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Abstract  
Satellites have for some years made it possible to transfer data over long distances, 
and from desolated locations. Due to their natural broadcast ability they have some 
major advantages compared to terrestrial links. This ability has made satellites a 
useful tool for military, science, multimedia and wireless communication. 
 
Compared to a few years ago, we are today able to make more accurate 
measurements, in different environments. Sensors have recent years become more 
intelligent, and can work independently without being controlled by humans or 
computers. Other improvements are their mobility, and ability to work wireless.  
 
In recent years there has been a lot of research addressed to combining satellite 
communication and wireless sensors in ad hoc networks. If these two wireless 
technologies can be incorporated in the same network, it would result in a lot of 
possibilities. Scenarios where desolated wireless sensors measures independently, and 
sends data through a satellite link, to a gathering center are now possible. ZigBee 
Alliance has developed a protocol stack architecture, specialized for small wireless 
sensors working in ad hoc structured networks. IEEE has developed a standard for the 
two lowest OSI-layers, IEEE 802.15.4, which the ZigBee layers work upon.   
 
This thesis will study and evaluate the performance of different TCP versions 
throughout heterogeneous wireless networks. Today is TCP NewReno the most 
common TCP protocol, but we will also consider other TCP versions, like TCP 
Westwood+, TCP Hybla and TCP Vegas. The most important aspect of this 
evaluation is the average throughput. To test the performance of the different TCP 
versions over the heterogeneous wireless links, we tested over a real satellite link, and 
a virtual wireless channel. We emulated transmission from a sensor node sending to a 
sink, through this channel. There are different ways to simulate this channel. We have 
looked at two models; Characteristic Model and the Two State Markov Model. The 
latter option is a model which uses four different parameters to define the channel. 
These parameters are bandwidth, delay, alpha and beta. Alpha and beta defines the 
transition probability between a good state (perfect transmission) and a bad state (no 
transmission). The first model, the Characteristic Model, uses IEEE 802.15.4 
parameters and a waypoint mobility model to calculate the probability of packet loss. 
We have extended the already existing ACE Emulator, to emulate an ad hoc network. 
For our testing we decided to use the Two State Markov Model. 
 
Based on the results we achieved, we can conclude that TCP Vegas performed best 
over the satellite link. We tested TCP NewReno, TCP Westwood+, TCP Hybla and 
TCP Vegas for this link. Unexpectedly performed TCP NewReno second best in this 
test. Over the virtual wireless channel performed TCP NewReno best. We tested TCP 
NewReno and TCP Westwood+ over this channel. Our overall conclusion is that TCP 
NewReno performs best in general throughout our heterogeneous wireless networks. 
We have to take into account the fact that we experienced some problems with both 
networks during testing, but the results give a strong indication of TCP NewRenos 
quality and range of use. 
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1 Introduction 
This chapter gives an overview and the layout of our thesis. The first section describes 
the background of the project. Section 1.2 describes our problem area, and shortly 
presenting the test beds and our tasks. In section 1.3 is the thesis definition presented. 
The last section, section 1.4, gives an overview of the report.  
  

1.1 Background 
The Transmission Control Protocol (TCP) [1] is used by popular internet traffic, as 
Internet browsing, file transfer and e-mail, and is therefore by far the most used 
Transport Layer protocol. TCP is an end to end protocol which delivers reliable data 
transfer. In other words, it sends information from one user to another without 
considering intermediate routers and, as long as a link exists between the two users, 
TCP guarantees that the information will arrive. To be able to guarantee reliable data 
transfer TCP uses, among other functions, the so called Congestion Control 
mechanism. This mechanism controls the rate at which data is sent in to the network 
and retransmits segments if necessary. If the network enters a state of congestion (that 
is, the buffers in the routers or receiver are overloaded and segments are dropped) the 
Congestion Control mechanism reduces the sending rate. Segment drops are noticed 
at the sender side when acknowledge packets fail to arrive. This mechanism is 
fundamental for the Internet to work properly. But, in some cases, Congestion Control 
has an unwanted effect. Every segment drop is treated as congestion in the network, 
even though congestion may not be the cause. Some wireless systems are error prone 
and segment drops may be caused by corruption. When corruption occurs on a link, 
TCP makes an unwanted reduction of the sending rate. This causes low utilization of 
the bandwidth, which already is a scarce resource in some wireless systems. This 
problem is enhanced in networks with long delays and large Round Trip Time (RTT).   
 
Different variants of the TCP protocol have been suggested, and modifications have 
been evaluated to optimize TCP for error prone networks. The most recognized 
variants of TCP in general are TCP NewReno [2] and TCP Westwood+ [3]. Other 
protocols have also been suggested, for instance TCP Vegas [4], TCP-Peach [5] and 
TCP Hybla [6]. A lot of work has been done to mitigate the unwanted effects of TCP 
in error prone networks; some of them are described in [7, 8, 9, 10, 11]. 
 
TCP NewReno is derived from the basic TCP Reno, and uses the four Congestion 
Control algorithms: Slow Start, Congestion Avoidance, Fast Retransmit and Fast 
Recovery [2]. The Slow Start algorithm is used initially of a session, and when time 
out occurs. Slow Start increases the sending rate exponential, up to a given point. 
After that, the Congestion Avoidance algorithm is invoked. In the contrary, this 
algorithm increases the transmission rate linearly, to avoid reaching a state of 
congestion too fast. Congestion Avoidance continues until congestion is detected. The 
Fast Retransmit algorithm is invoked when congestion occurs and packets are lost. 
The transmission rate is reduced, and after the lost packet are retransmitted, the Fast 
Recovery will try to catch up with the former transmission rate by invoking 
Congestion Avoidance again. 
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TCP Westwood+ has modified the Fast Recovery algorithm; with this modification 
the name has been changed to Faster Recovery [3].  Instead of halving the sending 
rate after congestion is detected, the Faster Recovery algorithm tries to measure the 
actual available bandwidth and then adjust the data rate accordingly. 
 
Many modifications and mitigations have also been suggested to avoid the unwanted 
effect of TCP in error prone networks. A highly discussed modification is the 
implementation of Selective Acknowledgements (SACK). This mechanism 
overcomes the problem of multiple packet drops by sending a SACK message, which 
contain ACKs for all the received data segments [8]. The receiver is able to select and 
retransmit only the lost segments. Another discussed subject is Path MTU Discovery. 
This mechanism tries to use all the available bandwidth by sending the largest 
possible segment size [11]. Also Performance Enhancing Proxies (PEPs) have been 
proposed as mitigation. PEPs are proxies that can store and retransmit segments [9], 
they can also change the transport protocol and parameters for the different links in 
the transmission path. This reduces the retransmission time for data segments. PEPs 
are usually implemented at the application layer, but can enhance performance in 
other layers as well. The problem with PEPs is that they interfere with the end to end 
transmission.   
 
It is essential that modifications and mitigations are friendly towards each other and 
the current implementation; that is, they can work together in the same network 
without causing trouble and negative effects for each other. For instance, a new TCP 
modification must be friendly towards the current implemented TCP version. It is also 
important that the modifications and mitigations perform well on a variety of different 
networks. 
             
As mentioned, a lot of research has been done to evaluate TCP in error prone 
networks. However, tests of TCP in multiple wireless networks have not been 
numerous, and especially not with the Zigbee, which is a relatively new and 
interesting technology. Zigbee has emerged as the most attractive standard for 
wireless sensor systems. A Zigbee sensor network consists of low power ad hoc 
devices, and supports different topologies. To be able to use the sensor network in 
desolated and unreachable places, it may be desirable to combine the sensor network 
with satellite networks. 
 

1.2 Problem Area 
Our work is to evaluate different TCP versions over a heterogeneous wireless 
network. This network will consist of two wireless technologies, a satellite networks 
and an ad hoc network. This corresponds to a scenario where a remote and desolated 
ad hoc sensor network is connected to a computing centre over a satellite network. Ad 
hoc and Satellite networks have the common characteristics of error prone networks, 
but differ greatly in other aspects, for instance packet the sizes and the throughput 
performance. Because of the differences, we assume a PEP is used between the 
networks. Therefore we will evaluate the two networks separately. 
 
In the evaluation of satellite networks we will use a genuine satellite test bed, while 
the ad hoc network will be emulated. It is our task to do the necessary changes to an 
already existing satellite emulator so we are able run ad hoc emulations.      
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Our task is to evaluate some of the most common TCP variants for wireless networks. 
For the satellite network we will evaluate four TCP variants: TCP NewReno, TCP 
Westwood+, TCP Vegas and TCP Hybla. TCP NewReno is always interesting to look 
at and compare to, since it is the most common implementation of TCP. TCP 
Westwood+ is a similar and also a widely recognized version of TCP. The last two 
variants, TCP Vegas and TCP Hybla, are specialized for long delay error prone 
networks. For the ad hoc network we will use a wider scenario, and because of time 
constrains, we will only evaluate TCP NewReno and TCP Westwood+. The 
evaluation will be based upon the throughput. Other quality of service parameters and 
security is not within the scope of this project. The evaluation will only take in to 
account a single connection over a dedicated link, which means that we will not 
evaluate friendliness or performance in a link with different traffic patterns. 
 
Transport Layer protocols over error prone and long delay networks is a widely 
discussed subject. Prior evaluations of TCP over satellite have been done in [12,13]. 
A lot of works have also been done in the subject of ad hoc networks, however they 
are mostly simulations, one of these is [14].  
 

1.3 Thesis Definition 
The title of the thesis is: 
 
“Study and Performance Evaluation of Transport Layer Protocols over 
Heterogeneous Radio and Satellite Networks” 
 
The final definition of the work is the following: 
 
“Wireless networks, especially satellite networks, differ greatly from terrestrial 
networks in the sense of long Round-Trip Time (RTT) and Bit Error Rate (BER). 
Nevertheless these technologies are combined in networks today, and use the same 
transport protocols, i.e. Transmission Control Protocol (TCP). One of TCP’s 
characteristics is that it assumes all packet losses to be caused by congestion in the 
network, and will therefore respond by invoking congestion control and avoidance 
algorithms. This is not always the best solution. Wireless networks are unstable, and 
packet loss may be caused by a non-congestion-related reason like bit errors, 
handoffs and variance in bandwidth. The main problem behind the project title is to 
find an existing protocol that copes with the characteristics of the different wireless 
network technologies. The protocol needs to be able to handle long delays, error 
prone networks and must be friendly towards current TCP implementation. In this 
thesis project we will compare different protocols over wireless heterogeneous 
networks. This means that we have a network consisting of different wireless 
technologies. The different technologies are ZigBee, Satellite link and Wireless Local 
Area Network (WLAN) 802.11. All these three networks are based on Internet 
Protocol (IP). ZigBee is a relatively new technology, as it was released in 2003. The 
problem of finding a reliable transport protocol that works over different technologies 
is a genuine problem, as networks like ZigBee and Satellite links become more 
common to combine. To decide which transport protocol is the best overall, we have 
to test and compare them in different scenarios. The transport protocols to compare 
are mainly different versions of TCP, like Westwood+, NewReno, and Sack.” 
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1.4 Report Outline 
The second chapter gives general information about the two networks we will 
evaluate, satellite and wireless ad hoc sensor networks. Chapter 3 describes the 
different Transport Layer protocols, TCP and UDP, and different versions of TCP. 
The next chapter describes the test beds for the satellite network and the ad hoc 
network, including the physical structure and software. Chapter 5 describes the two 
models for emulating the wireless channel, the Characteristic Model and the Two 
State Markov Model. Chapter 6 presents the different parameters, with 
argumentations, for the two scenarios we tested.  Chapter 7 describes the results we 
experienced, and discussion why these results were achieved. The final conclusion 
and suggestions for further work are given in chapter 8. 
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2 Networks to Evaluate 
We will evaluate Transport Layer protocols over two different network technologies: 
a satellite network and an ad hoc sensor network. Figure 1 shows an overview of the 
networks. For our evaluation, the sensor nodes are senders, while the satellite modem 
in the far end of the satellite network is the receiver. This corresponds to 
communication from left to right in Figure 1. Both networks are wireless, error prone 
networks. However, they have some major differences in other aspects. The nodes in 
a wireless sensor ad hoc network are low-power units with limited buffer size. For 
Transport Layer protocols which require acknowledgements, nodes with small buffer 
size commonly transmit with small segment sizes to be able to have a reasonable 
amount of segments inflight. That is, to have a reasonable amount of segments not 
acknowledged for. Satellite networks on the other hand have a lager buffer capacity.   
 
Consider an example where sender A transfer a 1Mb file to receiver B. If the segment 
size is low, for instance a segment with 100 bytes payload (100 + 20 = 120 bytes 
including header), A have to send 1000000/100 = 10000 segments for the file to 
arrive (assuming perfect conditions). By increasing the segment payload to 1440, only 
1000000/1440 ≈ 700 segments have to be sent. This increase in segment size will 
drastically reduce the amount of data which have to sent, because 9.300 less headers 
are sent. More header data will reduce the throughput of the useful information. The 
ad hoc sensor nodes are restricted to send with a small segment size. If this small 
segment size also were used in the satellite network, sub optimal throughput would be 
experienced in this network. The solution is to use a PEP (Performance Enhancing 
Proxy) between the two networks. The PEP stores segments until a reasonable large 
number of segments are received. Then it resizes and forwards the segments to the 
satellite modem which sends them over the satellite link. Because the satellite link is 
much faster then the ad hoc links, the segment will be transferred in bursts. The PEP 
is also able to change between different implementations of the TCP protocols. This 
way the PEP can optimize the transmission over each link. 
 

 
Figure 1 : Network Overview 
 
The next sections describe the networks in detail. The last section describes some 
lower layer mitigations for wireless, error prone networks. PEPs are only considered 
for the Transport Layer, and are therefore described in section 3.1.8.  
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2.1 Satellite Networks 
Satellites are used for a variety of purposes, like television broadcast, radio broadcast, 
Internet communication and positioning systems. They are often characterized by the 
orbit they are located in and by what their purpose is. This work will focus on 
communication satellites, which may be located in Low Earth Orbit (LEO), Medium 
Earth Orbit (MEO or ICO) or Geostationary Orbit (GEO).  
 

2.1.1 GEO Satellites 
Satellites in GEO are located at an altitude of approximately 36,000 km above the 
equator. At this altitude the satellite orbits the earth at the same speed as the earth 
rotation period. Thus, as seen from the earth the satellite will always have the same 
position in the sky. For all satellite networks, the ground based antennas must be 
directed towards the satellite before the two parts can communicate. Since GEO 
satellites always have the same position in the sky, ground based antennas always 
know where to direct their signals. Thus, the complexity of the base station is 
decreased, because tracking systems are not necessary (in contrast to MEO and LEO 
satellites). For communication with many base stations, this can more than justify the 
extra cost of onboard complexity and sending the satellite to higher altitudes. Only 
three GEO satellites are needed to cover the surface of the earth (poles are not 
included). Because of the high altitude, the propagation delay for a signal traversing a 
GEO satellite network is considerable. The propagation time for a signal traveling 
twice that distance is 239.6 milliseconds [7]. This corresponds to a signal traveling 
from an earth station to a satellite and back to an earth station, when both earth 
stations are directly beneath the satellite, i.e. a best performance scenario. For the 
opposite, when both earth stations are at the edge of the satellites view, the signal has 
to travel 41,756 km * 2 [7], which would means a propagation delay of 279,0 
milliseconds. If we take into account round trip time (RTT) in the latter scenario, we 
will experience a propagation delay of 558 milliseconds. The RTT corresponds to 
traffic from one earth station to satellite and to another earth station, and then back 
again the same route. The delay is also dependent on other factors, such as switching 
and buffering. Experience shows that GEO satellites are more reliable and have a 
longer operation lifetime then MEO and LEO satellites. On the other hand, a GEO 
satellite has a wider region of operation and if it experiences a malfunction or for 
some reason is unreachable, it is very critical because it affects more users. 
 

