEVELOPMENT

covered in a given 2.6.x kernel.

This is the recommended branch for users who want the moshreta-
ble kernel and are not interested in helping test developi@grerimental
versions.

If no 2.6.x.y kernel is available, then the highest numb&€dx kernel is
the current stable kernel.

2.6.x.y are maintained by the "stable" team <stable@keamggst, are re-
leased almost every week.

The file Documentation/stable_kernel_rules.txt in thenkéitree docu-
ments what kinds of changes are acceptable for the -stadedand how
the release process works.

In addition to the official source tree produced by Linus Bbig, some of the other
kernel developers provide their own variations of the kesmirce. These are often
given a suffix with the initials of the develoﬂ,rfor instancé-ac* from Alan Cox
1. The currently most important tree of those is them tree* which now has
taken over for the previously development branch.

But there needed to be a mechanism for testing new techmalogiplace
where they could be revised, updated and even removed battually

getting into the mainline kernel. As such, it was decided tha -mm

tree would be the place where things were tested before theyp the

mainline kernel. — Greg Kroah-Hartman

The -mm patches are a set of patches, released by Andrew i against
the official kernel series. They are frequently more expental in nature
than the official series. [pttp://kernel.org/patchtypes/mm.

html

After Linus Torvalds has made a 2.6.x release, there is a teekyperiod where Linus
is open for accepting development patches. After that pdréocreates the first release
candidate for the next kernel release, 2.6.(x+1)-rcl. Aft& only bugfixes will be
accepted. A number of following release candidate releasasade until the kernel is
perceived good enough to make the 2.6.(x+1) release. Sae=Elgh on the following
page for connection between the kernel branches relevatttifothesis.

Chttp:/iwww.Kernel.org/ait/ lists 149 different git repositories with the path linuxtke
nel/git/. ...

For the 2.4 development the -ac tree had a somewhat simifatiin to the current -mm tree,
being slightly more experimental than the development tiigee Linux Kernel Janitor Project started
submitting some of the patches through the -ac tree.

25

http://kernel.org/patchtypes/mm.html
http://kernel.org/patchtypes/mm.html
http://www.kernel.org/git/

2.2. LINUX KERNEL DEVELOPMENT

2.2.5 \ersion Control System

Up till 2002 patches was the only way to distribute changesJanuary 2002 Linus
Torvalds decided to start using a version control systernedditKeeper[[ZR]. The
move to start using a version control system was not conisiae but the choice of
BitKeeper was since this was a commercial product (whichwade freely available
for Linux kernel developers).

Despite the opposition Linus decided that he wanted to thys Was after all an op-
tional addition/alternative to the existing developmermigess; patches in mail would
still be acceptable and used. Linus was satisfied with thiéte®iper made him more
effective and kept using it.

BitMover, Inc., the company producing BitKeeper, issuedesp release in 208

claiming that Linus Torvalds had more than doubled his pobiglity. This claim was

supported with quantitative measurements of the actiwétfpte and after Linus Tor-
valds started using BitKeeper. A more in depth coverageisfishpresent in[[23].

In 2005 the usage terms for BitKeeper changed and Linus dédltht he wanted to
write his own version control system|24]. He found none & éxisting free version
control systems suitable, but after using BitKeeper foe¢hyears he knew quite well

Phttp://lwww.bitkeeper.com/press/2004-03-17.html

2.6.14-rc1-kj 2.6.14-rc2-kj 2.6.14-rc3-kj 2.6.14-rc4-kj
janitor I I N
H H H H >

v v v v
2.6.11—mm1 2.6.11—mm2 2.6.11—mm3 2.6.14-rf1-mm1 2.6.|1‘4-rc2-mm1 “ 2.6.14-T\q-mm1
‘ .

-mm tree N N N 4
T —>

\ \ \
% 2.6.14-rcl % 2.6Al|4-rc2 *

2.eI13 5 ' 5 ‘\ ' 2A6.1|4-rc3 5
2.6.x N W W W W W | 4

2.6.1|4-rc4

Y 4

-stable,
2.6.x.y

The dotted arrows indicate merge from one branch to andbéthe exact placement
and number are guesses. The merges are not full merges,edetyed parts. So when
Linus Torvalds merges from -mm between 2.6.13 and 2.6.14ecis likely to accept

janitor patches. After the rcl release they are not accdpiadss they fix bugs which
in case they might be considered).

(Pay little attention to the time scale in the figure)

Figure 2.5: Different Linux kernel branches and releases

26

2.3. THE LINUX KERNEL JANITOR PROJECT

how he wanted a version control system to be. This was theaftéine tool called
git . Since version 2.6.12-rc3 the kernel has been developediatiibuted using git.

2.3 The Linux Kernel Janitor Project

2.3.1 Oirigins of the term janitor

The Wikipedia article about janitof, [25] has the followidgscription

A janitor is a person who takes care of a building, such as adg¢bffice
building, or apartment block. They are responsible pritgdar cleaning,
and often (though not always) some maintenance and security

and notes that the origia derived from the Latin word ianitor meaning "doorkeeper*
A female janitor is called a janitrix, although this term @rely used.

2.3.2 History

The Linux Kernel Janitor Project was started in 2001 by AdoaCarvalho de Melo.
He was maintaining a TODO list for things to fix or clean up. Tikewas available via
HTTP and he noticed in the webserver logs that many peopksaed it. He therefore
decided to organize the janitor activity into its own prdjec

This form of janitor organization appears to be relative néwthe March 29, 2001
edition of Linux Weekly News, the newly started Linux Kerdahitor Project was the
main coverage with the following closing words:

The kernel, meanwhile, is far from the only large developty@oject

in the free software community. No doubt, many other prgesttould
look at the kernel janitors organization and consider isgttip something
similar. The benefits, in terms of improved code and a betipply of

new hackers, could be both large and immediate.

Given the high quality of the content of Linux Weekly News dhélir effort of provid-
ing a complete and full picture in their news coverage thia sgrong indication that
no other projects similar to Linux Kernel Janitor Projecis¢éad at that time.

The janitor concept was partly inspired from FreeBSD (aliio this was not orga-
nized as an separate activity or called janitor). In an atdag, archived at the Linux
Kernel Janitor Project website, Dave Jones said the folgwi

27

2.3. THE LINUX KERNEL JANITOR PROJECT

An interesting parallel to the kernel janitor project is wih@appens with
the FreeBSD folks. Regularly, you'll see on their mailingf fijunior ker-
nel hacker tasks”. Simple (but often tedious) cleanups.evbxperienced
hackers will mentor newcomers to kernel hacking, often pogithem in
the correct direction.

Linux Weekly News also drew parallels to OpenBSD:

And the janitors have noted an important point: an errorguatthat is
found in one section of code has a high likelihood of recuytiim other
places. Once a particular type of mistake has been foundakemgreat
sense to go looking for instances of the same mistake elsewfais is
essentially the same approach as that used by the OpenBBLideaot
out security problems before they are exploited.

2.3.3 Janitor Patchsets

The patches from the Linux Kernel Janitor Project are reldas patch sets, also called
patchsets A patchset is a collection of files that each contains a sipgkch. These

patches have first been posted to the mailing list where treeg@ssibly discussed and
modified. The project leader reviews mailing list patchesfrtime to time and add

those that are accepted to the patchset. This process isbadest chaptef-3]1 and

also shown in Figure=3.1 on palgd 30.

The first Linux Kernel Janitor Project patchset was 2.5.K03) Before that the janitor
patches was handled individually by each author. Some ohtivere sent to and
handled by the Trivial Patch Monkey (see chapier?.3.4 ordlh@ving page).

Released by From Date To Date
Randy Dunlap 2.5.70-bk13 2003-06-11 2.6.6-rc2-kj1 2004-04-23
Maximilian Attems| 2.6.7-rc1-kjtl 2004-05-24 2.6.10-rc2-kjtl 2004-11-2(
Domen Puncer 2.6.10-Kj 2004-12-24 2.6.13-rc4-Kj 2005-07-29
Alexey Dobriyan 2.6.13-git4-kj1 2005-09-03 ...

Figure 2.6: Earlier and current patchsets

BBt seems thathttp://Wwww.0sdl.org/archive/raduniap/kj-patchesy... and
http://developer.osdl.org/rdduniap/K|-patches/... was identical (they are no
longer available). The first patchset release was annouaeesing www.osdl.org while all the fol-
lowing releases was using developer.osdl.org.

The internet archive, http://www.archive.org/ has nothing stored ofhttp:/
developer.osdl.org/rdduniap/ while the last entry for/http://www.osdl.org/
archive/rdduniap/ contains patchsets up till including 2.6.6-rc2-kj1 whiclasvannounced
as |http://developer.osdl.org/rdduniap/k|-patches/Z2.6.6 -rc2/2.6.6-rcz-
K|L.patch.bzZ

28

http://www.osdl.org/archive/rddunlap/kj-patches/...
http://developer.osdl.org/rddunlap/kj-patches/...
http://www.archive.org/
http://developer.osdl.org/rddunlap/
http://developer.osdl.org/rddunlap/
http://www.osdl.org/archive/rddunlap/
http://www.osdl.org/archive/rddunlap/
http://developer.osdl.org/rddunlap/kj-patches/2.6.6-rc2/2.6.6-rc2-kj1.patch.bz2
http://developer.osdl.org/rddunlap/kj-patches/2.6.6-rc2/2.6.6-rc2-kj1.patch.bz2

2.3. THE LINUX KERNEL JANITOR PROJECT

2.3.4 The Trivial Patch Monkey

Although the Trivial Patch Monkey has no direct connectiorLinux Kernel Janitor

Project there might be some overlap in the work done, so &desription is included.
The Trivial Patch Monkey collects and submits patches treatrviald, taking care

of re-submitting and following up so that the patch will nat lost. It was started by
Rusty Russell which in February 2002 announced

Hi all, trivial@rustcorp.com.au is set up to take trivialtglaes, ie. one-
liner, documentation, spelling fix, etc. | will acknowledgeur patch, and
take care of the retransmissions until the patch is eithpliegh, or does
not apply any more.

