OLEN/

d'*
.,

’Mvprqlf}‘

©
&
0"0-

Managing HMI utilities for control systems

by
Ekaterina Soukhikh

Master’s Thesis in
Information and Communication Technology

Agder University College
Faculty of Engineering and Science

Grimstad
Norway

31 May 2007

Es OR B0

Managing HMI utilities for control systems

Abstract

The supervisor of this project, Origo Engineering AS delivers complete control and
automation systems for the oil industry and smelting plants. Each hardware and
software package is custom-made. A part of the functionality is implemented by scripts —
small programs that are coded and run directly on a Human Machine Interface (HMI)
server. This method has some challenges, which are listed and further described in this
report. Those challenges increase the time and cost of producing the control and
automation system.

The purpose of this master thesis is to design a solution that will solve those challenges.
The solution system is called Utility Framework Server. The intentions and design of a
Utility Framework Server, an application for managing utilities for control systems that
can replace the scripts that are placed on the HMI server, and an implementation of a
prototype for it, are further described in the report.

The research project has investigated possible technologies for the solution, and how
they can participate in improving the current challenges. Service orientation and
component-oriented programming were chosen as the methods for the solution. The
reasons for this choice are also presented in the report.

The architecture has been defined based on analysis of the specifications for the system.
The prototype for the defined architecture has been implemented using Windows
Communication Foundation and .NET. Some clients that can use the services presented
by the server have also been implemented for testing the prototype.

June 2007

—2-

Es OR B0

Managing HMI utilities for control systems

Preface

This thesis was written in cooperation with the company Origo in Kristiansand, as a part
of the Master degree in information and communication technology at Agder University
College. The work was carried out in the period between January 2007 and May 2007.

I would like to thank my supervisors, Andreas Prinz at Agder University College and
Trond Friise from Origo, for valuable help during the entire process of this thesis. I
would also like to thank Sven Harald Nilsen for help with the practical part of the
project, and Pal Espen Nilsen, Jan Pettersen Nytun and Morten Goodwin Olsen for
helpful feedback on this report.

Supervisors:
Trond Friiso
Andreas Prinz

Contact person for Origo:
Sven Harald Nilsen

Author:

Ekaterina Soukhikh

June 2007

-3-

Es OR B0

Managing HMI utilities for control systems

Table of contents

ADSITACE ...ttt et e et e et e e tb e et e e taeebe e taeebeenteeeareeetaeeraeeaaean 2
PrOIACE. .. .ottt ettt e et e et e et e e e te e e et e e e eaaeeeeareeetaeeenreeeneas 3
TaDlE Of CONEENES ...veeevievieeieeeeeeee ettt ettt eete e e v e te e e ae e teesaseeseeeaneenseeeanean 4
FIgure LiSt .ooovoeiciic 5
TADIE LISt ..ttt ettt ettt ettt et e et e e te e e e e etaeeaae e beeetae e teeeaaeereeeaneebeenaaean 6
Example List ... 6
1 INEFOAUCHON oottt ettt et e et e s e e ebeeeaae e beessneeseesaseeseenes 7
1.1 Problem StatemMentc.eeoeviiieiiieeeiee e 7
1.2 Work description........ccccuiueiiiiiniiiiiiiiiiiiiccicicce s 8
1.3 Importance of the Project..........iiiiiiiicc 8
1.4 DeliMItAtiONS ..ccveecuiieiieeiieeieeeiieeieeeteeeie et e e eteeereeereesseesabeesseessseeseesaseeseessseennes 9
1.5 IMIOTIVALION ...ttt e et e e e ette e e e e aaeeeeeabaee e s nsseeeeenseeaeans 9
1.6 Report OULHNE ..o 9

2 Background ... 10
2.1 GENETAL SOIEWATE ..ottt ere e et e ennas 10
2.1.1 C# programming language..........cccocoeveeiicciccccce 10
2.1.2 MICTOSOft INET ...ttt 11
2.1.3 NET Framework 3.0......ccvieiieeiieieeeieeeeeee ettt e 12
2.14 Introduction of Windows Communication Foundation.................... 13

2.2 Software in control and automation systems...........c.cccceeveinieinirciinieenne 17
221 Integrated Operationscccveveveieiiininiic 17
2.2.2 Human machine interface..........cccocveeveeeiieeieecieecieceeeeee e 18
2.2.3 OLE for Process CONntrol...........ccoueeeiieieciieeeiiieceiee e 19
2.2.4 CIMPLCIEY ot 19

3 Problem research and state of the art........cccccecuveeeeeviieeiecceecceeee e 23
3.1 Challenges todayccceiiiiiiiiiiiiiiiiiic s 23
3.1.1 Reusability and dependency ..., 23
3.1.2 Error handling ... 24

3.2 Modern software technologies............cccoccciiiiniiiiiiiininiiie 25
3.2.1 Traditional ”old fashioned” architecturec..ccoeeeevveecvrecieeeenneen. 26
3.2.2 Interfaces vs. INheritanceocceeevieeieieiiecieceeceeceeee e 26
323 Component oriented programming............cccoeeeevninieccnininieecennnnn 28
3.2.4 Service oriented architeCture..........ccoceeeeeevieecieeieeeeeeeeeee e 29
3.2.5 WCEF as SOA-oriented communication modelccccccevveenveennnnn. 30

4 Design of the Utility Framework Server............ccccoeiviiiniiiiiiiiiinicns 33
4.1 System Requirements...........cccooviviiiiiiiniiinininceccnes 34
41.1 Functional Requirements...........ccccccooviiiiiniiiininiiiicee, 34
412 Non-functional Requirements.............ccccccoeiiviniiiinniniincne, 36

June 2007

—4-

Es OR B0

Managing HMI utilities for control systems

42 How does the Utility Framework Server implement the requirements? 37

4.3 USE-CASE TNOAEL......oiiceeiieieeeeteeeete ettt ettt eere e e eteeeetreeeeaaee e 38
44 Component model ... 39
45 The UHIES c.oocueieeieieeeeeeeeteeeeett ettt ettt et et eve e e veeaeeanesreenbeeaesnnens 41
5 Utility Server Prototype ... 44
5.1 SEIVET SIAC ..cuvieieirie ettt et e et e et e e ear e e eaeeeeaseeeeareeeeaneeeereeeeeneas 47
52 Application GUI.........cccccooiiiiiiiiiiiiiiicc s 48
5.3 CIENE SIAC..eiievieeteie ettt e e e et e e eaae e e eare e eeaaeeeneeeeaneas 50
(ST B T=Tai 6 =7 1o) o LRSS 52
6.1 SOIUHION IA@A ..eeeevieeee ettt e e et e et e eaee s 52
6.2 Choosing the technologyc..cccoeiiiviiiniiiiiniiiicce 55
6.3 Similar technologies from other vendorsccccococeeiiiiniiiniiicnne, 57
6.4 Evaluation of the SOIUtION.........cceeiiieiieiieeceeeeeee e 60
7 Conclusion and further Work.........c.oooveeieiiieeiicceececeeee e 62
7.1 CONCIUSION ..vvieitieeceiee ettt et e et eeete e e eaaeeeeaseeeeaseeeesneeeereeeenneas 62
7.2 FUITNET WOTK.eoiiiiieiiceeeeee ettt ettt ae e be e eneeeane s 63
ADDIEVIAIONS ..ottt ettt et e eetaeeeeteeeeeteeeeaeeeesseeeesseeeesseeeesseeeneeeenns 64
RELEIEIICES ...vveeevveeeteeetee ettt et ettt et e e et e e ae e teeease e baeesaeeseeesseensaeesseeaseensseennes 66
APPENIX Lot 69
APPENAIX 2. 71
APPENIX 3.t 74
APPENAIX 4. 78

Figure List

Figure 1 - NET 3.0 Framework Stackccccoccciviiiiiiininiiiiiiiicinccccs 12
Figure 2 - WCE'S ABC ... 14
Figure 3 - CIMPLCIEY ...coviiiiiiiiiiiiciicc s 20
Figure 4 - Scripts on the HMI Server ..o 22
Figure 5 - Error handling with redundancy...........cccccccviinininniiii, 25
Figure 6 - Component-oriented application...........ccccccvviiiiiiiniiiiiniiiie, 28
Figure 7 - Standards in Web Services...........cccovviniiiiiiiniiiiicncccccnee 31
Figure 8 - Utility Framework Server ..o 33
Figure 9 - Use case diagrami............ccoceeviiiniiiiiiiiniiiicieec e 39
Figure 10 - OUF in COMPONENLSccociimiviiiiiiiiiiiiiiiiiccc e 40
Figure 11 — PIOXY ..oouoiieiiiicice e 41
Figure 12 — Services and callbacks..........cccoccouviiiniiiiiniiniiiiiiicicccccee 42
Figure 13 — Prototype modelcccccooiviiiiiiiininiiiiiiicccces 44
Figure 14 - Scenario 1. 45
Figure 15 — 5Cenario 2.........cociviiiiiiniiiiiciccc e 46
June 2007

