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1 Introduction

In the area of sound compression there exist several different codecs. In general there are two cate-

gories of sound codecs. There are so called “lossless sound codecs” that compress sound like data that

must not be altered. Some examples are Flac[?], WavPack, Shorten, Monkey’s Audio, Apple Lossless,

Ogg Squish, Bonk, La, OptimFROG, LPAC, RKAU and many more. The typical compression ratio is

0.75 .. 0.50, relative to 1.0. The other general category of sound codecs is “lossy codecs”, which will

alter the sound. Some examples here are: Ogg Vorbis, mp3, mp4, WMA, QuickTime and AAC. The

compression ratio of these sound codecs depends on the quality setting applied, but is typically 0.10

.. 0.04 relative to 1.0.

When working with audio compression, you should keep in mind the typical audio bit-rate, which

is defined like this:

typical audio bit rate = 44100 Hz ∗ 16 bit ∗ 2 channels = 1.411 MBit/sec

1.4 Megabit per second is a high data rate with regard to audio, and there is a desire to reduce this

rate when transferring audio to the end users. This will allow the users to put more audio on their

music players and computers, than otherwise possible. This document is going to describe how the

codec Ogg Vorbis achieves that among other things. Some other topics that will be discussed are

modulo arithmetics, FIR filters, white noise generation, how one can work through source code and

finally an evaluation of the Ogg Vorbis sound codec.
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2 Ogg Vorbis Compression Techniques

2.1 Bit-packing

When one is dealing with binary compression, every bit of storage is used. It is important to choose

appropriate data types for storing information. The data types used for storage of data, should not be

too small, neither should they be too large, so that many bits are left unused. Bit-packing means that

unused bits are removed from the data. This is not where most compression is gained. But consider

the following example where a data type consists of 3 bits. If one does not do bit-packing, maybe one

is doing byte-packing. Then instead of 3 bits, 8 bits are used. If this data type is very much used, then

the compression gain of using bit-packing over byte-packing is(8−3)
8 = 5

8 = 62%. Bit-packing is the

finishing touch. It also forces one to consider carefully the size of all data types. A badly designed

codec will have all its parameters 32-bits in size. This is bad because it is very seldom the case that

one needs all data types 32-bits in width. On the other hand, such optimizations are often suitable if

one wants to increase CPU performance, but not compression performance.

To handle bit packing I have designed my own tool. See the attached CD-ROM. A bit packer will

resemble buffer fragments into a single continuous data stream.

end

buf 1

buf 2

buf 3

buf 4

buf 5

MEMORY
logical stream

Figure 2.1: Data fragments

The original bit packer of Ogg Vorbis, was very cleverly designed, and it was hard to beat it, but

not impossible. To do the bit de-packing fast, one keeps track of the bit level that is always less than

11



2.1. BIT-PACKING CHAPTER 2. OGG VORBIS COMPRESSION TECHNIQUES

8 bits. The bit level is the offset where a read starts. Bits including and following after the bit level

offset belongs to the next read. When one reads out bits, the bit level is incremented. The stream is

advanced by the bit level divided by 8 bits, which results in byte(s) and the remainder is kept in the

bit level variable.

bits

bit level + bits

byte0

byte1

byte2

byte3

byteN

oggpack_read_m(buf,bits)

bits returned by function

bit level

Figure 2.2: Illustration of bit-depacking routine

When one wants to read out data it proves very smart to compute the end of the read in bits. This is

achieved by adding the bit level and the number of bits to read. Knowing the end of the read, it is very

easy to find out how many bytes are needed for a read. The problem is that the bits that make up a read,

can be spread across multiple bytes. Reading a fixed number of bytes, for example 5, will not yield

the best performance. The best performance is obtained when one reads as little extra as possible. For

example if one wants to read one bit, then it is very wasteful and slow to read 32-bits from memory.

By adding some simple “if “ statements to the code, performance can easily be improved for short

reads. Below is shown the original code, which appears fairly good.

