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Symbols

< less than

= equal

≈ approximately equal

≤ less than or equal to

(a, b] set of numbers within the left hand side open interval from a to b

[a, b] set of numbers within the closed interval from a to b

| a | absolute value of a

√
a principal value of the square root of a, i.e.,

√
a ≥ 0 für x ≥ 0

a→ b a tends to b or a approaches b

b = a
c
= a/c quotient of a and c

b = ac = a · c = a× c product of a and c

b =
c
∫

a

x(t)dt integral of the function x(t) over the in interval [a, c]

b =
n
∑

i=0

ai sum of n summands

b = a± c sum and difference of a and c

E {x} mean value or expected value of x

ex exponential function

F (x) cumulative distribution function

F−1(x) inverse cumulative distribution function

Im {x} imaginary part of x = x1 + jx2



Re {x} real part of x = x1 + jx2

x∗ complex conjugate of the complex number x = x1 + jx2

F {x} Fourier transform of X(f)

F−1 {x} inverse Fourier transform of X(f)

ẍ(t) = d2x
d2t

second derivative of the function x(t) with respect to t

ẋ(t) = dx
dt

derivative of the function x(t) with respect to t

ãl delay coefficient of the lth path

AR antenna element of the receiver

AT antenna element of the transmitter

Bc coherence bandwidth

Bs bandwidth of a signal

B
(1)
µµ mean Doppler shift

B
(2)
µµ Doppler spread

c the speed of light

cn Doppler coefficient of the nth component

cn,l Doppler coefficient of the nth component of the lth path

D distance between mobile stations

Erµµ mean-square error of the autocorrelation function

f Doppler frequency

fn Doppler frequency of the nth component

f0 carrier frequency

Fζ(r) cumulative distribution function of a Rayleigh process

fl lower frequency

fn,l Doppler frequency of the nth component of the lth path

fRmax maximum Doppler frequency caused by the motion of the receiver

fR Doppler frequency of the receiver
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fTmax maximum Doppler frequency caused by the motion of the trans-
mitter

fT Doppler frequency of the transmitter

fu upper frequency

h half of the street width

h(τ ′, t) time-variant channel impulse response

H(f ′, t) time-variant channel transfer function

hij(t) diffuse component between jth transmit and ith receive antenna

l length of a cluster, e.g., building width

lc length of the cth cluster

N number of exponential functions (scattered components)

N(r) level-crossing rate

nR number of receive antennas

nT number of transmit antennas

Nζ(r) level-crossing rate of a Rayleigh process

p∆α(∆α) probability density function of the angle of spreading ∆α

p∆θ(∆θ) probability density function of the angle of spreading ∆θ

pf (f) probability density function of the Doppler frequency

r amplitude level

rµµ(τ) autocorrelation function

rµ1µ2(τ) cross-correlation function

rτ ′τ ′(υ
′) frequency correlation function

rhh(·, ·; ·, ·) autocorrelation function of h(τ ′, t)

S(τ ′, f) scattering function of a frequency-selective stochastic process

s(τ ′, f) Doppler-variant impulse response

Sµµ(f) Doppler power spectral density function
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Sτ ′τ ′(τ
′) delay power spectral density

t time variable

T (f ′, f) Doppler-variant transfer function

Tζ(r) average duration of fades of a Rayleigh process

vR speed of the receiver

vT speed of the transmitter

wc weighting factor for the cth cluster of scatterers

x(t) input signal

y(t) output signal

C number of clusters

L number of discrete paths

µ̂(t) stochastic process

r̂µµ(τ) autocorrelation function of the stochastic simulation model

µ(t) zero-mean complex Gaussian random process

µ̃(t) deterministic process

µ̃l(t) deterministic process of the lth path

B̃
(1)
µµ mean Doppler shift of a deterministic process

B̃
(2)
µµ Doppler spread of a deterministic process

h̃(τ ′, t) time-variant impulse response of the deterministic simulation model

r̃µµ(τ) autocorrelation function of the deterministic simulation model

r̃τ ′τ ′(υ
′) frequency correlation function of a deterministic process

S̃(τ ′, f) scattering function of a frequency-selective deterministic process

S̃τ ′τ ′(τ
′) delay power spectral density of a deterministic process

α angle of departure

α0 initial angle of departure

αb boundary angle of departure
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αc critical angle of departure

αv angle of direction of motion of the transmitter

β negative curvature of the autocorrelation function at the origin, i.e.,
β = r̈µµ(0)

∆α angle of spreading at the transmitter

∆αmax maximum angle of spreading at the transmitter

∆θ angle of spreading at the receiver

∆θmax maximum angle of spreading at the receiver

δR space between antennas at the receiver

δT space between antennas at the transmitter

λ wavelength

Φ0 cross-correlation function at τ = 0

Ψ0 autocorrelation function at τ = 0

σ20 mean power

τ time difference between t2 and t1, i.e., τ = t2 − t1

τ ′ continuous propagation delay

τ ′l discrete propagation delay of the lth path

τmax maximum propagation delay

θ angle of arrival

θ0 initial angle of arrival

θb boundary angle of arrival

θc critical angle of arrival

θn Doppler phase of the nth component

θv angle of direction of motion of the receiver

θn,l Doppler phase of the nth component of the lth path
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Abstract

The development of mobile communication has been dramatically increasing in recent
years. New concepts and methods are necessary for the improvement of existing mobile
communication techniques due to the fact of the demand for these systems with higher
data rates and a better quality of service. As the number of subscribers is growing rapidly,
the development of mobile radio channel models has become one of the most important
research topics within mobile communication systems.

This thesis deals with a multiple-input multiple-output (MIMO) channel model for mobile-
to-mobile communications. It starts with an analysis of a single-input single-output (SISO)
channel model which is based on a geometrical street model under the assumption that the
transmitter and the receiver are moving. Starting from the geometrical model, statistical
properties of the analytical and simulation models will be studied. Of special interest are
the probability density function, temporal autocorrelation function, Doppler power spec-
tral density, level-crossing rate, and average duration of fades. Furthermore, the analytical
results will be verified by MATLAB simulations. In the last part of this thesis the exten-
sions of the SISO street model with respect to multiple clusters of scatterers, frequency
selectivity, and to a MIMO street model are considered.

Keywords : Mobile fading channels, mobile-to-mobile channels, SISO channels, MIMO
channels.
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Chapter 1

Introduction

1.1 The Development of Mobile Communication Sys-

tems

Mobile communication systems have become an important part of everyday life and are
well known allover the world due to the fact that they help people and machines to com-
municate in any manner, such as data, voice, image or video. Because of their rapidly
growing use and successful development in recent years, mobile communication is one of
the most interesting subjects for many engineers and scientists, therefore, the research and
development of this field will increase over the next years.

In the past, different kinds of mobile radio systems for various applications, such as avi-
ation and navigation oversea by INMARSAT (International Maritime Satellite Organiza-
tion), national long-distance call with C-net, and wireless telephone for the home area
with CT1+ have been developed. These systems are referred to as the first generation of
mobile systems, which were used primarily only for analog transmission technology with
the limitation of communication possibilities.

The second generation (2G) is characterized by digital signal transmission. The modi-
fication from analog to digital was driven by its higher capacity and the improved cost,
speed, and power efficiency of digital hardware [21]. Examples of 2G technologies are
GSM (Global System for Mobile Communications), DECT (Digital European Cordless
Telephone), PDC (Personal Digital Cellular), D-AMPS (Digital American Mobile Phone
System), and TETRA (Trans European Trunked Radio Access).

The third generation mobile systems (3G) are driven by the need for high-speed data
transmission capabilities while on the move. The three evolving networks in Europe are
UMTS (Universal Mobile Telecommunications Systems), MBS (Mobile Broadband Sys-
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tems), and WLAN (Wireless Local Area Networks). The 3G standard UMTS is an up-
grade of the GSM. The challenge for the third generation of mobile radio systems is to
transmit large quantities of data. With substantially enhanced capacity, quality, and data
rates, 3G technology provides customers with high-speed access anytime and anywhere.
The radio channel has significant effects on the capacity and transmission properties of
mobile communication systems.

1.2 Mobile Radio Channels

The path between transmitter and receiver is often obstructed by several natural and man-
made structures. The presence of these obstacles on the received signal manifests itself in
several ways, such as additional path loss, distortion, and spreading of the received signal,
etc. By the radio wave propagation is generally meant the movement of electromagnetic
waves from a transmitting antenna to a receiving antenna in the presence of one or more
out of various types of ground, terrain, and obstacles. The basic tenets of mobile propa-
gation are, e.g., reflection, diffraction, and scattering.

A mobile receiver is often surrounded by various obstacles. The incoming waves arrive
from different angles with different propagation delays. The signal is in the form of re-
flections, diffractions, and scattering caused by several obstacles [1]. This is known as
multipath propagation. Figure 1.1 presents typical signal propagation paths from base sta-
tion to mobile station. Furthermore, the signal components arriving along different paths
at the receiver undergo different frequencies due to the motion between transmitter and
receiver, which depends on velocity and direction of motions of the mobiles. This also has
an influence on the transmission characteristics of the mobile radio channel and leads to
Doppler effect.

The signal received by the mobile may consist of a number of plane waves having ran-
domly distributed amplitudes, phases, and angles of arrival. The sum of the multiple
waves at the receiver results in a signal that fluctuates rapidly as the receiver and/or the
transmitter moves. This signal fluctuation is known as fading, which is caused by inter-
ference between two or more versions of the transmitted signal arrived at the receiver at
different times.

The signal strength can be separated into two parts called long-term fading and short-term
fading. The long-term signal fading is referred to the path loss or signal power attenuation
due to the motion over large areas. It is mainly caused by terrain configuration and the
built or man-made obstacles between the base station and the mobile unit. The receiver
is often represented as shadowing in this case. Terrain configurations can be classified as
open area, flat terrain, hilly terrain, and mountain area. The man-made landscape can be
classified as rural area, suburban terrain, and urban terrain.

Nattaporn Sahadech 3 30th May 2006
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Figure 1.1: Multipath propagation

The short-term fading is mainly caused by multipath reflections of a transmitted wave
by local scatterers, such as buildings or natural obstacles. It indicates changes in the
signal that can be experienced as a result of small changes between the transmitter and
the receiver. The short-term fading manifests itself in time-spreading of the signal (signal
dispersion) and time-variant of the channel. The channel for mobile radio applications is
time-variant, because motion between transmitter and receiver results in propagation path
changes.