-5-

EIII

Managing HMI utilities for control systems

Figure 16 - SCeNArio 3.......ccociiiiiiiiiiiiiiieccc e 47
Figure 17 - GUI eXampleccccueiiniiiiiiiiiniiiiiiiciiciccesee s 49
Figure 18 - Compiler sOIUtion ... 52
Figure 19 — COmMPILerc.ccciviiiiiiiiiiiccic e 53
Figure 20 - Generating SCripPtsocoveiieiiiiieiiieeccc e 54
Figure 21 - Service's homepage...........cccociiiiiiiiiiiniiiiiiiiiiiccs 70
Figure 22 - Proxy in Visual Studio........ccccceiiiiiniiiiiiiiiiiiiccccces 74
Figure 23 - Class diagram, server sideccccocoeeiiininiiriiinnieiccce, 78
Figure 24 - Class diagram, client sidecccocccviiiiiiiiiniiniiiiiiicicciccccee 81

Table List

Table 1 — Requirements and solUtionsccccoceiiiiniiiiiiinniiiciccces 37
Table 2 - Components and reqUIirementscccoccevvviviniiicinnnccncccnes 40
Table 3 - Keys and values ... 46
Table 4 - Challenges and solutions ideas...........ccccceiviviniiiiiiiiiiie, 55
Table 5 - WCF and previous Microsoft’s technologies............ccccccccevvniiiiinininnnnnee. 57
Table 6 - SCA and WCE..........ccooiiiiiiicc e 59
Table 7 - WCF bINdings......cccociviiiiniiiiiiiiciiciiccicciccceee e 72

Example List

Example 1 - Base address.........ccccviiiiiiiiiiiniiiiiiiiciiccicccee e 14
Example 2 - Base address format............cccouviiiininiiiiii 14
Example 3 - CONtIacts.......ccoccciviiiiiiiiiniiiiicic e 16
Example 4 - Callback Setup........ccccvuiuiuiiiiniiiiiiiiiiccics 42
Example 5 - Configuration file...........cccceiiniiiiiiiiniiniiiicces 48
Example 6 - XML client descriptionccccccivininiiiiiiininiiiiiicccccces 61
Example 7 - localhost.mapcccceuiiiiiiiiiiiiniiiiiiiiics 75
Example 8 - 10Calhost.CSc.ceviiiiiiiiiiiiiiiicccc e 76
Example 9 - Proxy with SvcUtILexeccoeiiiiniiiiiiiicc, 77
Example 10 - IMassagingService interfacecccocceveieincineinincnnicniicccen 79
Example 11 — IMessagingServiceCallback interface............ccccooeeiiiniiiiicnnnnnnee. 79
Example 12 - The service's class implementation............ccceeevivieivicininicinccninncnnne. 80
Example 13 - Client calling the Serviceccovveiiiiiiiiiiiiiiccce, 80
Example 14 — MessagingServiceCallback...........ccccocoeiiviiiiiininiiiiccce, 81
Example 15 - Server side calling the callbackccccoviiiiiniiiiie, 82
June 2007

-6-

Es OR B0

Managing HMI utilities for control systems

1 Introduction

The external supervisor of this project is Origo Engineering AS. Origo specializes in
delivering hardware and software solutions for the oil industry and melting plants. Each
delivered control and automation system is customized for the purchaser. The
customizing process can be time-consuming. The proposal of this master thesis came
from Sven Harald Nilsen. He is one of those who are currently working with
programming and software development at Origo. Sven Harald Nilsen came up with the
idea to improve the efficiency of customizing HMI systems.

1.1 Problem statement

Control and automation systems consist of a hierarchy where the lowest level consists of
sensors and actuators. These communicate with controllers, which are often
Programmable Logical Controls (PLCs). At the next level (top level) is the Human
Machine Interface (HMI) system. It communicates with the controllers, processes data,
and presents data to the user (operator).

The communication between the HMI and the controllers is both for collecting data and
for commands from the operator, for example, open valves etc. The HMI system has a
server - client architecture. For each customer the HMI system has to be tailor-made.
Today a lot of the functionality for processing and presentation of data is made with the
help of a number of scripts in the HMI systems.

This works fine, but there are three challenges that occur:

1. The scripts are difficult to reuse in different deliveries, resulting in unnecessary
resources being used on SW development. It is also difficult to present the scripts
as products, which should be feasible.

2. The scripts are dependent on the HMI system. This is a drawback if the customer
demands a particular HMI system, or if replacing the HMI system would be
necessary in the future.

3. Due to insufficient error handling, errors in the scripts might cause the entire
HMI system to crash.

Origo Engineering AS is interested in a solution that could answer these three
challenges. The information problem is then specified as “Develop a solution that makes
it easy and stable to include and handle different utility programs on the HMI (Human
Machine Interface) server system”.

June 2007

-7-

Es OR B0

Managing HMI utilities for control systems

1.2 Work description

The first step of the project is to analyze the challenges with customizing the HMI
systems. The way to improve this process by eliminating the challenges has to be found.
This part of the work was divided into 3 tasks:
e Investigate methods for improving reusability of HMI utilities
e Look at possibilities for reducing dependency between HMI utilities and the HMI
system
e Consider methods for error handling

This research was done in cooperation with Origo and became the foundation for setting
up the requirements for the system that could improve the existing situation.

The next step was to review modern software technologies that claim to solve previously
mentioned or similar problems. Service orientation (SO) and component-oriented
programming (COP) were chosen as the solution methods.

The results in the reviews were used to design “an ideal solution” — a system that
implements all the requirements and therefore resolves the current challenges.

The ideal solution, the inputs from Origo and the time scale of the project were then used
to decide what kind of prototype that was going to be developed. The purpose of
creating the prototype was to prove the concepts presented in the ideal solution. The
programming framework Microsoft .NET 3.0 and its new tool for developing distributed
systems that follow SO principles - Windows Communication Foundation (WCF) were
chosen as the tools for implementation. How they enforce the principles of SO and COP
was investigated, and therefore also how they contribute to solving the current
challenges.

1.3 Importance of the project

Origo Engineering AS is eager to get good and functional results from this cooperation
and is willing to help during research and development. Since they are truly interested in
finding an efficient and practical solution to the particular problems they are
experiencing today, cooperation with external supervisor seems to be valuable for both
parts. Since the projects task is to develop a prototype for a bigger solution, it has to be
well documented, so that Origo could use the achieved results for further development
and improvement. Using principles of component oriented programming and
programming tools that are chosen by the supervisor will also contribute to making the
results from this project easier to utilize in future development. A new framework
solution is predicted to increase the efficiency, flexibility and robustness of the existing
system.

June 2007

-8-

Es OR B0

Managing HMI utilities for control systems

1.4 Delimitations

The task is not to create a fully functional Utility Framework for Origo Engineering AS. It
is rather to investigate the possibilities and potentials in existing technologies, and to
make a proposal for a solution for one. A prototype will be created to, in practice,
demonstrate the basic principles of the solution idea and how it will improve the
efficiency of the existing software.

1.5 Motivation

There are several reasons that became the motivation for choosing this particular project.
Among these are:

e This is the research project where a practical output beside the theoretical
researches is expected, what appeals to the author of this thesis.

e Server-client based application programming by using SOA principles is a
quickly developing field that has become an increasingly popular research area
during the latest years.

e Working with .NET and C# appears interesting and challenging. The framework
and programming language are popular in today’s software development, and
are useful to learn.

e Software programming for HMI systems is an interesting field for development.

1.6 Report outline

Report outline section describes an outline of the report. Below is a short summary of the
contents of each chapter.

Introduction chapter briefly introduces the project and describes the problem
assignment, challenges that are going to be solved in the project, work description and
motivation. Chapter two contains some general information about research topic.
Chapter three “Problem research and state of the art” elaborates on the challenges that
have caused the task of this project and describes the choice of methods and tools that
were used to solve them.

Chapter four “Design of the Utility Framework Server” describes the Utility Framework
Server as an application that is going to solve the challenges with customizing the HMIs.
Chapter five “Prototype of the Utility Framework Server” describes the implementation
of a prototype. In the sixth chapter is the discussion of the findings from the previous
chapter. Chapter seven contains a summary of the project conclusions and suggestions
for further work.

June 2007

—9_

Es OR B0

Managing HMI utilities for control systems

2 Background

The background chapter is divided into two parts. The first part describes the
technologies and programming techniques that are general for software development.
The other part concerns the theory and definitions that are special for designing software
products for the industry.