The aim is to encourage people to submit minor tweaks witfeat of
them getting lost. Do not expect real time behavior: | am novt

Later in May 2002 he wrote the following.

With the recent flurry of inclusions, the trivial@rustcazpm.au Trivial
Patch Monkey has passed 100 patches which have filterechimt@tious
kernels ... With this surprising success (I thought the dannmg would
die after a few days), | will be continuing to provide the seey which
only takes me about an hour a week.

Late 2005 the Trivial Patch Monkey occupation was handed tv@another Linux
kernel developer, Adrian Bunk, and the email address is movat@kernel.org.

1441f you aren’t sure whether a patch is trivial, it most likein't...

Repository From To
http://www.osdl.org/archive/rddunlap/kj-patch’sf 2.5.70-bk13 | 2.6.6-rc2-kjl
http://debian.stro.at/kjt/ 2.6.7-rcl-kjtl| 2.6.10-rc2-kjtl
ftp://coderock.org/kj/ 2.6.10-Kj

Figure 2.7: Earlier and current patchset repositories

29

Chapter 3

Software development process

3.1 Kernel Janitor Process

work on TODO item
review kernel source 1 .
create and submit patch
use some tool

feedback
patch update

kernel-janitors@lists.osdl.org | H linux-kernel@vger.kernel.org H . subsystem mailing list/

................ NEGEEEEEEEFEERD H maintainer

review/test patch

7

\
. ','
PR
o
¢
8 9
| janitor patchset | | -mm kernel tree

official kernel | |

Figure 3.1:

Process for submitting patches in the Linux léedanitor Project

As with the normal Linux kernel development, the way to ciimite is by creating
patches. A patch is created either based on one of the TOD® ibe it is something

the developer

creates by his or her own initiative (arrow Eigure[3.1). After creating

the patch itis sent to the Linux Kernel Janitor Project nngjliist for review (arrow 2).
If the patch modifies a part of the kernel that has an activentamier and/or separate
mailing list it is polite to send a copy to them (arrow 13). hat case the maintainer

will often acce

pt the patch, “stealing” it out of the janifmocess (arrow 14 or 15).

If the patch is special (say improves performance with 20086,security implications

30

3.1. KERNEL JANITOR PROCESS

or something like that) it might be appropriate to send a dopyKMLﬁ, which is the
main mailing list for the Linux kernel developers. You mighy to send to Linus
Torvalds directly as well, although this will have low charaf success.

“Don’t send to Linus” is pretty much the first non-obviousrtgilve
learned about process. — Alexey Dobriyan

In fact Linus is fairly random at patches at the best of tim@&gnerally,
Linus will cc: it to me because he knows I'll pick it up. — Aneréorton

After posted to the mailing list, the other janitors read aodsibly test it. If they have
any feedback (like in Figurie=.4 on pagéd 24) they will post Hrad the patch creator
will make an updated patch (arrow 5).

After some time the Linux Kernel Janitor Project leader wéView the mailing list
for patches posted (i.e. after the possible discussions bettled), and accept those
that are found acceptable (arrow 6). Those patches are tioduded in the janitor
patchset (arrow 7). Over time parts of the Linux Kernel Jaritroject patchset will
be included in the -mm tree (arrow 8) and will most likely filyadnd up in the official
kernel (arrow 9).

3.1.1 Linux Kernel Janitor Project mailing list activity

Figure[3.2 on the next page shows a plot of how persons comgaad participants
on the Linux Kernel Janitor Project mailing list. For eachntiotwo lists of emails

were made, one containing all the email addresses thatrectctar the first time that

month, and one list that contained the email addresses tsaeg for the last time
that month. Counting these list gives quantitative measargs of how the number of
participants on the mailing list change over time.

One evident characteristic of the plot in Figlirel 3.2 on tHfang page is the spikes
where in one month there is a steep increase in the numbemnoagling list partici-
pants followed by a correspondingly steep decrease thewwity month or couple of
months. The same pattern is mirrored by the last time posieceavith one month
delay compared to first time posted.

This is caused by mailing list threads that either at somatpocluded other mailing
list or maintainers or that threads elsewhere from stametuding the Linux Kernel
Janitor Project mailing list. For July 2004 the spike is nhostiggered by threads
about “replace schedule_timeout() with msleep()”, ab@uAIPIC debug and min/max
macros.

Yinux-kernel@vger.kernel.org

31

3.1. KERNEL JANITOR PROCESS

3.1.2 Tools used by the Linux Kernel Janitor Project

In the beginning when defining the thesis and figuring out wiairite about | wanted
to include tools since they are used by the janitors and Iktlthey are important.
However when working with the thesis | found that the effecthe different tools
used, in the context of the process of the Linux Kernel Jaftoject, was only to
contribute to the list of possible work items.

This is not to downplay the importance of tools, but rathereapression of that the
janitor process is rather independent of the tools used.

Why are tools important?

If a developer reads a source code file from start to end segrfor bugs/improve-
ments this is a one time effort that is valid for that givensien of the file only.
Manually reading source code is very time consuming ancgiéipg on what the ob-
jective for the examination is, might require a high degréeechnical knowledge and
understanding of the source code.

Tools will of course never be able to replace the overallaalpects competence of
humans, but tools have the benefit of taking a very short tomer (at least compared
to human effort). So using a tool on all version is normallytgdeasible.

A specialised tool might additionally find errors that go etetted by humans. And
they do. Coverity recently ran a project analysing sevepalhosource projects, among
others the Linux kernel. The results are availablia@b://scan.coverity.

Change of mailing list participants over time

50 T

T T T T T
First time post
Last time post --------

Persons

2 22%2%%%2%
232008 R

Figure 3.2: Change of mailing list participants over time

32

http://scan.coverity.com/

3.2. WINE DEVELOPMENT PROCESS

com/] and the report from the project is discussed on the front phdgenux Weekly
News, March 9, 2006 editich

Linus Torvalds has also written specific a tool for sourceecadalysis of the kernel,
sparse, which is used to find bugs in the handling of userespamters.

3.2 Wine Development Process

The process for Wine is in several ways similar to the oneteritinux Kernel Janitor
Project. A detailed drawing of the different elements arevahin FigureC3.B on the
next page. The main differences are the following.

e There is no separate handling of janitor patches, they ardlad together with
the patches from the normal development.

e There are no different kernel trees, just one common gitsiabpr;ﬁ.

¢ Wine has one separate mailing list for submitting patchesanty that, wine-
patches@winehg.org. If there are any discussion this aketplace on the
wine-devel@winehq.org list.

e After a patch is committed in the git repository a messagerns ® the read-only
wine-cvs@winehq.org list.

After working on either a janitor task or one of the normal Witasks the developer
creates a patch and sends it to the wine-patches mailinahistws 1 and 2 in Fig-

ure[3.3 on the following page). This list is read by the Wingadepers which review

the patches submitted (arrow 3), and if they have any feddtbas will be posted on

the wine-devel mailing list (arrow 4 and 5). The patch creatdl then make an update
of the patch (arrow 6) and resend it to the wine-patchesdiso{v 7). If the patch is

accepted it will be committed to the git repository (arrowrl®). Accepted patches
will appear in the wine-cvs mailing list (arrow 10).

3.3 Asterisk Development Process

Asterisk turned out to be quite different from both the Lirkernel Janitor Project and
Wine. Asterisk was created by Mark Spencer which is stillghimmary maintainer. He
later founded the company Digium which is an telecommurooatsupplier and is the
main sponsor of the development of Astefisk

2http://wn.netArticles/1 74125/

3Wine started last year using git for source code managerbetihe code is also available through
CVS, Subversion and SVK repositories which are synchrahisith the git repository. Alexandre
Julliard (who is Wine’s project leader) is the only persothagommit access to the git repository.

“Not everyone is happy with the strong influence that Digiurs énzer the development of Asterisk
or with the monolithic architecture. In 2005 a fork of the Assk code was made and a new project
OpenPBX was started.

33

http://scan.coverity.com/
http://lwn.net/Articles/174125/

3.4. SUMMARY

Wine TODO List

Fun Projects \ 1
j / Vel create and submit patch >

JanitorialProjects "N

2

y

6 7
wine-devel@winehq.org update patch wine-patches@winehg.org

feedback 4 review/test patch)

wine-cvs@winehq.org <€ http://source.winehg.org/git/wine.git

Figure 3.3: Process for submitting patches in Wine

The source code of Asterisk is stored in subversion and thesigeare hosted by

Digium. In order to contribute to Asterisk you have to fill autopyright disclaimer

and send or fax it to Digium. Asterisk is released under daahlse scheme using both
GPLH and a commercial license which Digium uses in products it sel

Figure[34 on the next page shows the process for how to boério Asterisk. As
mentioned in the previous paragraph, a copyright disclaisieequired to start con-
tributing to the development of Asterisk (arrows 1, 2, 3 aphdAdter finishing working

with a task the change is committed with subversion (arroaris) placed directly in
the subversion repository (arrow 6). The developers wilhitar the repository for
new functionality (arrow 7).

