

Process Improvement Solution

for Mobile Platform Customer SW Development

by

Anis Yazidi, Terje Leira

Supervisors: Ole-Christoffer Granmo, UiA
 Ole Dag Svebakk, Ericsson

IKT 590 Master’s Thesis

May, 2008

University of Agder

Faculty of Engineering and Science

Keywords: Software, SPI, Change Management, Agile development, Lead
time

AbstractAbstractAbstractAbstract

Time to market is becoming an increasingly important topic in software

industry. In this trend, handling customer change requests is of a paramount

importance. In the current thesis, we investigate reducing the lead time of

handling customer requests at EMP Grimstad. Problems were identified and an

extensive solution that covers all the aspects of these problems are presented.

An experience was conducted and the first results are promising.

TABLE OF CONTENTS

1 INTRODUCTION.. 1

2 RESEARCH DESIGN .. 3

2.1 RESEARCH METHODS... 3

2.2 ADOPTED APPROACH ... 3

2.3 RESEARCH QUESTIONS .. 5

3 CONTEXT OF THE STUDY ... 6

3.1 THE ERICSSON CONTEXT .. 6

3.2 ABOUT THE COMPANY .. 6

3.2.1 WHAT IS EMP?... 6

3.2.2 PLATFORM OVERVIEW ... 7

3.3 STATE OF THE PRACTICE AT ERICSSON, GRIMSTAD 11

3.3.1 BACKGROUND .. 11

3.3.2 WHAT IS PROPS?... 12

4 STATE OF THE ART: ANALYSIS OF RELATED WORK........................ 16

4.1 SOFTWARE PROCESS IMPROVEMENTS .. 16

4.1.1 BACKGROUND .. 16

4.1.2 NORM DRIVEN APPROACHES .. 16

4.1.3 LIMITATIONS OF NORM DRIVEN APPROACHES ... 19

4.1.4 PROBLEM DRIVEN APPROACHES... 20

4.2 SOFTWARE DEVELOPMENTS MODELS .. 21

4.2.1 CLASSICAL SOFTWARE DEVELOPMENT MODELS ... 21

4.2.2 AGILE DEVELOPMENT METHODOLOGIES ... 21

5 SOFTWARE CHANGE MANAGEMENT PROBLEMS AT ERICSSON.. 28

5.1 CONNECTION BETWEEN SUB CRS... 28

5.2 HANDLING CR.. 30

5.3 SCHEDULING .. 31

5.4 ERRORS... 32

5.5 PROCESS COMPLEXITY .. 33

5.6 TESTING CHALLENGES .. 34

5.7 LONG BUILD TIME .. 35

5.8 COMMUNICATION PROBLEMS ... 36

6 GENERIC CHANGE MANAGEMENT PROCESS MODEL

RECOMMENDATIONS.. 38

6.1 BATCHING .. 38

6.2 ADOPTING AGILE DEVELOPMENT: SCRUM .. 39

6.3 TIME BOXING ... 41

6.4 INTRODUCING CONNECTIONS BETWEEN CRS.. 42

6.5 SIMPLIFICATION OF THE PROCESS ... 44

6.5.1 REDUCING REVIEW LOOPS USING REAL TIME REVIEW: 45

6.5.2 SIMPLIFYING THE DOCUMENTATION PROCESS ... 45

6.6 COORDINATED SCHEDULING OF CROSS FUNCTIONAL CRS 46

6.7 SOFTWARE REQUIREMENTS PRIORITIZING ... 49

6.8 AVOIDING BOTTLENECKS.. 51

6.8.1 POOLING TESTING RESOURCES ... 51

6.8.2 HOW AGILE CAN REDUCE BOTTLENECKS ... 52

6.9 ITERATIVE DEFECT ANALYSIS... 53

6.10 ERRORS GUESSING ... 55

6.11 MODULARIZATION ... 56

6.12 RELOCATING TESTING... 57

6.13 IMPROVING COMMUNICATION.. 58

6.13.1 PORTAL... 59

6.13.2 VIDEO CONFERENCE... 60

7 EXPERIMENT .. 62

7.1 BACKGROUND .. 62

7.2 CHANGE REQUEST SPECIFICATION.. 62

7.3 TECHNICAL ENVIRONMENT .. 63

7.3.1 INCIDENT REPORT AND STATUS TRACKING TOOL ... 65

7.3.2 SOURCE CODE MANAGEMENT SYSTEM .. 65

7.3.3 SOURCE CODE EDITOR .. 65

7.3.4 PLATFORM ASSISTANT ... 66

7.4 APPLIED SOLUTIONS .. 66

7.4.1 SPRINT .. 66

7.4.2 COMMUNICATION:.. 67

7.4.3 ERROR GUESSING ... 67

7.4.4 SIMPLIFICATION ... 68

7.4.5 RELOCATING TESTING .. 68

7.5 CONCLUSION .. 68

8 DISCUSSION ... 69

9 CONCLUSION .. 71

10 REFERENCES... 72

 1

1 Introduction

The mobile industry is a rapidly changing arena, where time to market is

becoming a competitive key. In order to meet the customer requirements, new

models have to be released in the nearest future. Besides, novel services have to

be integrated at a high pace within the mobile existing systems. Mobile

manufacturing companies are competing to shorten their development time

along with upgrading the quality and efficiency. The importance of a short

development lead time has been emphasised in the literature (Datar et al .1997;

Porter, 1980; Wheelwrigt et al., 1995). A short development lead time enables

the company to grab market lead and avoids the market lockout (Shilling;

1998). In a survey (Bratthall; 1994) conducted to assess the impact of lead

time on the business profit, Bratthall reported a case where a one week delay

to the market resulted in a company’s total loss of the potential market and
thereby a dramatically waste of millions of dollars.

In this master thesis, we address a problem akin to the field of Software

Process Improvement (SPI): reducing the lead time of handling software

change request (CR) at Ericsson Mobile Platforms (EMP) in Grimstad. EMP

are the developers of a generic platform which their customers use in their

mobile phone development projects. The EMP department in Grimstad is

responsible for development of the data communication part of the software

platform and to some extend for related hardware parts. The platform

development is done in large development programs and each program spans

over a relatively long time period. However, mobile phone manufactures are

launching new models more or less every month. In order to meet the mobile

phone manufactures requirement/wishes, EMP needs to add new functionality

to the platforms in a way that ensures a shortest possible lead time.

Reducing the development lead time is a problem that relates to Software

process Improvement (SPI). To this date, a myriad of papers have been

published pertaining to improve the existing software practices, quality and

subsequently the development speed.

Nevertheless, only a small body of the literature has addressed the

reduction lead time of customer change requests (CR). The only few studies

that focused on handling change requests emanates from the industrial field.

 2

In this thesis, we try to fill the void in this field by proposing a study that

combines approaches from the SPI field with ideas inspired from the industrial

field. To achieve such a goal, we put the sate of the practice at Ericsson into

critical analysis to discern deficiencies in the CR process. We claim that these

deficiencies are related to the nature of the underlying waterfall model. We

claim that a solution that combines features from the manufactory domain

with features from the software process improvement field will be able to solve

the problem.

 3

2 Research design

One preliminary consideration before designing a proposal for a solution is to

identify a framework for the study.

2.1 Research methods

A survey of the literature related to research design discerns three main

approaches to research: quantitative, qualitative and mixed methods research

(Creswell, 1994). A quantitative approach is where the researcher makes use of

strategies of inquiry, such as experiments and surveys, with focus on statistical

data. Alternatively, a qualitative approach is where the researcher bases his

strategy of inquiry on open-ended questions, interview data, audiovisual data,

text and image analysis and develop themes from the data. Finally, a mixed

methods approach is where the researcher uses mixed methods design: close

ended measures and open ended observations. Thus, in a mixed approach, the

data collection involves both quantitative and qualitative information. The

three books (Juristo, 2001; Creswell, 1994; Cooper, 2001) provide a good

comprehensive in depth survey of research design and methods.

2.2 Adopted approach

In our master thesis we plan to proceed with a bottom up approach. A

bottom up approach is an inductive research approach where the researcher

creates hypotheses and builds underlying theory based on data collection. The

premise of such approach, when applied to Software Process Improvement, is

that we first should understand the existing problems before improving the

process. To identify and understand the problems, we will utilize the experience

of the organization.

Being aware that the technical staff knows best the characteristics of the

company, our quest for knowledge is centred on interviews. The qualitative

part of the study will rely mainly on Ericsson engineers’ experience by
conducting questionnaires and interviews.

The interviewing technique is regarded as viable method to reveal software

process problems.

To highlight the expediency of interviews Kvale states: “The very strength
of the interview is its privileged access to the common understanding of

subjects, the understanding that provides their worldview and the basis for

 4

their actions“(Steinar, 1996). Interviews were proved to understand what
problems are most important.

 The interviewees should be selected according to a theoretical sampling.

The reason is that a theoretical sample offers wide disparate views (Marshall,

1996). With regards to the small number of the population, i.e ˜170 Ericsson

employees, a reasonably small sample size of people would be sufficient. We

plan not to exclude novice employees from the interviews because they are

usually full of criticism of the practices at the company. Such acute observers

of the process can shed light on hidden faces of the problems that are not

perceived by other experienced Ericsson employees.

The interviews should contain a combination of structured interview format

and standardized open-ended interview using an Interview Guide. The purpose

of open-ended questions is to allow the participants to answer in a way that

allows us to know how the interviewees perceive a problem. It also gives the

opportunity to pursue with in-depth questions to either validate a hypothesis

or to get more insight into interesting or unexpected findings. In this way, the

open-ended interviews will support our bottom up approach. The latter also

gives the opportunity to refine and modify the interview guide to include

“lessons learned” in the subsequent interviews.

Besides the interview, another important component of a qualitative

research is performing a literature study. Surveying the state of art is of

paramount importance. We will start by surveying studies on software process

improvement methodologies to gain insights into the domain of software

engineering. In parallel to this academic study, we plan to probe into the

Ericsson process. In order to gain a fast and large degree of understanding of

the latter process, internal documents the internal software process at Ericsson

are prime candidates for scrutiny.

So far, we have presented our qualitative methods. Nevertheless, a

comprehensive research approach usually contains a mixture of quantitative

and qualitative studies to capture the best of both approaches.

In this perspective, we consider to integrate quantitative data collected

from errors reports, change requests and similar statistics in order to discern

even more inconsistencies in the software process.

 5

2.3 Research questions

The general research question in our thesis is to identify the general

problems that drive the lead time at Ericsson Mobile Platforms and design a

solution that addresses them.

We have formalized the research question by dividing it into four specific

questions:

R1 How can we contribute to a shorter lead time without

sacrificing quality?

R2 What are the essential change management problems and

bottlenecks?

R3 What kind change management process would aid in

solving these problems?

R4 How can the proposed process enacted in practice?

 6

3 Context of the study

In this chapter, we present the context of the study.

3.1 The Ericsson Context

3.2 About the Company

Ericsson is an international telecom company with headquarter in Sweden.

It has approximately 75 000 employees at present. Ericsson has a long

experience in software development that spans over many years. In a move to

excel on the telecom market, producing better software has been a widespread

concern at Ericsson. This study has been performed at Ericsson Grimstad

branch. Ericsson Grimstad has been involved in developing software for GPRS

from 1997 to 2003.

With the advent of third-generation mobile system (3G) technology for

mobile phones, the landscape changed considerably for mobile phone

manufacturers and operators. Subsequently, Ericsson Grimstad tuned into a

supplier of Mobile Platforms. EMP (Ericsson Mobile Platforms) involves two

development centres in Basingstoke (UK) and RTP, North Carolina (US).

3.2.1 What is EMP?

EMP was established in September 2001 with headquarters and main

development centre situated in Lund, Sweden. The research and development

(R&D) constitutes the core of Ericsson Mobile Platforms. EMP R&D units are

present in Grimstad (Norway), Tokyo (Japan), Shanghai (China), Taipei

(Taiwan), Seoul (South Korea). EMP is software and technology supplier to

mobile phone manufactures developing devices complying with GPRS, EDGE

and WCDMA standards.

The main purpose of Ericsson Mobile Platforms (EMP) is to provide

customers with a basic set of hardware and software components in order to

facilitate the development of new mobile phones. As mobile phones are

becoming more and more complex, it is tedious for a phone manufacturer to

develop and test the technology used in 2.5G (GPRS) and 3G (EDGE and

WCDMA) phones in-house. In this context, Ericsson grabbed the market and is

well positioned as a third party development provider.

The time to market of a phone varies usually from 18 months to 4 years,

depending on its underlying complexity. EMP customers can launch phones

with a lead time ranging from 9 to 12 months. Moreover, for increment releases

 7

the lead- time is typically 6-8 months. Manufacturers can thus grab the market

in few months. Hence, EMP saves significant effort for phone manufacturers

when it comes to development and testing.

3.2.2 Platform Overview

Platform servicesPlatform servicesPlatform servicesPlatform services

The platform software consists of different functional domains in a

layered architecture.

These functional domains are the following

-Network access services: which provides access to and services for the radio

network

-Data communications services: provide support for data communication

services such as Bluetooth, USB, IP services.

-Man-machine interface (MMI) services: provide support for user interface

devices such as touch-screens, camera etc.

-Application platform services: provide storage support and management.

-Operation services: provide basic operating system, platform startup and

shutdown.

The middleware domain defines the application model for the application

software. The application model sets the basic rules and defines the

environment for the application software. The application model provides the

application software with a real-time multitasking environment and a natural

way of controlling the application software and using the services of the

platform.

All platform functionality is accessed through an extensive API called

OPA. OPA is a part of the middleware domain that provides the interface

towards the platform functionality. OPA acts as a front-end which provides the

interfaces that presents the functionality of the platform to the applications.

OPA is designed to reflect the actual services of the platform and is structured

in a number of categories where each category or sub-category represents a

service.

The mobile platform contains a number of standard services and EMP’s

customers can develop new applications written in C through a software

development kit. This allows customers to create their own unique brand of

phones. The figure below depicts the software architecture of EMP.

 8

As seen in this figure the platform can be divided into application software

and platform software. All platform functionality is accessed through an

extensive application programmers interface OPA.

The system design of the EMP platform is based on use-case analyses. Use-

cases are driving the dimensioning of the system. We cite some of theses use

cases

- imaging;

- video;

- simultaneous streaming and voice call;

- local and multi-player games;

- synchronization;

- secure access and banking;

- multiple data and voice sessions.

 9

Simultaneous usage scenarios have been the object of scrutiny at EMP,

because they usually involve the tight coordination between different hardware

such as CPU and DSP-

EMP comprises five service stacks arranged in layers in a similar way to the

reference model OSI. The hardware abstraction layer provides a simple device

driver interface for programs to communicate with the underlying hardware.

The layer of common middleware services interfaces the application software.

EMP products are designed for different mobile standards; the common shared

feature is the utilization of same global architecture and components.

OPAOPAOPAOPA

OPA is an easy and efficient interface towards the platform functionality

based on a modern, object-based paradigm. OPA eliminates the need for the

application developer to have to deal with details in the platform

implementation. OPA also reduces specific hardware and operating system

dependencies for the application software.

The figure below gives an overview of the structure of OPA and how the

OPA services are organized.

 1

As seen in the figure, four different entities can be developed in the

application Software

-Application: An applications is a separate executable entity, owning at

least one thread.

-Utility: A Utility is a flexible entity that can be used to provide simpler

services and to provide adaptation for legacy customer code.

-Plug-in: A Plug-in is used to extend the OPA services while behaving like

an OPA service from the client perspective.

-Daemon: A Daemon is a self-standing executable used to extend the

platform with services needing a separate thread.