2.1 General software

The technologies used in this project are Microsoft .NET Framework and the C#
programming language. The .NET Framework was recently released in a new version,
3.0. This version is going to be investigated in order to find out if it has something
particularly useful for this projects task. After researching and reading on this subject on
the internet, it was decided to try using Windows Communication Foundation (WCF) for
server-client connections. This new technology seems promising and appealing. On the
other hand, this choice has caused some challenges during the work, as it was difficult to
find proper documentation about WCF, due to the fact that it is a relatively new
technology.

C# and .NET were the tools that Origo desired to be used in project. C# was chosen for
the development because it is one of the languages used by Origo for creating
applications for the Windows platform. .NET is the natural environment for C#
programming.

2.1.1 C# programming language

C# was created in the late nineties and the first complete version was released in the
middle of 2000 as a part of the .NET Framework. C# is a relatively new language and is
often being compared to Java, one of the other often used object-oriented programming
languages. They do have some similarities, for example, they are both modern languages
derived from C and C++. They both have garbage collection (GC). GC is an automatic
memory management. The garbage collector attempts to “remove garbage”, or to free
memory that is used by objects that will never again be accessed or changed by the
application. This list can be continued, and with that many similarities, the need for C#
as a stand-alone programming language can be questioned. So what was the idea behind
its creation? To be platform independent was one of the main design goals back creating
the Java language; and its developers succeeded in it. The independency was achieved
by using the Java Runtime Machine for running the applications, implemented in java.
Even if it successfully addressed many issues surrounding portability, it also caused
some shortcomings in Java. One of them is cross-language interoperability, also called

June 2007

-10-

Es OR B0

Managing HMI utilities for control systems

mixed-language programming. It is, shortly explained, the ability for the code produced
in one language to work easily with the code produced in another language.

Cross-language interoperability is often needed for producing large distributed software
systems. It is no secret that different programming languages are best suited for different
tasks, and at the same time, programmers’ preferences in languages also vary. Service
oriented architecture, which is becoming popular in modern software development and
will get its attention later in this project, implies allowing programmers to use the
language of their choice for implementations. Component-oriented programming insists
on reusability of once created components. If one component can be reused on a wider
variety of platforms and languages, it makes it more valuable. In the light of those new
tendencies, Java has some limitations [10].

Another missing element in Java is full integration with the Windows platform. Java
programs can be executed in a Windows environment (where java virtual machine has
been installed), but Java and Windows are not closely coupled.

In order to fulfill these needs, Microsoft developed C#. The C# language was not created
to be better than Java and was not meant to replace Java. The two languages were both
designed carefully, but with different purposes in mind. If one language has a feature
another lacks, it is the result of design decisions that were made intentionally in a
development process.

C# was specially developed for use in the .NET Framework and it depends on libraries
that the framework defines. Even though C# can be separated from the NET Framework,
they are tightly bound together. Because of this, it is important to have a general
understanding of .NET and why it is significant to C# [11].

2.1.2 Microsoft .NET

The .NET Framework is a programming environment that supports development and
execution of distributed component-based applications. It allows different languages to
work together in creating parts for one application. The framework’s class library
simplifies programming development in, for example, such fields as user interface, data
access, web application development, network communications and others. .NET also
provides security, portability and a common programming model for the Windows
platform.

The two parts of the .NET Framework are most important: Common Language Runtime
(CLR) and .NET Framework Class Library. CLR, as a running tool, is responsible for
executing applications written in programming languages that .NET supports (for
example, C++, C#, J#). A special ability of CLR is that it also provides portability,
allowing mixed-language programming (executes applications where components / parts
are written in different languages) and provides security.

June 2007

-11 -

Es OR B0

Managing HMI utilities for control systems

The .NET Framework Class Library provides a program an access to a runtime
environment. A class library is a collection of already constructed classes and methods
for performing different logic operations, as for example for I/O operations (as showing
information on and getting it from a console window). The .NET 2.0 Framework’s Class
Library is rich and has several built-in functions for different operations.

A limitation is that the framework concentrates on developing applications for Windows
based platforms. Portability is also conditional. As Java virtual machine needs to be
installed on a PC for running Java-applications, an application written in for example C#
will automatically use the .NET Framework class library, will be portable to all .NET
environments.

2.1.3 .NET Framework 3.0

NET 3.0 from Microsoft is a new version of the .NET Framework. The .NET 3.0
Framework came out in alpha-version in November 2007 and has four new parts in
addition to the .NET 2.0 Framework. The beta-version of these four parts was earlier
presented as “WinFX”. The 3.0 Framework is included in Microsoft’s newest addition to
the Windows family — Windows Vista. It will also be included in the next server solution
from Windows, which is now known by the codename Longhorn. Figure 1 presents the
whole .NET 3.0 stack as it exists in Windows Vista [13].

.NET 3.0 applications .NET development tools

-NET 3.0

WCF WPF WCS
(Indigo) (Avalon) (Infocard)

WWF

(Workflow)

.NET 2.0 CLR, .NET 2.0 Base Class Libraries, ASP .NET 2.0,
ADO.NET 2.0, WinForms 2.0

Windows
(Windows XP, Windows Server 2003/R2, Vista/Longhorn)

PC hardware

Figure 1 - .NET 3.0 Framework Stack

June 2007

-12 -

Es OR B0

Managing HMI utilities for control systems

The four new parts are:

e Windows Presentation Foundation
WPF is formerly known by the codename Avalon, it is a tool for creating a user interface
(UI) that is based on .NET, XML and vector graphic technologies, and uses 3D hardware
acceleration.

¢ Windows Workflow Foundation
(WWF) allows for the building of task automation and integrated transactions using
workflows.

e Windows CardSpace
(WCS), formerly code-named InfoCard; a software component for securely storing a
person's digital identity and providing a unified interface for choosing the identity for a
particular transaction, such as logging in to a website.

¢ Windows Communication Foundation
Formerly known by the code-name Indigo, WCF is a service-oriented messaging system
that allows programs to interoperate locally or remotely similar to web services.

A number of previous technologies from Microsoft can be used for implementing of
distributed systems, as ASP.NET web services, Web Services Enhancements, Microsoft
Message Queuing, Enterprise Services/COM+ and .NET Remoting. Those and a number
of new technologies are now gathered in WCEF. This way, WCF gives developers one
programming model where all communication is collected.

2.1.4 Introduction of Windows Communication Foundation

Windows Communication Foundation (WCF) is Microsoft’'s new programming model
for communication inside one and between a numbers of systems. WCF is one of the 4
parts in the new 3.0 .NET Framework.

The WCEF architecture of a distributed application consists of 4 parts (3 without the client
application that can use the services):

e Service
The service is a part of a business functionality or application behavior that you wish to
provide to the external world.

e Host
A host environment is an application domain and process in which the service runs.
e Endpoint

An endpoint is a window through which a WCF service would communicate with the
outside world. A WCF service should expose at least one end point or more.
e Client

June 2007

-13-

Es OR B0

Managing HMI utilities for control systems

A client is any unit that utilizes the service as part of its operations. A client typically
uses a channel created by WCF to interact with the service [20].

The endpoint itself consists of 3 elements:

e Address

e Binding

e Contract
Address describes where the service can be found, binding describes communication
method and the contract element describes available functionality. Those three are called
the ABC’s of WCF. Figure 2 illustrates how the connection between client (host) and
service is happening. All three elements are described later in the report.

message Service
Addrass Contract
endpoint endpoint

Figure 2 - WCF's ABC

2.1.4.1 Address

Every service has a unique address. The base address for a service has to be defined in
the configuration file App.config as is showed in Example 1.

<host>
<baseAddresses>
<add baseAddress="net.tcp://localhost:9000"/>
<add baseAddress="http://localhost:8000"/>
</baseAddresses>
</host>

Example 1 - Base address

This unique address consists of a service address : an IP address, the servers network
name or “localhost” if clients and services are on the same machine, a port number and
definition of a transport protocol. WCF now supports HTTP, TCP, P2P, IPC and MSMQ
protocols. The base address always use the same format. Example 2 presents this format.

[transport]://[machine or domain][:optional port]

Example 2 - Base address format

June 2007

-14-

Es OR B0

Managing HMI utilities for control systems

In the Example 1 the service has two endpoints: one for HTTP and one for TCP
connection. As it was mentioned before, multiple endpoints of one service is allowed,
and it can be usefull to implement a host in a HTTP mode at the beginning (more about it
in the Appendix 1). More information about the transport protocols can be found in the
Bindings paragraph later in the report.

2.1.4.2 Binding

A newly created service has multiple possibilities related to communication patterns. For
example, messages can be synchronous (server waits for reply) and asynchronous
(messages thrown and forgot), queued or not, long-lasting or unstable. Different
protocols can also be used for connections, such as HTTP, TCP, P2P, IPC (named pipes)
or MSMQ. Note that P2P and IPC are strictly not protocols, but are systems of
communication techniques, each one created for own purposes. A peer-to-peer (or P2P)
is a computer network especially set up for file sharing. Inter-Process Communication (or
IPC) is a set of techniques for the exchange of data among two or more threads in one or
more processes. Anyhow this difference is not critical for this project, and they will be
further referred as “protocols”.

