
 

 

 

Enhancing hierarchical clustering with local search  

 
 

By: 

Kjetil Monge 

Olav Jensen 

Raymond Koteng 

 
 
 
 
 
 

 
Thesis in partial fulfilment of the degree of 

Master in Technology in 
Information and Communication Technology 

 
 
 

Agder University College 
Faculty of Engineering and Science 

 
Grimstad 
Norway 

 
May 2007  

  



Enhancing hierarchical clustering with local search 
 
 
 

 Kjetil Monge, Olav Jensen and Raymond Koteng Page 2 of 102  

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

  



Enhancing hierarchical clustering with local search 
 
 
 

 Kjetil Monge, Olav Jensen and Raymond Koteng Page 3 of 102  

Abstract:  

Data Clustering is defined as grouping together objects which share similar properties. These 
properties can be anything as long as it is possible to measure and compare them. Clustering 
can be an important tool in many different settings varying from medical use to data mining. In 
this work we distinguish between two different types of clustering.  The simplest one, called 
partitional clustering, tries to create one solution by comparing objects and partitioning them into 
non-overlapping groups. The second one, called hierarchical clustering, is a bit more complex 
and will try to generate a multi-layered solution instead. In this multi-layered structure, groups 
actually consist of more than one sub-group from a lower layer. The structure is often and 
probably best thought of as a tree-structure. The only way to get, and ensure, a “perfect” 
solution is to use a brute force clustering algorithm which works by comparing all possible 
solutions against each other. We do not implement a brute force method; instead we use 
another algorithm which generates very high quality solutions. 
 
The goal of this study was to develop an algorithm for hierarchical clustering with the ability to 
solve large problems quicker than the alternative existing solution. The approach to this was to 
make the algorithm work with only parts of the problem area at any time. In this report this is 
called:”local search”.  
Some other important concepts also explained and used in this report are local/global optimum, 
online/offline clustering and partitional/hierarchical clustering. 
The already existing algorithm briefly mentioned serves as a “template” which we use to 
compare and test our developments against. This testing has been performed using an 
application we have developed specifically for this purpose.  
 
The results from our experiments chapter hints that the approach we have taken when 
developing the algorithms is very much on the right track. Our algorithms perform high quality 
clustering within decent time. Compared to the “state of the art” algorithm we have tested them 
against they provide, on large problems, somewhat less quality solutions, but at a much better 
time. That being said we still think there may be room for improvements in any future work. 
. 
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1 Introduction 

The introduction presents the background for the report and links this to our thesis definition 
and our problem statement. The background also briefly explains some information needed 
to understand the other chapters. 
 
From the problem statement we derive our sub problems and definitions of delimitations and 
assumptions. These definitions are explained with an attempt to justify them. Finally this 
leads us to hypotheses and research question. 
 
 

1.1 Background 

Data clustering 
Data clustering (or simply clustering) is the process of grouping together a collection of 
unlabeled objects so that the objects that is most similar or has the most in common will be 
placed in the same group. This could for instance group together any number of points so the 
generated clusters contain only points which lie close to one another. The similarity does not 
need to be distance but can be any properties of an object which can be measured and 
compared. This has to be defined based on what the goal of the clustering is. For instance, 
there would be no problem to use color as a measurement of similarity, as long as we also 
define which colors lies close to each other and which lies farther apart. 
 
Below is an example of clustering on a set of 100 points. The left side of the figure shows the 
points randomly distributed between two clusters. The results after clustering are shown at 
the right. Here we can see that the algorithm has found the structure of the clusters and 
correctly organized the data by putting the points in the correct groups 
 

 
Figure 1 Example of clustering 
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Usage of clustering 

Data clustering is an important tool in many different areas. It is a part of computer science 
often called machine learning, which is closely related to the study of artificial intelligence. In 
machine learning, data clustering helps organize the data and eases the process of looking 
for similarities. This makes clustering usable, amongst other, in the field of data mining and 
search engines. One example of a search engine which relies heavily on clustering is Clusty 
[21]. Clusty uses clustering in such a way that the results delivered are put into groups 
(clusters) based on how similar they are. As a test we took a search for “Drinks”. And we 
were given topics like “Soft drinks”, “Wine”, “Alcoholic Drinks”, and “Energy Drinks” etc. as 
groups of search hits.  
 
Clustering can also be of use in computer image recognition tools and medical science. If 
you have x-ray images of skulls, for instance, those images could be clustered based on 
color. This could help a computer to recognize familiar patterns such as early stages of 
tumors, which again could help locate such things even if the x-ray was taken simply to 
check out if the skull had fractures or not.  
 
Types of clustering 

The two kinds of clustering important for this study are partitional and hierarchical clustering.  
 
In partitional clustering the goal is to get one partition of objects containing a static number of 
clusters 
  
In hierarchical clustering the goal is to create a structure containing more information than a 
simple partitional solution. The result is often displayed as a tree structure. Both rough and 
fine grained solutions will be available through this tree structure. To reach finer granularity of 
any part of the tree, one will only need to examine the child nodes placed further down the 
structure. The search engine “Clusty” for example, will give results in groups based on 
similarities instead of just a list of hits like “regular” search engines usually does. A group of 
hits might also contain sub-groups which in a tree structure will be the children of a cluster. 
 
While hierarchical clustering in most cases would require much more work than partitional 
algorithms, the aim is that in the end, an analysis of the tree will give better overall 
understanding, and therefore make it possible to generate solutions of better quality which 
also can also be used as a solution for a broader set of areas. 
 
Online and offline clustering 
We also distinguish between online and offline clustering. In an offline algorithm the entire 
input set will be examined, and used for each step of the clustering. This could in some 
cases be the only step, while in other algorithms it might be one in a series of steps while 
working towards a final solution. An example of an offline algorithm is the well known K-
means. K-means is a partitional algorithm where all the objects are examined to calculate 
new clusters which are then used as starting point for the next step, improving it more and 
more for each step. 
  
Online algorithms perform changes while focusing on the ability to have a currently available 
solution even during the work process. An example of an online partitional algorithm is the 
“one point algorithm” which we have been studying as an introduction to clustering 
(described in detail in chapter 5).  
 
Online algorithms typically cluster by iteratively performing small changes to an already 
existing cluster structure. These changes should be kept so small that one step will not 
majorly disrupt the current solution already contained in the cluster structure. Large changes 
are made as the result of many of these small steps. 
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Local and global search 

Sometimes, especially when dealing with hierarchical clustering, one small change can affect 
large parts of the structure. In these cases, assessing the effect of a change may be 
computationally costly, limiting scalability. The more data the algorithm has to take into 
consideration, the worse the algorithm would scale as the problems grow in size.  
 
By scaling we mean how well the algorithm handles additional objects and/or clusters in the 
input set. Local and global search describes if the algorithm can perform changes without 
having to look at the entire, “global”, structure. Ideally all local search algorithms should have 
only a very small sub-structure to worry about during clustering, but how much of the 
structure it will have to work with is dependent on the actual algorithm. Global algorithms will 
not try to limit its work in this way. 
 
Data tree 
In computer science a data tree is a structure used to store data. A tree structure will have 
nodes containing some sort of data with relations between nodes based on relations in the 
data. The top of the tree will usually contain a single node called the top-node or the root of 
the tree. All nodes have relations to other nodes. Nodes with direct relation to a lower node 
will be the parent of that child. All child nodes will have one or more parent, but usually one 
and only one. The lowest nodes in the structure are called leaf-nodes. These nodes will have 
no children, only parent(s). Any top nodes will have no parent, only children.  

A layer in a data tree is the set of all the nodes which are the children of the nodes on the 
previous layer. The first layer will consist of only the top node(s). The second will be the 
children of the top node. The third will be the children of the nodes on layer two etc. With this 
definition of a layer each layer will contain all the data already in the root node but distributed 
amongst different amounts of nodes. So in a way when it comes to clustering, each layer will 
represent one partitional solution. To get solutions not represented on a layer a combination 
of parts of layers have to be used. 

 Figure 2 shows an example of a general data tree. 

 
Figure 2 Example of data tree 
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Divisive clustering 

When building a hierarchical structure there are two main ways of doing this. A divisive 
method, also called top-down clustering, will start with objects in few groups. Often all data 
will initially be one single cluster. The algorithm will then divide these clusters into two or 
more clusters each, which again will be divided into smaller clusters and so on until there is 
one cluster for each object. Divisive clustering is rarely used because it is hard to define and 
implement a way of dividing clusters so that the end result would be a clustered tree. To 
generate a random tree using the divisive method is simple though. 
 

 
Figure 3 Example of divisive clustering 
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Agglomerative clustering 

Agglomerative clustering, also known as bottom-up clustering, will have start with cluster for 
each object in the input set. To create new clusters these clusters will then be merged two by 
two until the top is reached. At the top the clusters are finally merged into one single cluster. 
If the two clusters which are merged each step of the algorithm are chosen based on 
similarities, the structure will be clustered when the tree is finished being built. The standard 
algorithm which we test our own algorithms against in the experiments section is an 
agglomerative clustering algorithm. This algorithm clusters the input set by always selecting 
the two clusters which are closest to one another when choosing clusters for merging. In this 
report we call this method the “closest agglomerative” clustering method. The figure below 
shows five clusters clustered with closest agglomerative clustering. Each of the nodes in the 
tree represents a cluster. The distance between the nodes is not the actual distance between 
the clusters, but is a representation of the distance projected to one dimension. The first two 
nodes merged are the ones with the shortest distance between them; the second are the 
clusters which then have the shortest distance etc.  
 

 
Figure 4 Example of agglomerative clustering 

 
 

1.2 Thesis definition 

This thesis will investigate the possibility of hierarchical online cluster algorithms with a local 
search approach. Our final definition of our thesis if formulated as this: 
 
“The purpose of this thesis is to develop a scheme for hierarchical online clustering. The goal 
is to combine the main benefits of local search (e.g., clustering speed) with the benefits of a 
hierarchical approach (e.g.., different levels of cluster granularity). The resulting scheme will 
be evaluated with a particular emphasis on clustering accuracy, processing speed, and 
ability to find global optima.  A benchmark framework will be developed for evaluation 
purposes.” [17]. 
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1.3 The importance of the project  

The “closest agglomerative” algorithm gives high quality solutions. But its uses are a bit 
limited because of its inability to scale. Some areas where clustering can be of great use 
requires clustering of very large amounts of data, so a quicker solution might be required. 
Also many of the available hierarchical clustering algorithms are offline algorithms. This can 
be a limitation in many areas. In fields where additional information might become available 
after clustering has commenced, this information can be added as an object to a random 
cluster and an online algorithm can keep clustering without having to stop or restart at all. An 
offline algorithm would not have this luxury. Therefore a highly scalable online algorithm is a 
very diverse algorithm with a very wide are of use. 
 
 

1.4 Problem statement 

The purpose of this thesis defined in our thesis description is to develop a scheme for 
hierarchical online clustering. The goal is to combine the benefits of local search with the 
benefits of hierarchical approaches.  
 
The scheme will be evaluated with a particular emphasis on clustering accuracy, processing 
speed, and ability to find global optima. One of the main benefits of partitional clustering 
compared to hierarchical is speed. There are several algorithms available which gives good 
results and does so in decent time. One of the major problems with partitional clustering is 
that they only provide one solution possessing a fixed numbers of clusters. If finer or rougher 
granularity is desired, a completely new round of clustering has to be done. Hierarchical 
clustering, on the other hand, generates a set of solutions with easy access to different 
layers of solutions.  
 
The benefits of both partitional and hierarchical clustering combined without the 
disadvantages could probably be very useful in several areas of machine learning. To 
actually test and verify anything we do we need to have a testing framework available. 
 
 

1.5 Sub problems 

From our problem statement we have defined our sub problems.  
 
Limited visibility when working with a “local search solution”  

Since we want the algorithm to be an online algorithm, a small operation step will be 
performed a high number of times. Because of this even a small decrease in workload for 
each step may decrease the total work time substantially. In a hierarchical system, changes 
made will automatically affect potentially large parts of the structure. We have called part of 
the structure affected the “minimal local area”. Our first sub problem will be to find this 
minimal local area so that time will not be wasted on unnecessary changes to areas outside 
this. 
 
We will have to have a definition of quality of a cluster. 

The algorithm should perform small changes which will bring the problem closer to optimal 
solution. But to perform these steps we need to have a way of identifying which changes will 
contribute to a better solution and which will not. To do this we want to define quality for a 
cluster and measure that quality before and after a change. Changes which contribute 
positively to the solution will then be identifiable by looking at the change in quality. How to 
define this quality measurement, so that the calculation of it remains within the minimal local 
area of the structure, will be an important part of our research. 
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Finding global optimum 

Global optimum is the single solution which cannot be improved any further. Which solution 
is the global optimum is dependent on the quality definition. 
Since the thesis definition states that focus should be on finding a solution close to global 
optimum we will need to have a way of identifying the global optimum solution or a solution 
as close as possible to the global optimum.  
 
Defining quality for a hierarchical solution 

After finding the optimal solution we should also be able to compare the quality of our 
clustering against the quality of the global optimum state. When comparing solutions it is 
important to see how similar they are and not only if one is better than the other. So we need 
to define quality for a hierarchical structure.  
 
A suitable framework for testing environment is needed 
We need a tool which enables us to extract research data and to compare the different 
algorithms. The requirements of this application are: 
 

 Generate problems, either random or let the user manually create them. 

 Store and reopen problems. 

 Should support several different cluster algorithms. 

 Should have an interface to make implementing of new algorithms easy and 
effortless. 

 Provide a visual representation of the problem both before and after clustering. 

 Store statistical data while running an algorithm.  

 Show the user graphs and/or tables of the statistical data. 

 The framework should be as intuitive and simple as possible. 
 
 

1.6 Delimitations and assumptions 

To focus our work only on important areas we have a few delimitations and assumptions. 
 

 Limit our tests to two or three different implementations of both hierarchical and 
partitional cluster algorithms. 

 Define the type of tree structure for hierarchical solutions. 

 Input data for test should only be points in a two dimensional space. 

 Distance between clusters should be the Euclidian distance between the clusters 
middle points. 

 Input data should have no apparent structure prior to clustering other than each 
points location. 

 SSR should always be used when comparing different algorithms.. 

 In order to have a controlled environment to test the algorithms in, we will use 
“artificial” data, generated randomly. 
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1.7 Hypothesis  

From our problem statement and sub problems we have derivate the following hypothesis: 
  
Hypothesis 1:  

“Quick selection of random changes will result in better scalable algorithms than spending 
time on finding a “best change” scenario.” 
 
Hypothesis 2:  

"Minimizing evaluation and updates to only the vital parts of the structure will improve 
scalability significantly.” 
 
Hypothesis 3:  
"An online hierarchical algorithm with local search will scale better than the closest 
agglomerative approach.” 
 
The approaches for assessing the hypotheses are discussed in the research chapter 3.2. 
 
 

1.8 Risks for the project 

There are some things we need to make sure of to get good and proper results. 
 