1.3 Problem Description

Mobile channels are naturally random and results, therefore, in uncontrolled reflection,
scattering, shadowing and attenuation of the transmitted signal. It may be impracticable
to detect the transmit signal correctly due to the superposition of different signal waves at
the receiver. These effects can be statistically modeled as a multiple random variable and
are referred to as fading, which is one of the main problems in mobile communication. This
variation can also be an advantage in a multiuser system, as different users undergo dif-
ferent time-varying receiving conditions. Furthermore, there are many propagation paths
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between a transmitter and a receiver in mobile communication with various delays at the
receiver. The knowledge of multipath fading channel characteristics is essential to get on
with problems faced during the development of mobile communication systems. To char-
acterize such channel behavior, different channel models have been developed, such as the
elliptical [6, 18, 32] or the ring model [10]. In this thesis, I follow an other approach to
model statistical properties of the channel. Here, specifications of a street, e.g., the size
of buildings or the motion of the transmitter and the receiver with respect to the obsta-
cles, determine the basic of the geometrical street model. Furthermore, improvements of
communication systems, such as the high link quality or higher data rates, are needed.
This can be obtained by the use of the multiple-input multiple-output (MIMO) systems.
Therefore, this thesis is devoted to the problem of modeling, analyzing, and simulating the
mobile-to-mobile MIMO street model.

Mobile-To-Mobile Communication

Mobile-to-mobile communication is referred to as the transmitter and the receiver are
both in motion. This is expected to play an important role in mobile ad hoc networks and
intelligent transportation systems, where the communication links should be extremely
reliable. An increasing number of communication standards, such as Bluetooth, require
mobile terminals to communicate directly with other mobile terminals instead of a base
station. The received signal strength is caused to fluctuate and the signal will nearly
change as the movement occurs, since the multipath fading in an environment is known.
In the literature, the mobile-to-mobile communication models have been investigated in
[2, 3, 19, 30, 31], whereas the geometrical two-ring scattering model for MIMO mobile-to-
mobile fading channels are introduced in [2, 3, 31].

Channel Model

For the design and analysis of mobile communication systems, channel modeling plays
an important part. In general, the channel models for mobile radio communication are
based on the use of at least two colored Gaussian noise processes [1]. For instance, two
real colored Gaussian noise processes are required for the realization of a Rayleigh or Rice
process, which are often used as related stochastical models for describing the fading be-
havior of the envelope of the received signal through mobile radio channels. Furthermore,
a general approach to describe the channel is to assume that the transmitted radio waves
act as plane waves from different directions due to the multipath propagation. A statistical
description of such mobile radio channels has been developed by Clarke [23] and Jakes [24].
A channel modeling strategy is the statistical description of time variant fading effects due
to the motion of mobiles, obstacles and the transmission environment.

Random Variables

Random variables are important for the modeling of mobile fading channels and the channel
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is modeled with stochastic components. Therefore, the channel parameters are considered
as outcomes of a random process and are random variables. In this work, random variables
are described by their probability density function (PDF), followed by their power spectral
density function (PSD), and their autocorrelation function (ACF).

1.4 Thesis Overview

In this thesis, the geometrical street model for mobile-to-mobile channel is considered under
the assumption that the transmitter and the receiver are moving. The proposed procedure
is a generalization of the principle of deterministic channel modeling, i.e.,

1. Computation of a geometrical model, whereas the street model is analyzed

2. Derivation of a stochastic analytical model from the geometrical model

3. Determination of the deterministic simulation model by fixing model parameters of
the stochastic simulation model

4. Computation of the model parameters from the simulation model by using a proper
parameter computation method, e.g., Lp-norm method

5. Generation of sample functions by using the deterministic simulation model with
fixed parameters.

This principle is closely related to the sum-of-sinusoids method, which was originally pro-
posed by Rice to model Gaussian noise processes [12]. The illustration of the generalized
principle of deterministic channel modeling is shown in Fig. 1.2.

3 4 6

5

21

Reference model

E{·} E{·} < · >

S ta tistica l p rop erties

D eterministic S oS
simu la tion model

computation
P arameter

S imu la tion of
sa mp le fu nctions

F ix ed
p a ra meters

S toch a stic S oS
simu la tion modelG eometrica l model

Lp-norm meth od (L P N M )

Figure 1.2: The principle of deterministic channel modelling

Chapter 2 gives a description of the geometrical street model for a wireless transmis-
sion between the transmitter and the receiver. The relation between the transmitting and
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receiving angles are also established as a function of the parameters describing the geo-
metrical street model.
Chapter 3 presents the derivation of an analytical model over the geometrical model and
also results concerning the statistical properties of such channel model due to scattering
from a cluster.
The simulation model derived from the analytical model is presented in Chapter 4, as well
as the parameter computation method Lp-norm, and simulation results in comparison to
the analytical model. Chapter 5 shows the extension of the simple SISO street model with
respect to multiple clusters of scatterers, frequency selectivity, and MIMO street model.
The discussion of the thesis is given in Chapter 6 and the conclusion of the thesis is pre-
sented in Chapter 7. The list of literature completes this thesis.
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Chapter 2

Geometrical Model

Geometrical channel models have been submitted in the literature for different propagation
environments due to the fact that the geometrical approach provides analytically solutions.
For instance, Liberti and Rappaport developed a geometrical based single bounce model
(GBSBM) for microcells which assumes that the scatterers lie in an ellipse encompassing
the transmitter and receiver [6]. In addition, a disk model is investigated in [7, 8] which
based on the Jakes model and a ring model has been proposed in [9, 10] for the MIMO
channel.
This chapter describes the geometrical model for a transmission between two mobiles so-
called SISO mobile-to-mobile channel, i.e., there is a single antenna at both ends of the
channel, whereas the transmitter and the receiver are on the move. Moreover, the relation
between angle of departure (AOD) and angle of arrival (AOA) are presented, which will be
used for the derivation of the statistical properties of the geometrical street model described
in the next chapter.

2.1 The Street Model

In this section, the geometrical street model for the mobile-to-mobile SISO channel is
described as shown in Fig. 2.1. It is assumed that there is a single reflected wave on
the surface of the scattering object between the transmitter and the receiver. This fig-
ure shows that all scatterers associated with a certain path length l can be emerged to a
cluster, which form the geometrical street model. The scatterers along the street are fixed
and can be, for example, trees, buildings, hills, etc. Buildings are normally structured not
perfectly smooth as reflecting objects. Therefore, they are mostly considered as a cluster
of scatterers instead of a reflector. The scatterers in a cluster are assumed to be uniformly
distributed.
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Figure 2.1: The geometrical street model with a single cluster of scatterers

As you can see in Fig. 2.1, the transmitter Tx and the receiver Rx are separated by a
distance D and located in the middle between the roadsides with the street width 2h. The
angle of departure (AOD) and the angle of arrival (AOA) can be characterized by α and
θ, respectively. The angles of departure α are between α0 and αc, where αc represents
the critical angle of departure due to the structure of the street model. Therefore, the
restricted angle of arrival θ must be between θ0 and θc. Thus, α = α0−∆α (θ = θ0−∆θ),
where ∆α (∆θ) represents the angle of spreading and is a random variable. It is also
assumed that the transmitter and the receiver are on the move as shown in Fig. 2.1. The
direction of motion at the transmitter (receiver) is characterized by αv (θv), where vT (vR)
is referred to as the speed of the transmitter (receiver).

2.2 Relation Between AOD and AOA

The relationship between the AOD α and the AOA θ is given by using the properties of
the geometry. For the determination of statistics of the received signal, it is important
to know characteristic quantities, such as the probability density function of the angle of
arrival (PDF of AOA), the Doppler power spectral density function (PSD), the autocor-
relation function (ACF), the level-crossing rate (LCR), and the average duration of fades
(ADF).
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The AOD α and the AOA θ depend on the environment surrounding the transmitter
and the receiver. For instance, the mobiles are often surrounded by obstacles and there
maybe no line of sight. Such models are investigated, e.g., in [2, 10]. For the geometrical
street model, the AOA θ can be expressed in terms of the AOD α as

θ = fθ(α) =



















f(α) αb ≤ |α| < α0

±π
2

α = ±αc
±αc α = ±π

2

0 else

(2.1)

where

f(α) = arctan

(

h tan(α)

D tan(α)− h

)

(2.2)

and

αc = arctan

(

h

D

)

(2.3)

αc ≤ αb < α0

αb < α0 ≤
π

2
.

The quantity αc is referred to as the critical AOD, because the receiver cannot receive
scattered components, when the AOA θ is larger than π/2, as one can see in Fig. 2.1.
Furthermore, the AOD α is in the interval [α0, αb] for the street model. It is also consid-
ered that fθ(α) is a bijective function. Therefore, the AOD α can be derived as a reverse
function of θ and denoted by

α =



















g(θ) θ0 ≤ |θ| < θb

±π
2

θ = ±θc
±θc θ = ±π

2

0 else

(2.4)

where

g(θ) = arctan

(

h tan(θ)

D tan(θ)− h

)

(2.5)

and

θc = αc (2.6)

θc < θ0 < θb

θ0 < θb ≤
π

2
.

Since the relation between the AOD α and AOA θ is found, the statistical properties of
the street channel model can thereby be derived and described in the next chapter.
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Chapter 3

Stochastic Analytical Model

After providing the geometrical street model, the next step of deterministic channel mod-
eling is to derive a stochastic analytical model from the geometrical model. The main pur-
pose of this step is to find stochastic processes that are suitable for frequency non-selective
models. The analytical or reference model is described by ideal stochastic processes. The
derivation of the analytical model is firstly performed under the assumption that the num-
bers of scatterers are infinite. Then, the statistical properties of the reference model are
analyzed in terms of the probability density function of the angle of arrival (PDF of AOA),
the Doppler power spectral density (PSD), the temporal autocorrelation function (ACF),
the level-crossing rate (LCR), and the average duration of fades (ADF).

3.1 Probability Density Function

The PDF of AOA of a scattered wave is important for the derivation of the statistical
properties of the channel, such as the power spectral density and the signal correlation
function at the receiver. In [4, 5] a geometrically based PDF of AOA is derived by using
cosine PDF for non-isotropic scattering models. Such a model is obtained, when signals
are channeled, e.g., along a city street. In this appraoch, the derivation of the PDF of the
AOA at the receiver, I will follow the geometrical street model presented in Fig. 2.1.