All OPA services are organized in categories and sub-categories in order to

obtain a functional structure and partitioning of the OPA services. Each sub-

category contains a number of components and these components provide one

or more interfaces in order to use the services. The components define an object

model for the functionality of this subcategory. Each interface of a component

consists of one or more methods.

3.3 State of the practice at Ericsson, Grimstad

To get insight into the state of the practice at Ericsson with respect to

processes, we have examined internal documents, literature, conducted

interviews as well as attended a workshop.

The goal was to get a in-depth understanding of the state of the practice

processes with the objective to characterize, describe and analyze the process

routines at Ericsson to learn where problems in practice can be found and

improved.

3.3.1 Background

Ericsson, like most major international companies, run their product

development operations as projects. It is known that using project models and

processes to manage these projects can make a major improvement of

performance:

 1

“Companies that have a consistent approach to managing projects, can
perform their projects at a cost 75% less than companies that leave project

management practices up to individual project managers” [Eric Verzuh : The
Fast Forward MBA in Project Management]

As a tool to facilitate this goal, Ericsson uses a general project management

process called Project Management Process System, PROPS. It was originally

designed by Semcon AB (Mulder, 1997), and is used by Ericsson units

worldwide.

A process is defined as “A set of interrelated or interacting activities which

transform inputs to outputs” [ISO 9001:2000]

The competition is the telecommunications industry is hardening, and the

demands of the customers force companies to be able to deliver complex

technologies, such as the mobile platform, as a turnkey solution. For this

reason, it is of crucial importance that the different competence centers within

Ericsson have the methodology to work together in “cross-functional” projects.

Managing projects running simultaneously at different Ericsson sites can

become a complex management issue. Therefore, PROPS is used at Ericsson to

succeed in the increasing challenge of efficient management.

The PROPS methodology was developed with aims to serve as a common

methodology for managing projects and to give Ericsson units in different

countries a common terminology. Hence, units that are working together on

cross functional projects will have a common perspective of the processes.

Another thing of importance, is managing the business aspect. PROPS is

also a business decision-making process. It is important that as well as focusing

on providing a procedure for better managing the product development

projects, that the projects are driven by business objectives. By incorporating

defined management checkpoints and tollgates, it keeps focus on where business

decisions like continue or cancel are made in a project. Werther or not, is based

on an evaluation of the project to determine if it is economically or

strategically reasonable to continue. To aid these decisions the model defines

documents containing correct and relevant information.

At each gate a business decision is made. A decicion criteria checklist is

used to evaluate the results of the preceding activities as well as project status,

technical solutions and business issues. The outcome is either to cancel,

continue, or continue with alterations to the projects such as changing the

scope or the plan.

 1

3.3.2 What is PROPS?

PROPS is very similar to the Stage Gate model designed by Cooper

(Cooper, 2001). It has a high degree of flexibility when it comes to what

technologies to use in the underlying development process.

PROPS is defined on the corporate level and is used to “manage projects by
allocating scarce resources, the roles that need to be played by all those

involved in the project, the supporting line functions, the criteria to be used for

decisions taken inside the project and in relation to other projects, as well as

other issues that require a shared view.”
PROPS controls the process of product development from the initial

prestudy to the conclusion phase with mass production. This the model itself

falls into four smaller phases which are:

 -Prestudy

 -Feasibility

 -Execution

 -Conclusion

Toll GatesToll GatesToll GatesToll Gates

All the sub-processes start with a Toll Gate (TG). The Toll Gates are

mandatory business decision points that must be passed in order to enter a

phase. The formal decision to cancel the project or continue is made by senior

managers or by the sponsor. The decision is based on factors like the benefit of

the outcome, the use of resources, and the project status in terms of

deliverables and the progress. These factors change during a project. For

instance a market window can have already passed before a project is

completed, leading to a substantial decrease in the benefit of the customer.

A TG can also be a trigger for all processes that are connected.

MilestonesMilestonesMilestonesMilestones

Milestones are placed in the work model part of PROPS, and are points in

the process where decisions taken by the project manager and his team. A

milestone is also a collection of criteria and before each milestone, a milestone

review is performed to check that these have been met.

 1

The preThe preThe preThe pre----study phasestudy phasestudy phasestudy phase

The process begins with a pre-study. In the start of the pre-study phase we

find Toll Gate 0, which serves as the entry point where the decision to do the

pre-study of the project is taken. The purpose of the pre-study itself is to do a

requirement analysis. Based on the expressed and unexpressed requirements

and needs of the customer, the project feasibility is assessed from technical and

commercial viewpoints. This includes making an assessment of what resources,

e.g. human- or financial-, are required by the later phases in the process.

Depending on the product, a prototype can be made at this stage. In the end it

is verified that the financial resources are at hand.

Concluding the pre-study, a report is written. This report is used in

transition to the next phase.

The feasibility phaseThe feasibility phaseThe feasibility phaseThe feasibility phase

As with the Prestudy phase, the Feasibility phase begins with a Toll Gate,

the TG1. This again makes for calling business decisions for the project, like

continuing, adjusting or cancelling the project based on the results of the

previous phase. Before reaching a decision, meetings are held to for the

managers to discuss the impact of the project to the business and it’s influence

 1

on the current and future projects. As a lot of time and effort has already been

invested in the project at this stage, the threshold for cancelling is naturally

higher than at previous Toll Gate.

During the phase itself, a plan for the successful execution of the project is

made describing participation, what specialists are needed and how teams are

structured by defining how different roles in the teams are constituted. At

Ericsson, this feasibility phase involves time and budget planning, planning

resources, building a business case, making quality plan and risk analysis. A

project specification is made as well along with several other organizational

planning decisions. The project sponsor may influence the planning as well, as

he may set conditions for the financing of the project.

The execution phaseThe execution phaseThe execution phaseThe execution phase

Just like the other phases, the execution phase starts with a Toll Gate, but

differentiates in the way that it has two additional Toll Gates. At the first one,

TG2, a meeting is held where document decisions are made and other

departments are triggered. For example the marketing department could be

instructed to prepare strategies for the new product.

After TG2 the execution of the plans from the feasibility phase is started in

order to produce a product. In our case the product is software, and the

producing involves software development.

At TG3 the project manager reviews and assesses the ongoing process, and

uses this information to make necessary adjustments, if any, to revise the plan.

Change handling is also done continuously in a smaller scale project control

along the project time line.

The last Toll Gate during the execution phase is TG 4, and here the actual

quality of the product is reviewed. This is made in a test report containing a

quality assessment regarding number of defects, and the severity of these,

discovered during quality control. The Product Manager needs to accept the

product before continuing the process which at this phase is to start the

hand-over of the project outcome to the internal receiver or external customer.

The Conclusion phaseThe Conclusion phaseThe Conclusion phaseThe Conclusion phase

The last stage of the process is the conclusion. It begins with Toll Gate 5,

which is where the project outcome is accepted and this triggers the mass

 1

production of the product, also called HVM (High Volume Management) in

Ericsson.

The conclusion phase ends with an evaluation of the project . It is the

closed and a final report is made to document valuable experiences for future

use.

Props SummaryProps SummaryProps SummaryProps Summary

The PROPS model is highly flexible and it does not stipulate either time-

consumption or lead-time for a project. It is also flexible to what technologies

to use in the underlying work model.

At Ericsson Grimstad, Customer Development Team has a customized

process for the Software Development Process.

 16

4 State of the art: Analysis of related work

Software development describes the collection of technologies that apply an

engineering approach to the construction and support of software products.

Technology used involves tools, concepts, techniques, principles, development

approaches, methods and even software processes.

In this chapter, we review the state of the art related to software process

improvement.

4.1 Software Process Improvements

4.1.1 Background

Over the last twenty years, a consensus has raised that software process

improvement (SPI) is highly important for software companies. A myriad of

publications has been published in this field. Hansen et al. has reported

(Hansen, 2004) a review of 322 representative contributions to the Software

Process Improvement (SPI) literature. Notably, the Software Engineering

Institute (SEI) at Carnegie Mellon University has drawn most of the picture of

the current shape of SPI.

According to Hansen, (Hansen, 2004) the SPI approaches can be broadly

classified into: norm-driven and problem-driven. A similar taxonomy of process

improvement activities as either maturity model or improvement method has

been adopted by F. Cattaneo (Cattaneo, 1998).

Norm driven approaches (Arent et al., 2000; Arent et al., 2001) are built

upon standard model of software process improvement. The main concern is to

align to an exiting software process to the prescribed norm. Problem driven

approaches (Iversen, 1999) implicate solutions that derive from specific

problems. They mainly address problem identification and solving activities.

4.1.2 Norm driven approaches

Norm driven approaches to SPI share some common features. They describe

how the process should be standardized to reach a certain level of efficiency.

They attempt to eliminate the difference between the process to be improved

and an existing baseline. Norm driven approaches embraces organizational

level, project level, team management level and the individual level. Maturity

models are the representative class of norm driven approaches. Maturity

models draw the profile of an ideal software process. They prescribe standards

for software firms on how individuals, teams, organizations should operate in

 17

order that the organization achieves a higher level of maturity. Maturity

models assume that a process is measurable. They provide mechanisms to

assess the maturity process using various questionnaire-based techniques. A

maturity level is assigned. Subsequently, the assignment is followed by a

prescribed roadmap to attain the next maturity level.

Typical examples of maturity models include CMM , SPICE/ISO15504

standard. (ISO/IEC, 1998) and IDEAL (McFeely, 1996).

We should emphasise there is no clear boundary between Maturity models

and improvement methods. In fact, the two concepts are fairly orthogonal

concepts. In this perspective, F. Cattaneo states: “A maturity model does not
necessarily determine a specific improvement method. Similarly, an

improvement method may or may not exploit different maturity models”
(Cattaneo, 1998).

For the sake of clarity, we cite the most prevalent norm driven approaches

in the literature.

CMMCMMCMMCMM

The Capability Maturity Model (CMM) has gained a lot of attention in

software process improvement field. It is likely of the most known and used

norm driven approaches. CMM is defined as “a description of stages through
which software organizations evolve as they define, implement, measure,

control and improve their software process” . The Software CMM is a staged

model. Maturity level 5 is a continuous level of improvement entailing

innovative technological improvements and incremental improvement. Variants

of CMM including other areas of interest has been proposed in the literature

such as Software Acquisition CMM, System engineering CMM, Integrated

Product Management CMM, and People CMM. The the dimensional

expansion of the CMM was a key motivation for SEI to integrate all CMM

emergent models into a unified CMM model, called CMM Integrated (CMMI) .

The motivation behind CMM seems to be creating a secure theoretical

grounding with less emphasises on the practice. It defines how the process

should be. It classifies the process efficiency according to theoretical

prescription.

ISO 9000ISO 9000ISO 9000ISO 9000

The ISO 9000 series of international standards for quality management was

first published in 1987. ISO 9000 is a general model for quality systems to be

used in a wide range of application domains. ISO 9000 focuses on the company

ability to control and ensure the quality of the products/services it delivers. It

therefore takes into account some aspects related to both internal and external

coherence. As a remark, while ISO 9000 take in some consideration the issue of

coherence, it lacks the detailed domain knowledge embedded in CMM. This is

 18

quite obvious, since ISO 9000 is supposed to be applicable to any domain

(Stelzer et al., 1996).

SPICESPICESPICESPICE

SPICE (Software Process Improvement and capability improvement) is a

framework that includes a set of international standards for software

improvement and assessment. (Alec, 1993)
The objective of SPICE is to provide a common approach and framework

for assessment and improvement. The so-called Process Improvement guide

(Kiston, 1997) describes the steps to perform within a complete cycle based on

the SPICE assessment technology. The phase of the analysing the assessment

results in a action plan. Basically the approach advocates is emphasising the

definitions of goals and the usage of measurement to show quantitatively the

current status of processes and practices against a general understanding of

software best practices of CMM.

The phases of action plan production in SPICE are broken down into three

steps:

-Identify areas for improvement based o the measurement output, the

organization’s improvements goals, effectiveness measurement if available, risk
factors, and any industry norms and benchmarks that provide comparison

framework for assessment results.

-For each of these areas, a target for improvement should be defined either

in terms of process effectiveness (e.g percentage of project with an accuracy of

10 percent of effort estimates) and/or target process capability profile as

defined by SPICE (capability level for given process). This involves defining

goals, devising the rights metrics to measure their achievement, and setting

appropriate target values.

-Finally, an action plan should be derived covering improvement actions

with associated process goals and improvements targets responsibilities, initial

estimates of effort, benefits and schedule, and risks to products and to

organization if actions are taken or not taken.

BootstrapBootstrapBootstrapBootstrap

The Bootstrap method is a framework for assessing software process

maturity. Bootstrap combines the following approaches: the Software CMM;

ISO 9001/9000-3 etc.

The project involved seven partners from five countries. It developed the

bootstrap software development process assessment and improvements method

(Grady, 1992). Bootsrap claims to be equally applicable and cost effective for

software organizations of any size and in any application domain. That is in

 19

contrast to the CMM, which has a natural or perceived bias (due to its origin)

toward large organizations and toward defence and other real time applications.

An essential part of the Bootstrap approach is that assessment lead to

improvement actions plans. A means of developing action plans is an integral

part of the method.

The primary output of a Bootstrap assessment lead is a maturity profile,

which shows the maturity of each of the component parts of the total process.

It is, however, possible to convert the maturity profile to the CMM single

figure maturity level.

Bootstrap operates on higher degree of granularity than CMM, in fact, it

assesses the individual projects rather than the entire organisation. The result

of the assessment is a number between 1 and 5 for instance a department could

be rated at 3.4. The interpretation of this number is that the department has

achieved a better improvement than CMM level 3 but it is does not still attain

CMM level 4.

4.1.3 Limitations of norm driven approaches

Criticism to norm driven approaches has been addressed in the literature

(Grady, 1992).

Norm driven approaches measure one attribute (maturity) of one factor of

production (established process). They take no account of other possible

process attributes (such as fitness, flexibility, etc). The weakness comes

precisely from a massive simplification of the process to be used that is not

accompanied by a balanced understanding of how process interacts with other

production factors to impact overall performance measures (Fenton 1991) .

Process maturity models measure maturity by counting the presence of absence

of standard practices. This is a very simple mean of measurement. One

interesting feature is that, by their very nature, such models are unable to

measure the maturity of individual practices: they can only provide indicators

but not exact metrics. It also can not fairly cope with organizations whose set

of practices, for good and deliberate reasons, varies from the standard set.

Process models are unconcerned with cause effect relationships (Fenton 1991).

They are based on a very simple proposition, that software product quality is a

function of software process quality. Such a statement of a static equality can

be vastly misleading, because it ignores the real world chains of events which

are interposed between process change and a product change, the speed at

which they unfold, and the extent to which they are affected by other causes.

Hansen concluded in (Hansen, 2004) that the shape of SPI is mainly

dominated by CMM. CMM represents the most famous and deployed norm

driven approach in the software firms. Criticism to CMM has been addressed in

the literature. CMM focuses on the institutionalization of a standard process

neglecting the individual level. The goal of CMM is achieving a higher CMM

level, a goal that is not synonym to achieving better software process. CMM

 20

mainly focuses on a uniformization of the software processes. It aims at

creating a world wide global process. However, the process is tailed in America

may not be suitable for a Scandinavian company. Models do not consider the

organization culture and politics. The link is tenuous between CMM and the

specific circumstances of the organizations. Bach has showed that applying

CMM makes the SPI vague and the enterprise not aware of the problems to be

solved, some organizations do not identify the goal that CMM is intended to

address (Bach, 1994).