12



CHAPTER 2. OGG VORBIS COMPRESSION TECHNIQUES 2.1. BIT-PACKING

1 ...
2
3 ret=b->headptr[0]>>b->headbit;
4 if(bits>8){
5 ret|=b->headptr[1]<<(8-b->headbit);
6 if(bits>16){
7 ret|=b->headptr[2]<<(16-b->headbit);
8 if(bits>24){
9 ret|=b->headptr[3]<<(24-b->headbit);

10 if(bits>32 && b->headbit){
11 ret|=b->headptr[4]<<(32-b->headbit);
12 }
13 }
14 }
15 }
16
17 ...
18

Figure 2.3: Core part of old bit de-packer

Here is my new code, after some careful rewrites and considerations.

1 ...
2
3 if (bits >= 2) {
4 if ((bits >= 4) && shift) {
5 temp &= ((htole32(((u_int32_p_t *)ptr)->data) >> shift)|
6 (ptr[4] << (32-shift)));
7 } else {
8 temp &= (htole32(((u_int32_p_t *)ptr)->data) >> shift);
9 }

10 } else {
11 temp &= (htole16(((u_int16_p_t *)ptr)->data) >> shift);
12 }
13
14 ...
15

Figure 2.4: Core part of new bit de-packer

Here is the result:

13
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Figure 2.5: Comparison of bit de-packers

2.2 Huffman coding

One lossless compression technique that is used by Ogg Vorbis, is so called Huffman coding. What

this implies, I will explain shortly. Audio is a continuous signal that is often limited to a certain range.

Let’s consider a 16-bit sound card. Each sample is represented by a 16-bit signed value. When one

is playing back sound, very often only a certain part of the 16-bit dynamic range will be used. If the

sound is very quiet, then the range <-1024, +1024> may be sufficient to represent the signal. Then

only 11 bits are required per sample. If one has got 1024 samples, perhaps there are only 256 different

sample values used. The PDF, probability distribution function, is a tool to find out what sample

values are mostly used, and which are not used so much.

hits

X

Figure 2.6: Example of a probability distribution function, PDF

Huffman’s idea is that sample values that appear more often than other sample values, should be
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given shorter codes, and the sample values that appear less often, longer codes.

    1      | 0xxxxxx |   1    |

bit−length | code    | value  |
−−−−−−−−−−−+−−−−−−−−−+−−−−−−−−+

           |         | real   |

    2      | 10xxxxx |   2    |
    3      | 110xxxx |   0    |
    3      | 111xxxx |   3    |

Figure 2.7: Huffman decoding table

NOTE: The least significant bit is leftmost.

By doing this one achieves that the data takes up less space. Consider for example that 80% of the

data is ’1’, 10% are ’2’, 5% are ’0’ and 5% are ’3’. How efficient is Huffman coding over no coding?

Huffman coding in the example above, requires(0.80 ∗ 1) + (0.10 ∗ 2) + (0.05 ∗ 3) + (0.05 ∗ 3) =
1.3 bits per unit Else2.0 bits per unit are required. How much data can be saved:(2.0−1.3)/2.0 =
35%

1

0 3

10

0

0

2

1

1

?

Figure 2.8: Huffman decision tree

NOTE: The decoded values are at the bottom of the tree and the least significant bit is at the top.

The Ogg Vorbis codec supports multiple “Huffman decision trees”. Each such tree is called a

“book” in Ogg Vorbis. These books are transmitted at the beginning of the “audio stream”, in the

header. Given a book, Ogg Vorbis provides two functions to decode the bit-packed-data using a

Huffman decision tree. These are “decode_packed_entry_number()” and “vorbis_book_decode()”.
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2.3 Sound decoding

Inverse Modified Discrete
Window function

A
ud

io

Ogg Vorbis
File

Packet decoder

Huffman decoding
Bit−depacking

E
xponentiate

− Set a residue from header

Operations:

− Multiply by a residue from the header
− Add by a residue from header

"Residue" buffer

"Floor" generator

Render line / Render point
Operations:

Header

M
ultiplier

D
ecoder

"Noise" generator

Cosine Transform

Figure 2.9: Schematic view of the Ogg Vorbis decoding process
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Window size = 128 samples

128 samples in 64 values out

mdct_forward

128 samples out64 values in

mdct_backward

Figure 2.10: The [Inverse] Modified Discrete Cosine Transform

128 samples

1/4
overlap

Amplitude A

Amplitude B

A

B

128 samples

Figure 2.11: Windowing

When Ogg Vorbis decodes sound, two parts are needed. These are called “residue” and “floor” curves.