Since α = α0 − ∆α and θ = θ0 + ∆θ, the function of ∆θ can be determined as an ex-
pression of ∆α by using (2.1) as

∆θ = f(α0 −∆α)− θ0, (3.1)

where

f(α0 −∆α) = arctan

(

h tan(α0 −∆α)

D tan(α0 −∆α)− h

)

. (3.2)



CHAPTER 3: Stochastic Analytical Model

The function (3.1) holds, if 0 ≤ ∆α ≤ α0 − αb, where α0 and αb are given by (2.3). Thus,
the function of ∆α can be expressed in terms of ∆θ by using (2.4) as

∆α = α0 − g(θ0 +∆θ), (3.3)

where

g(θ0 +∆θ) = arctan

(

h tan(θ0 +∆θ)

D tan(θ0 +∆θ)− h

)

, (3.4)

if 0 ≤ ∆θ ≤ θb − θ0, where θb and θ0 are define by (2.6). In Addition, θ0 is determined by
(2.1) at α = α0, i.e.,

θ0 = fθ(α0) =



















f(α0) αb < |α0| < π
2

±π
2

α0 = ±αc
±αc α0 = ±π

2

0 else.

(3.5)

Under the assumption that ∆α is a uniformly distributed random variables, the PDF of
the angle of spreading p∆α(∆α) is assumed to be

p∆α(∆α) =
1

∆αmax
, (3.6)

where ∆αmax indicates the maximum angle of spreading at the transmitter in the interval
[0, α0 − αb], since the cluster of scatterers is confined between the transmitter and the
receiver. The PDF of ∆θ can be derived from the given PDF of ∆α by using following
random variable transformation

p∆θ(∆θ) =
p∆α(∆α)
∣

∣

∣

d∆θ(α)
d∆α

∣

∣

∣

(3.7)

=
p∆α(∆α)

∣

∣

∣

d(fθ(α0−∆α)−θ0)
d∆α

∣

∣

∣

=
p∆α(∆α)

∣

∣

∣

d(fθ(α0−∆α))
d∆α

∣

∣

∣

where

∣

∣

∣

∣

dfθ(α0 −∆α)

d∆α

∣

∣

∣

∣

=

∣

∣

∣

∣

h2

h2 +D2 sin2(∆α− α0) + 2Dh sin(∆α− α0) cos(∆α− α0)

∣

∣

∣

∣

.

Substitute (3.6) in (3.7) and using (3.3) together with (2.5) as a definition of ∆α, the PDF
of the angular spread p∆θ(∆θ) can be plotted as shown in Fig. 3.1.
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Figure 3.1: The PDF of the angle of spreading ∆θ for various values of α0 and ∆αmax

The three Models for various values of the length l and the position of a cluster are
considered with D = 15 and h = 5:

• Model 1: l = 15, α0 =
π
2
, αb = 18.4o, ∆αmax = 71.7o,

the corresponding angles θ0 = 18.4o and ∆θmax = 71.7o

• Model 2: l = 5, α0 = 26.6o, αb = 18.4o, ∆αmax = 8.1o,
the corresponding angles θ0 = 45o and ∆θmax = 45o

• Model 3: l = 5, α0 =
π
2
, αb = 45o, ∆αmax = 45o,

the corresponding angles θ0 = 18.4o and ∆θmax = 8.1o

It should be noted that the length and the position of a cluster are defined by α0 and αb.
As one can see in the geometrical street model Fig. 2.1, the length of a cluster can be
also given by ∆αmax. Figure 3.1 shows the influence of different positions and lengths of a
cluster on the PDF p∆θ(∆θ) of the angle of spreading.

Next, the relationship of the street width h and the distance between the transmitter
and the receiver D for l = 15 are considered as follows:

• Model 1: h
D
= 0.1, the corresponding angles θ0 = 5.7o, ∆θmax = 84.3o

• Model 2: h
D
= 0.3, the corresponding angles θ0 = 18.4o, ∆θmax = 71.6o

• Model 3: h
D
= 0.5, the corresponding angles θ0 = 26.6o, ∆θmax = 63.4o
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Figure 3.2: The PDF of the angle of spreading ∆θ for various values of h/D (l = 15)

The influence of the relation between h and D on the PDF of the angle of spreading at
the receiver p∆θ(∆θ) is shown in Fig. 3.2 with α0 = π/2.

In order to describe the statistical properties of the street model with a single cluster
of scatterers, the temporal autocorrelation function (ACF) is of importance. Therefore,
the Doppler power density function (PSD) plays an importance role, since the ACF of the
scattered component is defined as the inverse Fourier transform of the Doppler PSD.

3.2 Doppler Power Spectral Density

Due to the motion of the transmitter and the receiver (mobile-to-mobile), the Doppler effect
arises, which also depends on the direction of motions of the transmitter and the receiver.
When the transmitter and receiver move with time, fading will impose a varying envelope
on a transmitted signal, thus spreading the spectrum of the received signal [14]. This is
known as Doppler spreading. In a multipath channel, each transmitted signal with the
AOD α = α0 −∆α undergoes a different Doppler frequency shift during its transmission.
The Doppler frequency (frequency shift) at the receiver under the AOA θ = θ0 + ∆θ is
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given by

f = s(∆α,∆θ) = fTmax cos(αv − α0 +∆α) + fRmax cos(θv − θ0 −∆θ) (3.8)

where fTmax and fRmax stand for the maximum Doppler frequency of the transmitter and
the receiver, respectively. The αv (θv) is the angle of the direction of the transmitter
(receiver) from the line of sight as shown in Fig. 2.1. The maximum Doppler frequency of
the transmitter fTmax(receiver fRmax) is related to the speed of the transmitter vT (receiver
vR), the speed of light in vacuum c0, and the carrier frequency f0. The maximum Doppler
frequencies can be expressed as

fTmax =
vT
c0
f0 ; fRmax =

vR
c0
f0. (3.9)

The equation (3.8) shows that the Doppler frequency f is a function of the quantities ∆α
and ∆θ, which are referred to as random variables in the street model. By the use of a
relation between ∆α and ∆θ, the corresponding densities can also be derived as shown
in (3.6) and (3.7). Since the PDF of ∆α and ∆θ are given, the PDF of the Doppler
frequency pf (f) can be computed by using the random variable transformation described
in [13]. Here, the quantities ∆α and ∆θ are stochastically dependent on each other that
is ∆θ = f(∆α). Therefore, the derivation of pf (f) becomes more complicated with the
substitutions of (3.3) and (3.4) in (3.8). Moreover, a closed form solution for the inverse
function ∆θ = s−1(f) could not be derived, but it is necessary since the number of solu-
tions for ∆θ = s−1(f) is needed to determine pf (f) by the random variable transformation
[13]. Hence, the Doppler PSD of the mobile-to-mobile street model will be derived by an
alternative method with the definition of the autocorrelation function (ACF) described in
the next section, since the Doppler PSD and the ACF are a Fourier transform pair.

For simplicity, it is assumed that the transmitter is fixed (vT=0) and the receiver moves
with the direction of motion θv and the speed vR, the Doppler frequency (3.8) can be
therefore expressed as

f = fRmax cos(θv − θ0 −∆θ), (3.10)

where θv is in the interval (0, 2π]. It should be noted that two solutions exist, i.e.,
arccos(f/fRmax)= (θv−θ) = (θ−θv) due to the inverse function of the cosine function. The
PDF of the Doppler frequency pf (f) can be derived from the PDF of the angle spreading
p∆θ(∆θ) by the use of the transformation of a random variable in the form

pf (f) =
p∆θ(θv − θ0 −

∣

∣

∣
arccos f

fRmax

∣

∣

∣
)

fRmax

√

1−
(

f
fRmax

)2
+
p∆θ(θv − θ0 +

∣

∣

∣
arccos f

fRmax

∣

∣

∣
)

fRmax

√

1−
(

f
fRmax

)2
(3.11)

for |f | ≤ fRmax . Since the PDF pf (f) is proportional to the Doppler PSD [1], it follows the
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relation

Sµµ(f) = 2σ20pf (f) (3.12)

=
2σ20

fRmax

√

1−
(

f
fRmax

)2

[

p∆θ

(

θv − θ0 −
∣

∣

∣

∣

arccos
f

fRmax

∣

∣

∣

∣

)

+ p∆θ

(

θv − θ0 +

∣

∣

∣

∣

arccos
f

fRmax

∣

∣

∣

∣

)]

where 2σ20 is the mean power of the received scattered components. The Doppler PSD is
bounded within the range of lower and upper frequency [fl, fu], whereas fl and fu are given
by

fu =











fRmax cos(θ0 − θv) 0 < θv < θ0

fRmax θ0 < θv < θb

fRmax cos(θv − θb) else

(3.13)

and

fl =











fRmax cos(θb − θv) 0 < θv <
θ0+θb
2

−fRmax θ0 < θv − π < θb

fRmax cos(θv − θ0) else

(3.14)

where θb determines the maximum possible AOA and the direction of motion at the receiver
θv is in the range of (0, 2π]. The Doppler PSD is exemplarily plotted in Fig. 3.3.

In this case, the receiver is moving with the speed vR = 50km/h and in the direction
θv = 120o. Furthermore, the Doppler frequency is normalized by fRmax . Figure 3.3 shows
the corresponding Doppler PSD of three models for various values of the length l and the
position of a cluster with D = 15, h = 5, and σ0 = 0.5:

• Model 1: l = 15, ∆θmax = 71.7o

the frequency range is from fl = −8.4 Hz to fu = 36.1 Hz

• Model 2: l = 5, ∆θmax = 45o

the frequency range is from fl = 10.8 Hz to fu = 36.1 Hz

• Model 3: l = 5, ∆θmax = 8.1o

the frequency range is from fl = −8.4 Hz to fu = −2.5 Hz

Moreover, the influence of the relation between h and D on the PSD is shown in Fig. 3.4
with the same given values as in Fig. 3.2.

