
Playing Axis & Allies Revised Using
Learning Automata

by

Gjermund Karlsen Lie

Thesis submitted in Partial Ful�llment of the

Requirements for the Degree Master of Technology in

Information and Communication Technology

Faculty of Engineering and Science

University of Agder

Grimstad, May 2009

Abstract

Abstract

The Arti�cial Intelligence (AI) of opponents in computer games in general, and
in strategy games in particular, have been plagued with performance problems
of many kinds since they �rst appeared. Not the least of these problems is the
fact that their design schemes often base themselves on prede�ned ways to play
the game, making these opponents predictable and dull to a seasoned player.

In this thesis, we propose using Learning Automata (LA) to create opponents
that are able to adapt to any game situation and �nd a good response, much in
the way a player would - by looking ahead in time to see what could happen in
the game beyond the immediate next move.

As a suitable environment for these LA, we have chosen the game Axis &
Allies Revised. A turn-based war game emulating the second world war, it has
many layers of complexity for the LA to struggle with - multiple moves per turn,
random outcome of combat, and highly complex rules. To play this game well,
the arti�cial opponent would need not only coordinate all his units into the best
combined move each turn, but also to avoid performing moves in the present
that it would be punished for during the next turns.

To solve these problems, we propose a two-step solution: First, each unit
will be assigned its own, independent LA. Secondly, for each possible action
that this unit can select in the next immediate turn, another independent LA
will be assigned. This process can then be repeated until a su�cient depth into
future moves has been achieved. Each tier of LA in this structure will receive
its feedback not from its immediate surroundings - but from the status of the
next LA down the tree.

In this thesis we lay the foundation for such a solution by implementing
the method on a smaller scale, and by carefully testing its performance in a
controlled environment. We �nd which approaches give the best results, which
can only perform under certain conditions, and which are suitable for expanding
into larger scale.

The three types of LA chosen for our testing covers most schools of reinforce-
ment learning. The Tsetlin Automata, with its simple, state based structure.
The Linear Reward Inaction Automata, with its linear updating scheme. And
�nally the Bayesian Learning Automata, shaping conjugate distributions in or-
der to determine the optimal action. Each have their own unique strengths and
weaknesses, which are recorded in this thesis.

Through thorough testing and careful tuning of these automata, we conclude
that while LA may in fact have the potential to perform well in almost any type
of scenario, it would still be impractical considering the time spent on deciding
on a move. While the speed of decision making of our LA vary, so does its
performance, even in our small scale testing.

Nevertheless, we believe that our results should give some insight into the
possibilities and bene�ts, both in performance and design simplicity, of using
LA as the decision maker for arti�cial players.

2

Preface

Preface

This master thesis is submitted in partial ful�llment of the requirements for the
degree Master of Science in Information and Communications Technology at the
University of Agder, Faculty of Engineering and Science.

The project was given, supported and supervised by associate professor Ole-
Christo�er Granmo at the University of Agder, Norway.

I would like to thank my supervisor, Ole-Christo�er Granmo, for his con-
stant feedback, good advice and encouragement during the long months of this
project. Giving solid advice both on the subject and on thesis writing in general,
this project would never have reached the state in which it is today without his
help.

Grimstad, May 2009
Gjermund Karlsen Lie

3

CONTENTS CONTENTS

Contents

Abstract 2

Preface 3

Table of Contents 5

List of Figures 6

List of Tables 7

List of Algorithms 7

1 Introduction 8

1.1 Motivation . 8
1.2 Background . 9

1.2.1 Turn-based strategy games 9
1.2.2 Axis & Allies Revised . 10
1.2.3 Arti�cial Intelligence in strategy games 12
1.2.4 Learning Automata . 15

1.3 Research Questions . 16
1.3.1 Main Question . 16
1.3.2 Sub-Questions . 16

1.4 Report Outline . 17

2 Methodology 18

2.1 Decentralized Learning Automata 18
2.2 Multi-Tiered Learning Automata 18
2.3 Various types of Learning Automata 21

2.3.1 Tsetlin Automata . 21
2.3.2 Linear Reward Inaction Automata 23
2.3.3 Bayesian Learning Automata 24

3 Implementation 27

3.1 The Simulation Engine . 27
3.2 The Learning Algorithms . 32

3.2.1 Tsetlin Automata . 32
3.2.2 Linear Reward Inaction Automata 33
3.2.3 Bayesian Learning Automata 34

4 Experiments 36

4.1 Introduction . 36
4.2 About Scenario Analysis . 37
4.3 Scenario 1: Simple test map . 38

4.3.1 Scenario Analysis . 39
4.3.2 Both infantry defend, tank attacks 39

4

CONTENTS CONTENTS

4.3.3 Infantry splits up, tank attacks 40
4.3.4 Both infantry attack . 41
4.3.5 One infantry attack alone 42
4.3.6 Summary . 42

4.4 Scenario 2: Rushing to the defense 43
4.4.1 Scenario Analysis . 44
4.4.2 Two infantry defending 45
4.4.3 Three infantry defending 45
4.4.4 Three infantry attacking 46
4.4.5 Summary . 47

4.5 Scenario 3: Reacting to opportunity 47
4.5.1 Scenario analysis . 48
4.5.2 Attacking during the �rst turn 49
4.5.3 Attacking after opponent move 49
4.5.4 Summary . 50

5 Results 51

5.1 Scenario 1 . 51
5.2 Scenario 2 . 56
5.3 Scenario 3 . 58

6 Summary 61

6.1 Conclusion . 61
6.2 Further work . 63

5

LIST OF FIGURES LIST OF FIGURES

List of Figures

1 Multi-Tiered, Decentralized Automata 20
2 Simple Tsetlin automata . 22
3 Multiple-Choice Tsetlin automata 22
4 LRI - Distribution of chance between choices 23
5 Combat calculation example . 37
6 Scenario 1 - Simple test map . 38
7 1 Tank attacking 2 Infantry . 39
8 1 Tank attacking 1 Infantry . 40
9 2 Infantry attacking 1 Tank . 41
10 1 Infantry attacking 1 Tank . 42
11 Scenario 2 - Rushing to the defense 43
12 2 Tanks attacking 2 Infantry . 45
13 2 Tanks attacking 3 Infantry . 45
14 3 Infantry attacking 2 Tanks . 46
15 Scenario 3 - Reacting to opportunity 47
16 Attacking during the �rst turn 49
17 Attacking after opponent move 49
18 Results - Scenario 1 - Tsetlin - Graphical representation 52
19 Results - Scenario 1 - LRI - Graphical representation 53
20 Results - Scenario 1 - BLA - Graphical representation 54
21 Results - Scenario 2 - Graphic representation 57
22 Results - Scenario 3 - Graphic representation 59

6

LIST OF TABLES LIST OF ALGORITHMS

List of Tables

1 Basic Unit Properties . 36
2 Scenario 1 - Average point gain by move choice 43
3 Scenario 2 - Average point gain by move choice 47
4 Scenario 3 - Average point gains by move choice 50
5 Scenario 2 - Required amount of simulation runs and time con-

sumption . 56
6 Scenario 3 - Required amount of simulation runs and time con-

sumption . 58

List of Algorithms

1 Main simulator loop . 29
2 Combat simulation . 31
3 Tsetlin Automata - Update method 33
4 LRI Automata - Update method 34
5 LRI Automata - Selection of action 34
6 BLA - Update method . 35
7 BLA - Selection of action . 35

7

1 INTRODUCTION

1 Introduction

The �eld of machine learning has seen many applications over the years, but it
has not yet been thoroughly tested in one of the major �elds of Arti�cial Intelli-
gence (AI) research: Automated opponents for games. While many approaches
to game AI have been tried with varying success, we believe that machine learn-
ing can be used to create not only good opponents, but also opponents that are
interesting and unpredictable to play against. As our game of choice for this
project we have chosen Axis & Allies Revised (A&AR), a complex turn-based
wargame emulating the second world war, that will give us all the challenge we
need for our arti�cial player.

This chapter will go over the background of AI for computer games, turn-
based games in general and A&AR in particular. We will also look at previous
work in this �eld, both similar and completely di�erent approaches, to demon-
strate why more research on using machine learning in game AI could be a
bene�t to the �eld as a whole.

1.1 Motivation

The most common approaches to AI in computer games involves some kind
of prede�ned actions. Some follow a set of prede�ned, static procedures, like a
strategy-game AI gathering up a set amount of units of a particular combination
before attacking, or a racing game AI which always goes for a calculated optimal
turn in the track. Others have a set of equally prede�ned responses to expected
player actions, like the strategy-game AI that will build response units based
on what units its opponent brings to the battle�eld.

For players new to a particular game this is in most cases good enough,
but as their playtime increases the problems begin to show. Against an AI
using static procedures, most players will eventually realize that the opponent
reapeats its actions, or even use an identical approach every game. Beating the
AI player is then reduced to devising a plan to beat this particular strategy.
Depending on the game type, this might be as simple as using grenades against
an opponent that hides behind cover in a shooter-game, or as hard as building
the perfect counter to the unit combination the AI is using in a strategy game.

In the case of AI responding to their opponents actions, the human player
may be entertained for a while longer, but every response can be responded
to as well. Once the player becomes aware of how the AI responds to various
actions, he can trick the AI into performing an action for which he is already
prepared. In general, this type of AI is vulnerable to traps and other kinds of
baiting strategies, like luring opponents into an exposed area to be picked o�
in a shooter game, or feigning weakness to draw enemy forces out from a safe
place in a strategy game.

While the problems with the currently used approaches to game AI is well
known, the growth of multiplayer gaming have e�ectively removed the demand
for improving AI opponents in most types of games. Even for newer games, the
single player mode have been reduced to a training ground before the players

8

1.2 Background 1 INTRODUCTION

move on to �ghting other human opponents. The developers have realized this,
and are subsequently spending less of their funds on AI.

Single player gaming, however, is still an important part of what computer
games are, and should not be ignored. Some players are unable to play their
games against human opponents, or simply prefer not to, for various reasons.
Ideally, these players should be given the same level of competition from the AI
opponents as a human opponent would give.

With the major �aws in commercially produced game AI being predictabil-
ity and lack of adaptability, we are naturally searching for approaches that work
around this problem. Learning algorithms, reinforcement learning in particu-
lar, have already shown promise when it comes to creating adaptive computer
opponents, and we believe that with further work, fully autonomous AI oppo-
nents that teach themselves how to play any game can be created using this
approach.[1]

1.2 Background

1.2.1 Turn-based strategy games

Turn-based strategy games are generally war games, where players take turns
moving units, or army tokens, across battle�elds split into distinct areas. An
example that will most likely be familiar to any reader is the game of chess. Here
units of various type, strength and importance �ght for a game board divided
into 64 squares. Units have di�erent abilities and values, and the ultimate goal
usually involves killing the opponent's king. There are of course games with even
simpler rules, such as Othello, where you only have one type of unit, and game
with much much more complex rules, like the popular Civilization series.[2]

No matter the name of the game, the basic premise is the same, as are the
strategies used to play them. Using the resources given to you, you must take
control of the playing �eld. Your opponent is usually given equal resources, and
so the outcome depends on who can utilize these resources in the most e�cient
way.

For research on AI, turn-based games have many interesting properties. The
state of the game can be mathematically calculated, in order to give an AI
feedback on how well it is performing. There is a �nite amount of actions to
choose from in each turn, however large this amount may be, and each of them
can give both immediate and long-term e�ects on the state of the game.

In some games, however, a pro�table move might not automatically give the
desired outcome. In a game of chess you only move one piece each turn, and the
outcome of battle is as simple as �the attacker wins�. Most turn-based games,
however, are many times more complex. Even in a simple wargame such as Risk
- where you only use a single type of unit - players can move as many units as
they like each turn, and the outcome of battle is decided by throwing dice.[3]

In Risk, this element of randomness makes attempts at calculating the best
combined move for all units highly impractical due to the sheer amount of
possible outcomes. As a very simple example, imagine a player attacking one

9

1.2 Background 1 INTRODUCTION

area from another. The attacker has 5 armies, and the defender has 3. Even
from such a simple setup, there are 18 possible outcomes split between winning.
losing and withdrawing in the middle of the battle. Even with a maximum of
three dice for the attacker and two for the defender, each of those outcomes is
depending on the outcome of anywhere from 5 to 18 dice throws in addition
to the choice of the attacker to continue, making it more or less impossible to
predict - one can only give a rough estimate using statistics.

The AI opponents usually implemented in games such as these are heavily
scripted to the point where a seasoned player can predict the outcome of any
given situation. There are bene�ts to this kind of approach, both in precision
and e�ciency. If done properly, a scripted AI will have a good response to
most common states of the game, and might even have a reasonable response
to scenarios not directly predicted by the developers. In addition, an AI using
prepared strategies will require little in the way of computational power to
perform its job, allowing the developers to use more power on other elements of
the game.

There are, however, problems with this approach, as have partly been ex-
plained in chapter 1.1. Predictability eventually makes computer opponents
dull, as strategies for beating them are discovered by the player. While a game
focused on multi-player may be excused for not challenging the player in sin-
gle player mode, some games are simply not multi-player friendly. For these
games, good AI is a selling point, and a reputation for having a bad AI may
lead directly to loss of sales.

The focus of our work is therefore on reducing the predictability of AI op-
ponents, while keeping their choice of action as bene�cial as possible. Using
turn-based games for this work comes naturally: Turn-based games can be sim-
ulated with relative ease, compared to many other games. The state of the
game, and thus the performance of the AI, can be calculated numerically, and
there is a �xed amount of actions the AI can choose from, even if this number
may be high.

1.2.2 Axis & Allies Revised

Originally a board game dating back to the early 1980's, the game of Axis &
Allies has seen many variations and upgrades over the years. There are several
board games with various extension packs, and both turn-based and real-time
computerized versions. The version we will refer to for our rules and unit data
in this thesis is the �Revised� version, released in 2004, that have also been
computerized in both commercial and open-source implementations. The open
source implementation, named �TripleA�, is the source of the graphics and maps
used throughout this paper to explain various game states.[4, 5]

Each game is played on the a world map divided into zones of varying im-
portance and value. These areas are then divided among the up to �ve players,
each controlling a major power during the second world war. These �ve powers
work together as, and can be combined into, the two sides - the Axis and the
Allies - which makes it possible to play the game with as few as two people.