 Need to make sure we follow our own limitations to assure that we are only spending 
time on the core of the problem. 

 Perform our work and do our writing so that the results and conclusion is valid 
however the experiments turn out. 

 To get a scientific approach we have to make sure we properly document and 
describe the entire work process with focus on making it reconstructable. 

 
 

1.9 Structure of the thesis 

 Chapter 2  
o Repetition of the definition of clustering  
o Discussion of important properties for clustering 
o Description of different approaches for clustering 
o Description of some popular clustering algorithms. 

 Chapter 3 
o Presentation our early research. 
o Discussion and answers to hypotheses.  

 Chapter 4 
o Overview of the testing application. 
o Discussion of important attributes. 

 Chapter 5 
o Description of online partitional algorithms with local search. 
o Results of experiments on partitional algorithms. 
o Conclusion to the experiments on partitional algorithms. 

 Chapter 6 
o Description of online hierarchical algorithms with local search. 
o Results of experiments on partitional algorithms. 
o Conclusion to the experiments on partitional algorithms. 

 Chapter 7 
o Conclusion to thesis. 
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2 Review of literature 
The review of literature chapter covers a small discussion of how clustering can be used in 
machine learning. We will also give information about clustering, including fields of use and 
important properties of a good clustering algorithm. 
 
 Finally, we explain different approaches for different clustering algorithms and explain their 
strength and weaknesses. 
 
 

2.1 Machine learning 

The field of machine learning is based on trying to create algorithms that can “learn” what 
actions to perform. Machine learning is split into several groups; amongst them is supervised 
and unsupervised machine learning. 
 
In supervised machine learning the machine already have some notion of what its output 
should be. Its task will then be to chose actions which results in those outputs. In 
unsupervised machine learning on the other hand, the algorithm have no notion of what the 
output should be nor does it get any response to its actions from an external environment. 
When these machines gather information, the results should be organized into optimized 
categories. Clustering is an important approach of archiving this [3] [4]. 

 

 

2.2 Dendrogram 

Because of the algorithm we used as a starting point for our work we did some early 
experimenting with a tree structure where nodes could have n children (where n > 0) but 
decided to change it so the work focused on the dendrogram structure instead. Dendrogram 
is a tree where all nodes, except for the top and leaf nodes, have exactly two children and 
one parent. The main reason for this decision is that sub clusters are easier to locate using a 
dendrogram. 

 
Since the decision of using dendrogram structure came a little while into the project we 
decided to make changes to the layer concept as well. Layers are actually not used at all in 
our algorithms when clustering a dendrogram structure (but are still a part of the non-
dendrogram algorithms). The change from non-dendrogram to dendrogram algorithms also 
opened for the possibility of performing changes to the tree structure. The only purpose of 
dendrogram-layers in our work is to output the tree structure in a clean way to the monitor. It 
is important to note that in the dendrogram figures throughout the report, a layer does not 
contain all objects in the input set as it does in the non-dendrogram trees.  
 
The figure bellow shows an example of a dendrogram. 
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Figure 5 Example of a dendrogram 

 

2.3 Mean and SSR 

Each cluster will have a mean that lies in the middle of the cluster (sometimes called the 
center point). This mean is calculated by adding all x values of the points in the cluster 
together, then divide that number on the amount of points in the cluster. The same is done 
for the y values (and any other values if it is working in more than two dimensions). This 
result in the x and y (referred to as X in the formula) coordinates of the mean. The formula for 
this is: 
 

 
Figure 6 The calculation of mean 

 
For each cluster a value called “the sum of square roots” (from now on just called SSR) is 
then calculated. This is the sum of the Euclidian distances from each point in a cluster to the 
clusters mean. The SSR is calculated with the following formula: 
 

 
Figure 7 The calculation of clusters SSR 

 
 
The total SSR for all the clusters is then calculated, simply by adding each of the clusters 
SSR. The goal of the clustering is to minimize this value as much as possible. This value is 
calculated by the formula: 
 

 
Figure 8 The calculation of total SSR 
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Since this calculation is CPU demanding, some optimized formulas for updating the mean 
and SSR values can be used. The formulas are used when a point is moved from one cluster 
to another. Using this saves the algorithm from having to iterate through every point in the 
clusters affected. This formula has to be used to update the values each time one point is 
moved. If two points are going to be swapped between two clusters, one point has to be 
moved and the values updated, then the second point can be moved and the values updated 
again.  Also, the way this formula works it is important that the SSR value gets updated 
before the new mean is calculated. 
 
When a cluster looses a point, the algorithm calculates a new mean and SSR for the cluster 
with the formulas:  
 

 
Figure 9 Update SSR when adding a point 

 
 
 

 
Figure 10 Update mean when getting a point 

 
When a cluster gets a new point the algorithm calculates a new mean and SSR for the 
cluster with the formulas:   
 

 
Figure 11 Update mean when losing a point 

 
 

 
Figure 12 Update SSR when losing a point 

 
 

 
 
 
An explanation of the letters used in the formula is described here: 
 

 
Figure 13 Explanations of the letters in the formulas 

 Mi = cluster mean for cluster i 

 Ni = number of points in cluster i 
 X = points X value (also used for the Y value, and every other 

dimension the point has) 
 Ji = SSR value for cluster i 
 Je = total SSR values for all the clusters 
 X^ = X mean 
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2.4 Clustering 

Data clustering is a common technique for statistical data analysis, which is used in many 
fields, including unsupervised machine learning, data mining, pattern recognition, image 
analysis and bioinformatics. Wikipedia, the free online encyclopedia defines clustering as 
follows: “Clustering is the classification of similar objects into different groups, or more 
precisely, the partitioning of a data set into subsets (clusters), so that the data in each subset 
(ideally) share some common trait - often proximity according to some defined distance 

measure.”[7].   

 
Further Wikipedia defines classification as: “the act of placing an object or concept into a set 
or sets of categories (...), based on the properties of the object or concept” [8].    

A simpler way of saying this is that one should put objects which share traits or similarities 
into the same cluster, while objects with different traits should be put into other clusters. One 
example of similarity measurement could be Euclidian distance between objects.  

 
For a clustering algorithm the following properties are desirable: 

 

 Scalability 

If an algorithm is not scalable, the time required to solve a problem will increase with 
more than a linear factor. This will make the algorithm less useful as the complexity of 
the problem increases. 
 

 Dealing with different types of attributes 
The algorithm has to work whether it is two-dimensional points or other types of 
attributes such as the classification of plants, roadmaps etc. 
 

 Discovering clusters with arbitrary shape 
No matter what shape the clusters have, the algorithm should be able to recognize 
the optimal solution. What that optimal solution is had to be defined based on the 
purpose of the clustering. For example, if an algorithm always produces clusters with 
rectangular shapes, the algorithm is probably not satisfying this property. 
 

 Ability to deal with noise and outliers 

In some cases the input data may have elements breaking from the regular pattern. 
This may contribute to trapping some algorithms in what is called a local optimum, 
fooling them to believe they have found the best solution, while they have not.  
 

 Insensitivity to order of input records 
The order of how the data sets are arranged when starting the algorithm should not 
affect the final result of the clustering. 
 

 High dimensionality 

If an algorithm works with n-dimensions, it should also work for (n+1) dimensions 
under the assumption that n > 0. 
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 Interpretability and usability 

The algorithm has to be flexible, making it easy to adopt the algorithm to different 
areas of use. 

 
These properties are not to be considered as binary properties either supported or not 
supported. They can be supported to a lesser or greater degree [10].  

 

2.5 Partitional clustering  

In partitional clustering objects gets divided into a fixed amount of clusters. Before the 
clustering starts, the number of clusters can either be specified by the user, or it will be found 
dynamically by the algorithm during runtime.  
 
This may be a good method when it is easy to predetermine how many clusters are optimal, 
but can be a somewhat less useful in cases where the numbers of clusters are harder to 
predict. The main advantage of partitional clustering is speed. 
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2.6 Hierarchical clustering 

Hierarchical clustering will instead of focusing on a single solution focus on finding solutions 
on several hierarchical levels.  For instance: If there are two clusters which themselves 
contains three sub clusters each. A partitional solution could be to either try to find six 
clusters or two clusters. A hierarchical solution would on the other hand generate a structure 
where both the solution for six and for two clusters is easily available. If the structure is 
traversed even combinations of sub clusters and main clusters are available. Also internally 
in a cluster, with no clear structure the objects would be organized based on proximity.  

 
Basically there are two types of hierarchical clustering, divisive and agglomerative clustering. 
The difference is that divisive clustering will start with all objects in a single cluster which it 
will split into smaller clusters. These clusters will also split, and so on, until there is only one 
point in each cluster. The other approach is called agglomerative clustering. Here objects 
start out alone, in each of their very own cluster. The algorithm will then select clusters, 
usually the closest or within a limited threshold, and merge them into another cluster. This 
will go on until there are no more valid merges available. Agglomerative clustering is used 
much more often than divisive. This is because it is harder to define how to split a cluster 
than how to merge them. 

 
The “closest agglomerative” algorithm we will be using as a standard will always choose the 
two closest clusters to merge. This will always provide the same result when run on the same 
problem, and will provide a very high quality solution, which in many cases also will be the 
best possible solution. The only way to ensure a best possible solution is to use a brute force 
algorithm which will check all possible hierarchical solutions against each other. The closest 
agglomerative method does not scale well. Even one extra object means that that object will 
have to be tested against all the other clusters during all the steps of the algorithm. 

 
The figure bellow shows how a hierarchical tree can be created. The figure shows the 
structure of the hierarchical tree. The top node is the solution where all objects are stored in 
a single cluster. This node then has two children which contains these objects distributed 
between them etc.  
 

 
Figure 14 Hierarchical clustering 
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2.7 Offline cluster algorithms 

An offline clustering algorithm will perform clustering steps that involves all or nearly all of the 
objects. Each step generally performs large changes, and therefore each step also requires 
more work than a step in an online clustering algorithm. 
 
 

2.8 Online cluster algorithms 

Online clustering performs only small changes to the cluster structure each step. For 
instance the “two point” algorithm described in chapter 5.2 performs changes by swapping 
two points between clusters, effectively limiting changes to two clusters instead of affecting 
the entire structure. 
The idea behind these small steps on few objects at a time is that there should at any time 
be a solution available, even while the algorithm is running. Of course at the early stage of 
clustering this solution would be of low quality, but it should be improved in many small steps 
as the algorithm continues to work.  

 
When having a large set of data, this drastically reduces the required computational time for 
each step, but the number of steps needed to get an adequate result may be somewhat 
higher than an offline algorithm. Both online and offline algorithms can be stopped any time, 
and both will have to either complete the step they are currently performing or to do a 
rollback to the result of the previous step. An online algorithm would in this case either 
perform a very small step and finish or rollback a minor change then stop. An offline 
algorithm has the choice of completing a potentially time consuming step or performing a 
rollback which might cause it to miss or undo major changes. 
Even if online algorithms will require more steps to finish, the change in workload for each 
step will probably make online algorithms scale better for larger problems 
 
 

2.9 Fuzzy clustering 

In fuzzy clustering objects can belong to more than one cluster at the same time. If an object 
lies close to the border of more than one cluster it can be said to be partly present in all of 
them, for example by defining one point to belong 45 percent in cluster A and 55 percent in 
cluster B. None of the algorithms described in this report supports fuzzy clusters. 
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2.10 Agglomerative cluster 

Agglomerative clustering, also known as bottom-up clustering, will initially have all points 
distributed amongst a number of clusters equal to the number of points. It will usually find two 
clusters that are close to each other and merge this in to a new cluster. This process will be 
continued until all clusters are merged to into one large single cluster. This large cluster will 
be the root and each of the clusters with only one point in them will be the leaf nodes.  A tree 
structure where all nodes, except the leaf nodes, contain two children and all nodes except 
the top node contains one parent is often referred to as a dendrogram. [15] [16].   

 
The figure below shows 10 points clustered with agglomerative clustering. The clusters are 
merged together at different levels. Note that in this picture the distance between the nodes 
are not related to the distance between the actual objects or clusters.  
 

 
Figure 15 Agglomerative clustering 
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2.11 Different Clustering algorithms  

As stated earlier there are already many different techniques for clustering available. Most of 
the algorithms used today have both strengths and weaknesses. We will try to explain the 
most common algorithms and a version of the algorithms we have worked with earlier. All of 
these are partitional clustering methods, but served as a introductory study of clustering 
before starting the work on the hierarchical clustering. The intention of this is to try to 
compare the currently available algorithms against each others as well as against the 
attributes described earlier in chapter 2.4. Most of the popular algorithms come in different 
variants. 
 
 

2.11.1 Popular Clustering algorithms  

K-Means 

K-Means is an offline partitional algorithm. It starts out with points distributed into a given 
number of clusters; this number has to be set before the algorithm can start. Distribution 
could either be randomly or non-random. In some cases the centers are placed at random 
instead of objects being divided between clusters. In the case where points are distributed to 
clusters, centers for each cluster will be calculated. In the next phase all objects will be 
associated with the center closest to itself (in other words regrouped into the cluster with 
center closest to its own location) before the centers is recalculated. This is done until no 
object switches cluster or alternatively until no center point moves.  
 
Compared to the online algorithm we have worked with and discussed later in this report, k-
means works very fast. By reassigning many points between each recalculation of centers it 
will in almost all cases require less work than the algorithm which moves only one or two 
points at a time.  
 
Because of its performance k-means is a very popular algorithm when it can be used. It 
supports high dimensionality and it is insensitive to order of input. Although it is very quick it 
does have some limitations. Since it is an offline algorithm it is not very well suited in for 
example distributed systems. It handles noise and outliers badly and  it is stated on 
Wikipedia: “Recently, however, David Arthur and Sergei Vassilvitskii showed that there exist 

certain point sets on which k-means takes super polynomial time:  to converge.” [13]. 
K-means will generate different clusters dependent on the initial clusters. 
 
Quality Threshold  

The quality threshold algorithm is more dynamic than the previously discussed algorithm. It is 
a partitional offline cluster algorithm, but does not need the numbers of clusters to be 
predefined. Instead a maximum diameter for a cluster has to be defined. The algorithm will, 
for each object available, generate a cluster containing every other point within the maximum 
diameter specified. The cluster with the highest count of objects is selected as a “finished 
cluster” and all its objects will be ignored at the next steps of the algorithm. The algorithm 
performs the same step all over again on the reduced set of objects until there are no objects 
left to work with. [14]. 
 
The quality threshold is an offline partitional clustering algorithm. It is somewhat more 
computer intensive than for example the k-means algorithm, but it will always deliver the 
same clusters as result no matter how many times it is run on the same problem. This can in 
some cases be an advantage. It handles noise and outliers by putting them into separate 
clusters instead of forcing them into a poorly suited cluster. It also supports high 
dimensionality.  
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Closest agglomerative 

Closest agglomerative is what we have called the agglomerative algorithm for systematically 
creating a clustered tree. This is done by finding the two closest clusters without any parents, 
and these will be children of a new cluster. When there is created a cluster containing all the 
points, the algorithm has completed. 
 