Securing messages in WCF is optional. To simplify the process of choosing between
many different communication alternatives, WCF groups a set of such communication
choices into bindings [20].

A binding on WCF is a consistent set of choices within communication: transport
protocol, message encoding, communication pattern, reliability, security and so on. The
main goal of binding is to extract all these communication aspects from the application’s
main programming logic, and place them in the communication configuration
component.

WCF offers 9 standard bindings and they are all further described in Appendix 2. Two of
them that are relevant for the prototype implementation are:

e Basic Binding
Implemented by BasicHttpBinding class, this is the binding for a classic web service; it
inherits principles from earlier ASP’s web services (ASMX). Using this binding allows
old clients to use new web services.

e TCP binding
Offered by NetTcpBinding, it allows machines to communicate over the internet by
using the TCP protocol. It is possible to configure the communication that uses TCP
binding in WCF to support optional reliability, transactions and security. This type of
binding implies that both clients and services have to use WCF.

June 2007

-15-

http://en.wikipedia.org/wiki/Thread_%28computer_science%29

Es OR B0

Managing HMI utilities for control systems

When designing the Utility Server solution, TCP binding was chosen as the main
binding. In practice, the service and clients will be placed on the same network, and they
can reach each other thought it. Exposing services to internet is therefore unnecessary.
HTTP binding was created as another choice, just in case (for example, for easier
checking if the services are up and running). As both the service and clients are new
(there are no services or clients already existing), and the flexibility of communication is
important, TCP binding looked like the best choice for the task. This type of binding
allows configuring its reliability to a higher degree, and it can definitely be practical in
the future work with the Utility Server Framework. There is more about binding’s
reliability in Appendix 2.

2.1.4.3 Contracts

Contracts in WCF define how a client can use a service. There are 3 types of services in
WCEF: Service, Data and Message. The service contract describes what operations the
service can perform. Data contracts illustrate data structures that can be used for these
operations. The message contract can be used for managing the structure of SOAP
messages that the service and client will exchange.

Service contracts describe what a service can do out of the list of service operations. A
service operation is defined by an operation contract. An operation contract is similar to
a method. Just like methods, they can receive parameters and return values. Example 3
illustrates contract descriptions in WCF.

[ServiceContract(Cal lbackContract=typeof(IMessagingServiceCal lback))]
public interface IMessagingService

{
[OperationContract]
string SendMessage(string message);
[OperationContract]
int RegisterClient(IsOneWay = true);
}

Example 3 - Contracts

Even thought WCF is a new concept, it relies and resembles in some degree of the other
models of the distributed systems, which are common in software development. On the
other hand, definitions, standards and software technologies that are used in industry or
particularly in creating the control and automation systems are more special and
peculiar. The next section presents some background theory in this area.

June 2007

-16-

Es OR B0

Managing HMI utilities for control systems

2.2 Software in control and automation systems

The development of information technology has caused modifications in automation and
control systems. During the last few years, they have changed from centralization to
distribution, from closure to openness. The appearance of the networks and low-cost but
powerful personal computers caused transformations in a world of industry. Personal
computers are now widely used for visualization, data access, process control and
several other automation and control solutions. This development has brought along
some new definitions, technologies and standards, and some of these will be discussed in
this chapter.

The external supervisor of this project, Origo Engineering AS, works on delivering a
complete equipment system for control and surveillance of processes for the oil industry
and smelting plants. As a hardware/software supplier, they also want to contribute by
putting integrated operations into practice and thus improving the safety of the offshore
production on the Norwegian continental shelf. Origo is already working on
implementing secure and reliable Information and Communication Technology (ICT)
systems; and they are ready to make some changes, taking new standards for integrated
operations into consideration. This project assignment isn’t directly connected to
integrated operations as this part is given by the supervisor. It concerns the improvement
of existing solutions in order to achieve better reusability and faultlessness. The
Integrated Operations (IO) is then one of the motivations for this project.

2.2.1 Integrated operations

The oil and gas industry depends on reliability of ICT systems no less than the rest of the
modern society. Also, hardware and software computer technologies developed
dramatically during the last few years. These two reasons contribute to an ever growing
popularity of the subject of integrated operations. Norwegian o0il companies look at IO as
one of the first priorities in a strategy for future development.

Integrated operations are expected to contribute to increasing exploitation and
production, in reducing expenses and in improving the safety in the offshore industry.
White paper nr 38 [1] from the Norwegian Parliament defines integrated operations as
“Use of information technologies for achieving better decisions, remote control of
equipment and procedures, and to move the functions and personnel onshore”. It is a
rather general request for oil companies to invest in an improvement of existing
computer technologies and in relocating its personnel onshore. The result is that the
amount of money spent for those purposes is increasing and the anticipations about 10
are big.

June 2007

-17 -

Es OR B0

Managing HMI utilities for control systems

2.2.2 Human machine interface

When the personal computers began to be widely used in heavy industries, among other
things for visualization of production data, the term Human Machine Interface (HMI)
has appeared. HMI is one of many types of user interfaces, the other definition often
used in the context of computer systems and electronic devices. The user interface of a
mechanical system, a vehicle or an industrial installation is often called the HMI. [2]

As the user interface represents some computer device or a program, HMI represents
industrial processes and devices (as for example, motors, pumps, valves and dumpers).
HMI gathers information from them by using, for example, Programmable Logic
Controllers (PLCs). A PLC is a microprocessor used for automation of industrial
processes.

Special types of communication mechanisms are used for communication between HMI
and PLC. A number of standards are used for controlling this communication. As for
example, the special type of Ethernet called Industrial Ethernet (IEEE 802.3u) can be used
between HMI and PLCs. Field-busses are often used for communication between PLCs
and industrial devices (the same motors, valves, etc); one example is Profibus (IEC
61158/EN 50170). AS-Interface (EN 500295) can be used for gathering data from sensors
and indicators. All three are international standards of network and communication
interfaces, and more of them exist.

In the past, any integration between HMI and PLC systems was typically designed
manually, because of a lack of standards for a common framework. This approach had
several disadvantages that were described in an article [3]:
e Each software application had to include a driver for a particular hardware
device
e There were conflicts between drivers of various manufacturers, caused by the fact
that some hardware features are not supported by all driver developers.
e A change in the hardware's capabilities could cause functionality failures of some
drivers.
e Conflicts when accessing the HW device could occur, because two different SW
packages cannot use the same device at the same time since they each contain an
independent driver.

All these disadvantages caused an evident need of a standardized solution, a framework
that enables data from PLCs to be shared and transformed into usable information in a
quick and efficient way. “This framework should be robust enough so that, as new
situations arise, information can be exchanged and analyzed in ways not previously
anticipated” [4]. To solve the problems a new communication standard - OLE for Process
Control (OPC) was created. OLE is a shortening for Object Linking and Embedding.

June 2007

-18-

Es OR B0

Managing HMI utilities for control systems

2.2.3 OLE for Process Control

The OPC technology was developed as an industrial standard. OPC defines an open
interface over which PLC and HMI components are able to exchange data.

OLE/COM part stands for Microsoft's object technology that aims at integrating
applications with a great deal of compatibility between the various applications. [4]

OPC expands OLE by including structure definitions, interfaces and techniques for a
more efficient data transfer. OPC uses all the advantages of OLE, but adapts it to the
requirements of the process control industry [6]. In other words, OPC makes it easier for
a user to control and monitor hardware devices on a Windows OS platform, regardless
of the device vendor.

The usefulness of the OPC standard is discussed and proved in another article [7] which
concludes that: “Because of the distributed architecture based on COM/DCOM is well
supported by the Windows platform, and the OPC specification is mainly based on
COM/DCOM technology, the distributed data integration using OPC technology is a
suitable and acceptable choice. It is easy to design and implement”. Among other
characteristics flexibility, upgradeability, openness and efficiency are mentioned, and are
all definitely important qualities. It is no less important that the OPC improves the
reliability and accuracy of a HMI system, because it is sometimes absolutely necessary
that the data from PLCs are exact and up-to-date. This is especially the case when it
comes to dangerous environments in some industries. As an example, a dangerously
high gas concentration on an oil platform has to be detected and warned about at an
early stage in order to prevent accidents.

These are the challenges that Origo Engineering AS has to work with, as they are
developing control and automation systems for critical environments. They have chosen
to use Cimplicity HMI software for developing tailor-made systems for the customers.
Cimplicity HMI is a part of GE Fanuc Automation’s “Process Execution and Supervisory
Control” family of Intelligent Production Management solutions. It is designed using the
standards and 32-bit code from Microsoft.