10

1.2 Background 1 INTRODUCTION

In these areas, each player is given a predetermined number of units rep-
resenting armies of di�erent types.[6] Ranging from simple infantry batallions
to bomber aircraft and battleships, each unit has di�erent cost, properties and
special abilities. In additon the player is given factory structures, representing
points where he can position new units.

The gameplay is relatively straightforward. Each turn, the player is given an
amount of production credits, called �Industrial Production Certi�cates� (IPC).
These can then be spent on researching technology to improve his units, or
producing more of them. Next comes the combat move phase, in which the
player decides where to move each of his units, and where to engage enemy
units in order to take over their territories.

When a combat phase move ends with units in opponent territory, actual
combat starts. One battle at a time is resolved by dice throws from both players,
and goes on until either the attacker decides to retreat, or one side loses all its
units. After the combat moves, the player can perform non-combat moves,
followed by an economic phase where the player positions his produced units
and collects his IPC. When all of this is done, the next player starts his turn.

The goal of the game depends on how long you want to play, but usually
involves capturing an agreed upon amount of the twelve �Victory Cities�, of
which both sides start out with six. Capturing 8 of the cities is refered to as a
minor victory, 10 a major victory, while 12 is refered to as a total victory.[7]

On the way there, however, the foundations for winning a game comes from
the following cycle: The player must spend his IPC in the most e�cient way
to take control of more lands, which will then give him more IPC to use on
units. All other things being equal, the player with the highest amount of IPC
controlled, whether it be in units and land, will come out on top.

The current implementation of AI into TripleA is unfortunately very weak.
It works based on simple rules to decide where to attack and with how many
units, and how to produce, place and move its units into position for such
an attack. The rules which it follows are strict enough to be predicted by
the human player, and yet does not provide the AI with an overall plan that
is good enough for systematically pressing for a victory. It simply looks for
opportunity in the present, and then moves toward this opportunity, ignoring
possible counterattacks, traps or other consequences.

For a better approach to an AI for A&AR, we are proposing a learning-
based approach. To be an improvement over the existing AI, such an approach
would need to both respond better to immediate threats, and to have better
responses to likely enemy moves in the future. While all of the tasks involved in
the game, even the choice between production and research and the placement
of additional structures and units, should be possible using a learning-based
approach, to keep the size of the project at a manageable level, we have chosen
to limit ourselves to handling the movement and combat phases.

Even while avoiding some of the management choices, we are still left with a
challenging task. Each player controls a large amount of units, each having their
own strengths and weaknesses, and each having a selection of possible actions.
In addition, with combat being decided by dice throw, even what seemed a good

11

1.2 Background 1 INTRODUCTION

choice one round might turn out to be a bad one the next round. The total
amount of possible outcomes of any scenario is enormous, even by only looking
at the single next turn.

To implement a learning-based AI into this type of game environment, we
would need the ability to simulate each turn over and over. Unfortunately,
TripleA does not support this type of �undo� feature natively, and for our pur-
poses, implementing it into TripleA would be needlessly complicated. Thus, we
will be looking at creating a simpli�ed game engine from scratch, which can
handle simulating an arbitrary number of rounds.

1.2.3 Arti�cial Intelligence in strategy games

To establish why we have chosen to implement our AI using a learning algorithm,
we will �rst look at a selection of other methods for creating good computer
opponents for strategy games.

Chess

Likely the most popular turn-based strategy game in existence, the game of
chess has naturally been the subject of AI research for many years.[8]

A short summary of the rules for those not familiar with the game: The
game board is divided into 8x8 squares, on which each of the two players have
16 pieces. There are 6 di�erent types of pieces, each with their own rules for
movement, and thus di�erent sets of possible actions. Each turn, the player
can move one piece according to its own rules. Entering a square containing an
opponent unit will remove the occupying piece from the game, and the entering
piece will take its place. The goal of the game is to defeat the opponent King,
a slow unit that needs protecting by the other units.

Many attempts have been made at making chess AI that can compete with
humans, and one of the better approaches in terms of performance is a Minimax
search with Alpha-beta pruning.[9]This algorithm works by searching a node
tree where each branch represents a possible action by either the player or
opponent in a 2-player game. Each action is evaluated on what would be the
worst outcome from it, depending on opponent actions, and the algorithm then
attempts to �nd the node with the least bad outcome. If an action is found
to yield a worse result than the expected minimum from the tree as a whole,
it is �pruned�, and the search will not go deeper into that branch. While the
Minimax search in itself is expensive performance-wise, the Alpha-beta pruning
improves performance without compromising precision.

This works well for chess, because even if there are a large amount of possible
actions to choose from, each action yields the same result each time. When one
chess piece enters the area of another chesspiece, the �rst chess piece will win
every time, there is no random factor. A Minimax search can therefore explore
the node tree as deep as computational power or time constraints allows, in order
to give an accurate picture of what would be the best move. The Minimax tree

12

1.2 Background 1 INTRODUCTION

includes every move open to the opponent aswell, so the method works regardless
of what actions the opponent would take.

For Axis & Allies, however, the Minimax search with Alpha-beta pruning
is not a possible approach. While Minimax searching would theoretically be
possible, this would have to be done using average values for the outcome of
each combat scenario because of the random outcome of battles. That would
involve mathematically calculating the average IPC-gain value for every single
possible move, immediately requiring many times as much computational power
as the Minimax algorithm itself. In addition, there is the problem that for each
turn, unlike in chess, the player can move as many units as he would like,
drastically increasing the amount of branches from each node in the tree.

Go

Like chess, go is a turn-based strategy game for two players, but gets its com-
plexity in an entirely di�erent way. The game only has one type of playing piece,
that can only be placed once on the game board, much like Othello. The game
board, however, is usually 19x19 squares, and the players are free to place their
pieces in any unoccupied position on the board. This sets the possible actions
for each player each turn to a �at 19x19 = 361 minus pieces already placed.

While the scoring rules vary somewhat, the winner of the game is generally
the player with the largest areas of the game board surrounded by his pieces.
Removal of pieces from the game board only occurs when they are completely
surrounded by enemy pieces, and is a rare occurence in most professional games.
For more in-depth go rules, see [10].

Go AI is considered much more challenging than chess AI, an assumption
backed up by the relative performance of go AI and chess AI playing against
top-level human opponents. Whereas the best chess players in the word have
been beaten by autonomous computer opponents, even the best algorithms for
playing Go, using many times more computational power, still require huge
handicaps to play on par with the best human players. Some of these algorithms,
in particular Monte Carlo based algorithms such as MoGo, do however do fairly
well on smaller playing boards.[11, 12]

The Monte Carlo method is based on a simple premise:

• The player has a certain set of possible actions. In the case of go, he would
have 361 options minus pieces already placed.

• After randomly selecting a move from the set, the status of the game is
calculated.

• After attempting a given amount of random moves, the result is given as
the choice giving the best game state found during this search.

The bene�ts of this method includes that it works better given more time and
processing power - shown by MoGos good performance against humans when
given adequate processing power. As an example, for the �rst ever win against

13

1.2 Background 1 INTRODUCTION

a professional player, MoGo employed 15 Tera�ops (15 ∗ 1012 �oating point
operations per second) worth of computational power.

Translated to Axis & Allies, it might at �rst appear a possible approach.
The set of actions possible actions in Axis & Allies is, in fact, �nite - even if the
ability to move multiple units every round might quickly yield a much larger set
than Go. When it comes to calculating the state of the game, however, Axis &
Allies starts giving the method problems. A single set of actions might give a
wide selection of di�erent outcomes, depending on what player the dice favors
during the combat phase. Simply picking the best outcome based on a game
state caused by dice throws, the chance of actually picking an actually bene�cial
move is minimal.

Diplomacy

Diplomacy is a game with many similar properties to Axis & Allies, but also
many important di�erences. Like Axis & Allies, the game is played on a map
divided into areas, through which multiple units can be moved to attack or
defend each turn. In contrast to Axis & Allies, however, each player does not
take his turn in the traditional fashion. For each turn, every player selected his
own set of moves without knowing what moves the opponents will pick - making
it hard even for a human player to calculate what moves would be bene�cial.

As might be expected, this frequently leads to the situation wherein two, or
even more, players attempts to move their pieces into the same area. This situ-
ation is known as a stando�. A stando� in practice means that each unit moves
back to their original positions, having achieved nothing that turn. However,
there are ways to get around this situation. The third movement option for each
unit is called support. When supporting, a unit lends its strength to another
unit performing another move. When a stando� occurs, the unit which have
the most supporting units, regardless of their nationality, wins the stando�.

The simple fact that players can support each others units in combat, and
that all moves are determined in secret, ensures that this game has truly earned
its name - backstabbing and secret alliances are not only possible, but almost
mandatory, in order to win the game.

For a more in-depth explanation of the rules of Diplomacy, see the o�cial
rulebook.[13]

When it comes to AI development for Diplomacy, many approaches have
been attempted. As our example, we have chosen a method using pattern-
weights.[14] This approach is based on creating a database of features, infor-
mation of interest when deciding upon what actions to pick. These patterns
are then weighted through experience, determining what importance they are
relative to one another.

As a very basic example, a feature could be: Who occupies the neighboring
territory? The weights for each possible option - the player himself, another
player, or no one - could be adjusted either by an expert player, or simply by
according to what occurs when playing randomly.

In [14], learning is used to update these weights through self-play. After each

14

1.2 Background 1 INTRODUCTION

play through until the �nish, the weights involved in deciding which moves to
pick each turn are updated depending on whether the player was victorious or
not.

This learning-based approach worked well for Diplomacy, but for Axis &
Allies, there are some distinguishing features which could cause problems for an
approach based on long-term victory or loss. The most critical of these features
is the random combat. Whereas combat in Diplomacy is determined simply
by who brings the largest amount of troops, Axis & Allies combat can have a
wide array of outcomes depending on the combination of troops and the luck of
the dice. Through an entire game, simple luck might be the only reason why a
player won or lost, and thus an update based on this win or loss would usually
lead down a wrong path.

1.2.4 Learning Automata

The �rst study concerning the concept of Learning Automata (LA) was pub-
lished by M.L. Tsetlin in 1973.[15] His work focused on machines determining
the best behavior in a random environment by using learning algorithms, and
has since been added upon and updated regularly. The general principles of his
learning methods, however, still applies.

The �eld of machine learning has seen use in many �elds recently, the most
highly pro�led ones including some kind of pattern recognition. Search engines,
spam detection and text or image classi�cation are just some of many possible
uses.[16, 17, 18]

In this thesis we will be focusing on an area of machine learning known
as reinforcement learning.[19] The basic premise of reinforcement learning is
this: Having a set of environment states, a set of actions, and a set of rewards,
the algorithm attempts to choose the action from the set giving it the highest
possible reward. The LA needs only know how many possible actions it can
choose from, and how pro�table it was choosing its last action. Each action
performed changes the environment state, and the reward given depends on
this state. The automata then process this reward, usually by changing the
probability for picking the last selected action in subsequent runs.

A central property of LA is that they have no prior knowledge of which
action in the set is the best, in fact they usually have no knowledge of any
property concerning the environment. Yet they are still designed to �nd the
optimal action, simply by trial and error. Because of this, reinforcement learning
sometimes gives unexpected results, both of the good and the bad kind, simply
because how the algorithm sees the environment might be di�erent than our
preconceived notions.

Translated to the setting of our game, we note that Axis & Allies includes
many features that appear suitable for reinforcement learning. We have a game
state de�ned by the position and amounts of various units in their areas. We
have a set of actions de�ned by where each of these units can attack or move,
and combat rounds resolved using random numbers, which changes the game
state. Finally we have the possibility to calculate a set of rewards determined

15

1.3 Research Questions 1 INTRODUCTION

by the relative strengths of the player and opponent.
Since an LA does not require any information on how a particular game

works, implementing it as a decision maker into any given game is, at least in
theory, rather simple. All you need is some way of connecting the automata
to some game entity, de�ne what its set of actions means in game terms, and
decide how to translate the result of said actions into a reward.

To be e�ective, such an LA would need to simulate the outcome of its actions
before actually taking them. In some computer implementations of simpler
games, an �undo� feature exists, but in the case of A&AR, we will need to
create our own simulation engine.

1.3 Research Questions

Having established why we have chosen a learning-based approach, we move on
to the de�nition of our thesis. The goal of our research can be condensed into
the following research questions. Note that we are referring to the concepts of
Decentralized and Multi-Tiered Learning Automata. These, and our reasoning
for using them, will be thoroughly explained in chapter 2.

1.3.1 Main Question

Can we, using Learning Automata, achieve a good balance between

reactivity and proactivity in an Arti�cial Player?

In general, the weaknesses of Arti�cial Players comes from being too focused
on either reactivity or proactivity in its playing strategy. An overly reactive
player will react to every move the opponent does without an overall strategy.
An overly proactive player will have a strict plan that it will follow no matter
what its opponent does, and may fall apart should its plan be disrupted. It is
therefore our goal to determine if LA can be used to �nd a good balance point
between these two extremes, improving the performance of the Arti�cial Player.

1.3.2 Sub-Questions

Does a Decentralized Learning Automata perform adequately as a

reactive player?

While creating a purely reactive Arti�cial Player is as simple as mathematically
determining what move currently produces the greatest gain, we need to de-
termine whether an LA-based player can react properly to situations where a
short-term threat needs to be prioritized over the long-term goal. As opposed
to an Arti�cial Player that analyze the entire playing �eld at once, we intend
to use a separate LA for every unit. For the LA-based player to be successful,
the unit-LAs will need to work together to �nd the best combined move in a
situation, without relying on internal communication between automata. As a
reactive player, we need to test if a decentralized LA can determine the best
move while only looking at the next move, ignoring the consequences. We then

16

1.4 Report Outline 1 INTRODUCTION

need to test if this reactivity is preserved when we proceed to looking several
moves ahead.