2.1.2 MEO Satellites 
MEO satellites are located in orbit at an altitude of about 10,000 km. Because MEO is 
closer to earth then GEO, more satellites are required to achieve the equal amount of 
coverage. A GEO satellite can be in view of a base station for several hours. To be 
able to offer reliable and optimal services, a MEO constellation often consist of 
between 10 and 17 satellites, orbiting in two or three orbital planes [15]. Each base 
station has to implement tracking systems, which are able to locate satellites and 
perform handovers. Despite this, MEO are often preferred instead of GEO because of 
the shorter propagation delay.  
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2.1.3 LEO Satellites 
LEO satellites are stationed in orbit about 1000 km above the surface of the earth. 
These satellites use less then two hours to circle the earth. This means that they will 
be in sight of a base station for about 20 minutes. Thus, the ground equipment must be 
constantly ready for handovers. To reduce timeout periods LEO satellite 
constellations are meant to have more then one satellite in view at any place, at any 
time all over the world. This requires complex tracking procedures and handover 
mechanisms. The LEO satellites have two major advantages compared to GEO, and 
also MEO; these are the short propagation delay and the ability to communicate with 
small devices. The propagation delay varies from a few milliseconds to 80 
milliseconds, depending on the distance from the base station to the satellite [7]. 
Because the signal travels a relative short distance, mobile handheld devices are able 
to pick up the signal sent by a LEO satellite. This widens the satellites range of 
services, and introduces many interesting possibilities.  

2.1.4 Link Characteristics 
The link characteristics of satellite communications can be described by three main 
properties; delay (described earlier), noise and bandwidth. 
 
The strength of the signal degrades in proportion to the square of the distance it 
travels [7]. In satellite networks the distance between sender and receiver can be vast, 
thus the signal will be considerably weakened before arrival. This means that there 
will be a low signal-to-noise ratio upon arrival. Weather conditions can have a 
negative effect on the link; especially rain is degrading for the performance of satellite 
links. In communication from satellite to handheld mobile devices, the link is 
especially susceptible to multi-path distortion and shadowing, (i.e. the signal is 
blocked by tall buildings)[7]. Error control coding schemes, like Forward Error 
Correction (FEC), can be implemented to increase signal to noise ratio. Even though 
the satellite links are considered error prone, a typical bit error rate (BER) for satellite 
links today is 1 error per 10 million bits (1 * 10^-7)  or less. 
 
The radio spectrum is a limited resource, which is restricted by licenses. The 
bandwidth is separated in different bands, where the most commonly used bands for 
communications satellites are: Ku (Kurz-under) band, Ka (Kurz-above) and the C 
(Compromise) band. The Ku band ranges 10-17 GHz. The Ka band ranges 8-31 GHz 
[16], where the 20/30 band is used by communications satellites. The C band ranges 
from 4 to 6 GHz.  
 
Satellites links can be both symmetric and asymmetric. For symmetric 
communications, forward and return link have the same bandwidth limitations, while 
for asymmetric communications the limitations may differ. In many situations 
symmetric communication is not bandwidth efficient. This could for instance be the 
situation where the return path has less bandwidth requirement, like ACK traffic. 
Another reason for implementing asymmetric communications is because of limits on 
the transmission power and the antenna size at one end of the link (e.g. mobile 
phones)[10]. For these reasons asymmetric communication is widely used in satellite 
networks. 
 
It should also be noted that satellites have a natural broadcast capability. Satellites are 
superior compared to terrestrial links for this type of communication. 

 7



 

2.1.5 OSI Layers 
Only two OSI layers are 
defined for satellite 
networks, the Physical Layer 
and the Data Link Layer. 
Figure 2 shows a typical 
satellite network. The 
modems can be stand-alone 
units, as in the figure, or they 
can be implemented in a 
router with a modem card. 
With the latter solution the 
Data Link Layer will 
communicate directly with 
the routers’ Network Layer. Figure 2 : OSI Layers in Satellite Networks 
 
The responsibilities of the Physical Layer is to transmit streams of bits from the 
transmitter to the receiver with minimal bit errors, for both broadcast and unicast 
transmissions. This involves the following tasks: selection of the frequency band, 
generation of carrier frequency, modulation and last: transmission and detection of 
transmitted bits. The task of the Link Layer is to encode and decode data packets into 
bits. It handles flow control and frame synchronization. The Link Layer can be 
divided in to two sublayers; the Medium Access Control (MAC) and the Logical Link 
Control Layer (LLC). The MAC sublayer is responsible for channel access and for 
permission to transmit on the channel. The LLC layer controls frame synchronization, 
flow control and error checking. 
 
It should be noted that the Data Link layer in the satellite uses a form of switching. 
This switching routes the traffic to the different satellite transponders, and should not 
be mixed with routing at the Network layer, which is commonly performed on 
terrestrial routers. 
 

2.2 Wireless Ad Hoc Sensor Networks 
Zigbee [18] is the second standard in this project. In the Zigbee architecture the 
Physical and Link Layers use the IEEE 802.15.4 standard for Wireless Personal Area 
Network (WPAN), while higher layers are defined by the Zigbee specification. The 
nodes are low powered wireless sensors connected together in a network. The 
connections are peer-to-peer associations based upon the ad hoc principle. The next 
sections describe this in detail.    

2.2.1 Wireless Sensor Networks 
In an ad hoc network, the nodes communicate directly peer-to-peer, without going 
through a hub, switch or router. The nodes act as both router and terminal at the same 
time. An ad hoc network is also called an Independent Basic Service Set (IBSS), 
which is the simplest IEEE 802.11 network, since no network infrastructure is 
required. Wireless sensor networks are often used for monitoring purpose and 
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measurements, where the object to be observed can vary from short-range to wide 
range. A short-range measurement object can potentially be temperature monitoring, 
and wide-range can be environmental surveillance. Some of the application areas are 
health, military, and home. In military, for example, the rapid deployment, self-
organization, and fault tolerance characteristics of sensor networks make them a very 
promising sensing technique for military command, control, communications, 
computing, intelligence, surveillance, reconnaissance, and targeting systems [19]. 
These tiny sensor nodes consist of sensing, data processing, and communicating 
components. Instead of sending the raw data to the nodes responsible for the fusion, 
they use their processing abilities to locally carry out simple computations and 
transmit only the required and partially processed data. This makes sensor networks 
represent a significant improvement over traditional sensors. 
 
Although these sensors vary in range of applications, they all suffer from the same 
constraints:  
Density: High-end microsensor networks are expected to have a density of 
approximately 20 nodes/m3. Hence, the medium access control layer (MAC) should 
be able to accommodate several hundreds to thousands of nodes. 
Distributed traffic: Due to their high node density, wireless sensor networks must 
have a high capacity. However, the data rate requirements per node are low (<10 
kbps). This results in a very low radio duty cycle. 
Energy: Microsensornodes are required to be small and autonomous. Their small form 
factor limits the amount of energy that can be stored in batteries. Furthermore, the 
density of the network as well as the environment where nodes are deployed often 
prohibits periodic replacement of the batteries. An existing goal is for a microsensor 
node to have an average power on the order of 100mW, which would allow the device 
to obtain its power from the environment by energy scavenging. [15] 
 
There are discussed ways to improve the matter of constraints, but this is not an issue 
in this report. 
 

2.2.2 Wireless Ad Hoc Networks 
A wireless ad hoc network is a collection of autonomous nodes or terminals that 
communicate with one another by forming a multihop radio network and maintaining 
connectivity in a decentralized manner. Since the nodes communicate over wireless 
links, they have to contend with the effects of radio communication, such as noise, 
fading, and interference. Each node in a wireless ad hoc network functions as both a 
host and a router, and the control of the network is distributed among the nodes [7]. 
The network topology is in general dynamic, because the connectivity among the 
nodes may vary with time due to node departures, new node arrivals, and the 
possibility of having mobile nodes. The Internet Engineering Task Force Mobile Ad 
hoc Network Work Group, IETF MANET WG, are now developing and testing 
different routing protocols for wireless ad hoc networks, to define a standard protocol. 
The protocol has to support both dynamic and static topologies, and both IPv4 and 
IPv6. The scenarios used in this research are IP-structured networks with wireless ah-
hoc networks at the edges, with both fixed and mobile routers. This work is estimated 
to be finished during 2006 [17].  
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2.2.3 Zigbee Layers 
ZigBee is a relatively new technology, and has since 2005 offered a low-cost, very 
low power consumption, two-way, wireless communications standard. It also needs 
less than a second to initiate a connection, which makes it ideal to use in sensor 
networks to send small amounts of data.  
 

he ZigBee stack architecture is 

he application layer (APL) is the 

he responsibilities of the APS 

and their needs, and forwarding messages betw

Figure 3 : ZigBee and IEEE 802.15.4 Layers 

T
based on the standard Open 
Systems Interconnection (OSI) 
seven-layer model, with some 
modifications. As Figure 3 
shows, has the ZigBee Alliance 
defined the upper layers. While 
the two lower layers; MAC and 
Physical layer, are defined by the 
IEEE 802.15.4. The ZigBee 
layers are described below, and 
the IEEE 802.15.4 layers are 
described in section 2.2.4. 
 
T
upper ZigBee Alliance layer. It 
consists of three sub-layers: the 
Application Support Sub-layer 
(APS), the ZigBee Device Object 
(ZDO) and the manufacture-
defined application objects [18]. 
The Application Objects can vary 
a lot, depending on the purpose of 
the ZigBee node.  
 
T
sub-layer include maintaining 
tables for binding, which is the 
ability to match two devices 
together based on their services 
een bound devices. This layer 

corresponds to the OSI layer four, the transport layer. It adds an APS-header to the 
pdu, and pushes it down to the network layer. The responsibilities of the ZDO are to 
define the role of the device within the network, e.g., ZigBee coordinator or end 
device, discovering devices on the network and determining which application 
services they provide, initiating and responding to binding requests and establishing a 
secure relationship between network devices. The APS provides an interface between 
the Network layer (NWK) and the Application layer (APL) through a general set of 
services that are used by both the ZDO and the manufacturer-defined application 
objects. 
 
The responsibilities of the ZigBee Network layer (NWK) layer shall include 
mechanisms used to join and leave a network, to apply security to frames and to route 
frames to their intended destinations [18]. It covers also discovery and maintenance of 
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the routes between devices, finding new one-hop neighbours and storing pertinent 
neighbour information. The NWK layer of a ZigBee coordinator is responsible for 
starting a new network, configuring new devices, and assigning addresses to newly 
associated devices. The ZigBee network layer supports star, tree and mesh topologies. 
 

2.2.4 IEEE 802.15.4 Layers 
The goal for the IEEE 802.15.4 group was to develop an architecture with very low 
complexity, typically for low data rate, multi month to multi year battery life, and 
which can operate in an unlicensed, international frequency band. Typical 
applications can be home automation, wireless sensors, interactive toys, smart badges 
and remote controls [20]. Two layers have been developed for this architecture, they 
are described in the following sections. 
 
The Medium Access sub-layer (MAC) is responsible for transmitting beacon frames, 
synchronization, and providing a reliable transmission mechanism [18]. It also 
controls access to the radio channel by using a Carrier Sense Multiple Access – 
Collision Avoidance (CSMA-CA) mechanism. CSMA/CA works as follows: A 
station wishing to send, first senses the medium. If the medium is idle, the sender 
waits a prescribed minimum of time after the last transmission sensed before it sends, 
to reduce the chance that a message transmitted by another station has not yet been 
sensed by the one in question. If the medium is sensed busy, the sender waits a 
random time (more than a minimum of time), before it senses the medium again. This 
procedure reduces the possibility that two or more stations are trying to transmit at the 
same time [21]. 
 
IEEE 802.15.4 has two physical layers, which operate on two distinct frequency 
ranges; 868/915 MHz and 2.4 GHz. The lower frequency range, 868/915 MHz, is 
used in Europe (868 MHz) and United States and Australia (915 MHz), respectively. 
The higher range is used worldwide [18]. Typical data rates are 250 kbps in the 2.4 
GHz band, 40 kbps in the 915 MHz band, and 20 kbps in the 868 MHz band. [14] 
Both physical layers use Direct Sequence Spread Spectrum, DSSS. The 2.4 GHz 
physical layer uses Offset Quadrature Phase-Shift Keying modulation, O-QPSK, 
while 868/915 MHz physical layer uses Binary Phase-Shift Keying modulation, 
BPSK [22].  
 

2.3 Lower Layer Mitigations for Error Prone Networks 
Errors due to bit corruption are a big problem for TCP communications, where all 
packet loss is treated as network congestion. If a TCP sender detects packet loss, it 
reduces its sending rate, even though the packet loss is caused by corruption and not 
congestion. This results in an unwanted reduction of sending rate, and is an especially 
bad effect for networks with long delay. A detailed description of the behaviour of 
TCP is given in chapter 3. Many modifications have been proposed to mitigate the 
constraints in long delay and error prone networks. This chapter will discus some of 
these mitigations, with respect to the Physical, Data Link and Network Layers. 
 
Bit Error Rate (BER) is a parameter which describes the number of bit errors. The 
BER is affected by many parameters, including physical and environmental factors as 
well as signal processing parameters. Some physical and environmental factors are 
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propagation delay, scattering, noise and signal power. The unwanted effects of 
physical and environmental factors cannot easily be mitigated from a physical point of 
view. However, by increasing the transmission power the signal power (useful 
information) will be stronger compared to the unwanted background information 
(noise). This ratio is known at signal to noise ratio (SNR). When SNR is large, the 
received signal is equal to the transmitted signal, and when SNR is low the signal may 
be modified so much that wrong information is received. When the signal power is 
increased, the SNR will also increase. In some networks the nodes are energy self-
sufficient or run on batteries, thus energy is a scarce resource. In these networks it is 
desirable to achieve acceptable BER through other means. With respect to signal 
processing, high BER can be mitigated through modulation and error correction 
schemes, by sacrificing bandwidth for decreased BER. In modulation, a pattern of bits 
is always defined, these patterns are called symbols. How many bits a symbol 
contains may vary for each type of modulation scheme. A demodulator maps the 
symbols, that is, it analyses the symbols according to a diagram, which can be seen as 
a co-ordinate system. If a symbol consists of many bits, the distance between the 
symbols is small and the signal becomes less resilient to errors. If the symbol consists 
of just a few bits, the distance among the symbols is larger and the signal is more 
resilient to errors. For error prone networks it is common to implement error detection 
and corrections schemes. The most common implemented scheme at the physical 
layer is Forward Error Correction (FEC). FEC adds redundant data to the transmitted 
information, by using a predefined algorithm. Many different algorithms have been 
proposed for FEC. How much data the algorithms add depends on the level of 
resilience wanted. By adding more redundant data, the signal becomes more resilient 
to errors. An example of FEC is to transmit the same bit three times, so the 
transmitted bits are 000 instead of just 0, and 111 instead of just 1. The receiver will 
check each series of three bits, and see which bit value occurs most. All the values 
000, 001, 010 and 100 have most 0’s, thus are treated as 0. The values 011, 101, 110 
and 111 have most 1’s and are treaded as 1. For this level of FEC, one bit in a series 
of three (not necessary each third) can be corrupted without causing any bad effects 
for the communication. This example of FEC is very simple and also very inefficient 
since three times as much data have to be transmitted. 
 
Another way to avoid unwanted reduction of the sending rate is to add awareness of 
corruption. If a router experiences corruption above a given threshold, it sends a new 
“corruption experienced” ICMP message to the TCP receiver [10]. The TCP receiver 
informs the TCP sender of corruption through an option in the ACK message. When 
the TCP sender receives a “corruption experienced” message, it assumes all packet 
loss is due to corruption for the duration of 2 RTT or until it receives additional link 
state information. By ignoring segment loss for two RTT, this proposed mechanism 
might aggravate congestion.    
 
A lot of research also focuses on making the data link layer detect errors and perform 
data link layer retransmission. The main problem with this solution is that the 
segments are not received in the same order as they were sent. For instance, assume a 
series of 5 segments are sent, segment 1, 2, 3, 4 and 5. If segment 2 has to be 
retransmitted somewhere along the path, the receiver might receive segment 2 last, 
and the order will be 1, 3, 4, 5, 2. For segment 3, 4 and 5 duplicate ACKs will be 
created and TCP will invoke the fast retransmission. This is not necessary, as the next 
segment to arrive is the one which appears to be missing. One solution is to suppress 
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or delay duplicate ACK in the reverse direction. Another proposed solution is to make 
the TCP more capable of handling out-of-order segments [10]. 
 