The “residue” is the fine detail of the audio cosine-spectrum that is left after that the “floor” has been

divided out. The “floor” consists of a series of points. Between each point a line is drawn, using

a function called “render_line()”. The “floor” curve is stored in deciBel, dB, and is exponentiated

before it is multiplied by the “residue”. Then the result is passed on to an “Inverse Discrete Cosine

Transform” and a “Window function”, before it ends up in the speaker. The Ogg Vorbis synthesizer

process is not very complicated. The “residue” buffer is composed of multiple “residues” that are

transmitted in the Ogg Vorbis header. Composition means using addition and multiplication of the

“residues” available. To decode a so called “audio frame”, the decoder is passed a number that selects

17
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“residue” and a number that selects whether the “residue” should replace, add, or multiply the current

“residue” buffer. Also a set of points are transferred to make up the “floor” curve. All values are

transferred using Huffman coding.

Here is another figure that shows how the decoding process is carried out, and in which order:

render_point

ov_read

vorbis_synthesis

mapping0_inverse

Fetch and process
packet

floor1_inverse2

render_line

floor1_inverse1 residue_inverse

start decoding

1 2 3

Figure 2.12: Ogg Vorbis decoding overview
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2.4 Sound encoding

Microphone

Window function

Ogg Vorbis
File

Header

Packet encoder

Bit−packing
Huffman encoding

E
ncoder

Cosine Transform
Modified Discrete

Fast Fourier Transform

Floor curve fitting

Encoding

Noise and tone masking

Figure 2.13: Schematic view of the Ogg Vorbis encoding process

When Ogg Vorbis encodes sound, the sound is first passed through a window function. Then the sound

is analyzed in two ways. First using a Fast Fourier Transform. This transform reveals information

about which sine-wave-frequencies that are strong, and is used to perform so called “tone masking”.

Second a modified discrete cosine transform is performed. This transform reveals information about

the noise in the signal, and is used for so called “noise masking”. The results from the transforms

are combined to generate the “residue” and “floor” curves. Then all data is packed using bit-packing

and Huffman encoding. In the end an Ogg Vorbis file is produced. This is the encoding process in

a nutshell. There are a lot of more details and complicated formulas used in the encoding process,

which I will not go into any details.
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3 My own research

In hope that it will be useful in the continuation of this project, I will here mention software that I

have been using and some research I have done on modulo arithmetics, white noise generation and

FIR filters.

3.1 Source code analysis

The Ogg Vorbis decoder consists of 80’000 lines of code and 34 files. To analyse this I concatenated

all the files into a single file, and started unwinding the program flow. Hence not all functions are

called directly, but indirectly, through function pointers, I inserted breakpoints in the sourcecode to

stop the program when it was running, so that I could see the stack backtrace. In that way it was easy

to see how the decoder worked. The operating system which I have been using, is “FreeBSD 5.2”, see

http://www.freebsd.org . Here is a list of software which I have used during this project:

• sox, see /usr/ports/audio/sox

This is a sound processing tool, consisting of many different utilities. The most frequently used

utility was “play”, which I used to play back raw 16-bit sound. A typical command:

“( fetch -q -o - http://159.33.6.141:80/cbcr1-toronto.ogg | ./a.out | play -c 1 -s w -r 22050 -t raw

-f s /dev/fd/0 > /dev/null )”

This command will retrieve the web-radio called “cbcr1-toronto.ogg”, then pass it to my mod-

ified Ogg Vorbis decoder, “a.out”, which will output raw 16-bit samples, which are passed to

the play command.

• octave, see /usr/ports/math/octave

This is a math tool comparable to Matlab. I used it to make and plot graphs to see what was

going on inside the decoder. A typical command was:

“( fetch -q -o - http://159.33.6.141:80/cbcr1-toronto.ogg | ./a.out | play -c 1 -s w -r 22050 -t raw

-f s /dev/fd/0 > /dev/null ) |& octave”

The last “|&” just redirects the “standard error” messages to the octave program. In my software

I have a function that will print out matlab commands, to “standard error”, called “dump2matlab()”.

This function will print Matlab commands like:

X=[1,2,3];

Y=[1,2,3];

plot(X,Y,”...”);

21
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Then the graph shows up immediately on the screen. By pressing “CTRL+z” I can pause the

program. Pressing “%+ENTER” will resume the program.