2.2.4 Cimplicity

The Cimplicity HMI system is used for communication with the controllers, processing
data from sensors and devices, and presenting data to the user (operator). The
presentation of data is done in text, graphical or even alarm form (for example, phone
message or email warnings). The communication between the HMI and the controllers is
both for collecting data and for commands from the operator [3]. The HMI system has a
server-client architecture and can use different protocols for communicating with PLCs.
Cimplicity can, for example, communicate with PLCs produced by GE Fanuc with the
use of a proprietary protocol called GE-SRTP. The previously mentioned OPC standard

June 2007

-19 -

Es OR B0

Managing HMI utilities for control systems

can also be used for communicating with PLCs. Figure 3 demonstrates the structure of
the Cimplicity system [9].

Server Server Viewer Viewer

(&G

J J

PLC PLC

Figure 3 - Cimplicity

The Cimplicity system consists of two main parts; Servers and viewers. Servers collect
and distribute system data from PLCs. They seamlessly share data while providing users
with a real-time view of the processes being monitored. Viewers allow users to view and
interact with the data distributed by the servers, and also to perform control actions.

The information architecture for the Process Industry involves the following 3 levels, as
they are described in [8]: Business, Process and Field Management. Consistent
communication between all 3 of them is a motivation for a reliable automation and
control system. And the Cimplicity HMI claims to simplify and improve each level. On a
business level it simplifies report generating, and then accomplishes integration of
information collected from processes into a business management system, for example,
for further managing of financial aspects.

It also improves supervisory control of processes (level 2), not only showing relevant and
instant information, but also allows storing it in a structured form (as in a database).
Cimplicity HMI gathers data in an object oriented form, but can then further connect
with and store the information in relational databases like Microsoft Access, Microsoft
SQL Server, Oracle and others.

At the Field management level, Cimplicity HMI allows connecting with hundreds of
devices from different manufacturers, and then enlarges the amount and wealth of
information that is available for collection and monitoring.

The feature that makes the system flexible is the OPC allowing Cimplicity HMI to be
integrated with other systems. Two OPC components are available for such purposes:
e OPC C(lient capabilities are built into HMI Servers and allow for an easy
integration of third-party device communications drivers (for example, PLCs
from other vendors than GE Fanuc)

June 2007

-20-

Es OR B0

Managing HMI utilities for control systems

e OPC Server provides the same open integration capabilities to third-party
software packages.

The piece that still needs to be purchased (it is not the part of the Cimplicity) is an OPC
Device Communication server. One of the possibilities is the OPC Server for device
communication from MatriconOPC. MatrikonOPC also produces OPC servers and
clients that can be used instead of those that come with Cimplicity. MatrikonOPC is one
of the world's largest OPC developers and more information about it and its products
can be found in [28].

As it was mentioned in the problem description, HMI servers are customized for
customers with the help of an amount of scripts. Cimplicity has built-in tools that allow
creating scripts and programming applications with a Visual Basic style language. This
language has over 600 basic functions that directly integrate with Cimplicity points,
alarms and the error logger. Scripting is provided to extend the HMI capabilities for
tailoring individual applications according to specific needs. Scripts can be executed
based on process events, time or in a specified order [9].

Also included is a tool that allows defining when to start the execution of the script,
responding to process events. An event can be defined as a changing point (for example,
a limit in a temperature or a gas level), as an alarm state, or based on the time of day.
One event may invoke multiple actions and one action may be invoked by many events.

The Basic Control Engine monitors for events and executes the scripts. This is
Cimplicity’s own running tool. Based on a multi-threaded scripting design, it can invoke
and execute multiple programs concurrently. Queued Script Execution extends the
functionality of the Basic Control Engine. It allows for setting up scripts in a queue, in the
order of which they will be executed later.

These tools are being used by Origo in the development of scripts, according to the
customers” needs. The scripts are usually small programs with limited functionality.
Examples of scripts that are used today provided by Origo are: Gasstrend, Network
monitor, Report Generator, Client - Server monitor, SAP Integration, C&E monitor, E-
mail/SMS notification, etc. Figure 4 illustrates the scripts on the HMI server.

June 2007

-21 -

Es OR B0

Managing HMI utilities for control systems

Cimplicity HMI server

Basic Control Engine

Scripts:
Network Sms / email
monitor alert

Figure 4 - Scripts on the HMI server

Origo’s final product is a complete automation and control system, that includes both
hardware and software parts that are ready to use.

June 2007

—22_

Es OR B0

Managing HMI utilities for control systems

3 Problem research and state of the art

Cimlicity HMI system is tailor-made for each customer. The main part of this is done by
creating the amount of small programs with limited functionality. These programs are
being called utilities later in the report. As it was illustrated in Figure 4, an example of
such a utility can be a program that pings or checks networks status of PLCs, and returns
the table with results — a Network monitor. The other example is the program that
alarms operators with a message on the phone or e-mail if the temperature level
measured on indicators is getting higher than usual. Origo offers a number of different
utilities of this kind, and each customer can choose between those he finds useful. The
utilities are then added to the complete solution of the HMI system.

3.1 Challenges today

Three challenges with this method were mentioned in the task description. Here they
will be further analysed. The first two challenges, reusability and dependency are
relatively close in relation to their solution, and will be described together.

3.1.1 Reusability and dependency

The situation today is that developers have to rewrite very similar scripts for creating
similar utilities again and again according to customers’ specifications. Different
customers order different sets of utilities. The sets are assembled from the number of
available scripts. Those utilities are then programmed as scripts directly on the HMI
server. They can’t be reused because they have to be tailored for each particular HMI
server. Copy and paste method saves some time, but some changes still have to be made
manually. The copy and paste method causes small and annoying mistakes in scripts. At
the end, a lack of reusability results in a waste of valuable time.

The other problem is dependency. The utilities are developed uniquely for each HMI
server and depend on their HMI for running. They have to be coded from the beginning,
for example when a customer gets a new HMI server, even if the requirements stay the
same.

Such waste of time and efforts doesn’t seem to be the most efficient way of working. It
seems logical that it should be possible to reuse the utilities. In order to achieve the
reusability, they have to become independent of the HMI server. The independency
implies that utilities are not coded directly on HMI and don’t use HMI’s control engine
for running. The utilities have to be re-created as independent small programs with a
similar functionality that the scripts from the HMI server have. The utilities still have to

June 2007

-23-

Es OR B0

Managing HMI utilities for control systems

communicate with the HMI in order to get data from PLCs. And it has to be possible to
create different “sets” of utilities, according to a customer’s demands.

This brings us to the idea of a Utility Framework Server — a complete solution for the
challenges with scripting on the HMI. The hardware part is obvious — the Utility
Framework Server is a personal computer with an installed operating system, and placed
on the same network as the HMI and PLCs (as shown on Figure 3). As for the software
part, the Utility Framework Server is a stand-alone application with these main
purposes:

e To act like a server for managing clients - utility programs.

e To communicate with HMI server in order to exchange the information with

PLCs.

The Utility Framework Server should also solve the three challenges listed in the project
description. As for the part about communicating with HMI server, the use of third-party
software is anticipated, as for example an OPC server.

3.1.2 Error handling

The third challenge lies in the error handling mechanisms. The main cause of the
problem is still the same — scripting on the HMI. As the utilities are unique for each HMI
server, they don’t have a standard error handling mechanism. The utilities are placed
and run directly on the HMI, and a crash in the utility can cause a crash of the HMI
server. As the crash of a HMI server is highly undesirable, methods for generalizing
error handling have to be explored. The method used today is suggested by the
producers of the Cimplicity HMI software, and implies doubling the hardware
resources. Figure 5 demonstrates the technique as it is described in the developer manual

[9].

June 2007

—24-

OR GO

i

Managing HMI utilities for control systems

geconda™
primary Server

Servel I
Server ; '
Redundancy]
\\ ——
gdunda“c"\“_ . le Reaunda©y
Nev otk ® L Cab

A PLC Redundancy

mary
P”P\.C

Figure 5 - Error handling with redundancy

The method is first and foremost used for preventing hardware errors. Instead of one
hardware / software package, containing server, network and PLC, two similar packages
are delivered to the client, one as primary and the other as secondary.

Cimplicity projects are configured so that a secondary system is ready to take over
operations automatically when the primary system fails. It provides an automatic
switchover from the primary system to a backup, in the event of a hardware failure or an
application crash. All the main HMI functions are transferred during the failure, so
critical data acquisition, alarming, logging and security operations continue without
interruption.

This technique works in practice (as attended, mainly for preventing the hardware
errors), but due to its cost, it cannot be called efficient. Doubling of hardware resources
increases the price considerably. The other issue is that if the scripts are absolutely
identical on both servers (primary and secondary), they can probably cause errors at the
same time and under the same conditions. In this case, it doesn’t make sense to use the
redundancy as a software errors preventing method.