3.4 Summary

The largest difference between the Linux Kernel Janitojéetan one side and Wine
and Asterisk on the other side is that the the janitor agtivithe Linux Kernel Janitor
Project is active and selfsupporting while for Wine and Aisteit is more passive and
a lesser part of the normal development. This is not to saythiese is no janitor work
done in Wine or Asterisk however.

5GNU General Public License. Sdmtp://iwww.gnu.org/licenses/gpl.htmi and
http://en.wikipedia.org/wiki/GPL for more information.

34

http://www.gnu.org/licenses/gpl.html
http://en.wikipedia.org/wiki/GPL

3.4. SUMMARY

fill out one of
http://www.digium.com/disclaim.changes
or http://www.digium.com/disclaimer.txt

1

\ 4

2
C fax or send paper copy to Digium >—} Digium ’

3

A

file disclaimer and
grant svn commit access

commit changes using subversion)

6

Issue Tracker
Janitor Projects

4

7
http://svn.digium.com/svn/asterisk/trunk

Figure 3.4: Process for contributing code in Asterisk

The process for submitting patches is quite similar for Wamel the Linux Kernel

Janitor Project where in both projects patches are firstteesmmailing list for review.

A committer will later merge the patches that are acceptemthre projects repository.
This is different from Asterisk which has a steeper entrynp@or starting contributing
but where it is easier to contribute features or fixes wheresta

35

Chapter 4

Interviews

4.1 Selection of interview participants

When examining a population it is usually not feasibly to eséry member. Therefore
a selection is made and this subset of the population mend#ien examined. To
obtain valid results this selection should be represamdtr the whole population.
The representativeness is the key factor here; if this thisaak then the validity of
whole outcome is also weak.

There are several ways of making a selection. Either by usiobability sampling

or non-probability samplingIn probability sampling there is a probability associated
with the selection of each participant. In non-probab#igmpling there is a subjective
decision involved in selecting each participant.

One patrticular, important non-probability factorsislf-selectionlf the sample is made
out of population members that themselves decides to gaate this will introduce
a bias (for instance are people with strong opinions momyiko participate). Self-
selection is best avoided.

But even if the participants are carefully chosen one waynotlzer, the response rate
will normally be lower than 100%. This introduces a selfestion factor in that some
people chose not answer.

4.1.1 Probability sampling

Simple random samplingshich is a method where each member in the population
has an equal chance of being selected. Basically this qgunes to making a list of
the population and randomly select a number of members fl@anlist. One of the
problems with simple random sampling is that there is a riskigsing out participants

of smaller population groups. Therefore it typically re@qsi a relatively large sample
to be valid.

36

4.1. SELECTION OF INTERVIEW PARTICIPANTS

Cluster samplings when selecting a whole group instead of just several iddals
like in simple random sampling. An example could be exangmine class in a school.
This method is usually used for practical reasons since ghitribe less expensive or
difficult than using a sample of individuals.

In stratified samplinghe population is divided into groups called strata. Theppre
tion between the different strata groups is then decidedinstance you might decide
that the sample should be consist of 50% males and 50% fenTdlessmight be done
in order to ensure that sub-groups of the population is oetlin the sample or in-
cluded in the right proportion. It might also be used if certgroups are to be given
more or less weight.

4.1.2 Non-probability sampling

In non-probability samplinghe selection made out of some other criteria. This will
normally make the sample likely to be in some degree diffefem average, so it
might be not possible to use non-probability samples to igdize conclusions for the
whole population.

Convenience samplinig when the sample is made out of participants that are easy to
get. For instance you might only select people you alreadykn

When the researchers selects participants based on theijunlgment of who they
think might be appropriate to include, this is calledrposive samplingr Judgment
Sampling For instance if you are planning a new payroll system ankisgeequire-
ments, it would probably be more useful to select one of thestaries than 10 random
workers.

Quota Samplings similar to stratified sampling in that the population isided into
groups. But in quota sampling the members are chosen fragly fot with a certain
probability) as long as the quota is met (say that 25% are &ésya older).

4.1.3 Criteria for selection

| could have just sent an open post to the mailing lists askingnyone to participate.
But that would have been self-selection, so that was not &arop

Only persons which have posted on the Linux Kernel Janitojelet mailing list have
been asked. This is sort of a cluster sampling, however siaiteer wine nor Asterisk
have a separate janitor organization the effect of inclgdivem would probably be
marginal.

In this study there is no point in finding an exact average efjémitors’ viewpoints.
So | will not use simple random sampling. Instead | will séleg some groups/strata
of people that | think will give perhaps different but impamt answers.

37

4.1. SELECTION OF INTERVIEW PARTICIPANTS

Arguably the most active developers are the most importarhbers of the janitor
project, so | will give most attention to them. However, gtment is also very im-
portant for the long term stability of the project. Just asiemew people are joining
in others will have left, so | will also ask some of those wholaoger are actively
participating in the janitor project. Table#.1 shows theads.

Strata Sample Sizg Selection Criteria

The most active developers 50% Top posters between
2005-03-01 and 2006-02-28

Newcomers/just started 25% First time posted between
2005-11-01 and 2006-02-28

No longer active 25% Last time posted between
2004-07-01 and 2005-06-30

Table 4.1: Selection criteria and strata distribution

After deciding what groups to ask and their internal disttibn, | had to decide on
how many persons to ask. When doing quantitative studiesvery important that
the sample is not to small, in order to be reasonable reptaden It is possible to
calculate the required size of the sample giveoafidence interv§Zt] andconfidence
level

confidence interval gives a range of values for the measured variable. For instan
when flipping a coin, you might state that the confidence vatefor getting
heads is between 45% and 5%

confidence levelof say 95% means that if the study is repeated many timesyube t
value of the variable measured will lie within the confidemterval 95% of the
times.

These factors are not so critical for a qualitative studg likis, but they should at least
to some be degree relevant. Therefore some on-line sanzglealculators [[28]/129]
and [30]) were used to estimate a sample size. A populatia@@fconfidence interval
of £10% and confidence level of 90% was used as input. They gav&)3hd 41 as
answers. 40 persons was chosen as sample size, which tlesn2@viop posters, 10
First time posters and 10 Last time posters.

To find the top posters the mboxstats tbol[31] was used. Takgroduces various
statistics when fed with a mailing list saved in mbox forfha®o this was quite simple
and straight forward.

1The probability is in fact not exactly 50%. It depends on vihside that starts lying ulp[27]
2It was primarily used for analyzing the main Linux kernel timgg list (LKML) by Kernel Traffic,
http://www.Kerneltraffic.org/ (Kernel Traffic has provided summaries of the discussions

38

http://www.kerneltraffic.org/

4.2. INTERVIEW RESPONSES

To find persons that posted for the first time to the Linux Kediaaitor Project mailing
list between 2005-11-01 and 2006-02-28 | wrote some penptscto find all emails
before a given time and then compare with this emails in pafées that. Finding last
time posted between 2004-07-01 and 2005-06-30 was mors®ttie reverse of this.

The result was then two lists from which 10 names were rangantracted from
each. However the lists was manually “washed” afterwordplacing a few entries
with new ones in order to make sure that the person had nathastged mail address
as well as discarding persons that | determined had postdddads that started out
on a different mailing list and that one some point had beé&tddo the janitor mailing
list if that person did not appear to othervise be an actinéga

This was however quite difficult because the mailing lishare had stripped out al-
most all headers from the original posts (notably booh andCc: E). and a couple of
“why did you ask me* responses were received from peoplerdtatived the interview
guestions that ideally should have been washed out.

One of the selected persons was both part of the top posteup @is well as newly

started. | consider this OK since | assume he will represetit groups (quota sam-
pling). 39 persons was therefore asked to participate. Tlestgpns asked are listed in
appendiA on page®H1.

4.2 Interview responses

The response rate was much lower than | had expected. | seamait with the
guestions Saturday 8th April 2006. The intention was to give week response time,
however | noticed later (on Sunday 16th April) that | had madeerror and written
Saturday 9th April. Since some of the receivers then prgobadterpreted that to be
only one day response time and because of the very low regspdimsrefore resent the
guestions with a new response period to those that had neeaed. Only 5 persons
answered in the first round and 2 persons answered in thedegcond.

See appendix]A on pagel61 for the full sett of complete questio

on LKML for many years, but is currently on a break). A modifioa of mboxstats was necessary
because out of the box it crashed when processing the jamiadling list. The janitor mailing list
archive is processed by pipermail which strips out most ef il headers and mboxstats was not
happy with that. It was however not a big problem to commeintloeicode that crashed (report of most
busy day of the week).

3As of writing this today, exactly one week before the finiskadline, | noticed that the headers are
not stripped out in the complete all-time archive, only ia thonthly archives which | happened to use
excursively. ..