• cc

This is the system built in C-compiler. Compiling the Ogg Vorbis Tremor decoder was simple:

cc -o a.out -lm -g -Wall *".c"

• gdb

This is the system built in GNU C-debugger. This program I used to debug the Ogg Vorbis

Tremor decoder.

• svn, see /usr/ports/devel/subversion

This is a tool similar to CVS, that I used to retrieve the latest version of the Ogg Vorbis files.

• xemacs, see /usr/ports/editors/xemacs

This is the main editor I used for writing code.

• xfig, see /usr/ports/graphics/xfig

All graphics was drawn using this program.

• lyx, see /usr/ports/print/lyx

The main document editor used.

3.2 Modulo arithmetics

To simplify calculations modulo arithmetics can sometimes be used. Modulo arithmetics can be used

when the input and the output of a function is an integer. That means that the result does not contain

any fractions, although decimals are allowed. It is important to note the difference between a fraction

and a decimal. The decimals 0.333 equals the fraction333
1000 and not13 . Decimals are specific to the

number system used. Decimals always result in a fraction with a divisor that is a power of the number

system used. Sometimes it is not possible to convert decimals from one number system to another.

For example 0.1 in the 3-base will equal 0.333333... in the 10-base, which is a number with infinite

decimals. Therefore, when something is not divisible, and one does not want to introduce a rounding

error, fractions must be kept as fractions, and not written as decimals, unless it is possible to do so.

Here is a definition of the 4 basic modulo arithmetic operators:

3.2.1 Modulo addition

(a + b) mod c = ((amod c) + (b mod c))mod c, a ε integer, b ε integer, c ε integer

22
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3.2.2 Modulo subtraction

(a − b) mod c = ((amod c) − (b mod c))mod c, a ε integer, b ε integer, c ε integer

3.2.3 Modulo multiplication

(a ∗ b) mod c = ((amod c) ∗ (b mod c))mod c, aεinteger, bεinteger, cε integer

3.2.4 Modulo division

(a/b) mod c = ((amod c) ∗ ((1/b) mod c))mod c, a ε integer, b ε integer, c ε integer

How do you compute the multiplicative inverse modulo an integer? Unlike the 3 previous operators,

the answer is not very self explaining. The multiplicative inverse, if it exists, will result in an infinitely

large number. For example:

(−3/9) mod 1000000 = 333333

Because

(333333 ∗ 9/3 ∗ 999999) mod 1000000 = 1.0

Here(−1) mod 1000000 = 999999. In general I will write:

d = (1/x) mod (an)

As ”n” approaches infinity,”d” will also approach infinity. If”a” is a prime number, then”d”
is called a “p-adic number”. If”a” is not a prime number, then”d” is called a “m-adic number”.

Infinitely large decimal numbers, like shown above, are well known under the name 10-adic numbers.

But it is more common to use p-adic numbers, hence these will form a so called “field”. To compute

the value”d”, there exists an old and well known algorithm called Euklid’s extended algorithm. I will

not go into any details on that algorithm here. I will rather present another and newer algorithm to

find ”d” when one is working 2-adically, that means when”a” = 2. First let’s look at the following

formula:

23
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1
1 + x

=
+ inf∑
n=0

(−x)n = 1 − x + x2 − x3 + x4 − x5 · · · , x ε < −1, 1 >

Figure 3.1: Maclaurin series for division

The figure above shows a so called Maclaurin series for division. The”x” has been limited to

the range< −1, 1 >, so thatxn gets smaller and smaller as”n” increases. In the end the series

will converge, becausexn will reach near zero and not affect the result noticeably. But when one

is working 2-adically, the series will also converge when”x” is outside the range< −1, 1 >. This

happens when”x” is an even number. The reason is that when”n” increasesxn will have more and

more trailing zeros. That means that the bottom of”d”will converge to a constant value. This fact is

well known in higher mathematics.