When we first started using this method, we assumed it created the perfect tree, with the 
lowest possible SSR value. But later as a result of our research we learned that this is not 
always the case, at least not in terms of getting the lowest SSR value. In Figure 16 we have 
created an example of this. The tree at the left shows the tree created by the closest 
agglomerative algorithm, while the tree at the right shows the solution with the lowest 
possible SSR value. But even though the closest agglomerative has a higher SSR value, this 
solution might still be a better solution. In many cases it may be more important to group 
together the closest objects, as the closest agglomerative does. This is the main reason of 
why we can use this for a comparison to our own algorithm. The alternative would be to use 
a brute force algorithm, which often would be unfeasible because of the tremendous 
computing power it would need in experiments of a certain magnitude. And since we believe 
that the structure with the lowest SSR value may not always be the best solution, we found 
the closest agglomerative to be the most appropriate choice. 
 

 
Figure 16 Closest agglomerative and lowest SSR tree comparison 
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3 Research   

The research chapter covers the results from the research study we did before this thesis 
started. We did a classification of our problem, discussed sub problem approaches and gave 
an overview of our programming platform, the design of our framework and information about 
our organisation of this mater thesis.  
 
 

3.1 Problem classification 

Research design is divided into three different categories; exploratory, descriptive and 
explanatory.  
 
Exploratory design is often in the scope of gathering relevant literature and case studies. The 
first four of our sub problems are of this category. For these problems we will need to gather 
all relevant literature in order to pinpoint our problems and make a plan for avoiding any of 
these problems. 
 
Explanatory design is the classic experiments part and are a part of our last sub problems. 
This sub problem is typical programming tasks which needs experiments.  
 
 

3.2 Hypothesis approach 

Approach to test hypothesis 1 

To test whether the systematic algorithms scale well compared to the totally random ones we 
will have to run experiments on both types and examine the results to see how well they 
scale.  
 
Approach to test hypothesis 2 
Many algorithms have to update the entire structure when performing some kind of action. If 
we can create an approach witch only needs to update to a little part of the tree we hope to 
drastically reduce the workload and hopefully increase the speed of the algorithms. 
 
Approach to test hypothesis 3 

The closest agglomerative approach requires a full update of the entire structure every time a 
new object is introduced to the problem. Therefore this approach will have a scaling problem 
as the workload is increasing. With an online hierarchical algorithm we hope to reduce the 
workload and hopefully this result in an algorithm which is able to scale lot better than the 
closest agglomerative approach. 
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3.3 Application functionality 

Our application has different levels of functionality. At a basic level the application should be 
able to randomly generate problems. The algorithms should be able to use this point and run 
all of the algorithms on. At this level every algorithm should have been tested for all bugs we 
are able to think of. A big change in this basic design can be hard to do on a later stage. 
 
When we have implemented the basic functionality, we can start to work on the more 
advanced functionality. In this section we are going to build a framework which gives the 
users a GUI to test and evaluate the problems that is solved with the basic application. This 
advanced functionality should be able to give a visual representing of the initial and end 
results, a way to manipulate the number of points and the number of clusters. 
 
 

3.4 Programming platform 

In order to implement our algorithm and the framework we need, we have chosen the Java 
development platform and Eclipse SDK as developer tool.  
 
Java 

Java is an object-oriented programming language developed by James Gosling and his team 
at Sun Microsystems in the early 1990s. Java does not compile to native code; it’s compiled 
to a byte code which is then run by a Java virtual machine. Because of this virtual machine, a 
Java program is platform independent. Therefore Java is used at many platforms like 
computers, mobile phones, smart card etc [1]. 
 
Eclipse SDK 

Eclipse is an open source software development kit, or simply SDK, which gives a good 
platform for software development.  Eclipse platform can be downloaded for free and have a 
lot of plug-in that supports different technology [2]. 
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3.5 Programming 

The programming platform for this application is done in Java 2 SE version 1.5. To make it 
easier to maintain the code, every part of the source code must be stored in different 
packages. Every class that belongs to the GUI must be stored in a GUI package; different 
algorithms must be stored in different packages etc. 
 
To avoid problems that can arise when several people are working on different part of the 
application, every packages need to have an interface which the programmers can work 
against. All source code must be stored at a CVS. This way it is easy for everyone to have a 
complete overview of the application. 
The style of the source code syntax must follow the standard code conventions for the Java 
programming language [9].  
  
 

3.6 Design 

 

3.6.1 Framework 

From Wikipedia, the free encyclopedia design is defined as this: “design is a visual look 
and\or a shape given to a certain object, in order to make it more attractive, make it more 
comfortable or to improve another characteristic. Designers use tools from geometry and art. 
Design is divided to some sub-categories: Graphic design, Buildings and nature design, 
Consumer goods design” [11]. 

 
Our framework needs a graphic design and we need to design this as intuitive as possible. 
This means that there should not be use for any manual in order to use this.  
We need to design a setting panel which gives the user a series of setting which can help 
him with the solving parameters.  
 
The framework will consist of the following parts: 
 

 Main interface 

Our main interface will list the points we are going to work with and which cluster the 
points belongs to. This is just to give the possibility to show the points with their 
values and which clusters they belong to. This can be useful information when 
inspecting the results. This is also where we find the menu for all the functions of the 
program. 
 

 Settings panel.  

The settings panel will provide the main settings for the solution. 
With all these settings, we can easily change the parameters for the algorithm and 
also change the settings for the visual settings. 
E.g. it is important to switch off all GUI updates when solving a problem if speed is 
important. And it can be a good thing to turn on all GUI settings when we want to look 
at the visual results. 
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 Visual representation of the clusters  

Because it is easier for a human being to evaluate the result of the clustering by 
visually inspection we have created an application for exactly this. The clustering 
application have been implemented with the possibility to solve problems in two 
dimensions The viewing application can be run during the clustering process, which 
gives the users a visual simulation of the actual moves done during the whole solving 
process. Since the drawing process is CPU demanding some settings are available 
for the user to set. The settings that can be changed are update rate; toggle on and 
off drawing of the lines between points and toggle on and off drawing the middle 
points.  

 

 GUI for creating custom clusters 

Sometimes it can be useful to manually create our own clusters. To test out special 
case problems this can be useful way to pinpoint these problems. We can e.g. 
simulate “real world” problems by generating noise. This can be useful when trying to 
produce the case of a solution lock caused by a local optimum or to see if the 
algorithms can find global optima when the clusters have arbitrary shape. 

 
 

3.6.2 Validation 

In order to validate our work, we will rely on several methods. One important method is to 
have the ability to visually inspect the result of the clustering. This will give us an intuitive way 
of verifying that the behavior of our application is appearing to be reasonable. When running 
the application for a longer period of time on different problems, any errors in the application 
are likely to produce strange results and in this way a lot of problems may be detected.  
 
When running the application on problems that have clearly separated clusters of elements, 
it is especially easy to check if the algorithm can recognize these clusters. Since one type of 
problems we are working with is two dimensional points, one way of achieving this 
visualization is to draw all the elements, colored by the clusters they currently belong to. But 
we will also implement the functionality to view the progress of the clustering by time. Then 
we will display a graph, where the total distances between every element and their 
corresponding cluster will be plotted as a function of time.  
 
An example of this can be seen in Figure 23, which was made on a previous course we had. 
This can also be used to compare multiple executions of the algorithm on the problems and 
use this to discover critical sections. Smooth curves, decreasing fast in the first phases and 
flatting out as time goes by is expected, while errors may cause these curves to be more 
irregular. 
 
A more accurate way of validating the algorithm will be to execute it step by step and 
manually checking that the output is correct. Since the algorithm is heavily based on math, it 
is easy to check the correctness of these calculation regarding accuracy, processing speed, 
and ability to find global optima. 
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3.7 Organization for our master thesis 

 

3.7.1 Work process 

Research phase 

In the first phase of our master thesis, we had to get a good understanding of how the 
algorithm is supposed to work. We look into existing clustering algorithms in order to get 
more familiar with these types of problems and how they can be approached. We also did 
some research to find out more about the fields where these algorithms can be used. This is 
important to get a better understanding of the problem and what the essential criteria’s are. 
While working with the algorithm, having enough knowledge of the field may be used to 
make improvements and optimizations. As the algorithm we are working with has not been 
tested before, it is important to always look for areas of improvement. 
 
Development and analysis phase 

At this phase we needed to have a complete understanding of how the algorithm should work 
and a good insight to the problem area. During this period, the requirements was refined and 
updated as our knowledge increases. We were focusing on having a good and well defined 
requirement specification, which will help us with the development of the application.  
 
We relied on a kind of agile software development for the implementation. Wikipedia states 
that: “Agile methods emphasize real-time communication, preferably face-to-face, over 
written documents. Most agile teams are located in a bullpen and include all the people 
necessary to finish software” [18]. This method suits us well, as we usually work together and 

have group discussions about many parts of the project. A prototype of the application will be 
developed, with the most important properties built in. As new requirements and features are 
implemented, these should be tested thoroughly. 
 
When the application reached a certain point in the development, we used this to analyze 
and experiment with the algorithm. This helped to see what improvements can be made and 
evaluate the results of these. The evaluation and analyzing of the algorithm are one of the 
most important elements of this project, and therefore given a great part of the time 
schedule. It was also very import to document the progress regularly. 
 
These two phases was completed at two weeks before the final deadline. When working with 
projects there is always a chance of having some unforeseen issues, in that case it is 
important to have the time to deal with it 
When we had completed these two parts, we started to prepare the presentation. It consists 
of an oral presentation, a video presentation and a poster. This was completed about one 
week before the deadline, in order to have some time to do any potential additional changes. 
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3.7.2 Time schedule 

The group consists of three people, and we need to organize the work in such a way that 
everybody always have something to work with. From other projects we have experienced 
that it has several advantages to have more than one person working with the 
implementation. This makes it easy to come up with new ideas and asserts that the source 
code will be readable and as general as possible. During the implementation phase, two of 
us were scheduled to participate with the programming. Whenever there was a need to do 
some programming in the other phases, there will probably be sufficient with one person 
taking care of this. 
 
The person(s) that is not working with the programming part was responsible for working on 
the report. We had a focus on writing a good report from week one. This way the report was 
always be up to date and did not experience any “panic work” the last week of this master 
thesis. 
 
The group had a close collaboration with the problem owner with status meeting every week 
and e-mail or phone when an urgent problem occurs. 
 
A big part of this project was to research and get familiar with the field. But most importantly 
we had to reserve a great amount of time to use for experiments and evaluation of the 
algorithm, as the application gets to a stage where it can be used to this. The time schedule 
we have created had some small changes during the project, as some parts required more or 
less time, but some of the dates are final delivery dates and cannot be changed. This 
schedule served as a guideline and we tried to keep this track unless we had a good reason 
to change something. 
 
 
 

 
Figure 17 Shows our time schedule 
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3.7.3 Critical resources 

Importance of research 
When we started with the implementation, we needed to have the full and absolute correct 
understanding of how the algorithm worked. This made the research phase critical, all the 
requirements had to be accurate and reflect the desired behavior of the application. Any 
errors here will probably give an incorrect result and can be hard to discover or trace back to 
the source of the problem. Valuable time may be wasted if we search our code for 
programming errors, while the error is located in a requirement. Because of this, we had to 
take the time to ensure the quality of our research and preparations. 
 
Evaluation of the algorithm 

The most important phase of this project is the evaluation and analysis of the algorithm; 
hence the tests done with our application is critical. It is very important that these tests are 
accurate and not influenced by any errors. This makes it necessary to thoroughly validate the 
results of our experiments and make sure that the behavior of the application is flawless. 
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4 Overview of our application 

This chapter will give an overview of our application and we will explain the purpose of the 
different parts of application. 
 
 

4.1 Graphical User Interface 

Our application is divided into six different parts which we discuss in the next six sub 
chapters. 
  

 Main interface 

 Settings panel 

 Representation of the clusters  

 GUI for creating custom clusters 

 Show the hierarchical tree structure 

 Visual representing of the clustering results 
 
 
4.1.1 Main interface 

Our main interface is the start point for the application. Here the user can choose different 
settings from the menu bar. This main interface will also give important information about the 
clustering. The screenshot below shows an example of this. 
 

 
Figure 18 Shows the main interface for our application 
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4.1.2 Settings panel 

The settings panel will provide the main settings for the framework. 
With all these settings, we can easily change the parameters for the algorithm and also 
change the settings for the visual settings.  
 
E.g. it is important to switch off all GUI updates when solving a problem if speed is important. 
And it can be a good thing to turn on all GUI settings when we want to look at the visual 
results. 
 
In this panel the user can change the following parameters: 
 
Solving parameters: 
 

 Number of points 
This is the number of points that are going to be created. This is to easily change the 
complexity of the problems the algorithms should solve. 
 

 Number groups 
This is the number of groups/clusters when creating Gaussian problems. The 
algorithm should be able to recognize the clusters, regardless of how many there 
might be. Therefore it is useful to test the algorithms on clusters with different sizes. 
 

 The max integer value which the points can have 

In our application, the points can have an integer value between zero and a maximum 
value for each dimension. If this value is low, the points will have grid-like positions, 
with a high possibility of overlapping each other. Increasing this number will give the 
points more freedom of where they can be placed. Changing this value should 
however not have any influence of the quality of the clustering, and clustering 
overlapping points was also a special case we found worth examining. Especially 
during testing we found it useful to have the ability to change this value in runtime. 
 

 Point dimension 
This is the number of dimensions to be worked with. The application supports 2 or 
more dimensions although the main focus has been on solving clusters with two 
dimensions. If solving a three-dimensional problem, one has the opportunity to view 
the problem in a 3D window. When rotating the camera around the points, it is pretty 
easy to assess the quality of the result. When having more than three dimensions, 
there will be little use in visualizing, as one or more dimensions will not be seen. 
However, the GUI with hierarchical tree will try to scale the problem down to one 
dimension and this often helps to get an impression of the clustering quality. 
 

 Number of runs when clustering the hierarchical tree 

The different algorithms will be iterated through a specified number of times. In our 
previous version of the application, the algorithm was stopped after clustering a 
certain amount of iterations without any improvement in the clustering. But since the 
total quality of the problem can both decrease and increase during clustering, 
knowing when to stop is more complicated in this variant. Also we have strived to 
keep the algorithm as local as possible, just having a specified number of iterations 
means less need to have a global perspective of the problem.  
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 Number of runs before taking a new measure 

How often a measure of the current total distance with a timestamp should be stored. 
These measurements are used when displaying the progress of the clustering. When 
solving complex problems, this value can be increased to avoid taking too many 
measurements. Currently, when viewing the progress 30 measurements will be used. 
Having many thousands measurements is a waste of resources. As it is hard to say in 
advance how many loops the algorithm will do, it is difficult to decide when to take a 
new measure. But this may be changed and made more dynamic in our future work. 