39

4.2. INTERVIEW RESPONSES

Q1, using Linux

less than one year, 3, 3.5, 4, 10, 11, 12 years$

D

Q2, programming

3,3.5,4-5,9, 14, 15, 18 years

Q3, when involved

2 persons 3 months ago, 1 person 2 years af
3 persons 3 years ago and one 3-4 years ag

O

Q4a, more/less involved

3 less, 2 more and 1 unchanged

Q5, other open source project

52 no, the others varied from most effort
in KJ to most effort elsewhere

Q7, manual code reviews

1 seldom, 3 sometimes, 2 often, 1 always

Q8, post corrections

everyone had done this

Q9, coding style knowledge

2 basic, 2 between basic and solid, 3 solid

Q10, start time estimate

estimates from 1-2 weeks up till 1-2 months

Q11, Detailed knowledge abo
submitted patch handling

Ut
2 no, 2 mostly, 3 yes

OW

Q12, number of submitted 0-10: 3
patches (through KJ) 20-30: 1
40-50: 1
cal00: 1
ca 200: 1
Q13a, accepted notification | 1 always, 2 sometimes, 1 often, 1 don’t know
Q13b, rejected notification 2 always, 2 sometimes, 1 seldom, 1 don’t kn
Q15, age 20 years: 1
23 years: 2
28 years: 1
29years: 1
32years: 1
Q16, male/female all male

Q17, nationality

mostly from Europe, everyone
from different countries

Q18, educational degree

3 of approximately high school
1 of Bachelor
3 of Master (finished or studying)

Q19 working as a programme

3 months, 9 and 10 years

40

4.3. SUMMARY

Q3, why involved in KJ Not everyone answered on why they got involved,
but the answers were a combination of personal in-
terest in learning (programming, operating system
etc) and that it was a way to contribute back to the
community.

Q4b, why more/less involved For those less involved than before lack of time
was common. For those more active this was trig-
gered by being more confortable with contributing.

Q6, tools used It was very common to use the normal build sys-
tem and look into warning from the compiler or
use specific make targets (likandconfig or
namespacecheck). Some used various scripts
and unix utilities (find, sed, awk, etc). Also
looking into the result produced by other external
projects (like Ic@ and Coverity) was done.

Q14, improve KJ Common here was a wish for clearer TODO |jst
(perhaps with some more details on the work
items) and better feedback on patches.

When working with the responses one person from the top 20mn@s noticed to also
be in the list of persons newly started. The email entriesdesh slightly different and
therefore not detected before. The 7 replies fell into tHeWang strata: 1 no longer
active, 3 newly started and 5 from top 20.

4.3 Summary

With just 7 answers it is difficult to draw any statistical sifjcant conclusions but
some characteristics can be made. The results from theviemes are discussed more
in chaptef® on padebl.

e The age ranged from 20 to 32. Some of them was working withraragiing as
a profession (for as long as 9-10 years) but others were rw.etfucation was
spread from high school equivalent up till Master.

e The persons was mainly from Europe.

e The experience with Linux was widely spread, ranging frordemone year up
till twelve years.

e Everyone started programming before they started usingx,ior at the same
time.

e The participation in other open source projects was spreadjing from not
participating in other projects to being a core developanather project (larger

4Intel C Compiler

41

4.3. SUMMARY

than the janitor project).

e The number of patches submitted through the Linux KernetdaRroject var-
ied as well, ranging from a one digit number to a couple of madd. One note-
worthy fact however was that some the participants had stdpatches to the
kernel in other ways (for instance via the -mm tree) and hashiyjaontributed
that way (with estimates of up till around 1000 patches).

42

Chapter 5

Analysis of janitor patches

As mentioned in chapt€rz2.2.3 on pdgé 22, patches are artiespent of the develop-
ment. In this chapter | will look into some quantitative peoties of the patches that
are produced by the Linux Kernel Janitor Project.

5.1

Possible quantitative aspects that could be analysed

The following is a list of quantitative properties that cdude investigated. With the
limited time | have available | will of course not look intd af those.

e Frequency of patches, added/removed/total over time.
e Average size of patches in terms of lines and of number ottdtefiles.
¢ Classify type of change and show distribution of correc¢adaptive/perfective/-

preventive change.
Time from a patch is
— posted to itis included in the kernel janitor patchset.
— included in the kernel janitor patchset to it is includedhe tmm tree.
— included in the -mm tree to it is included in the official Liniee.
(these points corresponds to arrows 6 + 7, 8 and 9 in F[guler8pghag€-30)
How many patches are reworked and posted in an updated nersio
How many patches are rejected.
Which parts of the kernel the janitor patches modify.
Frequency of releases.
Dependencies between patches,
— Sequential dependency.
— Functional dependency.

| will focus the analysis in this chapter to only look at theokrion of the janitor
patchset, and not the interaction with the main kernel. Thimecause | want to focus
on the work done by the janitors.

43

5.2. FREQUENCY AND SIZE

For some of the properties it would probably be insterestmgot just look at the
janitor patches in isolation but to also compare with theesponding numbers from
the ordinary kernel development as well. Unfortunately Il wot have time for that.

5.2 Frequency and size

Each patchset release is stored in a correspondingly sdbdiy at the ftp server. The
patches are available as both one combined file as well dseailhdividual patches in
a separate file. These were downloaded and different asalys made.

5.2.1 Frequency

Table[5.1 on page#8 gives a full list of the number of addedrantbved patches,
the total number of patches as well as the number patchefianged in each release.
These numbers are also drawn graphically over time in Fiifevhich shows total

and unchanged, Figuteb.2 on the following page which shalded and Figure 5.3

on pagé6 which shows the number of removed patches.

Number of patches in Linux kernel janitor patchsets
400 T T T T T T T T T mTTT T T

T_TT T T T
Total number of patches

Unchanged patches --------

350

300

250

200

150

Number of patches

100

50

Releases

Figure 5.1: Total number of patches and number of unchangtmhes

There are two spikes in the graphs. The first one at releasel2lpis caused by the
fact that this release just had a large amount of patchesdadtiee second one, at
release 2.6.13-qgit4-kj1, is triggered by a renaming oflal patch files. From the an-
nouncement to that releadecleaned up changelogs and subject lines. Minor tweaking

44

5.2. FREQUENCY AND SIZE

and collapsing of patches into bigger ones was also madthwerefore all the previous
existing patches appears to be removed and the new totaheae all just added in
this release.

Ignoring the two releases 2.6.10-kj and 2.6.13-git4-kjTable[5.) on page %8 gives
arithmetic mean average of 35.8, 34.2 and 209.05 for addethved and total number
of patches. The median is 21.5, 15 and 196.5 respectivelg tgpical Linux Kernel
Janitor Project patchset release consists of around 2@bgmend typically 10-15%
of the patches are replaced from release to release.

When patches are removed from one patchset release to théhisemight be due to
different reasons. The most important reasons are givereifollowing list. No effort
has been spent on determining the exact reason for any afdhedual patches.

e integrated into the -mm tree.
e rejected for some reason.
¢ the target that a patch modifies has changed so that the pagtshadt
— apply cleanly (possibly sent back to the creator for an ugpdat
— make sense any longer (for instance if the function modikeeimoved).
e the same modification is already done elsewhere indepdgdent

Number of patches in Linux kernel janitor patchsets
250 T T T T T T T T T mTTT T T TT T T

AddedI patches I

200 1

150 —

100 —

Number of patches

50 -

] 1 1 1 1 1 1 1 1 1 1 1
SR DT D S S Sy Y S O
o0, "ot s e "o Fe’e Pifde’s e, o
©e% RN R RS [YWwee wRRgrw % 9
IR ST R I S s S S
Tk 22 B B i % %
-

Releases

Figure 5.2: Added number of patches

45

5.2. FREQUENCY AND SIZE

5.2.2 Average size

Summing all the added patches numbers from Table 5.1 on@gkid the initial 211
gives a total of 1165 unique patches. However when countiaguihique number of
filenames from the combined seflgdedd | only got 1162. These files were also the
basis for generating Table™.1 on p&gé 48 so | suppose tsantdans that a very few
filenames have been reused.

The vast majority (90%) of the patches did only modify oneglarfile. A complete
overview is given in Tabl€Bl2 on pafel49. The most intrusatelp which modifies
255 files isspace_before_n_removal.patch , but this is quite exceptional.
The second most intrusive patch is down to “just” 43 files. Tlfiges entry in the table
is 2.6.11-rc2-kj/split/msleep-drivers_telephony_ixj.pa tch
which is corrupt and does not contain a patch.

A particular interesting finding was the following. The aomuiated number of lines
added in the unique set of patches is 29200 lines. The camespy number of deleted
lines is 50561. So this means that the net contribution flieenLinux Kernel Janitor
Project to the kernel quite clearly is a reduction of code.

Looking at the individual distribution of lines added/reved reveals that 405 (35%)

A seriesfile is a file containing a list of all the patches in a patchskici is created and needed
when using the tool quilfttp://savannah.nongnu.org/projects/quilt |

2] had to manually correct a few of the series files. In somesgsét had missed including some
files while for one release the series file listed non-existiles.

Number of patches in Linux kernel janitor patchsets
250 T T T T T T T T T mTTT T 77II T

T T T
Removed patches

200] E
150 —

100 —

50 - | L i
0 1 1 11

Number of patches

] 1 1 1 1 1
SR D > SR S D %
o, et e e ge’e Wisdee ‘e o
2e% RN R RS WWwee wREgre % 9
IR ST R I S s S S
2 225 B B irEes y %
-

Releases

Figure 5.3: Removed number of patches

46

http://savannah.nongnu.org/projects/quilt

5.3. MAINTENANCE TYPES

of the patches removes more lines than they add while 432)Y87#%e patches does
not change the number of lines.