4.1.4 Problem driven approaches

Like norm problem driven approaches, problem driven approaches aspire at

improving software processes. The singularity of such approaches is the fact

that they are more concentrated about recognizing the problems within a

software firm and solving them in a more systematic fashion. This is different

from norm driven approaches that focus rather on establishing models for

software development. In contrast to norm driven approaches that impose

burden on the process (model to follow), problem driven approaches supply a

higher degree of freedom by envisioning methods to improve the process that

are rather specific to the organizations in question. In the latter approaches,

assessment is less important than in norm driven approaches.

Remarkably, problem driven approaches are to high extent inspired by the

effort deployed in the manufactory field . These approaches presume that the

software process and the manufacturing process share common features that

render the same improvement methodologies applicable and profitable for both

of them.

Norm driven approaches and problem driven approaches agree on the same

perception of the software process: a repeatable activity that compromises a set

of detailed sub activities and procedures.

A typical example of problem-driven approach is the Japanese software

Factory Approach, which is not defined as model but rather as a practice that

evolved and created values from the industrial field. For the sake of clarity we

cite the example of Toshiba that applied a three phased model in its

manufacturing process. Applying these steps in a case study highlighted an

upgrade of quality and productivity (Matsumoto, 1987).

Furthermore, The Application of Metrics in Industry (AMI) is a project

that aims at combining planning actions with Software process assessment. The

application of AMI starts with assessing the project environment and defining

the primary goals for improvement. The improvement program is sustained by

plan tracking to detect deviations from the project goals or the standards and

procedures the project uses.

 21

The Experience Factory is a problem-driven SPI which paramount principle

is separating the development organization from the experience factory. The

experience factory is a physical organization that process information from the

development organization and returns a feedback. The experience factory

assists continuously the development process by providing goals and models

tailored from previous project experiences.

4.2 Software developments models

The software development models can be classified into classical software

development models and agile development methodologies. We provide here an

overview of these two trends.

4.2.1 Classical Software development Models

Programming methodologies can be perceived as mainly oriented to the

conceptual principles of software engineering. A set of more programmatic

technologies developed in software engineering is known as the software

development models, such as the waterfall (Royce, 1970), prototype (Boehm et

al., 1984; Curtis et al., 1987), spiral (Boehm, 1988; Boehm and Bose, 1994), V

(GMOD, 1992), evolutionary (Lehman, 1985; Gilb, 1988;Gustavsson, 1989) ,

and incremental (Parnas, 1979; Mills et al., 1987) models.

Supplementary to the above development models, a variety of detailed

methods have been proposed for each phase of the development models. For

instance, just for the software design phase, a number of design methods have

been in existence (McDermid, 1991], typically flowcharts, data flow diagrams,

Nassi-Shneiderman charts, Program Description Languages (PDLs), entity-

relationship diagrams, Yourdon methods, and Jackson system development. Of

course, some of these methods may cover multiple phases in software

development.

These models can be classified as classical models that has been adopted

and designed some decades ago. They attempt to provide a set of guidelines for

the design and implementation of software at system and module levels.

However, these approaches have been focused on technical aspects of software

development lifecycles. Organizational and managerial methodologies and

processes have not been covered. Detailed descriptions and applications of

existing software development models may be referred to the classic software

engineering books (McDermid, 1991; Pressman, 1992; Sommerville, 1996).

 22

4.2.2 Agile Development methodologies

A major departure from the traditional software development model has

been marked with the advent of agile development methodologies few years ago

(Dybå et al., 2008).

In a recently published survey about agile methodologies, Dybå describes
the agile development methodologies as:

“Methods for agile software development constitute a set of practices for
software development that have been created by experienced practitioners.
These methods can be seen as a reaction to plan-based or traditional methods,
which emphasize a rationalized, engineering based approach in which it is
claimed that problems are fully specifiable and that optimal and predictable
solutions exist for every problem. The “traditionalists” are said to advocate
extensive planning, codified processes, and rigorous reuse to make development
an efficient and predictable activity.” (Dybå et al., 2008)

The agile development is a merging development methodology that is

mainly the contribution of practitioners who defined most of its current shape.

In 2001, the “agile manifesto” published the four core underlying values of agile

(Dybå et al., 2008)

Value 1: Individuals and interactions over processes and tools.
Value 2: Working software over comprehensive documentation.
Value 3: Customer collaboration over contract negotiation.
Value 4: Responding to change over following a plan

Based on these four core values defined by the manifesto, variant of the

agile methodology has been proposed. For the sake of brevity, we cite the most

prevalent of these methodologies while putting emphasize on Scrum since it will

intend to use it in the section solutions.

Dynamic software development method (DSDM)Dynamic software development method (DSDM)Dynamic software development method (DSDM)Dynamic software development method (DSDM)

Like other Agile methods, DSDM assumes an iterative life cycle. The

DSDM process compromises three phase:

The “Functional Model Iteration” phase, the “Design and Build” phase and

the “Implementation” phase. The intent of DSDM is for each project to define

how the iterating will be done so that the needs of the project are met. The

three iterative phases would generally be turning concurrently, and feedback

from “Implementation” and “Design and Build Iteration” to the other phases
could happen during any iteration. The DSDM process provides a structured

 23

set of activities with feed-forward and feedback loops, but it allows a large

degree of freedom for any particular project to define exactly how those

activities are assembled to define the project’s life cycle. (Dybå et al., 2008)

ExtExtExtExtreme Programming (XP):reme Programming (XP):reme Programming (XP):reme Programming (XP):

Extreme Programming (XP) is probably the most widely recognized of the

Agile methods. XP focuses on 12 practices are its defining features. The

principles are: The Planning Game. Small releases, metaphor, simple design,

test first, refactoring, pair programming, collective ownership, continuous

integration, 40-hour week, one site customer, coding standards.

Lean development (LD):Lean development (LD):Lean development (LD):Lean development (LD):
Lean Software Development is not a software development method. Rather,

it is a set of principles and tools that an organization can employ in making its

software development projects leaner. The principles behind LD are drawn

from the world of lean manufacturing, namely the Toyota Production System,

and although some LD tools relate directly to lean manufacturing principles,

many do not. LD is characterized by seven lean principles that are elaborated

into 22 Lean Software Development tools. For a comprehensive review of Lead

Development we refer the reader to an outstanding book about Lean written

(Poppendieck et al., 2003)

Scrum Scrum Scrum Scrum

Scrum is an agile development method. Scrum as it exists today grew from

its beginnings in Japan in the mid-1980s (Takeuchi; 1986). Takeuchi

(Takeuchi; 1986) concluded that collapsing phases of product incarnated in

Scrum Sprints yields a higher productivity and shorter timeline.

Each increment of a Scrum project is developed in a “Sprint.“ A Sprint is a
time-boxed development increment that is generally set at 15 or 30 days in

length. The Sprint is characterized by its goal and a set of functionality that it

is expected to deliver.

Scrum practices

As with other Agile methods, Scrum is defined not so much by its process

as by the practices that comprise it. We describe here the main practices of

Scrum.

Product BacklogProduct BacklogProduct BacklogProduct Backlog

The product backlog is at the heart of Scrum. This is where it all starts.

 24

“Product Backlog is an evolving, prioritized queue of business and technical

functionality that needs to be developed into a system”
(Book Agile Software Development with Scrum , page 32)

.

The Product Backlog is the sum total of the work that remains on the

project and includes everything from major features to bug fixes. Any

stakeholder in the project can contribute to the Product Backlog at any time,

but it is the Product Owner who has the primary responsibility for determining

the priority of backlog items. The primary measure of progress in a Scrum

project is the change in the number of items in the Product Backlog over time.

It may grow in early Sprints as stakeholders gain an understanding of the

system being built, but ultimately, a pattern of steady decrease in the size of

the Product Backlog is expected. If this does not materialize, or if it is not fast

enough, then hard decisions must be made about the project’s scope.

Sprint ReSprint ReSprint ReSprint Reviewviewviewview

Each Sprint ends with a Sprint Review meeting in which all stakeholders

come together to review what was developed during the Sprint. This review

includes the entire development team, the customer, and management, and it

allows each person to learn from what was developed during the Sprint and to

prepare for the planning session for the next one.

The Scrum process, shown in figure below, is incremental.

The Scrum MasterThe Scrum MasterThe Scrum MasterThe Scrum Master

“The Scrum Master is responsible for the success of Scrum”. (Book Agile
Software Development with Scrum , page 31)

Although Scrum defines this as a new role, in traditional projects its

responsibilities are often taken on by an existing position such as project

manager or team leader. The primary responsibilities of the Scrum Master are

to:

 25

� Ensure that the Scrum practices are followed and that the values behind

Scrum drive enactment of the process.

� Be the interface point among management, the customer, and the Scrum

team. Of primary importance are:

� Communicating project status;

� Removing impediments to progress

Scrum TeamsScrum TeamsScrum TeamsScrum Teams

“A team commits to achieving a Sprint goal. The team is accorded full
authority to do whatever it decides is necessary to achieve the goal2 (Book

Agile Software Development with Scrum , page 35)

. Almost all software development involves teams. The key difference with

Scrum is that the team freely commits to what they believe they can produce

during each Sprint, and they are empowered to make whatever decisions they

must to fulfil those commitments.

 They may even change the details of the functionality to be delivered as

long as they believe they will still achieve the Sprint goal. If they become

convinced that the Sprint goal is beyond reach, they are empowered to abort

the Sprint, which would immediately result in a new Sprint Planning session.

By doing so, they will force the other project stakeholders to reassess the new

information they have learned so they can all work together to set a new,

achievable Sprint goal to get the project back on track.

During the Sprint, the team self-organizes and self-directs, and their

authority even extends to being able to:

� Change the functionality to be delivered by the Sprint as long as the

Sprint Goal is still achieved.

� Abort the Sprint if new information leads them to believe its Goal or

Backlog is no longer achievable or relevant.

Assuming the team does not abort the Sprint, it ends with the delivery of

the promised executable product increment.

As with the other Agile methods, Scrum’s time-boxed increments provide a
mechanism for all project stakeholders to learn about the system being built on

a regular basis. In the case of Scrum, this happens every sprint end.

This level of autonomy is foreign to most organizations.

 26

Daily Scrum MeetingsDaily Scrum MeetingsDaily Scrum MeetingsDaily Scrum Meetings

“The Daily Scrum meeting is where the team comes to communicate” (Book
Agile Software Development with Scrum , page 32)

. The Daily Scrum (the defining feature of Scrum) is a short 15-minute

meeting that takes place every working day. It is the forum where team

members exchange information and others may come to listenMbut not speak.

To keep the meeting short, all deliberation and discussion is relegated to

meetings of interested people after the Daily Scrum. During the Daily Scrum,

each team member answers three questions:

M What have you done since the last Scrum?

M What will you do between now and the next Scrum?

M What got in your way of doing work?

The third question provides the Scrum Master with the information he or

she needs to be effective in removing impediments to progress and ensuring the

team continues to be productive.

Sprint Planning MeetingSprint Planning MeetingSprint Planning MeetingSprint Planning Meeting

“Customers, users, management, the Product Owner, and the Scrum Team
determine the next Sprint goal and functionality at the Sprint Planning

meeting. The team then devises the individual tasks that must be performed to

build the product increment” (Book Agile Software Development with Scrum ,
page 47)

Each Sprint begins with this planning meeting. The critical outputs of this

meeting are:

M Sprint Goal - The objective that is to be achieved during this Sprint.

M Sprint Backlog - The subset of the Product Backlog that will be

completed during the Sprint.

The Product Owner is the sole arbiter of the priority of the Product

Backlog items. But only the Scrum Team can commit themselves to completing

specific work. As a conclusion of the sprint meeting stakeholders will have

agreed to a Sprint Goal and Sprint Backlog to which the Team is willing to

commit.

Sprint ReviewSprint ReviewSprint ReviewSprint Review

 “The Sprint Review meeting is a four-hour informational meeting. During
this meeting, the team presents to management, customers, users, and the

Product Owner the product increment that it has built during the Sprint”.
(Book Agile Software Development with Scrum , page 54)

 27

This meeting provides a concrete picture of the progress achieved during

the Sprint and lays the foundation for the next Sprint Planning meeting.

 28

5 Software change management problems at

Ericsson

This chapter presents change management problems derived from the case

study and the literature review. As master students we have a fresh

perspective. Thus, we are able to objectively question steps in the process to

ameliorate it.

5.1 Connection between sub CRs

An important number of customer change requests usually involves the

coordination of different departments. Whenever a CR affects several

technological parts of the product, it is divided into cross functional sub CRs.

This kind of change requests are called cross functional request because the

deployment affects many technological aspects that can not be done by one

team. In this case, the CR is divided into complementary sub CRs each within

a field of specialization.

 EMP is organized in specialized teams such as WLAN, USB and AT-

commands. When a cross functional CR is received, its sub-CRs are assigned

to these teams according to their specializations.

To ensure that the premises to complete all CRs is present and available;

EMP management rely that a mutual coordination and exchange of

information between teams is established.

An example of a cross functional CR that may affect several teams is a new

feature called “Charging by USB”. Such a change requires that the USB port is
used as source of power to charge the batteries of the mobile device.

Developing and maintaining this feature is a project that involves several

distributed teams. One team is responsible for the hardware USB-block,

another for the low-

 29

level drivers and a third for higher level USB services. The USB driver

developers must coordinate the interface on a bit-specific level with the

hardware designers. The hardware designers must also document and inform

the team responsible for USB services on how to operate the USB hardware.

To ensure maximum synergy between teams, this process requires an efficient

approach for coordination and exchange of information.

Nevertheless, this is not always the case at EMP. In our in-depth study of

the software development at EMP customer organization we identified sub CR

related handling problems. The interviews conducted show that many sub-CRs

are not as well aligned as they should be. The interviewees singled out that

there exists no mechanism at Ericsson to ensure coordination between two

separate teams working on CRs. Some co-work tasks are invisible to other

process flows. Consequently, distributed teams find themselves waiting for an

input from each other rendering the project in a blocked state.

To escape such a blocked state and to continue progress, teams waste a

significant effort and time on an overwhelming amount of informal

communication like email and phone calls.

Therefore, it is clear that coordination between two separate teams working

on complementary sub-CRs is not supported enough by the process. The

coordination tends to rely on personal contacts.

 An example that illustrates this at EMP is CRs involving Network signalling

and AT commands. Both sub-CR processes are performed separately; however,

tight coordination is needed between them. According to an engineer

interviewed from the AT commands teams, the activities where collaboration is

substantial are not clearly defined in the process leading to time delay.

Moreover, more problems due to this shortage of coordination usually surfaces

during the integration phase. In fact, one of the interview developers reported

Mthe hardware and the software process are too mangled and separated such it

is difficult to have something working during the integration phase.

USB Services

Team 3

USB Drivers

Team 2

USB Hardware

Team 1

 30

5.2 Handling CR

In an interview conducted with the head of the customer development

organization at EMP Grimstad, he confirmed that the Customer Development

Organization is struggling to handle CRs as soon as they arrive. This problem

does not stem from capacity scarcity. However, it is due to non homogeneous

distribution of the work that makes the resources unavailable during peak time.

In fact, CRs do not arrive like “marching soldiers” at regular intervals. The
inter-arrival time between two subsequent CRs may vary considerably. Quick

successions of CRs lead to peak working periods and high process overhead. By

contrast, slow succession of CRs results in idle working periods. The figure

below depicts the distribution of the arrival of CRs during a period of 12 weeks

from week 50/2007 to week 9/ 2008 at EMP Grimstad.

50 51 52 1 2 3 4 5 6 7 8 9

0

5

10

15

20

25

30

Week

Number of CRs

The figure confirms that the distribution of CR arrivals is not uniform over a

period of three months.