Can a Multi-Tiered Learning Automata substitute the need for a

long-term plan?

Even if our Arti�cial Player is not entirely reactive, an LA-based player would
never have a prede�ned plan for victory. Even so, occasionally a situation
will arise in which looking more than one turn ahead is needed. We need to
determine if an LA-based player can look past the immediate feedback of the
next turn, and respond to threats in the turns beyond, whether they consist of
a trap, a new threat arriving, or simply an opportunity arising due to actions
in other areas of the map.

1.4 Report Outline

This thesis is organized as follows:
Chapter 1 explained the motivation behind this project and introduced the

reader to previous approaches used in turn-based game AI in order to explain
why we have chosen a learning-based approach. It also gave a brief introduction
to the �eld of learning automata.

Chapter 2 thoroughly explains the learning methods we have used in our
approach and the functionality of the various types of LA.

Chapter 3 explains our implementation, both of the simulation engine cre-
ated to substitute the actual game engine, and the implementation of the various
types of LA.

Chapter 4 describes the scenarios we have created for our testing, as well as
a thorough statistical analysis of some key possible actions to determine what
results should be the goal of our LA.

Chapter 5 shows statistics on the results of the various types of LA playing
the scenarios described in chapter 4, and an analysis of the performance of each
type of LA.

Chapter 6 contains the conclusion of this thesis, in addition to proposing
further possible work related to the topic and to our approach.

17

2 METHODOLOGY

2 Methodology

In this chapter we will describe the learning method we have used in our ap-
proach, the Multi-Tier, Decentralized Learning Automata. We will also explain
the function, update methods and action selection methods for our three types
of LA.

2.1 Decentralized Learning Automata

Because we are dealing with several individual units that needs to cooperate in
order to accomplish an overall goal, we are naturally going to use a decentral-
ized learning scheme. Each units needs their own automata taking individual
decisions, otherwise the complexity, the sheer amount of movement combina-
tions, would quickly become overwhelming. Even the units in a single area
of the map could easily have millions of possible movement combinations, and
using only one automata to teach itself which combination would be the best
would be impractically di�cult, if not downright impossible. Decentralizing the
learning automata gives each automata a more manageable amount of actions
to choose from, and allows for better response from each round of feedback from
the environment.

Because the performance of an individual unit might have little or no con-
nection to the performance of the player side as a whole, all automatas need to
receive the same feedback. This might need di�erent implementation depend-
ing on the type of automata, but should lead to a similar outcome for each of
them. A good example related to Axis & Allies gameplay would be the cheap,
expendable Infantry units. When the opponent score hits, the player is allowed
to choose his own casualties.[7] The player would in almost any practical case
start by removing one of his infantry units as a casualty, seeing as they are the
cheapest and usually also the weakest unit in any given battle. This unit would
then be marked as �dead�, and if it were to be rewarded based on individual
performance, it would obviously be punished for getting killed. In practice, the
player side as a whole might be performing well, partly because the infantry
was there to take the hits. Without it, more expensive units might have been
killed before doing damage, changing the outcome of the battle as a whole.

2.2 Multi-Tiered Learning Automata

In order to allow our arti�cial player to see the greater picture, not just the
immediate bene�ts of a particular set of moves, we need to allow for simulating
some turns ahead. For a simple estimate on what action to choose, simply sim-
ulating the current turn repeatedly might give a rough idea on which moves are
good or bad. It would not, however, help against opponents with the ability to
plan even a few moves ahead, as most humans would. An automata only con-
cerned with the immediate next move would be susceptible to even the simplest
traps, like a player leaving a valuable area underdefended in order to thin out
the opponent's units over a more zones.

18

2.2 Multi-Tiered Learning Automata 2 METHODOLOGY

To achieve this, we need to set up not only one automata for each turn that
we are playing, but one for each possible action. Each automata will then only
need to concern itself with the various changes to the world state when the
unit it is connected to picks that particular move. To clarify: Every time one
automata makes the decision to move from one particular zone to another in a
particular turn, the same automata handles the feedback from the system. This
regardless of what other units are doing. This automata then learns what would
be the best average move from this position depending on the choices of other
automata during this round.

Now, implementing this method is simple enough for the �rst turn forwards,
but the size of the tree of automata quickly grows each turn. First, branches
for each possible action would be added to the single root automata choosing
the �rst action. For the next turn, each automata on the end of those branches
would have branches on their own for every possible action, and so on through
the turns. If the amount of possible actions remains constant throughout the
turns, the amount of automata required will grow exponentially, limiting how
many turns ahead we can practically simulate.

In addition to the potentially overwhelming amount of automata at later
turns, we are faced with the problem of getting useful information from said
automata back to the starting automata, in order for it to make a good decision.
With the outcome of each battle being random, an average performance of each
round of simulation after learning has been done would be returned to the parent
node in the tree. To make this work, we will be doing the following:

• Each depth level of automata will simulate their moves and combat ac-
tions, and move on to the next depth level until max depth is reached.

• At the last depth level the automatas will simulate their move, learning
from the feedback from the system. The average status of the game after
this learning will be returned to the depth level above.

• Each depth level will receive feedback from the deeper levels, and learn
from it. The average status of the game after this learning will also be
returned to the depth level above.

• The above will be repeated until the top level of automata have learned,
after which we will have our conclusion.

For each level of depth we go down, the exact situation that is currently being
simulated upon gets less likely to happen. At the �rst depth level, there is a
good probability for repeating the previous action and get a similar result, but
once we get lower in depth, this probability decreases rapidly. For example:
One Tank unit moving from friendly area A to another friendly area B during
the �rst turn would give the same outcome every time, and depending on how
many possible actions the Tank has, may happen often. On the other hand,
an Infantry unit moving between two areas the �rst turn, attacking a defended
opponent area the next, and �nally moving back the next turn, would be a
string of events that would be very rarely repeated.

19

2.2 Multi-Tiered Learning Automata 2 METHODOLOGY

Because each scenario deeper into the future turns is very unlikely to be
repeated exactly, we have chosen to use less resources on exploring how pro�table
each of them would be. In general, this would not cost much in the way of
precision, but yield a large bene�t in terms of e�ciency. For similar reasons we
will look into how deep into the tree of automata there is actually any bene�t
to simulate, as we expect there to be a cuto� point where a deeper search would
not a�ect what action should be chosen on the �rst turn.

Combining the multi-tiered approach with the need for a decentralized learn-
ing approach, we get a structure as seen in �gure 1.

Figure 1: Multi-Tiered, Decentralized Automata

In our example structure, we have the starting move, the one which we are
actually intending to perform in the real game, and then two more simulated
moves. When both the player and the opponent have chosen their third move,
and all combat calculations have been performed, the total gain for each player
is calculated from the current game state. This is then passed back down to
the automata deciding on what move to pick as the third move for each unit,
updating the automata.

The simulator repeats the last move either a set amount of times or until
all automata have converged, depending on the type of automata aswell as
performance concerns. The average of the last, and thus hopefully best, part
of the calculated gain is then returned to the automata deciding on what move
to pick as the second move. Another set of second-tier moves are selected, and
then the simulation start over on the third move. This is repeated as many

20

2.3 Various types of Learning Automata 2 METHODOLOGY

times as necessary for the �rst automata to come to a decision.
Depending on what type of automata is used in the various tiers, there may

be changes in learning rate as we move through the tiers. This is, as mentioned
before, because the precision of the learning is not as critical when it comes to
the later turns.

2.3 Various types of Learning Automata

For this project, we have chosen three quite di�erent learning automata, both in
function, update mechanisms, and action selection. Trying the same scenarios
with di�erent types of automata, even di�erent combinations of automata, gives
us a good picture of the capabilities of di�erent approaches, and of LA in general.

2.3.1 Tsetlin Automata

Based on the original idea of LA, the Tsetlin automata is one of the simpler
ones, both to understand and implement.[15, 20] A Tsetlin automata in itself is
only required to store two variables - its current choice, and its "depth". When
the LA is rewarded for its current choice, it keeps the choice variable unchanged
and increases the depth variable up towards a maximum value. When it is
punished, on the other hand, it reduces its depth until it reaches zero, and then
changes its choice.

A good feature in Tsetlin automata is that they are easy to con�gure to your
liking. For example, increasing the maximum value for the depth variable will
reduce switching between states. This would lead to a more decisive automata,
but it could also increase the chance of missing a good move. One can also put
arti�cial limits on how often the automata will do its reward or punishment, in
order to enforce a more explorative or a more decisive automata, respectively.
In practice this either means a limit on what number range from a set of rewards
actually translates to either a reward or a penalty, or setting a percentage limit
on how often a reward or punishment actually is performed after the decision
has been made. We will be using the second method in our implementation, as
can be seen in section 3.2.1.

The downside of the Tsetlin automata is that they have no memory of pre-
vious rewards or penalties, in fact no memory at all beyond what action it
currently percieves as the best. This means that no real convergence can be
obtained, and that as the amount of choices go up, in particular the amount
of choices with similar rewards, the probability that the automata will �nd the
optimal choice is lowered.

A simple form of Tsetlin automata, with only two choices and a maximum
depth of 3, can be illustrated as seen in �gure 2. Rewarding the automata will
move its decision further away from the line between the choices. Penalizing it
will move it closer, and when in the central states, across it.

21

2.3 Various types of Learning Automata 2 METHODOLOGY

Figure 2: Simple Tsetlin automata

In our case, each LA has a number of choices depending on the amount of
possible moves for each unit. In the case of aircraft units capable of multiple
moves per turn on a larger map, this might go up to or beyond 10, but for most
land based units, which is what we will be focusing on, it would be an average
of 4. This gives us a slightly di�erent kind of structure, but the end result is the
mostly the same, as can be seen in �gure 3. Whenever the automata changes its
choice, it simply picks another at random. This means adding another variable
for the amount of choices to pick from for when the automata needs to change
its choice.

Figure 3: Multiple-Choice Tsetlin automata

22

2.3 Various types of Learning Automata 2 METHODOLOGY

2.3.2 Linear Reward Inaction Automata

Linear updating automata is a well known and thoroughly researched type of
automata, and for this project we have chosen to use the Linear Reward Inaction
(LRI) automata.[20, 21]

Simply put, this automata contains only as many variables as it has choices,
plus a single factor determining its learning speed, wich we will refer to as α.
Starting out, each choice is given an equal chance at being picked at random,
usually referred to as Pn. We will be using the very simplest updating scheme,
working as follows. Each time the automata performs action x and receives a
reward, the following will occur:

P ′x = Px + α

P ′n = Pn ∗ (1− α)

Where Pn represents the probabilities for picking all actions, x included.
The net e�ect is that the chance to repeat the performed action increases, but
the total probability remains constant.

When the automata performs action x and gets punished, however, no
change occurs. This usually ensures that �good� choices are not as a�ected
by bad luck, as they will only be reduced in relative strength when another
good choice is found. For our purpose, where streaks of bad luck caused by
the often large amount of dice throws might otherwise cause good choices to be
incorrectly seen as bad, this is a large bene�t.

Again, the basic concept is best explained by illustration, as seen in �gure
4. Initially having four equally probably choices, the automata eventually goes
toward converging on Choice 1. It should be clear from the �gure that this
approach is equally suited for both small and large numbers of possible actions,
but in general more actions will require a higher number of simulation runs.

Figure 4: LRI - Distribution of chance between choices

23

2.3 Various types of Learning Automata 2 METHODOLOGY

Instead of increasing the amount of simulation runs to get a conclusion from
a larger amount of choices, we could increase the learning rate. This would
naturally cause the LA to converge faster, saving simulation cycles, but could
also lower the precision of the automata as a whole. This comes from the fact
that we are basing our rewards on random numbers, and with too high learning
rate, a string of random numbers could trick the automata into converging on
a less than optimal move. An LRI converged on a bad decision will end up in a
state of inactivity, because only picking bad choices will cause penalizing, and
penalizing does not a�ect the automata. It is therefore important to balance
the need for learning speed with the need for learning the optimal action.

When given a reasonably low learning rate and enough time, an LRI will
eventually converge. If more than one action is more or less equally bene�cial,
the LRI might have trouble deciding between these two, and might return either
of them - but the probability to pick any other action would still be marginalized.
This ensures that the LRI picks a good option even when there are more than
one of them. If only one option is pro�table the LRI will always converge to
picking this option each simulation run, as long as the learning rate is not high
enough to give false positives.

The standard implementation of LRI is more or less ready to use for our
purpose, but it does require a high amount of simulated rounds to converge,
and might thus not be suitable for use in the later tiers of the tree of automata.

2.3.3 Bayesian Learning Automata

In contrast to the automata above, which are simple both in concept and im-
plementation, we have chosen the Bayesian Learning Automata (BLA) as our
�nal LA.

Although computationally intractable in many cases, Bayesian methods pro-
vide a standard for optimal decision making. The BLA is inherently Bayesian
in nature, yet avoids computational intractability by relying simply on updat-
ing the hyper parameters of sibling conjugate distributions, and on random
sampling from these distributions.[22]

The probability that BLA selects a speci�c action can be interpreted as the
probability that the speci�c action is the optimal one, given the feedback thus
far received from the system. Thus the BLA gradually shift its selection focus
towards the action which most likely is the optimal one, as the observations are
received.

One possible explanation of the superiority of the BLA is the following:
The BLA is the only one of our methods that maintains a Bayesian posterior
distribution of the possible reward probabilities of the arms. Thus, when the
BLA makes a decision, it is based on the best possible knowledge about the
move "value", given the feedback that have been received thus far.