Here I will present a new formula of my own, that I have developed, and which will compute the

Maclaurin’s series for division. Then I will prove that the formula is right. Pseudocode follows:

24



CHAPTER 3. MY OWN RESEARCH 3.2. MODULO ARITHMETICS

     * Maclaurin’s series for (1/(1−x)):
−         : binary subtraction
*         : binary multiplication
/         : binary division

u_int32_t : unsigned 32−bit integer
u_int16_t : unsigned 16−bit integer
u_int8_t  : unsigned 8−bit integer
^         : binary XOR
&         : binary AND
|         : binary OR
~         : binary NOT

!         : logical NOT
&&        : logical AND
||        : logical OR

static u_int32_t
f(u_int32_t r, u_int32_t x)
{
    u_int32_t mask = 1;

    /*
     * This function computes the

     * =================================
     *
     * f(r,x) =
     *
     *   r * (x**0 + x**1 + x**2 + x**3 + x**4 ... ) =
     *
     *   r * (1 + x**1) * (1 + x**2) * (1 + x**4) * 
     *       (1 + x**8) * (1 + x**16) ...
     */
    while(x)
    {
        if(r & mask)
        {
            r += x;
        }
        x <<= 1; /* multiply by 2 */
        mask <<= 1; /* multiply by 2 */
    }
    return r;
}

/*
 * The function "mult_inverse_32(,)" computes a 
 * multiplicative fraction:
 * ================================================
 *
 * mult_inverse_32(rem,x) = ((rem / x) mod (2**32))
 *
 * NOTE: the principle can probably be extended to 
 * compute "(rem / x) mod (y**n)"
 *
 * NOTE: "x" must be odd
 *
 * NOTE: (−x) +1 = (~x) +2
 */
#define mult_inverse_32(r,x) f(r,(−(x))+1)

+         : binary addition

Figure 3.2: New formula for 2-adic division

The following proof was established with the help of professor Donald E. Knuth, at Stanford Uni-

versity in the USA. Letf(r, x) be the function that the pseudo code above defines. Thenf(r, x) has
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got the following properties which might not all be directly obvious:

1) (f(a, x) + f(b, x) = f(a + b, x)) mod 232, x ε even

2) (f(r, x) = r ∗ f(1, x)) mod 232, x ε even

3)
(

f(2r + 1, x) = 1 + 2f(r +
x

2
, x)

)
mod 232, x ε even

Combining 1+2+3 gives the recurrence equation:

(
f(1, x) = xf(1, x) + 1 = 1 + x1 + x2 + x3 · · ·

)
mod 232, x ε even

In the 2-adic system there only exists an inverse for odd numbers. But that is no problem, hence

all numbers can be written like an odd number multiplied by2n. Then the 2-base exponential value is

treated separately when performing modulo arithmetics. Dividing by2n is very trivial and will only

yield a single exponent subtraction:2
n

2m = 2n−m. “mult_inverse_32()” will always return an odd

number or zero, so there is no need to divide down the answer after division.

Below is a definition of my floating point number.

, ’remainder’ is always odd

Implementation:

struct fp_num {
  u_int32_t remainder;
  int8_t    exponent;  /* 2**exponent */
};

typedef struct fp_num fp_num_t;

remainder * 2
n

My floating point number:

Figure 3.3: My floating point number

I will not go into any details on how to split up a multiplicative fraction into its numerator and

denominator. The most interesting consequence of doing the computations modulo2n is that one can

easily compute large factorials without having to use approximations and large integers. For example
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like this:

f(i, π(i)) =
qi∏

j=1

aij0! ∗ aij1!
(aij0 + aij1 + 1)!

Figure 3.4: K2 score function

Modulo arithmetics has the advantage that factors in the numerator cancel factors in the denomi-

nator exactly, when working with integer values. The disadvantage is so far that one needs tables to

subtract out fractions. All arithmetics are always modulo something, only that it is not so common to

think about it.

3.3 White noise generator

The following pseudocode makes up a pseudo-random generator, with uniform distribution, that is

used to make perceptually white noise. The precision is 24-bits and the period is0xffff1c samples.