There was an important increase of the number of CRs starting from week 4 in

2008. This increase has resulted in an unsustainable workload at the company.

The congestion of CRs are the main cause of long lead time since a large part

has to be queued.

In this sense, peak times pose key challenges to the EMP customer

organizations. That why we are committed to design a solution that maintains

a steady and sustainable level of effort.

 31

5.3 Scheduling

The considerable uncertainty inherent in software development as well as

the diverse nature it comprises, makes scheduling essential when planning and

managing a software project. However, most software developers do not

separate important requirements from the less important ones. As a

consequence, it can be problematic to achieve the best possible software

system.

In order to achieve this, a manager has to take into consideration different

aspects of a project to be able to make good scheduling. For instance, the

manager must consider the degree of specialization of the teams or the strength

of the coupling between the components. A strong coupling between the

components results in a higher probability of a design change propagating

throughout the software. This may produce a lot of rework within the different

components. A high degree of specialization on the other hand, means that a

team will be more productive on a certain set of components, and less on

others.

These are the circumstances that make project scheduling a difficult

challenge for software project managers.

During interviews we discovered that EMP Grimstad uses no tools for

assisting scheduling. Currently, there are two strategies for scheduling customer

requirements at Ericsson Grimstad. One is the “first come, first served”, where
all customer requirements within the different levels of priority, set by the CR

owner, are processed as soon as possible with the assumption that they should

be completed as soon as possible. In reality this is not necessarily what the

customer really needs or wants.

The other strategy is to give total commitment to one project for short

period of time, and allocate all available resources to completing the change

requests assigned to this project.

CR’s are given priority by the employee registering it or the by the
customer. Priorities range from

*low - can wait

*medium - scheduled to next release

*critical - immediate response (system failure)

This quantification is too coarse for making good scheduling decisions.

A substantial improvement to the Software Development process can be

achieved if the managers have guidelines to help schedule their projects in the

most optimal way, despite the many uncertainties that exist in the area of

software industry.

 32

5.4 Errors

Errors are a recurring problem in software development. Many studies have

confirmed that errors have a negative impact on quality and productivity

(Westland, 2002). Errors can also become very costly. A specific study

performed at Ericsson Telecom AB showed that within Ericsson, the correction

of one fault found in service amounted to $7,000 on average (Ohlson et al.,

1996). When discovered at a late stage, errors are even more expensive as it is

generally accepted that the cost of errors raise exponentially with each new

development phase. The reason of such a high cost is that errors heavily

influence time to market as it disrupts the stability of the software process. As

effort is turned into correcting the errors instead of developing the product, the

overall productivity is decreased. Consequently, keeping the number of errors

down to a minimum is an important factor to the cost and schedule of a

project (Jones, 1994).

To achieve this goal, mature companies implement standard procedures to

analyse these error reports and then use the feedback of this analysis to avoid

future errors. One such mechanism is used in the highest level of the Capability

Maturity Model, and is called Defect Prevention. This mechanism has proved

its efficiency in many organizations.

Unfortunately, this is not modus operandi at EMP Grimstad. In fact, there

is no resources dedicated at Ericsson Grimstad to analyse collected errors to

draw leverage from previous projects. Error reports are stored in an incident

database after merely classifying them by their priority, status (e.g.

investigation, analysed, accepted/rejected, ongoing/pending, and completed)

and in which software module the error was discovered.

Another problem we identified by analysing data collection (CPO CR-team

statistics) at EMP Grimstad, is that the number of error reports (ERs) is

relatively high compared to the number of change requests (CRs). This

suggests a condition of reduced productivity due to valuable resources being

lost to the correction of ERs. In short, the fewer errors need to be fixed, the

less of the software needs to be rewritten.

The figure below depicts the number of CRs and ERs that were under

investigation during a period of 12 weeks from week 50/2007 to week 9/2008 at

EMP Grimstad.

 33

50 51 52 1 2 3 4 5 6 7 8 9

0

10

20

30

40

50

60

Week

Number of CRs vs. ERs

CRs
ERs

During the sampling period, the ERs outnumber the CRs by an average

factor of 3,34. It is evident that if we attack the cause of this relationship,

thereby reducing the factor, it will unquestionably assist Ericsson Grimstad in

delivering a product of high quality at the right time.

5.5 Process complexity

The complexity of the software process has been the object of scrutiny of a

number of notable studies(Dandekar, 1996; Dandekar, 1997; Dewayne, 1994).

Dandekar highlights the complexity of software process as an important driver

of lead time. In the study (Dandekar, 1996), the author argues that a main

cause of process complexity stems from the “non-added customer” focus tasks.

A “non-added customer” focus task is defined as activities that are of no
interest to the customer such as unnecessary rework due to design weaknesses

and extensive documentation. Such “non-added” tasks can be identified by
revealing the composition of a complex process using a visual presentation of

 34

the process. Formalized visualization tools is an efficient method to represent a

process at various levels and understand its architecture (Carr, 1995).

Subsequently, to gain an understanding of the software CR process at

EMP, we relied on a visual presentation which is available through Ericsson

Internal documentation. This visual presentation has captivated our attention

as it is remarkably complex. Based on this presentation we identified the

documentation process subsystem as a major component. To investigate this

finding, we interviewed developers involved in the documentation process.

The interviews revealed a consensus that a lot of the produced documents

are obsolete, time consuming, and without added value. For the sake of

clarification, we cite some of the proclamations of the interviewees:

-”Adding two lines to the code takes one week of documentation”

-”In the design document, the text is too much, it would be better if we can

have more graphics and less text.”

Besides an extensive documentation process, it was expressed that code

review, with the aim of aligning the code to the Ericsson standard style, mostly

is considered to be an unnecessary step that consumes considerable time. Some

experienced engineers were complaining about code review, claiming that it is

of no need and/or that it is cumbersome. One of the developers said: “In code
review, you have to change variables names that are not in conformity with

Ericsson standards. This takes time and is usually done in iterations. You must

go through the code again to be sure that this change does not introduce any

errors.”

In addition, we identified that looping structures in the document process

usually results in extra or duplicated work, thereby wasting valuable time. As

an example of inner loops, we have identified document review. After

documenting a section of code or design, the author sends the document to the

reviewer. The reviewer checks the quality of the document and issues remarks

to the author in order for him to upgrade and/or correct the document. The

review is repeated a number of times until the document is correct.

5.6 Testing challenges

Significant efforts are spent by software development companies to test

their products in order to assure their products are of a high quality level.

Software applications are generally getting more and more complex, and this

 35

increases the chances of errors. It is not uncommon that about 50 percent of

the total development time is dedicated to testing and fault removal (Harrold,

2000)

Similar to the standard waterfall development process, EMP begins

development with a design phase that creates a set of final programming

specifications. Then developers start coding the product before the test

department begin working on its test case development. The test department

waits until development is finished with coding before starting working on test

case development.

However, this creates a twofold problem. First, with increased pressure to

get the product more quickly, testing is rushed. In parallell there is a demand

for increased quality which puts even more pressure on the test

department..This creates a strain that can not be handled by the existing

process.In this perspective, a process improvement that can identify errors on a

early stage is much needed.

Second, according to the inherent nature Waterfall model, there is a time

gap between the end of the development of one CR and the results of the tests.

At EMP, the interview confirmed that the results of the test department are

too late, the error reports are issued in a time when they moved to other

projects. Therefore, the EMP engineers has to go to mental settings again to

remember the erroneous CRs that they have developed 2 months ago.

“Therefore the engineers may have to go through mental settings and
become less productive if spread between doing a current CR and handling

Errors reports of a CR that I have done three months ago.”

A part from the problems that raise from the characteristics of the waterfall

model, our study have identified that the process lead time is dominated by the

testing activity referred as the bottleneck activity. In fact, when it comes to

testing CRs, congestion is one of the main drivers of lead time at EMP. In fact,

only two engineers are dedicated to test CRs. The remaining testing resources,

almost 33 engineers, are exhausted by software release tests.

 However this situation is controversial. In fact, during an interview with

the manager of the customer development team EMP Grimstad he affirmed

that half of the new functionalities introduced into the platform come from

change requests.

 36

Effort in classifying and quantifying the relationship between faults and

failures can prove to be a valuable investment to aid the development of

module tests and the system verification department in pinpointing which

phases and what activities should be improved to get more efficient test

strategies.

5.7 Long build time

Excessively long build times is an obvious bottleneck in software

development and is perceived as frustrating and demoralizing by the developers

because of the delay in the speed of which they receive feedback, leaving the

developers in a state of uncertainty. The ability to have shorter build time is

not only valuable for the morale of the developers. Having feedback on whether

changes are successfully integrated into to the system within a reasonable time,

creates an efficient feedback mechanism that increases productivity and quality

in contrast to discovering a small, careless mistake and having to run the build

all over again. Moreover, long build time can have the consequence that

developers take short-cuts by not running a build locally before checking in

minor changes they feel confident in will not create any errors. As well

developers may skip running tests.

Shortening the build will make software development teams able to

minimize cost of integration. It can give a team both confidence and speed

especially when implementing small incremental changes. Thus, the team

members will be able to spend more resources on other phases of the project, or

continue to the next project.

The build time at Ericsson can be classified as excessively long. Due to a

complex and huge code base, a full build can use 4 hours to complete using the

workstation of a developer. Usually these builds are started at the end of the

day and therefore go under the name “night build”. The partial builds take
much less time to complete. Depending on the degree of changes made, a

typical partial build can take about 20 minutes. This is still too much,

considering the above mentioned disadvantages.

There are many things that the developers can do while waiting for the

build to complete. They can for instance work on documentation or perform

routine tasks like checking email. However, developing quality code is a

thought intensive process and changing area of focus is counter productive.

Because pulling focus from coding will distract the developer, it requires a

considerable period of time before he is back to his previous level of

productivity.

 37

5.8 Communication problems

Communication plays a decisive role in the efficiency and success of an

organization.

EMP is additionally a distributed organization where collaboration involves

local and cross site communications. Such an environment raises a need for

informal, distant communications for the cross site communication case, and

face to face communications for the case of the local site (Ahuja, 1998).

Empirical studies have shown (Curtis 1998; Kraut, 1995; Hersleb 1995) that a

shortage of informal “ad hoc” communications among software engineers has a

negative impact on a project’s advancement.
In Ericsson context, the interviewees highlighted that they are facing

problems to work cohesively due to communication problems. They expressed

that it is difficult to find the right person when you need relevant information.

This communication problem arises between different technological groups

when CRs affect several technological parts of the product. The problem is

founded in a need of knowledge that is not shared nor documented (Petti;

2002). Finding the right person is an increasingly tedious with regards to the

proliferation of the EMP organizations during these last years.

Unlike (Palmer, 1998), we have not received any report indicating trust or

conflict management problems. On the contrary, the interviewees confirmed the

existence of mutual trust between distributed teams. However, the interviews

underlined that remote meetings, based on phone conferences, are not always

efficient. They confirmed that the phone conferences do not realise the desired

level of mutual understanding. One of the interviewees stated that “The
meetings with distributed teams usually fail to meet their fixed goal. Therefore

they are rescheduled, leading to delay and stress”. Such limitations, this leads
to a situation where developers are required to travel to Lund.

We later experienced this first-hand when we were present at a telephone

conference meeting with a remote development site in Lund, Sweden. The two

sites were both working on components used by the mobile platform, therefore

requiring a lot of coordination. The meeting was conducted by a group of

employees from Grimstad who in advance had scheduled a voice conference

with colleagues from the research and development departments in Lund. Prior

to the meeting, microphones and loudspeakers were placed on the conference

table.

We noticed that communication during telephone conference was noticeably

inhibited compared to real-life meetings as it is missing the visual part that is

so often used in non-virtual situations. Additionally, the setting can easily give

a notion of a strained, artificial atmosphere as each side is consciously unaware

of all non-audible actions at the other location.

 38

6 Generic change management process model

Recommendations

In the previous section we present identified problems that drive the lead

time at EMP Customer Organization Grimstad. To address these problems, we

proceed with problem-driven approach. This approach allowed us to target

specific problems within the process. An alternative solution was the norm

driven approach, which is a strategy to adopt best-practice approaches

presuming this will alleviate any problems. We did not use this as it implies

that specific problems are never pin-pointed.

The respective solutions are mapped to the problems by the usage of the

following matrix

.

6.1 Batching

Since EMP produces customized products, many changes addressing the

design of the product are usually initiated by the customers. Fewer other

changes are initiated by the organization itself. These changes can come on the

stage at any phase of the product development posing serious challenges to

EMP that aspires to handle them on time and accurately. We refer to section

problem to highlight that changes are overwhelming during peak times.

Despite that the CR management mechanisms are highly important with

regards to reducing lead time, they have not been the centre of growing interest

in the literature. Mandal (Mandal, 1997) reviews trends in this field of research.

 39

According to Mandal many studies have focused on computer based tools for

analyzing CRs problems. Other studies dealt with methods of controlling CRs

through manufacturing and lessening the effect of product function. These

studies stem from case studies performed in companies. Watts (Watts, 1984)

has successfully reduced the time delay in a computer products manufactory by

reducing the time spent on paperwork. In (Balcerak, 1992) Balcerak performed

a valuable study in the field by proposing a scheme for classifying CRs

according to their impact of change and the grade of urgency.

We should single out that there are two possible mechanisms for change

request handling:

-Processing as soon as they are received

-Batching CRs; a number of CRs are accumulated and processing starts

either when the batch reaches a certain size or at regular intervals.

The second technique has proved its efficiency in the case of automotive

manufactory (Terwiesch, 1998). In fact, in the later case many changes can be

performed in one setup - avoiding disassembly and setup costs. In the same

perspective, a recently published pioneering research (Bhuiyan, 2006) has come

to the result that batching CRs is shown to be superior to processing them

immediately.

The state of practice at Ericsson is to handle CRs as soon as they arrive.

According to the findings of (Bhuiyan, 2006) and (Terwiesch, 1998) this is not

the optimal way to process CRs.

Based on these results, instead of processing the CR as they soon as they

arrive, we propose to introduce batching in order to fasten the development

speed at EMP Customer Project Organization (CPO). CRs can be grouped and

processed in a batch. This technique yields better results than performing them

individually. The main reason for this difference is the lower process overhead

when CRs are processed as a group. The amount of work necessary to do the

changes is much different if done individually or as a group, the amount of

time spent doing communication, design review meetings, and management is

much less when CRs are done as a group. Thus, the time consuming activities

are done in batch way. It is difficult to determine the intervals of batch

without trying this technique in practice. The results of the studies show that

the solution is particularly promising. Nevertheless, assessing the solution in an

experimental setting requires a large scale experiment involving the cooperation

of the entire development team for a period of time exceeding our timeframe.

Thus, we can not draw any priori results without enacting it in practice.

Therefore, we urge the practitioners at Ericsson to try this approach.

 40

6.2 Adopting agile development: Scrum

During an interview with one of the senior developers at EMP, he expressed

that:

“Sometimes, we develop something that the customer did not want. This is
because the requirements are not clear for us neither for the customer. This

fact is related to the rapidly changing mobile market. The development of CRs

should be iterative and incremental, we should develop a little and ask the

customer is this what you need. This methodology could support better the

changes.” Without knowing it, the developer was promoting for the agile new

development methodology.

The CR process at Ericsson is based on Props, a process model derived

form the Waterfall model. The Waterfall model is a legacy model that dates to

30 years ago. Many literature studies have shown that the waterfall model does

not cope with the current software state of practice. Indeed, Larman (C.

Larman; 2003) has highlighted statistical evidences of the failures of the

waterfall model in the software field.