The Doppler PSD gives the average power of the scattering components and is propor-
tional to the probability density function of the Doppler frequencies pf (f). There are two
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Figure 3.3: The Doppler PSD for various values of ∆θmax (D = 15, h = 5, fRmax = 41.7 Hz, σ0 =
0.5)

characteristic quantities, which can be derived from the Doppler PSD. These quantities are
the average Doppler shift B

(1)
µµ and the Doppler spread B

(2)
µµ , which describes the average

frequency shift and the frequency spread, respectively. The Doppler shift B
(1)
µµ is expressed

as

B(1)µµ =

∫

∞

−∞
fSµµ(f)df

∫

∞

−∞
Sµµ(f)df

(3.15)

=
1

2πj
· ṙµµ(0)
rµµ(0)

and the Doppler spread B
(2)
µµ is defined by

B(2)µµ =

√

√

√

√

∫

∞

−∞
(f −B

(1)
µµ )2Sµµ(f)df

∫

∞

−∞
Sµµ(f)df

(3.16)

=
1

2π

√

(

ṙµµ(0)

rµµ(0)

)2

− r̈µµ(0)

rµµ(0)
.
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Figure 3.4: The Doppler PSD for various values of h/D (fu = 36.1 Hz, fRmax = 41.7 Hz, σ0 = 0.5)

3.3 Autocorrelation Function

The Autocorrelation function (ACF) is one of the functions that can be extracted from the
first order statistics of the received signal. In general, if the received signal is in the complex
baseband described by a zero-mean complex Gaussian random process µ(t) = µ1(t)+jµ2(t),
the ACF can be defined by [13]

rµµ(τ) = E {µ∗(t)µ(t+ τ)} (3.17)

= rµ1µ1(τ) + rµ2µ2(τ) + j [rµ1µ2(τ)− rµ2µ1(τ)]

where E {·} denotes the statistical expected value. Generally, it is assumed that µ1(t) and
µ2(t) represent real-valued Gaussian processes and are uncorrelated [1]. The principle of the
sum-of-sinusoids, which will be also introduced in Chapter 4, is based on the superposition
of an infinite number of weighted harmonic functions. Due to this principle, a Gaussian
process µ(t) can be expressed mathematically as

µ(t) = lim
N→∞

N
∑

n=1

cne
j(2πfnt+θn), (3.18)

where cn, fn, and N denote the Doppler coefficients, the Doppler frequencies, and the
number of harmonic functions, respectively. The phases θn are random variables with a
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uniform distribution in the interval (0, 2π]. Since the number of exponential functions N is
infinite, a channel model is described by non-realizable stochastic processes as the reference
model or the analytical model. Then, the ACF can be specified as

rµµ(τ) = lim
N→∞

N
∑

n=1

c2ne
j(2πfnτ). (3.19)

Moreover, it is also mentioned that the ACF rµµ(τ) is the inverse Fourier transformation
of the Doppler spectral density function Sµµ(τ) and given by

rµµ(τ) = F−1 {Sµµ(f)} =
∫ f

0

Sµµ(f)e
j2πfτdf, (3.20)

where F−1 {·} denotes the inverse Fourier transform. For the case that the transmitter is
fixed and the receiver moves, the ACF rµµ(τ) has been determined by using the inverse
Fourier transform of (3.12). The absolute value of the ACF rµµ(τ) is plotted in Fig. 3.5,
which shows the influence of different positions and lengths l of a cluster. The parameters
l,∆θmax, fRmax , D, h, and σ0 are specified the same as those in Fig. 3.3. As it is shown in
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Figure 3.5: The absolute value of ACF for various values of ∆θmax (D = 15, h = 5, fRmax = 41.7
Hz, σ0 = 0.5)

Fig. 3.5, the third model with the quantities l = 5, α0 = π/2, and ∆αmax = 45o is kept
constant at the beginning compared to the other two models. The second model with the
same length of a cluster but a different initial angle of departure α0 is greatly decreased.
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Once again, the relation between h and D is considered with the same specified values as
in Fig. 3.4 and plotted in Fig. 3.6. As a result, the correlation of the received signal of
the first model increases greatly, compared to the other two models.
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Figure 3.6: The absolute value of ACF for various values of h/D (fRmax = 41.7 Hz, σ0 = 0.5)

Now, the mobile-to-mobile communication system is taken into consideration, i.e., the
transmitter and the receiver are on the movements with angles of motion αv and θv as
shown in Fig. 2.1. The ACF is given by

rµµ(τ) = ρT (τ) · ρR(τ), (3.21)

where ρT (τ) and ρR(τ) can be expressed as

ρT (τ) =

∆αmax
∫

0

e−j2πfT (∆α)τp∆α(∆α)d∆α (3.22)

ρR(τ) =

∆θmax
∫

0

e−j2πfR(∆θ)τp∆θ(∆θ)d∆θ. (3.23)

The fT (∆α) and fR(∆θ) are referred to the Doppler frequency at the transmitter and
the receiver, respectively, and are defined by the direction of arrival of each wave and the
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direction of motions according to the relation

fT (∆α) = fTmax cos(αv − α0 +∆α) (3.24)

fR(∆θ) = fRmax cos(θv − θ0 −∆θ). (3.25)

Since angles of motions of the transmitter and the receiver have an effect on the ACF, the
three cases concerning different directions of the motions of the mobiles are investigated
and plotted in Fig. 3.7:

• Model 1: αv = 50o, θv = 50o

(the transmitter and the receiver move to each other)

• Model 2: αv = 50o, θv = 120o

(the transmitter and the receiver move in one direction)

• Model 3: αv = 120o, θv = 120o

(the transmitter and the receiver move apart)
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Figure 3.7: The absolute value of ACF for mobile-to-mobile channel with different direction
of motions of the transmitter and the receiver (D = 15, h = 5, fTmax = 41.7 Hz, fRmax = 41.7
Hz, σ0 = 0.5)

It is shown in Fig. 3.7 that the ACF is decreased rapidly, when the transmitter and the
receiver are moving apart from each other.
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Furthermore, the ACF rµµ(τ) is a complex value due to the asymmetrical shape of the
resulting PSD Sµµ(f). In the next section, the definition of two factors resulting from the
ACF of the complex Gaussian random process µ(t) will be applied for the derivation of the
level-crossing rate and the average duration of fades. These factors can be defined from
the ACF given in (3.17) as

ψ
(n)
0 =

dn

dτn
rµ1µ1(τ)|τ=0 (3.26)

φ
(n)
0 =

dn

dτn
rµ1µ2(τ)|τ=0. (3.27)

Thus, they can be expressed for n = 0, 1, 2 as

ψ̈0 = ψ
(2)
0 =

d2

dτ 2
rµ1µ1(0) (3.28)

φ̇0 = φ
(1)
0 =

d

dτ
rµ1µ2(0) (3.29)

ψ0 = rµ1µ1(0). (3.30)

As rµ1µ1 = rµ2µ2 and rµ1µ2 = −rµ2µ1 [1], one can introduce Re {rµµ} · 1/2 = rµ1µ1 and
Im {rµµ}·1/2 = rµ1µ2 , which has been used together with (3.17) for the analytical derivation
of ψ̈0, φ̇0, and ψ0.

3.4 Level-Crossing Rate

Beside the PDF of AOA, the PSD, and the ACF, the level-crossing rate (LCR) and the
average duration of fades (ADF) are also the characteristic quantities describing the statis-
tics of mobile radio channels. The LCR and the ADF are used to evaluate the second order
statistics of the received signal.

The level-crossing rate N(r) is defined as the rate at which a stochastic process crosses
a specified signal level r in a positive going direction. The number of level-crossings per
second is given by [1]

N(r) =

∫

∞

0

ẋp(r, ẋ)dẋ, r ≥ 0 (3.31)

where ẋ is the time derivative or the slope of x(t) and p(r, ẋ) is the joint probability density
function of the specified level r. Here, it follows that the envelope ζ(t) = |µ(t)| tends to the
Rayleigh distribution pζ(r). The theoretical term of the LCR for such a Rayleigh fading
channel is defined as [1]

Nζ(r) =

√

β

2π
· r
ψ0
· e−

r2

2ψ0 , (3.32)
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where

β = −ψ̈0 −
φ̇20
ψ0
. (3.33)

The quantities ψ̈0, φ̇20, and ψ0 can be obtained from (3.28), (3.29), and (3.30). Therefore,
the corresponding LCR of the evolving ACF in the previous section can be obtained.
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Figure 3.8: The normalized LCR of the fading envelope for different lengths of a cluster with
different θ0 and ∆θmax (h/D = 0.3, fRmax = 41.7 Hz, σ0 = 0.5)

Figure 3.8 shows the normalized LCR (N(r)/fRmax) under the assumption that the trans-
mitter is fixed and the receiver is on the move with vR = 50km/h in the direction of
θv = 120o with different lengths and positions of a cluster. It is readily apparent in Fig.
3.8, the LCR N(r) of the third model with l = 5, α0 = π/2, and ∆αmax = π/4 is greatly
decreased compared to the other two models.

Since the relation between the distance from transmitter or receiver to the roadside (h)
and the space between the mobiles (D) influence the PDF of the angular spread and path
lengths, the comparison of three different values of h/D is now considered and plotted in
Fig. 3.9.

As a result, when comparing the graphs in Fig. 3.9, the LCR of the relationship h/D = 0.1
is the lowest. It indicates that the smaller a relationship between h/D, the smaller the
LCR is.
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Figure 3.9: The normalized LCR of the fading envelope for different values of h/D, (fRmax = 41.7
Hz, σ0 = 0.5)

Next, the direction of motions of the transmitter and receiver are taken into account with
the same given values as in the last section. Figure 3.10 illustrates the normalized LCR
for mobile-to-mobile channel based on the geometrical street model.
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Figure 3.10: The normalized LCR of the fading envelope for mobile-to-mobile channel with
different direction of motions (h/D = 0.3, fTmax = fRmax = 41.7 Hz, σ0 = 0.5)

As it can be seen from Fig. 3.10, the LCR is greatly increased, when the mobiles move
apart from each other. It shows that the further they move away from each other, the
greater the LCR is.
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3.5 Average Duration of Fades

The ADF characterizes the severity of the fading, i.e., the average length of the duration
while the channel amplitude is below a level r. The ADF is defined by

T (r) =
Fζ(r)

Nζ(r)
, (3.34)

where

Fζ(r) =

r
∫

0

pζ(x)dx (3.35)

denotes the cumulative distribution function of the process ζ(t). Then, the ADF can be
expressed as

Tζ(r) =

√

2π

β
· ψ0
r

(

e
r2

2ψ0 − 1

)

, r ≥ 0, (3.36)

where the parameter β and ψ0 are given by (3.33) and (3.30), respectively. Hence, the ADF
is also based on the resulting ACF. For the simplified case that the transmitter is fixed
and the receiver is moving with the same specified quantities of vR and θv as previously,
the normalized ADF Tζ(r) · fRmax can be plotted in Fig. 3.11 due to different lengths and
positions of a cluster.
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Figure 3.11: The ADF of the fading envelope for various values of l (h = 5, D = 15, fRmax = 41.7
Hz, σ0 = 0.5)

As it is shown in Fig. 3.11, the ADF of the third model is increased, whereas the LCR of
this model is greatly decreased in Fig. 3.8. Furthermore, the ratio of h/D is once again
considered with the same given parameters as in Fig. 3.4 and illustrated in Fig. 3.12.