 

 Number of runs between each time the quality is correctly calculated (grayed 
out) 
The algorithm can run a specified number of iterations using approximate calculations 
for the quality, and then calculate the correct quality. This was implemented to speed 
up the quality calculations when using SSR since that method uses a lot of time to 
include all points in a cluster to find the quality. Since SSR has mainly become a 
method of adjusting the quality when using the much faster mean-methods, this 
option is grayed out. The results of using this option with SSR are also highly 
questionable. 
 

 Number of runs before checking if current solution has best quality (grayed 
out) 
It is possible to have the algorithm every n-round checking if the current solution is 
the best solution so far and storing this. Then the best found solution will be returned 
at the end of the clustering, rather than just the current solution. This was included 
because the quality of the clustering may increase during clustering and the solution 
with the best quality may not be the one at the end. But in order to achieve this, the 
global perspective of the problem is needed. Using mean as quality method to find 
the total quality is not preferable, as it does not represent the “correct” quality of the 
problem. Then the quality has to be calculated for every cluster using SSR, which 
requires a lot of time. Because of that, this option is grayed out. 
 

 Max number in the k-means algorithm when creating the tree (grayed out) 
This is the maximum number of iterations allowed by the k-means algorithm when 
creating the tree. When creating a hierarchical tree, using k-means for each level is 
one option. This often results in well-defined clusters without using too much time. To 
limit the time used even further, restrictions to the number of iterations used by the k-
means algorithm can be specified. But since the main focus in our project is 
clustering dendrogram, this option is not that important and is grayed out. 
 

 Method to use when calculating the quality of the clusters 

Here the quality method of the clustering can be specified. This is used when 
clustering a single run (clustering one time with selected algorithm on current 
problem). When doing multiple runs, the quality method is selected for each algorithm 
and this option is not used. 
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 Number of runs when calculating the average distance (doing multiple runs) 

This is the number of times one algorithm is going to solve the same problem. This is 
used when running the algorithms multiple times on the same problem to get an 
average result of the current algorithm. The results of the different algorithms can 
then be compared. The more runs an algorithm has on a problem, the more accurate 
the average graph will be. It is important to generate this type of average results since 
the work is done by randomly choosing and moving clusters and points. This means 
that both time to complete and the quality can, in rare cases, be either much better or 
much worse than usual, thus giving a faulty result. Calculating average values limits 
these types of errors. 
 

 Max number of clustering threads running at once 

When clustering multiple times with several algorithms at once, the max number of 
threads that is running at the same time can be specified. We used our application on 
different machines, with different hardware. We wanted to have the ability to run 
several algorithms in parallel, taking advantage of machines with multiple cores / 
CPUs.  

 
 
GUI parameters: 
 

 Show graph of clusters and points 

Turn on or off the visual representation of the points. It is useful to have this enabled 
when testing algorithms and tuning the settings. But when measuring the efficiency of 
the algorithms it is not needed to waste time by doing GUI updates. 
 

 Show hierarchical tree structure 

Turn on or off the visual representation of the hierarchical tree. The hierarchical tree 
will show the tree structure of the problem. The points on level 0 in this GUI will be 
the points in the problem, arranged with a variant of multidimensional scaling. Having 
this enabled can be useful when verifying the quality of the clustering. Generally, less 
crossing of lines means better clustering. It is also possible to zoom (both on X, Y and 
XY axis) in order to get a better view on specific parts of the tree. 
 

 GUI update rate 

The number of runs the algorithm has between each GUI update. A lower value will 
give a smoother animation of the clustering, on account of the clustering speed. If the 
value is below one, the GUI components will not be updated during the clustering. 
 

 Radius of points in graph 

This is the size, given in pixels, of the points in the 2d visualization window. 
 

 Draw the points 
Turn on or off whether the points themselves should be shown in the point 
visualization window. Turning this off can give more focus to the clusters and there 
means. 
 

 Draw means 

Turn on or off whether a cross should be drawn at the mean of the clusters. By 
turning this on the application will show where the mean of the clusters are placed. 
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 Draw lines from points to cluster mean 

Turn on or off whether a line should be drawn from the points to the mean of the 
cluster they are related to. Turning this on gives a better impression of which clusters 
the points are related to, but may make it more difficult to see the points. 

 
 The picture below shows a screenshot of the application with some basic settings. 
 

 
Figure 19 Shows the settings panel 
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4.1.3 Representing of the clusters  

Because it is easier for a human being to evaluate the result of the clustering by visually 
inspection we have created an application for exactly this. The viewing application can be run 
during the clustering process, which gives the users a visual simulation of the actual moves 
done during the whole solving process. Since the drawing process is CPU demanding some 
settings are available for the user to set. The settings that can be changed are update rate; 
toggle on and off drawing of the lines between points and toggle on and off drawing the 
middle points.  
 
The figure below shows how 400 points can be clustered into 9 different cluster levels. This 
figure shows the results from the highest level.  
 
 

Figure 20 Shows 400 points clustered into 9 different cluster levels 
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4.1.4 Tree structure for hierarchical clustering 

Sometimes it can be hard to get an overview of the entire problem. Therefore we created an 
application which shows the entire tree structure for the hierarchical clustering. This structure 
is build with multidimensional scaling technique, or simply MDS.  This means that all points in 
the two dimensional space are mapped to a one dimensional line. This is not a hundred 
percent perfect mapping but it gives a good understanding of the problem. 
 
This application gives the user the possibility to click on different clusters to get info about the 
clusters SSR, mean value, parent cluster, child cluster and number of points that belongs to 
the cluster. It also highlights the entire path to all the children. The tree can also be updated 
during the entire solving process.  
 
When the number of points increase it can be hard to see all the connections between each 
cluster. Therefore we created a zoom function. This zoom function gives the user the 
possibility to zoom in at points of interest. It is possible to zoom into the X, Y and XY axis.   
The picture below shows an example of this application. It shows the tree structure for 20 
points. A small dialog box at the right shows information about the cluster.  

 

 
Figure 21 Shows tree structure for 100 points 
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4.1.5 GUI for creating custom clusters 

After experimenting with the algorithms and our application, we decided it would be useful to 
have the option to manually create our own clusters in a simple and easy way. When we 
tested the algorithms there were some cases where it was desirable to work on specific 
clusters rather than the random clusters generated automatically by the application. This was 
in particular very useful when trying to produce the case of a solution lock caused by a local 
optimum. 
 
The user interface is pretty basic; the mouse buttons adds one point. Or use the spray 
function to add many points inside a given shape. It is also possible to clear all points and to 
save or discard the clusters. If the clusters are saved, they are not saved to file but rather 
opened as current problem in the cluster application (where they can be saved as xml file). 
The mean (or center point) of a cluster is represented a cross with the same color as the 
cluster and is updated each time a new point is added to its cluster.  
The figure below shows a screenshot of the GUI for creating custom clusters.  
 

 
Figure 22 GUI for creating custom clusters 
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4.1.6 Visual representing of the clustering results 

During clustering the applications saves at certain intervals, information on its current status. 
These intervals can be configured by the user in the settings panel. This information can then 
be viewed as a graph where the Y-axis represents total SSR value and the X-axis represents 
the time spent on the problem. The SSR value is shown both as number and the percent this 
number is compared to the starting SSR value. 
 
When working on complex problems, the solving can be very time consuming. To generate 
average values several runs on the same cluster can be performed automatically. The user 
can set the number or times the problem should be solved to get an average value in the 
settings dialog and the average values for all the runs will be calculated without the need of 
any further user involvement. 
 
It is also possible to run all algorithms on the same problem to evaluate the results. 
The picture below shows the progress of how the “moves one cluster to random cluster”-
algorithm solved a problem. In this experiment the average SSR is reduced to about 25% 
(reduction of 75%). 
 

 
Figure 23 Shows the result from clustering 
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4.2 XML 

Extensible markup language, or XML, is a widely used system for defining data formats. [20].  
In order to compare the different algorithms we have developed a structure which saves the 
different problems into an extensible markup language, or XML, format. We could not find 
any standards for saving cluster problems so we had to develop our own. XML is fast, easy 
to use and well structured. It is therefore a good way to store our problems.  
 
The source code we used for reading and writing to an XML file is found on the internet site 
www.labe.cz [19].  The picture below shows how the XML file looks on in a regular web 
browser. The structure we created may not be the most efficient structure we could have 
created, but it was created with simplicity and readability in mind. If this structure has to be 
used with very large problems it may need some further revising (Problems with 100.000 
points in two dimensions would give 300.000 values for the points and the file would be over 
500.000 lines long). 
 

 
Figure 24 Shows the XML structure of two clusters 
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To get a better understanding for how the XML is build we have created a sample piece of 
the structure in the textbox below. 

 
Figure 25 Shows the basic XML structure of two clusters 

  

<Clusters>      // Start of clusters 
<PointDim>2</PointDim>     // Dimension of the clusters 
 
<Cluster>                   // Start of one cluster 
<ClusterId>0</ClusterId>    // Cluster id 
<Point>      // Point in cluster 
<PointId>0</PointId>     // Point id 
<Dimension0>2.0</Dimension0>   // X-value point 
<Dimension1>6.0</Dimension1>   // Y-value point 
</Point>      // End point 1 
</Cluster>      // End cluster 
</Clusters>      // End Clusters 
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5 Approach for partitional clustering 

The purpose of chapter 5 is to explain the use of partitional clustering. We will explain the 
state-of-the-art algorithm for this field and explain three partitional clustering algorithms we 
have worked with. We will also give an overview of our implementation of these algorithms 
and results from experiments.  
 
 

5.1 Partitional clustering algorithm   

Our approach for partitional clustering is based on the state-of-the-art algorithm found in the 
book “Pattern classification” [b1]. From this algorithm we have created two different 

approaches that have a local search perspective. A local search approach means that the 
algorithm will only focus on a small part of the problem and try to find the best solution for 
this part instead of focus on the entire problem. This is an approach which reduces the 
amount of work and hopefully reduces the total solving time. Figure 26 shows the algorithm 
described in the book [b1].  
 

 
Figure 26 Pseudo algorithm 

 
This algorithm will first choose a random cluster. From this cluster it chooses a random point. 
The algorithm will then find the cluster that lies closest to the point and move the point to this 
cluster. The algorithm will then calculate the SSR for the two clusters. If the SSR value does 
not improve the point will be moved back to the original position. This will be continued until 
the total SSR has not been changed in a given number of iterations. In our experiments this 
algorithm will be referred to as “one best point” algorithm. 
 
 
  

Partitional cluster algorithm: 
 

Give an input data (set of points) with the coordinates (x, y, z... n). 
Set the number of clusters you want to create. 
                                                    

       
      Do 
      { 

Choose appropriate clusters 
Choose appropriate point(s) 
 Move point(s) 
                     
Compute the gain in SSR 
  If (the new-gain < previous-gain) 
                           accept the move  

 } 
 While (No improvement during a successive number of moves) 
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5.2 Different partitional cluster algorithms approaches 

Based on the “one best point” algorithm we have created two different approaches for the 
cluster algorithm. Both of them will be based on the local search approach. This means that 
the algorithm will only look at a small part of the problem when performing changes to the 
clusters. Since the algorithm only needs to work on a local problem we hope to reduce the 
workload and reduce the time needed to solve the problem.  
 

1. This algorithm chooses two random clusters (C1 and C2) and two random points (P1 
and P2). P1 is chosen from C1 and P2 is chosen from C2. These points will then 
switch place, moving P1 to C2 and P2 to C1. New SSR values for both clusters will 
be calculated and if this sum is lower than the original sum (or it could be within a 
specified threshold), the switch will be accepted. If not, P1 will be moved back to C1 
and P2 to C2. This is repeated until the SSR does not improve after a specified 
number of runs. Since the algorithm just switches two points, the number of points in 
each cluster will not change, which in many cases may be a weakness. Therefore the 
points should be evenly distributed amongst the clusters before the clustering starts. 
In this report this algorithm will be known as the “two points” algorithm.  

 
2. The second algorithm also chooses two random clusters to work with each round, but 

instead of switching two random points between the two selected clusters, it takes 
one random point from the first cluster and moves it to the second cluster. If this 
results in a lower total SSR for the clusters the point will be kept in the new cluster. 
Otherwise it will be moved back. As in the first algorithm, these steps are repeated 
until there is no improvement after a specified number of runs (or the new value is 
within a specified threshold). In contrast to the first algorithm, this does not need the 
points to be evenly distributed between the clusters, e.g. all the points could initially 
be in one single cluster and the algorithm will itself distribute the points amongst the 
numbers of clusters desired. In this report this algorithm will be known as the “one 
point” algorithm.  

 
The reason these variants uses local search while the original algorithm does not is that they 
will not check distance from the selected point (or points) to find the closest neighboring 
cluster. With this local search approach we hope to increase the scalability to the algorithms. 
The only way to make sure you have the closest cluster is to check distance to all available 
clusters. 
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5.3 Experiments 

In this section we will present the results we got from our experiments. In these experiments 
we tried the algorithms on several problems of different complexity. The intention of these 
experiments was to find out how the algorithms worked on the different problems and to see 
if we could discover any weaknesses. This section also explains the problem of local 
optimum and gives a short example of how this may be solved with our algorithms. Finally 
we have discussed and analyzed the results and given some comments regarding further 
work. 
 

5.3.1 Setup  

In our experiments part we tried the three different algorithms on the following problems: 
 

 4 clusters 400 points 

 4 clusters 2000 points 

 10 clusters 1000 points 

 10 clusters 5000 points 

 60 clusters 6000 points 
 
In addition we tried to create a problem that would cause the algorithm to get a local 
optimum. Local optimum is a state where the optimal solution is not found, but there is not 
one single step that can improve the solution. In order to fix this, some bigger restructuring is 
often needed, which first has to make the solution worse before it can get better and the 
optimal state is found.  An effect of this can be that the algorithms gets stuck, unable to undo 
the local optimum even if would be for the better. One cause of local optimum may be when 
there are some “noise” elements. By noise we mean objects which belong to no apparent 
natural cluster. So if an algorithm is sensitive to noise, it may also get stuck in a local 
optimum. In that case we would try to see how this problem could be solved. 
 
These problems were chosen to see how the algorithms worked on problems with different 
complexity. We have then evaluated the quality of the clustering. In this context, the quality is 
based on a combination of speed and precision; the algorithms should reduce the SSR value 
as fast as possible. We tried to cover the cases from having few points and clusters to many 
points and clusters, and some in between. 
 
All points were generated with a Gaussian distribution model. This distribution of points has 
the potential to get a high reduction off SSR value if the groups are recognized by the 
algorithms. SSR is a very good measure to use when finding clearly defined clusters. If the 
distribution of the points within these clusters is distributed Gaussian the potential for 
reduction in SSR is great. This is because a Gaussian distribution will have a high 
concentration of objects located around the center of the cluster and thus would be a 
compact group.  
 
For each algorithm we made 100 test runs on the same problem and calculated the average 
time and reduce in SSR. The algorithm will check SSR every 100 rounds, and when the 
algorithm has done 30 runs on a row without any improvements on SSR, it will stop. 
All GUI updates are turned off to make the calculations as fast as possible. 
 