Moreover, there are compelling evidence that the classical waterfall model

does not yield good results. Carolyn Wong (C. Wong; 1984) states that:

“The [waterfall] model was adopted because software development was

guided by DoD(US Department of Defense) standards. In reality, software

development is a complex, continuous, iterative, and repetitive process. The

[waterfall model] does not reflect this complexity.”

By the late 1980s, a study conducted at DoD to assess the waterfall

practice of development based on the published standard DoD STD 2167 of the

waterfall process reported that:

“Of a total $37 billion for the sample set, 75% of the projects failed or were

never used, and only 2% were used without extensive modification.” (S.
Jarzombek; 1999).

 Therefore, the report concluded that the waterfall model exhibited a

drastic failure over many large projects at DoD. To resolve this critical

situation, the Defense Science Board Task Force on Military Software chaired

by Frederick Brooks, a known expert international expert in the field released a

report that urges DoD to abandon the waterfall model and substitute it with

incremental and iterative models. The report highlighted that:

“DOD STD 2167 likewise needs a radical overhaul to reflect modern
best practice. Evolutionary development is best technically, it saves time
and money”

 41

Therefore, the shortcoming of the waterfall model empirically confirmed

motivates us to propose to use an agile development method at EMP as a

substitute of the classical waterfall model. This proposal is supported by many

performed studies that have confirmed the eminence of agile productivity

compared to other traditional development methodologies.

In fact, analyses of an agile methodology implementation (Ilieva et al.,

2004) found that a team using agile development methodology outperforms

another team using a traditional development by a 42% increased productivity

model working when working on a similar project.

Similarly, Layman et al. (Layman et al., 2004) has compared the

productivity of a team over two subsequent software releases. In the first

release, the team used a traditional development method, in the second release

the team used an agile development method. The results were conclusive and

showed that the productivity increased remarkably by 46% in the second

release.

The case study by Dalcher et al. (Dalcher et al., 2005) compared the

productivity of fifteen software teams developing similar projects practicing

four different software development methodologies (waterfall, incremental,

evolutionary, and XP). The highest productivity difference was reported

between the teams using waterfall model and the teams using agile

methodology. The results showed that the productivity of agile teams

outperforms the productivity of the waterfall model teams by a huge factor

l337 %. These results are really conclusive and showed the power of agile

development when deployed in small teams.

As an agile approach, we have chosen Scrum as it is a methodology that

allows close interaction with the customers as well as being very flexible and

open for customization (Mann et al., 2005). The case study of Scrum

introduction showed an improvement in customer communication. These are

attributes that conform well to the way Ericsson organization handles CRs that

involves a continuous customer interaction.

Moreover, in the case study performed by Mann (Mann et al., 2005) the

adoption of scrum has reduced significantly the overtime. The developers were

very satisfied with the results of the application of Scrum and committed to

continue using it in their future projects.

At the beginning of this section, we cited an extract by an Ericsson

employee regarding unclear requirements. This claim was further confirmed by

another developer in the same team that reported that :”we do not know until

the final delivery if this is what the customer wanted”. In accordance with these
statements, the developers in (Mann et al., 2005) confirmed the same

 42

perception after adopting Scrum by stating that “the Scrum process is giving

me confidence that we are developing the software that the customer wants”.

By using Scrum, EMP could embrace a more up to date development model

that is able to face the increasing competitivity in the telecommunication

market. Trends to adopt the agile development have been already reported in

many telecommunication companies such as Nokia. In a similar context to

EMP, Nokia has used agile to fasten the development of mobile phones. Agile

was proved to boost the productivity if small team and its ability to support

change in software requirements. (Vanhanen et al., 2003)

6.3 Time boxing

The Scrum Agile development process is a software development

methodology that aims at achieving short lead times. Scrum, is an example of

tight process which maintains a high pace of productivity through successive

delivery in short time boxes. The beauty of Sprint is that it makes use of Time

boxing to increase the productivity of the team by imposing fine short time

deadlines.

Schuh, in his book (Schuh, 2004) refers to time boxing as:

“Time boxing is a tool that, like any other, can be used for both good and
bad purposes.... Agile projects perform time boxing at the release and the

iteration levels, so a single agile project contains multiple time boxes.... Time

boxes force the customer to make decisions on the short-term direction of the

project. Second, they always provide a near-term goal, which can keep the

entire team from wandering off target....Finally, time boxes ensure that the

team delivers something useful within a short and defined period.” (p. 154-155)

At Ericsson’s Customer Development Organization Time-boxing can be
utilized as an interesting concept to turns the development priorities around (

see section priorities). When receiving a CR, a functionality goal should be set

and then work is therefore kept until achievement within the duration of the

corresponding sprint. If the team is late, it should work overtime and get the

functionality goal achieved as close as possible to the scheduled end date of the

CR. By keeping the time frame for each increment very short, the managers at

EMP Customer Organization help their teams to maintain a reasonable level of

pressure almost continually.

 43

With time-boxing, the schedule is immovable. If things do not go as

planned, then the functionality is what changes. Redefining the extent to which

the functionality must work in this increment. There are many options for

“slipping” a function, but the schedule does not slip.
We consider the adoption of Scrum at EMP as an innovative approach.

Instead of waiting for the whole CR development to be finished, the manager

can track the advancement of the development through increments. This gives

a better control of the progress of the CR, and keeps the productivity of the

teams at an optimal level.

6.4 Introducing connections between CRs

In the section problems, we emphasized the lack coordination between cross

functional CRs as one of the main drivers of long CR lead times. In fact, some

sub-CRs are tightly related and need coordination along with mutual exchange

of information. There is no mechanism at Ericsson to ensure coordination

between two separate teams working on complementary sub-CRs (rather than

mails and vocal communication).

Despite the importance of the later problem, a small body of the literature

has addressed this problem. To the best of our knowledge, the only work that

was invested in studying the coordination between complementary processes

was reported by Jorma Taramaa in (Taramaa et al., 1998; Ronkainen and

Jorma 2002; Taramaa Virpi Taipale and Taramaa, 2005). These publications

are a part of a research lead at Nokia that have established the grounding of

tight coordination between the software and hardware sub processes. They

were found to be useful for aligning the software and hardware process at

Nokia. Qualitative experimental results have shown the eminence of the

proposed approach.

A solution that is susceptible of ameliorating handling interdependencies

across the hardware and software process at Nokia can be utilized to handle

interdependencies across complementary sub CRs at Ericsson. Therefore we

propose to introduce new checkpoints where the sub CRs can be aligned and

the results are made available to all stakeholders. The paramount objective is

to modify the current process flow for handling complementary sub CR at

Ericsson in such a way that it supports cooperative activities.

 At these added checkpoints a mutual exchange of documentation is

performed. Such a mutual exchange of document fuels the co work and ensures

maximum synergy. Each team provides documentation to the other team who

need it. In this sense, the output document delivered by one team will serve as

a useful input for the other team and vice versa. Delivery of increments of the

code and/or design documents can be envisaged at these checkpoints.

 44

Therefore, these deliveries are vital in preventing blocked states referred in the

problems section.

 Thus, the visibility of the tasks is improved creating a vital linkage

between the teams working on the same CR. The checkpoints serve as project

snapshots forcing the project history to be captured and documented in an

open forum.

Furthermore, with regards to the timeline of the project, the introduced

checkpoints ensure a consistent synchronization of all complementary sub CRs.

Subsequently, the multi-technology competence of the different teams is made

available all along the timeline of the project. This is especially true for the

integration phase.

6.56.56.56.5 SimpSimpSimpSimplification of the processlification of the processlification of the processlification of the process

As reported in section problems, the practitioners were complaining about

the complexity of the process. In this section, we draw the shape of a solution

susceptible of alleviating the increasing complexity of the development process

at Ericsson.

We consider simplification rather than reengineering. The radical tailoring

philosophy states that an improvement shall throw away all legacy practices

and directly start with more efficient processes. However, this approach mostly

fails because the organizations looses its key competencies which are

substituted by a new model with another focus or because a model introduced

from outside tries to radically change the work culture of the people.

Simplification is a more viable approach than reengineering for several

reasons. In fact, simplification is easy to perform and impacts only the part of

the process that is time consuming. Morover, simplification does not need

specific training for engineers rendering it a cheaper solution compared to

reengineering.

 45

Evidences from literature studies (Dandekar, 1996; Dandekar, 1997) have

shown that simplification of the process yields interesting results with regards

to lead time. In (Dandekar, 1996) the authors present a case where

simplification of the software process resulted in a saving of 20% in cost, 20%

in human effort, 40% in elapse time and 30% reduction in the number of

activities. These positive results motivate us to make use of this approach for

the Ericsson Customer development organization.

To simplify the CR process, we identified prime candidates simplification:

* looping structures of iterative process steps; review of documents and

code review with the aim of aligning the code to the Ericsson standard

* extensive documentation process:

6.5.1 Reducing review loops using real time review:

For reviewing a document, the modus operandi at EMP is as follows: after

writing a document, the writer sends the document to the reviewer. The

reviewer checks the quality of the document and issues remarks to the writer in

order to upgrade and/or correct the document. The review is repeated a

number of times until the document is correct.

To avoid this considerable waste of time spent in review loops we propose

to introduce the notion of “real-time review“. This notion is akin to XP pair
programming. In the pair review practice, the writer of the document and the

reviewer stand face to face with a first draft of the document to be reviewed.

 In this form of review, the reviewer can raise questions about the document

and the writer responds. If some correction is needed, it is performed

instantaneously in a way that the reviewer can validate it. Such a review

results in a continuous dialog between the pair leading to higher quality of the

documents and avoids unnecessary loops.

The same idea can be applied for code review with the aim to align the code to

Ericsson standard style. In fact, the reviewer and the code developer can held a

meeting and the alignment of the code to Ericsson Standard style is done in a

real time fashion. Therefore, loops and back and forth are avoided.

6.5.2 Simplifying the documentation process

 46

The Agile literature uses the adjective “comprehensive” in its discounting of
documentation. None of the Agile methods dispenses with documentation

completely. Rather, they each seek to avoid wasting time and effort in

producing documentation.

Documents are produced to communicate information. However, documents

are not the only way of communicating information. The Agile methods

advocates the use of face-to-face communication to the determinant of

producing formal documents whenever possible, as it may be more straight to

the point. The documents as a form of communication are limited by the

amount of information they can convey, because they consist merely of words

and have no other cues to help the reader understand them. Using documents

as a primary communication mode on projects is problematic because of

readers’ penchant for misinterpreting the writer’s intent. The value of a
document lies in its persistence. On the opposite hand, the production of

documentation can become a waste of time and effort if the documentation:

• Does not have a clear purpose; If there is not a clear purpose or use for

the document, then producing it is likely to be wasteful.

• Does not have a clear audience; If the audience consists of multiple roles,

then we should consider whether a single document can meet the needs of

all of them. If there is not a clear audience, or if the audience is too

diverse for the document to be practical, then producing it is likely to be

wasteful.

• Is over engineered (or under engineered) for its purpose and audience; A

minimum amount of effort should be used to ensure that the document

can fulfil its purpose.

• Is maintained beyond its useful life; maintaining a document beyond the

time when its audience can use it for its purpose is wasteful.

• Is recording the results of interpersonal communication (or prepare for

it); Then it is likely to be wasteful, because words absent from the

benefits for face-to-face communication are a poor communication mode.

At Ericsson, we reviewed the documents involved in a CR process. With

the aid of some developers of the customer organization, we identified

documents that can be simplified if instead of writing down information that

does not require the persistence and therefore can be communicated face to

face.

The module design specification is a document that contains a lot of text

which can be communicated through meetings. This huge amount of text can

be substituted with figures that can be explained vocally during sprint

meetings.

 47

Module test specification is also a candidate for simplification in the same

manner.

6.6 Coordinated Scheduling of cross functional CRs

A delay in a delivery is the most unwanted situation at EMP. To meet

customer satisfaction and fidelity, prompt delivery times is of paramount

importance. Many CRs at EMP embrace different components of the EMP

platform involving a broad technical expertise. Consequently, the CR is divided

into complementary sub CR, each assigned to a specialized team responsible of

an affected area. The main CR is only completed once all the related sub CR

have been developed.

Despite the increasing importance of scheduling cross functional CR in the

industrial field, only a small body of literature has explicitly addressed

scheduling customer change orders. This problem of scheduling cross functional

CR is akin to the assembly problem (Ahmadi et al., 1990).

This assembly problem is a novel scheduling problem that was first

addressed by Ahmadi (Ahmadi et al., 1990) under the name Coordinated

Scheduling of Customer Orders Problem. The core of the problem, is that the

assembly can only be performed if all parts for assembly are available. A full

solution of the problem was presented in (Ahmadi et al., 2005). As opposed to

classical literature, Ahmadi supposes the machines are dedicated, meaning that

one machine can only process one type of assignment. As EMP is specialized

into teams each responsible of CRs within a technical domain (e.g. USB team,

WLAN team etc.), the notion of machines is in perfect harmony with the

organization of EMP Customer Development Team.

Further pursuing the principals of the assembly problem, customer orders

should be processed in a specific order. This is where EMP Grimstad deviates

from the best-practice findings of Ahmadi. There is no centralized dispatching

of CRs to coordinate the handling order. The widespread practice at Ericsson is

that the order of handling is left up to the concerned teams.

The shortcoming of this approach is that it looks at the complementary sub

CR individually, and not from the customer perspective. In fact, the CR can

not be completed and delivered until the entire corresponding sub CRs are

completed as well. As a result, the completion time is mainly determined by

the time at which the last cross functional sub CR is completed.

Therefore, to achieve better coordinated scheduling, the most beneficial

approach is likely:

 48

“...to shift our focus from performance measures inside a job shop (or

company) to how it is perceived from the outside. Clearly, from the customer’s
perspective the arrival date of an order is highly relevant, whereas the speed at

which the individual order components (jobs in classical jargon) pass through a

job shop [or company] is only relevant to the extent that they serve this goal.

For example, Shapiro, Rangan, and Sviokla (Shapiro et. al, 1992) describe a

company which ships 99% of all order components on time, but only 50% of all

customers receive their complete orders on time. Whereas the traditional inside

performance measure of this company is quite respectable, its outside

performance, as perceived by the customer, is marginal at best.” (Ahmadi et
al.; 2005)

To map the problem as it is defined by Ahmadj (Ahmadi et al.; 2005) to

Ericsson case we assimilate the dedicated machines as “specialized teams” (Like
USB team, WLAN team, etc ..) teams, and the orders as cross functional CRs.

We consider an example of three cross/functional CRs: CR1 CR2 and CR3

Each CR is a composite of three sub-CRs that affects the Open Platform

Architecture team (OPA), the AT-commands team (AT) and the USB team.

The estimation of the effort of each sub-CR is given in weeks in the

following table.

 OPA AT USB

CR1 3 7 2

CR2 4 2 5

CR3 2 4 6

We suppose that the OPA team handles the CRs in the following order:

CR1, CR2, then CR3. Then, we suppose that the AT team handles their CRs

in the following order: CR2, CR3, then CR1. Also, we suppose that the USB

team handles their CRs in the following order: CR1, CR3, then CR2.

OPA 1 2 3

AT 2 3 1

USB 1 3 2

 49

It is clear from the figure that the completion of every CR is delayed

because one of its sub CR was last processed as last in the queue by one

corresponding team. Therefore, the completion time of CR1 is after the AT

finishes it after 7+2+4 = 13 weeks. Similarly, CR2 finishes it after the USB

team finished it in 2+5+6 = 13 weeks. CR3 is finished when OPA team is

finished after 3+4+2 = 9 weeks. Therefore, the average completion time is

(13+13+9)/3 = 11,6666 weeks.