This indicates that the smaller a relationship between h/D, the greater the ADF is. That
is the exact opposite result of that the LCR presented in the previous section.

The next investigation is the comparison of the ADF between different direction of motions
of the mobiles with the same variables as the one shown in Fig. 3.7 and 3.10. The results
of this analogy are plotted in Fig. 3.13. It is shown that the closer the transmitter and
the receiver move to each other, the more the ADF increases.
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Figure 3.12: The ADF of the fading envelope for various values of h/D, (fRmax = 41.7 Hz, σ0 =
0.5)
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Figure 3.13: The normalized ADF of the fading envelope for mobile-to-mobile channel with
different direction of motions,(h/D = 0.3, fTmax = 41.7 Hz, fRmax = 41.7 Hz, σ0 = 0.5)
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In this chapter, I have introduced a statistical geometrical street model which assumes that
the transmission undergoes only one bounce going from the transmitter to the receiver and
that the scatterers are located uniformly within a cluster between the transmitter and the
receiver. The statistical properties, i.e., the PDF of AOA, the Doppler PSD, the ACF, the
LCR, and the ADF of the received signal are investigated enhanced by various parameters,
e.g., the size and position of a cluster, h/D, and the direction of motions. The correctness of
the derivations will be verified by simulations, which will be described in the next chapter.
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Chapter 4

Simulation Model

The simulation is very important for the design of mobile-to-mobile radio channels, as it
proves the correctness of the analytical model. In [19], the simulation of Rayleigh-faded
SISO mobile-to-mobile channel is described with the development of sum-of-sinusoids. In
[3], the simulation model of MIMO mobile-to-mobile fading channel is derived for the two-
ring scattering model, which is researched for the propagation environment around the
moving transmitter and receiver in urban and suburban areas. In this chapter, a stochas-
tic simulation model and the corresponding deterministic simulation model are introduced
for the street model.

Generally, simulation models for mobile radio channels are in progress of using at least
two colored Gaussian noise processes. There are two fundamental methods for design of
colored Gaussian noise processes: the filter method and the sum of sinusoids method [1] as
shown in Fig. 4.1 and 4.2.

WGN H(f)

n(t) (t)

Figure 4.1: The filter method for colored Gaussian noise processes

The simulation model of this work is based on the sum of sinusoids method. The sum of
sinusoids principle is a method to model Gaussian noise with given correlation properties
and coming more into use in mobile communications. A colored Gaussian noise process
is approximated by a finite sum of weighted harmonic functions, where cn, fn, θn, and N
denote Doppler coefficients, Doppler frequencies, Doppler phases, and the number of expo-
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cos(2 f1t + 1)

cos(2 f2t + 2)

cos(2 fNt+ N)

c1

c2

cN

(t)

.

.

.

.

.

.

Figure 4.2: The sum of sinusoids method for colored Gaussian noise processes

nential functions, respectively. By applying the concept of deterministic channel modeling,
a simulation model can be derived in three steps:

• Derivation of a stochastic simulation model from the analytical by the use of a finite
number of N

• Derivation of the corresponding deterministic simulation model from the stochastic
simulation model by fixing all model parameters

• Computation of deterministic simulation model parameters by using appropriate op-
timization algorithm, such as Lp-Norm method to the stochastic analytical model

At the end of this chapter, the simulation results are presented in comparison with the
analytical model.

4.1 Stochastic Simulation Model

The relationships between analytical models, stochastic simulation models, and determin-
istic simulation models are shown in Fig. 4.3. A stochastic simulation model is obtained
by using a finite number of exponential functions N and can be defined by

µ̂(t) =
N
∑

n=1

cne
j(2πfnt+θn), (4.1)

where the coefficients cn and the frequencies fn are constant and the phases θn are uniformly
distributed random variables in the interval (0, 2π]. Since cn, fn, and θn are kept constant
during the simulation in this work, the deterministic simulation model is considered and
presented in the next section.
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Reference model

(t) = (t, n)

n= random, N 

Stochastic simulation model

(t) =   (t, n)

n= random, N = finite

Deterministic simulation model

(t) = (t, n)

n= const., N = finite

� �

Figure 4.3: Relationship between a reference model, stochastic simulation model, and determin-
istic simulation model

4.2 Deterministic Simulation Model

As you can see in Fig. 4.3, the difference from the stochastic simulation model is that
all model parameters in the deterministic simulation model are specified, inclusive the
phases θn. In this section, the statistical properties of the deterministic simulation model
are investigated and should be fitted as close as possible to the analytical model. The
deterministic process can be expressed as

µ̃(t) =
N
∑

n=1

cne
j(2πfnt+θn), (4.2)

where N stands for the number of exponential functions. It is mentionable that the pa-
rameters cn, fn, and θn are computed during the simulation setup period by the Lp-norm
method described in the next section. Later on, these quantities are known and kept con-
stant, while the simulation runs. This shows that µ̃(t) can be considered as a deterministic
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function. The autocorrelation function ACF is considered as

r̃µµ(τ) =
N
∑

n=1

c2ne
j2πfnτ , (4.3)

where

cn = σ0

√

2

N
. (4.4)

In this work, the coefficients cn are defined by (4.4), therefore, the performance of r̃µµ(τ)
is totally depending on fn. The quantity fn is needed to be fitted in the simulation model
and the analytical model. The discrete fn can be determined so, that the ACF of the
deterministic process r̃µµ(τ) gives an optimal estimation of the ACF of the stochastic
process rµµ(τ) within a proper time interval. To minimize the difference between the
ACF of deterministic and stochastic process, the Lp-norm can be applied as well as other
minimization algorithms [1].

4.3 Parameter Computation Method

The parameter computation method Lp-norm is described in detail in [1]. As the auto-
correlation function r̃µµ(τ) depends on the Doppler coefficient cn and the discrete Doppler
frequency fn, according to (4.3), this method enables to find proper values for the discrete
Doppler frequencies fn. Since the Doppler coefficients cn are fixed and given by (4.4), only
optimal values for the discrete Doppler frequencies fn have to be found numerically by
minimizing the error function E

(p)
rµµ between rµµ(τ) and r̃µµ(τ), which is for the Lp-norm

defined as following:

E(p)rµµ =

{

1

τmax

∫ τmax

0

|rµµ(τ)− r̃µµ(τ)|p dτ
}1/p

, (4.5)

where p = 2 in this case. The parameter τmax denotes the time interval over which the
approximation rµµ(τ) is of interest and can approximately be τmax ≈ N/(2fmax). The
autocorrelation function r̃µµ(τ) of the deterministic process given by (4.3) will be suited to
the autocorrelation function rµµ(τ) of the analytical model in (3.20) as close as possible.

4.4 Numerical Results

Random variables play an important role in the deterministic simulation model. There-
fore, random variables of a certain probability density function are needed to simulate the
different statistical properties of the channel model, such as the Doppler PSD. The used
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algorithm to determine arbitrary PDF’s will be briefly described below.

To generate random variables of a specific PDF, its cumulative distribution function (CDF)
is needed. Furthermore, for a uniformly distributed random variable U , which can be eas-
ily generated in MATLAB, the probability of a realization ui F (ui) = ui holds. As it is
shown in Fig. 4.4, the probability F (ui) of the uniformly distributed random variable U
between [0,1] is the same as the probability F (xi) of one realization xi of a random variable
U with an arbitrary chosen CDF, i.e., F (ui) = F (xi). Subsequently, the realization xi can
be calculated by the inverse CDF (F−1(ui)).

0 X1

1

F(x)

xi

ui

uiU

F(u)

Figure 4.4: Relationship between the probability density function and its cumulative distribution
function

The analytical rearrangement of the inverse CDF can be very difficult. However, for the
deterministic simulation model, the CDF is discret and exists as a vector of i = 0, 1, 2..., N
elements, each with one probability for the realization xi. The wanted realization xi, or the
inverse of the CDF F−1(xi), is then the ith element from the CDF vector, which matches
first the probability F (ui).

The derivation for the PDF of the angular spread at the receiver p∆θ(∆θ) is now veri-
fied by the simulation. The case, that the transmitter is fixed and the receiver is on the
move with the speed vR = 50km/h and the θv = 120o, is again considered with the same
specified parameters as those for the fist model in Fig. 3.1. It should be noted that the
AOD α and the AOA θ are limited in the interval (−π/2, π/2). The discrete ∆θ at the
receiver is calculated by (3.1) for each scatterer within the angle of spreading ∆α at the
transmitter. The simulated histogram of the angular spread ∆θ at the receiver is plotted
compared to the analytical resultin Fig. 4.5, whereas 50 bins were used.
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Figure 4.5: The theoretical PDF of the angular spread ∆θ compared to the simulation result
(h = 5, l = 15, D = 15, α0 = π/2,∆αmax = 71.7o)

The simulated PDF of the angular spread p∆θ(∆θ) and the analytical one fit perfectly
as can be seen in Fig. 4.5. Next, the derivation for the Doppler PSD is examined and
normalized by σ20 for the case that the transmitter obtains vT = 0 and the receiver moves
with vR = 50 in the direction of θv = 120o. The discrete Doppler frequencies f are
calculated by (3.10) for each bin. This cluster of scatterers maintains the same length as
the distance between the transmitter and the receiver, i.e., the maximum possible length.
The simulated histogram of the normalized Doppler PSD/σ20 is plotted in Fig. 4.6, whereas
the simulated frequency vector has been again divided into 50 bins.
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Figure 4.6: The Doppler PSD in comparison with the analytical model (h = 5, D = 15, fRmax =
41.7 Hz, σ0 = 0.5)
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As it is shown in Fig. 4.6, the simulation result of the Doppler PSD is suitable to the
analytical model. Furthermore, the simulation of the absolute value of the ACF rµµ(τ) is
investigated by evaluating (4.3) and minimizing the error of (4.5) to find optimal Doppler
frequencies fn with the Lp-norm method, since the coefficients cn is already achieved by
(4.4). The discrete Doppler frequencies are then available for the realization of the de-
terministic simulation model. As starting values of the discrete Doppler frequencies fn
(n = 1, 2, ...N), random frequency values between fl and fu have been taken into account.
The upper limit of the integral in (4.5) is defined by the relation τmax = N/(2fmax). Fol-

lowing optimization results are based on the Lp-norm E
(p)
rµµ with p = 2.