What the code below computes, is simply the remainder from division modulo the special prime num-

ber:

get white noise(n) = (2−n) mod PRIME
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    temp ^= 0x800000; /* unsigned to signed conversion */

static int32_t
get_white_noise_1(void)
{
    u_int32_t temp;
    static u_int32_t white_noise_rem = 1;

    if (white_noise_rem & 1) {
        white_noise_rem += PRIME;
    }
    white_noise_rem /= 2;
    temp = white_noise_rem;

    if(temp & 0x800000) {

    }
    return temp;
}

       temp |= (−0x800000); /* sign extension */

#define PRIME 0xffff1d

Figure 3.5: My white noise generator

3.4 FIR filter design

The four basic types of sine-wave filters are band-pass, band-stop, low-pass and high-pass:
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Figure 3.6: The four basic sine-wave filter types

FIR filters are realized like a correlation function. One simply computes how much the filter coeffi-

cients, here”a(x)”, correlates with the signal. The result is the output sample. Mathematically, a FIR

filter is written like: g(t) =
∑+ inf

n=− inf f(t − n) ∗ a(n), where”g(t)” is the output function,”a(n)”
are the filter coefficients, and”f(t − n)” is the input function.
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Figure 3.7: Schematic FIR filter realization (6 tap, even FIR filter)

There are four types of FIR filters. There are even and odd tap numbered filters. There are positive

and negative symmetry filters. Combining the two types gives a total of four different types. All the

four types of FIR filters have the following advantages over other filter types, like IIR filters: [1]

• FIR filters have a linear phase response. That means that filtered sine-waves are not phase

distorted.

• FIR filters are realized non-recursively, and are always stable.

The only disadvantage about FIR filters, is that they need some CPU power, and many coefficients,

also called taps, to get sharp sine-frequency cutoff edges. The following table shows how one can

generate filter coefficients for the four basic sine-wave filter types:

ideal impulse response

filter type a(n), n <> 0 a(0)

low pass amp ∗ sin(wc∗n)
π∗n amp ∗ 2.0 ∗ fc

high pass amp ∗ − sin(wc∗n)
π∗n amp ∗ (1.0 − 2.0 ∗ fc)

band pass amp ∗ ( sin(w2∗n)
π∗n − sin(w1∗n)

π∗n ) amp ∗ 2.0 ∗ (f2 − f1)

band stop amp ∗ ( sin(w1∗n)
π∗n − sin(w2∗n)

π∗n ) amp ∗ (1.0 − (2.0 ∗ (f2 − f1)))

wc = 4πfc

WINDOW_SIZE , fcis frequency relative towindow size

The following pseudocode implements the above table:
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#define M_PI 3.14159

high_pass(double freq, double amp, double *factor)
{
    /* NOTE: freq must be negative */

    factor[WINDOW_SIZE/2] += 1.0*amp;

    low_pass(−freq, amp, factor); /* high−pass */

    return;
}

static void
band_stop(double freq_a, double freq_b, double amp, double *factor)
{
    factor[WINDOW_SIZE/2] += 1.0*amp;

    low_pass(−freq_b, amp, factor); /* lowpass */
    low_pass(freq_a, amp, factor); /* highpass */

    return;
}

static void
band_pass(double freq_a, double freq_b, double amp, double *factor)
{
    low_pass(freq_b, amp, factor); /* lowpass */
    low_pass(−freq_a, amp, factor); /* highpass */

    return;
}

static void
low_pass(double freq, double amp, double *factor)
{
    int32_t x, z;

    freq −= ((int32_t)(freq / D(WINDOW_SIZE/4))) * (WINDOW_SIZE/4);

    z = (D(D(WINDOW_SIZE/2) / (2.0*freq)) * D((int32_t)(2.0*freq)));

    if(z < 0) {
       z = −z;
    }

    if(z > (WINDOW_SIZE/2)) {
       z = (WINDOW_SIZE/2);
    }

    factor[(WINDOW_SIZE/2)] += (2.0 * amp * freq) / D(WINDOW_SIZE/2);

    freq *= (2.0*M_PI) / D(WINDOW_SIZE/2);

    for(x = −z+1; x < z; x++)
    {
        if(x != 0) {
          factor[(x + (WINDOW_SIZE/2))] += (amp * sin(freq * D(x))) / (M_PI*D(x));
        }
    }
    return;
}

#define WINDOW_SIZE 256
#define D(x) ((double)(x))

static void

Figure 3.8: FIR filter coefficient generator

In the examples above, the vector pointed to by “factor” has “WINDOW_SIZE” elements. The first

check performed by the low-pass filter, is to ensure that the sine-wave frequency is within plus/minus
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a quarter of the “WINDOW_SIZE” constant. If the sine-wave frequency is outside this range, then

one simply gets an alias frequency, due to the discretization of the sine-wave that is used in the filter.