The experiment was done on a Tundra Pentium Centrino 1.7, 512 Mb ram with Windows XP 
sp2. 
 
To give the possibility to later test these results, all the initial problems are saved to XML 
formats which are attached as an appendix to this report (CD-ROM). 
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5.3.2 Results 

Results from 4 clusters 400 points 

Clustering 400 points into 4 is a small problem which is relatively easy to solve compared to 
the other problems we cover by these experiments. From the graph below we can easily see 
that all of the partitional algorithms that we cover reduce the SSR rapidly. 
 
Observe that when the SSR is reduced approximately to 10% the calculation stops. As seen 
in the figure, the “one point” and the “one best point” algorithms gives the best results, with 
the “one best point” being a little bit faster. The “Two points” algorithm is not as efficient, it 
uses quite a lot more time to get to a certain reduction of SSR, and it ends up with a worse 
solution than the other algorithms. Given more time, the “Two points” could possibly get to 
the same reduction as the other algorithms, but it would take a lot more time. And if the 
number of points in the generated groups were uneven, the “Two points” would be unable to 
find the best solution. 
 

 
Figure 27 Compares results of 3 algorithms clustering 4 clusters and 400 points 
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Results from 4 clusters and 2000 points 

In the 4 clusters and 2000 points experiment we can see from the graph that the results of 
the different algorithms are starting to become quite different The “one point” and” the “one 
best point” algorithms still give the best results. Both of them reduced the SSR to around 10 
percent of the initial value. It is also interesting to see that the “two points” algorithm gives the 
worst results at any given time. 
 

 
Figure 28 Compares results of 3 algorithms clustering 4 clusters and 2000 points 

 
 



Enhancing hierarchical clustering with local search 
 
 
 

 Kjetil Monge, Olav Jensen and Raymond Koteng Page 51 of 102  

Results from 10 clusters 1000 points 

On this problem, the “one point” and “one best point” algorithms still gives the best result. 
However, the “one best point” starts to spend more time compared to the “one point” 
algorithm. In the beginning, before the clustering reaches a certain level, there is not much 
difference between these algorithms. But as the solution gets better, the “one best point” hits 
a critical point and starts to flatten out.  
 

 
Figure 29 Compares results of 3 algorithms clustering 10 clusters and 1000 points 



Enhancing hierarchical clustering with local search 
 
 
 

 Kjetil Monge, Olav Jensen and Raymond Koteng Page 52 of 102  

Results from 10 clusters 5000 points 

The result of this experiment is similar to the results of the previous experiment, but for a 
while the “one best point” algorithm provides, for the first time, the worst solution. As the 
complexity of the clusters rise, the “one best point” algorithm seems to change from being 
the fastest variant to be the slowest. Still, given enough time it will in most cases give a better 
final result than the “two points”, but so will the “one point” only quicker. 
 

 
Figure 30 Compares results of 3 algorithms clustering 10 clusters and 5000 points 
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Results from 60 clusters 6000 points 

In this case the “one best point” is clearly slower than the other algorithms. From the graph, 
we can see that it uses almost four times longer to get to a solution which also is not as good 
as the solutions of the other algorithms. This is because the calculations needed to decide 
which cluster to move to gets increasingly time-consuming.  
Still the “one point” remains the best algorithm regarding the result at any given time. 
 

 
Figure 31 Compares results of 3 algorithms clustering 60 clusters and 6000 points 

 
 
 
 
 
 



Enhancing hierarchical clustering with local search 
 
 
 

 Kjetil Monge, Olav Jensen and Raymond Koteng Page 54 of 102  

5.4 Local optimum experiment 

As mentioned earlier in this report, there are some cases which may trap the algorithms in 
something called a local optimum. Local optimum is a state where the optimal solution is not 
found but further improvements would require more than a single step. In order to fix this the 
solution would have to get worse before it can get better.  
 
If the algorithms then are configured to not accept any point moves which does not give a 
better SSR value, the algorithms will be locked. An example of a clustering solution causing 
a local optimum can be seen in the figure below. Here there are three groups with 20 points 
in each group. In addition there are some “noisy” points outside the main groups (10 blue 
points). These points should be clustered in three clusters. In the figure the noise elements 
have been mistaken for a separate cluster when it really should be a part of the green 
cluster. This mistake is forcing two of the actual clusters into a single cluster. The clustering 
algorithm we used was both the “one point” and “one best point” algorithms. The reason why 
we did not use the “two points” algorithm is that the number of points in each cluster should 
be dynamic, rather than fixed. 
 
There is not one move of a point or a switch of two points which will improve the solution. 
Still, it is quite easy to see that this is not the optimal solution. 
 

 
Figure 32 The local optimum problem 

 
 
The solution to this problem is to sometimes accept a move of points even though it may not 
give a better solution. We then changed the settings of the algorithm as shown in the picture 
below. 
 

 
Figure 33 Settings to solve local optimum 
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This means that if a SSR value after a move of points is worse, but within 20% of the 
previous value, the move of points still has 10% chance of being accepted. When we then 
tried to solve the problem, we got a new result, as seen in the picture below. Note that the 
colors themselves are only defining the clusters. In this figure the blue points are not noise 
but a proper cluster (now containing the noise objects). 
 

 
Figure 34 Local optimum problem solved 

 
 



Enhancing hierarchical clustering with local search 
 
 
 

 Kjetil Monge, Olav Jensen and Raymond Koteng Page 56 of 102  

5.5 Experiments summary  

Two point’s algorithm 
From the results of our experiments this algorithm seems to be quite scalable throughout all 
the test cases. However, this is the only algorithm we are testing that does not change the 
number of points in each cluster, so the points have to be distributed before the algorithm 
can start. In certain scenarios were it would be optimal to have an uneven number of points 
in the clusters, this algorithm would have its limits. If there is a point in one cluster that 
doesn’t really belong there, it has to find a suitable point in another cluster to switch with. 
This may be a limiting constraint and part of why the solutions of this algorithm never get as 
good as with the other algorithms in our tests.  
 
When dealing with noise and local optimum, this can be avoided by sometimes allowing the 
points to be switched, even if this does not immediately improve the solution. But once again 
the fact that this algorithm does not change the number of points in each cluster may prevent 
the algorithm from finding the optimal solution.  
 
One point algorithm 

In three out of five tests this algorithm gives the best result. In the rest of the tests it is a bit 
slower than the “one best point” algorithm, but it still gives comparably good results. When 
the numbers of clusters are high, in the cases of 10 clusters and 1000 points and above, it 
gives the best results. Also, it will distribute the points dynamically and it should put more 
points in some clusters if needed, not having to rely on getting another point to switch with. 
This would make this algorithm suitable for detecting clusters of uneven size, as opposed to 
the “Two point’s algorithm”. 
 
The problem with a local optimum is solved in the same way as with the “Two point’s 
algorithm”, by sometimes allowing a point to be moved even though it does not improve the 
solution. This algorithm also seems to be scalable and generally one of the fastest algorithms 
amongst the ones we have tested. As the number of clusters increase, it will prove to be the 
best algorithm and should generally give a better result than the first algorithm both regarding 
time and quality. On average the SSR is reduced by at least 90% in these cases. 
 
One best point algorithm 

This algorithm is really fast as long as the numbers of clusters are low. In almost all of the 
small experiments it is clearly the fastest one, with about the same SSR value, or better, than 
the one point algorithm. It also distributes the points amongst the clusters dynamically, just 
as the “One point algorithm”. But when the number of clusters increases, the performance 
degrades quickly. This is because it does not utilize the local search principle and therefore 
has to iterate between all the clusters to find the closest one to its middle point. In other 
words, the algorithm scales poorly when it comes to the number of clusters, but will still scale 
better when it simply comes to number of points without affecting number of clusters. This is 
something that really shows in the last experiment where it is up to 10 times slower to get to 
a solution. From our experiments, this algorithm seemed to handle noise and local optimum 
in the same way as the “One point algorithm”.  
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The local optimum problems we worked with, were solved equally well by both of these 
algorithms. But the fact that this algorithm moves a point to the closest cluster, rather than a 
random one, may affect how easy a local optimum is solved. In the cases where some points 
have to be moved further away rather than to the closest cluster, this algorithm may have a 
hard time finding the optimal solution. This will be more probable when having more clusters 
and the solution to the local optimum requires a big restructuring of the clustering. 
 
As seen on the graphs of the tests (especially with more clusters) the SSR value will 
decrease quickly to a certain point, but after this it will flatten out a lot and use a long time to 
do minor improvements. At the beginning of the clustering process when the points are badly 
clustered, most of the points are placed in the wrong cluster, and there is quite a lot to gain 
when finding the right cluster to place a point. But as the clustering is getting better, the 
algorithm is starting to more often than not choose points that already are in the correct 
clusters. This will generate a lot of unnecessary work just to check whether these objects can 
be moved. That is probably the reason why the algorithm is working as best until it reaches a 
critical point after which it almost stops to a halt. 
 
Clearly, this algorithm does not seem to be as scalable as the other algorithms when the 
number of clusters increases. But with a low number of clusters it is clearly the fastest of our 
algorithms, with a result at least as good as with the one point algorithm, if not even better. 
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6 Approach hierarchical clustering 

We have tested our dendrogram algorithms on a set of different experiments, designed to 
reveal their essential properties. As a result of these experiments, we have obtained valuable 
information about the algorithms. It was important to find out how scalable they are, as well 
as learning more about the quality of the clustering. 

 
The cluster switcher algorithm generally needs less computational time per iteration, while 
cluster mover uses a more flexible technique. Our experiments indicate that cluster mover is 
the best algorithm both regarding clustering speed and scaling, not unexpected according to 
our early research. 
 
 

6.1 Online hierarchical clustering algorithm 

Our approach for hierarchical clustering is based on a state-of-the-art algorithm found in the 
book “Pattern classification” [b1]. This was the starting point for our research and we wanted 
to see what improvements could be made and how effective we could get the clustering. The 
next section provides more information on two main types of clustering and how our 
algorithm differs from these. 
 
When it comes to clustering, there exist a number of different algorithms with various 
properties. Clustering can be divided into partitional and hierarchical clustering. Until now, 
partitional clustering has been the fastest method, but it only contains information on a single 
solution with a fixed number of clusters. Hierarchical clustering provides a structure, where 
multiple solutions with any desired number of clusters could be represented. The main 
disadvantage of hierarchical clustering has been that it is very time consuming. A new 
algorithm that combines the flexibility and strength of hierarchical clustering with the speed of 
local partitional clustering would be of great value in many fields. This was the main idea and 
the aim of our work. However, in order to achieve this there were several obstacles that we 
needed to overcome. 
 
In this project we had some different approaches to solving the cluster problems which we 
describe in the next sub chapter of this chapter. We have actually been studying five different 
methods. Two for clustering into a dendrogram structure and three for clustering into a tree 
structure where the nodes can have more than two children each. The three methods for the 
non dendrogram structure were abandoned. The main reason for this decision is that sub 
clusters are easier to locate using a dendrogram. If a node has more than two children you 
actually skip some layers which might be important. If a node has three children (for 
example) you lose some information which might be important. Two of those children could 
form a natural sub cluster. Instead of the three children solution there should be an additional 
layer with a node having two of those nodes as its children. This new node could then be the 
child of the original parent node. This way the original parent node will still contain the exact 
same objects but you will also have the natural sub cluster as a separate child. If a cluster 
only got one child, that child would be a copy of the cluster itself which will be useless 
duplication of data.  The three methods are explained, but our main focus will be on the two 
dendrogram clustering algorithms. 
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The idea behind these algorithms has been carried out after several discussions with our 
supervisor and internal discussion in the group using the book “Statistical concepts and 
methods” [b2] as a source of inspiration.  The algorithm we used as a starting point in our 

project is explained below. 
 

 
Figure 35 Online hierarchical clustering algorithm 

 

As stated earlier, the closest agglomerative algorithm is the hierarchical algorithm we have 
decided to use as a comparison to our algorithm. This algorithm will create the tree structure 
by always merging the two clusters that are closest to each other. The result of this process 
is a clustered tree structure. Even though this is a simple procedure, it scales very poorly 
(One additional object in a set with n-1 objects would generate  𝑛 − 𝑖𝑛

𝐼=1  additional 

comparisons of clusters during work) and a lot of processing is required as the number of 
objects is high.  
 
Our method is a bit different. It is divided in two phases; one where the tree is created and 
one for improving the tree. The reason for this is that the improvement algorithm, or 
clustering algorithm, needs to have a tree structure to work with. Doing this provides several 
advantages. Firstly, algorithms doing this in one phase may not have a complete three 
structure at all until the clustering is completed, meaning it will not have any results at all 
before it is finished. 

Hierarchical cluster algorithm: 
 

Give an input data (set of points) with the coordinates (x, y, z... n). 
 
 Build tree structure: 

Do 
{ 

Create a tree structure by merging one cluster (xi) with another cluster (xj) 
from the same level to make a new cluster at level + 1    

} 
While (NOT Cluster level size equals max -1) 

                                          
       Clustering: 

Do   

{ 
Choose random level in tree 
Choose appropriate clusters 
Choose appropriate point(s) 
Move point(s) 
 
Compute the gain in SSR 
 
If (new gain < previous gain) 
{ 

accept move  
 } 

             } 
 While (No improvement during a successive number of moves) 
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Some algorithms (for example K-means) do the clustering in steps, where each step can be 
stopped and a partially clustered result can be obtained. As the time complexity of these 
steps increase with the size of the problem, each step can take a significant amount of time. 
If the clustering should be stopped during a step, it either has to wait for this potential time 
consuming step to finish or do a rollback to the previous completed step to get a result. 
 
With our algorithm, the tree can be created very fast and the tree structure can be improved 
for as long as desired. The clustering can be aborted at any time and there will still exist a 
tree structure that may be usable. Since each clustering step requires a small amount of 
computational time, almost independent of how complex the problem is, the clustering can 
be stopped almost instantaneously. If needed, a tree can later be improved further by the 
algorithm, using the previous tree as a starting point. 
 
It also has a big advantage when it comes to dealing with new data. If some new elements 
should be inserted into an existing tree, these could then be placed randomly in the tree. The 
clustering can then be started (or it might never have been stopped), and the new elements 
should be correctly clustered into the existing tree. The other methods would have to redo 
the whole clustering, discarding any previous work.  
 
 

6.2 Different hierarchical cluster algorithms 

We have divided the problem in two parts; first a hierarchical tree has to be created, then the 
clustering can start. Based on the pseudo hierarchical cluster algorithm, we have 
implemented six different approaches for creating the hierarchical tree and five clustering 
approaches that we have tested in this project. Amongst these approaches, there are two 
main types; hierarchical tree and dendrogram. Dendrogram is a specific variant of 
hierarchical tree, where each node, except the leaf nodes, has to have exactly two child 
nodes. On each level two clusters are combined into a new cluster. 
 