The result of the simulation compared to the analytical model is shown in Fig. 4.7 for
the case that the transmitter is fixed and the receiver is moving with vR = 50km/h and
θv = 120o. Figure 4.7 gives an impression of the behavior of the ACF for N = 30 in this
case.
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Figure 4.7: The absolute value of the ACF of the simulation model in comparison with the
analytical model (h = 5, D = 15, fRmax = 41.7 Hz, σ0 = 0.5, p = 2, N = 30)

As mentioned before, different direction of motions of the transmitter and the receiver have
an impact on the ACF. After minimization (4.5) with the Lp-norm method, the optimized
discrete Doppler frequencies are obtained. The simulation of the ACF is carried out in
the same way as described earlier. The ACF of the stochastic process rµµ(τ) in (3.21) and
deterministic process r̃µµ(τ) in (4.3) are used. The various directions of motions of the
mobiles are now taken into consideration. The simulation results for the ACF is illustrated
in Fig. 4.8. The results of the analytical model is also presented in this figure.
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Figure 4.8: The absolute value of the ACF of the simulation model in comparison with the
analytical model for mobile-to-mobile communication due to different direction of motions (h =
5, D = 15, fTmax = fRmax = 41.7 Hz, σ0 = 0.5, p = 2, N = 30)

Figure 4.9 illustrates the simulation result of the LCR and the ADF compared to the
analytical result. It indicates that the results of the simulation and analytical model does
not fit perfectly with each other.
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Figure 4.9: (a) the LCR and (b) the ADF of the simulation model in comparison with the
analytical model (h = 5, D = 15, fRmax = 41.7 Hz, σ0 = 0.5, p = 2, N = 30)
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Chapter 5

Extensions of the Street Model

So far, the geometrical street model for mobile-to-mobile single-input single-output (SISO)
systems has been introduced. In any wireless channel, scatterers are not distributed uni-
formly throughout the whole propagation area, but rather occur in clusters. Clusters of
scatterers correspond to buildings in urban environments and hills or mountains in rural en-
vironments. Due to the improvements of mobile communication systems, the enhancement
of capacity, quality, and data rates becomes an important role. Therefore, the develop-
ment of multielement antennas is taken into account. In this chapter, the extensions of
the street model are investigated. These include several clusters of scatterers, frequency-
selective channel, and multiple-input multiple-output (MIMO) mobile-to-mobile channel.

5.1 Multiple Clusters of Scatterers

In scattering environment, the propagation paths to the receiver will arrive from a certain
angular spread of directions. This means that the signal is scattered and reflected from
objects in the environment and that components of the signal at the receiver are spread
out over a longer period of time. In general, the signals at the receiver are from different
directions due to multipath propagation. An important property, which characterizes the
channel and receiver algorithms, is the angle of arrival (AOA) θ. The main arrival direc-
tion hardly changes as the channel changes rapidly due to the movement of mobiles and
environments. Another property which determines the quality of the communication link
is the angular spread ∆θ. Due to the geometrical street model, a certain angular spread
occurs at the receiver, which is referred to as a part of the representation of the AOA.

In Chapter 2, an angular spread results from a cluster of scatterers. The signal wave
is propagated from a scatterer directly to the receiver without interaction with the other
scatterers in the cluster. A cluster is a geometrically distributed group of scatterers. Es-
sentially, the signal may come from several clusters which will be analyzed in this chapter.
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Figure 5.1: Geometrical street model with several clusters of scatterers

In this section, a radio environment with C clusters is considered. Figure 5.1 shows the
geometrical model for a mobile-to-mobile radio channel with several clusters of scatter-
ers based on the street model. The subscript (·)c (c = 1, 2, ..., C) is used to identify the
particular cluster of scatterers.

5.1.1 Statistical Properties

At the beginning of an analysis of statistical properties for multiple clusters, the signal for
this channel was specified by the use of the superposition principle. This implies that the
signal at the receiver is the sum of the signals which are caused by the individual clusters of
scatterers. Thus, the consideration of the performance of each cluster enables the analysis
of multiple clusters by summing the result of each cluster to find the complete result of
several clusters. For instance, the probability density function (PDF) of the angular spread
p∆θ(∆θ) could be defined by

p∆θ(∆θ) =
C
∑

c=1

wcp∆θc(∆θc), (5.1)

where wc is a weighting factor for the cth cluster of scatterers. Due to
∫

∞

−∞
p(x)dx = 1,
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the constraint wc = 1/c was established. This way of the analysis for multiple clusters did
not turn out to be correct. An alternative solution is to generate random variables of the
specified PDF of the angular spread p∆α(∆α), described in Section 4.4, and associate these
variables with the geometrical relation between ∆α and ∆θ.

The statistical properties of a single cluster of scatterers for the street model are ana-
lyzed in Chapter 3. From the theory developed in this chapter, it is well-known that
a certain multiple clusters shape of the p∆α(∆α) at the transmitter results in a proper
p∆θ(∆θ). The specification of initial angles of departure α0 together with boundary angles
of departure αb define the length and position of each cluster.

For ease of analysis, the transmitter is firstly considered to be fixed and the receiver moves
with the speed vR in the direction of θv. The comparison of a single cluster and several
clusters of scatterers are taken into account into two following models:

• Model 1: l = 15, α0 =
π
2
, αb = 18.4o, ∆αmax = 71.7o,

the corresponding angles θ0 = 18.4o and ∆θmax = 71.7o

• Model 2: lc = [3 5 3], α0 = [22.6o 45o π
2
], αb = [18.4o 26.6o 59o],

the corresponding angles θ0 = [59o 26.6o 18.4o]

The quantity lc characterizes the length of the cth cluster, in this case, c = 3. For the
comparison of these analytical models, the performance curves for statistical properties are
plotted in Fig. 5.2. These include the PDF of the angular spread at the receiver p∆θ(∆θ),
the Doppler power density function (PSD) Sµµ(f), the autocorrelation function (ACF)
rµµ(τ), and the level-crossing rate (LCR) N(r).

Figure 5.2(a) and 5.2(b) illustrate that the curves of the first and the second model have
the same shape, but the curve of the first model lies beneath the second one. The reason
for this is that the area below the curves of these two models has to be the same and equal
to one due to the fact that

∫

∞

−∞
p∆θ(∆θ) = 1.
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Figure 5.2: Illustration of statistical properties (a) probability density function of the angular
spread p∆θ(∆θ), (b) normalized Doppler power spectral density function Sµµ(f)/σ

2
0 , (c) absolute

value of autocorrelation function |rµµ(τ)|, and (d) normalized level-crossing rate N(r)/fmax for a
single cluster and multiple clusters of scatterers (h = 5, D = 15, θv = 120o, fRmax = 41.7 Hz, and
σ0 = 0.5)
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It should also be observed that the transmitter and the receiver are moving in the directions
shown in Fig. 5.1 with vT and vR, respectively, by reason of mobile-to-mobile communica-
tion system. The direction of motions of the transmitter and the receiver affects the ACF,
LCR, and ADF of the channel model. Fig. 5.3 illustrates these statistical properties of
three clusters of scatterers in comparison with a single cluster of scatterers with the same
specified parameters as above. The transmitter (receiver) is on the move in the direction
of αv = 120o (θv = 120o) with vT = 50km/h (vR = 50km/h).

As a result shown in Fig. 5.3(a), the ACF of both models are greatly decreased at the
beginning and shortly afterward the amplitude of the second model is higher. Hence, the
LCR of the first model is increased greater than the second one, therefore, the ADF of the
first model is less than the second one.
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Figure 5.3: Statistical properties (a) absolute value of autocorrelation function |rµµ(τ)|, (b) nor-
malized level-crossing rate N(r)/fmax, and (c) normalized average duration of fades for multiple
clusters of scatterers when the both mobiles are on move compared to a cluster of scatterers
(h = 5, D = 15, fTmax = fRmax = 41.7 Hz, and σ0 = 0.5)
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5.1.2 Simulation Results

As the simulation is of importance for the performance of mobile communication systems,
simulation results for the geometrical street model with multiple clusters are presented by
the use of the concept of deterministic channel modeling described in Chapter 4.

The PDF of the angular spread ∆θ at the receiver and the Doppler PSD for the second
model (three clusters of scatterers) are verified by the simulation. The angle of departure
α is uniformly distributed in each cluster. The discrete ∆θ is given by (3.1). Thus, the
discrete Doppler frequencies f are calculated by (3.10) for the case that only the receiver is
on the move. The simulated histograms of the ∆θ and the normalized Doppler frequency
are plotted in Fig. 5.4 with 50 bins. The analytical results of this model are also repre-
sented in Fig. 5.4 as a comparison.
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Figure 5.4: (a) Probability density function of the angular spread p̃∆θ(∆θ) and (b) Doppler power
density function S̃µµ(f)/σ

2
0 for three-cluster model (h = 5, D = 15, vR = 50km/h, fRmax = 41.7

Hz, and σ0 = 0.5)
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Hence, the excellent accordance between the analytical and the simulation model of the
PDF of the angular spread and the Doppler PSD for the multiple clusters of scatterers are
shown in Fig. 5.4. Furthermore, the ACF of this model is also taken into account and
plotted in Fig. 5.5 in comparison to the ACF of a cluster of scatterers.
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Figure 5.5: Absolute value of the autocorrelation function (ACF) of several clusters of scatterers
compared to a single cluster of scatterers(h = 5, D = 15, θv = 120o, fRmax = 41.7 Hz, and
σ0 = 0.5)

As the transmitter and the receiver are moving in the direction αv and θv, respectively, the
absolute value of the ACF is shown in Fig. 5.6.
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Figure 5.6: Absolute value of the autocorrelation function (ACF) of three clusters of scatterers
for mobile-to-mobile systems (h = 5, D = 15, αv = θv = 120o, fTmax = fRmax = 41.7 Hz, and
σ0 = 0.5)

In this section, the performance of multiple clusters of scatterers have been analyzed
and simulated as an extension of the geometrical street model. So far, the frequency-
nonselective channels have been proposed. The next investigation deals with the frequency-
selective geometrical street model, which will be described in the next section.
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5.2 Frequency Selectivity

In mobile communications, there are many propagation paths between the transmitter
and the receiver. The propagation channel is a frequency-selective channel, when the time
delays of multipaths are considered. Frequency-selective fading is associated with the pres-
ence of multiple signal components, each with a different propagation delay comprising the
received signal. It arises because the length of each propagation path can be defined by a
frequency function.