An application of the algorithm defined by Ahmadj (Ahmadi et al., 2005)

will give the optimal strategy of scheduling.

Optimal completion time:

CR1: 9 weeks

CR2: 5 weeks

CR3: 13 weeks

OPA 1 2 3

AT 1 3 2

USB 1 3 2

In this example, the optimal scheduling results in an average completion

time of 9 weeks, which illustrates the usefulness of the approach.

With respect to these findings, we have demonstrated that a customer

perspective approach minimizes the average completion time of cross functional

CRs. Moreover, the beginning of each Time Box offers a perfect opportunity for

such an alignment of the teams’ CR schedules. With the synergy of these

approaches, a prominent part can be played in reducing lead time. We

therefore strongly suggest that both solutions are adopted by the EMP

customer organization and centralized management unit that can coordinate

the handling order of each team’s CRs

6.7 Software requirements prioritizing

 50

Prioritizing of CRs at Ericsson is done by the CR owner when a CR is

created. The different levels of priorities are ranked in the order “low”,

“medium”, “high” and “critical”. Within these classifications there are no special

order in which CRs are processed. It is usually by “first come - first served”
principle. Ericsson needs to get a more efficient and accurate way of prioritizing

software requirements. This has been highly acknowledged in the literature

(Zave, 1995 ; Davis, 1993). In this perspective, we propose a using technique

called the pair-wise comparison. This technique has been proved to outperform

other prioritizing techniques (Karlsson, 1996). The pair-wise comparison

technique is based on the analytic hierarchy process, AHP (Saaty, 1980). It

requires the line-manager to consider the relative importance of all CRs and to

what extent they differentiate, by comparing them pair-wise. This has several

advantages over designating CRs with absolute priorities.

To make an assessment of the relative importance of two tasks, a scale is

used as shown below. The scale is ranged from 1 to 9 according to how much

more important one task is over another task. If a task is less important, the
inverse value is used. E.g When task A has very strong importance over task

B, then the relative priority is set to 7. Task B however, is very strongly less

important than task A, hence the relative importance of task B over task A is

1/7.

The table below shows the grading of importance using pair wise-

comparison. For instance, intensity of importance 5 means that a requirement

is essentially strongly more important than another.

Intensity of

importance

Definition

1 Equal importance

3 Slight importance of one over another

5 Essential or strong importance

7 Very strong importance

9 Absolute importance

2, 4, 6, 8 Intermediate values between the two adjacent

judgements

When pair-wise comparing all n tasks against each other, their relative

priorities are inserted into a comparison matrix of order n. For all the pairs,

 51

the result is placed in the row and column representing the two tasks

respectively. In the transposed location, the inverse value is inserted. The

diagonal represents a task compared to itself. The result is naturally “Equal

importance“, hence the matrix main diagonal exclusively contains the value 1.

 AAAA BBBB CCCC

AAAA 1 7 4

BBBB 1/7 1 1/3

CCCC 1/4 3 1

Figure1 shows a comparison matrix with three tasks and their relative

importance.

 - Intensity of importance for task A over task B = 7 (very strong)

 - Intensity of importance for task A over task C = 4 (medium strong)

 - Intensity of importance for task C over task B = 3 (slightly more)

When the matrix is completed, the relative priority of each task is

calculated.

6.8 Avoiding bottlenecks

In our in depth study of the problems at EMP, we have identified that the

process lead time is dominated by the testing activity referred as the bottleneck

activity. In this section, we propose two solutions to handle this problem. The

first solution advocates a more balanced allocation of the testing resources. The

second solution is related to the inherent nature of the agile methodology.

6.8.1 Pooling testing resources

When it comes to testing CRs, congestion is one of the main drivers of lead

time at EMP. In fact, only two testers out of 35 are dedicated to test CRs.

However this situation is controversial. In fact, during an interview with the

manager of the customer development team EMP Grimstad he affirmed that

half of the new functionalities introduced into the platform come from change

requests.

 52

This sharp division of testing resources between software release on one side

and testing CRS on the other side has two reasons. The first reason is that at

EMP there is an implicit trend to prioritize testing software release to the

detriment of CR. The second reason is that the engineers may have to go

through mental settings and become less productive if spread across different

tasks, namely software release and testing CRs. The remaining testing

resources are exhausted by software release tests.

As a solution we propose to use pooling as it is useful from a queuing

perspective. The term pooling is used to describe the concept of flexible sharing

of human resources. The resource to be pooled is the testing capacity which is

measured by the number of engineers working as testers (for both software

release and CR testing). The aim is to balance the utilization of the testing

resources between software release and testing CRs proportionally to the

magnitude of effort needed for each of the two activities. If this sense, if the

CRs represent n % of the functionalities to be tested, then the testing team

should consequently dedicate n % of it resources to test these functionalities.

The CR team and the software release can fairly share the testing

resources. Instead of dedicating two persons to test CRs and to prioritize

platform release tests, we render the utilization of the resource more flexible.

Consequently, the testers will have a broader technical responsibility instead of

“being specialized” in either testing software release or CRs.

To apply this in practice, the test department team should upgrade its

allocation of human resources. Periodically, the test department should

estimate the effort needed for testing CRs versus the effort needed for testing

software release. Then resources should be allocated to each of them in a

manner proportional to the magnitude of estimation.

6.8.2 How agile can reduce bottlenecks

The Agile methods build a project environment that is likely to result in

the project maintaining a sustainable pace (Larman; 2003). The Agile methods
explicitly minimize the length of each increment. By keeping the time frame for

each increment very short, the Agile methods help the team maintain a

reasonable level of pressure almost continually. Since goals for each increment

are relatively modest, the pressure is not excessive. Hence, the work that needs

to be finished in that time frame is rarely overwhelming.

 53

The short time frames also result in measurable achievements on a regular

basis delivered in increments to testers. Thus, this sustainable pace of work for

developers also results in a sustainable pace of work for testers.

Testing is generally the project phase that can stretch beyond expectations,

resulting in forced overtime. The Agile method’s small increments mean that
only a limited amount of new functionality is being tested at any one time.

With a limited scope, testing can be more easily managed, and fixing defects is

less likely to become a bottleneck.

The figure below shows that in the Agile methods, testing is not a phase at

the end of the project. Instead, it is an activity that the entire development

team is engaged in throughout the life of the project.

6.9 Iterative defect analysis

Defect logging is a modus operandi at Ericsson. Data defects are stored in

specialized data bases in a systematic fashion as soon as they are discovered.

Nevertheless, defect logging is used at Ericsson only as a quality indicator. No

analysis of defects is performed in order to prevent occurrence of the same

defects in the future. Controversially, a mature software process is concerned

with defects avoidance and reducing defects density.

 In this perspective, Defect prevention is a viable technique that aims at

reducing defects by dealing with their causes. Defect prevention starts from the

premise that if an error has occurred, it will happen again unless something is

done to stop it. A myriad of papers has been published in this context

highlighting the merit of applying defect analysis. Empirical studies reported in

an IBM Systems Journal article (May et al., 1990) concluded. “Reductions in

 54

defects by more than 50% [were] achieved at a cost of about one-half per cent

of the product area’s resources”. Pertinent evidence from case studies that
defects prevention drives down error rate was presented by N. Card (Card,

1993).

Defect prevention has a twofold fruitful impact. First, it ameliorates the

quality by decreasing the number of residual defects. Secondly, it fuels

productivity by significantly saving additional effort spent on correction. This

gives the engineers more time to spend on added value activities.

In practice, the deployment of a defect prevention strategy depends on the

underlying development model (Jalote et al., 2005). For instance, the

deployment varies from the case of a waterfall model to the case of agile

development model. Jalote presents a study (Jalote et al., 2005) where he

integrated Defect prevention into an iterative development model. The lessons

drawn from the current iteration can be utilized in the next iterations. The aim

is to create an adaptive scheme for defect prevention that responds quickly to

defects as soon as they appear.

In our case study, since we advocate Scrum is iterative, we make use of this

concept of defect prevention by moving the leveraging experience to the end of

each Sprint loop. The strategy is to improve the quality and productivity in

future Sprints by making use of the experience drawn from an earlier Sprint.

As far as fine-tuning is concerned, in order to improve the effectiveness of

defect prevention and its pragmatic feasibility, we intend to adapt it to the

characteristics of EMP Customer organization. Instead of applying the

technique at the overall customer organization level as done in the literature,

we propose applying it at the team level. For example, the USB team and AT-

team employ Defect prevention in separate meetings.

To enact this in practice, we propose to form two teams: causal analysis

team and the action team.

• Causal analysis teamCausal analysis teamCausal analysis teamCausal analysis team

A Causal analysis team identifies defects and suggests actions that might

prevent their occurrences. Members of the team should be the actual

developers. The members meet periodically to analyze problems that arise and

to discuss prevention of their recurrence. At the end of each iteration, the

defect data is collected. The analysis of the defect data is performed to deduce

the root causes of the most redundant defects that need special attention.. Root

Cause Analysis (RCA) (Malinaric et. Al., 2000) is a technique appropriate for

identifying the causes and inner mechanisms that lead to costly or risky

problems related to the quality of the delivered products or the efficiency of the

 55

development process. The principle of root cause analysis is to focus on causes

for fault injection. If causes are eliminated, the defects will subsequently

disappear. The goal of RCA is to formulate recommendations to eliminate or

reduce the incidence of the most recurrent and costly errors in subsequent

iterations. Then, design solutions to tackle the root causes to decrease the rate

of defects. The team produces a list of prevention actions and suggest process

improvement guidelines to avoid repeating same type of errors. These

guidelines are forwarded to an action team.

One example of corrective actions is the following: The most frequent faults

can be highlighted and workshops or training sessions are held to teach

programmers how to avoid these faults. The premise of these workshops is that

the programmer can learn faster from his repeated mistakes, and consequently

gain a valuable time and effort by avoiding committing similar errors. In fact,

if the most frequent errors create usually unnecessary rework that can be

avoided if these errors are prevented.

Another example of corrective actions is the following scenario: A review of

specification documents is held to include additional data aiming at covering

the most frequently emerging issues.

• Action teamAction teamAction teamAction team

The action team prioritizes the suggested improvements and ensures their

implementation. The action team needs authority and good communication

skills, so management participation on this team is critical. Management

support is especially helpful when suggested actions cross departmental or

functional boundaries.

In a complex software system, such as EMP platform, developers spend an

extensive amount of time correcting errors. By having a conscious strategy for

preventing errors, the results of fewer errors injected and less necessary rework

entails respectively higher quality and productivity. The main advantage of

Defect Prevention is it low cost and straightforward simple deployment.

However, its results can be spectacular.

6.10 Errors guessing

At Ericsson, determining the cause of an error is mostly a tedious and

frustrating task due to the increasing complexity of the EMP platform. The

EMP customer team consists of many young engineers that do not have much

experience. Therefore, guessing the causes of reported errors can be a

challenging task. This task is proven to be much easier for an experienced

developer who is familiar with tracking down errors (Zapf, 1994a; Zapf, 1994b).

 56

Supporting this, is a statement made during our interviews with one of the

developers at EMP: “I spending one week struggling to find the cause of an
assigned error report, which my experienced colleague helped me to pin-point

in a matter of minutes”. Hence, error guessing is a field that relies on
experience and is best performed by senior developers of a company.

To reduce the lead time of handling error reports, we propose an innovative

approach where Ericsson Grimstad forms an error guessing team consisting of a

majority of senior members. The team’s role is to identify possible causes for
errors. All members of the error guessing team are experts trained on error

diagnostics, able to identify the most common errors. The team meets regularly

to provide first diagnostics of error reports to help developers identify causes

and hereby help them correct it. The diagnostics of error reports contain a

prioritized list of possible causes of the error. This diagnostics are

communicated later to the developers to which the error report (ER) is

assigned. Such a step can save valuable time by directing the developers to the

exact point of interest.

To the best of our knowledge, this solution has not been presented before in

the literature, so we would be pleased to see practitioners at EMP Grimstad

put it into practice.

6.11 Modularization

Long build time is a pertinent problem at Ericsson. To reduce it a

modularization is needed. However, this task can only be done by those

responsible of the modules (Software platform release program). Due to limited

resources, this task can not be deployed in a large scale. In an interview with a

manager responsible of the software release he expressed that they are aware of

this problem however due to limited resources, a corrective action can not be

performed.

The problem mentioned here at Ericsson is akin to a problem reported by

IBM. Under limited resources, IBM has prioritized the modules with high error

rate as a prime candidate for modularization (Kaplan, 1994). This approach

was known as high-risk module analysis. The approach has a twofold fruitful

impact. First, it reduces the build time by breaking down modules into sub

modules. Second, it reduces the error rate by dividing the most error prone

modules. In this perspective, evidences from the literature have shown that

 57

software modularization reduces the fault rate (Card et al., 1985; E.K. Emam et

al. 2002; Kaplan, 1994).

We propose to use high-risk module analysis as a basis for modularization

at EMP platform. According to Kaplan (Kaplan, 1994), the prime activity

before modularization is to classify the modules into three categories; zero risk,

low risk and high risk.

The Zero-risk category is allocated modules that had no errors during the

previous iteration and that still do not have produced any errors.

The low-risk category is allocated modules that had less than average

number of errors in either the previous iteration or after current iteration.
The high-risk category is allocated modules having more than average

number of errors both after previous and current iteration.

High-risk modules are the prime candidates for modularization. High-risk

modules are broken down into smaller modules as studies have shown that

there is a correlation between the size of modules and frequency of errors. They

are redesigned to reduce complexity.

6.12 Relocating testing

Changing the order of tasks in a software development process can have

great benefits on quality and lead-time, and can be realized in most

development processes.

One of the tasks that especially has proven to create benefit in such a

manner is testing. Testing at Ericsson in Grimstad today conforms to the

traditional model of having a team of testers, the System Verification team,

separated from the developers. The developers develop the software modules,

then optionally design and perform module tests before passing the result to

System Verification for final testing. System Verification is responsible for

running old scripts to verify that old requirements still pass the tests, as well as

developing new test scripts to handle new requirements.

When the testers find bugs, they report the defects in Ericsson’s error
tracking system. Before a final product is accepted, it is common that the test-

debug process is repeated several times.

There are at least three disadvantages to this approach; firstly, it makes

quality mainly the responsibility of the testing team, not the development team

that is making the product. Hence, the developers are not as concerned about

quality as they should. Middleton claimed that “by moving responsibility

 58

for measuring quality from the manger to the workers, a much quicker

and more thorough response to defects was obtained“.

Another disadvantage is delay in communication between the teams.

Communicating back and forth in order to resolve an error found by the testing

team is a waste of time and effort.

Thirdly, having iteration loops of running tests and debugging at the end of the

software development process, thereby passing defects back and forth, is

inefficient especially when the location of the defect can be obscure.

We propose a solution where we separate the roles of test developers, those
who design and implement test scripts, and test runners. Because running the
test scripts needs not necessarily be performed by the test script developers, it

can in more extent be run by the software developers. This approach will

decrease the workload for the test developers at Ericsson Grimstad who at the

time being have limited resources, as they will get fewer errors to detect and

report if many of them are already processed by other test runners like the

developers.

Moreover, it is a well known fact within the field of software development

that many defects are introduced by fixing othersTherefore it is of high

importance that they are picked up at an early stage. This will give the

software developers an instant feedback on if their changes have introduced any

errors elsewhere in the system an it can save a lot of time compared to having

to track down the error later.