Another proposed mitigation is Path Maximum Transmission Unit (MTU) Discovery. 
This mechanism detects the largest datagram size that is possible to send over the 
entire path, without being fragmented. This is the most efficient datagram size, and is 
called Path MTU [11]. If a host sends a datagram with size less then Path MTU, it will 
probably experience suboptimal throughput. If the host uses a datagram size larger 
then Path MTU, some routers will fragment the package. This fragmentation uses 
Internet resources, and should be avoided. The Path MTU Discovery works as 
follows; the sender sets the “Don’t Fragment” (DF) flag when a datagram is 
transmitted. If this datagram is received by a router whose MTU is smaller than the 
size of the packet, an ICMP “Datagram too Big” message is sent back to the sender. 
This ICMP message indicates that the message is too big to forward, and contains the 
MTU size for the router. The sender adjusts the MTU size and resends the packet. 
This process is repeated until the packet can traverse the whole path without being 
fragmented.         
 
Another widely discussed topic is Performance Enhancing Proxies (PEPs). PEPs can 
be implemented at any layer, but are usually implemented on the Transport layer or 
Application layer. PEPs are therefore described in section 3.1.5. 
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3 Transport Layer Protocols 
The transport layer is the fourth layer in 
the OSI model. The most common layer 
four protocols are Transmission Control 
Protocols (TCP), User Datagram 
Protocol (UDP), Real-Time Transport 
Protocol (RTP) and Stream Control 
Transmission Protocol (SCTP). TCP is 
used for reliable data traffic, like file 
transfer (File Transfer Protocol, FTP), e-
mail (Simple Mail Transfer Protocol, 
SMTP) and web (HyperText Transfer 
Protocol, HTTP). TCP is described in 
section 3.1. UDP does not offer the same 
reliability as TCP, but it delivers faster. 
Common applications that use UDP are 
Domain Name System (DNS), Voice 
over IP (VoIP) and online gaming. UDP 
is described in chapter 3.2.  RTP carries 
voice and video data when having 
videoconferences over the Internet. 
Session Initiation Protocol (SIP) is used 
for setting up and tearing down these conversations. SCTP is an extension of TCP, 
capable of handling several streams at the same time. SCTP is another transport 
protocol used for voice activity over the Internet.  

      Figure 4 : OSI Model 

 
TCP is the most important transport layer protocol for this project, and it is described 
in details in the section 3.1. The subsequent sections describe the most common TCP 
versions and improvements. The following section outlines research directly related to 
satellite networks, including new TCP versions and improvements.  
 

3.1 Transmission Control Protocol 
The great advantage with TCP is its reliability 
to deliver accurate data, and consideration for 
other transmitters within the same network. To 
begin with the reliability, TCP starts every 
session with a three-way-handshake. Consider 
TCP communication between part A and part 
B, as shown in Figure 5. First source A sends 
a SYN segment to destination B, to ask if B is 
ready to start the TCP session. If B is ready, it 
replies with a SYN ACK segment. A replies 
with an ACK segment to acknowledge the 
SYN ACK from B, and then the session 
transmission can start. To keep track of which 
segments have arrived properly, each segment 
in a TCP session is given a sequence number. 

Figure 5 : Three-Way-Handshake 
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In real transmission the sequence number is the number of sent bytes, but for 
simplicity numbered with simple numbers in this example. When A sends segments, 
they are numbered e.g. 1001, 1002, 1003 and 1004 respectively. B will then 
acknowledge with the number of the next sequence number it expects to receive. E.g., 
when B receives segment 1002, it will acknowledge with sequence number 1003. If 
every segment is received properly and acknowledge for, then TCP sender A will 
increase sending rate. When A increases the sending rate, there may be segments 
‘floating’ that are not acknowledged for, before A sends new segments. If one of the 
segments is lost during the transmission, or by other reasons not received properly, B 
will continue to acknowledge the last received segment. E.g., if sender A sends a bulk 
of segments with sequence number from 1003 to 1007, and segment number 1005 is 
lost during transmission, then B will acknowledge segment nr 1003 and 1004, even if 
it has received segment nr 1006 and 1007 as well. When receiver B receives segment 
nr 1006 and 1007 but not 1005, it will send a duplicate ACK for 1004, for each 
segment received over 1005. With this behavior from B, sender A will know that 
segment nr 1005 was lost during transmission, and retransmit segment nr 1005. Then 
B will acknowledge segment 1005, 1006 and 1007 respectively.  
 
To make sure every arriving segment is correct, TCP uses a 16 bit checksum in the 
TCP header. This checksum field contains one's complement of the one's complement 
sum of all 16 bit words in the header and text [23].  If a segment contains an odd 
number of header and text octets to be checksummed, the last octet is padded on the 
right with zeros to form a 16 bit word for checksum purposes.  The pad is not 
transmitted as part of the segment. While computing the checksum, the checksum 
field itself is replaced with zeros. A segment with incorrect checksum will be 
discarded, and retransmitted. 
 
The TCP protocol was initially designed to work in networks with low link error rates, 
i.e., all segment losses were mostly due to network congestions. Radio links suffer 
from some different challenges than terrestrial links, and in recent years there has 
been a lot of research with main focus to error prone- and long delay networks. To 
fully utilize the bandwidth, satellite links needs to have a lot of data “in-flight”1. This 
is because satellites links have long delays and a relatively large bandwidth. This is 
characterized by the so-called Delay * Bandwidth Product (DBP). Improvements for 
the Transport Layer are mostly some modifications of the TCP versions and 
modifications of the TCP/IP semantics, called Performance Enhancement Proxies 
(PEP). 
 
The following sections describe some important TCP versions, including versions in 
which we will evaluate. Section 3.1.1 to 3.1.5 describes different general TCP 
versions. The next sections, 3.1.6 to 3.1.8, describe TCP versions specialized for the 
satellite network, and Performance Enhancement Proxies.  
 

3.1.1 TCP Reno 
For the consideration for other transmitters, and avoid congestion in the network, TCP 
uses Congestion Control. Congestion Control contains four algorithms; Slow Start 
(SS), Congestion Avoidance (CA), Fast Retransmit and Fast Recovery [1]. These are 

                                                 
1 That is, a lot of data which is in the network, but not acknowledged for. 
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the four basic algorithms for TCP, and this basic TCP-version is called RENO. When 
sender A starts a transmission, it does not know anything of the networks conditions. 
To decide the transmission rate, two variables have to be considered: the Congestion 
Window (CWND) and Receivers Advertised Window (RWND). CWND is a sender-
side limit on the amount of data the sender can transmit into the network before 
receiving an ACK. RWND is a receiver-side limit on the amount of outstanding data. 
The minimum of these two variables governs the data transmission. By using SS, the 
sender initially sets the CWND to one segment and sends one segment, and then it 
waits for the ACK. When the ACK is received, the sender doubles the amount of 
segments to send and adjusts the CWND, to two segments. When ACK for these two 
segments is received, it doubles the CWND and sends four segments, and so on. 
Another important variable for Congestion Control is the Slow Start Threshold Size 
(SSTRHESH). The initial value of SSHTRESH is 65535 bytes [24]. SSTRESH is 

used to determine whether SS or CA is used to control the data transmission. The SS  

 
Graph 1 : CWND and SSTHRESH for TCP Reno 

algorithm is used when a transmission session is initialized, and when CWND < 
SSTRHESH. The CA algorithm is used when CWND > SSTRHESH. When CWND 
and SSTRHESH are equal, the sender may use either SS or CA [23]. When 
congestion occurs, indicated by timeout, the SSTHRESH value will be set to the half 
of CWND and the CWND is set to one, as shown in Graph 1. SS will now start over 
again. When CWND again reaches SSTHRESH, CA will take over and continue. CA 
increases the transmission rate linearly, in contrast to SS’s exponential growth. For 
every ACK the sender receives, it increases the transmission rate by one segment each 
Round-Trip-Time (RTT) [24]. When a sender receives a duplicate ACK, it does not 
know if the segments have arrived out-of-order or have been lost during transmission. 
To decide, it waits to receive more duplicate ACKs. If it is just a segment out-of-
order, it will only receive one or two duplicate ACKs, before the segments are 
reordered. But if the sender receives three or more duplicate ACKs in a row, it 
assumes that the segment has been lost [24]. TCP then performs a retransmission of 
the missing segment without waiting for the retransmission timeout to expire. This 
algorithm is called Fast Retransmission. After Fast Retransmit has finished, Fast 
Recovery will be performed. In short words Fast Recover invokes CA instead of SS 
(as shown in Graph 1), because one lost segment does not necessary mean that the 
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network is congested. Fast Recovery uses a new variable, Sender Maximum Segment 
Size (SMSS). Fast Retransmit and Fast Recovery are usually implemented together, 
and work as follows [1]: 
 

1) When the third duplicate ACK has arrived, the SSHRESH is set to: 
 

SSHRESH = max (FLIGHTSIZE2 / 2, 2 * SMSS) 
 

2) Retransmitt the lost segment, and set CWND to SSHRESH plus 3*SMSS. 
The 3 extra segments are for the three buffered segments at the receiver 
side, which have already left the network. 

3) For each additional incoming duplicate ACK, the CWND are incremented 
by SMSS. This inflates the congestion window in order to reflect the 
additional segment that has left the network. 

4) Transmit a new segment, if allowed by the new value of CWND and 
RWND. 

5) When ACK for the new segment has arrived, the CWND is set to 
SSTHRESH. This ACK also acknowledges all the intermediate segments 
sent between the lost segment and the receipt of the third duplicate ACK. 

 
By using Fast Recovery, TCP can continue with a higher throughput even though it 
had to retransmit a segment.  
 
One of the disadvantages with TCP is the transmission time. Every transmission 
session is initiated by the three-way-handshake, which means that three segments 
have to be sent before actual data can be sent. In some cases, like DNS, this is a waste 
of time. Another disadvantage is the way TCP acts in the presence of long delay. 
There may be a long delay in wireless networks, especially Satellite networks, and the 
retransmission time can timeout. The long delay can simply be a result of a long 
distance, and the segments may arrive perfectly in just a moment. But TCP will 
anyway act as if congestion has occurred, reduce the transmission rate and start to 
retransmit. This is a totally illogical and unwanted way to handle the problem.  
 
There has been a lot of research to cope with TCPs reaction to the delay problem, but 
also to improve TCP in general. General improvements will be described first, and 
improvements especially for error prone- and long delay networks will be described in 
the subsequent sections.  
 

3.1.2 TCP SACK 
One improvement for handling multiple segment loss is the Selective 
Acknowledgement Option (SACK). With cumulative acknowledgement, the sender 
has to wait one RTT to find out about each lost segment. This is a waste of time and 
an ineffective way to decide which segments it has to retransmit, especially if several 
segments are lost. An aggressive sender may retransmit more segments than it has to 
because it doesn’t bother to wait for all the duplicate ACKs. If the sender supports 
SACK, a “SACK-permitted”-flag is set in the SYN-packet. If supported, the receiver 
chooses if it wants to use this option during the session. The SACK-option divides the 

                                                 
2 FLIGHTSIZE is the amount of outstanding data in the network. 
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incoming segments into blocks, where each block represents received segments that 
are contiguous and isolated. The left edge of the block is the first sequence number of 
this block, and the right edge of the block is the sequence number immediately 
following the last sequence number of this block [8]. This means that the sequence 
number just below and above the block has not been received, as shown in Figure 6. 
  
 
 
 

Figure 6 : Overview of contiguous segment blocks 

 
For simplicity are the segments given simple numbers, instead of number of sent 
bytes, as in real transmission. The SACK-acknowledgment is sent by the receiver to 
inform the sender that non-contiguous blocks have arrived and been queued. Here are 
segments number 1004 and 1005 missing. The TCP receiver sends ACK for segments 
number three, indicating it is ready to receive segment number four, as normal. But if 
segment number six is received, but not number four, as in this case, will the receiver 
send a SACK acknowledgment. This SACK contains ACK for segment number three, 
indicating segment number four is missing, and ACK for segment number six. This 
informs the TCP sender that it has to retransmit segment number four and five. If the 
next incoming segment is number seven, will the SACK contain ACK for segment 
number three, six and seven respectively. But if the incoming segment is number four, 
the SACK contains ACK for segment number four and six. The right edge of the 
block is now moved one segment to the right. This way the sender knows exactly 
which segments have been lost, and retransmits just the right segments. This 
algorithm can decrease the time TCP spends to choose which segments to retransmit, 
and makes TCP more effective.  
 
A SACK option that specifies n blocks, will have the length of 8*n+2 bytes. [8] This 
means that the 40 bytes available for TCP options can specify maximum 4 blocks. But 
SACK is often used together with the Timestamp option used for RTT. This options 
uses 10 bytes, thus each SACK can contain a maximum of 3 blocks.  
 
SACK-segments acknowledges lost packets in a more informative way than normal 
acknowledgements, witch makes the retransmission more effective. However, 
sometimes are packets retransmitted by a mistake, or by other reasons sent more than 
once, even if it was properly received. This behavior is less effective, and totally 
unnecessary. Duplicate-Sack (D-SACK) [34] is an extension of SACK, and handles 
this problem. D-SACK reports duplicate contiguous sequences in blocks, like SACK, 
and make use of the first block in SACK. The left edge of the D-SACK block 
specifies the first sequence number of the duplicate contiguous sequence, and the right 
edge of the D-SACK block specifies the sequence number immediately following the 
last sequence in the duplicate contiguous sequence. Since D-SACK is an extension of 
SACK, can it not be used unless the SACK-option is used. 
 

3.1.3 TCP NewReno 
SACK may not be used for every connection, as it is not always supported locally or a 
TCP peer does not want to use the option. In cases of multiple segments loss when 
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using the basic Reno, the TCP sender lacks information when deciding which 
segments to send during Fast Recovery. When the sender receives three duplicate 
ACKs, it concludes a segment loss and retransmits the lost segment, indicated by the 
duplicate ACKs. If there are more segments in flight when the sender enters the Fast 
Retransmit, the sender may receive more duplicate ACKs. The first new information 
available for the sender, is the ACK for the retransmitted segment in Fast Retransmit. 
If there was a single segment drop, and no reordering, this ACK will acknowledge all 
the segments transmitted before Fast Retransmit was entered. However, if there was a 
multiple segment loss, then this ACK will acknowledge some but not all the segments 
transmitted before the Fast Retransmit was entered. This is called Partial 
Acknowledgement. A new version of Reno, called NewReno, has modified the Fast 
Retransmit and Fast Recovery algorithms to improve TCP when multiple segments 
are lost. NewReno makes use of a new variable, ‘recover’, whose initial value is the 
initial send sequence number [2]. The NewReno Fast Retransmit and Fast Recovery 
work as follows [2]: 
 

1) If the sender is not already in the Fast Recovery procedure when it receives 
three duplicate ACKs, it checks if the Cumulative Acknowledgement field 
covers more than ‘recover’. If so, go to step 1a. Otherwise, go to step 1b. 

a. Invoke Fast Retransmit, and SSTHRESH is set to: 
 
SSTHRESH = max (FLIGHTSIZE / 2, 2 * SMSS) 
 
The highest sequence number transmitted is recorded in ‘recover’. 
Go to step 2. 

b. Do not enter the Fast Retransmit and Fast Recovery procedure, do 
not go to step 2 to retransmit the lost segment, and do not execute 
step 3 upon subsequent duplicate ACKs. TCP will continue to send 
traffic and increase the CWND as normal. 

2) Enter the Fast Retransmit and retransmit the lost segment. CWND is set to 
SSTHRESH plus 3*SMSS. The 3 extra segments are for the three buffered 
segments at the receiver side, which have already left the network 

3) Enter the Fast Recovery. For every additional duplicate ACK received 
while Fast Recovery, the CWND is incremented by SMSS. This inflates 
the congestion window in order to reflect the additional segment that has 
left the network. 

4) Continue Fast Recovery and transmit a segment, if allowed by the new 
value of CWND and RWND. 

5) When an ACK arrives that acknowledges new data, this ACK could be the 
acknowledgement elicited by the retransmission in step 2, or elicited by a 
later retransmission. 