Instead of making a decision simply by determining where in our set of
weighted choices a given random number is, the BLA functions by �nding the
move which gives the highest mean value from a normal distribution where the
parameters determining the shape is updated by our automata. Given a random

24

2.3 Various types of Learning Automata 2 METHODOLOGY

number generator r, we get the mean value using the following formula:

Mean = µ+N(r,
√

τ

G(r, α, β)
)

Where N returns a random number from a Normal (Gaussian) distribution,
G returns a random number from a Gamma distribution, τ, α and β determines
the shape and scale of our distributions, and µ is the expected mean value
based on feedback from our system. Now, to select an action from our set,
we simply select the action connected to the highest Mean value, where new
random samplings from each distributions are taken for each choice.

The Normal distribution function normalized to a mean value of 0 looks like
this, with the shape determined by the size of σ - referred to as the standard
deviation.[23]

n(x, σ) =
1√

2πσ2
e
−x2

2σ2

As σ grows, the graph moves from a �at, wide curve into a tall, thin peak.
When the BLA receives good feedback, the value of σ is increased for a particular
move, eventually converging to the point where the tallest peak is placed on top
of a particular move, at which point only this move will be selected.

The Gamma distribution function used to yield a randomly selected σ based
on the feedback looks like this. The α variable governs the shape of the curve,
the β variable governs the scale, and Γ(n) = (n− 1)!.[24]

g(x, α, β) =
xα−1e−x/β

Γ(α)βα

By constantly increasing the value of α, while increasing β based on how
well the automata is doing, we end up with a tight peak, where the height is
determined by how bene�cial feedback the automata received.

To update the variables used in the above formulas, the following formulas
are used. S is the feedback received from the system, given as a number between
0 and 1:

α′ = α+
1
2

β′ =
β + τ(µ− S)2

2(τ + 1)

µ′ =
τµ+ S

τ + 1

τ ′ = τ + 1

Our BLA have been derived from a solution for solving the Two-Armed
Bernoulli Bandit problem, where a BLA using a beta distribution is shown. For

25

2.3 Various types of Learning Automata 2 METHODOLOGY

a more in depth explanation on the inner workings of the BLA, we will direct
you to this paper.[21]

Because the functionality of the BLA requires us to keep incrementing the
variables, and some of these variables are used for calculations of n! complexity,
the longer time we spend on learning, the higher the computation time becomes.
As we expect to need a longer period of learning each time we increase the
amounts of units on our A&AR game board, we may end up with a set of
automata with very good accuracy, but with poor computational e�ciency.

26

3 IMPLEMENTATION

3 Implementation

If we could simply use an existing A&AR engine to do our simulations, we
would have saved ourselves a lot of time and e�ort. Unfortunately, the existing
game engines do not support retracing your steps backwards in time, a critical
requirement for our method. Because of this, we had to reimplement enough of
the game functionality into a new engine to allow the our two sides of LA both
to both learn and simulate actual gameplay correctly. This meant replicating
some of the major non-graphical features of the game engine: Unit and map
properties, movement and combat simulations. In addition we needed to allow
for keeping track of previous moves, so that we could go backwards through the
turns without losing information, and of course our LA functionality.

3.1 The Simulation Engine

Our engine consists of three main parts. The �rst is the setup phase, reading
map information from �les, setting up the areas of the map with the units they
contain, and giving every unit their set of automata, whether it be learning
or not. Almost all memory allocation is performed in this step to improve
performance. If the scenario has a prede�ned set of moves for the opponent to
use instead of LA, these are added to the automata.

For units not controlled by these prede�ned moves, every unit, now con-
nected to an unique automata, has their move set calculated. Each move in
each of these sets are connected to new automata, and this is repeated for as
many turns ahead as the scenario will be running. For our scenarios, two or
three turns have proven to be enough.

The second part is the main loop. This is a recursive loop, keeping track of
which round it is currently simulating, and returning the performance of later
rounds for use in updating the automata in the earlier round. Each time a new
round starts, all learning data is reset for the automata involved in that round,
and for every round of the loop, all unit states are returned to what they were
before simulating that round.

To keep the computational demands down, we have chosen to only implement
the multi-tiered LA approach in one of our automated players. The second
opponent, in the single scenario where our opponent is actually learning based,
will be looking only at the current turn when deciding on its move. For the
scenario where this limitation is in e�ect, however, the e�ect should be neglible,
as the outcome of the scenario can mostly be determined after the �rst round
has been played.

27

3.1 The Simulation Engine 3 IMPLEMENTATION

Each loop of the simulator has the following steps:

1. Reset all unit and map states to either the positions generated at map
creation or the state of the last round - depending on what round we are
currently simulating. This is equivalent of turning the game clock one turn
backwards after simulating a move, and is the main reason why we could
not simply use the already existing game engine. Each unit has a list of
locations, containing its position in each depth level of the simulation. It
also has information on whether it is alive or dead in any given round,
and some units have stored information concerning their special abilities.

2. The player-automata picks a set of moves for its units, the simulator de-
tects unit collisions and then performs the necessary combat simulations.

3. The opponent either runs its own set of learning rounds to determine a
good response, or plays out the predetermined moves if the scenario has
any. Collision detection and combat simulations again.

4. If we're at the end of our simulation depth, we simply calculate the average
performance of the last move set, and return it to the automata in the level
above. If not, we recursively start a new round of simulations, increasing
depth by one.

Translated to code and heavily simpli�ed, the simulation loop looks like algo-
rithm 1. Each unit contains a set of LA, and keeps track of which automata is
currently active for each level of depth. The update methods for each automata
will be described in chapter 3.2, and each depth level can contain its own type
of automata, allowing for a high amount of di�erent potential combinations.

As explained before - when the opponent side is not controlled by prede-
termined moves, denoted as �scripting�, it runs its own learning scheme - only
learning from the current turn. This fact leads to a large di�erence in aver-
age time consumption per run of the simulator between scenarios where the
opponent is required to learn and where it can rely on predetermined moves.

The variable denoting maximum simulation rounds is determined through
testing, in order to allow the automata to complete its learning, or converge,
where applicable.

28

3.1 The Simulation Engine 3 IMPLEMENTATION

Algorithm 1 Main simulator loop

1 playRounds (maximumDepth) {
2 fo r each Unit in Al lUn i t s :
3 Unit−>resetAutomata
4 do un t i l maxSimRounds {
5 fo r each Unit in Al lUn i t s :
6 Unit−>resetLocat ionAndAl ive
7 fo r each Area in CurrentMap :
8 Area−>resetOwner
9 fo r each Unit in PlayerUnits :
10 Unit−>Automata−>selectMove
11 calculateCombat
12 i f (opponent I sScr ipted) {
13 fo r each Unit in OpponentUnits :
14 Unit−>Automata−>selectMove
15 calculateCombat
16 } else {
17 fo r each Unit in OpponentUnits :
18 Unit−>resetAutomata
19 do un t i l maxSimRounds {
20 fo r each Unit in OpponentUnits :
21 Unit−>Automata−>selectMove
22 calculateCombat
23 ge tSta tus
24 fo r each Unit in OpponentUnits :
25 Unit−>updateAutomata
26 fo r each Unit in Al lUn i t s :
27 Unit−>resetLocat ionAndAl ive
28 }
29 fo r each Unit in OpponentUnits :
30 Unit−>Automata−>selectTopMove
31 calculateCombat
32 }
33 i f (currentDepth < maximumDepth) {
34 currentDepth++
35 s ta tu s = playRounds (maximumDepth)
36 currentDepth−−
37 fo r each Unit in PlayerUnits :
38 Unit−>updateAutomata
39 } else {
40 getStatus
41 fo r each Unit in PlayerUnits :
42 Unit−>UpdateAutomata
43 }
44 i f (currentSimRound > maxSimRounds ∗ 0 .8) {
45 statusSum += sta tu s
46 }
47 }
48 return (statusSum / maxSimRounds ∗ 0 .2)
49 }

29

3.1 The Simulation Engine 3 IMPLEMENTATION

The last part of the engine is the unit collision and combat simulation meth-
ods. Unit collision is simple enough, at least in principle. When both the player
and the opponent has units within the same area after a move, there will be
combat, and when combat ends, either one or both side will have no units left
in that area. If the attacker is the one with remaining units, the ownership of
the area is changed, otherwise it remains in the hands of the defender.

For the actual combat simulations, several di�erent methods had to be im-
plemented. First of all - units have a variable value, and the player losing units
can choose what units to remove from the game board. This means that units
would have to be sorted according to value, to make sure that units would be
removed in the appropriate order (Infantry �rst, then Artillery, then Tanks, for
example).

Next, by throwing dice, we need to aggregate how many hits each side scores
per round, and then remove that amount of units from the board. This process
is then repeated until either side loses all units. While in a real game of A&AR,
players can choose to retreat at any time, we have chosen to enforce all-out
attacks in order to reduce the amount of options for the automata to decide on.

Translated to simpli�ed code, the combat simulations look like algorithm 2.
Attacking units use their attack strength, for infantry this also includes possible
support by artillery, and defenders use their defense strength. Counting hits is
a simple aggregating how many out of one sides units have a hit score equal to
or below the result of a dice throw. The return value of this method is either
true, in which case the area in which combat occured changes owner, or false,
in which case it does not.

We will go into more detail on the gameplay of A&AR in chapter 4.

30

3.1 The Simulation Engine 3 IMPLEMENTATION

Algorithm 2 Combat simulation

1 combatSimulation (Attackers , Defenders) {
2 do un t i l oneSideIsDead {
3 fo r each Unit in Attackers :
4 Unit−>getAttackStrength
5 fo r each Unit in Defenders :
6 Unit−>getDefenseStrength
7 sortAttackersByCost
8 sortDefendersByCost
9 a t tackHi t s = countHits (Attackers)
10 de f en s eH i t s = countHits (Defenders)
11 fo r each attackHit :
12 removeCheapestUnit (Defenders)
13 i f (Defenders i s empty) {
14 De f ender sKi l l ed = true
15 oneSideIsDead = true
16 }
17 fo r each de f enseHi t :
18 removeCheapestUnit (Attackers)
19 i f (Attackers i s empty) {
20 Attacke r sK i l l ed = true
21 oneSideIsDead = true
22 }
23 }
24 i f (De f ender sKi l l ed == true) {
25 i f (At tacke r sK i l l ed == true) {
26 // Both s i d e s dead , area owner remains the same
27 return f a l s e
28 } else {
29 // Attacker wins , area changes owner
30 return t rue
31 }
32 } else {
33 // Defender wins , area owner remains the same
34 return f a l s e
35 }
36 }

31

3.2 The Learning Algorithms 3 IMPLEMENTATION

3.2 The Learning Algorithms

As explained earlier in chapter 2, all learning algorithms work on similar princi-
ples. All our automata are used to chose between a set number of actions, and
are updated according to the game status as calculated by the simulator engine.
For each automata, the set of possible actions is obtained in the setup phase
described in chapter 3.1. This is trivial for units that can only move one area
each turn, but should we want to extend our scenarios to contain �ying units,
which can move multiple moves, obtaining the set of actions for these would
required a tree search. Each automata then has its own method for initializing,
updating itself and returning a choice, as will be described in this chapter.

3.2.1 Tsetlin Automata

As explained earlier, this is a rather simple algorithm to implement. Each
automata requires only a set of N actions, a choice value ranging from 1-N, and
a depth value. We have chosen to use a depth range of 1-4 striking a balance
between the need for changing the choice reasonably fast and the need for some
stability once a good choice have been found.

Upon initialization, a choice value is randomly selected from the size of
the set of possible actions, and the depth value is set to 1. To update this
automata, we use the result from the state of the game after the last moveset.
Comparing this number to a randomly generated number for each automata,
each will choose to reward or penalize individually. Rewarding the automata
is as simple as increasing the depth towards the maximum, after which it does
nothing. Penalizing it decreases depth, until it reaches 0, where it will randomly
pick another choice value.

We wanted to make our Tsetlin-automata more decisive, as we would like to
ensure that when a really good choice is found, a few rounds of bad luck won't
immediately change the choice again. To do this, we put a random limiter on
how often a punishment at 1 depth leads to a change in choice. This would be
a number between 0 and 1, which we could change at will in order to optimize
the performance of the automata. Through testing, we have found the optimal
value of this parameter for our scenarios to be in the range 0.6-0.8, meaning
that the automata will only enforce a penalty in 60-80% of the cases when the
feedback suggests it. Shown in algorithm 3, which is a simpli�ed version of
the updating algorithm, this limit is the L constant. The status variable is the
feedback from the system - a number between 0 and 1, where higher is better.

When selecting a move through this automata, no algorithm is needed - the
automata simply returns the current choice value.

32

3.2 The Learning Algorithms 3 IMPLEMENTATION

Algorithm 3 Tsetlin Automata - Update method

1 updateTset l in (s t a tu s) {
2 r = random(0−1)
3 l im i t e r = random(0−1)
4 i f (r < s ta tu s) {
5 i f (depth < 4) {
6 depth++
7 } else {
8 // At maximum depth , no change
9 }
10 } else {
11 i f (l im i t e r < L) {
12 i f (depth > 1) {
13 depth−−
14 } else {
15 cho i c e = random(1−number o f a c t i on s)
16 }
17 }
18 }
19 }

3.2.2 Linear Reward Inaction Automata

For this type of automata, all automata playing in a particular round is updated
the same way each round. Whether the set of automata is rewarded or not is
done by comparing a single random number with the status of the current game.

Initializing the automata is as simple as giving each possible action a weight
equal to 1 / amount of actions. When deciding on whether to reward the
automata, a random number is compared to the feedback from the game state,
and all automata are either rewarded or together.

When receiving a reward, as explained in chapter 2.2.2, each active automata
is updated by increasing the chance of picking the last selected move, while
reducing the chance of picking each of the others. When recieving a penalty,
the automata remains unchanged. Algorithm 4 shows the update method in a
simpli�ed version. The update rate for an LRI automata can be modi�ed in
order to change the speed of learning. In our implementation, we have found
that an update rate of between 0.02 and 0.05 gives us the best combination of
speed and accuracy for the �rst set of turns, while increasing the learning rate
for each depth level allows for using less simulation rounds as depth increases
without signi�cant loss of precision.