The hierarchical tree was the first variant we implemented. An example of this kind of tree is 
shown in Figure 36. It generally has a structure of two nodes on the top level, four on the 
next, then eight and so on. It is also possible to have nodes with one, two, three or more 
child nodes. This is something that changes during the clustering when moving the nodes. 
Moving or switching nodes can only be done on the same level. For example it is not allowed 
to move a node from a higher level to the bottom level. In that case there would be a node on 
the bottom level containing several child nodes, when nodes on that level are supposed to be 
leaf nodes. With this structure there will probably not be one level representing the natural 
clusters, which may be desirable. To get levels with natural clusters they will have to be 
forced to have the correct amount of clusters (equal to that of the number of natural clusters) 
when creating the tree in the first place.  
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Figure 36 Example of a Hierarchical tree 

 
As a result of our discussions about the hierarchical tree, we implemented the dendrogram. 
In Figure 37 an example of a dendrogram is shown. As stated above, this is a specific variant 
of the hierarchical tree where each node should have exactly two child nodes, except for the 
leaf nodes. The idea of having nodes stored in levels also gets somewhat less importance 
here. In the non dendrogram structure all levels would always contain all objects, and each 
level would thus contain one partitional solution (many of the levels would contain a semi-
clustered solution since not all levels contains the “correct” number of clusters). We have 
kept the levels solely for the visual representation of the tree. In the tree-viewer there will be 
only one new node for each level, which means that there is the same number of levels as 
there are points. There will be a level for all possible number of nodes, and the number of 
natural clusters will be represented at one level in the tree. Since the actual clustering does 
not have any knowledge of levels, and that each level is not a representation of all objects it 
is allowed move/switch nodes regardless of position in the tree, as long as some important 
rules are obeyed. These rules are explained in part 6.3.1. This structure is a lot more flexible 
than our non dendrogram structure, with a bigger variety of possible moves. 
 

 
Figure 37 Dendrogram example 

 
In the next section we will present the algorithms we have implemented for both initializing 
and clustering the tree. 
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6.2.1 Algorithms for initializing the tree 

This part contains a summary of the algorithms we have implemented to create the 
hierarchical tree. 1 to 4 creates trees where nodes can have 1 to n numbers of child nodes 
and exactly one parent, while 5 and 6 creates dendrograms. 
 
We wanted to try different methods for creating the tree. The first algorithm we created went 
through the list of points and created the tree in that order, but then the structure of the tree 
was determined by the order the points had in the list. This was a fast algorithm, but we also 
wanted a method that creates a random tree, unaffected by the order of the points and which 
would be different each time. We also wanted to experiment with doing some clustering 
during the initializing of the tree, so we created a few algorithms for this as well. The main 
focus of this project has been to improve the clustering algorithms itself, but it was interesting 
to see how adding clustering to the initial phase influenced the result. 
 
Next we will present the different tree initialization algorithms we implemented. 
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Non dendrogram: 

The non-dendrogram was for a long time the only structure we worked with. It worked well 
with clearly defined clusters, but appeared to get into trouble very quickly if the structure was 
not so well defined. Also this structure was locked on only having to make changes to single 
levels. This will in many cases make it need more iterations to solve a problem since it often 
will have to sort the lower layers before the higher layers can be fixed. We did discuss the 
possibility of weighting the levels so that the algorithm would more often than not chose the 
lower levels, but we had at that point gotten the feeling that this structure is a bit limited and 
discontinued working with it. We still discuss the methods for it because it was a very 
important step in the evolution of our algorithms. 
 

1. Fast 

This is the fastest and simplest algorithm. The tree created with this algorithm will be 
affected by the order of the points in the list. It works well in the cases where the 
points have random positions in the list and when the tree should be created fast, 
without any clustering done.  
 
The algorithm iterates through the list of points and puts two and two points in one 
cluster. If there is just one point left in the end, that point will be the only one in the 
last cluster. This is then repeated for the next level; the two first clusters on the 
previous level will form a new cluster and so on. The algorithm stops when it reached 
a given number of clusters on the topmost level. .   If order of the points are random 
before building the tree this method will be random, but the result will be the same 
every time for equal input sets.  
This method was used mainly for internal testing when we needed a quick way to 
generate the tree structure and not for any of our tests in the experiment phase. 
 

2. K-mean 

One idea we had was to create the tree with K-mean clustering on each level. This is 
a fast method for creating a clustered tree and can be used as a comparison to our 
algorithm. 
 
Initially all points are put in one cluster, and then this is clustered into two clusters 
using the K-mean algorithm. These two clusters will be the top level of the 
hierarchical tree. Each of these clusters will again be clustered into two new clusters 
and the new clusters will then be the next level. This process is repeated until there 
exists a level with one point in each cluster; this will be the bottom level. This is a 
divisive approach to creating a hierarchical tree, and can actually be thought of as a 
way of both creating and clustering the tree since each level will be clustered using 
the k-means algorithm The number of clusters each level should be divided into could 
be set manually if it was to be used. 
 
This method was an idea we had early in our work. It seems to work fast and 
generates a decent quality clustered tree. But because we wanted to test our own 
algorithms on totally random trees this method was discontinued and not used in any 
“official” testing. 
 

3. Random 
As the main focus of our project has been to test and improve the clustering 
algorithm, it was very important that we had a way of creating an absolutely random 
tree. By testing it on random trees, we ensure there are no pre-determined qualities 
needed for the clustering to work. 
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This algorithm is very similar to the first algorithm, but instead of just picking points 
and clusters sequentially from the beginning of the list, they are picked randomly The 
random functions and the need to keep track of already used objects makes this 
algorithm a little bit slower than the “fast” algorithm, but the result will be completely 
random where clusters are not affected by their position in the input set. Also this 
algorithm will create different trees almost each time it is run even if the input set is 
equal (the only times it will generate equal trees is when it happens by chance). 
 

4. Closest mean 

This was another idea we had for quickly creating a clustered tree. It was in order to 
have something more to compare our algorithm to. And also to see if it could be worth 
spending a bit more time during the initialization process in order to have a better 
starting point for the clustering.  
 
One cluster will be selected from the list; this will then be merged with the closest 
cluster to form a cluster on the next level. This is repeated for all the clusters on the 
first level, and then for all clusters on the next levels, until there is only two or three 
clusters in the top level. This method will not merge the closest clusters available. 
The second cluster selected could very well have another cluster which it is closer to 
it, even if the first cluster (selected randomly) does not. With this algorithm the result 
is often well defined clusters which are closer to a clustered result than the random 
ones, but with some misplaced points. This is because when the last points/clusters 
is chosen, the closest points/clusters may be already had been taken and they has to 
merged with some further away.  
 
This method was a very quick way of generating a partly clustered tree. It could very 
well be more research on this would prove that there could be benefits of using a 
quick method like this before actually performing the clustering. As with the k-means 
tree-creator algorithm we it was discontinued because we didn’t want our algorithms 
to have to rely on non-random structures to work. 

 
Dendrogram: 

Realizing that the structure we had been using had some limitations to the way changes 
could be made, we decided to use a dendrogram structure instead. Along with the change to 
dendrogram we also removed the concept of levels since we wanted to be able to make 
relation-changes to nodes regardless of where they were positioned in the tree. 
The dendrogram structure is the one used in all our hierarchical experiments. 
 

5. Random dendrogram 

When our algorithms evolved into working with dendrograms, we needed a way to 
create a totally random dendrogram. 
 

Random points/clusters with no parent will be merged together, until one top-level 
cluster containing all points is created. This is a fast way of creating the dendrogram, 
and as it is completely random, it is a good starting point for our clustering algorithm. 
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6. Merge closest (closest agglomerative) 

In order to validate our algorithm, we wanted to compare it to the state-of-the-art 
algorithm. This method creates very well arranged trees, at the cost of high 
computational time. We wanted to compare both the clustering speed and quality 
between our algorithm and this method. 
 

Each point starts out alone in a cluster. Each step of the algorithm will merge the 
closest clusters available. When two clusters are merged they are taken out of the list 
of possible candidates and the newly formed cluster will be added instead. This is 
repeated until no further steps are possible, meaning there is only one cluster left. 
This is a systematic algorithm to find a solution close to a “perfect dendrogram” 
(where all objects are siblings to their closest neighbor), but as the number of points 
increase, this algorithm soon becomes extremely slow. The solution will often have 
minimized total SSR as much as possible and therefore it is interesting to see how 
close to this our algorithm will get and compare the time used. As explained in 
chapter 2.11.3 there are some cases where the closest agglomerative solution will 
not generate the absolutely minimal SSR solution, but the value will still be close to 
the theoretically lowest possible. 
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6.2.2 Clustering algorithms 

Between the non dendrogram trees and the dendrogram clustering approaches there are two 
very important differences: while the non dendrogram tree algorithms switch/move clusters 
on the same level, the dendrogram approaches operates across the tree. One cluster can be 
switched with or moved to another cluster no matter where it belongs in the tree, as long as 
some preconditions are fulfilled. One example of a precondition is that there is no point in 
switching two clusters if they are siblings. Also there are some moves which are not possible, 
i.e. to attach a node as a child to its grandchildren makes no sense and will not be allowed. 
 
Non dendrogram: 
 

1. Switch two random clusters 

This was our first clustering algorithm on the hierarchical tree. This is an expansion of 
the partitional algorithm we worked with in our previous work, described in chapter 
5.2. We now wanted to see how this way of thinking worked on a hierarchical 
structure. 
 
The algorithm: 

One random cluster is picked (c0), and then another random cluster on the same 
level is chosen (c1). These two clusters will then be switched, meaning that the 
parent of c0 will lose the points in c0 and get the points in c1 and likewise for the 
parent of c1. The new quality of these parents is then calculated and compared to the 
old qualities; if the sum of these new qualities is lower, the switch will be accepted,  if 
not they are switched back. 
 

2. Move one cluster to random cluster 

As we discovered with our previous work, switching two clusters has its constraints. 
When there number of clusters that should be moved is low compared to the total 
number of clusters, the algorithm may need a lot of time before selecting two clusters 
appropriate for switching. In some cases there may not even be any clusters causing 
a good switch, even though some clusters should be moved to another node in the 
tree. An algorithm moving a cluster rather than having to find an appropriate switch 
should then be more flexible and effective. 
 
The algorithm: 

One random cluster with some siblings is picked, and then a suitable parent on the 
level above is found. The cluster is moved from the old parent to the new one and if 
the sum of qualities for the parent clusters is better than the old one, the move will be 
accepted. Else the cluster is moved back to the old parent. The reason why the 
cluster to move has to have at least one sibling is because if not, the old parent would 
not have any clusters left when the cluster is moved. 
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3. Move one cluster to closest cluster 

In addition to trying to move a cluster to random target cluster, we also wanted to see 
how putting some work into finding the best target cluster would affect the algorithm. 
This would mean that all iterations in the algorithm would take more time, but should 
do more sensible moves. 
 
The algorithm:  
Almost the same as “move one cluster”, but instead of choosing a new random 
parent, the closest cluster on the level above will be chosen as the new parent. The 
cluster is then moved from the old to the new parent and if the sum of their new 
qualities is better than the old, the move is accepted. 

 
Dendrogram: 

 
4. Cluster switcher 

As we changed our structure to dendrogram, we still wanted to see how our initial 
clustering method would work. New with this structure was that the algorithms could 
switch/move clusters across the different levels, which enables a lot of new possible 
moves.  
 
The algorithm:  
Two random clusters (c0 and c1), which satisfies different conditions is selected. 
These clusters will then switch positions, and if there is a quality gain in the switch, it 
will be accepted.  
The conditions the clusters have to fulfill include: 
 

 The two clusters cannot be siblings (switching two siblings makes no 
difference) 

 Neither can be the top-level cluster 

 Neither of the clusters should be an ancestor of the other cluster. 
 

5. Cluster mover 
As discovered in our previous work, the method of moving a cluster to another 
random cluster has been the overall most effective way of working. It was important to 
have this variant on the dendrogram structure as well and evaluate the performance. 
 
The algorithm:  

In this algorithm one random cluster will be moved to a new parent. If there is an 
acceptable quality gain in the parents (p0 and p1) after the move, it is accepted. In 
this algorithm there are no restrictions to the parents; they can be at any level in the 
dendrogram. But as moving a cluster would result in p0 ending up with less than two 
children and p1 ending up with more than two children, some restructuring of the tree 
has to be done in order to keep the dendrogram structure. Also this algorithm has 
some restrictions to the selected clusters. Note that the first selected cluster is the 
cluster which will be moved while the second cluster defined where the cluster will be 
moved to. After a move the two selected clusters will be siblings. 
 

 The first clusters selected cannot be the top node (Moving all the points in the 
problem to another parent make no sense). 

 The clusters should not be siblings. 

 Neither of the clusters should be the other clusters parent. 

 The first cluster to be selected should not be an ancestor of the second cluster 
(the other way around is fine). 
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6.3 Description of algorithms 

 

6.3.1 Clusters switcher 

The cluster switcher algorithm will select two clusters and try to switch parents of those 
clusters. Quality for the parent clusters will be recalculated and finally the move will be either 
accepted or rejected based on the quality after switch versus the quality before the switch.  
In this explanation the clusters selected will be called c0 and c1 and the parent of the 
clusters will be called p0 and p1. 
 
Pseudo Algorithm: 

Figure 38 Cluster switcher 

 
Select stage:  
The select stage selects two clusters from the clusters collection. These clusters cannot be 
siblings and they cannot be ancestors of each other. This is because the clusters are to 
switch parents. So if they are siblings no change will be made and if they are ancestors one 
of them will be set to be a child of one of its own descendants. 
 
Store old values: 

During this stage old mean and quality values will be stored to temporary variables. This has 
to be done since the values will have to be used when testing if a step should be accepted or 
not. 
 
Switch clusters: 

c0 and c1 will exchange parents. So that p1 is the parent of c0 and p0 is the parent of c1. 
Both child and parent relations have to be updated. 
 
Calculate new value: 

During this step new quality values for the two parent clusters are calculated. By only 
updating the parent’s quality and not all clusters which change higher up in the tree we focus 
the algorithm on the local search method. All the affected clusters should only be updated 
when accepting a move. The quality can either be SSR or mean-quality. SSR means that all 
the clusters involved needs to have fully updated list of points which they will iterate through 
to calculate the new SSR for the cluster. 
 
The mean quality is an alternative method of defining quality used to simplify the process of 
recalculating quality. Here all which needs to be updated are the size of the cluster and the 
mean of the cluster. The new mean will be calculated based on previous mean and cluster 
size. The quality itself is the distance between a clusters two children’s means. This way we 
save a lot of time updating and reading points lists.  
 
 
 

While (not finished) 

 Select c0 and c1 from clusters 
 Store old values. 
 Switch parents. 
 Calculate new quality. 
 If (old quality > new quality) accept switch. 
 Else reject switch. 
End while 
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Accept switch: 

When accepting a switch, nodes from c0 and c1 up to the first common ancestor have to be 
updated. The nodes higher up in the tree will still have the same clusters as descendants 
and will therefore remain unchanged. Keeping the changes only to the nodes up to the first 
common ancestor is important because it makes the algorithm focused on local search.  
 