Full acknowledgement: 
This means the ACK acknowledges all the intermediate segments sent 
between the original transmission of the lost segment and the receipt of 
the third duplicate ACK. The CWND is set to either A) SSTHRESH, 
where SSTHRESH is the value set in step 1) to deflate the window, or 
B) min(SSTHRESH, FLIGHTSIZE + SMSS). (Notice that 
FLIGHTSIZE in step 5 refers to the amount of outstanding data in step 
5, when Fast Recovery is exited. FLIGHTSIZE in step 1, on the 
contrary refers to the amount of outstanding data in step 1, when Fast 
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Recovery was entered.) One of these two options, A) or B), is set when 
the TCP version is implemented, and chosen either by the Operating 
System or a skilled user. Exit the Fast Recovery Procedure. 
Partial Acknowledgement: 
The Partial Acknowledgement does not acknowledge all the data up to, 
and including ‘recover’. The sender has to retransmit the first 
uancknowldged segment. Deflate the CWND by the amount of new 
data acknowledged by the Cumulative Acknowledgment field. If the 
Partial ACK acknowledges at least one SMSS of new data, then add 
back SMSS bytes to the CWND. As in step 3, it has to take into 
account if additional segments already have left the network too. It 
permitted by the new value of CWND, a new segment is transmitted. 
This mechanism ensures that when Fast Recovery ends, approximately 
SSTHRESH amount of data will be outstanding in the network.  
 
The retransmit timer is reset when the first partial ACK arrives during 
Fast Recovery. 

6) If the retransmit times out, the highest sequence number transmitted is 
stored in ‘recover’. Exit Fast Recovery. 

 
There are two variations of NewReno; the Impatient variant and the Slow-but-Steady 
variant. With the Impatient variant the retransmit timer is reset only after the first 
partial ACK. In case of many dropped segments in the same window, the sender’s 
retransmit timer will ultimately expire, and TCP will invoke Slow-Start. On the 
contrary, the Slow-but-Steady variant will reset the retransmit timer after each partial 
ACK. In case many dropped segments in the same window here, the sender will 
retransmit at most one segment per RTT. Studies show that Reno performs better than 
NewReno in the presence of reordering, while NewReno is superior in the presence of 
multiple segment loss. Even though Reno performs better when segments are 
reordered, it is recommended to use NewReno in general, because its superiority 
when handling multiple segment loss outweighs its poorer performance when 
handling reordering. The optimal option to use is SACK, in both cases of reordering 
and multiple segment loss. 
 

3.1.4 TCP Westwood+ 
Another well-known version of TCP is Westwood+. TCP Westwood+ is an enhanced 
version of Westwood. Westwood works as Reno, but instead of Fast Recovery 
Westwood uses Faster Recovery. In contrary to Fast Recovery, Faster Recovery takes 
bandwidth-estimation into account when setting the SSTHRESH. To do so, Faster 
Recovery introduces a new variable; Estimated Bandwidth (BWE). BWE is calculated 
for every incoming ACK, but it has implemented a procedure that considers delayed 
ACK, duplicate ACK and selective ACK for the calculation to be more accurate [12]. 
Westwood works as follows: 
 

1) When ACK is received, the BWE is calculated and CWND is increased by 
one, accordingly to the Reno algorithm. 

2) If three duplicate ACKs are received: 
SSTHRESH = (BWE * RTTmin) / SMSS 
CWND = SSTHRESH 
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3) When a coarse time out expires: 
SSTHRESH = (BWE * RTTmin) / SMSS 
CWND = 1 
 

To make the calculation of BWE more accurate, Westwood+ makes the calculation of 
BWE every RTT in contrary to Westwood. Experiments infer this enhancement to be 
very successful [12]. 
 

3.1.5 TCP Vegas 
TCP Vegas is based on the same Congestion Control as Reno, but has improved the 
Retransmission, Congestion Avoidance and Slow Start algorithms. TCP Reno is 
waiting for congestion to occur with segments loss and then act with Congestion 
Avoidance. In the contrary TCP Vegas calculates a difference between estimated 
output and measured output to avoid congestion. To do this, TCP Vegas introduce a 
new variable; BaseRTT. Each time the TCP Vegas sender sends a segments, it reads 
and records the system clock. When an ACK arrives, Vegas reads the clock again and 
calculates the actual RTT. BaseRTT is the minimum of all measured round trip times. 
This way, the TCP Vegas use a more accurate RTT than TCP Reno. The new 
Retransmit algorithm has become more effective by using the accurate RTT, and 
works as follows: 
 

In case of duplicate ACK: TCP Vegas checks if the difference between the 
current time and the timestamp recorded for the relevant segment is greater 
than the timeout value (default around 500ms [4]). If it is, the sender will 
retransmit the missing segment without waiting for three or more duplicate 
ACKs. 
In case of non-duplicate ACK: If this ACK is the first or second after 
retransmission, Vegas has to check if the time interval since the segment was 
sent is larger than the timeout value. If so, the segment has to be retransmitted. 
This will catch any segment that has been lost previous to the retransmission 
without having to wait for a duplicate ACK. 

This way TCP Vegas will decrease the CWND only if the retransmitted segment was 
previously sent after the last decrease. A loss that happened before the last CWND 
decrease should not affect current CWND, to make it decrease one more time. This is 
an important improvement from TCP Reno.  
 
To decide if the CWND should increase or decrease during congestion avoidance, 
TCP Vegas compares the outputs. Its goal is to maintain the ultimate available 
bandwidth, and not cause any segment loss. First it has to calculate an expected 
throughput [4]: 
 
 Expected = CWND / BaseRTT 
 
Then it has to calculate the actual throughput. This is done by recording the sending 
time for a segment, record how many bytes (B) are transmitted between the segments 
was sent and its ACK is received and calculating the RTT. 
 
 Actual = B / RTT [4] 
 

 21



 The difference, Diff, is defined as follows [4]: 
 
 Diff = Expected – Actual 
 
The difference is compared with two predefined thresholds, alpha and beta 
respectively. The thresholds are defined in terms of KB/S, and are numbers for how 
many extra buffers the connection is occupying in the network. To decide if the there 
is too much or too little data in the network. Alpha and beta are defined as: 
 
 alpha < beta 
 
If Diff < alpha, Vegas increases the CWND linearly the next RTT, and decreases the 
CWND linearly if Diff > beta. The CWND is unchanged if alpha < Diff < beta.   
 
The slow start procedure is modified by implementing the new congestion detection 
mechanism from CA, to avoid segments loss. During the SS, the CWND is just 
exponential increased every other RTT. In between the CWND stays unchanged, for 
the comparison of expected and actual throughput. If the actual rate falls below the 
expected rate by a certain predefined amount, Vegas change from SS mode to linear 
increase/decrease mode. During SS TCP Reno sends two segments for every ACK, in 
the contrary TCP Vegas sends only as much data as is acknowledged for. 
 

3.1.6 TCP Peach 
TCP Peach is a new TCP version, developed for wireless networks with long delay. It 
is composed of two new algorithms: Sudden Start and Rapid Recovery, as well as the 
traditional algorithms Congestion Avoidance and Fast Retransmit. Sudden Start and 
Rapid Recovery replace the Slow Start and Fast Recovery algorithms, respectively. 
TCP Peach uses the unusual concept of dummy-segments to probe the availability of 
network resources. The dummy-segments do not carry any new information to the 
sender, and are therefore low-priority segments and will be dropped first in case of 
congestion. Due to the low-priority, the segments do not cause any decrease of data 
throughput of actual data [6]. The dummy-segments have one or more of the unused 
flags set in the TCP-header, the responding ACKs have the same flags set [5]. If the 
TCP receiver does not support dummy-segments, the TCP Peach sender stops sending 
dummy-segments and start to behave like TCP Reno. When Slow Start algorithm is 
used in a long delay network, it has to spend a lot of time to increase the throughput. 
Sudden Start increases throughput much faster while using dummy-segments; at the 
beginning of a connection, the CWND is set to 1, and after the first data segment is 
sent, the sender transmits (RWND-1) dummy-segments for every (RTT / RWND) [5]. 
As a result, after one RTT, the CWND size increases very quickly. The sender can 
estimate RTT during the connection setup phase. Rapid Recovery is invoked when the 
Fast Retransmit is completed, and lasts for one RTT. For every received ACK, two 
dummy-segments are sent in order to evaluate the available bandwidth. Congestion 
Avoidance is invokes after one RTT. The acknowledgements for the dummy-
segments sent during the Rapid Recovery phase cause a fast increase of the CWND. 
This way the channel bandwidth is utilized more effectively.  
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3.1.7 TCP Hybla 
TCP Hybla is developed for networks with long RTT, especially Satellite networks, 
and its goal is a transmission rate independent of the actual RTT. To do so, TCP 
Hybla has implemented a set of procedures to enhance the already existing set of rules 
for Slow Start and Congestion Avoidance in Congestion Control. The new rules 
requires some new variables; CWND(t), B(t) and P. CWND(t) is the congestion 
window evaluated in time, expressed in SMSS. B(t) is defined as the segment 
transmission rate, expressed as the amount of segments pr second [6]: 
 
 B(t) = CWND(t) / RTT 
 
P is the normalized round trip time, and it is defined as the ratio between the actual 
RTT and the round trip time of the reference connection to which TCP Hybla aims to 
equalize the performance, denoted by RTT0. 
  

P = RTT / RTT0 
 

The new set of rules for SS and CA is represented as follows:  
 

 
 
These new rules make the CWND increase much faster. It is important to increase the 
RWND as well, to avoid limiting the transmission rate. Multiple losses in the same 
window will be more frequent due to the increase of CWND. To avoid unnecessary 
retransmission TCP Hybla takes advantage of the SACK option. These modifications 
make TCP Hybla Congestion Control much more effective than the TCP standard [6].  
 

3.1.8 Performance Enhancing Proxies 
PEPs are used to enhance the performance over links with problematic characteristics. 
They are usually implemented at Application layer or Transport layer, but may also 
functions on the other layers as well. A quality of PEP, is their ability to operate 
transparently to the other systems involved, like end systems, transport endpoints and 
applications. PEP implementations are said to be either integrated or distributed. 
Integrated is when i.e. it comprises a single PEP component in a single node. 
Distributed is said to be two or more PEP components typically in multiple nodes. A 
distributed implementation is often used to surround a particular link, like satellite 
link, for which performance enhancement is required.  
 
The two most important types of PEPs are those based on Spoofing and Splitting. 
Spoofing is a way to hide the long delay at the Satellite link, by making the gateway 
transmit a ‘fake-ACK’ to the TCP sender, for every segment. In this way the 
transmission rate will increase much faster than normal. The main drawback with 
Spoofing is that the end-to-end semantics is no longer respected. In addition, the 
gateway has to intercept the ‘true-ACK’ sent to the TCP sender, to avoid duplicate 
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ACK. If a segment is lost, the gateway will be responsible for the retransmission of 
the missing segment. Retransmission can in this case be faster, because the 
retransmitted segment does not have to be retransmitted from the sender. The PEPs 
act as TCP senders and receivers, and it is important both the segment and the 
acknowledgement pass through the same PEPs.  
 
Splitting means to split the connection into three separate connections; two 
connections between the terrestrial links to the satellite gateways, and the third 
connection between the gateways over the satellite link. To do this, the satellite 
gateways architecture has to be changed. The Satellite Protocol Stack (SPS) 
Architecture is implemented in Relay Entities, which isolate the satellite components 
from the rest of the network. A new transport layer, called Satellite Transport Layer 
(STL), is developed for the gateways, and it implements a new protocol, called 
Satellite Transport Protocol (STP). This PEP will make it possible to have different 
TCP versions in the connections, but it will also break the end-to-end semantics. Two 
transport layer protocols have been developed, with the specific purpose of working 
between two Relay Entities. The Xpress Transport Protocol (XTP) is a transport 
protocol designed for the long-latency, high-loss and asymmetric bandwidth that are 
typical for satellite communication [6]. The other new transport protocol is the Space 
Communication Protocol Standard (SCPS). SCPS is based on TCP and UDP with 
some extensions: “TCP Extension for High Performance”, “TCP for Transactions”, 
“Selective Negative Acknowledgements” and “Header Compression”.  
 
There are some end-to-end issues when implementing PEP. By implementing PEPs in 
the gateway, each ACK is checked to determine if the ACK is of interest, to avoid 
unnecessary duplicate ACKs. IPSec encrypts the IP packet, including application and 
transport headers, into the IPSec Encapsulation Security Payload. Due to the IPSec, it 
is impossible for the intermediate PEP to examine the application and transport header 
and the PEP may not function optimally or at all [9]. Thus the possibility of using 
IPSec is restricted or sometimes absent in cooperation with PEP. However, sometimes 
it is more desirable with a higher throughput than end-to-end security. In these cases, 
IPSec can be used separately between the end systems and PEPs. When PEPs are 
used, there is no alternative path between the end systems. Hence a failure in the 
intermediate node would result in a termination of the connection. [9] As mentioned 
before, will the use of PEP neglect the end-to-end argument, in order to achieve 
reliable end-to-end delivery of data [9].  
 
Another drawback with PEP implemented above the Network layer, is the 
requirement of more processing power per packet. [9] Thus the PEP will always be 
one or more step behind the routers in terms of the total throughput they can support. 
PEP implementation requires memory of every connection state, and may therefore 
have a limit on the number of connections it supports.  
 

3.2 User Datagram Protocol 
UDP is the opposite transport layer protocol, compared to TCP. It is an unreliable 
service that provides no guarantees for delivery and no protection from duplication 
datagrams. Because UDP skips the set up phase with three-way-handshake, it is called 
a connectionless protocol. Whenever a UDP sender wants to send data to a receiver, it 
just sends and hopes the receiver is ready to receive. The UDP sender does not buffer 
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the datagrams it sends, so if a datagram is lost during transmission, it is not possible to 
retransmit it. The UDP protocol does not contain any form of information about the 
connection state, and will not reduce the transmission rate in case of congestion. Since 
UDP does not contain any mechanisms for reliable transfer, it header is just 8 bytes. 
In the contrary, TCP has 20 bytes header. Due to the short header, it is faster to send 
UPD datagrams than TCP segments. As a security mechanism, UDP has implemented 
the same checksum as TCP, but it is optional to use. 
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4 The Test bed 
The test bed is treated as two different networks separated by a PEP. In one end we 
have the emulator, which is responsible of emulating an ad hoc wireless sensor 
network. The emulator is connected to a satellite network through the PEP. This is 
illustrated in Figure 7. As described in chapter 2, the ah-hoc devices are treated as 
senders and the satellite modem in the far end of the network as receiver. From a 
theoretical point of view the segments will be transferred from an ad hoc sensor node, 
through an ad hoc network and then over two satellite links. Because we decided to 
use a PEP between the two networks, the networks can be evaluated independently. 
We will first evaluate communication in the ad hoc network using an emulator, and 
then we will evaluate communication in the satellite network.   
 

 
Figure 7 : The Test bed 

 
The ad hoc network is emulated by an emulator created at the CNIT (the Italian 
National Consortium for Telecommunications) lab in Genoa. This emulator is called 
ACE (ASI CNIT Emulator), and was created for CNIT, and funded by the Italian 
Space Agency (ASI), with the intent to emulate satellite networks. The satellite 
network on the other hand, is a genuine satellite network, where one modem is 
stationed in Genoa and one in Naples. Section 4.1 gives some details about the 
satellite network, and in section 4.2 is the ACE Emulator described. 
 

4.1 Satellite Network 
CNIT provides a satellite network, which interconnects 24 different research units. 
The satellite network uses the Hotbird 6 satellite, which is one of 5 satellites in the 
Hotbird constellation. The Hotbird satellites are stationed in geosynchronous 
equatorial orbit at 13ºE and deliver on-board satellite multiplexing of digital 
television, radio and data to Europe, North Africa and most of the Middle East. The 
Hotbird satellites use the SKYPLEX access system developed by Eutelsat. Hotbird 6 
offers a total of 32 transponders (28 Ku band and 4 Ka band) and eight SKYPLEX 
units for on-board multiplexing [25]. The terminal can receive a downlink stream of 
up to 36 Mbps user data rate from a total of 18 uplink carriers, with a combination of 
6 Mbps or 2 Mbps carriers [26]. Measurements show that this satellite network has an 
average RTT of 701 ms, and max and min RTT of 913 ms and 557 ms [28]. The 
SKYPLEX terminal can operate in two modes: continuous (SCPC) or burst (TDMA) 
[26].  
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The terminal is provided by ViaSat Inc. This terminal include an IP router and a 
10/100 BaseT LAN connection. We used this to connect the TCP sender (an ordinary 
workstation computer with Linux OS) with the terminal. Table 1 presents some details 
concerning the SKYPLEX system[26]. 
 