So far, frequency non-selective fading is introduced and used when the bandwidth of the
transmitted signal Bs is less than the coherence bandwidth Bc of the channel. Therefore,
all frequency components of the transmitted signal undergoes the same amount of attenua-
tion and there will be no signal distortion. A measured parameter, the so-called coherence
bandwidth Bc, is the frequency range over which the channel is considered constant. When
the bandwidth is increased, its spectrum extrema will be attenuated. Therefore, the chan-
nel will have a filtering effect and distort the signal. Theoretically, if Bs > Bc, then
frequency-selective fading is experienced.

5.2.1 System Functions

In [25], Bello introduced system functions to describe linear time-variant channels, thereby
the impulse response h(τ ′, t) is one of the four system functions. The output signal of a

x(t)

y(t)

d ´ d ´ d ´ d ´

h(0,t)d ´ h(d ´,t)d ´ h(2d ´,t)d ´ h( ,t)d ´

�

�

Figure 5.7: Tapped-delay-line representation of a frequency-selective and time-variant channel

time-variant channel [1] is defined by

y(t) =

∫

∞

0

h(τ ′, t)x(t− τ ′)dτ ′, (5.2)
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where h(τ ′, t) is interpreted as the response of the channel at the time t which has been
excited by a unit impulse at t − τ ′. The output signal y(t) results then as a consequence
of the impulse response with an input signal x(t). Figure 5.7 shows the structure of a
frequency-selective channel with the time-variant impulse response h(τ ′, t). It is the so-
called the tapped-delay-line model, where h(τ ′, t)dτ ′ is seen to be weighted factors for a
channel exciting at (t− τ ′). The tapped-delay-line model enables an understanding of the
channel distortions with different propagation delays.

Apart from the impulse response for a time-variant system h(τ ′, t), the time-variant transfer
function H(f ′, t), the Doppler-variant impulse response s(τ ′, f), and the Doppler-variant
transfer function T (f ′, f) are also part of Bello system functions due to the multipath
propagation and the Doppler effect caused by motions of the transmitter and receiver in
mobile radio channels. These system functions are related in pairs by the Fourier transform
as shown in Fig. 5.8.

Time-variant

functions( ,́f) H(f́,t)

T(f́,f)

h( ,́t)

Time-variant impulse response

Doppler-variant transfer function

transfer

Doppler-variant

impulse

response

FF

FF

F-1

F-1 F-1

F-1

Figure 5.8: Fourier transform relationships between the Bello system functions
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5.2.2 Stochastic Analytical Model

The frequency-selective street model is presented in Fig. 5.9. For the multipath propa-
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Figure 5.9: Geometrical street model with several clusters of scatterers due to frequency selec-
tivity

gation paths of the model, not only the angles of arrival are different, but also the cor-
responding Doppler frequencies caused by the motion of the transmitter and the receiver
due to (3.8). The path length of each wave defines the propagation delay and the average
power of the wave at the receiver. Every wave in the cluster undergoes the same discrete
propagation delay τ ′l , where l = 1, 2, . . . ,L, and L denotes the number of paths with differ-
ent propagation delays. This assumption holds, as each delay τ ′l is shorter than the symbol
duration in the transmitted signal.

The autocorrelation function of a stochastic process h(τ ′, t) at two different delays and
two different times can be defined by [1]

rhh(τ
′

1, τ
′

2; t1, t2) = E {h∗(τ ′1, t1)h(τ ′2, t2)} (5.3)

= rhh(τ
′

1; ∆t)δ(τ
′

2 − τ ′1) (5.4)

The Fourier transform of the function above gives the scattering function. For ∆t = 0, the
function is referred to as the delay power spectral density and expressed as

Sτ ′τ ′(τ
′) =

∫

∞

−∞

S(τ ′, f)df, (5.5)
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where S(τ ′, f) is the scattering function with the propagation delay τ ′ and the Doppler
frequency f . The delay power spectral density Sτ ′τ ′(τ

′) gives the power of scattering com-
ponents occurring with the propagation delay τ ′. The important characteristic quantities
from the delay power spectral density Sτ ′τ ′(τ

′) are the average delay and the delay spread.

The average delay B
(1)
τ ′τ ′ is the mean delay of a signal during the transmission and can be

defined by

B
(1)
τ ′τ ′ =

∫

∞

−∞
τ ′Sτ ′τ ′(τ

′)dτ ′
∫

∞

−∞
Sτ ′τ ′(τ ′)dτ ′

. (5.6)

The delay spread B
(2)
τ ′τ ′ is a measure of the time spread of arriving paths through a multipath

fading channel and given by

B
(2)
τ ′τ ′ =

√

√

√

√

∫

∞

−∞
(τ ′ −B

(1)
τ ′τ ′)

2Sτ ′τ ′(τ ′)dτ ′
∫

∞

−∞
Sτ ′τ ′(τ ′)dτ ′

(5.7)

The Fourier transform of the delay power spectral density is referred to as the frequency
correlation function (FCF), i.e.,

rτ ′τ ′(υ
′) =

∫

∞

−∞

Sτ ′τ ′(τ
′)e−j2πυ

′τ ′dτ ′, (5.8)

where υ′ = f ′2 − f ′1 is a function of the frequency separation variable concerning the time-
variant transfer functions H(f ′

1, t) and H(f ′2, t). The FCF is a measure of the frequency
coherence of the channel. The coherence bandwidth Bc = υ′ can be defined by

|rτ ′τ ′(Bc)| =
1

2
|rτ ′τ ′(0)| . (5.9)

In [25], Bello introduced the wide-sense stationary uncorrelated scattering (WSSUS) model.
This model is well-known as a stochastic model for time-variant and frequency-selective
mobile radio channels. It assumes that the received components with different propaga-
tion delays are statistically uncorrelated and the correlation properties of the channel are
stationary. Based on the WSSUS assumption, the European working group COST 207
developed the standards for the delay power spectral density for the typical propagation
environments, such as rural area, urban area, densely urban area, and hilly terrains.

5.2.3 Simulation Model

The frequency-selective simulation model is based on the principle of deterministic channel
modeling. A tapped-delay line model can also be used for the simulation. The impulse
response of the simulation model consists of a sum of L discrete propagation paths and
can be defined by

h̃(τ ′, t) =
L
∑

l=1

ãlµ̃l(t)δ(τ
′ − τ̃ ′l ), (5.10)
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where L is the number of discrete propagation paths with different propagation delays, ãl
denotes the real-valued delay coefficients, and τ̃ ′l represents the discrete propagation delays.
Moreover, µ̃l(t) is a complex Gaussian process and given by

µ̃l(t) =

Nl
∑

n=1

cn,le
j(2πfn,lt+θn,l), (5.11)

where Nl, cn,l, fn,l, and θn,l denote the number of harmonic functions, the Doppler co-
efficient, the Doppler frequencies, and the Doppler phases of the lth propagation path,
respectively. Furthermore, it can be considered that the ãl and the τ̃ ′l determine the
frequency-selective performance attributed to the effect of multipath propagation. In [1],
it is shown that the scattering function S̃(τ ′, f) is given by

S̃(τ ′, f) =
L
∑

l=1

ã2l S̃µlµl(f)δ(τ
′ − τ̃ ′l ), (5.12)

where S̃µlµl(f) denotes the Doppler power spectral density of the deterministic process.
Since

∫

S̃µlµl(f)df = 1, the delay power spectral density function can be expressed as

S̃τ ′τ ′(τ
′) =

L
∑

l=1

ã2l δ(τ
′ − τ̃ ′l ). (5.13)

Thus, S̃τ ′τ ′(τ
′) is a sum of delta functions, where the delta functions are located at τ ′ = τ̃ ′l

and weighted by ã2l . As the correlation function and the power spectral density function
are a Fourier transform pair, the FCF r̃τ ′τ ′(υ

′) of the simulation model are defined by

r̃τ ′τ ′(υ
′) =

L
∑

l=1

ã2l e
−j2πυ′τ̃ ′l . (5.14)

Substitute (5.6) and (5.7) in (5.13), the mean delay and the delay spread of the simulation
model are represented by

B̃
(1)
τ ′τ ′ =

L
∑

l=1

τ̃ ′l ã
2
l (5.15)

B̃
(2)
τ ′τ ′ =

√

√

√

√

L
∑

l=1

(τ̃ ′l ãl)
2 −

(

B̃
(1)
τ ′τ ′

)2

. (5.16)

As the delay power spectral density function, the FCF, the average delay, and the delay
spread totally depend on the delay coefficient ãl and the propagation delay τ̃ ′, the quantities
ãl and τ̃

′ are needed to be computed in such a way that the characteristics of the simulation
model are as close as possible to those of the reference model. One method which can be
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used for the computation of these two parameters is the Lp-norm method. The optimal
values can be found by minimizing the following error function

E(p)rτ ′τ ′
=

{
∫ υmax

0

|rτ ′τ ′(υ)− r̃τ ′τ ′(υ)|p dυ
}1/p

, (5.17)

where p = 1, 2, ... and the quantity υmax is defined by υmax = L/(2τmax) [26].

5.3 Mobile-to-Mobile MIMO Channel

Communication systems with a transmitter, a mobile radio channel, and a receiver can
be classified by the number of inputs and outputs. The last chapters, dealing with the
modeling of mobile-to-mobile propagation channels, have been described for the use of
single-input single-output (SISO) systems, i.e., a single antenna at both ends of the channel,
whereas the transmitter and the receiver are in motion. In this chapter, the mobile-to-
mobile SISO street model is extended into the application of multiple transmit and receive
antennas so-called multiple-input multiple-output (MIMO) systems.

5.3.1 Background

Multiple antennas at the transmitter and receiver are becoming very common in wireless
systems. The improvements, compared to SISO systems, is not only the system perfor-
mance with the high link quality, but also the capacity with higher data rates [27, 28, 29].
The advantages of MIMO communication are achieved through a relationship of antenna
arrays that support spatial diversity from the propagation channel and algorithms that
conform to the varying channel. Antenna arrays are developed by using antenna theory,
whereas the algorithms are designed under simplified assumptions for the channel, such
as fading and correlation. Therefore, the antenna geometry and the algorithm design are
mostly developed separately.