5.3 Maintenance types

5.3.1 Distribution of maintenance types for janitor patches

Due to time constraints | did not have time to classify all1ié2 Linux Kernel Janitor

Project patches. | selected one of the patchset relea$ek22c3-kj, which contained
197 patches and analysed those. There was no specific reasthbdsing this partic-

ular release other than when looking at Figureé 5.1 on papbid4dlease looks rather
average and is not near the edges.

The results of the analysis of release 2.6.12-rc3-kj arergin Tabld 513 on pade k0.
This is a little weak result since it is not that many patched tvas examined, but still
| think the trends are representative. Since the purposeef.inux Kernel Janitor

Project isfixing up unmaintained code and doing other cleanapsigh degree of

corrective and preventive maintenance is to be expected.

The original Lientz, Swanson and Tompkins study in 1978 tbtinat 17.4% of main-
tenance effort was categorized as corrective, 18.2% agiadap0.3% as perfective
while 4.1% was categorized as other. [Inl[13] these figureskawa/n to be quite inac-
curate and the numbers are found to be in the following rang#e Linux kernel:

perfective| 20-55%
adaptive <1%
corrective| 40-80%

Since this study does not include perfective maintenaneedbults are not directly
comparable. Still, comparing the result from the Linux Kardanitor Project patches
reveals that the project has much less perfective mainten#uat this should not come
as a surprise since the main focus of the Linux Kernel JaRitoject is not develop-
ment of new functionality.

Note that my definition of correction does not necessarilyamahat study. See ap-
pendixB on pagE®4 for which criteria | used.

a7

5.3. MAINTENANCE TYPES

Release Date Added | Removed| Unchanged Total

Patches Patches Patches Patches
2.6.10-Kj 2004-12-24 0 0 0 211
2.6.10-bk13-kj| 2005-01-10 26 65 146 172
2.6.11-rc2-kj | 2005-01-22 66 42 130 196
2.6.11-kj 2005-03-02 183 24 172 355
2.6.12-rc1-kj | 2005-03-18 53 201 154 207
2.6.12-rc2-kj | 2005-04-05 23 44 163 186
2.6.12-rc3-kj | 2005-04-24 14 3 183 197
2.6.12-rc4-kj | 2005-05-13 10 11 186 196
2.6.12-rc5-kj | 2005-05-26 20 192 212
2.6.12-kj 2005-06-19 11 206 217
2.6.13-rc1-kj | 2005-06-29 24 69 148 172
2.6.13-rc2-kj | 2005-07-06 17 5 167 184
2.6.13-rc3-kj | 2005-07-13 70 14 170 240
2.6.13-rc4-kj | 2005-07-29 17 16 224 241
2.6.13-git4-kj1| 2005-09-03 238 241 0 238
2.6.14-rcl-kj1 | 2005-09-13 51 187 191
2.6.14-rc2-kj1 | 2005-09-21 182 184
2.6.14-rc3-kj1 | 2005-10-01 181 183
2.6.14-rc4-kj1 | 2005-10-11 12 179 191
2.6.14-kj1 2005-10-28 24 2 189 213
2.6.15-rc5-kj1 | 2005-12-05 78 87 126 204
2.6.16-rc1-kj1 | 2006-01-18 60 24 180 240

Table 5.1: Number of patches in Linux Kernel Janitor Projgdthset releases

Table explanation: Release 2.6.10-kj contains 211 patcRedease 2.6.10-bk13-kj
has a total of 172 patches, where 26 of those are new compar2®.t10-kj. The
difference are those removed, iH.1 4 26 — 65 = 172

48

5.3. MAINTENANCE TYPES

Number of files modified Number of patches$
by a given patchh with this property
0 1
1 1042
2 49
3 18
4 12
5 7
6 3
7 5
8 1
10 1
12 1
13 6
15 1
16 1
18 4
21 1
24 1
25 1
31 1
33 1
34 1
35 1
40 1
43 1
255 1

Table 5.2: Number of files changed in patches

49

5.3. MAINTENANCE TYPES

Type Number of times
invalid 1 (0.5%)
preventive 91 (46%)
perfective 1 (0.5%)
adaptive 1 (0.5%)
corrective 102 (52%)

See appendiXIB on pafel64 for criterias used for classificatio

Table 5.3: Distribution of maintenance types in patchsetaise 2.6.12-rc3-k|

50

Chapter 6

Discussion

6.1 Weaknesses and uncertainties in the results

With so few answers to the interview the information extealcfrom the answers is
statistically weak.

The result that 90% of the patches only modify one file mighsbmewhat skewed
in that in that a large change affecting many files might hasenbsplit into several
patches. In fact if the janitors perform correction of empatterns, which they do, this
will have a tendency to create patches that modify many fillsen so many files are
single file patches this is most likely because such mang-filgches are split up.

This makes it difficult to compare patches without knowing fatch is

e a stand alone patch

e part of a series of patches but can be considered indivigglpically API
conversion)

e part of a set of patches which are dependent on each other

No effort in determining dependencies between patchesdes imade for this thesis.

Since there is much “guest” traffic on the Linux Kernel JanRooject mailing list it
was very difficult to try to guess which persons that weretfasi The best solution
had been if historical mailing list subscriber informatioad been available.

51

6.2. HOW IS JANITOR WORK DIFFERENT FROM NORMAL
DEVELOPMENT?

6.2 How is janitor work different from normal devel-
opment?

In contrast to normal development which is about addingiest(to adapt to Lehman’s
first law of software evolutiorE-type systems must be continually adapted else they
become progressively less satisfactgrythaintenance is about preserving features.
While traditional maintenance perhaps has been focusedciog fihing that has bro-
ken and “if it aint broke, don't fix it”, janitor maintenance more about pro-active
actions with a “fix it before it breaks” attitude.

6.3 Starting your own janitor project?

A project that works in parallel with normal developmentuethg the code siflavhile
still keeping the same functionality or even improvingiat ought to sound attractive
from a management perspective. The attraction will be ke lftir open source and
proprietary software, so these will be covered separatetiie following sections.

If the developers have time to do the janitorial cleanup thelnes there will be no
need for a janitor project. This is hardly the case normaity,almost any project
would benefit from the assistance of some janitors. The diagooject will probably
have to be above small in order to maintain a longterm jaitbivity.

If a project have say just one or two developers, then if ant@acl person joins the
project offering to do janitor tasks he or she is likely to enqdas a co-developer more
than as a janitor pretty fast. The janitors will need mertgrand partial participation
from at least some of the developers, and if the project idigha will then probably
include most of the developers.

On the janitor side | do not think that there is a lower limie.la medium sized project
would probably work well and benefit even with just one pergmmnking as a janitor.

6.3.1 Open source projects

For open source projects the cost involved in adding jasittothe project will proba-
bly only be a small management overhead. The main projettwaitt likely already
have a mailing list and website so adding that for the jasigitould be simple, or

There is of course a theoretical possibility that the redumade is more complex and thus harder
to maintain, but this is not very likely since
e The janitors are doing only maintenance and they would dm#gdves a disfavor by changing
code to be less maintainable.
e The developers would be reluctant to accepting patches fnenanitors that they would con-
sider reduced the maintainability.

52

6.3. STARTING YOUR OWN JANITOR PROJECT?

in any case the janitors could create their own project omcgfarge or similar. The
initial investment should therefore be neglectible. Thetowously running costs will
be the following

maintaifl or help maintaining a list of janitor tasks.
Answer questions from the janitors.

Integrate patches.

Provide feedback for patches integrated or rejected.

but the benefits from the janitor work will most likely be vakble enough that this
will be a good investment. | think the following list will be sufficient checklist for
starting a janitor sub-project in open source projects:

O The size of the project is medium or large.
O Someone is willing to be janitors.

For small projects it will very likely be beneficial to set upist with janitor tasks to
attract new developers. But it will not make sense to runainégr activity separately.

6.3.2 Projects developing proprietary software

This study has been of the Linux kernel, a large open sou@edgrfor which janitor
activity obviously is beneficial, the more the better. Whdeitor activity obviously
will be good for the quality for development of closed, priepary source code as well,
it is not clear in what amount this will be most profitable. Willocating 1% of the
resources to do janitor work be the optimal effort? Or 5%7? %2 This will be
highly dependent on both the current quality status anditlengyuality requirements.

Open source projects typically havéles ready when it's ready“philosophy or more
specifically, given the old sayir@ime, Quality, Cost — Pick any twothe developers
might choose to pick only one — quaﬁty and let both time and cdéslide.

This is in contrast with most proprietary projects wheredhbality should be just "good
enough* (this is discussed in[32]) and time to market ofteegsential. The cost of
being delayed can easily exceed the cost of developmeng anith of the project.

So for a commercially developed project any activity likeisi® code janitor activity
is an upfront investment that must have an expected retuvaloé in increased sales
and/or reduced maintenance cost.

2The janitors could very well maintain the list themselves Wwill at least require input and co-
operation from the main project.

3"Nobody knows when a kernel will be released, because ittsased according to perceived bug
status, not according to a preconceived timeline Andrew Morton

4Even though many open source projects are done for free hyntemrs in their spare time, the
effort invested is certainly a cost.