Modulation: QPSK
Transmitt IF Frequency Range: 2150-2300 MHz
Hopping Bandwith: 150 MHz
Nominal Transmit IF signal level: 0 to -40 dBm
Transmit IF impedance: 75 ohm
Transmit return loss:  >11 dB

Modulation Type, spectral shaping, ETSI EN 300 421 compliant with inner 
descrambling and FEC decoding: convolutional code rates only 1/2, 2/3 or 3/4
Receive Symbol Rate: 27.5 Mbaud
RF Input Frequency Range: 1350-1500 MHz
Input Power: Desired Carrier: -60 to -30 dBm
Aggregate Power: < -5 dBm
Input Impedance: 75 ohms
Input return loss: -10 dB min

SKYPLEX Data Terminal Specification 
Uplink

Downlink

 
Table 1 : SKYPLEX Data Terminal Specification 

 

4.2 Emulator 
To evaluate the performance of new technologies, it is essential to do measurement 
tests. The availability of real devices makes the measurement phase easier as well as 
faster. However, a real platform is not always available and, moreover, is the case of 
wireless sensor nodes, large areas, high number of antennas would be required. As a 
consequence, the deployment of such a system would be expensive and time 
consuming, hence not feasible. Three other approaches are often used instead; 
analytical, simulation and emulation. The first applies theoretical frameworks to 
evaluate the performance. Simulation, on the other hand, tries to reprosuce a genuine 
system by software. Simulation is usually based on assumptions and models. For 
complex systems, the models are often simplified, and simulation may not have the 
desired degree of resemblance to the genuine system. Emulation increases the degree 
of resemblance, by using hardware and software together. In emulation the hardware 
acts like the hardware would normally act in a genuine system, and software is used to 
simulate other “non controllable” scenario aspects, like weather conditions and terrain 
properties. 
 
The CNIT research unit at the University of Genoa has designed and implemented the 
ACE system to test the efficiency of on-board satellite circuit and packet switching 
[29]. It is our task to do the necessary changes, if any, to the ACE system, so we also 
can emulate ad hoc links, and adjust the parameters according to the 802.15.4 
specification.  
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4.2.1 Physical Structure 
The ACE system consists of nine computers; the 
Emulation Unit (EU) and eight Gateways (GTW). 
The task of the EU is to simulate the channel.  
Based upon the channel characteristics it decides if 
the packet is dropped. This is described in chapter 
5. The EU is connected to each of the eight GTWs. 
Originally the GTWs were responsible for 
managing the specific functionalities of a satellite 
modem in a real system [27]. For our emulation the 
GTWs manage the functionalities of an ad hoc 
node. The architecture of the emulator is illustrated 
in Figure 8. 
 
TCP sender and receiver can either be GTWs, or 
other computers connected to the ACE system. If 
external computers are connected to ACE, this is 
done using a 100 Mbps Ethernet link directly 
connected to one of the GTWs. The GTWs and the 
EU are connected through a closed 100 Mbps 
switched network. Since we only emulate long delay networks, the delays in these 
links are insignificant to the delay in the network emulated, thus it is disregarded. In 
emulation, the packets are handled differently for each emulation method, this is 
described in chapter 5.  

Figure 8 : Emulator Architecture 

  

4.2.2 Software 
For this project, we have used different computers with different software. All 
software is free open source software. The ACE protocol, including Two State 
Markov Model and the Characteristic model, is developed by CNIT staff and us. 
Description of the different programs is given below. The Emulator (EU) and the 
Gateways (GW) run the ACE protocol. When we use the Two State Markov Model, 
we use external computers for TCP senders and receiver. As shown in the figure 
below, Adrastea is the receiver. To act as a receiver, it runs Iperf as a server. In 
addition it runs Tcpdump and Tcptrace to monitor and measure the throughput. 
Rebecca and Metis run Iperf too, but as clients. Metis is used for TCP NewReno, and 
Rebecca for TCP Westwood+ respectively. For the Characteristic model, the 
gateways will acts as sender or receivers also. The TCP receiver will in this case 
naturally run the same programs as the Adrastea, and the senders will run Iperf as 
clients. 
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Figure 9 : Overview over Test Bed 

 
ACE Gateways 
For both the Two State Markov Model and the Characteristic model, the GWs and the 
EUs way to handle Packet Data Units (PDUs) and Control Packets (CP) is 
programmed in C/C++. These two models are described in details in section 5.1 and 
5.2, respectively. In the Two State Markov Model, the TCP sender A sends a PDU to 
TCP receiver B. At the same time A sends a CP to the EU. The EU decides if the 
packet should be dropped or not, based on calculations with different parameters. This 
calculation is described in section 5.1. In the mean time, B has to store the packet, to 
wait for instruction from the EU. A new CP is sent from the EU to the receiver B, 
which either drops or reads the packet based on the orders from the EU. In the 
Characteristic Model, an additional CP is sent from receiver B to the EU. This CP 
contains Bs position, so the EU can calculate if the packet should be dropped or not. 
This calculation is described in section 5.2. The GW structure regarding the handling 
of packets among the layers, is equal to both models. A TAP-device is implemented 
in between the Data Link layer and the Network layer. By use of the TAP-device, the 
GWs are actually connected by means of a virtual network that takes the PDUs and 
transports them as if they were transmitted over a real satellite system [29]. As shown 
in Figure 10, PDUs travels between the GWs, and CPs between the GWs and the EU. 
When a PDU is arriving in the GW from an external sender, like Metis and Rebecca 
in the Two State Markov Model, it naturally arrives at the Physical layer (as shown 
with red line). The PDU is pushed upwards the layers, as in normal routers and 
gateways. At the network layer, the PDU is pushed downwards, this time through the 
TAP-device, Data Link layer and out through the Physical layer. When the PDU is 
arriving at the TAP-device, a CP is sent to the EU (shown with blue arrow). This 
packet follows the same path as the PDU, when leaving the GW. When the PDU is 
arriving in the receiving GW, it naturally arrives at the Physical layer and is pushed 
upwards. As mentioned earlier, is the PDU stored at the receiver side, pending 
instructions from the EU (CP illustrated with blue arrow). The PDU is stored in the 
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TAP-device. If the Characteristic model is used, the TAP-device will also send a CP 
to the EU (as shown with green arrow).  
 

 
Figure 10 : Overview of ACE Gateway Protocol Stack 

 
Tcpdump 
Tcpdump is a powerful tool that allows us to sniff network packets to make 
statistically analyzes of the traffic. It monitors all traffic, with the according 
timestamps. Users can decide if the packet headers should be printed to the screen on 
the fly, or if packet headers and packet data should be saved to a file for later and 
more detailed analyzes. There are several flags to set in tcpdump, which gives 
opportunity to make detailed expressions to dump exactly the desired traffic. 
Tcpdump works in Linux, the Windows version is called Windump. Tcpdump is 
available at http://www.tcpdump.org/.  
 
Tcptrace 
Tcptrace is a tool for analyzing TCP dump files, like Tcpdump and Windump. It can 
produce several different types of output containing information on each connection 
seen, such as elapsed time, bytes and segments sent and received, sacks, 
retransmissions, round trip times, window advertisements, throughput, and more. It 
can also produce a number of graphs for further analysis. Output for our analyses are 
‘unique bytes sent’, ‘data transmit time’ and ‘throughput’ respectively, and files for 
graphs. Tcptrace is a freeware and can be downloaded from http://jarok.cs.ohiou.edu/ 
software/tcptrace/useful.html. 
 
Xplot 
Xplot is a very useful and simple software for displaying graph files in Linux. It is 
typically used together with Tcptrace, to display the xpl-graphs. Despite its simplicity, 
it displays a very detailed picture of the graphs. Each segment, acknowledgement, 
sack, retransmitted segments are all given different colours so we easily can get an 
overview of the transmission. Xplot is available at http://www.xplot.org/. 
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Iperf 
Iperf is used to measure the TCP and UDP bandwidth performance over a link. One 
computer is set as server, and another as client. Several parameters can be set to 
define the link, like buffer size, window size, segments size, total data to transmit or 
total time to transmit and UDP. During tests, Iperf can generate the set amount of 
data, so users do not have to pre-generate a file to send. Ipfer reports bandwidth, delay 
jitter and datagram loss. Iperf available at http://dast.nlanr.net/Projects/Iperf/  
 
Fedora Core 4 
Fedora is the new Red Hat Linux, and it is developed and distributed by Red Hat Inc. 
It is based on Linux, and all software included is open source and free to use. The 
distribution is released twice a year, and is therefore most suitable for desktop 
computers. It is very easy to update and install new software, because Fedora uses the 
Red Hat Packet Manager (RPM). Users can install software directly from the Internet 
with these packets. Fedora runs on different Linux kernels, even though the kernels 
operate differently. Fedora can be downloaded from http://www.redhat.com/fedora/ 
 
Linux Kernels 
The advertised windows are set differently in the different kernel versions. Kernel 
version 2.2 set the advertised windows to the half of the size as the TCP buffers. In 
the contrary kernel version 2.4 and above, do not. In kernel 2.4, there is implemented 
a new dynamic autotuning mechanism. This mechanism estimates the bandwidth 
every RTT, to derive the receivers’ window. Autotuning is controlled by the new 
kernel variables ‘net.ipv4.tcp_rmem/wmem’. The senders’ window size is not 
constrained, but will grow until throttled by the receivers advertised window. Linux 
2.4 moderates CWND growth by increasing CWND only if the INFLIGHT data is 
greater than or equal to the current CWND. When setting the buffer sizes to 16000 
bytes, we have to take into account that Rebecca runs on kernel version 2.4, and set 
the windows to 8000 bytes instead. 
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5 Emulation of Ad Hoc Networks 
Our results will relay heavily on the models used in the emulation of the ad hoc 
network. It is of great importance that the models are similar to the genuine network, 
and that our constraints are reasonable. The ACE system can emulate a network in 
two different ways, using two different methods. The first model is the two state 
Markov model. This model uses two states to describe the link: a bad state (no 
transmission) and a good state (perfect transmission). In the second method, which we 
have called a characteristic model, the probability of packet loss Ppd is calculated on 
the basis of IEEE 802.15.4 characteristics and a mobility model. Each packet has a 
probability equal to Ppd to be dropped.   
 
The two state Markov model has been used in numerous prior works, and is a good 
model for link simulation. However, we decided to use the characteristic model, even 
though this was a more complex and time consuming task. The reason for this choice 
was to have an ad hoc emulator for future work, also, with this model it is easier to 
modify the IEEE 802.15.4 characteristics. To implement this model on the ACE 
system we had to change the C/C++ code. The existing code is performance 
optimized and very dynamic, thus, also very complex. Because of our lack of 
experience in C and C++ programming, this task was harder and more time 
consuming than first anticipated. When the modifications were complete, we 
experienced problems compiling the files on the emulator. The files compiled 
perfectly separated, but not together. The problem was caused by interconnection of C 
and C++ files. To fix this problem would take some time, after the problems had been 
solved, we would also have to do an application test to verify that our modifications 
gave the correct and reasonable test results. As the work drew closer to the end, we 
evaluated the situation, and decided to change to the two state Markov model. The 
change gave us more time to thoroughly test and evaluate the TCP protocols, which is 
the primary task of this work. 
 
The two state Markov model and the characteristic model are described in sections 5.1 
and 5.2, respectively.  
 

5.1 Two State Markov Model 
The two state Markov model uses a Markov chain to describe the link. The Markov 
chain is a discrete-time stochastic process. These stochastic processes are memory 
less, so at each time step, the model knows witch state it is in, but not in which state it 
previously has been. Each state has a certain probability to change to another state. 
The change from a state to another are called transitions, transitions are based upon 
current, not past, information.  
 
As mentioned, uses our Markov chain two states to describe the link: a bad state (no 
transmission) and a good state (perfect transmission). To give an example, let’s say 
that the good state has a 90 % chance to stay in the good state, thus 10 % chance to 
change to bad state. The bad state has a probability of 50 % to stay in the bad state, 
and 50 % chance to change to the good state. If we computed this chain we might get 
a result like this: good – good – good – good – good – good – bad – bad – good – 
good – good – good – bad – good. By using such a model to describe the link, errors 
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are randomly injected into the channel; consequently the duration of good and bad 
state varies randomly. The real transition probabilities used in our testing are 
presented in chapter 6 along with other scenario aspects.   
 
To emulate this model we connected a TCP sender and a TCP receiver to the ACE 
system. In emulation the TCP sender sends a segment to Gateway 1, which forward it 
to Gateway 2, as indicated with arrow 1 in Figure 11. It immediately sends a Control 
Packet (CP) to the EU, indicated as arrow 2, which contains the address of Gateway 2. 
The EU decides if the packet is dropped or not according to which state the link is in. 
The outcome of this decision is sent to Gateway 2 in a CP. If the link was in a good 
state Gateway 2 forwards the segment to the TCP receiver, if the link was in a bad 
state the segment is dropped.    
 

 
Figure 11 : Emulation of the two state Markov model 

 

5.2 Characteristic Model 
To implement the Characteristic model on the ACE system the C and C++ code had 
to be changed. The Characteristic model had two major differences compared to the 
exciting model: the calculation of the Ppd, and the implementation of a mobility 
model. To modify the calculation of Ppd was simply to change and add some 
parameters, while the implementation of a mobility model required a more extensive 
change. Before the EU decide if the packet is dropped or not it has to know the 
position of both sender and receiver. We wanted the GTWs to calculate their 
movements and positions, thus both parts must inform the EU of their position. If we 
look at Figure12 and consider the left Linux PC as the TCP sender, the TCP segment 
will be sent from the Linux PC to Gateway 1. Gateway 1 forwards the segment to 
Gateway 2, as indicated in Figure 12 as arrow 1. Then Gateway 1 sends a CP to the 
EU to inform the EU that a segment has been sent, this is indicated as arrow 2. The 
CP contains information about the segment, addresses to the communicating gateways 
and the location of the sending station. When Gateway 2 receives a segment, it 
immediately sends a CP to EU, as indicated as arrow 3. This CP is similar to the CP 
sent by Gateway 1, except that it contains the location of the Gateway 2. When EU 
has received a CP from both sender and receiver, the distance between the two 
stations is calculated. Based upon this distance and the Ppd the EU decide if the 
segment should be dropped or not, and if not, at which time it is received. When the 
decisions are made, a CP is sent from the EU to the Gateway 2 with information about 
the outcome of this decisions, this is indicated as arrow 4. If the EU decides that the 

 33



segment should be received, Gateway 2 forwards the segment to the TCP receiver, if 
the segment should be dropped, Gateway 2 does nothing.  
 

 
Figure 12 : Emulation of the Characteristic Model 

 
We have seen that the Characteristic model requires that the receiving gateway sends 
a cp to the EU with position information. On the original ACE implementation this is 
not necessary, because every communication part is stationary. We could avoid this 
by letting the EU calculate the movement of every node. This would simplify our 
implementation, but has some back draws. It would require more processing for the 
EU, for now it would not make much difference, since we only use a few gateways. 
But in the future I might be desirable to add a large number of virtual devices. This 
would also make the emulation unit less dynamic, and the emulation would have a 
stronger simulation resemblance.  
 
Our mobility model is presented in the next section. In section5.2.2 the calculation of 
Ppd is described. The implementation of the Characteristic model could be a thesis 
project itself, while we are more concerned about TCP performance over error prone 
networks. Thus, quite a few constraints have been made in this emulation. The last 
section gives an overview of the constraints which had to be made.  
 