3.2 Modern software technologies

The three challenges — reusability, dependency and error handling - with the scripting on
the HMI are likely common for today’s software. In fact, the service-oriented philosophy
was created in order to find the solution for these and similar challenges. Service
orientation is a relatively new definition in programming and will be presented later in
this section. At first, the problems with modern software systems and the development
process of the solutions are presented. The question is how are they relevant for the three
challenges that are a part of the problem description of this project?

June 2007

- 25—

Es OR B0

Managing HMI utilities for control systems

3.2.1 Traditional "old fashioned” architecture

Larger systems are designed and implemented as a number of classes that are usually
developed based on Object Oriented Programming (OOP) principles. OOP is a
programming “philosophy” that was used commonly since 1990 and resulted in an
amount of well-designed and well-working solutions. All the same, some inappropriate
results can appear in such systems. One of the causes is that components of such a
system are tight-attached with each other, as they use and exchange data as objects /
classes and often shares data structures. As it was discovered in practice, a large OOP
system lacks or has in a lesser way the next features:

e Ability for updating
When parts of the system have to be updated or corrected, it often causes influence on
the whole system. The result is that it may be necessary to take the whole system or parts
of it out of service. Obviously this is not always possible or desirable, as in oil-industry
where software systems have to be working and reliable at all time.

e Reusability
In software development there is often a need for reusing the parts from earlier
developed systems, and it is desirable to make systems as generic as possible,
particularly with respect to reusing some parts of the code later, in projects with similar
requirements. Even so, such systems are often so tight-bounded in itself at the end, that it
is difficult to reuse parts without time-consuming adjustment that makes its reusability
unprofitable.

e Extensibility / Scalability

Shifting or extending of hardware resources can also be problematic. Big and advanced
systems often employ clustering methods. For a number of years it was easier to add
more hardware and software parts to the system than to change it as a whole, and it is
typical for not just the oil, but several other industries. This causes the need for highly
educated expertise, a lot of money and resources to make the switch to other and more
modern technologies. With regards to this, developers now have to think about how
their systems can be renewed in the future.

e Maintainability
All the three previously explained problems make the systems expensive to maintain, at
least because of its complicity. The larger the system is, the more vulnerable it to the
challenges.

3.2.2 Interfaces vs. Inheritance

In object-oriented analysis and design, an application is modelled as a complex hierarchy
of classes that serve the common goal to achieve the requirements as close as possible. A

June 2007

- 26 -

Es OR B0

Managing HMI utilities for control systems

developer can re-use existing code by inheriting it from an existing base class and
specialise its behaviour. To be able to do that, a developer must be familiar with the
details of an implementation of the base-class. This form of re-use is called “white-box
reuse” and it doesn’t allow for economy of scale of large programs, or easy adoption of
third party frameworks.

Component-oriented applications support black-box reuse, which allows reusing
existing components without caring about its internals, as long as the component
complies with some predefined set of operations or interfaces. The component-oriented
frameworks still allow developers to use inheritance in implementations. Nevertheless,
the developers are encouraged to concentrate themselves on factoring out the interfaces
that can be used as contracts between components and clients, instead of designing
complex class hierarchies. Using interfaces instead of inheritance (which is common for
OOP) between the classes is one of the main ideas behind Component Oriented
Programming (COP). COP can be presented as “OOP with role modelling (interfaces)”.
The use of an interface alone is said to solve the challenges in a certain degree. As for
example, the use of the interface is said to improve the reusability.

By practicing, it was discovered that it is easier to improve the mentioned challenges
with the large software systems by dividing or breaking down the whole bigger system
into smaller components. As a result, the system becomes faster in production, more
robust and more scalable, and the development and maintenance costs go down. Instead
of object-oriented architecture we are now looking at a component-oriented approach
that is the key-factor of NET development.

To describe what component-oriented programming is, it is necessary to define what is
meant by component at first. By its definition, the component is simply the part of
something; related to software developing, the component of the system is usually the
class. Each .NET class is a binary component, which is the definition for component that
is used later in this report. The .NET Framework is used as an example here, but is of
course not the only framework practicing COP.

Component-oriented programming is different from object-oriented programming;
although the two methodologies have things in common (remember its evolutionary
nature, as it was mentioned before). To shortly explain it, the object-oriented
programming focuses on the relationships between classes that are combined into one
large binary executable, while component-oriented programming focuses on
interchangeable code modules that work independently and don’t require knowledge of
how the other modules work in order to use them.

June 2007

-27 -

Es OR B0

Managing HMI utilities for control systems

3.2.3 Component oriented programming

In a traditional object-oriented vision, although the logic is divided between a number of
classes, once those are compiled, the result is a monolithic binary code. All the classes
share the same physical deployment unit (for example, EXE) process, address space,
security privileges, and so on. If several developers work on the same code base, they
have to share source files. In an application, a change made to one class, can cause re-
linking of the whole unit, and result in a need to exploring and re-testing all of the other
classes. A component-oriented application comprises a collection of interacting binary
application modules: components and calls that bind them. Figure 6 visualizes the main
principle of a component-oriented application [10] [27].

or

Figure 6 - Component-oriented application

Binary components can have different purposes, some general as communication or file-
access components, or developed especially for the exact application. An application
implements and executes its logic by gluing together the functionality of its components.
Component-enabling technologies as COM, J2EE, CORBA and .NET provide the
infrastructure needed to connect binary components in such a way, that the connections
are invisible and unimportant for the user. One can imagine a component-based
application that has been built from a number of lego-blocks. They can look different and
can have different purposes, but all together create the structure that one wanted to
achieve. One can also add or remove more of them if needed.

The main question of this section is how COP does contribute in solving the previously
mentioned challenges in software systems?

e Ability for updating
Updates made to one component contained to that element only. No existing client of the
component requires recompilation or redeployment. Components can even be updated
while a client application running, as long as the component is not currently being used.
Improvements or fixes of a component will immediately be available to all applications
that use this component, whether on the same machine or across a network.

June 2007

- 28-

Es OR B0

Managing HMI utilities for control systems

e Reusability
As the functionality is shared between components, re-using is getting easier. Again, like
with Lego, one can build different towers and castles re-using the same Lego blocks.
Here comes one more difference between component-oriented and object-oriented
design, using interfaces instead of inheritance that allows reusing of components without
knowing how they do things, but just what they are doing. More about interfaces is later
in the report.

e Extensibility / Scalability
A component-oriented application is easier to extend, as well. After getting new
requirements, they can be implemented by adding new components, without touching
existing components that are not affected by the new requirements.

e Maintainability
These factors reduce the cost of long term maintenance of a component-oriented
application. Development time is getting shorter, because of the reusability factor. One
can select from a range of available components, either earlier self-constructed systems
or from third-party vendors, and thus avoid repeatedly “reinventing the wheel” or doing
the same thing over and over again, something that is not just time consuming, but also
not so motivating.

The next step towards reliable, scalable and easy maintainable systems has become an
appearance of the term “SOA”.

3.2.4 Service oriented architecture

Service orientation (SO) is said to be an evolution of OOP. A subtle difference with SO is
that it can be used to model not only a particular system architecture but larger-scale
constructs such as the way systems interact within the organization, or even how
organizations interact with each other in the outside world. Service orientation is
becoming more popular today and is predicted to dominate enterprise application
integration in the future.

Service oriented architecture (SOA) has as its major goal to achieve the independence
between systems and components. SOA focuses most on functionality of a future system,
in preference to anything else. Platforms, programming languages, algorithms and
protocols take second place. As long as all the parts are able to communicate with each
other using some communication standard, they can be as different and as ignorant to
each other as they, or a developer, want.

“The key is independent services with defined interfaces that can be called to perform
their tasks in a standard way, without the service having foreknowledge of the calling
application, and without the application having or needing knowledge of how the
service actually performs its tasks”. [12]

June 2007

- 20—

Es OR B0

Managing HMI utilities for control systems

Programmers tried to achieve SO-like architecture for quite some time now, for example
through distributed objects as DCOM or CORBA, and also in first generation web
services. That is why SOA, as of today, looks more like evolution of previous
technologies, rather than revolution. It is not something completely new; it is in some
way a further development of the object oriented architecture. This evolutionary aspect
makes moving towards SOA less drastic and makes the learning curve less steep.

It was decided to use WCF in the designing and implementation process, and WCF
claims to be a SOA-oriented communication technology. In the next section it will be
analyzed how WCF employs the principles of SOA. The most important question, what
can WCF do for this particular project?