33

3.2 The Learning Algorithms 3 IMPLEMENTATION

Algorithm 4 LRI Automata - Update method

1 updateLRI (reward) {
2 i f (reward == true) {
3 fo r each Weight in Weights :
4 Weight ∗= (1 − LRI_updateRate)
5 Weight [currentChoice] += LRI_updateRate
6 } else {
7 // No change when pena l i z e d
8 }
9 }

Unlike the Tsetlin automata, there is no �xed choice for the automata to
return when asked for a choice of action. Instead, the LRI depends on choosing
a number through a weighted random choice. Simply put, a random number is
chosen between 0 and 1, which is the total sum of our weights. The weights are
then added together until we reach a sum of weights larger than this random
number. The action corresponding to the last weight added is then the choice
returned as the automata's decision. Algorithm 5 shows how this would look in
simpli�ed code.

Algorithm 5 LRI Automata - Selection of action

1 se l ec tAct ionLRI () {
2 sum , cho i c e = 0
3 r = random(0−1)
4 while (r > sum) {
5 cho i c e++
6 sum += Weights [cho i c e]
7 }
8 currentChoice = cho i c e
9 return moveSet [cho i c e]
10 }

3.2.3 Bayesian Learning Automata

Implementing the BLA into our automata once we had the formulas, as de-
scribed in chapter 2.3.3, was naturally very simple. We used the Gnu Scienti�c
Library to return random numbers from the Normal (Gaussian) and Gamma
distributions,[26] and the rest of the implementation was derived more or less
directly from our formulas.

Initializing the automata was straightforward: We randomly select a choice
from the set of possible actions, and then initialize each of the variables α, β, µ
and τ for each action. Each of these variables are then updated according to the

34

3.2 The Learning Algorithms 3 IMPLEMENTATION

formulas described in chapter 2.3.3, which translated to simpli�ed code looks
like algorithm 6. The status variable is once again the feedback from the game
state, a number between 0 and 1, where higher is better.

Algorithm 6 BLA - Update method

1 updateBLA(s t a tu s) {
2 alpha [cho i c e] += 0 .5
3 beta [cho i c e] = 1 .0 / (beta [cho i c e] + (tau [cho i c e] ∗

(mu[cho i c e]− s t a tu s)^2) / (2∗(tau [cho i c e]+1)))
4 beta [cho i c e] = 1 .0 / beta [cho i c e]
5 mu[cho i c e] = (tau [cho i c e] ∗ mu[cho i c e] + s ta tu s) /

(tau [cho i c e] + 1)
6 tau [cho i c e] += 1 .0
7 }

For selecting the optimal action, we again implemented the formula more
or less directly. For each possible action, a random number is selected from
the Normal distribution via another random number selected from the Gamma
distribution, both shaped by our α, β and τ variables. This number is then
added to the expected value, µ, giving us a random number around the ex-
pected value for this move, denoted as the Mean value. The Mean value for
each possible action is then compared, and the move connected to the highest
value is returned as the action of choice for that particular automata. Trans-
lated to simpli�ed code, this process looks like algorithm 7, where the gamma()
and gaussian() functions are calls to the Gnu Scienti�c Library, returning a ran-
dom number from the appropriate distribution, and rng is a random number
generator included in the same library.[26]

Algorithm 7 BLA - Selection of action

1 selectActionBLA () {
2 i n i t i a l i z e maximum, mean
3 fo r each Move in Moveset :
4 var i ance = 1 .0 / gamma(rng , alpha [Move] , beta [Move])
5 mean = mu[Move] + gauss ian (rng , squareRoot (var i ance /

tau [Move]))
6 i f (mean >= max) {
7 max = mean
8 cho i c e = Move
9 }
10 return MoveSet [cho i c e]
11 }

35

4 EXPERIMENTS

4 Experiments

4.1 Introduction

To understand the foundations of our simulations, we �rst need to go a little
deeper into the gameplay of A&AR. For a more thorough explanation of rules,
see the A&AR Manual.[7]

Each scenario has two main types of components: The individual units of
di�erent kinds, and the land for which they are �ghting. Land areas come with
an attached value, which in the actual game re�ects its production potential.
Units come with a range of di�erent attributes, for some even unit-spesi�c abil-
ities. Each unit has a production cost, which will be used by our LA in the
calculations of gain and loss.

The subset of units we will be using for our preset scenarios, to test the
abilities of our LA, have the following properties:

Unit Attack Defense Cost Notes
Infantry 1 (2) 2 3 +1 with artillery
Artillery 2 2 4 Can support infantry
Tank 3 3 5 Can Blitz*

*Blitz: These units can normally only move from one area to the next each
turn, but if the area a Tank is moving into is friendly or unoccupied, they get
another, free move.[7]

Table 1: Basic Unit Properties

In addition to these units, there are two kinds of buildings available. One is
the factory, which in the game is used to mark what areas on the map you can
place reinforcements on. The placement of reinforcements, and therefore the
function of factories, have not been included in our testing. Even so, factories
still have a high value and their ownership gets transferred upon conquering a
territory, so we look at them as simply increasing the value of the territory they
are in. The second is the anti-air unit, which is not included in our testing.

Combat occurs when units of any faction move into an area containing units
from the opposing faction, and ends either when the attacker withdraws or all
units on one side have been destroyed. The actual combat calculations, as would
be expected from a board game, is done by dice throws. The attack and defense
strengths of each unit is equal to the highest dice number on which they will
score a hit. For example, an attacking Tank unit will score a hit on any dice
result from 1 through 3, while a defending Infantry unit will score a hit on a
dice result of 1 or 2. For each hit, except in the case of a special ability not used
in our subset, the opposing player will remove one unit of his own choice from
the game board.

The opposing side gets the same chance of causing damage to the player,
however, before the pieces are removed. This means that bringing an excessively
large force will not totally overrun the enemy without taking casualties, but

36

4.2 About Scenario Analysis 4 EXPERIMENTS

it will likely be victorious in fewer rounds of combat. In quite a few cases,
depending on how well balanced the two sides are, this rule leads to mutual
destruction - neither side has units remaining. When this occurs, the map
remains as it was before the combat started, giving the defending side a slight
edge, as the attacker is required to have units surviving combat to take control
of the attacked area.

Figure 5 shows an example of combat, in a screenshot taken from the TripleA
implementation, showing a Russian (Red) force attacking a defended area owned
by the Germans (Grey).[5]

Figure 5: Combat calculation example

In this example, we can see several properties of combat calculations. Two
of the attacking Russian Infantry units are supported by Artillery and thus gain
an attack strength of 2. The other two Infantry has an attack strength of 1,
while the defending German Infantry have a defense strength of 2. The two
unsupported Russian Infantry scores one hit with a dice throw of 1, and the two
Tanks, each with an attack strength of 3, scores two hits with two dice of 1 and
2. The Germans lose three of their units, and will remove three infantry units
from the map after having returned �re. After both sides have thrown their dice
and units have been removed, the Russians get the choice to keep attacking or
to retreat. If they choose to continue the attack, the formula above is repeated.

4.2 About Scenario Analysis

In order to demonstrate what should be expected from our LA, or even the
optimal play for some scenarios, we have chosen to do some statistical analysis.
The outcome of various combat scenarios have been estimated using an online
combat simulator by Daniel Rempel, simulating each combat scenario 10,000
times.[25] The average expected IPC gain from each move has been calculated

37

4.3 Scenario 1: Simple test map 4 EXPERIMENTS

by hand, and some assumptions had to be done in order to get a �xed number.
As such, the probabilities for the outcomes are precise within tenths of a percent,
but the average IPC values might vary slightly.

We have included graphic representations for most of the possible combat
scenarios, and analyzed how each outcome from these �ghts works out in terms
of points gained and lost. A positive average point value means the outcome is
bene�cial to our automated player, while a negative value means it is bene�cial
to the opponent, whether it is an automata or scripted. In the graphic represen-
tation pie charts showing the distribution of winning and losing, the red color
types always represent the attacking player, while the blue color types represent
the defending player.

Finally, the maps which we have retrieved from the TripleA implementation
of A&AR allow us to use real areas of the game as the background for our
scenarios. However, the values of these territories in our scenarios does not
re�ect their value in the actual game, but have been altered in order to suit our
purposes.

4.3 Scenario 1: Simple test map

Figure 6: Scenario 1 - Simple test map

One team of LA, from now on referred to as the player, controls two infantry
units and two zones, playing the Russians (Red). Another LA, referred to as the
opponent, controls one tank unit and one zone, playing the Germans (Grey).
Zone worth is equal at one point each. The objective is to ensure that more
than one LA can properly assess a relatively simple situation over more than
one turn, and show that it is capable of determining the appropriate reaction
to a basic situation. In particular, we are looking for the LA controlling each
of the infantry units to cooperate in beating the tank. The LA controlling
the opponent, as explained in chapter 3.1, is limited to only learning from the

38

4.3 Scenario 1: Simple test map 4 EXPERIMENTS

current turn, while LA controlling the infantry can recieve feedback from the
two turns ahead we are simulating this scenario.

4.3.1 Scenario Analysis

The �rst round of this scenario, where the player, our multi-tiered LA, makes
its move, essentially gives 4 di�erent move combinations, each with a set of
responses for the opponent.

• Both infantry either stay in place or moves to the northern area to defend,
which is essentially the same outcome. The opponent can then choose ei-
ther to stand still, essentially delaying the combat phase until next round,
move into the empty territory for a minor gain in points, or attack the
two defending Infantry.

• One infantry moves north while the other stay put, to defend both areas.
The opponent can then either stand still, delaying combat another round,
or attack one of the defending infantry. Should the tank attack and destroy
one of the infantry, there would be another set of choices for the next
round.

• Both infantry attack the tank, after which the opponent's options depend
on whether they win or lose. If the infantry won, the opponent has no
options. If they lost, the tank can take both areas at its leisure.

• One infantry attacks the tank while the other defends either the southern
or northern area. As above, if the infantry wins, the opponent has no
options. Otherwise, the tank can either attack the remaining infantry,
occupy the empty territory or stand still.

4.3.2 Both infantry defend, tank attacks

Figure 7: 1 Tank attacking 2 Infantry

First up, we have both infantry defending the same territory. For this exam-
ple, we have used the southern territory in which they start out, but defending
the northern territory would naturally give the same outcome. The only action
which gives a combat scenario from this choice of action is if the tank choose to
attack the defended territory, which is shown in �gure 7.

39

4.3 Scenario 1: Simple test map 4 EXPERIMENTS

If attacked by a tank, there is an 85.3% chance that the player will keep its
territory, defeating the attacker. There is a 78.4% chance that at least one of the
infantry will survive to be able to take over the opponent's territory during the
next round. If the tank wins, which happens 14.7% of the time, it can capture
the last territory during the next turn.

If the opponent wins, he will have gained 6 points for killing the infantry
and 1 point per territory for a total of 8. If one infantry survives, the player
will gain 5 points for killing the tank, lose 3 points for losing the infantry, and
gain 1 point for taking the territory the next turn - a total gain of 3. If both
survive, the player would not lose the 3 points, gaining a total of 6.

If no units survive, the player will have lost 6 points worth of infantry and
gained 5 for killing the tank. If the tank used the blitz ability to move through
and capture the unoccupied zone, the player would lose another 1 point, for a
total gain of either -1 or -2.

Combining the percentages with the gains, the average gain for the player
for this particular outcome comes to 2.69 points. This means that defending
together against an attacking tank is highly bene�cial. However, as the opponent
is also controlled by an LA, he should be able to determine that attacking two
defending infantry with his single tank is not in his interest, and either stay put
or take the empty territory instead. Taking the empty territory would leave the
player with a -1 gain from losing it, but during the next round it could simply
move its infantry into the now empty western territory, essentially putting buth
non-agressive options at 0 point gain for either side.

4.3.3 Infantry splits up, tank attacks

Figure 8: 1 Tank attacking 1 Infantry

With one infantry defending each territory, the LA-controlled tank is much
more likely to attack. Given a lot better odds than in the last scenario, as seen
in �gure 8, there is a 50.5% chance that the tank will beat one infantry. The
player has a 24.2% chance that the infantry will win, and another 25.3% chance
both will be killed, leaving the area in the hands of the player.

If the tank wins, it can attack the other infantry during the next round,
for the same odds, and perhaps end up in control of the entire scenario. If the
infantry wins, or at least destroys the tank, the player can take and keep all 3
areas. The tank losing the �rst round will give the player a gain of 5 points for

40

4.3 Scenario 1: Simple test map 4 EXPERIMENTS

the tank and 1 point for the western area . If the tank wins, however, we must
calculate in the average for another round of combat - this time with the player
starting at -3 gain, having lost an infantry unit. The tank in this position has
the same choices as before - he can either attack or stay.

Attacking will give the same odds as in �gure 8, with slightly di�erent point
gains. Starting with -4 points for the player, the tank winning another battle
will leave the player with -8 points. The infantry winning gives the player the
opportunity to recapture the taken lands for a total of 3 points gained, while
both units being destroyed gives a gain of -2. Assuming that the tank attacks
again if it wins the �rst �ght, we get an average gain from that round of -3.82
points.

With the �nal option of both units being destroyed in the �rst �ght also
giving the player automata a gain of 3 points, we end up with a total average of
0.28 points when including a second turn of combat. Should the tank instead
choose to stay during the second turn, we end up with an average of 0.19 points.

Summing up, splitting the infantry might immediately appear as weakening
the position, while it is in fact bene�cial to the player. The reason for this is
primarily the fact that tanks are more valuable than infantry, and yet does not
get a signi�cant advantage in small-scale con�icts. In this �ght in particular,
we see the strength of defense in small combat scenarios. The rule that leaves
the area in the hands of the defenders when all units are destroyed gives the
defending infantry in this scenario twice the chance to defend successfully.

4.3.4 Both infantry attack

Figure 9: 2 Infantry attacking 1 Tank

Figure 9 shows a preemptive strike - attacking with both infantry - which
gets reasonably good odds considering the low attack value of Infantry. There
is a 54.4% chance of defeating the tank and taking the territory, while the tank
has a 38% chance of survival.