A second improvement can be gained by simply shifting the implementation

of module test before the implementation of the code. This facilitates an

approach known as “test driven development”, and it can further alleviate
recurrent testing and quality problems. As seen in the figure below, this

approach reduces the lead time.

By starting development with writing test cases before new functionality is

implemented, the developer gets focus on requirements and quality as well as

module design as the developer initially must think about how the code is

designed in order to be tested. In contrast, the opposite order usually makes

the developer design the test in the same flow as he implemented the code,

with the risk of repeating design / logical errors.

The process of Test Driven development is done in small increments where

the developer makes a few test cases, implements the code until all tests run

successfully before doing another increment with next set of functionality.

 59

6.16 Improving communication

Communication plays a decisive role in the efficiency and success of an

organization. A variety of communication methods exists, each having different

characteristics and richness. These attributes refer to the amount of

information transmitted by a certain mode. The natural richness of speech is

why Agile development, among others, advocates the use of “face-to-face”

communication. The two-way communication of “face-to-face” opens for

listeners to test their understanding. Where it is easy to misconstrue written

words, voice adds a significant of clues and information. Additionally, two-way

communication gives an opportunity of raising questions whenever there is need

for clarification. These are the characteristics that make speech much more

valuable than a document.

The use of tools can further enhance communication. In accordance with Agile

practices, Ericsson Grimstad is frequently making use of whiteboards. Drawing

a whiteboard illustration is a simple way of augmenting comprehension. In our

Final programming

 specifications

Coding

Initial programming

specifications

Formal test

Test case

development

External view

document

Initial programming

specifications

Final programming

 specifications

Coding

Formal test

External view

document

Test case

development

Reduced

Cycle

Time

(a) (b)

The waterfall process. (a) before; (b) after

 60

approach, we aim to take advantage of more of the before mentioned strengths

and richness of different communication modes, by proposing tools that can

improve communication at EMP:

6.16.1 Portal

As described in the problems section, one of the most recurring problems at

Ericsson is finding information that at one point has already been passed

among developers. Knowledge that is neither shared outside a small group nor

documented can be lost. It usually requires substantial effort to find by those

trying to acquire it.

As a tool to remedy this, we recommend a portal offering a discussion

board to expand the area within knowledge is shared.

This idea is not new. It has been used since the advent of internet, as

newsgroups and discussion forums. An identical approach on a local scale is

perfect to gather the distributed knowledge and experience of it’s users. The
technical problem is raised on the forum and interested people try to propose

solutions that assist or completely solve the question.

The threshold of making an entry in such a way is much lower as it is

perceived as less informal. Just like e-mail is used today, but with the

advantage that information is persistent and can be reviewed by new parties at

a later stage.

 61

Incidents reported in FIDO (the management system) should have their

own threads so they can be discussed in the portal.

Whenever a developer faces a new problem, he can easily do a search in the

database to see if the same problems have been solved before.

Many projects are of collaborate nature that require communication across

departments. To facilitate getting in contact with the right persons, every

employee should have a profile on the portal describing their experience,

expertise, what project they are currently working on and scope of

responsibility in addition to the usual personal data and photo.

 62

6.16.2 Video conference

During our work at EMP we got to participate in a telephone conference

meeting with a remote development site in Lund, Sweden. The two sites are

both working on components used by the mobile platform, and therefore

require a lot of coordination. Some of the meeting activities also require

participants to travel to Lund as the limitations of telephone conference make

it impractical as a real alternative.

The meeting was conducted by a group of employees from Grimstad who in

advance had scheduled a voice conference with colleagues from the research

and development departments in Lund. Prior to the meeting, microphones and

loudspeakers are placed on the conference table.

We noticed that communication during telephone conference was noticeably

inhibited compared to real-life meetings as it is missing the visual part that is

so often used in non-virtual situations.

The setting may in some settings be perceived as uncomfortable as each

side is unaware of all non-audible actions on the other location. In addition, the

impression is enhanced by poor sound levels.

We recommend that EMP accommodates more use of virtual meetings as a

mean of communication between sites. IBM has done a study (Kaplan, 1994)

where they made use of video-conference at time when the technology was still

immature and costly. The study found that just like in a real-life “face-to-face”
conversation, video conferencing is more effective as it gives more information

than a phone conference due to the added richness of body language.

Taking video conferencing one step further can be supplementing the video

with a projection of a common computer screen on the wall. Illustrations can

easily be added to augment communications and make comprehension rise

considerably as well as act like thought-holders during the conversation. When

key-persons attend such a meeting, real-time decisions and documentation can

be made. Using a group computer with access to the common codebase and

developer tools, even code changes can be done real-time. As the results are

validated by all participants, quality is increased and the risk of failure to

communicate is eliminated.

 63

7 Experiment

The aim of the experiment is not to verify our ability to practice our technical

skills in programming. Rather than this, the paramount objective is to assess

the approaches we have proposed to verify their impact on the software

development lead time. Consequently, we will not include all the low-level

details of the technical solution, like the source code. This would by any matter

not be disclosed due to our confidentiality agreement with Ericsson.

We will present the experiment in a qualitative- rather than quantitative

approach.

7.1 Background

Mobile phone equipment is getting more and more complex, incorporating

an increasingly number of functionalities. Mobile phones are becoming more

and more sophisticated with advanced operating systems.

 This development is posing key challenges for the developers. Users expect

the mobile phone to have the processing power of a small computer, while still

having the battery consumption of a calculator.

The technology of energy storage is not yet mature enough to support the

increasing demand of processing power. Therefore, such a situation places an

additional burden upon the software and hardware developers who need to

optimize power consumption to the highest possible extent.

Consequently, Ericsson is dedicated to pursue every opportunity of reducing

power consumption. A number of CRs filed in the incident management system

are targeting power management.

7.2 Change Request Specification

The CR we have implemented originates from the need of further reducing

power consumption when putting a mobile PC-card’s USB-bus into suspend
mode. Previous implementations of the platform have complied with the USB

2.0 specification (USB.org, 2002) which states that “all devices must support

the Suspend state”. However, in this state the standard only specifies how
much suspend-current a device can draw from the bus itself. It is still up to the

device to manage its internal power consumption. The consumption can be

reduced by managing the power of the on-board hardware USB-block and

transceiver. To facilitate this, the EMP hardware developers have made an

 64

upgrade to the Application Specific Integrated Circuit (ASIC). The upgrade

makes it possible to control the USB transceiver power modes through

software. The purpose of the CR is to implement the software part that

interfaces the power management hardware.

7.3 Technical environment

Ericsson Customer Development Team are the developers of key modules

for the mobile platform software. The technical environment created to perform

this task, consists of the SDK tools (compiler, linker, builder (SDE) etc), a code

management system (CME) and the platform assistant, which is the software

to sign and flash the mobile device with the software product. To support the

process, there are additional tools like software debug simulator and hardware

debugging, an incident manager (FIDO) where all change requests and error

request are filed, and a document repository system.

 65

7.3.1 Incident report and status tracking tool

The tool is used to track reports originating both from customers and EMP

internally. Incident reports (IR) are kept in the system together with the

people or groups that are involved in their investigation. The tool is used by a

variety of people within EMP (and also external customers), e.g. developers

and managers to report and check the status of tasks.

7.3.2 Source code management system

The source code management system at Ericsson is based on IBM’s Clear Case,
a software tool for revision control. It utilizes its own interface adapted to the

development processes at Ericsson. The source code management system is the

entry point when starting on a task. It is used to create a configuration with

the targeted module, and its belonging source files. From here the developer

can start the compiler.

7.3.3 Source code editor

Eclipse is an Integrated Development Environment (IDE). It includes a

source code editor and a number of useful tools to edit source code. EMP’s
build environment SDE is included through plug-ins.

7.3.4 Platform Assistant

Platform Assistant is tool used to access mobile phone hardware. The tool

enables the developer to connect to prototype phones through USB or RS232.

Once the platform software is built from Eclipse, Platform assistant is used to

sign and transfer the binary files into the phone Flash memory.

7.4 Applied solutions

We intend to include a selection of our recommended approaches when

implementing this CR to validate their efficiency. The choice of solutions is

 66

affected by the nature of the CR. As the CR is a challenge technically, but

does not cover a large scope with regards to management, this singles out the

following approaches that we will include:

• Sprint – an agile approach

• Communication

• Simplification

• Error guessing

• Relocating testing

7.4.1 Sprint

The Scrum Agile development process is a software development

methodology that aims at achieving short lead times. Scrum, is an example of

tight process which maintains a high pace of productivity through successive

delivery in short time boxes. The beauty of Sprint is that it makes use of Time

boxing to increase the productivity of the team by imposing fine short time

deadlines. In fact, we applied this principle dividing the CR into three main

increments. We fixed a time box of one week to finish every increment as in the

following plan.

1st week: Implement design and source code

2nd week: Adapt platform framework to accept parameters

3rd week: Modify build files, integrate in product.

Defining fine deadlines for each increment was shown to be useful. In fact.

In the end of the second week we were late. So, we decided to work overtime

and get the functionality achieved as close as possible to the schedule. By

keeping the time frame for each increment very short, we maintained a

reasonable level of pressure almost continually. This ended up with the

completion of the development of the CR in the end of the third week.

7.4.2 Communication

Agile development in general emphasises the use of face to face

communication. To gain insights into the development activities, we held daily

sprint-interactions with the technical staff involved in USB and power

consumption issues. This interaction played the same role in the process as

sprint daily meeting. Obviously, communication is directly measurable to lead

time. However, we felt that this was very time saving by getting core

 67

information and avoiding wasting much time on irrelevant documents entailing

extensive details.

In accordance fulfil the premises if our solution, we gathered a list of key

persons in advance. During implementation we did not need to waste time to

get to the correct person, thus saving a lot of time.

7.4.3 Error guessing

We made an error by calling the suspend function using wrong parameters.

We spent two days looking for the error because the test failed. Then we decide

to consult an experienced developer. He pointed out possible cause of error by

saying that you might have called wrongly the suspend function or you

modified wrongly the file containing the configuration of the USB module.

Based on these two recommendations, we identified the source of error in the

next minutes after we talked to him. In fact, we made a wrong parameter call

of the function suspend.

Here we underline that the solution of introducing a team for guessing

errors can be very useful to reduce the time spent in tracking errors.

7.4.4 Simplification

Code review, with the aim of aligning the code to the Ericsson standard

style is a usually time consuming activity that is done in loops.

In the section solutions, we proposed real time reviewing of code review as a

viable solution to avoid loops and back and forth between the reviewer and the

developer. We implemented the strategy as defined in the solution. In fact,

while one of us was implementing the code, the other spent some time to learn

the Ericsson code style in details.

The code review was held in the end of the development as real time

review. This significantly reduces the overhead of multiple iterations.

7.4.5 Relocating testing

The use of relocated testing as described in our solutions, gave us a goal

oriented focus. As soon as the implementation design was finished, one of us

wrote a test while the other implemented the code.

The test checked if the power-saving bit in the register was correct at all

phases of suspend-resume operations. The goal of the implementation was to

 68

pass this test. This way, we saved the time of having to design and perform the

test in retrospect of implementing code.

7.5 Conclusion

The results are not conclusive as comparisons are impossible with just one

sample. In fact, to verify our findings we should enact our proposed approach

at a higher level that encompasses management processes, sampling change

requests in a larger scale. This is why we could not apply more of the solutions

within the limited scope of the current setting.

Not enough resources to perform a larger CR as it demands the

involvement of an entire software development team. However, the results seem

to be promising. Despite we are students and thereby novices to the software

architecture used at Ericsson Mobile Platforms, we have achieved a notable

gain in performance with regards to development lead time.

By applying more of the proposed solutions on the management level we

are confident that we would be able to utilize more of the potential benefits

they offer. This experiment by itself is not enough to conclude statistically

significance, but implies that our approach should be run in a larger scale pilot

project to be confirmed.

 69

8 Discussion

In the current study we have addressed the problem of improving the

software process at EMP customer organization in Grimstad. More specifically,

we have investigated the question of how to reduce the lead time without

jeopardizing the quality.

To proceed, we adopted a bottom-up approach. The premise of such

approach, when applied to Software Process Improvement, is that we first

should understand the existing problems before improving the process.

Specifically, when mapped to our research, this meant first identifying the main

drivers of lead time, before creating solutions to alleviate them. This approach

is known as the problem driven approach within the area of Software Process

Improvement. It allowed us to target specific problems within the process. An

alternative solution was the norm driven approach, which is a strategy to adopt

best-practice approaches presuming this will alleviate any problems. We did

not use this as it implies that specific problems are never pin-pointed.

Being aware that the technical staff knows best the characteristics of the

company, our research relied on interviews to support the literature study. In

addition, we considered quantitative data collected from errors reports, change

requests and similar statistics.

Our work to reduce the lead time initially resulted in the identification of 8

specific problems. We classified them as the main drivers of lead time when

handling Change Requests at EMP. Our further work resulted in an extensive

list of solutions that together address the problem in all aspects. It is a study of

the relationship between Change Requests and lead time which attacks the

problem in a way that has not been previously presented in the literature.

In the beginning of the project, we investigated the possibility of reducing

lead time on the lowest level by removing overhead within the specific

development tasks. Our findings showed that the EMP already had put a lot of

effort into removing overhead. Nevertheless, as described in the solutions

section, we have successfully identified some areas where the work tasks of the

developers can be done more efficiently. We could have pursued this path even

further. However when moving on with the project, literature study showed

that the significant improvements within software development reside in the

utilization of development methodologies. We closely examined these to

support our approaches on reducing lead time. Subsequently, many of our

recommended solutions are based on actions taken on a higher management

level.

 70

The experiment could have had a larger scope to validate the evidences we

have presented from literature. However, putting the higher management level

solutions into action could not be done within the time span of our project.

They require the involvement of resources from management, multiple

developers and other development departments. Resources that are already

scarce since Ericsson have been facing an upcoming platform release. In

addition, a simple Change Request can take months to complete.

Also, we have an extensive list of solutions. The solutions can not be

adopted all at once as it would be impossible to differentiate which solution has

the most effect.

As a future work, we propose a migration phase that would involve two

phases:

-Introduction within one selected project: The best migration approach for

EMP would be to initiate pilot projects utilizing a limited number of solutions

at the time and collecting metrics during progress.

-Deployment and widespread adoption: Successful completion of the pilot

test phase means the organization is ready to use the new method.

The success of these phases involves the participation of an expert group in

Software Process Improvement deployment, tracking and planning. This group

will be the driving force to direct the deployment of the migration activities

and guide them with the cooperation of the Ericsson management. Depending

on the results of the pilot project, the expert group has to define and agree, in

cooperation with the affected middle management, a detailed deployment plan

for the improvement actions deciding which improvements will be applied

thoroughly, which improvements will be applied partially in specific software

areas or in specific software teams and which improvements are not ready to be

applied and have to be studied more.

In parallel to the definition of the deployment plan, a training plan for the

developers impacted by the new methodologies has to be defined.

 71

9 Conclusion

In this study, we investigated the problem of shortening the lead time of

handling customer requests at EMP Grimstad. Deficiencies were first identified

and an extensive set of solutions was proposed. A comprehensive experiment

was conducted, and the results are promising. As future work, we propose to

derive a general model of handling customer requests based on our results.

Such a model can fill the void in the domain of improving the software process

of handling customer change requests.

 72

10 References

AAAA

Aaen, I., P. Bøttcher, et al. (1998). The Software Factory: Contributions
and Illusions. 6th European Conference on Information Systems (ECIS),

Aix en Provence, France

Aaen, I., Arendt, J., Mathiassen, L., & Ngwenyama, O., 2001. A conceptual

MAP of software process improvement. Scandinavian Journal of

Information Systems, 13.