5.2.1 Mobility  
For wireless ad hoc networks, the mobility of the nodes is one of the most important 
factors for determining the channel performance. There are two ways to describe 
movement of nodes, either by real life traces, or simulation. Using real life traces of 
genuine up to date system are the most accurate, but it requires both resources and 
time. Simulation can easily be done by creating a simple code. Many algorithms have 
been proposed for simulation of node mobility, and they can be categorized into two 
groups, group mobility models and entity mobility models [30]. For group mobility 
models, each node is a member of a group, and it moves dependently of the other 
nodes. A real life example is a group of soldiers moving through an area. In entity 
mobility models, a node moves in dependent on the other nodes. A real life example 
of these models is people walking around in a market.  
 
For our work we decided to use the entity mobility model. We chose this model 
because we want to describe the effect of movement for each node independently of 
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the others, and to see how movement affects the implementation of different transport 
protocols. 
 
Entity Mobility Models 
Many algorithms are suggested for entity mobility models. Some of these models are 
described below[30, 31]; 
 
Random Walk Mobility Model: This model is also known as the Brownian Motion 
Mobility Model. This model comes in many forms and derivatives. The basic idea is 
that each node randomly moves around, in a specified area, with random speed. The 
speed is typically a random number between a given minspeed and maxspeed, while 
the angle that describes the movement is a random angle between 0 and 2π. Both 
values are uniformly distributed. For each movement, the model also defines the 
number of jumps or time units the node will walk in the current direction. If a node 
tries to cross the boundaries of the area, it will be given a new direction of movement 
so it does not cross these boundaries. The Random Walk Mobility Model is either 
time based or step based. However, the model does not store information about prior 
speeds and angles; this might produce unrealistic changes of speed and direction [30]. 
This problem is solved in other entity mobility models, like the Gauss-Markov 
Mobility Model. 
 
Random Waypoint Mobility Model: This model is quite similar to the Random Walk 
Mobility Model. The main difference between the two is that the Random Waypoint 
Mobility Model also includes stop time between each change in direction. The stop 
time is a random pause. The relationship between pause time and speed highly affects 
the stability of the network. 
  
Random Direction Mobility Model: When using the Random Walk Mobility Model 
and the Random Waypoint Mobility Model, in some situations the nodes tend to 
cluster in the center of the simulation area. The Random Direction Mobility Model 
tries to cope whit this problem. Nodes in this model are forced to walk all the way to 
the boundaries of the simulation area before they can change direction. This model is 
similar to the Random Waypoint Mobility Model in all other aspects.    
 
Gauss-Markov Mobility Model: This model is somewhat similar to the Random Walk 
Mobility Model. The purpose of this model is to avoid sudden changes of direction 
and sharp turns. The Gauss-Markov Mobility Model uses a parameter α, where α is a 
number between 0 and 1, to determine the degree of randomness of the nods 
movement. 0 is totally random and the movement will be identical to the Random 
Walk Mobility Model, while 1 is a fixed number and the node will walk in a straight 
line. The equation used for calculating the movement takes prior movement in to 
account, thus creates a more realistic movement.  
 
Random Trip Mobility Model: The purpose of this model is to create a more realistic 
movement of nodes within a city environment. This model is defined by a set of paths 
over a connected domain, an initiation rule and a trip selection rule [31]. The set of 
paths are defined as a number of waypoints connected together, where the paths are 
the “roads” from one waypoint to another. A node gets an initial position, set by the 
initiation rule. After an initial position is set, the trip selection rule chooses a random 
trip, consisting of one or more paths, which are traversed whit a random speed. 
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Our Mobility Model 
We decided to implement the Random Waypoint Mobility Model. Due to the 
problems described in the previous section we made some modifications. This model 
is relatively easy to implement, it is also used in numerous simulations and is widely 
recognized. Our model is step-based and not time-based, so real time is not 
implemented in our model. We use time units to represent time; for each time unit, all 
nodes either move or pause. The initial positions of the nodes are uniformly 
distributed around the whole simulation area. After initialization, all the nodes 
immediately start to move. We use three random variables to generate the movement; 
velocity, angle (0-2π) and a variable we call time_in_vector. The velocity is the speed 
of the nodes and angle generates directions. The last presented, time_in_vector, 
describes for how many time units a node is in a vector. When a node starts to move, 
it randomly chooses velocity, angle and time_in_vector with a uniform distribution. 
Velocity and angle are constant until a waypoint is reached. Time_in_vector is a 
counter, which is decreased for each step. When time_in_vector is 0, the node has 
arrived at its waypoint, and pauses for a random time. When the pause time is over, 
the three random variables are generated again, and the node starts to move. The 
random generator is uses microseconds as seed, which it gets from the system clock 
by using the datetime function. 
 
Before a node takes a step, it checks if the step will exceed the boundaries of the 
simulation area. If the boundaries will be exceeded, the node stops and pauses, instead 
of moving. When the pause time expires, it finds new movement parameters. These 
parameters are checked, and it is made sure that the new waypoint, not only the next 
step, is inside the simulation area. Notice that this mechanism is only used for the first 
waypoint after the node tries to exceed the boundaries. The purpose of this 
mechanism is to avoid too many stops at the edge of the simulation area.  
 
Our mobility model has no limits with regards to the number of nodes or the number 
of steps. 

 
 Graph 2 : Node Mobility 
 

Graph 2 shows the movement of 5 nodes over 200 steps. The simulation area is 
limited to 200 in both x and y direction. Graph 3 shows the same movement, but 
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plotted with a dot for each step. For each vector (straight line) the length of the steps 
(distance between dots) may vary. This length describes how far the node moves 
within one time unit, where one time unit could for instance represent one second or 
one millisecond. If the length of a step is large, the node is moving fast (high 
velocity), if the length is short, the node is moving slowly (low velocity). For each 
vector the speed is the same. The pause time can however not be seen in this graph, as 
this is represented as dots in exactly the same positions. 
 

 
Graph 3 : Node Mobility with Steps 

 
As mentioned previously, the angle of movement of a node in the random waypoint 
mobility model might sometimes be very small. The small angles generate unnatural 
movement. To cope with this problem we generate the angles using a normal 
(Gaussian) distribution. The initial angles are uniform distributed. The following 
angles are normally distributed around the last angle, with a varying standard 
deviation. In this way the node will take less sharp turns. In Graph 2 and Graph 3 the 
angles are uniform distributed. In Graph 4 the node is normally distributed with the 
mean equal to the last angle, and the standard derivation equal to 3. In this graph the 
number of small angles are reduced compared to Graph 2 and Graph 3. In Graph 5 the 
standard deviation has been decreased to 1.5, this results in yet more reduction of 
small angles. The angle which is generated after the node hits the simulation area edge 
also uses the last angle as mean. If the angle will move the node outside the 
simulation area, the angle is disregarded, and a new random angle is generated. If the 
standard deviation is low, it might take some time before an acceptable angle is found. 
For instance, let’s say a node has the initial position in the centre of the simulation 
area. The first angle it gets is 0, and it moves in this direction until it reaches the 
boundaries of the simulation area, and hits the edge with an angle of 90 degrees. It 
pauses and then tries to find a new angle normally distributed around 0. The angles 
from 0 to π/2 and 3/2 π to 0 are not allowed. If the standard deviation is sat to 0,5, 
only a few percentage of the generated angles are in the acceptable area. This problem 
could be solved by forcing the angle to be randomly generated of a range of only 
acceptable angles.   
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Graph 4 : Node movement with μ = 3 

 

 
Graph 5 : Node Movement with μ = 1.5 

 
Graph 6 shows the distances from one node (the node represented with green colour 
in Graph 2 and Graph 3) to the four other nodes. It should be noted that the node 
which the distance is calculated from is also moving. Thus, this graph does not 
represent movement from one stationed sink to surrounding mobile nodes. 
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Graph 6 : Node Distances 

 

5.2.2 Channel Modelling 
Packet drop is the most important parameter for our TCP performance evaluation. 
This is due to TCP Congestion Control mechanism which is described in chapter 3. 
This section gives an overview of some aspects of our channel model, with focus on 
packet drop. First some parameters are presented, and then the calculation of the 
probability of packet drops is described with mathematical equations, which have 
been implemented in the emulator. The last section is a description of how the 
probability of packet loss is evaluated.  
 
Link Parameters 
The link parameters have been set according to the IEEE 802.15.4 specification. 
We decided to use the 2.4 GHz frequency band. This band is one of the so called 
Industrial, Scientific and Medical (ISM) frequency bands. Below is a table which 
indicates some of these parameters [22]. 
 

 
Table 2 : IEEE 802.15.4 Parameters 

 
Table 2 shows other parameters used. Each parameter is described together with its 
use in section 5.2.2. 
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Symbol Description Value
R Coderate 1
Tx Power Transmission Power 10 mW
G Antenna gain 1 mW
Φ(ω) Power Spectral Density (PSD) Bandwidth/2
k Boltzman constant 1.380 6505×10^23 joules/K
T Noise Temperature 190 K
n Packet Size 60 kB

Other Parameters 

 
Table 3 : Other Ad Hoc Network Parameters 

 
Calculation of Probability of Packet Drop 
In this calculation many simplifications and approximations have been used. This has 
been done to avoid long computation time. 
 
For the 2.4 GHz band, O-QPSK modulation is proposed in the specification. We use 
Rayleigh fading to describe the propagation in the environment. Rayleigh fading is a 
reasonable model when there are many objects in the environment that scatter the 
signal before it arrives at the receiver.    
 
Before we can calculate the probability of packet drop (Ppd), we have to calculate the 
probability of bit error (Pbe). For simplifications we used the formula for BPSK 
modulation; this modulation is also based on the PSK principles and is very similar to 
O-QPSK modulation. For BPSK modulation over a Rayleigh fading channel the Pbe is 
equal to [32]: 

 
 

      (1) 
 
 
Here R is equal to the code rate. No error correction scheme is specified for IEEE 
802.15.4, thus R has been neglected because it is equal to 1. γ is the signal to noise 
ratio (SNR), and given by: 
  
 
       (2) 
 
 
The SNR is a term which describes the quality of a signal. This is the ratio between 
the wanted signal energy per bit (Eb) and the disturbance created by the surrounding 
environment, so called noise (N0). Eb is the bit energy and is given by: 
 
 
   (3) 
 
 
In equation 3 Tx Power is the transmission power. A genuine device is expected to 
operate with transmission power of -3 to 10 dBm, with 0 dBm being typical [22]. As 
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the battery power in a device decreases, so will the transmission power. For 
simplifications we have used a constant, maximum transmission power which equals 
10 dBm (10 mW). Tx Power is multiplied by the bit duration. The bandwidth is set to 
250 kb/s, according to Table 2. G represents the antenna gain. We assume that none of 
the devices have antenna connectors, and therefore can be interpreted as effective 
isotopic radiated power (EIRP). The devices have then 0dBm antenna gain, which is 
equal to 1 mW. The last element in equation 3 is the attenuation L and is given by: 
 
 
       (4) 
        
 
In Equation 4 d is the distance between two nodes, of which one is sending and one 
receiving. This distance is calculated according to the mobility model described 
above. λ refers to the wavelength. λ is given by the speed of light (c) divided by the 
frequency (f). The speed of light is approximately 3 × 108 m/s, while the frequency is 
2.4 GHz (2.4 × 109 Hz). Now the calculation of the bit energy is done, and we return 
to equation 2. To complete the calculation of the SNR we need to find the noise level 
N0, which is given by:  
 
     (5) 
 
 
In this equation Φ(ω) is the power spectral density (PSD). The PSD describes how the 
power of a time series is distributed with frequency. This is usually derived from the 
Fourier transform. PSD of a signal is the square of the magnitude of the Fourier 
transform of the signal. In our case the PSD can be approximated to the half of the 
bandwidth, this approximation is very simplified, but is a good approximation. k 
refers to Boltzmann’s constant, which is equal to 1.380 6505 × 10−23 joules/Kelvin. 
The last variable in this equation is T. T refers to the noise temperature, which is the 
temperature of a resistor that has noise power equal to that of the device or circuit. 
This phenomenon is summed up as noise temperature. The exact value for T can be 
calculated through advanced functions and equations, but usually a static number is 
used. For simulating these types of devices it is common to use a noise temperature of 
190o Kelvin, which we also decided to use.  Now that we have found the noise level, 
we can derive SNR using equation 2, and then calculate the probability of bit errors.  
 
Our goal for this calculation is to find the probability of packet drop, Ppd. The 
codeword error probability can be evaluated as follows [32]: 
 
  
 

(6) 
  

Here p represents the bit error probability derived from equation 1. n is the number of 
bits in the packets, in other words the packet size. t is the number of correctable bits. 
As mentioned earlier no error correction coding is used, so t equals 0. To calculate 
this equation we have to calculate the faculty of n. Because n is such a large number, 
this calculation requires a lot of computation time and resources.  
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Since i start at 1, equation 7 yields: 
 
 
    (7) 
 
 
As in equation 6 p is the probability of bit error derived from equation 1 and n is the 
packet size. By computing the equation 7 we will find an approximation for the 
probability of packet drop.  
 
 
Evaluation of Packet Drop 
To evaluate if a packet is dropped or not, a two-state model is used. In the first state 
the packet is received without problems, in the second state the packet is dropped. The 
emulator first calculates the probability of packet drop (Ppd) as described above. Ppd is 
used as a threshold to separate the two states. The emulator will generate a random 
uniformly distributed number (rand) between 0 and 1. If rand is larger than the 
probability of packet drop (rand > Ppd) the packet is received without problems, i.e. 
the first state. If the random number is less then the probability of packet drop (rand < 
Ppd) the packet is dropped, i.e. the second state. 
 

5.2.3 Constraints  
These constraints have been enforced when creating the mobility model: 
 
Access: no access scheme is implemented. An access scheme should generally be 
implemented in emulations and simulations, which seek to imitate genuine radio or 
wireless communication. These schemes have a major effect on communications 
where many devices try to connect to one network device, e.g. many ad hoc devices 
that try to connect to one sink. If two devices try to use the link at the same time, the 
signals will be mixed and unreadable for the receiving network device. If collision 
occurs the devices must retransmit the packets. In addition access mechanisms require 
extra signaling. The physical structure of the emulator limits the number of nodes to 
8. Thus, collisions would not occur so often. In sensor network the nodes transfer a 
relative small amount of information, thus the packet size is small. Each node requires 
only a small portion of the bandwidth during transmission, which also will reduce the 
probability of packet collisions. Due to these facts, the access scheme would not have 
a major effect on our results. 
 
In 802.15.4 specification use the Carrier Sense Multiple Access with Collision 
Avoidance as access scheme, while the TDMA scheme is implemented in the ACE 
system. 
 
Routing: routing in an ad hoc network is a complex task. Our ad hoc network model is 
limited by nodes and we have limited the number of paths a packet can take through 
the network to one. Thus, nodes do not need to store and evaluate routing information. 
For this reason we have neglected routing. 
 
Calculation of packet drop: as mentioned in section 5.2.2 many constraints have been 
taken to simplify the calculation of packet drop. Beside the calculation itself, the 
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constraints include transmission power, noise temperature and power spectral density. 
A proper model for battery lifetime and energy levels could also be implemented, but 
we concluded that such a model would have minor effects on the performance 
evaluation. Battery lifetime and energy consumption affect the transmission power. In 
this work, however, for the sake of simplicity, the impact of energy consumption on 
the performance has been neglected, and therefore the transmission power has been 
assumed constant. 
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6 Measurement Concept 
The TCP versions were tested over a dedicated links using just one connection, with 
no other traffic present. In such scenarios it is relatively easy to evaluate the 
performance and the behaviour, because there are less variables. Using an open link, 
with traffic shared with other users would create a more realistic scenario, but on the 
other hand, the results would vary a lot, which would cause the results to be spread 
and hard to evaluate. To oppose this we would had to increase the number of trials to 
several hundreds, or even thousands of trials. Another solution would of course be to 
start multiple defined connections over the dedicated link. This would be an 
interesting task where we could measure friendliness and performance over a shared 
link including a variety of protocols. But because of our time constraints we will leave 
this up to others.   
 
Our evaluation of performance is based on the throughput. The throughput describes 
how much data is transferred over the link, usually in bytes pr seconds or as an 
average. Setup and teardown (Syn and Fin packets) of the TCP connection have not 
been included in the calculation of the throughput. We only look at the bulk 
throughput performance witch is dominated by the data transfer phase.  
 