Beating the tank gives the player complete control of the scenario, while
losing gives it to the opponent, as the tank is free to take the other two areas.
One infantry surviving gives the player a gain of 5 points for the tank, -3 points
for lost infantry, and 1 for territory, a total of 3. Two surviving infantry yields
a gain of 6 points. If the tank wins, the player gain is -6 points for the lost

41

4.3 Scenario 1: Simple test map 4 EXPERIMENTS

infantry and -2 for the lost areas, totaling to -8. If all units are destroyed, the
gain is -6 for lost infantry and 5 for the tank, totalling to -1.

The average gain from picking this action comes to -0.78. As expected,
attacking a good defensive unit with two weak o�ensive units is not bene�cial,
but at the same time the di�erence between a good and a bad choice is really
not the largest in this particular scenario.

4.3.5 One infantry attack alone

Figure 10: 1 Infantry attacking 1 Tank

To illustrate what is clearly a bad choice, �gure 10 shows the last option open
to the player LA. Attacking with only one of its infantry gives 14.3% chance
of victory, but in total 28.5% chance of destroying the tank. In that case the
player has control of the entire board, even if the infantry may be lost. The
more likely scenario, at 71.5% chance, is that the tank survives, to be able to
attack the remaining infantry unit at the same odds as shown in �gure 8.

The infantry winning gives the player a gain of 6, and both the tank and
infantry getting destroyed gives it a gain of 2. If the tank wins, we get the
same calculation as shown under �gure 8 - assuming the tank follows up with
an attack on the remaining infantry - the average gain is -3.82 points.

The average gain from picking this scenario, still assuming the tank follows
up with an attack, totals up to -1.44 points. If the tank decides to just take the
empty territory instead and await the next move, we get a total of -1.58 points
instead. All in all, clearly the worst move open to the player LA, and hopefully
one it will avoid as much as possible.

4.3.6 Summary

To give an overview on the various outcomes of this scenario, table 2 shows
the average gain on various movement combinations ordered by their expected
performance.

With automata playing both sides in this scenario, we are expecting the
average results to be as close to 0 as possible, as both sides will go for the
situation that gives them the best outcome on average. If both infantry defend
together, the tank LA is highly unlikely to pick the attacking move, as the
average gain for it would be awful. As both sides idling would give no gains for

42

4.4 Scenario 2: Rushing to the defense 4 EXPERIMENTS

Movement choice Average gain

Infantry defend together, tank attacks 2.69 points
Infantry split up, tank attacks twice 0.19 points

No attack by either side 0 points
Both infantry attack -0.78 points

One infantry attack, tank responds -1.44 points

Table 2: Scenario 1 - Average point gain by move choice

either side, we expect the infantry LA to split up in an attempt to lure the tank
LA into attacking. While this would on average be a slightly worse move than
standing still, the di�erence might be small enough that the tank AI would go
for it anyway.

With both sides of automata working properly, we are expecting minimal
use of either end-point in this table. In fact, if both sides of automata play
optimally, we expect to see a complete standstill, with neither side performing
an attack.

4.4 Scenario 2: Rushing to the defense

Figure 11: Scenario 2 - Rushing to the defense

Playing the Germans (Grey), the Learning Automata side, referred to as the
player, controls three infantry and three zones, one of which is valuable. the
area itself is worth 15 points, and contains a factory worth another 15 points.
The opponent, playing the British (Brown), controls two tanks and two areas,
and is preprogrammed to move both tanks one move east per turn. The values
of the four western territories is neglible at 1 point each. If the opponent tanks
reaches the area with the factory �rst, the infantry will not realistically be able

43

4.4 Scenario 2: Rushing to the defense 4 EXPERIMENTS

to recapture it, due to the low attack value of infantry compared to the defense
value of tanks.

Hence, the goal of this scenario that the LA learns that it must move all
three infantry to the valuable area in the two �rst turns in order to protect it
from the tanks inevitable attack. While in an actual game, the tanks would be
able to use the Blitz ability to reach the valuable zone in one move, we have
set them to move one area each turn for simplicity: It is the relative attack
and defense strength of the units that are interesting, not how far away the
tanks would have to be in a realistic setup. This scenario have been set up
to determine if our multi-tiered LA can overcome the fact that no action taken
during the �rst turn will give any reward - the only rewards possible comes from
performing the correct set of moves through two turns.

The choice and numbers of units are carefully calibrated to ensure that the
LA has the best possible feedback to work with once the second turn is played
- one or two defending infantry will most likely lose against two tanks, but with
all three infantry together, there is a good chance that the area remains in the
players hands. If the area is not defended immediately, however, the chances of
recapturing it with the units present are slim to none. To make sure that all
options can be tested, including attempts at retaking the territory on the third
turn, this scenario will be simulated three turns ahead.

4.4.1 Scenario Analysis

While this map might look more complex, it is in fact a lot simpler to break
down than scenario 1, because the opponent has been preprogrammed in order
to properly test the automata. No matter what moves the LA picks, in its
second move, the opponent will move both its Tank units into the valuable area
and stay there.

This setup gives us two di�erent types of outcomes, based on what the LA
has done with its own moves. Either it is attacking, because it was too slow in
moving its units into the valuable area, or it is defending, because it got there
�rst. The outcomes of the actual combat phases, depending on what the LA
has decided to do, are as follows:

• If the LA gets to the valuable zone �rst, we get 2 Tank units attacking
either 1, 2 or 3 Infantry units.

• If the opponent gets to the valuable zone �rst, we get 1, 2 or 3 Infantry
units attacking the 2 Tank units. The LA might also decide to do nothing,
seeing that the defense is too powerful.

Because of the setup of the map, point gains in this scenario might look a little
o�. The best outcome the player might hope for, destroying both the tanks
and taking the southern area, only gives 12 points gain. The absolute worst
case, seeing as the tanks are forced to stay in the valuable area, would be losing
all units and the valuable area. This would give -36 points of gain. As might
be expected, the average gains are all skewed into the negatives, but this does

44

4.4 Scenario 2: Rushing to the defense 4 EXPERIMENTS

not make them less useful for the automata when determining which one is the
optimal.

For simplicity, we have omitted the full graphical presentation of some of
the least bene�cial moves.

4.4.2 Two infantry defending

Figure 12: 2 Tanks attacking 2 Infantry

As can be seen in �gure 12, defending the pro�table area with only two
infantry only gives the player a small chance of keeping it safe. The tanks have
63.1% chance to take the area, and then either a 85.7% chance of defending the
area from the single infantry - like we saw in �gure 10 - if one tank survives, or
99.3% chance to defend if both tanks survive.

Average point gains are as follows: With two tanks surviving, the player
gain is -36, assuming the last infantry does not suicide itself. With one tank
surviving, the gain is -31 under the same condition. Both infantry surviving
gives a gain of 12 points, with infantry capturing the last two zones, while only
one survivor gives a gain of 9. The no survivors option here leaves the player
LA with a single infantry left behind, which can take the empty areas for a total
of 6 points of gain.

Summing up we get an average gain of -17.7 points from defending with only
two of the three infantry.

4.4.3 Three infantry defending

Figure 13: 2 Tanks attacking 3 Infantry

45

4.4 Scenario 2: Rushing to the defense 4 EXPERIMENTS

Bringing all three infantry in the defense, as seen in �gure 13, is really the
only way the player LA can expect victory. With a total chance of 72.9% to
destroy both tanks and keep the area safe, it yields much better results than
only bringing two.

Average point gains are as follows: Two tanks surviving gives a gain of -
39, while one tank gives -34. All infantry surviving, on the other hand, gives
the player the chance to take the empty areas for a total of 12 points of gain.
Similarly, two infantry remaining gives 9 points of gain, and one remaining gives
6 points. No survivors in this scenario evens out at 1 point of gain, with two
tanks killed worth 10 points and three infantry worth 9.

Combined with the chances for each outcome, we get an average gain of -4
points, quite a bit better than only defending with two infantry.

Note that we have omitted the choice of only defending the territory with
one infantry. Considering that it only gives a chance of 4.8% to successfully
defend the territory, and a full 60.5% chance that both tanks would survive, it
should not be necessary to include a �gure to show why this would be a bad
choice.

4.4.4 Three infantry attacking

Figure 14: 3 Infantry attacking 2 Tanks

To demonstrate why waiting for the tanks to enter the territory before at-
tacking would be a bad idea, we have included the best case scenario from this
possibility. Figure 14 shows the outcome of three infantry attacking two tanks,
only getting a 33% chance of success. As the tanks have already taken the area
worth 30 points, we get the following average gains:

Three, two and one infantry surviving and able to take the empty territories,
gives 12, 9 and 6 points respectively. Two tanks surviving gives -39 points, and
one tank gives -34 points. No survivors in this case leaves the area in the hands
of the opponent, giving a gain of -29 points.

Combined with the chances for each outcome, this gives us an average point
gain of -21.4, clearly a lot worse than using the three infantry to defend rather
than attack.

Again note that we have omitted the choice of only attacking the defending
tanks with one or two infantry. These options have a success rate of 0.7% and

46

4.5 Scenario 3: Reacting to opportunity 4 EXPERIMENTS

9.9%, respectively, and average point gains in the negative thirties, and a �gure
should not be needed to explain why either would be a bad choice.

4.4.5 Summary

An overview of the average point gains for various actions ordered by expected
performance is shown in table 3.

Movement choice Average gain

Move three infantry to defend -4 points
Move two infantry to defend -17.7 points
Move three infantry to attack -21.4 points

No movement -30 points

Table 3: Scenario 2 - Average point gain by move choice

All other options gives even worse average gains, and should not require
looking at further. It should be clear that the only bene�cial choice for the
player side LA is to work together, bringing all three infantry into the valuable
area before the opponent attacks. If this was a one-turn battle, with infantry and
tanks in the neighboring areas, this would be an easy task for any automata
type. By design, we are forcing the automata to see beyond the immediate
next turn, hopefully showing that our multi-tiered structure can process this
information correctly and display basic proactivity.

4.5 Scenario 3: Reacting to opportunity

Figure 15: Scenario 3 - Reacting to opportunity

In this quite a bit more complex scenario, both the our LA player, playing
the Germans (Grey) and the preprogrammed opponent, playing the Russians
(Red) controls a varied force, with the opponent having four more infantry units.

47

4.5 Scenario 3: Reacting to opportunity 4 EXPERIMENTS

The LA controls one zone, while the opponent has two, of which one contains
a �Victory Point� - making it more valuable - a total of 10 points. After the
�rst move by the LA, the opponent is programmed to respond to an imagined
threat to the east and move some of its force - 3 infantry, 1 artillery and the
tank - into the eastern territory. The goal of the scenario is to ensure that the
LA is able to see and take opportunities as they arise, by attacking a valuable
territory when the opponent leaves it underdefended. To achieve this, the LA
�rst has to conclude that any actual move during the �rst round would be a
bad idea, as the defending force is too big, and then attack on the next turn
when the opponent is weaker.

4.5.1 Scenario analysis

An even more complex scenario, this requires the LA to coordinate �ve units to
stand and move as one, or lose. For simplicity, we will only show the two major
outcomes of this particular battle, in order to demonstrate why deviating from
the path is not really pro�table. The LA has two groups of options for this
scenario, and only one of them have a realistic chance of a reward. The options
are as follows:

• Attack immediately during the �rst turn with any amount of units.

• Hold position with all units during the �rst turn, and then attack with
any amount of units after the opponent has moved his units.

Because of the scripted nature of the opponent, there is no risk of losing the
originally owned area. The worst outcome for the player LA is thus losing all
its units, worth 19 points. The moved opponent units will stay in the eastern
area - picture them as lost to an external threat - and the best case scenario
involves killing the units remaining in the middle zone and taking it over - worth
13 points for the units and 10 for the area for a total of 23. Technically, killing
all enemy units and taking both areas would be best possible case at 42 points,
but as we will see, this is not a realistic goal.

As both of these options in practise only requires two turns to be played out,
this is how far ahead we will simulate for this area.

48

4.5 Scenario 3: Reacting to opportunity 4 EXPERIMENTS

4.5.2 Attacking during the �rst turn

Figure 16: Attacking during the �rst turn

To demonstrate just what a bad move attacking during the �rst turn is,
�gure 16 shows the chances for various outcomes. Due to the large amount
of units involved, we had to simplify the counters for surviving units. With a
mere 0.7% chance of victory, and even then most likely with only a single unit
remaining, attacking before the opponent moves out of the zone is truly a bad
choice.

The precise counts of point gains for each and every single outcome of this
scenario would be needlessly long and tedious - so we will only note the actual
end results here. With a maximum gain of 42, as noted above, and a minimum
of -19, this move receives a meager average at -10.3 points.

Note that attacking with less units will only lead to even worse probabilities
and possible gains, as fewer units would have a minimal chance at even surviving
a single round of combat against such odds.

4.5.3 Attacking after opponent move

Figure 17: Attacking after opponent move

By waiting until the opponent have moved a portion of his forces out of the
middle area, and then attacking with all units, we get scenario shown in �gure
17. Instead of a more or less guaranteed loss, we are now looking at a more
or less secure victory - 83.1% chance of winning. The opponent is scripted to
not respond by attacking the middle area, as that is not what this scenario was
designed to test. If this seems unrealistic, the reader can feel free to explain the

49

4.5 Scenario 3: Reacting to opportunity 4 EXPERIMENTS

removal of the amount of units shown above in another way instead - perhaps
they were destroyed in an attack on an enemy not shown in our scenario. For
our purposes, it is su�cient that they are no longer part of the defense force,
and we will not need to account for them attempting to recapture the middle
area.

That being said, we will examine the average gains for this set of moves.
As in the previous set, counting points for every outcome would be long and
tedious, and we will again show only the end results. With a maximum gain
of 23 points, since most of the enemy force have moved out and we will not be
taking the eastern area, and again a minimum gain of -19, we get a much more
bene�cial average of 11.6 points gained.