Ahern, D. M., A. Clouse, et al. (2001). CMMI Distilled: An Introduction to

Multi-discipline Process Improvement. Addison Wesley.

Ahuja, M.J., Carley, K.M. 1998. “Network Structure in Virtual

Organizations”, Journal of Computer Mediated Communication, 3, 4.

Available at: http://www.ascusc.org/)

Alec Dorling, “Software Process Improvement and Capability

determination,” Software Quality Journal, Vol. 2, No. 4, December 1993,
pp. 209-224.

Ashok Dandekar and Dewayne E. Perry. ‘‘Barriers to Effective Process

Architecture’’, Software Process: Improvement & Practice 2:1 (March

1996). pp 13-20.

Ashok Dandekar, Dewayne E. Perry, Lawrence G. Votta: Studies in process

simplification. Software Process: Improvement and Practice 3(2): 87-104

(1997)

Arent, J., & Nørbjerg, J. (2000). Software process improvement as

organisational knowledge creation—a multiple case analysis. Proceedings of

the 33rd Hawaii international conference on system sciences. Hawaii:

Wailea.

 73

BBBB

Bach, J. (1994). “The Immaturity of the CMM.” American Programmer
7(9): 13-18.

Balcerak K.J. , B.G. Dale, Engineering change administration: the key

issues, Computer-Integrated Manufacturing Systems 5 (2) (1992) 125-132.

Basili, V., Caldiera, G., & Rombach, H. D. (1994a). The experience factory.

Encyclopedia of software engineering—2 Volume Set. New York: Wiley.

Basili, V., Caldiera, G., & Rombach, H. D. (1994b). The goal question

metric approach. Encyclopedia of software engineering—2 volume set. New

York: Wiley p. 528–532.

Basili, V., Caldiera, G. (1995). Technical Report: CS-TR-3483, UMIACS-

TR-95-67, Univeristy of Maryland, College Park, MD 20742, USA.

Bhuiyan Nadia; Gregory Gatard; Vince Thomson Engineering change

request management in a new product development process, European

Journal of Innovation Management, Volume 9, Number 1, 2006 , pp. 5-

19(15)

Boehm, B.W. (1984), Software Engineering Economics, IEEE Trans. On

Software Engineering, 10(1), pp. 4-12.

Boehm, B.W. (1988), A Spiral Model for Software Development and

Enhancement, IEEE Computer, 21(5), May, pp.61-72.

Boehm, B. and P. Bose (1994), A Collaborative Spiral Software process

Model based on Theory W, Proc. 3rd International Conference on the

Software Process, IEEE Computer Society Press, Reston, VA, October,

pp.59-68.

Bollinger, T. B. and C. McGowan (1991). “A critical look at software

capability evaluations.” IEEE Software 8 (4): 25-41.

Byrnes P, Philips M. 1996. Software Capability Evaluation Version 3:

Method Description. SEI Technical Report CMU/SEI-96-TR-002.

 74

CCCC

Card, D.N.; Page G.T.; McGarry, F.E.: Criteria for Software

Modularization. Proceedings of the 8th International Confenrence on

Software Engineering, August 28-30, London, 1985, pp. 372-377

Card D.N., Defect-causal analysis drives down error rates, IEEE Software

15 (1993) (1), pp. 88–89.

Cattaneo F., A. Fuggetta, and D. Sciuto, “Pursuing coherence in software

process assessment and improvement”, CEFRIEL, Milano, Technical Report

September 1998.

Curtis, B., Krasner, H., Iscoe, N. 1988. “A field study of the software design

process for large systems”, Communications of the ACM, 31, 11, pp. 1268-

1287.

Cusumano, M. A. (1989). “The Software Factory: A Historical

Interpretation.” IEEE Software.

Curtis, B., H. Krasner, V.Y. Shen, and N. Iscoe (1987), On Building

Software Process Models under the Lamppost, Proc. 9th International

Conference on Software Engineering, IEEE Computer Society Press,

Monterey, CA., pp. 96-103.

Curtis, B., Krasner, H., Iscoe, N. 1988. “A field study of the software design

process for large systems”,
Communications of the ACM, 31, 11, pp. 1268-1287.

DDDD

Dalcher D., Benediktsson O., and Thorbergsson H., “Development Life

Cycle Management: A Multiproject Experiment”, Proceedings of the 12th
International Conference and Workshops on the Engineering of Computer-

Based Systems (ECBS’05), 2005.

Davis, A. M. (1993). “Software Requirements: Objects, Functions and

States”. Prentice-Hall International, Inc., Englewood Cliffs, New Jersey.

 75

David H. Kitson, “An Emerging International Standard for Software

Process Assessment,” Proceedings of the Third IEEE International Software
Engineering Standards Symposium and Forum, Walnut Creek, CA, 1-6

June 1997, pp. 83-90.

David C. Carr, Ashok Dandekar, and Dewayne E. Perry. ‘‘Experiments in

Process Interface Descriptions, Visualizations and Analysis’’, Software

Process Technology — 4th European Workshop, EWSPT’95 Wilhelm

Schaefer, ed. Lecture Notes in Computer Science, 913, Springer-Verlag,

1995. pp 119 - 137.

Dewayne E. Perry. ‘‘Issues in Process Architecture’’, Proceedings of the 9th

International Software Process Workshop — The Role of Humans in the

Process, October 1994, Airlie VA. IEEE Computer Society Press. pp 138 -

140.

Dean Leffingwell, Scaling Software Agility: Best Practices for Large

Enterprises, Addison Wesley

Dunaway DK, Masters S. 1996. CMMSM-based appraisal for internal

process improvement (CBA IPI): Method description. SEI Technical Report

CMU/SEI-96-TR-007.

EEEE

Emam E.K., S. Benlarbi, N. Goel, W. Melo, H. Lounis and S.N. Rai, The

optimal class size for object-oriented software. IEEE Transactions on

Software Engineering (2002), pp. 494–509.

FFFF

Fenton N., Software metrics: A rigorous approach, Chapman and Hall.

1991.

GGGG

Gilb, T. (1988), Principles of Software Engineering Management, Addison-

Wesley, Reading, MA.

 76

GMOD (1992), V-Model: Software Lifecycle Process Model, General Report

No. 250, German Ministry of Defense.

Grady, Practical Software Metrics for Project Management and Process

Improvement, Prentice-Hall, Englewood Cliffs, N.J., 1992.

Gustavsson, A. (1989), Maintaining the Evaluation of Software Objects in

an Integrated Environment, Proc. 2nd International Workshop on Software

Configuration Management, ACM, Princeton, NJ, October, pp.114-117.

HHHH

Hansen B., J. Rose, et al. . Prescription, Description, Reflection: The Shape

of the Software Process Improvement Field. International Journal of

Information Management

Harrington, H.J. 1991. Business Process Improvement.; McGraw Hill, New

York.

Hersleb J.D., Grinter, R.E. 1999. “Architectures, Coordination, and

Distance: Conway’s Law and Beyond”, IEEE Software, September/October,
pp. 63-70.

Hersleb J.D., Grinter, R.E. 1999. “Architectures, Coordination, and

Distance: Conway’s Law and Beyond”, IEEE Software, September/October,
pp. 63-70.

IIII

Ilieva S., Ivanov P., and Stefanova E., “Analyses of an agile methodology

implementation,” Proceedings 30th Euromicro Conference, 2004, IEEE
Computer Society Press, pp. 326-333.

Imai, M., Kaizen, The key to Japan’s Competitive success, Random house,
New York, 1986.

 77

Iversen, J., Nielsen, P. A., & Nørbjerg, J. (1999). Situated assessment of
problems in software development. The DATABASE for advances in

information systems, 30(2).

JJJJ

Jalote, P., Agrawal, N. 2005. Using defect analysis feedback for improving

quality and productivity in iterative software development, in: Proceedings

of the Information Science and Communications Technology (ICICT 2005),

pp. 701-713.

Jarzombek S., Proc. Joint Aerospace Weapons Systems Support, Sensors

and Simulation Symp., Gov’t Printing Office Press, 1999.

Jones, T.C., 1994. Assessment and Control of Software Risks. Prentice Hall,

NY.

Jorma Taramaa, Munish Khurana, Pasi Kuvaja, Jari Lehtonen, Markku

Oivo, Veikko Seppänen: Product-Based Software Process Improvement for
Embedded Systems. EUROMICRO 1998: 20905-20912

Jussi Ronkainen, Jorma Taramaa, Arto Savuoja: Characteristics of Process

Improvement of Hardware-Related SW. PROFES 2002: 247-257

KKKK

Kaplan, Craig, Ralph Clark, and Victor Tang. Secrets of Software Quality,

40 Innovations From IBM. McGraw Hill, 1994.

Konrad, M., M. B. Chrissis, et al. (1996). “Capability Maturity Modeling at

the SEI.” Software Process - Improvement and Practice 2 (1): 21-34.

Karlsson, Joachim, “Software Requirements Prioritizing” - SoftLab ab 1996

 Kraut, R.E., Streeter, L.A. 1995. “Coordination in Software Development”,
Communications of the ACM, 38, 3, pp. 69-81.

Kraut, R.E., Streeter, L.A. 1995. “Coordination in Software Development”,
Communications of the ACM, 38, 3, pp. 69-81.

 78

L

Larman C., Agile and Iterative Development: A Manager’s Guide ,
Addison-Wesley, 2003

Layman L., Williams L., and Cunningham L., “Exploring extreme

programming in context: an industrial case study”, Agile Development
Conference, 2004.

Lehman, M.M. (1985), Program Evolution: Processes of Software Change,

Academic Press, London.

M

Malinaric D., R. Hoffmeistern, and C. Sun, “Case Study for Root Cause

Analysis of Yield Problems,” Proc. IEEE/SEMI Advanced Semiconductor

Manufacturing Conf. and Workshop (ASMC 00), IEEE Press, 2000, pp. 8-

13.

Mandal J.K.; Sinha A.K.; Wright I.C.1 A review of research into

engineering change management: implications for product design, Design

Studies, Volume 18, Number 1, January 1997 , pp. 33-42(10)

Mann C. and Maurer F., “A Case Study on the Impact of Scrum on

Overtime and Customer Satisfaction”, Agile Development Conference, 2005.

Matsumoto, Y. (1981). SWB System: A Software Factory. North-

Holland,Amsterdam.

Matsumoto, Y. (1987). A Software Factory: An Overall Approach to

Software Production. IEEE.

 79

Mays R.G., C.L. Jones, G.J. Holloway, D.P. Studinski, “Experiences with

Defect Prevention”, IBM Systems Journal, Vol 29, No. 1, 1990

McDermid, J.A. ed. (1991), Software Engineer’s Reference Book,

Butterworth-Heinemann Ltd., Oxford, UK. Meek, B.L. (1991), Early High-

Level Languages

McFeely R. 1996. IDEALSM: A User’s Guide for Software Process
Improvement. SEI Handbook CMU/SEI-96-HB-001, February.

Mills, H.D., M. Dyer, and R.C. Linger (1987), Clean room Software

Engineering, IEEE Software, 4(5), Sept., pp.19-25.

O

Ohlsson, N. and Alberg, H. 1996. Predicting fault-prone software modules

in telephone switches, IEEE Transactions on Software Engineering 22(12):

886–894.

P

Parnas, D.L. (1979), Design Software for Ease of Extension and

Contraction, IEEE Trans. Software Engineering, 5(3), March, pp. 128-138.

Palmer, J.W., Speier, C., 1998. “Teams: Virtualness and Media Choice”,
Procs. of the 31rd Hawaii Int.

Palmer, J.W., Speier, C., 1998. “Teams: Virtualness and Media Choice”,
Procs. of the 31rd Hawaii Int. Conference on System Sciences.

Pentti Marttiin, Jari A. Lehto, Göte Nyman: Understanding and

Evaluating Collaborative Work in Multi-site Software Projects - A

Framework and Preliminary Results. HICSS 2002: 23

Paulk MC, Curtis B, Chrissis MB, Weber CV. 1993. Capability Maturity

Model for Software, Version 1.1. Pressman, R.S. (1992), Software

 80

Engineering: A Practitioner’s Approach, 3rd ed., McGraw-Hill International

Editions, New York.

Peter Schuh, Integrating Agile Development in the Real World, Publisher:

Charles River Media

Poppendieck M. and Poppendieck T., Lean Software Development - An

Agile Toolkit for Software Development Managers. Boston: Addison-

Wesley, 2003, ISBN 0-321-15078-3

Pressman, R.S., 2001. Software Engineering: A Practitioner’s Approach.
McGraw-Hill, NY

Pulford, K., A. Kuntzmann-Combelles, et al. (1992). A Quantitative

Approach to Software Management: The ami Handbook. CSSE South Bank

University, London.

R

Reifer, D. J. (2002). “The CMMI: it’s formidable.” The journal of Systems

and Software 50.: 97-98. Guest editor’s corner.

Royce, W.W. (1970), Managing the Development of Large Software

Systems: Concepts and Techniques, Proc. WESCON, August, USA.

S

Schwaber, K., and M. Beedle, Agile Software Development with Scrum,

Upper Saddle River, NJ: Prentice-Hall, 2002

Shapiro B.P., V.K. Rangan, and J.J. Sviokla, Staple yourself to an order,

Harvard Business Rev 70(4) (1992), 113–121.

Stelzer D. , W. Mellis, and G. Herzwurm, “Software Process Improvement

via ISO 9000? Results of Two Surveys Among European Software Houses,”
Software Process: Improvement and Practice, Vol. 2, Issue 3, September

1996, pp. 197-210

 81

T

Takeuchi, H., and I. Nonaka, “The New Product Development Game,“
Harvard Business Review, January 1986

Tanaka T., Sakamoto K., Kusumoto S., Matsumoto K., and Kikuno T.,

Improvement of Software Process by Process Description and Benefit

Estimation, Proceedings of the 17th International Conference on Software

Engineering, ACM, 1995, pp. 123-132

Terwiesch, C., Loch, C.H. (1999), “Managing the process of engineering

change orders: the case of the climate control system in automobile

development”, Journal of Product Innovation Management, Vol. 16 No.2,

pp.160-72.

Tore Dybå, Torgeir Dingsøyr, “Empirical Studies of Agile Software

Development: A Systematic Review”, Information and Software Technology
(2008)

U

(USB.org, 2002) Universal Serial Bus Specification Revision 2.0 - Compaq

Computer Corporation, Hewlett-Packard Company, Intel Corporation,

Lucent Technologies Inc, Microsoft Corporation, NEC Corporation,

Koninklijke Philips Electronics N.V.

V

Vanhanen, J, Kähkönen, T. & Jartti, J. Practical Experiences of Agility in
the Telecom Industry. XP 2003, May 25-29, 2003, Genova, Italy.

Virpi Taipale, Jorma Taramaa: Process Improvement Solution for Co-

design in Radio Base Station DSP SW. PROFES 2005: 16-28

W

 Watts F., Engineering changes: a case study, Production and Inventory

Management Journal 25 (Part 4) (1984) 55-62.

 82

Z

Zapf, D., & Reason, J.T. (1994a). Human Errors and Error Handling.

Applied Psychology: An International Review, 43, 427-432.

Zapf, D., Maier, G.W., Rappensperger, G., & Irmer, C. (1994b). Error

detection, task characteristics, and some consequences for software design.

Applied Psychology: An International Review, 43, 499-520.

W

Westland, J. Christopher - The cost of errors in software

development: evidence from industry, Journal of Systems and Software,

Volume 62, Issue 1 (May 2002)

Wong C., “A Successful Software Development,” IEEE Trans. Software
Eng., no. 3, 1984, pp. 714-727.