In multiple-antenna systems with nT transmit and nR receive antennas, data is sent simul-
taneously from the transmit antennas. The signal received at each antenna is therefore a
superposition of the nT transmitted signals decomposed by multiple fading. Figure 5.10
shows a MIMO system with nT transmit and nR receive antennas. A MIMO channel is
represented by an nR x nT matrix whose element hij (i = 1, ..., nR and j = 1, ..., nT ) repre-
sents the diffuse component of the channel between the jth transmit antenna and the ith
receive antenna.
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Figure 5.10: Schematic of a MIMO system with nT transmit and nR receive antennas

5.3.2 Geometrical Channel Model

The geometrical street model for a mobile-to-mobile MIMO channel is shown in Fig. 5.11.
The transmitter and the receiver are set with two omnidirectional antennas, i.e., the design
of a 2 x 2 MIMO system. The employed antennas for this configuration are, e.g., antenna
arrays or multiple dipole antennas. For a reason of simplification, it is assumed that
there is no line-of-sight between the transmitter and the receiver and only the frequency
nonselective channel is considered.

The geometrical street model for a MIMO channel shown in Fig. 5.11 is an extension of
the SISO street model in Fig. 2.1 with a space between two antennas at each mobile. The
antennas at the transmitter (receiver) are represented by A

(1)
T (A

(1)
R ) and A

(2)
T (A

(2)
R ). The

symbols δT and δR denote the antenna spacings at the transmitter and the receiver, respec-
tively. The angles of spreading ∆α and ∆θ are still random variables. The scatterers are
assumed to be uniformly distributed in a cluster. Furthermore, the transmitter (receiver)
are on the move in the direction denoted by the angle of motion αv (θv) with the speed vT
(vR).
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Figure 5.11: Geometrical street model for a 2 x 2 MIMO system

5.3.3 Stochastic Analytical Model

Since a 2 x 2 MIMO system is considered, the stochastic channel matrix of the components
hij(t) (i, j = 1, 2) of the link from A

(j)
T to A

(i)
R is represented by

H(t) =

(

h11(t) h12(t)
h21(t) h22(t)

)

. (5.18)

An important property of the MIMO channel that effectively determines the channel ca-
pacity is the correlation between the channel coefficients. It is normal to assume that
the fading between a pair of transmit and receive antennas are independent and uniformly
distributed random variables, when multiple antenna systems are taken into account. How-
ever, the fading in propagation environments is actually dependent because of the local
scattering or too small antenna spacing [33]. In contrast, it is often necessary to use a small
antenna element spacing to fit multiple antennas on a portable device, which introduces
mutual coupling of the antenna elements that affects the achievable capacity of the system.

For the derivation of the analytical model, the space-time cross correlation function (CCF)
between the components h11(t) and h22(t) is needed and given by

ρ(δT , δR, τ) = E
{

hij(t)h
∗

ij(t+ τ)
}

, (5.19)
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where (·)∗ is referred to as the complex conjugation. The space-time CCF can also be
expressed as a product of the correlation function between two antennas spacing concerning
the transmit side ρT (δT , τ) and the correlation function with respect to the receive side
ρR(δR, τ), i.e.:

ρ(δT , δR, τ) = ρT (δT , τ) · ρR(δR, τ), (5.20)

where

ρT (δT , τ) =

∆αmax
∫

0

e
−j2π

[(

δT
λ

)

sin(α0−∆α)+fT (∆α)τ
]

p∆α(∆α)d∆α (5.21)

and

ρR(δR, τ) =

∆θmax
∫

0

e
−j2π

[(

δR
λ

)

sin(θ0+∆θ)+fR(∆θ)τ
]

p∆θ(∆θ)d∆θ. (5.22)

As the quantities δT and δR define the distance between two antenna elements at the
transmitter and the receiver, the spatial separation can be normalized by the wavelength λ
to δT/λ and δR/λ. The probability density function of ∆α and ∆θ are defined by (3.6) and
(3.7), respectively. The quantity fT (∆α) (fR(∆θ)) denotes the Doppler frequency at the
transmitter (receiver) and is given by (3.24). Hence, (5.21) and (5.22) will be evaluated
numerically in the next subsection.

5.3.4 Numerical Results

The correlation function of the transmitter (receiver) is considered as a function of the
normalized antenna spacing δT/λ (δR/λ), the delay τ , the initial angle of departure α0
(θ0), and the angle of spreading ∆α (∆θ). Figure 5.12 and 5.13 shows the results of the
correlation at the transmitter and the receiver for ∆αmax = ∆θmax = 71.7o with α0 = 45o

and θ0 = 26.6o in comparison to ∆αmax = ∆θmax = 18.4o. The mobiles are in the direction
of motions αv = θv = 120o, i.e., they are moving apart with vT = vR = 50km/h.

As it can be seen from Fig. 5.12 and 5.13, when ∆α or l and ∆θ are small, the transmit
correlation and the receive correlation are high as compared to the large ∆α or l and ∆θ,
where the correlations are smaller.
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(a)

(b)

Figure 5.12: The transmit correlation function ρT (δT , τ) of the 2x2 mobile-to-mobile MIMO
channel model for (a) ∆αmax = 71.7o(l = 15) and (b) ∆αmax = 18.4o(l = 5)
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(a)

(b)

Figure 5.13: The receive correlation function ρR(δR, τ) of the 2x2 mobile-to-mobile MIMO chan-
nel model for (a) ∆αmax = 71.7o(l = 15) and (b) ∆θmax = 18.4o(l = 5)
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Furthermore, the direction of motions of the transmitter αv and the receiver θv is also taken
into consideration. Figure 5.14 and 5.15 illustrate the transmit and receive correlation
function due to different αv and θv, respectively. This indicates that the correlation function
is varied, when the transmitter and the receiver move to each other, apart, or in the same
direction. Figure 5.14 and 5.15 show that the transmit and receive correlation function
totally depend on the θv and αv, respectively.
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(a)

(b)

(c)

Figure 5.14: The transmit correlation function ρT (δT , τ) of the 2x2 mobile-to-mobile MIMO
channel model for (a) αv = θv = 50o, (b) αv = 60o, θv = 120o, and (c) αv = θv = 120o
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(a)

(b)

Figure 5.15: The receive correlation function ρR(δR, τ) of the 2x2 mobile-to-mobile MIMO chan-
nel model for (a) αv = θv = 50o and (b) αv = θv = 120o
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Chapter 6

Discussions

The focus of this thesis was to model, analyze, and simulate the mobile-to-mobile MIMO
channels. In this chapter, trends are presented and relationships between different param-
eters and the statistical properties of the channel among the results are given below.

Various relationships between the width from mobiles to the roadside h and the distance D
between mobiles were evaluated in Chapter 3. It turned out that for the maximum length
of a cluster, i.e., l = D the most probably angular spread ∆θ is in a very small range
for small relations h/D and it increases as h/D is greater. Furthermore, the smaller a
relationship between h/D, the greater the normalized PSD is, and the longer the absolute
value of the ACF stays closer to one. For smaller values of h/D, the LCR is decreased,
i.e., less levels are crossed, in contrast, the ADF is greatly increased. Moreover, different
positions of a cluster (referred to the transmitter) has been investigated. As a result, the
shorter and closer the cluster to the transmitter, the more likely a smaller the angular
spread ∆θ at the receiver is.

Moreover, the directions of motions of the mobiles influence the Doppler PSD, but no
analytical solution has been computed from the PDF of the angular spread p∆θ(∆θ) due
to the difficulty of the transformation of random variables. Therefore, the ACF was not
calculated by the inverse Fourier transformation of the Doppler PSD. The followed alterna-
tive approach by exploiting the statistical expected value of the complex Gaussian random
process led to a term of the ACF. It indicates that the more differing the direction of
movement of the mobiles from each other, the steeper the ACF declines.

In Chapter 4, the simulation models were introduced. The analytical and simulation results
of the PDF of the angular spread and the Doppler PSD were fit very well. In contrast,
the analytical and simulation results of the ACF were not exactly identical. Neither the
simulation results of the LCR nor the ADF were fit perfectly with the analytical results.
Therefore, the deeper study of the LCR and the ADF of the simulation model for the
mobile-to-mobile street model is needed in future work.



CHAPTER 6: Discussions

In Chapter 5, the performance of mobile-to-mobile MIMO street model was studied. It has
been shown that the smaller ∆α and ∆θ, the higher the transmit and receive correlation
is. Furthermore, the transmit (receive) correlation depends strongly on the δT (δR) and τT
(τR), which depends on the direction of motion αv (θv). Depending on this direction, cases
could be studied where only a well defined spatial separation causes a slowly decreasing
CCF along its delay. According to the direction of motion, different antenna configurations
are optimal.
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Chapter 7

Conclusions

In this thesis, the performance of mobile-to-mobile MIMO channel was studied, which
can be extended to the research on mobile Ad-hoc networks and intelligent transportation
systems. A knowledge of the multipath fading channel characteristics is essential for the
design of mobile-to-mobile MIMO communication systems. The development procedure
of the geometrical street model was followed from the principle of deterministic channel
modeling for the analytical and simulation models. The starting point of the research pro-
cedure was the geometrical street model for the application of SISO systems. Thus, the
statistical properties, such as the PDF of the AOA, the Doppler PSD, the ACF, the LCR,
and the ADF have been investigated. The obtained theoretical results have been confirmed
by MATLAB simulations. The Lp-norm method has been applied for computation of the
model parameters. Therefore, the performance of the simulation model has been evaluated
by comparing its statistical properties with those of the analytical model. The geometrical
street model has been extended for environments with several clusters of scatterers with
respect to frequency-selectivity and finally to a MIMO street model. It has been shown
that the ACF, the FCF, and the CCF can be computed independently from each other.

Extensions to the work presented in this thesis could be the study of channel capacity
of the mobile-to-mobile MIMO street model and the implementation of different PDF’s
of the angular spreading ∆α at the transmitter, such as Laplacian, Gaussian, and cosine.
Moreover, the clusters could be extended in such a way that the propagated waves are
affected differently by each scatterer in a cluster. Finally, the transmission could undergo
multiple bounces going from the transmitter to the receiver.
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