Reject switch: 
When rejecting a switch all that needs to be done is to restore the size, mean and quality 
value stored in the store old value step. 
 
The Figure below shows an example of a dendrogram switch. 

 

 
Figure 39 Example of a dendrogram switch 
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6.3.2 Cluster mover 

In this algorithm one random cluster will be moved to a new parent. If there is an acceptable 
quality gain for the parents (p0 and p1) after the move, it is accepted. The way this is done is 
to select two clusters, then attach one of them to the parent node of the other. This requires 
restructuring of the tree around both nodes.  We will call the two selected clusters c0 and c1. 
In this explanation we will also refer to the parent of c0 and c1 as p0 and p1, the grandparent 
of c0 as pop0 (parent of parent0) and finally the sibling of c0 as s0. 
 
 
Cluster mover pseudo code: 

Figure 40 Cluster mover 

 
 
Select clusters step 
There are certain rules that have to be obeyed when selecting the two clusters.  
 

 c1 should not be an ancestor of c0; parent0 would become a child of one of its own 
descendants 

 c0 should not be the top node; a special case of the rule above. 

 c1 should not be parent of c0; will end up with the same structure as before 

 c0 and c1 should not be siblings; will end up with the same structure as before 
 
There is one more step not involved in the pseudo code. This step is examines the lineage of 
the selected clusters. This is important because what and how to perform updates depends 
on the relations of c0 and c1. 
 
Store values step 

Stores old mean quality and relations for p0 and p1. If c1 is the top node there will be no p1, 
instead pop0 will be used. 
 
  

while (not finished)  
  select two random clusters 
 store old values 
 move cluster 
 calculate new quality for p0 and p1 
 if(quality has improved) accept move 
 else reject move 
end while 
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Move cluster 

Here the actual restructuring of the tree gets done. What we want to do is actually to create a 
new node, attach c0 and c1 as children of that node and attach that new node in the old 
position of c1. But to simplify the process what we really do is to use p0 as this new node 
and attach it as a child to p1. This eliminates the need for a method of creating and 
destroying nodes and clusters. The steps performed to fix all the relations are: 
 

 Remove c1 as a child of p1 and add it as a child of p0 

 Remove p0 as a child of pop0 and add it as a child of p1 

 Remove s0 as a child of p0 and add as a child of pop0 
 
In cases where p0 is the top node s0 will be set to be the new top node. If c1 is the top node 
p0 will be set as the new top node. c0 can never be the top node since it cannot be allowed 
that c0 are higher than c1 in the tree IF they are ancestors because this will create a situation 
in the tree where a parent is descendant of one of its own descendants which of course 
should not be allowed.  
 
The figures bellow shows two example moves. Figure 41 shows an example when the two 
clusters are not ancestors of each other, while Figure 42 shows an example when c1 is an 
ancestor of c0. The left part of the figures shows the tree before the move and at the right the 
tree after the move is displayed. 
 

 
Figure 41 Move to different sub tree. 
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Figure 42 Move to same sub tree. 

 
Check Quality Gain 

After performing a move we want to check new quality values for p0 and p1, but to do this 
also the size and mean of the clusters have to be updated. This is because the quality is 
directly connected to the mean values of the child nodes and because the mean is directly 
calculated based on old mean and size of a cluster.  
 
 To ensure local search usage we only want to update an as small as possible amount of 
clusters. Which clusters needs update are dependent on if the nodes are ancestors or not. If 
c1 is an ancestor of c0 all the clusters between pop0 and p1 has to be updated. This is 
because the quality of any cluster is dependent on all of its descendants.  
If the clusters are not related in this way however, all that needs to be updated are the values 
of the parent clusters themselves. The only thing to think of here is that p0 needs to be 
updated before p1 since p0, after the move step, is a child of p1.  
In cases where c1 is the old top node of the tree p1 will not be defined, and the quality of 
pop0 is used instead of the quality of p1. 
After updating quality values for the necessary clusters the new quality value for p0 and p1 
are compared to the new qualities. 
 
What to accept as an improvement is one of the most important parts of the algorithm. With 
more time on our hands we would have liked to study this step even further to see if there 
are any clever ways of measuring improvements. The quality of a cluster can be set in our 
application. The slowest, but most accurate, way is using SSR. As discussed earlier SSR 
would require large lists of points for a lot of clusters to be updated. This would in cases of 
large trees take a lot of time to do. In an SSR-quality based environment we sum the old 
qualities and the new qualities. If total new quality is lower than total old quality the move is 
accepted.  
 
The mean quality calculations are a measurement of the distance between the means of the 
children of a cluster. This method will not give us any direct information on how the clusters 
actually are, but the thought is that clusters where the children are located close to one 
another are more compact than a cluster where the children are further apart. We also had 
some discussions about weighting the qualities based on how many points are in a cluster. If 
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a cluster got one child with a lot of points, and one child with few points it seems natural that 
the one with many clusters should somehow count for more than the one with few points, but 
this may not always necessary be true for different reasons, so we decided to keep the 
quality without taking into account how many points each cluster has.  
 
Even when deciding how to measure quality we had to decide on how to measure 
improvement when using the mean quality method. We tested some different ways of 
measuring this. One was to simply say that an acceptable step had improvements both in 
p0’s and p1’s quality. This seemed to work ok enough, especially in cases with no added 
noise, but we still wanted to test some other options. We experimented some with accepting 
cases where the quality declined for one of the parents as long as the other was improved, 
but in the end we ended up with accepting a move if the quality of p0 is improved AND that 
the improvement in percentage is higher than the loss of quality in p1. 
 
Accept move 

If a move is accepted there are some more values which need to be updated. If the nodes 
are ancestors the necessary nodes have already been updated, but in the case where they 
are not ancestors however it is necessary to update all the nodes from both parent nodes to 
the first common ancestor node. This is because the first common ancestor is the last node 
affected by the move. So the first common ancestor node is identified and two updates, one 
from p0 to first common ancestor and one from pop0 to first common ancestor are 
performed.  
 
Reject Move 
The first step of the reject move is to old associations. Here the changes made during the 
move stage of the algorithm are reversed. The reason for rebuilding the tree structure before 
resetting mean, size and quality values are that the method used to update size takes size 
from both children, it is therefore important that the relations are correct when this is done. 
If the clusters are ancestors all that needs to be updated are the nodes from p0 to p1 or, if c1 
is the top cluster, from p0 to c1.  
 
If the clusters are not ancestors values for p0 and p1, or alternatively pop0 if c1 is the top 
node, will be set back to the values stored in the store values step.
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6.4 Experiments hierarchical clustering 

 

6.4.1 Setup 

The experiments 

In our experiments part we tried the two different dendrogram clustering algorithms on 
several problems. We created four experiments of varying size without noise and four similar 
problems of the same sizes with noise. In each of these experiments there were four groups 
of points. The algorithms should then at one level in the tree find the four clusters. One 
example of such an experiment can be seen in Figure 43. The sizes of these experiments 
were as follows: 
 

 20 points 

 100 points 

 1000 points 

 4000 points 
 

 

 
Figure 43 Example of experiment with 4 clusters 

 
In addition we created a more complex experiment; at one level there should be found four 
clusters, but these clusters were divided into three smaller clusters. The hierarchical tree 
should then include both solutions, where the four and the twelve clusters are recognized. 
Finding all the natural clusters at some level is an important quality of the algorithm. The size 
of this experiment was 400 points, and the points in this experiment are presented in Figure 
44. 
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Figure 44 Example of experiment with 12 clusters 

 
Each point was placed in two-dimensional space and was generated by placing the points in 
several more or less obvious clusters. This distribution of points has the potential to get a 
high reduction off SSR value, if the groups are recognized by the algorithms. When the 
optimal solution is found, the SSR value will usually have been greatly reduced, as the points 
are distributed in more or less compact groups. 
 
The goal of the experiments 

These experiments were chosen to see how the algorithms worked in cases with different 
complexity. We then evaluated the quality of the clustering. The method used for calculating 
the quality in these experiments was SSR. This gives a good measure of how dense the 
clusters are. In this context, the quality of the clustering is based on a combination of speed 
and precision; the algorithms should reduce the SSR value as fast as possible. We tried to 
cover the cases from having few points and clusters to many points and clusters, and some 
in between. 
 
In each graph we compared the results to the closest agglomerative algorithm. This 
algorithm represents the state-of-the-art solution, so we wanted to see how our algorithms 
did compared to this, both regarding the quality of the clustering and the time spent. 
 
Settings 

For each algorithm we made 100 test runs on the same problem and calculated the average 
time and reduce in SSR. The algorithm was set up to take 50 measurements recording the 
time spent and the current quality of the solution. The number of runs was adjusted to fit 
each of the experiments. All GUI updates were turned off to make the calculations as fast as 
possible. 
 
The experiments was done on an Intel Pentium 4 2.26 GHz with 512 MB ram, running on 
Windows XP Home. We also did the experiments on an Intel Xeon dual core 3.0 GHz with 8 
GB RAM, running on Linux Debian. This machine allowed us to run two algorithms in 
separate threads at once. But as we logged on to this computer over the network and didn’t 
have any physical control over it, we could not confirm that it was not working with some 
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other tasks. The times we got with this machine on the same experiments varied, so we 
decided to do the experiments on one of our local machines. There might also have been 
some issues with running two threads at the same time, we are not sure if this would be the 
same as running two threads on two different processors and any problems here might 
explain some odd results we got from the tests on this computer. 
 
To give the possibility to later test these results, all the initial problems are saved to XML 
formats which are attached as an appendix to this report (CD-ROM). 
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6.5 Empirical results 

In this section we have presented the results of our experiments. 
 
To show the hierarchical tree we have used a variant of the technique called 
Multidimensional Scaling (MDS). This technique allows us to try and show the distances 
between the points in the bottom of the tree by projecting the distance of the points in two 
dimensions to a distance in one dimension. It is then easier to see if the clustering of the 
hierarchical tree makes sense. This is a good way to represent the points, but remember that 
it will rarely (if at all) be possible to get this to be totally accurate. Sometimes close clusters 
will be shown as being quite far apart from each other. In these cases one can check the 
distance between the points by looking at the 2 dimensional point windows.  
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6.5.1 Results from 4 clusters 20 points without noise 

 
Settings 
Algorithm iterations: 4000 
Number of times the experiment is solved: 100 
 
Comments 
In this small experiment it is quite easy to see from the hierarchical tree in Figure 46 that a 
good structure is found. The left part shows the initial, randomized tree and at the right, an 
example of a clustered tree is shown. From the top, the points are first divided in two 
clusters, and then each of these is divided in two new clusters. These four clusters represent 
the natural clusters, which are shown in Figure 46. 
 
From the graph (Figure 47), we see that “cluster mover” algorithm is getting really close to 
the quality of the closest agglomerative clustering, at just above 10% of the initial quality. The 
“cluster switcher” settles for a quality of about 19% of the initial value, a bit behind the 
“cluster mover”, and requires some more time. At this small example the closest 
agglomerative algorithm finds the solution before either of the other clustering algorithms 
gets any satisfying results. 
 

 
Figure 45 20 points, without noise - the natural clusters 
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Figure 46 20 points, without noise - hierarchical tree before and after clustering 

 
 

 
Figure 47 20 points, without noise - graph showing the clustering progress 
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6.5.2 Results from 4 clusters 20 points with noise 

 
Settings 
Algorithm iterations: 8000 
Number of times the experiment is solved: 100 
 
Comments 
Another small experiment, this time with noise (some points are more spread around the 
natural clusters). From the hierarchical tree in Figure 49, the result is a bit messier than it 
was without the noise. The four natural clusters including the noise is still found (as seen in 
Figure 48), but the internal structure of these four sub-trees are not entirely perfect. 
 
From the graph (Figure 50), we see that “cluster mover” still comes close to the closest 
agglomerative clustering. Again, the “cluster switcher” is somewhat behind “cluster mover”, 
both regarding clustering speed and the final quality. Not unexpectedly, the closest 
agglomerative algorithm again finds the solution before either of the other clustering 
algorithms gets any satisfying results.  
 
The reason the closest agglomerative algorithm seems to be taking 0ms to complete is that 
the computer seems to have some problems handling extremely short time intervals when 
using the timer function in Java. It will, of course use some milliseconds to complete but this 
time is so minute that it is virtually zero (at least from a human perspective). 
 
 

 
 

 
Figure 48 20 points, with noise - the natural clusters 
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Figure 49 20 points, with noise - hierarchical tree before and after clustering 

 

 
Figure 50 20 points, with noise - graph showing the clustering progress 
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6.5.3 Results from 4 clusters 100 points without noise 

 
Settings 
Algorithm iterations: 10000 
Number of times the experiment is solved: 100 
 
Comments 
From the hierarchical tree in Figure 52, we see that the natural clusters are recognized. As 
the tree is getting more complicated, it gets harder to manually evaluate the hierarchical tree. 
But it is a good sign when crossing lines from one group of points to another doesn’t occur 
until the top of the tree. 
 
From the graph (Figure 53), “cluster mover” is now faster than the closest agglomerative 
clustering down to about 7% of the initial quality. After this point “cluster mover” generally 
requires more time in order to do minor improvements to the solution. The “cluster switcher” 
is showing to be more ineffective compared to “cluster mover”. 
 

 

 

 
Figure 51 100 points, without noise - the natural clusters 
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Figure 52 100 points, without noise - hierarchical tree before and after clustering 

 

 
Figure 53 100 points, without noise - Graph showing the clustering progress 
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6.5.4 Results from 4 clusters 100 points with noise 

 
Settings 
Algorithm iterations: 16000 
Number of times the experiment is solved: 100 
 
Comments 
From the hierarchical tree structure in Figure 55 we clearly see the structure of the natural 
cluster. Because it is noise in this experiment the tree structure is a bit messier than the 
structure without noise (Figure 53Figure 55). But again the algorithms are able to find the 
natural clusters as seen in Figure 54. 
  
From the graph (Figure 56) “cluster mover” is again faster than the closest agglomerative 
clustering down to about 12% of the initial quality. After this point “cluster mover” generally 
requires more time in order to do minor improvements to the solution. The “cluster switcher” 
is showing to be more ineffective compared to “cluster mover”. 
 
 
 

 
 

  
Figure 54 100 points, with noise - the natural clusters 
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Figure 55 100 points, with noise - hierarchical tree before and after clustering 

 

 
Figure 56 100 points, with noise - Graph showing the clustering progress 
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6.5.5 Results from 4 clusters 1000 points without noise 

 
Settings 

Algorithm iterations: 500000 
Number of times the experiment is solved: 50 
 
Comments 

In this experiment we have increased the number of clusters noticeably. From the 
hierarchical tree structure in Figure 58 we see that the tree at the left seems to be rather 
chaotic. The result on the right clearly shows the structure of the four natural clusters. 
Another view that shows the natural clusters can be seen in Figure 57. 
 