Again, note that attacking with less units will quickly reduce this gain to
the point where it is no longer bene�cial - as small a change as a single unit
staying behind, be it an infantry or an artillery, will reduce the players chance
of victory to an average of 56.5%, with an average gain of 5.6 points. Removing
an additional unit takes that number down to 27.4%, with an average gain of
a meager 0.3 points. In addition, these numbers are based on the fact that the
opponent would not retaliate should he win, which in a real scenario would be
highly unlikely. Again, it is clear that the biggest challenge for the player team
of LA in this scenario is getting all the LA to cooperate over more than one
turn, in order to get the optimal rewards.

4.5.4 Summary

An overview of the average point gains for various actions ordered by expected
performance is show in table 4.

Movement choice Average gain

All units attack during the second turn 11.6 points
All units but one non-tank attack during the second turn 5.6 points

No movement 0 points
All units attack during the �rst turn -10.3 points

Table 4: Scenario 3 - Average point gains by move choice

We observe that even taking no action at all is better than any form of attack
during the �rst round, and that the best gain clearly comes from performing
combined move we designed this scenario for. A single infantry or artillery
staying behind may give some reward, but the di�erence in reward between
that option and the correct choice is large enough that there should be no real
reason for the automata to use it, should it �rst have decided to wait during
the �rst turn set.

50

5 RESULTS

5 Results

Our results are relatively straightforward to understand. For each scenario
and each type of LA, we have followed the same formula. Through testing,
we determine what amount of simulations is required to complete learning, or
converge, depending on the type of automata.

For an assessment of the performance of each algorithm when it comes to
time and computational power required, we have noted the average run times
of each scenario, which have been run on a dedicated 3.0Ghz Intel E8400 CPU.
This will then be used in our discussion on whether this approach has practical
applications on current hardware.

For each scenario, we have then aggregated empirical data over several hun-
dreds of complete simulation runs to gain a statistical �gure on how each type
of automata performs. To ease the explaining of each result, we have given a
graphical presentation. Finally, we have analyzed the performance of the various
LA, in an attempt to explain the reasons behind each outcome.

5.1 Scenario 1

Because several possible move combinations in this scenario are close to each
other when it comes to how many points are to be gained, our automata were
divided in what move to choose from the set described in chapter 4.3. As such,
we will devote a section to each type of LA for this scenario. Each type of LA is
playing against an opponent controlled by the same type of LA, with the goal
being that they would converge onto the choice of moves closest to equal gains
for both sides. As the only truly equal gain in this scenario comes from both
automata defending - as the value of the areas are not high enough to risk an
attack - the optimal outcome would yield a net gain of 0.

As explained in chapter 4.3, any outcome of this scenario can be determined
after two turns of both players selecting their moves, and so this is the depth of
simulation we have chosen to use.

Tsetlin

Through testing, we determined that the best results for this type of LA was
obtained when the �rst turn was simulated at least 500 times, for each which
the second turn was simulated at least 300 times. Average time consumption
per run was 115 seconds.

51

5.1 Scenario 1 5 RESULTS

Figure 18 shows two things. First, how often the two infantry units picked
each combination of moves throughout our test runs. Second, how often the
tank unit chose each of the two possible responses to each of the choices where
the infantry are defending - either the two of them together, or one in each
territory. The tanks response to the last two options, meaning what it chooses
to do after having been attacked, has been omitted for simplicity, simply because
it gave the same results every time: Depending on the outcome of that battle,
the tank would be either dead, in which case it would do nothing, or it would
attack, seeing as at least one of the infantry would already be dead.

Figure 18: Results - Scenario 1 - Tsetlin - Graphical representation

As can be seen from the graphic, the Tsetlin, even with its reduced chance
of performing a penalty, is not particularly decisive. While it is understandable
that it has problems choosing between the defense scenarios, it is more worrying
that it seems to have a preference for the worst move of all - attacking with a
single infantry, even above the slightly better choice of attacking with both
together. The opponent has its own share of problems - attacking when the
infantry are defending together is possibly the worst move of all - however it

52

5.1 Scenario 1 5 RESULTS

does not pick this one very often. We note that the opponent has a preference for
attacking when the infantry split up, even if we have found that this is slightly
less bene�cial than standing still, but the di�erence in point gains between these
two options is minimal, as explained in chapter 4.3.3.

LRI

In order to converge properly in this particular scenario, the LA required the
�rst turn to be simulated at least 800 times, for each which the second turn was
simulated at least 400 times. Average time consumption for each run was 260
seconds.

Figure 19 shows, as for the Tsetlin Automata, how often each movement
combinationn was chosen after learning had completed. Again, the �nal option
- what the tank would choose after having been attacked by either one or two
infantry - have been omitted, for the same reasons as above.

Figure 19: Results - Scenario 1 - LRI - Graphical representation

The infantry controlled by the LRI is performing quite a bit better than

53

5.1 Scenario 1 5 RESULTS

those controlled by the Tsetlin, picking the better choices - either of the defense
combinations - more often. The LRI automata controlling the tank is performing
in a similar way as above, with a higher preference on attacking in both outcomes
compared to the Tsetlin. In total, the infantry is doing slightly better overall,
while the performance of the tank is slightly worse.

BLA

In order to converge properly, the BLA required the �rst turn to be simulated
at least 700 times, for each which the second turn was simulated at least 300
times. Average time consumption for each run was 170 seconds.

Figure 20 shows which combination of moves the three BLA-controlled units
chose at the end of the learning process. Unlike for the LRI or Tsetlin Au-
tomatas, there are really no need for the secondary columns here - the units
only perform two di�erent moves, both which yield the exact same outcome.

Figure 20: Results - Scenario 1 - BLA - Graphical representation

As can be seen from the graphic, the BLA is highly decisive compared to
the other two types of LA. Even if it might appear to have alternated between
two options, they are in essence the same, giving the same outcome. Either
the infantry defends together, or they split up to defend, and in both cases
the tank decided to stay, seeing that any attack would lead to a minor loss in
points. The outcome of all scenario runs using a BLA on both sides is thus 0
gain for either side. Seeing as any deviation from this course of action would

54

5.1 Scenario 1 5 RESULTS

cause either automata to lose points, it is fair to assume that the BLA is in fact
precise enough to detect even the small variations between each outcome when
given feedback from the game.

Analysis

Overall performance for each type of automata is much as expected - varying in
precision. The Tsetlin, with its random searching between choices to �nd one
which yields consistent rewards, end up with the worst performance, deciding
on the worst move combination possible for the two infantry - a single infantry
attacking - in 21.2% of the runs. Similarly, the tank chose an even worse move
- attacking two defending infantry - 18.2% of the runs where the infantry chose
this combination. The most likely explanation of these deviations from the
expected results, not only for the Tsetlin, but overall for this scenario, is that
the di�erences between an optimal move and a less than optimal move is small
in terms of calculated game state. This is especially true for the LA controlling
the tank, which only looks at a single turn when making its decision.

The performance of the LRI automata may look similar, but is in fact a fair
bit better, at least for the side in charge of the infantry. Compared to the Tsetlin
deciding to use either form of attack in 27.3% of runs, the LRI only attacks in
13.2% of runs. The tank, however, is actually doing slightly worse - attacking
more in both outcomes where the infantry defends. The reason for this might
very well be that several choices for each automata are in fact the same, and
thus the LRI might have trouble deciding upon just one of them.

For example: Whether the tank choose to move or stay when two infantry
are standing together are in essence a nearly identical decision - the change
of points caused by the opponent controlling two very low-value territories is
neglible when it comes to rewards. The same goes for deciding which of the
infantry to attack when they split up, defending one territory each - the e�ect
is identical, but the LRI will still attempt to converge upon one of them.

The performance of the BLA is in its own category - seemingly cooperating
to achieve the best outcome for both sides. With the best two moves for the
infantry involving not attacking, and the least damaging move for the tank in
either outcome actually being to not attack - the BLA seems to have precisely
estimated the statistics behind the outcomes of this scenario. As long as it
is given the time to converge, the BLA shows itself as a highly precise tool,
detecting even the minute di�erences between moves described in chapter 4.3.

And the time to converge is an important factor here. The Tsetlin, by design,
needs less rounds and thus less time before giving a conclusion. More suprisingly
is that the complicated BLA actually converges faster both in turns and in time
than the simpler LRI automata. For scenarios as small as this, the BLA is not as
ine�cient as we �rst thought, but as the amount of simulation rounds required
to converge increases, the BLA gradually works slower, as described in chapter
2.3.3.

55

5.2 Scenario 2 5 RESULTS

5.2 Scenario 2

As could be seen in chapter 4.4, there are really only two options for outcome
of this scenario: The LA controlled side either does what we intended it to do,
or it does not. The di�erence in average point gain between choosing the moves
we intended it to learn, namely using the two turns available to move all three
of its infantry into the valuable zone, and other combination of moves, is simply
too big.

Unlike in scenario 1, the countermoves chosen by the opponent is not of
interest - we already know what moves it will pick. Instead, it is interesting
to us to see what move the automata have selected as its �rst and second set
of moves during simulations. In order to select the correct second move, �rst
all three LA controlling the infantry need to cooperate, moving into the second
territory. In order to get rewarded for this move, however - the automata also
need to choose the correct second move - otherwise the �rst set of moves would
be penalized.

To receive feedback concerning all realistic options in this scenario, we need
to allow the LA-controlled automata to play through three turns - allowing it to
attempt attacking the valuable territory after the tanks have entered it. Because
of this, the search depth of this scenario is three turns for all automata.

Also in contrast to scenario 1, in addition to using each type of automata
for all three turns, we also test the performance of combinations of automata.
For these tests, we have used the slower LRI and BLA automata for the �rst
tier of automata, and the Tsetlin for the second and third turn.

In order to complete learning, and in the case of the LRI and BLA, to
converge properly, each of our automata required their own minimum amount
of simulation rounds for each depth level, giving each of them their own average
time consumption per run, both of which are shown in table 5.

Type of Automata Turn 1 Turn 2 Turn 3 Avg. time

Tsetlin 500 200 100 78 sec.
LRI 700 400 200 405 sec.
BLA 600 300 150 436 sec.

LRI + Tsetlin 700 200 100 116 sec.
BLA + Tsetlin 600 200 100 118 sec.

Table 5: Scenario 2 - Required amount of simulation runs and time consumption

Requiring a similar or lower amount of rounds during the �rst and second
round as in scenario 1 can be attributed to a combination of two factors: This
scenario is much clearer when it comes to what move choices are pro�table, but
at the same time, our LA is required to coordinate an extra unit over another
move. The �nal turn requires signi�cantly less simulations, seeing as its role is
simply to teach the automata that any sort of attack on the defensive position
is far from optimal - thus the feedback is more likely to be precise.

We can also see the expected outcome from our performance tests using

56

5.2 Scenario 2 5 RESULTS

combinations of automata. While using the LRI and BLA for all tiers takes
many times longer than the Tsetlin alone, only using either the LRI or BLA for
the �rst turn cuts large amounts of run time.

Figure 21 shows the percentage of the runs in which each LA, or combina-
tion of LA, have chosen the correct movement combination after learning have
�nished. Note that the percentage is not the average amount of units in each
simulation that learned to perform the correct combined move, but the average
amount in which all three units chose the correct combined move.

Figure 21: Results - Scenario 2 - Graphic representation

We see clearly that both the LRI-automata and the BLA have no problems
with converging on the correct set of moves for all their units. The Tsetlin
automata, which cannot converge at all, still picks the correct combination of
moves in the majority of runs. Even with the Tsetlin giving the LRI automata
and the BLA slightly variable feedback from the second and third turn, both
the LRI automata and the BLA converges on the correct choice every time.

Analysis

The optimal performance for this scenario, as described in chapter 4.4, is moving
all three infantry units to the high-value area. The LRI automata and BLA,
when used for all three turns required to search this scenario thoroughly, have
100% success rate in �nding this optimal set of moves, given time to converge.
And it is the time issue that concerns us here: Even the Tsetlin, which does
not converge at all, is able to come to the same conclusion in 87% of runs, and

57

5.3 Scenario 3 5 RESULTS

accomplishes this much faster. When using the Tsetlin automata for the second
and third turn, and either the LRI or BLA for the �rst, performance improves
signi�cantly, at a slight loss in overall precision.

The interesting point of these three-turn simulations is that they are just
that - simulations. When playing an actual game, determining the �rst move
would be enough, as the simulation would be done again for the next move - and
for this purpose a combination of automata would seem to be a better solution:
Much faster, and minimal or no loss of precision.

5.3 Scenario 3

This scenario comes with a much larger amount of units on the map than the
previous, and thus have a much larger amount of possible outcomes. However,
the amount of units, and thus LA that is required to cooperate, is not that much
larger than in scenario 2.

As in scenario 2, there are again only one strictly correct set of moves. If all
units does not stay in their original territory during the �rst round, the LA will
most likely end up with a loss in points. During the second turn, the best move
by far is for all units to attack together, as this gives the best gain in points.
However, a single unit, whether it be an infantry or an artillery unit, who acted
di�erently will not directly lead to a point loss - merely a lesser gain. For this
reason, we have included a third �eld in our graphic, showing at what percentage
the automata performs an �adequate� move - at most one unit deviates from
the correct choice.

Seeing as all combat should be resolved by the second turn, we are again
only simulating these two turns ahead in this scenario.

As in scenario 2, we will test not only options where one type of LA controls
both turns, but also combinations of the LRI or BLA and the Tsetlin automata.
The amount of simulation runs for each turn required for the various types of
LA and their combinations, along with the average time consumption per run,
can be seen in table 6.

Type of Automata Turn 1 Turn 2 Avg. time

Tsetlin 500 300 5 sec.
LRI 700 400 8 sec.
BLA 800 400 17 sec.

LRI + Tsetlin 700 300 6 sec.
BLA + Tsetlin 800 300 9 sec.