The next thing the lowpass filter function does, is to compute the number of coefficients used by the

filter, into the variable”z”. This is very important, and is illustrated in the following figure:

n+
active filter range

a(n)

Figure 3.9: Zero-truncating of filter coefficients after last zero crossing point at the ends

If one does not zero-truncate the end of the impulse response, then one will get additional noise into

the signal, hence one is demultiplexing using whole sine waves, and not sine-waves cut into pieces.

By assuming that all other sound components are independent or orthogonal to a sine-wave at a given

frequency, one can demultiplex a sine-wave by correlating with a sine-wave. This might not seem

obvious at first, but that is the way it is.
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4 Evaluation of perceived quality
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Figure 4.1: Equal loudness curves
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Perceived quality is about the subjective opinion of a human. In the 1930s Fletcher and Munson

performed an experiment at Bell labs. The experiment was about letting people judge when two sine

waves with different frequencies had the same amplitude. The result is presented in the graph above.

Based on the results a new intensity scale was made, called phons, which is intensity relative to a

1000Hz sine wave in deciBel. This just shows that one has to keep in mind that the hearing system

will apply an impulse response on the sound before it reaches the brain. Knowing which frequencies

become amplified and attenuated might help the sound encoder to make the right decision whether

to keep a sine-wave component or not. In contrast to subjectiveness, objectiveness is about statistics,

how well the synthesized sound matches the original sound, in this case.

4.1 Seeing with sound

There is a relationship between sound and images in our brain. Hearing can cause seeing. There is

a web-site[3] on the internet where blind people can download software that will make sound from

images. When blind people listen to the sound, they can train their brain into actually producing

real images. What this software basically does is that it transforms each pixel column in the picture

into representing a piece of sound. The brightness of a pixel directly affects the loudness of the

corresponding sine-wave-frequency. Usually the image is scanned from left to right, and pixels at

the top have higher frequencies than pixels at the bottom. This transform is very simple, but when

implemented, it will require some CPU.
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Figure 4.2: Image to sound mapping

Using the Fast Fourier Transform, also called FFT, to directly transform the image into sound, is

possible. But in my opinion it will sound better if white noise is passed through a so-called FIR filter,

with for example 128 taps. This will require something like a 40MHz computer for a 128x256 sized

image.

Image data

generator

A
udio

FIR filter

White noise

Figure 4.3: Realization of image to sound mapping

See the attached CD-rom and the directory called “image_sound” for sound samples. All of the

samples were compressed using Ogg Vorbis, at a bit-rate of 24kbit per second. Then the result was

compared with the original files. Except for one file the result was perceptually the same. This was a

file where an image with lots of fine details was transformed into sound. Ogg Vorbis was very clearly
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hiding details in the image, when comparing the sound with the original wave file. The storage of a

128x256 black/white image is128 ∗ 256 bits = 32768 bits = 4096 bytes. If the time used per image

is 2 seconds then approximately2048 bytes are transmitted per second. This is below3000 bytes per

second which equals24kbit/second. In theory Ogg Vorbis should be able to reproduce the images

without artifacts, but the problem is that probably Ogg Vorbis does not have a high fidelity white noise

generator to synthesize the noisy sound. This has to be investigated further.

4.2 Comfort noise

With the invention of digital sound, the noise levels were significantly reduced. Especially when

speaking on the telephone one can be fooled into thinking that there is no one at the other end, when

the sound level falls below a certain limit. One might not believe it, but in digital telephone systems,

white noise is mixed with the recorded sound from the microphone, in periods of silence. This is just

done to make the user comfortable, that the call is still active[4]. Ogg Vorbis does not have a comfort

noise generator, but maybe it should. If the sound contains noise, then it really does not matter if the

noise is matched accurately. As long as the sine-wave intensity is the same for all frequencies, the

noise would sound perceptually the same. On the other hand, Ogg Vorbis performs noise-masking in

the encoding process, but it uses its own encoder to generate noise, which might not be any good idea,

since noise when being poorly reproduces, may sound like something is “bubbling”.

4.3 “S” sounds

At low bit-rates, like 24kbit/s, I have noticed that Ogg Vorbis has problems with “S” sounds. An

“S” sound is the sound that appears when one tries to pronounce the “S” consonant. The problem is

that Ogg Vorbis does not have a white noise generator, and the encoder does not do this so well, at

24kbit/s, due to the low symbol rate. This is something that might be considered for the next version

of Ogg Vorbis, that “S”-sounds are masked and treated separately.