From the graph (Figure 59), we see that the closest agglomerative algorithm requires a lot 
more time than our algorithms. Our “cluster mover” algorithm spent around 3 seconds on the 
same problem while the closest agglomerative spends 64 seconds. 
 
 

 
Figure 57 1000 points, without noise - the natural clusters 
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Figure 58 1000 points, without noise - hierarchical tree before and after clustering 

 

 

 
Figure 59 1000 points, without noise - Graph showing the clustering progress 
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6.5.6 Results from 4 clusters 1000 points with noise 

 
Settings 
Algorithm iterations: 500000 
Number of times the experiment is solved: 50 
 
Comments 
When making some of the points in the previous experiment noisier, by scattering them 
around the clusters, the natural clusters are still recognized. As expected, the hierarchical 
tree structure before the clustering (at the left in Figure 61), is random and untidy, but the 
clustering sorts that out and finds the natural clusters. The result can be seen in Figure 60. 
 
The graph (Figure 62) shows once more that “cluster mover” is considerably better than the 
“cluster switcher”, regarding speed and quality. “Cluster mover” seems to converge at about 
3% of the initial value, while closest agglomerative clustering makes it down to 1,7%. This 
tells us that our algorithms still has problems with the internal structures in the clusters, even 
though it still finds the natural clusters. In this case our “cluster mover” algorithm spends 
around 5 seconds on the same problem while the closest agglomerative still spends 64 
seconds. The closest agglomerative has to do the same number of iterations no matter how 
the points are placed. 
The difference between the “cluster switcher” and “cluster mover” is about the same in this 
experiment as in the previous. 
 

Figure 60 1000 points, with noise - the natural clusters 
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Figure 61 1000 points, with noise - hierarchical tree before and after clustering 

 

 
Figure 62 1000 points, with noise - Graph showing the clustering progress 
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6.5.7 Results from 4 clusters 4000 points without noise 

 
Settings 

Algorithm iterations: 2 500 000 
Number of times the experiment is solved: 50 
 
Comments 
Increasing the number of points further, the hierarchical tree structure before the clustering (at the left 
in Figure 64), is becoming one big pile of points, but it gives an indication of the natural clusters being 
recognized.  

  
The graph (Figure 65) now shows that “cluster switcher” in this case works almost equally 
well as the “cluster mover”. “Cluster mover” reaches 40% in about 238 seconds while the 
closest agglomerative algorithm needs 1.5 hours to reach 1,5%. 
 

 
Figure 63 4000 points, without noise - the natural clusters 
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Figure 64 4000 points, without noise - hierarchical tree before and after clustering 

 

 
Figure 65 4000 points, without noise - Graph showing the clustering progress 
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6.5.8 Results from 4 clusters 4000 points with noise 

 
Settings 
Algorithm iterations: 2 500 000 
Number of times the experiment is solved: 100 
 
Comments 
Once again it is hard to figure out all the details from the hierarchical tree structure (Figure 
67), but the tree at the right clearly suggests that the natural clusters were recognized. Figure 
66 shows that the natural clusters are correctly clustered, but there are some problems with 
the noisy points. Fixing this would need more iteration in the algorithm, but it could take a lot 
of time just to do minor improvements. 
 
The graph (Figure 68) shows the same tendencies as the previous experiment, with “cluster 
mover” being a bit better than “cluster switcher”. The average of our algorithm is still higher 
than the closest agglomerative. 
 

 
Figure 66 4000 points, with noise - the natural clusters 
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Figure 67 4000 points, with noise - hierarchical tree before and after clustering 

 

 
Figure 68 4000 points, with noise - Graph showing the clustering progress 
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6.5.9 Results 400 points, different levels 

 
Settings 
Algorithm iterations: 500 000 
Number of times the experiment is solved: 100 
 
Comments 
This was a different experiment we made in order to see how the algorithm would deal with 
sub clusters. We created four clusters, where each of them could be divided in three new 
clusters. The goal was then to have both these solutions represented in the hierarchical tree. 
Figure 70 shows that the hierarchical tree was much tidier, although it is hard to get too much 
information from it. In Figure 69 we have found the two solutions we were after; at the left the 
four main clusters was recognized and at the right all twelve was found. 
 
Figure 71 compares cluster mover, cluster switcher and the closest agglomerative 
algorithms. Cluster mover gets really close to the quality of the agglomerative clustering, but 
at a shorter amount of time. And the more points the clusters would have, the bigger this time 
difference would be. 
 

 

 Figure 69 400 points, different levels - the natural clusters 
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Figure 70 400 points, different levels - hierarchical tree before and after clustering 

 
 

 
Figure 71 400 points, different levels - Graph showing the clustering progress 
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6.6 Experiments summary 

These experiments have given us several interesting answers regarding the algorithms. 
Cluster mover proves to be a faster algorithm compared to cluster switcher and scales better. 
This was expected as the same approach worked out to be the best variant in the previous 
experiments we did on the subject of partitional clustering. Although the scenario is a bit 
different this time, cluster mover still seems more dynamic, because it will just try to move a 
cluster from one parent to another, instead of having to find another cluster to switch with. 
Having to find this other cluster may be seen as a restriction and can in some cases prevent 
the algorithm from finding the best solution. 
 
When the clusters are not clearly defined and some points are getting too close other 
clusters, our algorithms needs more time to identify the clusters. There may even be some 
points misplaced after a significant amount of time. Much of the reason for this is probably 
because of the way the algorithm checks if a move should be accepted. As we use the mean 
method for calculating the quality, only the distances from the two child clusters matters and 
the distances to each of the points are not directly taken into consideration. This is much 
faster compared to the SSR-method, but it is a sort of approximation and the clustering may 
suffer because it doesn’t have the full perspective of the situation. 

 

Even though there is a various difference between the quality with our algorithms and the 
closest agglomerative, the natural clusters could still have been found. An example of this is 
shown in Figure 72. This could be an example of a sub-cluster of a bigger tree structure. 
Tree 1 will have a lower and better SSR value than tree 2. Generally it is important to have 
the most optimized structure of the whole tree, but if the most important task would be for the 
node on the top to include the four leaf nodes (all the objects in that sub-tree), both trees 
could be used. 
 
 

 
Figure 72 Two different dendrograms  
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6.7 Scaling of the algorithms 

The scalability of the algorithms is one of the most important properties of a clustering 
algorithm, especially when it comes to the online ones. The closest agglomerative method 
will always deliver a better result (in theory they could deliver equally good results, but this is 
not feasible for even small problems within reasonable time).  In our experiments systematic 
algorithms (like the closest agglomerative and the “best point” algorithms) scale poorly in 
general.  
 
The online algorithm on the other hand, should preferably have the property that one single 
round of clustering should take the same amount of time no matter how large the input set is. 
Unfortunately this is not the case.  
 
First off, a larger input set means that the lists containing points and clusters will be larger 
thus the java functions needed to manipulate and access those lists will work slower. 
Secondly, and more importantly, the number of clusters in need of updating each step plays 
a big role in the scalability. If the tree structure is large most of the steps will need to update 
larger parts of the tree to be consistent. When testing a move where the clusters are 
ancestors of each other (the move cluster method) all clusters in-between the two clusters 
have to be updated. Similarly when a move is accepted all the clusters from both clusters to 
the first common ancestor have to be updated. We have thought of some  ways which might 
improve this, but due to time limits we will keep this to a discussion in the report rather than 
actually implementing and testing whether it works.  
 
One of the thoughts on this is to not allow the clusters to be ancestors of each other at all or 
at least make those cases occur rarer than they do now. In general a run of the clustering 
algorithm will have a much larger amount of rejects than accepts. When rejecting a move 
where the clusters are not ancestors all that need to be updated are the two clusters which 
will be tested for improvements, this makes both the check for improvement and the reject 
step quicker than for the cases where they are ancestors.  
 
We do not really know if all the possible tree-structures can be generated this way. The 
algorithm would almost certainly need more rounds to reach the same result, and to know if 
this increase in rounds will outweigh the time gained we need to perform more experiments.  
When it comes to the move cluster algorithm we also have to take into account the fact that 
larger clusters needs more rounds to complete. This will impact the graph negatively since 
we are measuring total time clustering and not average per object. 
 
When it comes to the cluster switcher algorithm each round of clustering would probably 
outperform the cluster mover. This is because the algorithm already will not allow moves 
where the selected clusters are ancestors of each other. But as we see in the graph, and as 
we know for a fact from our experiments the cluster switcher method scales worse when it 
comes to number of rounds needed to get the same result. The cluster switcher 
implementation we have used could probably also be improved somewhat so that each step 
performs faster, but since the gain in time taken to cluster here mainly is because of the 
additional number of rounds it needs, it would probably be less improvable through this 
method than the move cluster. 
 
When we did the experiments on the algorithms the time needed for each experiment was 
measured. These numbers are the basis for the scaling graph (Figure 73). The y-axis of the 
graph is time taken to complete and the x-axis is the number of clusters in the experiment. 
Keep in mind that the blue and red lines, which represents the move cluster and switch 
cluster algorithms, are not the time needed to reach a “perfect result”, but the time to where 
the clustering graph has flattened out so much that additional work time would result in small 
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improvements. As the graph shows the closest agglomerative algorithm scales very poorly. It 
shoots almost straight up, but this is exactly as we had expected it to be.  
 

 
Figure 73 Graph showing the scaling of the algorithms 

 
 
As a conclusion to the scalability question; we had hoped that the move cluster algorithm 
would scale better, but at larger problems it still outperforms the closest agglomerative 
algorithm by far. So the question is how badly a complete result is needed. If the “natural” 
clusters are what you are interested in the move cluster method could probably suit your 
needs, but if a more complete solution where the internal structure of clusters also is needed 
the agglomerative algorithm may so far, be the only way to go, even if it might take vast 
amount time to finish on really large problems.  
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7 Conclusion  

In this thesis we have researched, developed and tested different hierarchal clustering 
algorithms. Also a test framework for testing and creating experiments has been build from 
scratch. 

 
The impressions we have from this research are a bit split. In the cases where the clusters 
are clearly separated these natural clusters are quite easily recognized. The process of 
recognizing these distinct clusters does also scale very well by both dendrogram algorithms, 
especially cluster mover. However, if the elements are placed too close to each other, the 
algorithm seems to have more problems with finding the optimal solution. This is the case 
when the clusters have some outliers that are close to other clusters, or when it comes to the 
structure inside a natural cluster. 

 
As mentioned earlier, this is probably because of how we decide if a move should be kept or 
not. Improving this method could probably noticeably increase the efficiency of clustering not 
so distinct clusters, as well as improving the clustering in general. During our experiments of 
improving this, we got a lot of different results doing minor adjustments, ranging from more or 
less chaotic clustering to the results we ended up with. 

 
When it comes to the speed of the clustering, as the number of objects increase our 
algorithm clearly outperforms the closest agglomerative down to a certain quality level. 
We have also noticed that in both our partitional and hierarchical experiments with the online 
algorithms the ones which tries to more or less systematically improve clusters tends to scale 
worse than the ones which randomly performs changes. This is probably a result of the 
increasingly difficult job of systematically finding appropriate changes as the solution gets 
better and better. 
  
When it comes to online algorithms they provide another great advantage in environments 
where new objects are continuously added. Then a clustering process could be running 
nonstop, where new objects could just be randomly placed in the tree and these will be 
clustered correctly into the existing structure. 

 
Compared to the partitional clustering methods the hierarchal approach still spends more 
time of the same problem, but the benefits from the hierarchal approach is its ability to 
represent all natural clusters without having any idea of how many they are.  

 
Good cluster algorithms are still in the scope of many researchers and there is still a lot of 
work that needs to be done in order to archive the “perfect clustering algorithm” and we hope 
our contribution to this subject will have an impact in the world of clustering.   
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8 Appendix 

8.1 References 

 
     Internet sites

1:   Java programming language (visited 10.01.2007) 
http://en.wikipedia.org/wiki/Java_programming_language 
 
2:   Eclipse (visited 10.01.2007) 
http://www.eclipse.org/org/#about 
 

3:   Unsupervised learning (visited 08.01.2007) 
http://www.gatsby.ucl.ac.uk/~zoubin/papers/ul.pdf 
 

4:   Unsupervised learning (visited 15.01.2007) 
http://en.wikipedia.org/wiki/Unsupervised_learning 
 
5:   Reinforcement learning (visited 15.01.2007) 
http://en.wikipedia.org/wiki/Reinforcement_learning 
 
6:   Clustering (visited 26.01.2007) 
http://en.wikipedia.org/wiki/Taxonomic_classification 
 

7:   Data clustering (visited 26.01.2007) 
http://en.wikipedia.org/wiki/Data_clustering 
 
8:   Clustering algorithms (visited 26.01.2007) 
http://www.elet.polimi.it/upload/matteucc/Clustering/tutorial_html/kmeans.html 
 

9:  Java code convension (visited 22.01.2007) 
http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html 
 
10: Clustering (visited 26.01.2007) 
http://www.elet.polimi.it/upload/matteucc/Clustering/tutorial_html/ 
 

11: Design (visited 23.01.2007) 
http://simple.wikipedia.org/wiki/Design 
 
12: Hierarchical clustering (visited 26.01.2007) 
http://www.elet.polimi.it/upload/matteucc/Clustering/tutorial_html/hierarchical.html 
 
13:  K-means (visited 26.01.2007) 
http://en.wikipedia.org/wiki/K-means 
 
14:  Quality Threshold (visited 26.01.2007) 
http://en.wikipedia.org/wiki/Cluster_analysis 
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15:  Clustering lecture 6, 2/6/02. By Georg Gerber (visited 16.02.2007) 
       http://www.mit.edu/~georg/papers/lecture6.ppt 
 
16:  Agglomerative Clustering from Vias.org (visited 16.02.2007). 
        http://www.vias.org/tmdatanaleng/cc_cluster_agglom.html 
 
17:  Master thesis homepage (Visited 16.02.2007) 
       http://fag.grm.hia.no/ikt590/hovedoppgave/lister/lstValgteO1.aspx  
 
18:  Agile software development (Visited 11.04.2007) 
       http://en.wikipedia.org/wiki/Agile_software_development 
 
19:  Java XML (Visited 12.04.2007) 

             http://labe.felk.cvut.cz/~xfaigl/mep/xml/java-xml.htm 
 
20:  XML(Visited 12.04.2007) 

           http://www.unitedyellowpages.com/internet/terminology.html#X 
  
 21:  Clusty search engine(Visited 16.05.07) 
        http://clusty.com/ 
 

Books 

B1: Pattern classification 2. Edition  
      By: Richard O. Dura, Peter E. Harb and David G. Stork 
      ISBN: 0-471-05669-3 
 
B2: Statistical concepts and methods 
      By Gouri K. Bhattacharyya and Richard A. Johnson 
      ISBN: 0-471-03532-7 
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8.2 Attachments  

The following items will be attached to this report (as CD-ROM): 
 

 Source code for our application as Eclipse project (Java) 

 All XML files which are used in the experiments 

 XML file which shows the local optimum problem 
 

 

 
 
 