The next two sections describe individually the scenario for the satellite network and 
the ad hoc sensor network.   
 

6.1 Satellite 
In the satellite test, the TCP sender was in Naples and the receiver was in Genoa. The 
receiver in Genoa registered the data by using the Tcpdump, so the registration of 
TCP traffic is based on segments received by the receiver and not the ACKs received 
by the sender. 
 
The tests were run on a dedicated 2 Mb/s link. Packet headers, coding schemes and 
modulation add redundant data to the transmission. If we disregard this redundant data 
we will get the effective bandwidth, which is measured to approximately 1.2Mb/s. 
The packet size has been sat to 1500 bytes, which is a standard size for IP packets. By 
subtracting the IP and TCP header we have a TCP payload of 1448 bytes (1550 bytes 
– 20 bytes – 32 bytes).    
 
In the trials 10 MB (10486416 bytes) of data were sent, so each trial has a variable 
duration. 10 MB was chosen simply because it gave reasonable trial durations, which 
varied from 100 seconds to 270 seconds, with and average of approximately 150 
seconds. 
 
A total of four TCP versions were tested: TCP Hybla, TCP NewReno with SACK, 
TCP Vegas and TCP Westwood+. TCP NewReno is always interesting to take into 
account, since it is the most common TCP implementation. TCP Hybla, TCP Vegas 
and TCP Westwood+ are all TCP version which are expected to perform well over a 
satellite link.  
 
Table 4 shows a summary of the parameters in the measurement concept.  
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TCP Veriants: TCP Hybla, TCP NewReno with SACK, TCP Vegas, 
TCP Westwood+

Registered at: Sender
Packet Size: 1500 bytes
TCP Payload Size: 1448 bytes
Amount of data in each trial: 10 MB
Period of each trail: Variable

Scenario Parameters for the Satellite Link

 
 Table 4 : Summary of Satellite Measurement Concept 

 

6.2 Ad Hoc Sensor Network 
This section describes the scenario for the ad hoc sensor network. In the network we 
emulate, data is sent from wireless sensors, through a defined channel, to a sink which 
again forwards the packets to the satellite link. In this scenario, we just have one 
sender and one receiver at the same time in an enclosed environment. This way the 
sender does not have to share the bandwidth, and can send with the highest throughput 
possible.  
 
For this scenario, we decided to test two different TCP versions; TCP NewReno and 
TCP Westwood+. Both versions are well-known, and are used in different networks 
today. They are both including Congestion Control and the SACK-option, but are still 
slightly different in the way the work. A more detailed description of TCP NewReno 
and TCP Westwood+ is given in section 3.1.3 and 3.1.4, respectively. 
 
We sat the bandwidth to 250 kbps. This bandwidth is standard for the IEEE 802.15.4 
Physical Layer, when using the 2.4 GHz frequency. The 2.4 GHz band operates 
worldwide, and is often used for wireless communication [20]. Wireless sensors 
transmit small amount of data relatively often, with the shortest transmission time 
possible. Maximum segment size for IEEE 802.15.4 is 128 bytes [20]. We decided to 
set the maximum segment size, MSS, to 60 bytes. This results in a payload size of 40 
bytes, since the TCP header is 20 bytes. Additional, the sensors have limited memory, 
so we decided to set the TCP buffer sizes, for both receiving and sender buffer, to 
16000 bytes. Thus the advertised window size will be 8000 bytes. Since we emulate 
communication between two similar devices, is it important to have the same 
configurations on both TCP sender and TCP receiver. The advertised window size is 
in Linux kernel 2.2 automatically set to the half of the TCP receiving buffer size, but 
we had to manually set the advertised window size to 8000 bytes in kernel 2.4. Before 
testing, we had to set the delay for the channel. We had to take into account different 
quantity of nodes, different sizes of test area and piconets. We wanted to emulate a 
multihop ad hoc network. Woon and Wan have in [14] tested multihop transmission 
with bandwidth 250kbps, packet size 60bytes and a transmission range at 15m. We 
decided to use a delay of 10 ms, 30 ms and 50 ms, according to Woon and Wans 
results, this corresponds to networks with 2, 5 and 8 hop routing, which is reasonable 
sizes of genuine sensor networks.  
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We used Iperf to generate the traffic, and to measure the bandwidth. Iperf default 
sends data and runs test for 12 seconds, to calculate the bandwidth. But in our case we 
wanted to have equal tests, with different delays and packet loss, independent of time. 
We decided to test with an equal amount of sent data instead of measuring bandwidth 
in a set period. With the relatively low bandwidth and the small packet sizes, we 
decided to set the file size to 1 Mbyte. We estimated the test to last from 150 to 1200 
seconds, depending on the different parameters, which is a reasonable time to get 
accurate results.  
 
We used the two state Markov model to simulate the channel. The model use two 
parameters, p_GB and p_BG, as transition probabilities between the good state 
(transmission) and the bad state (no transmission). The transition matrix for our model 
is illustrated in (1).  

 
    1) 
 

   (

 (1) p_BG is the probability of transistion from bad (B) to good (G), and p_GB is the 

 
 
In
probability of transition from good to bad. While p_GG and p_BB are the probability 
that the model will stay in its current states: probability of staying in good when in 
good and staying in bad when in bad, respectively. Figure 13 also illustrates the 
transitions between the states. 
 

 
Figure 13 : Transitions in the Two State Markov M l 

 
e used the transition probabilities from [13], which refer to [33] for the calculation 

ode

W
of p_GG and p_BB using a simplified analytical model for calculation. Table 5 gives an 
overview of the p_GG and p_BB, and the corresponding values: 

 

0.01 0.001 29.998 0.99933 0.32945 0.000671 0.670548 1.49132
0.01 0.01 19.978 0.99752 0.75431 0.002482 0.245692 4.07013
0.01 0.1 9.7732 0.99187 0.92685 0.008128 0.073149 13.6708
0.08 0.001 29.998 0.99901 0.00824 0.000993 0.991761 1.00831
0.08 0.01 19.978 0.99069 0.07729 0.009314 0.922714 1.08376
0.08 0.1 9.7732 0.94035 0.46319 0.059646 0.536812 1.86285
0.64 0.001 29.998 0.999 0.00119 0.001 0.998815 1.00238
0.64 0.01 19.978 0.94035 0.01183 0.059646 0.988166 1.01198
0.64 0.1 9.7732 0.90182 0.11638 0.09818 0.883624 1.1317  

Table 5 : Transition Probabilities for Two State Markov Model 
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The values for p_GG and P_BB are calculated on the basis of the normalized Doppler 

(2) 

Here f_0  the node, c_0 is the 

able 6 gives a summary of the parameters used in the ad hoc sensor network 

bandwidth (f_dT) and the fading margin (F) represented in dB, these values are the 
physical representation of the link. The normalized Doppler bandwidth is given by the 
equation: 
 
 

 
 is the frequency, which is 2.4 GHz, v_0 is the velocity of

speed of light which is approximated to 3 * 10^8 m/s, and the T is packet duration. In 
our case, the transmission rate is 250 kbps and the packet size is 60 bytes. Packet 
duration is ( 8 * 60 bytes ) / 250000 bps = 0.00192 s, or approximately 2 ms. By 
evaluating (2) we can derive an expression of the node velocity v_0. For the three 
values for f_dT: 0.01, 0.08 and 0.64, the corresponding velocities are 0.65 m/s, 5.21 
m/s and 41.67 ms, respectively. The fading margin is a parameter which describes the 
total fading of the system, and includes antenna heights, gains, link loss, transmit 
power and receiver sensitivity. The average packet loss (p_E) is given for each of the 
corresponding values of p_BG and p_GB. p_E is dependent both on the normalized 
bandwidth and fading margin. 
 
T
scenario: 
 

TCP versions: NewReno, Westwood+
Bandwidth: 250 kbps
Maximum Segment Size: 60 bytes
TCP buffers: 16000 bytes
Advertised Window: 8000 bytes
Filesize: 1 Mbytes
Delay: 10ms, 30ms and 50ms

Scenario Parameters in the Ad-hoc Sensor Network 

 
Table 6 : Summary of Ad Hoc Sensor Network Measurement Concept 
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7 Results and Discussion 
This chapter is devoted to the performance analyses. The description is two-folded: 
firstly the satellite link has been investigated and after the wireless ad hoc link. It is 
important to clarify that in all the tests, on both the satellite and the emulator, the 
receiver side registered the data. The TCP sender and the TCP receiver will have their 
own comprehension of what happened during the transmission. This is due to the lack 
of knowledge to why packets are dropped. If the data is registered at the sender side, 
the CWND will show a higher value than actually experienced, due to the fact that the 
sender is not aware of the actual success of the transmission until an ACK segment is 
received.  On the contrary, if the transmission information is registered at the receiver 
side, a more accurate throughput value will be registered, because the sender side will 
take in to account RTT, propagation delay and bottlenecks. The drawback of 
registering at the receiver side is that the number of retransmissions may not 
accurately reflect the number of lost packets. In this case, the number of 
retransmission is the number of packets which are received at least once, not lost. The 
number of out of order packets indicates lost packets.  
 

7.1 Satellite Link 
20 trials were run for each of the four TCP variants, divided over two different days. 
The first day trials 1 to 10 were run for each TCP variant, and then a few days later 
trials 11-20 were run. 
 

7.1.1 Link Degradation 
We experienced different results for the two days, caused by the different degradation 
in the link. The degradation is usually only caused by packet drops and 
retransmissions. In our testing we also experienced many out of order segments.  
 
The main performance degrading phenomenon is retransmissions. Retransmissions 
are either caused by corruptions, congestion or to long delay causing timeouts. 
Corruption occurs if the CRC check fails, while congestion occurs if the buffers in 
network routers are overloaded and packets are dropped. Timeout occurs if a TCP 
sender for some reason does not receive an ACK for a packet. TCP senders have a 
timer which start when a segment is sent, if and ACK message for the specific 
segment is not received before the timer expires, the segment is retransmitted. In all 
these cases a retransmission of the missing packet is necessary. Even though there 
may be various reasons why the packets fail to arrive, the TCP protocols interpret this 
as congestion in the network. And since it assumes the same cause in all cases, it also 
acts in the same way for all retransmissions. In case of congestion, the appropriate 
thing way to act is to reduce the sending rate, to avoid too much packet loss.               
 
On the first test day no retransmissions were registered, while on the second test day 
we experienced an average of 7.2 retransmissions per trial. 13 trials experienced 
retransmissions, which corresponds to 16.25% of the total number of trials, for these 
trials the average number of retransmission were 22.62. Graph 7 shows an overview 
of the number of retransmissions for the different trials. 
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Graph 7 : Number of Retransmitted Segments 

 
Graph 8 shows the average number of retransmissions, test day one and two 
corresponds to the columns in area 1 and 2, the columns in area 3 is the number 
average retransmissions for all trials. Since no retransmissions were experienced on 
the first day and they both contains the same amount of trials, the total average is the 
half of the average experienced on day two.    
 

Average Restransmissions

0

2

4

6

8

10

12

14

1 2 3
1 : 1-10, 2 : 11-20; 3 : 1-20

A
ve

ra
ge

 N
um

be
r o

f 
R

et
ra

ns
m

is
si

on

Hybla
New Reno
Vegas
Westwood

 
Graph 8 : Average Number of Retransmissions 

 
In our tests the corruption is present because of link degradation, while the congestion 
is exclusively caused by the single TCP connection. TCP NewReno sets the size of 
CWND (sending rate) according to the number of acknowledged segments. CWND is 
increased for every ACK segment, and not decreased until an ACK fail to arrive. It is 
therefore expected that TCP NewReno will experience more retransmissions than the 
other TCP variants. This expectation correlates to our findings. As Graph 8 illustrates, 
TCP NewReno has by far the most retransmissions. The other TCP version uses 
bandwidth estimations to adjust the CWND. This has some major benefits. Since both 
TCP NewReno and TCP Westwood+ halves the CWND when duplicate ACKs are 
received will this have a major degradation of the performance. By estimating the 
bandwidth TCP Westwood is able to decrease the CWND before segments are 
dropped, and in this way reduce the retransmissions and the number of times CWND 
is halved. TCP Vegas has by far the least amount of retransmission. TCP Vegas 
calculates the difference between estimated output and measured output to avoid 
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congestion. This has shown to be a very good measurement and TCP Vegas is able to 
reduce packet loss due to congestion to almost 0. We assume that the retransmission 
for TCP Vegas is caused by link degradation rather than congestion. TCP Hybla is 
most different from the other TCP variants, because it only uses bandwidth estimation 
to increase and decrease the CWND. To be able to do this it has introduced many set 
of rules. This TCP variant is developed for networks with long RTT and is said to be 
more efficient then the TCP standard [6] for satellite network, thus a larger CWND 
has to be expected, as a result losses will be more frequent. In our tests, the loss rate 
for TCP Hybla is approximately the same as for TCP Westwood+.  
 
The average number of out of order segments was almost the same for the two trial 
days, 3.6 and 2.8 for trial day one and trial day two, respectively, this gave a total 
average of 3.2. However, on trial day one they seemed to have a total random 
distribution, while on the second day they were closer to an average and seemed to be 
distributed more like uniform distribution. Graph 9 shows all the trials for each TCP 
variants with the corresponding number of out of order segments. 
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Graph 9 : Out of Order Segments 

 
Graph 10 shows the average number of out of order segments. First is the average 
number of out of order segments for trial day one presented (1), the trial day two (2) 
and then last the total average.  
 

 50



Average Segments Out of Order

0

1

2

3

4

5

6

1 2 3

1 : 1-10, 2 : 11-20, 3 : 1-20

A
ve

ra
ge

 N
um

be
r o

f S
eg

m
en

ts
 

O
ut

 o
f O

rd
er Hybla

New Reno
Vegas
Westwood

 
Graph 10 : Average Out of Order Segments 

 

7.1.2 Performance 
As mentioned, throughput is the main parameter we will evaluate. Graph 11 illustrates 
the average throughput in bytes for every trial for each TCP variant.  Graph 12 and 
Graph 13 shows the average throughput values for each TCP variant. Graph 12 and 
Graph 13 differs only in the scale of the Y axis. The values are the average of all 20 
trials.  
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Graph 11 : Throughput Values for Satellite 
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As can be seen; TCP Vegas performed best with an average throughput of 75045.2 
B/s, with the minimum of 49347.6 B/s and the maximum of 107535.3 B/s. As 
mentioned earlier, uses TCP Vegas measures of RTT to estimate the bandwidth, and 
has linear increase and decrease of the sending rate. This way TCP Vegas is able to 
find the available bandwidth and continuously utilize it. This results in generally high 
performance and the best average throughput in our test. Graph 14 illustrates the 
throughput of TCP Vegas, considering out of order segments and retransmissions. 
Each trial is shown with both retransmissions and out of order segments. The green 
triangles in the upper part of the graph illustrate the throughput performance in bytes 
for the corresponding trials. 
 

 
Graph 14 : Throughput for Vegas over Satellite 

 
As seen in Graph 12 and Graph 13 TCP New and TCP Westwood+ have almost equal 
average throughput. These TCP variants are the two most similar of the test subjects. 
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The main difference between the TCP variants is the upgrade of TCP NewRenos Fast 
Recovery algorithm, to the Faster Recovery algorithm for TCP Westwood+. An 
updated version of TCP Westwood+ takes also advantage of the Adaptive Start 
(ASTART) algorithm. Prior work has shown that TCP Westwood+ is better to 
estimate the available bandwidth and this improves the throughput [12]. However, in 
our test the two TCP variants had a very similar average throughput performance. 
Graph 15 and Graph 16 shows the throughput performance of the TCP NewReno and 
TCP Westwood+, respectively. As in graph 14, also the retransmissions and out of 
order segments are illustrated for each trial. 
   

 
Graph 15 : Throughput for NewReno over Satellite 

 

 
Graph 16 : Throughput for Westwood+ over Satellite 

 
TCP Hybla had the lowest average throughput performance. This TCP version is 
created especially for long RTT connections, as is typical for satellite. Prior work [6] 
concludes that TCP Hybla performs better than TCP NewReno for a variety of RTT. 
The result of our test concerning this TCP variant was not expected. Graph 17 
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illustrates the throughput performance of TCP Hybla with the retransmissions and out 
of order segments in the bottom of the graph.     
 