4.4 Ogg Vorbis at higher bit-rates

At bit-rates from 128kbit/s and above, Ogg Vorbis produces perceptually the same sound as if a wave

file was used. There are no artifacts with “S” sounds, like at lower bit-rates. I have compared Ogg

Vorbis with MP3, and the difference is noticeable. At 128kBit per second, one can clearly hear that

MP3 boosts the mid-sine-wave frequencies. Ogg Vorbis sounds more like high-fidelity, in other words,

quieter and clearer.
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5 Discussion

5.1 Introduction

I started this project with little or no knowledge of the sound codec Ogg Vorbis. I knew what it could

accomplish, but not how it worked. I have not been able to find many sources to base my knowledge

upon, and the time has mostly been spent studying and modifying the Ogg Vorbis source code.

Prior to the project I had some ideas about using modulo arithmetics in the codec, to get an in-

teger implementation, but that was easier said than done. Therefore I have a section about modulo

arithmetics. At present it has not been used, but I hope that it will be used in the continuation of the

project. Therefore I did not remove it.

Maybe picking this project was too difficult with regard to what we have learnt at school. I haven’t

taken any courses in sound compression, so it was not so easy to point at good and bad things about

Ogg Vorbis. Most helpful was knowledge of digital signal processing, that I have acquired from my

3-year telecommunication study at HiA. But again, what I have learnt at school, was not sufficient to

judge Ogg Vorbis properly. But that was not my personal goal either. Most important for me was to

acquire knowledge in something I consider very interesting and then try to improve it.

5.2 Compression techniques

Ogg Vorbis uses Huffman coding, bit-packing, windowing, and discrete cosine transform. These

are well-known and recognized compression techniques used by many applications like MP3, JPEG,

BZIP2 and PKZIP. Speaking about the “floor curves” and the “residue” that are multiplied together,

there is nothing wrong about it. The principle is completely invertible, meaning one can encode any

sound and get it losslessly decoded. This is not so difficult to see. Simply set the “residue” to all ones,

and store the sound using the “floor curve”. How good the principle is, I will not try to answer. This

is a time taking task, that will require looking at many sides of the principle, like how well it fits into

existing CPU’s, parallel execution, what kind of noise it introduces and so on. This might be subject

for a continuation of the project.

5.3 My own research

The principles behind my white noise generator and the FIR filters are well-known, and considered

to be good. My formula for modulo inverse, is not wrong, it is simple and it appears somewhat new,
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according to some mathematicians I have contacted per e-mail. How good the formula is, I will not

try to answer. Again, this is a time taking task and it might even be beside the point of this project.

5.4 Evaluation of perceived quality

Many people have applied listening tests, comparing the sound quality of the various sound codecs

available on the market today. Just search for “MP3 vs. OGG” at http://www.google.com . In general

the perceived quality by Ogg Vorbis is good. That is what the test results show. But when it comes

to which sound codec is better, there is some debate. Also there is a difference between live-audio

and offline-audio. Live audio will usually not have the same quality as offline audio, due to the way

compression is done. At least with Ogg Vorbis, offline audio will sound better.

5.5 Suggestions for continuation

• The Ogg Vorbis encoder needs to be explained and studied further.

• Is it possible to design a sound compression algorithm using pure modulo arithmetics? Maybe

one can use some of the ideas in Ogg Vorbis?

• Implement a “S” sound FIR filter in the Ogg Vorbis encoder, to attenuate “S” sounds.
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6 Conclusion

It has been an interesting project and I have learnt a great deal about the Ogg Vorbis codec. The sound

decoding process is very simple and straight forward, and has been fully explained. The sound encod-

ing process is more complicated and has not been fully explained. Ogg Vorbis has a sophisticated and

clever design which is hard to improve, and as one reads the source code, one learns more than one is

able to improve. The only problem I have been able to find, is that Ogg Vorbis does not handle “S”

sounds at low bit-rates very well. Probably this can be fixed by applying a FIR filter before the sound

is encoded. I am very satisfied with the results I have achieved.

Hans Petter Selasky, Grimstad, June 2006
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