3.2.5 WCF as SOA-oriented communication model

An application that provides and consumes services is not a new idea. What is new in
WCF is a focus on services instead of objects. WCF developers had SOA in mind while
designing it and that is where its basic principles are coming from.

e Share schema, not class
Unlike older distributed object technologies, services in WCF interact with their clients
only through a XML interface. Behaviours such as passing complete classes or methods
across service boundaries are not allowed.

e Boundaries are explicit
A goal of distributed object technologies such as Distributed COM (DCOM) was to make
remote objects look as much as possible like local objects. While this approach eased
development in some ways by providing a common programming model, it also covered
the obvious differences between local objects and remote objects. Services avoid this
problem by making interactions between services and their clients more explicit. Hiding
distribution is no longer a goal.

e Services are autonomous
A WCF service and its clients agree on the interface between them, but are otherwise
independent. They may be written in different languages, use different runtime
environments, such as the CLR or the Java Virtual Machine, execute on different
platforms, and differ in some other ways, as long as they both support the SOAP
message standard.

e Use policy-based compatibility
When possible, determining which options to use between systems should rely on WS-
Policy-based mechanisms [14].

June 2007

-30-

Es OR B0

Managing HMI utilities for control systems

Motivation for implying the two last principles was:
e To create the technology that guarantees compatibility between different
platforms and contractors, and
e To allow the developers to choose the communication technology.

By focusing on services and implying SOA principles, WCF reminds more about web
services, one of the other technologies for creating the distributed systems. According to
the W3C [21], a web service is defined as “a software system designed to support
interoperable machine-to-machine interaction over a network”.

Figure 7 illustrates standards for message exchanging that are typically used in web
services [29]. WCF implies the same standards and those will be described later.

Service
Informator

Service
client

Figure 7 - Standards in web services

WCEF employs WSDL standard for describing of services and SOAP messages for
communication between a service and its clients. This makes WCF-based applications
interoperable with any other process that communicates via SOAP messages. WCF
supports WS-1 Basic Profile specification, and it lets it communicate with other non-WCF
applications, as long as those also support WS-I Basic Profile.

Basic Profile defines if it is SOAP or WSDL or UDDI that is used, as long as a web service
follows the Basic Profile specifications.

WSDL — Web Service Description Language specifies how a web services is described, so
that the client can communicate with it. This description contains information about
what protocol, message format and operations that service supports [15].

UDDI - Universal Description, Discovery and Integration is a “telephone book” for
services where web services can be registered, so it became possible to find and use web
services that others have made and displays for disposal [16].

June 2007

-31-

Es OR B0

Managing HMI utilities for control systems

In WCF a message is the basic unit of data that is exchanged between server and client.
WCEF permits the serialization of a message in a variety of formats including binary, text
XML or some custom format. SOAP is a protocol for exchanging messages, SOAP is
transport neutral, and it means that it is independent from the underlying transport
method. Typically HTTP is used, but also plain TCP or other protocols such SMTP or
FTP can be used [17].

Beside WS-I Basic Profile, WCF also supports some WS-* specifications that was made by
Microsoft, SAP and IBM, and that expands WS-I Basic Profile specifications with new
possibilities for security, reliability and transactions. [18] [19]

Compatibility between different constructors is quite important for this project. While
platform compatibility is less important, as the most if not all software suppliers for oil-
industry use newer versions of Windows based platforms, but the compatibility between
constructors is significant. In future, the client for Utility Server system can be created in
different programming languages and by different developers. And they still have to be
available to consume the same services from Ultility Server.

The other problem with current technologies is that developers have to choose
connection methods for distributed applications pretty early in the development process,
because a choice of design architecture and algorithms are dependent on communication
methods. If the communication requirements change, it will not be easy to reuse the old
application with new communication methods.

On the other hand, WCF isolates application logic from communication methods. The
reason for this is that the communication mechanism is only defined in the configuration
tile, and WCF allows choosing from different communication methods. So for changing
the communication mechanism it is only necessary to change settings in a configuration
file.

As for this particular project, it is unknown if the changing of communication methods
will be necessary in the future, but extra flexibility is always an advantage software
applications.

June 2007

-32-

Es OR B0

Managing HMI utilities for control systems

4 Design of the Utility Framework Server

The idea of the Utility Framework Server was briefly introduced in the previous chapter.
Chapter four is dedicated to explaining the design of the new server and how it is going
to solve the three challenges with the scripting on the HMI. Figure 8 presents the first
model of the Utility Framework Server, main principles of which will be described
immediately after.

Server

Services HMI

(0]
Data P |e—
C

Utility Utility 2

Figure 8 - Utility Framework Server

The new server is going to act as a connecting link between HMI server and utilities —
small programs that reproduces functionality of the old scripts. The server will take care
and to transfer data between the utilities and the HMI server. The server itself uses OPC
standard for connecting to HMI server. The other purpose of the server is to manage the
utilities. It has to be possible to, for example, add new and to remove old utilities. This
will increase the scalability of the system, and will make it easier to adapt the HMI
system to the orders from the customer.

The scripts from HMI will be presented as utilities and act like clients against a new
server. The relocation of these from the HMI server on their own server helps with the
dependency and partially with the error-handling problem. It also helps to improve the
reusability in a long-term view.

All the new recreated utilities must have the same “skeleton” or have to follow the same
design standard. This allows that the utilities will be able to use the same services from
server, and sends and receives messages in the same format. The communication
between the Utility Framework Server and its utilities goes both ways, from server to
client, and from client to server. The communication between the clients is not the
requirement. In order to allow the other way communication, from client and to the
server, all the clients have to provide same services — methods located on clients that will
be used by server. In this case the clients have to act like a server.

June 2007

-33-

Es OR B0

Managing HMI utilities for control systems

System requirements present detailed description of the functionality of the Utility
Framework Server.

4.1 System Requirements

After analyzing the problem description, the system requirements for the Utility
Framework Server were set up. These requirements relate to the software part of the
Utility Framework Server, the hardware part is granted by supervisor.

The requirements are divided into 2 categories: functional — those are directly about
systems functionality, and non-functional — all kinds of side-requirements. The
requirements are set up in a three-structure, as some of them deepen others.

All requirements follow the same description standard:

Requirement <ID>: <short name>, Priority: <A- most important; B- important; C - least
important>

Description: <What is the requirement about?>

4.1.1 Functional Requirements

> Requirement R1: Utility Framework, Priority A
Description: The Utility Framework is a distributed system for managing utilities.

> Requirement R1.1: Reusability, Priority A
Description: The Utility Framework should solve the reusability problem with HMI.

— Requirement R1.1.1: Standard for utilities, Priority A
Description: The utilities should follow the same “skeleton” in design, probably
by using the same interface.

> Requirement R1.1.2: Standard for communication, Priority A
Description: The server and utilities should have a standard interface for
connection between them.

> Requirement R1.1.2.1: Knowledge about services, Priority A
Description: The utilities should have knowledge about available services.

> Requirement R1.1.2.2: Registering of utilities, Priority A
Description: The server should make services available for clients
(utilities).

June 2007

-34-

Es OR B0

Managing HMI utilities for control systems

> Requirement R1.1.2.3: Registering of utilities, Priority A
Description: The server should have a mechanism for registering of
utilities.

> Requirement R1.2: Dependency, Priority A
Description: The Utility Framework should solve the dependency problem with
HMI.

> Requirement R1.2.1: HMI connection, Priority B
Description: The Utility Framework should have a method / service for
communication with HMI server.

> Requirement R1.3: Error handling, Priority A
Description: The Utility Framework should solve the error handling problem
with HMIL

— Requirement R1.3.1: Error detection, Priority B
Description: The Utility Framework should have mechanisms for error
detection.

> Requirement R1.3.2: Error display, Priority B
Description: The Utility Framework should have mechanism for showing,
logging and reporting detected errors.

> Requirement R1.3.3: Error handling, Priority B
Description: The Utility Framework should be able to react to detected
erTors.

> Requirement R1.4: Scalability, Priority A
Description: The Utility Framework should be able to handle a number of
utilities (more than one).

> Requirement R1.4.1: Utilities, Priority: A
Description: The utilities can be places on the same (local) machine or on
the other on network.

> Requirement R1.4.2: Concurrency, Priority: A
Description: The Utility Framework Server should have some
mechanisms for concurrency handling of utilities.

> Requirement R1.4.3: Flexibility, Priority: A
Description: The Utility Framework Server should handle utilities of
different kinds (in functionality, developers, etc.).

June 2007

- 35—

Es OR B0

Managing HMI utilities for control systems

> Requirement R1.5: GUI, Priority: A
Description: The Utility Framework Server has to have GUI, from which the user
could operate the utilities, and also perform some operations with them.

> Requirement R1.5.1: User input, Priority: A
Description: User input should be possible through a mouse.

> Requirement R1.6: Utility Manager, Priority: A
Description: The Utility Framework Server should manage the available utilities.

> Requirement R1.6.1: Adding utilities, Priority: A
Description: It should be possible to add new utilities to the server.