 
Graph 17 : Throughput for Hybla over Satellite 

 
If we evaluate the throughput with respect to the out of order segments for the four 
last graphs, we can easily see that the out of order segments seem to affect the 
throughput. Out of order segments are normally only present when a TCP connection 
uses more than one path from the sender to the receiver. If one of the paths has a 
longer delay than the other, the packets will not arrive in the same order as they were 
sent. However, in our case the packets had only one way through the network, so no 
second path could cause delays. Also, there is the question of why the out of order 
segments should cause that much degradation in the first place? As mentioned, does 
not the TCP protocol reduce the transmission rate because of out of order segments. 
Further investigation of the TCP dump files revealed a relative high number of 
spurious retransmissions. This was revealed by a high number of D-SACK 
acknowledgments segments and unexpected behaviour. After analyzing the Tcpdump 
files, we saw three events which occurred more then expected. First was a normal out 
of order segment situation, caused by three duplicate ACKs. This can be considered as 
a normal retransmission, and congestion avoidance was invoked. In the second event 
the sender also had to retransmit because of three duplicate ACKs . In this case the 
packet was correctly received, and the receiver replied with a D-SACK segment. Thus 
the sender did not invoke the congestion avoidance. The third event was an out of 
order segment, caused by time out. Then the sender retransmitted the segment, and 
waits for an ACK. Then it reveries a D-SACK segment, and instead of setting the 
CWND to 1 and invoke slow start as it normally does when timeout is experienced, it 
continues to use the old CWND. Notice that only the two last events cause the 
generation of a D-SACK acknowledgment. In the cases where D-SACK is sent, the 
CWND is not increased for one RTT, with many spurious retransmissions, this will be 
performance degrading. In the cases where a lot of out for order segments were 
registered, there was also registered many spurious retransmissions, this is why out of 
order segments seemed to have an effect on the throughput performance. 
 
The spurious retransmissions were caused by timeouts. There are two reasons why 
this can occur. One reason could be large buffer queues which add extra delay. This 
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delay, may in addition to the already existing delay in the satellite network, could 
cause the timer to expire, which would cause timeout and retransmission. Another 
reason for the timeouts can be delays in the resource allocation. The resource 
allocation algorithms are constantly analyzing the demanded bandwidth and change 
the TDMA slots accordingly. The two link end-points negotiate the allocation of the 
TDMA slots every RTT. This negotiation may cause delays of up to a half RTT. This 
delay may, in addition to the other delays in the satellite network, cause the TCP 
senders timer to expire and cause timeouts. To investigate buffer capacity and 
resource allocation algorithms is beyond the scope of this project, so no further 
investigation were done to find the exact cause of the spurious retransmissions.  
 
It should also be noted that other research groups that tested during the same period 
also experienced unexpected behaviour on the satellite test bed.   
    

7.2 Emulation of Ad Hoc Network    
A huge amount of data was collected during the emulation of the ad hoc network. The 
trials varied both in number and in duration. In some of the trials the variation in 
throughput was large, in these cases we had to increase the number of trials to get the 
distribution of the throughput values in a normal distribution, with as low standard 
deviation as possible.  A high number of trials will reduce the influence of divergent 
throughput values. The increase in number of trials will cause the mean value to be 
closer to the correct average value. In the cases of low packet loss, the variance of the 
throughput values were small, in these cases we did not run as many trials. As test 
data we sent 1 M byte of randomly generated data, due to the different throughput 
values the duration of the trials varied.   
 
During testing we encountered two problems with the emulator. One problem was 
caused by the random generator in the implementation of the two state Markov model. 
The first trials always came out with divergent throughput values. The implemented 
random generator works as follows: one seed is generated, upon generation the second 
seed, the prior seed is used. This will give the second value a more random pattern. 
The third seed will again be calculated on the basis the second seed and so on. The 
random generator needed a few trials two give a random distribution of seed which 
was acceptable to use. Graph 18 illustrates an example of a trial using Westwood, 
where each trial is given in Bytes/s. We can clearly see that the throughput values get 
stable after four trials. If we did not know the cause of the divergent values, we would 
have to increase the number of trial to get a correct average, as described a bow. Since 
we knew the cause and the pattern was clear and easily identifiable, we removed these 
divergent values from the average performance results. 
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Graph 18 : Westwood Trial Example 

 
The second problem was that the emulator added an extra delay in some cases where 
the delay was 10 ms. The emulator was created for the primal goal of emulating a 
satellite network with delays ranging from 500 to 700 ms, and delays as low as 10 ms 
had never been tested. The extra delay was only added in the case of 10 ms delay. The 
emulator printed warnings in the output window, so this was generally easy to pick 
up. These trials were neglected on the basis of the warning messages in from the 
emulator. However, in some of the trials with 10 ms delay we have an unnatural low 
throughput performance compared to the 30 ms and the 50 ms trial, this may be cause 
by these extra added delays. 
 

7.2.1 Link Degradation 
As mentioned, is the two state Markov model used to simulate the channel. This 
model introduced two transition variables p_GG and p_BB. These parameters describe 
the state of the link at all times, and decide if transmission is possible or not. These 
are the only parameters which causes link degradation.  
 
The introduction of delays aggravates the probability of errors. The delay itself is not 
degrading. The aggravation occurs because the states in the two state Markov model 
changes over time, not for each transmitted packets. The segments might be sent in a 
good state, but during the transmission period the model might change from a good 
state to a bad state. For segments with long delays the probability that the model will 
change from good to bad state during the transmission is higher. 
  
As previously described, the traffic registration with Tcpdumt took place on the 
receiver side. The Graph 19 and Graph 20 illustrate the back draw of registering 
traffic at the receiver, more inaccurate packet loss registration. Graph 20 is a trial 
where the p_GG and p_BB is 0.9975 and 0.7543, respectively. This can be interpereted 
as being a ling with bursty errors, because the probabilities of staying in the current 
states are high. The expected values probability of packet drop (p_E) is equal to 0.01. 
And since a total amount of 26215 unique packets are sent, the expected amount of 
packet loss in 26.2 packets. As can be seen in Graph 20, the number of registered 
packet loss is close to 250 packets. As can be seen in Graph 19, the throughput is 
unaffected by the high packet loss, and has a total unaffected throughput values.  
These two reasons indicate that the packet loss value is wrong. For this reason we 
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have been very careful before drawing conclusions between the registered packet loss 
and the throughput values.      
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Graph 19 : Throughput Example 

 
Packet Loss : f_dT = 0.01, F(dB) = 19.9782
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Graph 20 : Example of Retransmissions 

 

7.2.2 Performance 
The throughput is the key factor for the performance evaluation. All the throughput 
values are given in bytes. The graphs in this subsection illustrate the average 
performance of TCP NewReno and TCP Westwood+ for the different values of p_GG 
and p_BB given in Table 5.  
 
For the three different delays, it is expected that the throughput performance for both 
TCP variants will decrease when the delay increase. Both variants use ACKs to 
increase the CWND. If the delay is large, it will take more time for the segments to 
arrive, and the CWND will increase slowly. On the other hand, with short delays the 
segments use less time to arrive, and the CWND can increase faster. TCP Westwood+ 
is known to have a better ability to estimate the available bandwidth, and therefore is 
more capable of utilizing the link. The effect of better bandwidth estimation is most 
present of other transmissions and in bottleneck links.      
 
We start at trials with the lowest normalized Doppler bandwidth, f_dT = 0.01, that is 
from the top of Table 5. The fading margin has the following three values: 29.9978, 
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19.9782 and 9.77. For these values we have the corresponding p_GG values 0.999329, 
0.997518 and 0.991872. As mentioned, do the p_GG values describe the probability of 
staying in the good state. In these cases the probability of staying in a good state is 
99.93, 99.75 and 99.18 % respectively. This will again say that we have a 0.07, 0.25 
and 0.82 % chance of having a transition from a good state to a bad state. The values 
for p_BB is given as 0.329452, 0.754308 and 0.926851 thus, the chance of staying in a 
bad state is 32.94, 75.43 and 92.68 %. By comparing these values of p_GG and p_BB 
with the values given in Table 5, we can see that these values are higher. This means 
that the probability of staying a in a state is high, both for the good and the bad state. 
This causes the model to stay in a state for a longer period, and the effect is bursty 
segment drops. Graph 21, Graph 22 and Graph 23 illustrate how the different TCP 
variants handle the bursty environment.  
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Graph 21 : Throughput : f_dT = 0.01, F(dB) = 29.9978 
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Graph 22 : Throughput : f_dT = 0.01, F(dB) = 19.9782 
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Graph 23 : Throughput : f_dT = 0.01, F(dB) = 9.77322 

 
The general trend in these graphs is that TCP NewReno has a higher average 
throughput in almost all the cases. The only scenario where TCP Westwood+ 
performes better is in Graph 21, with 10 ms delay. In this case the probability of 
packet is low. It seems that in this case Westwood+ is able to take make more use of 
the available bandwidth compared to TCP NewReno. For the 30 ms and 50 ms trials, 
the throughput is decreasing as expected when the delay is increasing. This is due to a 
slower increase in the congestion window. If we look at Graph 22 we can se that both 
variants have a steady performance throughput event though the delayed is increased. 
However, the throughput for TCP NewReno is much higher than Westwood+. In this 
scenario the probability of staying in the bad state has increased to more than 75%, 
which drastically increase the probability of packet loss. In some cases where the 
probability of packet loss is high there might be a tradeoff between the high 
throughput and high packet loss. When the throughput is high, a high number of 
packet losses will be experienced. If the throughput is reduced, so will the number of 
packet loss. Because TCP NewReno and TCP Westwood+ react to packet loss by 
halving the sending rate, the performance is not affected by some decrease in 
throughput. In Graph 23 the TCP NewReno has a much higher throughput compared 
to TCP Westwood in the case of 10 ms delay. When the delay increases TCP 
NewReno is still performing better, but the difference decreases. This last test is the 
most degrading scenario, with very long duration of the bad state. If the bad state is 
entered, there is 92.6 % chance that the model stays in this state.   
 
For the second value of normalized Doppler frequency, f_dT = 0.08, the fading 
margin is as in the previous trials. As we move downward in Table 5, p_GG and p_BB 
are decreasing, which means that the errors will occur less bursty, and more spread. 
Graph 24, Graph 25 and Graph 26 illustrates how the two TCP variants performed in 
these scenarios.    
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Throughput : f_dT = 0.08, F(dB) = 29.9978
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Graph 24 : Throughput : f_dT = 0.08, F(dB) = 29.9978 
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Graph 25 : Throughput : f_dT = 0.08, F(dB) = 19.9782 
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Graph 26 : Throughput : f_dT = 0.08, F(dB) = 9.77322 

 
In Graph 24 the throughput values for 10 ms seems to be affected by the added delays 
described earlier. The 50 ms trials are decreased in an expected ratio compared to the 
30 ms delay. These trials have a relative low p_E, the throughput performance shows 
that TCP Westwood seems to handle this type of traffic better than TCP NewReno. 
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Graph 25 shows again a trade of situation for TCP NewReno. Graph 26 illustrates a 
scenario where the p_E is large a, here both TCP variants has an expected decrease in 
throughput as the delay increase. For all trials TCP NewReno has better performance 
the TCP Westwood+.      
 
The last series of trials has a normalized Doppler frequency of 0.64, and the same 
values for the fading margin as the other trials. In these trials the value of p_GG and 
p_BB are the lowest compared to the other series of trial. Which means that we 
experience we experience very short bursts of errors, while still have more the same 
probability of p_E as the prior trials. This results in frequent errors with a short 
duration. This series are given in Graph 27, Graph 28 and Graph 29.  
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Graph 27 : Throughput : f_dT = 0.64, F(dB) = 29.9978 
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Graph 28 : Throughput : f_dT = 0.64, F(dB) = 19.9782 
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Throughput : f_dT = 0.08, F(dB) = 9.77322
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Graph 29 : Throughput : f_dT = 0.64, F(dB) = 9.7732 

 
 
In Graph 27 seems gain to be affected by the additions of delays within the emulator. 
Except for this single trial in this single graph, the trend is very clear, TCP NewReno 
experience higher throughput the Westwood+. This is the case for each of the 
different delays and for each value of p_GG and p_BB.  
 
The results we found were unexpected, and differ from prior work. From a theoretical 
point of view the performance of Westwood+ should be higher. The performance 
difference might be caused by the two different kernel versions. Different kernels 
handle TCP variants differently. TCP NewReno used kernel 2.2, this kernel 
automatically sets the advertised window to half the buffer size, in our case with a 
buffer size of 16 kB, the advertised window to 8 kB. In kernel 2.2 this value is kept 
constant for the whole period of the connection. Kernel 2.4 was used on the 
Westwood TCP sender. This kernel automatically use 4 kB as initial advertised 
window, but in this case this window is not static, but increases according to the 
estimated bandwidth. To have a realistic advertised window compared to the buffer 
capacity, the roof of the advertised window was sat to 8 kB. 
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8 Conclusions and Further Work 

8.1 Conclusion 
This thesis has been addressed to the test and comparison of different TCP versions, 
applied over heterogeneous wireless networks. Since data transmission involves 
network segment built in different technologies, the aim of this work has been to 
choose the TCP version which performs best. One solution is to use PEPs, to split the 
link into smaller links, and use different TCP versions for these minor links. This 
approach allows using the transport protocol most suited to the specific environment.  
 
For the satellite link we tested four TCP versions: TCP NewReno, TCP Westwood+, 
TCP Vegas and TCP Hybla. For all versions, we enlarged the TCP buffers on the 
receiver side to 125 bytes. Thus the maximum achievable throughput is approximately 
256 kB/s, which corresponds to a bandwidth of 2Mb/s. For this specific link, we 
experienced best performance from TCP Vegas. TCP Vegas performed an average 
throughput of 75045.2 B/s, with the minimum of 49347.6 B/s and the maximum of 
107535.3 B/s. The TCP NewReno is an aggressive version, and performed second 
best throughout the tests. The results of our testing were affected by a high number of 
spurious retransmissions. This caused in some cases lower throughput performance 
and affected the behavior of the TCP versions. We expected TCP Hybla to perform 
better, but based on the results we achieved we can conclude that TCP Vegas is the 
best TCP version for a satellite link. 
 
We tested two different TCP versions for the wireless ad-hoc network: TCP NewReno 
and TCP Westwood+. These versions were tested with three different delays, and with 
nine different conditions of the channel, which results in 27 different test conditions. 
According to the results we achieved, performed TCP NewReno considerably better 
in general. We have to take into account the different kernel versions, but based on the 
results we achieved, we can conclude that TCP NewReno performs better than TCP 
Westwood+ in wireless Ad-hoc networks, based on the IEEE 802.15.4 standard. 
 
The goal of this thesis was to find an existing TCP version (chosen among the 
candidates available from the literature), which performs best in overall over 
heterogeneous wireless networks. Based on the achieved results, and the former 
conclusions, we can conclude that TCP NewReno probably will perform best through 
heterogeneous wireless links. In case of using PEPs, we recommend use TCP Vegas 
on the satellite link, and TCP NewReno in the Ad-hoc network. 
 

8.2 Further Work 
We have addressed a very interesting problem, with combining heterogeneous 
wireless links in networks. For the future testing, we suggest some improvements to 
be made: 

• Modify of the ACE Emulator, to be able to handle short delays. In our case, 
some of the results were unexpected, because the Emulator added an extra-
latency (approximately 2-3 ms) to the delay. 
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• To be able to get more accurate results, we think it is essential to run several 
more tests, or modify the random generator implemented on the ACE 
Emulator. 

• Run the tests with the Characteristic Model, and decide the packet drops based 
on the actual distance between the nodes. It could be of interest to see the 
difference between the two models. 

• Address the problem with spurious retransmissions on the satellite network.  
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Appendix 
Included on the appendix-disc is the source code for ACE system and TCPDUMP 
files. The ACE folder includes C/C++ code for both Two State Markov Model and the 
Characteristic Model. The first model is ACE, and the second model is ACENEW. 
The TCPDUMP files are separated in two folders, one for the satellite link, and one 
for the wireless ad hoc network.  
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