53

6.4. HOW DO JANITOR PARTICIPANTS COMPARE TO OTHER OPEN
SOURCE DEVELOPERS?

The initial investment will be neglectible, the main costlis case will be the work
effort of the janitors. The question will be more about thgrée of janitor work than
yes/no.

O The expected return value of such and such amount of janibok w
will be greater than the cost.

6.4 How do janitor participants compare to other open
source developers?

The developers that answered the interview questions $nstinidy had among others
the following properties:

age between 20 and 32 years

all male

none were from the same country

3 of 7 working as programmers (0.25, 9 and 10 years)

Other studies of open source developers have been madef tmenois the Boston

Consulting Group/OSTG Hacker Survey,]33] which survey8d Backers participat-
ing on software projects on SourceForge.net. The resuits this thesis are almost
an exact match with the results from that survey:

70% between 22 and 37 years

98% male

"open source is a global enterprise”

45% working as programmers, with 11 years average expaxienc

So this means that the kernel janitor participants are ngtddferent from other open
source developers. While this discovery might be descritsatbn-shocking, it implies
that there is nothing particular about source code janitbvigy that is limited to some
subset of developers and that janitor activity should besibbesto practice universally
by people working with software development.

6.5 What quality mechanisms are used?

How does Linux developers decide on what patches to accepivhat to reject? As
usual for open source projects, this is highly informal. He article "Release criteria
for the Linux kernel“, [34] the author states that

Analysis of the release criteria for the Linux kernels shavprocess
which is dynamic and whose nature depends on the developbamge of
the administration of a particular version.

54

6.6. SUGGESTIONS FOR IMPROVEMENTS

One of the criteria that are used for accepting patches tghigpatch should only do
one thing. Patches which contains several different crengealmost automatically
be rejected. Not everyone finds it easy to work this way buk#reel developers are
unlikely to loosen this requirement. Seel[35] for a summéiryhe discussion that
arose around attempts to submit large IrDA changes.

Another mechanism is to pass all changes through one coerniiitWine, all patches
will pass through Alexandre Julliard. In the case of Linuesthing passes through
Linus Torvalds but most of the patches will even have padsexigh one or several
of the other kernel developers on their way to the officiahler

The article "Teaching the Old Dog, a lesson in code reviewnfiihhe open source
community”, ([36]) tells a story of a team that started waoikiwith Wine and had to
deal with adjusting into doing things like they were done im&/

But we hadn’t worked on any Open Source projects before. hhaok-

pected an Open Source project to be quite so rigidly corioll’'d imag-
ined the exact opposite. Unadulterated chaos. I'd pictorgself having
to wade through reams of crap code trying to identify usedatdres, like
separating a bowl of party mix into its core components.

Instead, | — and my team — had encountered a concrete systeratase
as any I'd ever seen.

There is nowhere to hide when all patches are submitted @ylaind everyone has a
chance of reviewing and make comments. If your patch has messles others will
point them out. Maybe even in a non-diplomatic way; "crapaigrm that sometimes
is used to describe other peoples code on the LKML (but thistisised on the mailing
list of the Linux Kernel Janitor Project).

For janitor patches the patches will first be posted for putdview on the mailing list,
then the Linux Kernel Janitor Project leader acts like alsicgmmitter when accept-
ing patches into the janitor patchset. The patches then passt Andrew Morton’s
acceptance in order to slip into the -mm tree. And finally thech must be accepted
by Linus Torvalds in order to get into the official kernel.

6.6 Suggestions for improvements

While the Linux Kernel Janitor Project is working quite wehere is always room for
improvement.

55

6.6. SUGGESTIONS FOR IMPROVEMENTS

6.6.1 Better feedback on patches for new janitors

Several of the janitors interviewed expressed that thelf@ekl on patches submitted
could be improved. To improve this | would suggest that nevitgas always receive

an accept/reject email for patches until X patches have beeepted. This could be
implemented by adding a new tag to the patch

JanitorPatchID: Some.Janitor@example.com 001 vO

where the patch numbers are specific to each author whictskesggk his or her own
numbers. This will then also have a positive bonus effedh@t lmost newcomers then
would have as a goal to reach at least X patches accepted.

6.6.2 New logo

To create more publicity about the Linux Kernel Janitor Bobj perhaps a contest for
creating a logo could be made? Currently the janitor weltgigethe following picture

which is just a standard txvith a small broom added. A specific logo could perhaps
strengthen the identity and increase the publicity of theukiKernel Janitor Project.

5 Tux is the “official” Linux mascot, picture created by Larryviag,
http://www.i1sc.tamu.edu/~lewing/inux/

56

http://www.isc.tamu.edu/~lewing/linux/

Chapter 7

Conclusion

7.1 Results

The most important result from this study was perhaps theogiery that janitor activ-
ity reduces the amount of code while keeping or improvingftimetionality.

A summary of the most important items are that janitor astivi

has a net contribution of reduction of code

improves quality

corrects bugs

recruits developers to normal development
has a process that is independent of tools

The product produced by the Linux Kernel Janitor Projectssteof patches which are
maintained as a patchset release consists of around 20tepatdieret 10-15% are
replaced from one release to the next release.

The high level of guest traffic on the Linux Kernel Janitor jeod mailing list (as
seen in Figur€312 on pa@el32) indicates that the Linux Kelaeitor Project is very
cooperative and not just some outside part of the developmen

7.2 Recommendation

To make the initial period a better experience for newconhetgggest that they are
always given feedback on patches they submit until a celeéaet of skills is achieved.

The findings in this report indicate that additional progecan benefit from including a
Janitor activity, both for maintaining the software andrwaintaining the programmers
skills in the organisation.

57

Bibliography

[1] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, and M/ Turski, “Metrics and laws of
software evolution - the nineties viewyietrics vol. 00, p. 20, 1997.

[2] M. W. Godfrey and Q. Tu, “Evolution in open source softearA case study,” inCSM ’'00:
Proceedings of the International Conference on Softwaradaance (ICSM’0Q) Washington,
DC, USA: IEEE Computer Society, 2000, p. 131.

[3] J. Tran, M. Godfrey, E. Lee, and R. Holt, “Architecturapair of open source software,” 2000.
[Online]. Available: citeseer.ist.psu.edu/tranO0atetiural.htr|

[4] P. G. Armour, “The business of software: the laws of safitevprocess,Communications of the
ACM, vol. 44, no. 1, pp. 15-17, 2001.

[5] C. Hayne, “Software engineering for usability,” prepdrfor General DataComm’s Multimedia
R&D Centre, Sept. 1996. [Online]. Available: http://haymet/HCI/Seu/SE_tor usability.html

[6] S. W. Ambler. (2006, Apr.) Choose the right software neattfor the job. [Online]. Available:
http://www.agiledata.org/essays/differentStrategies

[7] Wikipedia, “Extreme programming — wikipedia, the freenoyclopedia,” 2006, [Online;
accessed 21-May-2006]. [Online]. Available: http://eipedia.org/w/index.php?titie=Extreme_
Programming&oldid=54064678

[8] E. B. Swanson, “The dimensions of maintenanceJGSE '76: Proceedings of the 2nd interna-
tional conference on Software engineeringLos Alamitos, CA, USA: IEEE Computer Society
Press, 1976, pp. 492-497.

[9] R.S. Pressmargoftware Engineering - A Practitioner's Approgaer. Computer Science Series.
McGraw-Hill International Editions, 1987.

[10] E. Tryggeseth, “Support for understanding in softwaraintenance,” 1996. [Online]. Available:
citeseer.ist.psu.edu/tryggeseth97support/html

[11] B. A. Kitchenham, G. H. Travassos, A. von MayrhauserNkessink, N. F. Schneidewind,
J. Singer, S. Takada, R. Vehvilainen, and H. Yang, “Towami®mtology of software mainte-
nance,"Journal of Software Maintenanceol. 11, no. 6, pp. 365-389, 1999.

[12] E. J. Barry, C. F. Kemerer, and S. A. Slaughter, “Towardedailed classification scheme for
software maintenance activities,” Rroceedings Of the 5th Americas Conference on Information
SystemsAug. 1999.

[13] S. R. Schach, B. Jin, L. Yu, G. Z. Heller, and J. Offutt,ét@rmining the distribution of mainte-
nance categories: Survey versus measuremgentgirical Softw. Enggvol. 8, no. 4, pp. 351-365,
2003.