Table 6: Scenario 3 - Required amount of simulation runs and time consumption

Again, there is time to be saved by using a combination of automata, al-
though the di�erence is less apparent than in scenario 2. Note that the average
time consumption for each run is many times lower than in scenario 2, with the
only major change being not simulating a third round.

58

5.3 Scenario 3 5 RESULTS

Figure 22 shows the percentage of the resulting moves after learning have �n-
ished in which each LA have chosen the correct movement combination. Again,
note that the percentage is not the average amount of units in each simulation
that learned to perform the correct move, it is the percentage of runs in which
all units concluded on choosing the correct combined move. In addition, we are
showing the percentage of which at most one unit have chosen another move.
As explained above, this move would most likely lead to a reward, although a
reward smaller than the optimal.

Figure 22: Results - Scenario 3 - Graphic representation

Unlike scenario 2, neither the LRI automata nor the BLA can show a perfect
performance in this scenario. The BLA performs correctly during the �rst turn
every time, but is not quite as certain on the second turn. The LRI automata
has a tighter spread - while they would fail the �rst turn now and then, they
usually pick the correct set of moves during the second turn if the �rst move set
was done correctly.

The Tsetlin-automata, however, does no longer perform as well. Only oc-
casionally managing to get all units to work together properly, and only very
rarely making the correct decision for both moves. When coupled with the LRI,
it even reduce the performance of the LRI automata, most likely by giving it bad
feedback due to its own lacking performance. The BLA seems not as bothered
by the bad feedback of the Tsetlin, managing a perfect score, and even improving
the average performance of the Tsetlin over its standalone performance.

As we expected in chapter 4.5.4, some of the incorrect moves involved only
a single unit acting on its own, which is likely to have given the automata some
false positives. In the cases where this happens during the �rst turn, the au-

59

5.3 Scenario 3 5 RESULTS

tomata usually have a hard time performing a proper second move combination.
When the �rst turn is played correctly, however, a single error may simply be
attributed to the team's automata getting fooled by the false positives, being
rewarded for performing above average even when there is a potentially higher
reward to be gained.

Analysis

As expected, giving the team of automata a tougher challenge in terms of more
units and a more complex situation gives a more varied result. Both the LRI
automata and the BLA still performs very well, and decides upon their actions
in a reasonable time frame. However, this time frame is smaller only because
there was no real need to simulate beyond the second turn, and so we did not.
Adding a third turn to the simulation - for the scenario at hand completely
pointless - we are faced with the same performance problems as seen in scenario
2. During preliminary testing whether two or three rounds would be needed
in order to get a precise result, adding a third round increased the run time
for pure LRI and BLA by a hundred times or more, and for the Tsetlin twenty
times or more, without any apparent increase in precision.

Finally - for the Tsetlin, we seem to have reached the limit on how many
units it is able to coordinate comfortably, only �nding the correct combination
of moves a mere 8% of the time when playing both turns by itself. We could
speculate that this is because the Tsetlin is particularly vulnerable to false pos-
itives. A less than optimal reward might still cause the Tsetlin to become stuck
in a particular choice, as it has no memory of what choices gave it the highest
chance of rewards. However, this should have caused the Tsetlin to have ended
up with a choice where all units but one pick the wrong move, which we are not
seeing.

60

6 SUMMARY

6 Summary

6.1 Conclusion

In this thesis we presented Learning Automata (LA) of various types for use
as players in the game Axis & Allies Revised (A&AR). In particular, we have
studied how each of them respond to prede�ned scenarios within the game, in
order to get a measurement of what performance we might expect should they
be implemented as a full-scale arti�cial player.

We have compared the theoretical bene�ts of LA and Reinforcement Learn-
ing to traditional approaches for Arti�cial Intelligence (AI), and explained the
reasoning behind these bene�ts.

To test the performance of a variety of distinct types of LA, we have imple-
mented the Tsetlin Automata, the Linear Reward Inaction Automata, and the
Bayesian Learning Automata. We then implemented a simulation engine for use
in teaching our LA how to play a subset of A&AR, and created scenarios with
which to challenge our LA to determine their accuracy and performance. Each
type of LA have been tested against themselves and against scripted opponent
in these scenarios, in order to determine if each of them can achieve the desired
combination of reactivity and proactivity.

In order to achieve reactivity for the multiple individual units which populate
the world map in A&AR, we chose to implement the Decentralized Learning
Automata approach. By giving each individual unit their own, independent
Learning Automata, we aimed to let our arti�cial players teach themselves what
combination of moves would be the most bene�cial in any given situation.

In order to achieve proactivity for these Decentralized Learning Automata,
we chose to implement a Multi-Tier Learning Automata approach. We con-
nected a separate, independent LA to each action that could be chosen by the
original LA, and if necessary for each action that could be chosen by each of
these LA. Instead of recieving feedback from its immediate environment, each
LA selecting actions for the units during the earlier turns would receive feedback
based on the performance of other LA during the later turns. Through this, we
aimed to let our teams of LA teach themselves not only what combination of
moves would be bene�cial immediately, but also what combination of moves
would be most bene�cial in the near future.

For each scenario, we have given a complete statistical breakdown of what
feedback could be expected for our LA when performing any of a range of pos-
sible movement combinations. This was done to give an overview of the desired
outcomes of learning, and in order to have the required background information
in order to measure the actual performance of each type of Automata.

The Tsetlin Automata, a very simple form of LA, with no memory of past
rewards or penalties, simply a choice and how many times selecting this choice
have been reinforced with a reward, have performed surprisingly well in our
testing. In its best scenario, it chose the correct movement combinations over
two turns in a respectable 87% of the total runs, ensuring cooperation between
three individual units. In scenarios where the optimal move was less appar-

61

6.1 Conclusion 6 SUMMARY

ent, however, the Tsetlin Automata had a harder time �nding it. The main
attraction of the Tsetlin Automata, however, is not its accuracy. Whereas more
complex types of LA may yield better results, the Tsetlin regularly performs
�well enough�, and does so with much greater speed.

The Linear Reward Inaction Automata, another theoretically simple form
of LA, responds only to rewards, and thus can only change its preferred choice
when a better choice have been found. This approach works very well for our
scenarios where the one combination of moves is clearly better than the others,
as might be expected. The performance of the automata is worse, however,
when the di�erence between a good and a bad choice is small. Given enough
time and one combination of moves clearly better than the others, and the LRI
will converge on the correct one every time. If several other choices are also
bene�cial, the LRI could conclude that a lesser move is the optimal, depending
on the random outcomes when the LRI explores each of them.

The Bayesian Learning Automata, which learns by shaping the curves of
Normal (Gaussian) and Gamma distributions through feedback receieved from
the system, is a complex approach to learning, used as a contrast to our other,
simpler types of LA. It performs near perfectly in all our scenarios, only slightly
less certain when required to coordinate �ve individual units in a scenario where
there are multiple rewarding actions with di�erent average rewards. Both when
it comes to reactivity and proactivity, the BLA performs admirably, and it has
seemingly little trouble coordinating between several Automata at once - nor
with recieving feedback from sub-automata.

For accuracy and overall performance in our small-scale tests, the BLA per-
forms well. However, the design of the BLA involves incrementing parameters
during each iteration, which are then used in computations of n! complexity.
As the complexity of a particular scenario goes up, we see that more iterations
would be needed for any LA to converge. At some point, the BLA becomes
computationally impractical, and even with its high precision, it seems unlikely
that a practical implementation for larger scale experiments can be achieved.

In contrast to this, the LRI updating and selection methods are computation-
ally indi�erent to how many iterations the simulation has been going through,
and as such would likely outperform the BLA in regard to speed at an increasing
rate as the complexity of the scenarios go up.

Overall, our testing shows that the various LA can achieve reasonable pre-
cision in smaller scenarios, which improves when the scenarios have clear out-
comes. Even for smaller scenarios, however, the time spent on simulating in or-
der to allow our LA to learn, even when an average computer CPU is dedicated
to this process alone, leads us to the conclusion that for practical application
in actual games, this approach still needs work. There would be much to gain
through code optimization, as this has not been our main focus in this project,
and simpler games than this would most likely also allow for faster learning, but
if we were to aim at creating a fully capable arti�cial player using this approach,
more computational power would be among the �rst requirements.

Fittingly, this conclusion relates well to other approaches within this �eld -
the best arti�cial players for games such as chess or go employ computational

62

6.2 Further work 6 SUMMARY

powers far beyond the capabilities of the average home computer in order to be
competitive in real-time. If our approach were to be expanded to controlling the
entire game board of A&AR, while keeping precision at a level comparable to
humans, there is no reason why we should expect the average home computer
to be able to conclude on its decision with the speed expected from a human
opponent.

We believe that our approach, while currently impractical for implementa-
tions designed for home use, and as such for any commercial games, gives a
good baseline for further development on learning-based arti�cial players for
turn-based games. We also believe that this approach can be utilized in arti�-
cial alayers in other types of games where the state of the game at any given
time can be quanti�ed in order to give feedback to a LA.

6.2 Further work

Even if the approach described in this thesis has shown its qualities in our subset
of the game A&AR, the work required to make a fully useable and competitive
arti�cial player using it is a massive undertaking. While we believe that the
core concepts of this approach - the Decentralized and Multi-Tiered Learning
Automata - are sound, both these and other facets of our implementation present
ample opportunities for further work.

Testing a wider range of Learning Automata types

While the three selected types of LA included in our implementation span a
wide amount of di�erent classes of LA, we cannot realistically assume that any
of them are neccesarily optimal for this method. As such, testing the approach
using a wide variety of di�erent types of LA would be an area open to further
study.

Expanding the size and complexity of testing scenarios

In this thesis, we have used only a small subset of the complete unit gallery
within A&AR and our scenarios have had relatively few choices for each unit
to decide between. Expanding to more units and larger scenarios would likely
improve the general understanding on the functionality of the approach, and
give further insight into its limitations.

Expanding the search depth of the Multi-Tiered Learning Automata

As we designed our scenarios in a way so as to be able to get correct results
with a limited search depth, we did not need to search further than three turns
ahead. For a larger scale scenario, this may very well be required in order for
an arti�cial player to respond to a situation correctly.

63

6.2 Further work 6 SUMMARY

Improving distinction between states giving similar feedback

As we saw in particular during the testing of our �rst scenario, our approach
is currently at its weakest when there are several outcomes which yield similar
results. Methods to distinguish more closely between these outcomes would
most likely improve both the precision and learning speed of the LA in such
cases.

64

REFERENCES REFERENCES

References

[1] Kok, E., Adaptive reinforcement learning agents in RTS games. Utrecht,
The Netherlands, 2008

[2] The History of Civilization. Available online at
http://www.gamasutra.com/view/feature/1523/the_history_of_civilization.php?print=1

[3] 40th Anniversary Collector's edition of the Risk rules. Available online at
http://www.hasbro.com/common/instruct/RiskCollector%27s40thAnniversaryEdition.PDF

[4] Axis & Allies O�cial Home Page. Available online at
http://www.wizards.com/default.asp?x=ah/aa/welcome

[5] TripleA, an open-source Axis & Allies implementation. Available online at
http://triplea.sourceforge.net/mywiki

[6] Axis & Allies Reference Charts. Available online at
http://calmdragon.net/refcharts4.html

[7] The Axis & Allies Revised Manual. Available online at
http://www.wizards.com/avalonhill/rules/axis2004.pdf

[8] Shannon, C.E., Programming a Computer for Playing Chess, Philosophical
Magazine, Ser.7, Vol. 41, No. 314, 1950

[9] Marsland, T.A., Computer Chess Methods, Encyclopedia of Arti�cial In-
telligence, 1987

[10] O�cial American Go Association Rules of Go. Available online at
http://www.usgo.org/resources/downloads/completerules.pdf

[11] Brügmann, B., Monte Carlo Go, München, Germany, 1993

[12] Gelly, S., Wang, Y., Munos, R & Teytand, O., Modi�cation of UCT with
Patterns in Monte-Carlo Go. Technical Report 6062, INRIA, France, 2006

[13] Rules of diplomacy, 4th edition. Available online at
http://www.wizards.com/avalonhill/rules/diplomacy_rulebook.pdf

[14] Shapiro, A., Fuchs, G. Levinson, R., Learning a Strategy Game using
Pattern-Weights and Self-Play, Santa Cruz, USA, 2002

[15] Tsetlin, M.L., Automaton Theory and Modeling of Biological Systems. New
York: Academic Press, 1973

[16] McCallum, A., Nigam, K., Rennie, J. & Kristie, S., Building Domain-Specic
Search Engines with Machine Learning Techniques, Proc. AAAI-99 Spring
Symposium on Intelligent Agents in Cyberspace, 1999.

[17] Bevilacqua-Linn, M., Machine Learning for Naive Bayesian Spam Filter
Tokenization, 2003

65

REFERENCES REFERENCES

[18] Stensby, A.M., Stochastic Learning-Based Estimation Methods for Pattern-
Recognition and Its Applications to Topic Detection and Tracking. Grim-
stad, Norway, May 2008

[19] Kaelbing, L.P., Moore, A.W. & Littman, M.L., Reinforcement Learning, A
Survey. Journal of Arti�cial Intelligence Research 4, 1996

[20] Oommen, B.J. & Ma, Y.O., Deterministic Learning Automata Solutions to
the Equipartitioning Problem, IEEE Transactions on Computers, vol. 37,
no. 1, 1988

[21] Granmo, O.C., A Bayesian Learning Automata for Solving Two-Armed
Bernoulli Bandit Problems, Grimstad, Norway, 2008

[22] Fink, D., A Compendium of Conjugate Priors, 1995

[23] Weusstein, E. W., Normal Distribution. Available online at
http://mathworld.wolfram.com/NormalDistribution.html

[24] Weisstein, E. W., Gamma Distribution. Available online at
http://mathworld.wolfram.com/GammaDistribution.html

[25] Rempel, D., Axis & Allies Combat Simulator. Available online at
http://frood.net/aacalc/

[26] Gnu Scienti�c Library, Available online at
http://www.gnu.org/software/gsl/

66