[14] Wikipedia, “Mentor — wikipedia, the free encyclopedia006, [Online; accessed 10-May-2006].
[Online]. Available: http://en.wikipedia.org/w/indehp?titie=Mentor&oldid=51291039

58

citeseer.ist.psu.edu/tran00architectural.html
http://hayne.net/HCI/Seu/SE_for_usability.html
http://www.agiledata.org/essays/differentStrategies.html
http://en.wikipedia.org/w/index.php?title=Extreme_Programming&oldid=54064678
http://en.wikipedia.org/w/index.php?title=Extreme_Programming&oldid=54064678
citeseer.ist.psu.edu/tryggeseth97support.html
http://en.wikipedia.org/w/index.php?title=Mentor&oldid=51291039

BIBLIOGRAPHY

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]
[30]
[31]
[32]

[33]

[34]

C. King. Mentoring and being mentored on the technoltrggk. [Online]. Available:|nhttp:/
developers.sun.com/toolkits/articles/mentor.html

J. H. Holloway. The benefits of mentoring. [Online]. Aadble: [http://www.nea.org/mentorirjg/
resbene050603.html

S. E. Sim and R. C. Holt, “The ramp-up problem in softwarejects: A case study of how
software immigrants naturalize,” imternational Conference on Software Engineerih§98, pp.
361-370. [Online]. Available: citeseer.ist.psu.edu/®fim

K. L. Stout, “Reclusive linux founder opens upCable News Networkmay 2006. [Online].
Available:/http://edition.cnn.com/2006/BUSINESS/0&/lobal.office.linustorvalds/

K. Nakakoji, Y. Yamamoto, Y. Nishinaka, K. Kishida, aid Ye, “Evolution patterns of
open-source software systems and communitiesProteedings of the International Workshop
on Principles of Software Evolutiorser. session 4. New York, NY, USA: ACM Press, May
2002, pp. 76-85. [Online]. Available: http://portal.acmy/citation.cim?1d=512055& mp=cit&
di=portal&di=ACM

C. Gacek and B. Arief, “The many meanings of open solié&EE Softwarevol. 21, no. 1, pp.
34-40, 2004.

J. Barr, “Perceptions of world domination,” http://wwlinuxworld.com/linuxworld/lw-2000-
03/lw-03-vcontrol_4.html, Mar. 2000, also avaliable atphixent.com/pipermail/fork/2002-
January/008429.html. [Online]. Availablé: http://weisave.org/web/*/http://www.linuxworld.
com/linuxworld/Iw-2000-03/lw-03-vcontrol _4.htiml

Linus gives bitkeeper a test run. [Online]. Availablettp://www.kerneltrattic.org/kernel-traffic/
Kt20020211 153 print.htmk#9

(2004, May) Bitkeeper after the storm - part 1. [Onlin&jailable: | http://software.newstorge.
com/software/04/05/10/1235236.shtml?7tid=151&tid=R&B82&110=94

Linus no longer using bitkeeper; creates 'git’ repla@nt. [Online]. Available: http://www
kerneltraffic.org/kernel-traffic/kt20050426 307 .hti&)l1#

Wikipedia, “Janitor — wikipedia, the free encyclopagdi2006, [Online; accessed 19-May-2006].
[Online]. Available http://en.wikipedia.org/w/indghp?titie=Janitor&oldid=53078531

——, “Confidence interval — wikipedia, the free encyadbalia,” 2006, [accessed 18-April-
2006]. [Online]. Available: | http://fen.wikipedia.orghnfiex.php?titte=Confidence intervel&
0ldid=48268729

E. Klarreich, “Toss out the toss-up: Bias in headsalst’ Science Newsvol. 165, no. 9, p. 131,
2004. [Online]. Available: http://www.sciencenews.@ngicles/20040228/fob2.asp

Sample size calculator. [Online]. Availablz: httpww.dxresearch.net/index.ctim?ta=resources.
sample

Sample size calculator. [Online]. Available: httpaiw.gensurvey.com/resourcesO5lasp
Sample size calculator. [Online]. Available: httpaiw.macorr.com/ss_calculator.hitm
mboxstats. [Online]. Available: http://www.vanhelen.com/mboxstais/

J. Bach, “The challenge of "good enough” software,” 200
http://citeseer.ist.psu.edu/639234.html. [Online].adable: |http://www.satisfice.com/articlzs/
goodenZ.pdf

The boston consulting group/ostg hacker survey. Httpyw.ostg.com/bcg/. [Online]. Available:
http://www.ostg.com/bcg/BCGHACKERSURVEY-0.73.odf

D. G. Glance, “Release criteria for the linux kernélirst Monday vol. volume 9, no. number 4,
Apr. 2004. [Online]. Available: http://firstmonday.orggues/issue9_4/glance/index.html

59

http://developers.sun.com/toolkits/articles/mentor.html
http://developers.sun.com/toolkits/articles/mentor.html
http://www.nea.org/mentoring/resbene050603.html
http://www.nea.org/mentoring/resbene050603.html
citeseer.ist.psu.edu/5440.html
http://edition.cnn.com/2006/BUSINESS/05/18/global.office.linustorvalds/
http://portal.acm.org/citation.cfm?id=512055&jmp=cit&dl=portal&dl=ACM
http://portal.acm.org/citation.cfm?id=512055&jmp=cit&dl=portal&dl=ACM
http://web.archive.org/web/*/http://www.linuxworld.com/linuxworld/lw-2000-03/lw-03-vcontrol_4.html
http://web.archive.org/web/*/http://www.linuxworld.com/linuxworld/lw-2000-03/lw-03-vcontrol_4.html
http://www.kerneltraffic.org/kernel-traffic/kt20020211_153_print.html#9
http://www.kerneltraffic.org/kernel-traffic/kt20020211_153_print.html#9
http://software.newsforge.com/software/04/05/10/1235236.shtml?tid=151&tid=2&tid=82&tid=94
http://software.newsforge.com/software/04/05/10/1235236.shtml?tid=151&tid=2&tid=82&tid=94
http://www.kerneltraffic.org/kernel-traffic/kt20050426_307.html#5
http://www.kerneltraffic.org/kernel-traffic/kt20050426_307.html#5
http://en.wikipedia.org/w/index.php?title=Janitor&oldid=53078581
http://en.wikipedia.org/w/index.php?title=Confidence_interval&oldid=48268729
http://en.wikipedia.org/w/index.php?title=Confidence_interval&oldid=48268729
http://www.sciencenews.org/articles/20040228/fob2.asp
http://www.dxresearch.net/index.cfm?fa=resources.sample
http://www.dxresearch.net/index.cfm?fa=resources.sample
http://www.gensurvey.com/resources05.asp
http://www.macorr.com/ss_calculator.htm
http://www.vanheusden.com/mboxstats/
http://www.satisfice.com/articles/gooden2.pdf
http://www.satisfice.com/articles/gooden2.pdf
http://www.ostg.com/bcg/BCGHACKERSURVEY-0.73.pdf
http://firstmonday.org/issues/issue9_4/glance/index.html

BIBLIOGRAPHY

[35]

[36]

[37]

[38]

[39]
[40]
[41]

[42]

[43]

[44]

[45]

Big irda changes accepted into 2.4; linus on patch sabioms. [Online]. Availablenttp://www
kerneltratfic.org/kernel-traffic/kt20001120 94.htr 1#9

S. Lussier, “Teaching the old dog, a lesson in code wei®m the open source community,”
Software Qualityvol. Volume 1, no. No. 1, pp. 14-18, 2004. [Online]. Avaikthttp://www,
osga.org/documents/sq_1 1pdf

M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. RobeRgfactoring: Improving the Design of
Existing Code Addison-Wesley Professional, June 1999, iISBN: 020148567

P. WeaverSuccess in Your Project: A Guide to Student System Devetaphrogects FT Prentice
Hall, Dec. FT Prentice Hall, iSBN: 0273678094,

The linux kernel janitor project home page. [Online}iaable: http://janitor.kerneinewbies.arg/
The research process. [Online]. Availakile: http:/Amwyerson.ca/~mjoppe/ResearchProc¢ess/

(2005) The boston consulting group/ostg hacker survey
Http://www.ostg.com/bcg/BCGHACKERSURVEY-0.73.pdf. rjtthe]. Available: http://
Www.ostg.com/bcg/

Wikipedia, “Andrew morton — wikipedia, the free encgplkedia,” 2006, [Online; accessed
4-May-2006]. [Online]. Available: http://en.wikiped@g/w/index.php?titte=Andrew Mortoh_
Y28computer pY%rogrammer%29&oldid=48607334

——, “Linus torvalds — wikipedia, the free encyclopefi2006, [Online; accessed 4-May-2006].
[Online]. Available: http://en.wikipedia.org/w/indgtp?titie=Linus_Torvalds&oldid=51135601

——, “List of tools for static code analysis — wikipeditne free encyclopedia,” 2006, [Online;
accessed 17-May-2006]. [Online]. Available: http://elipedia.org/w/index.php?titie=List_af _
tools_for_static_code analysis&oldid=53704047

H. Lgvdal, “Analysis and description of open sourceifanprojects,” Master's thesis, Agder
University College, May 2006. [Online]. Available: httfstudent.grm.hia.no/master/ikt06/1kt590/
g33/

60

http://www.kerneltraffic.org/kernel-traffic/kt20001120_94.html#9
http://www.kerneltraffic.org/kernel-traffic/kt20001120_94.html#9
http://www.osqa.org/documents/sq_1_1.pdf
http://www.osqa.org/documents/sq_1_1.pdf
http://janitor.kernelnewbies.org/
http://www.ryerson.ca/~mjoppe/ResearchProcess/
http://www.ostg.com/bcg/
http://www.ostg.com/bcg/
http://en.wikipedia.org/w/index.php?title=Andrew_Morton_%28computer_p% rogrammer%29&oldid=48607334
http://en.wikipedia.org/w/index.php?title=Andrew_Morton_%28computer_p% rogrammer%29&oldid=48607334
http://en.wikipedia.org/w/index.php?title=Linus_Torvalds&oldid=51135601
http://en.wikipedia.org/w/index.php?title=List_of_tools_for_static_code_analysis&oldid=53704047
http://en.wikipedia.org/w/index.php?title=List_of_tools_for_static_code_analysis&oldid=53704047
http://student.grm.hia.no/master/ikt06/ikt590/g33/
http://student.grm.hia.no/master/ikt06/ikt590/g33/

Appendix A

Interview Questions

A.1 Connection Between Interview Questions and Re-
seach Questions

The mapping between the questions asked in the interviewirenceseach questions
are shown in FigurEZAl1 on pafel63.

A.2 Questions

=

How long have you been using Linux?
How long have you been programming?

Why and when did you get involved in the Linux kernel janjooject?

> WD

(&) Are you more or less involved in kernel janitor actuitow than before?
(b) If so, what are the cause(s) of the change?

o1

Are you contributing to any other open source projects?

6. What tools are you using when doing janitor work?

| am not thinking of basic tools like shell/editor/distriloon etc, but are you look-
ing into warnings from the normal build system, compilinglwa special com-
piler, using a source code analyser like lint, have you emityour own scripts
for searching for certain things, etc.

7. Are you doing manual code reviews by just reading code?

never/seldom/sometimes/often/always

61

A2

QUESTIONS

10.

11.

12.
13.

14.
15.
16.
17.
18.
19.

20.

Do you post corrections to incomplete or improper paté¢r@s other develop-
ers?

How confident are you with coding style, how to properly mitha patch and
how the patch should be formated?

not at all/a little/basic knowledge/solid knowledge

How long time did you use or do you estimate the ramp-up fion beginners
to be educated about the process of participating in théjapioject?

Do you know in detail about what happens to the patch éfisrsent to the
mailing list?

Take a guess (a range is fine) about how many patches yewshbmitted.

(&) When patches was accepted did you receive a notificabiout it?
(b) When patches was rejected did you receive a notificatioutit?
not applicable/don’t know/never/seldom/sometimesratibvays

How do you think the janitor project can be improved?
What is your age?

Are you male/female?

What is your nationality?

What is your highest educational degree?

(a) Are you working as a programmer (i.e. employed or mgryour own
firm)?

(b) If so for how long?

Anything else?

62

(s21naui 12afoad/ssasoad) Hyiom Jouel ayl jo 12342 3y st IBYM —@duewopiad ..,_
Jannuanead/annaajiad, anndepe/aAn091103 Jo uonngIasip 8 sty S2Y2ied jo sdA) \ |
Jporiad allf UaAIB B JaA0 padnpoid aie saloied Auew mop Sey2ied jo Asausnbauy [peduwl ,_,_
|
(s31naw 1anpoud) ;yJom Joyuel ayl o Jjnsal Byl st eym
11050 =,
80 'ZD {PIsn ale sjo0) TeyMm | o EUeiSaitiiDiEatey)
JSnUT 01 paianijap sayated are moH J/3vsiia1aeieYd 8g 138f01d JDliUE[B UBD MOH e -

_f(japow) ssav0id | o -
isayned sizafaifsadadde oy | _

P10 ZTn ¢PRIPURY Yoled paniwgns B st MoK ,_
£Y2ed B jwgns o3 moH 3 __
970 ‘510
5TD ‘8T 'EID ‘010 '60 ‘2D ‘10 92U311adXa J1ay) s11eym [swedppsed
50 v0 En LUonEAnou FET R

A.2. QUESTIONS

63

Figure A.1: Connection between interview questions andaels questions

Appendix B

Criteria used for determination of
maintenance types

A quite strict interpretation of the classification previeatwas used, only when there
was no change in functionality. If the change did somethivag tould be interpreted
as a correction of any kind, including spell corrections amenents, it was classified
as corrective.

B.1 Example of a corrective patch

The description of the patéht.12-rc3-Kj/all-patches/int_sleep on-

drivers net tokenring 1bmtr.patch contains “The patch also fixes a po-
tentially racy conditional in tok_open” and this patch whsrefore classified as cor-
rective.

B.2 Example of a perfective patch

The patcl.6.12-rc3-Kj/all-patches/add _module version-driver S
net 8139cp.patch adds a lineMODULE_VERSION(DRV_VERSION)which
is a “new feature” and was therefore classified as perfective

B.3 Example of a preventive patch

The patcl.6.12-rc3-Kj/all-patches/lib-parser-is_devpts inod e.
patch |replaces avhile loop test with &or_each_pci_dev macro instead. No

64

2.6.12-rc3-kj/all-patches/int_sleep_on-drivers_net_tokenring_ibmtr.patch
2.6.12-rc3-kj/all-patches/int_sleep_on-drivers_net_tokenring_ibmtr.patch
2.6.12-rc3-kj/all-patches/add_module_version-drivers_net_8139cp.patch
2.6.12-rc3-kj/all-patches/add_module_version-drivers_net_8139cp.patch
2.6.12-rc3-kj/all-patches/lib-parser-fs_devpts_inode.patch
2.6.12-rc3-kj/all-patches/lib-parser-fs_devpts_inode.patch

B.4. EXAMPLE OF AN ADAPTIVE PATCH

change in functionality, but the code has become easierderstand and maintain.
Classified as preventive.

B.4 Example of an adaptive patch

The patct¥.b.12-rc3-Kj/all-patches/function-string-arch-mips
patch | changes to that the FUNCTION__ macro is not string concatenated. ThIS
had to do with the gcc compiler.

B.5 Example of an invalid patch

2.6.12-rc3-Kj/all-patches/k| tag does not contain any patch.

65

2.6.12-rc3-kj/all-patches/function-string-arch-mips.patch
2.6.12-rc3-kj/all-patches/function-string-arch-mips.patch
2.6.12-rc3-kj/all-patches/kj_tag

Appendix C

BibTeX entry for this thesis

If you want to cite this this thesis you can use the BibTeXemrappendixX.C in[[45].

@mastersthesis{ masterthesis:janitor-project,
author = {H\aa{}kon L\o{}vdal},
title = {Analysis and description of an open source
janitor project},
school = {Agder University College},
year = {2006},
month = may,
url = "http://student.grm.hia.no/master/ikt06/ikt590/ g33/",
keywords = {linux, kernel, janitor, software maintenance} ,

Note that the college is in the process of becomming a untyeiche current domain
isLhia.no 1 (Hagskolen i Agder) but as university it will lieu:ino— (as of writing
this, www.au.no is the same IP address as www.hia.no).

66

.hia.no
.au.no

Index

-mm tree[Zb quilt, 29

Adrian Bunk[2Z9 Ron Jeffried 117

Alan Cox 2% RUP, Rational Unified Proce4s]18
Alexandre Julliard_33.35 Rusty Russel[29

Alexey Dobriyan[3]L

Andrew Morton [ZNIEB5 sourceforge.neff b3

Arnaldo Carvalho de Mel@27

Asterisk D[P 335 Thomas A. Edisor. 16
Trivial Patch Monkey[24,29

BitKeeper[2Zb _
BitMover, Inc. 2B Wine, O [T2IB 343655

CMM, The Capability Maturity Mode[Z1§18 ~ XEmacs[Zh
Coverity[32[Z1L XP, Extreme Programminf 17118

Dave Jone$ 27
David Weinehall[ZIl7
Debian[Zh

diff, P2

Donald Duck[&l

FreeBSD[21128

git, 29,27 (3B
GPL (GNU General Public Licensé&)134

IEEE,IT[ID

ISO (The International Organization for Standard-

ization) [IT

Larry Ewing [56
LehmanP[14
Linus TorvaldsTH A1 24=P6. HT133]155

Linux, [, B-EI3 TR 2086, HA48] $T] B3-57,
(o

Linux Weekly News[PIZTIL 2T 2B B3

Mark Spencef33

Open Sourcd] {1917 WTI117] £2] B2 40 [52-54
OpenBSD[ZB

OpenPBX[3B

patchse{ 1L 28 %14

67

	Preface
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Research questions
	Research methods
	Sources of information
	Limitations of scope of this thesis
	Report outline

	Theoretical Background and History
	Programming and software engineering
	Lehman's software evolution laws
	Orders of ignorance
	People more important than process
	The Linux developers take at software development process
	Industry standards for software development
	Classification of maintenance types
	Existing studies of distribution of maintenance types
	Mentoring

	Linux kernel development
	What is Linux?
	Who is developing the kernel?
	Patches - the heartbeat of the Linux kernel development
	Linux development branches
	Version Control System

	The Linux Kernel Janitor Project
	Origins of the term janitor
	History
	Janitor Patchsets
	The Trivial Patch Monkey

	Software development process
	Kernel Janitor Process
	Linux Kernel Janitor Project mailing list activity
	Tools used by the Linux Kernel Janitor Project

	Wine Development Process
	Asterisk Development Process
	Summary

	Interviews
	Selection of interview participants
	Probability sampling
	Non-probability sampling
	Criteria for selection

	Interview responses
	Summary

	Analysis of janitor patches
	Possible quantitative aspects that could be analysed
	Frequency and size
	Frequency
	Average size

	Maintenance types
	Distribution of maintenance types for janitor patches

	Discussion
	Weaknesses and uncertainties in the results
	How is janitor work different from normal development?
	Starting your own janitor project?
	Open source projects
	Projects developing proprietary software

	How do janitor participants compare to other open source developers?
	What quality mechanisms are used?
	Suggestions for improvements
	Better feedback on patches for new janitors
	New logo

	Conclusion
	Results
	Recommendation

	Bibliography
	Interview Questions
	Connection Between Interview Questions and Reseach Questions
	Questions

	Criteria used for determination of maintenance types
	Example of a corrective patch
	Example of a perfective patch
	Example of a preventive patch
	Example of an adaptive patch
	Example of an invalid patch

	BibTeX entry for this thesis
	Index