> Requirement R1.6.2: Removing utilities, Priority: A
Description: It should be possible to remove or deactivate some utilities
from the server.

> Requirement R1.6.3: Running, Priority: A
Description: It should be possible to run and to stop the utilities from the
server.

> Requirement R2: Utilities, Priority: A

Description: The utilities form the part of the Utility Framework Server. The utilities
should be able to employ the server’s functionality. Later, a couple of examples for
utilities have to be created for testing of the prototype.

4.1.2 Non-functional Requirements

Requirement NR1: Documentation, Priority: A
Description: Design has to be well-documented, so that Origo could take over further
development.

Requirement NR2: Technology, Priority: A
Description: Using of .NET technology is required.

Requirement NR3: Programming language, Priority: A
Description: Using of C# programming language is required.

Requirement NR4: Copyright, Priority: A
Description: No Origo’s business information should come out public.

June 2007

- 36—

EIII

OR &0

Managing HMI utilities for control systems

4.2 How does the Utility Framework Server implement the
requirements?

The main idea is to relocate some functionality from HMI server, and place it on its own
server. This relocation idea itself participates in solving the three challenges that were
mentioned before: reusability, dependency and error handling. These challenges are
listed as requirements R1.1, R1.2 and R1.3. The chosen solution technology (.NET and

WCF) partially implements some other requirements, as it has built-in methods that help

to solve those kinds of problems (for example, the requirement R1.1.2). Some
implementations have to be made to implement the remaining requirements. Table 1
demonstrates the ideas and methods for solving functional requirements.

Table 1 - Requirements and solutions

Requirement
ID

Solutions

R1.1

The functionality from scripts from HMI will be implemented as
independent utilities and managed by the Utility Server. Those
utilities can be reused in different HMI servers, because Utility Sever
will use an OPC standard for communication between those two.

R1.1.1, R3.1

All utilities should follow the same structure. It will be implemented
probably by using the same interface for all utilities or just by
containing the same class’ structure: some variables and methods
must be common for all the utilities.

R1.1.2

Communication between all the utilities and the server should be
standardized. If it is assumed that communication goes both ways,
and by using WCF, it will be implemented by 2 steps:

e The server exposes a number of services. All the utilities know
about these services and can use them. Although different utility
can get a different data from server, and return different results,
the type of data must be the same. As in Example 3, the method
SendMessage that returns string value is the same and known to
all utilities, but the value can differ.

e The server use methods exposed by clients. These methods
should probably be the same in all the utilities or comes from the
list of possible methods that the server knows about and can use.

R1.1.2.1

Mechanisms in WCF for providing the information about the
available services to the client should be explored.

R1.1.2.2

The server should be up and running.

R1.1.2.3

The method for registering clients/utilities should be implemented.

June 2007

-37-

EIII

OR &0

Managing HMI utilities for control systems

R1.2 Physically removing utilities from HMI server obviously reduces
dependency. The utilities will no longer be running directly on the
HMI; instead they will use its own server. The Utility Framework
Server should be able to communicate with different versions of the
HMI server, probably again with the help of a third-party software,
that uses OPC standard.

R1.2.1 This is not the first priority requirement. It is assumed that this part
will be granted by using the third-party software provided by Origo.

R1.3 As the scripts are no longer running directly on HMI server, they
will not cause a risk of crashing of it.

R1.3.1,R1.3.2 | Methods for error discovering, handling and showing errors should

R1.3.3 be implemented in the Utility server.

R1.4,R1.4.2 Should be implemented.

R1.4.1,R1.4.3 Mechanisms for this in WCF should be explored or else
implemented. Some functionality comes also out of implementing
the requirement R1.1.2.

R1.5,R1.5.1 Should be implemented.

R1.6,R1.6.1, Should be implemented.

R1.6.2, R1.6.3

R2 Some examples of the utilities should be implemented.

Out of system requirements, Utility Framework functionality is constructed. One more
thing has to be mention here; it is about the “Utility Framework Server” conception. In
fact, this definition varies in the report. In some cases, services, GUI and other
components but without the utilities are defined as the Utility Framework Server. In
other cases, utilities (or clients of services) are also a part of this definition. This
difference in using the term is not critical of understanding the context; but is done for
reasons of clarity.

4.3 Use-case model

Use-case diagram is used to describe the actions between the actors. The actors are the
parts of a system that were presented before: Utility Client, Framework Utility Services
and GUI, and HMI server. Figure 9 presents Utility Framework functionality in a form of
the use-case diagram, as an easy and schematic way.

June 2007

- 38 -

Es OR B0

Managing HMI utilities for control systems

Start running utility
client

Locate the services
R1.1.2

Start running
services

Get and show
information from clients
R1.5

Request information
from clients

Request status
update from clients

Register clients

R1.1.2.3 GUI

ervices /
Components

Stop running
services

Utility

Show errors
R1.3.2

Send in-data from HMI to
client application

Connect to HMI
R1.2.1

Return application
results

Get in-data from HMI
R1.2.1

Stop running utlity client
R1.6.3

Detect errors
R1.3.1

project)

Utility’s primary
functionality

Manage errors

R1.3.3

Add new clients
R1.6.1

Deactivate some clients
R1.6.2

Figure 9 - Use case diagram

As it showed by diagram, some actions are divided between two actors; and some of
actions are performed by actors themselves. Some of the actions came directly from the
requirements, and they are marked with the requirement ID. The others implement the
side-functionality. For example, actions that helps to solve the requirements or actions
that are logically inevitable (as start and stop executing clients, etc.).

4.4 Component model

As it was decided to use component-oriented programming, the whole system are
divided and presented as a number of blocks — components. I want to specify that the
components are not the layers of the system — they are “independent” parts. Each
component has its own role, which is implemented by the number of functions. Also in
order to follow SOA and COP principles, each component (as class) implements an
interface. In the model the utilities are placed outside, it is done to underline that they
can be placed physically “outside” the server system, and by meaning of that, on the

June 2007

-39-

Es OR B0

Managing HMI utilities for control systems

other machine on a network. They can also be placed on a local machine — in this
meaning, the same machine that the server. Figure 10 shows the component structure of
the Utility Framework Server.

Utility Framework Server

Ut”ity Manager Communication
Services configuation 4@ - = = = Oi

IOrigoUtilityServer I0rigoUtility] Communication

configuation
GUI (input/output) —O)

IForm
icati ' Program logic
OPC communication I—O g g

-! IOPCconnector

i . |
HMI communication —

—! IHMIconnector

Error Manager :—O

IErrorManager

Utility

r——7T T -

Figure 10 - OUF in components

Each block in the figure represents a component. Each component is responsible for each
own part of the system requirements. Utility Manager is responsible for managing the
utilities. GUI component is responsible for the graphical presentation of the server. OPC
and HMI communication parts are as names implies responsible for communication with
HMI and OPC systems. Error Manager is responsible for error detecting, logging and
displaying. The Utility part forms the part that is identical for all the utilities. Program
logic that varies for each utility comes in addition to the Utility component. The relations
between the components and the requirements are demonstrated in Table 2.

Table 2 - Components and requirements

Component Requirements

Utility R1.1.1, R3.1

Communication configuration, client | R1.1.2.1

side

Communication configuration, server | R1.1.2

side

Utilities Services All the requirements about managing the
utilities (register, add, delete osv.) and R1.4
with all the sub requirements

GUI R1.5 and the sub requirement R1.5.1

OPC and HMI communication R1.2.1

Error manager R1.3 and all the sub requirements

June 2007

- 40 -

Es OR B0

Managing HMI utilities for control systems

Domain Specific Language (DSL) class diagram is created based on functionality
described in use-case diagram and components figure. The whole model is presented
and further described in Figure 23 in Appendix 4.

As it was specified earlier, the utilities are the weaker coupled components of the Utility
Framework. In order to loosen the utilities, WCF is used for communication between the
server and the clients - utilities. Section 4.5 describes how it is done.

4.5 The Utilities

For implementing the server-client communication in WCF, it is required to create a local
stand-in for the service, called a proxy. The term “proxy” defines a software design
pattern. Shortly, a proxy is a class that acts as an interface for something else. This
"something else" can be anything: a network connection, a file, a large object in memory
or some other resource that is expensive or impossible to duplicate. In WCF a proxy is
being created for each and every service call made.

The proxy is connected to a particular endpoint on the target service. The client then
invokes the service's operations via its proxy, and simulates the server. Figure 11 shows
how this looks and has been reproduced from [14].

Process Process
. Application (Application
Client Domain Domain
k» Address o
proxy e Mmethods
| |
Ik WCF

Figure 11 — Proxy

Creating a proxy requires knowing precisely what contracts are exposed by the target
endpoint. Those contracts definitions are used to generate the proxy. In WCF, this
process is performed by a tool called svcutil. If the service is implemented using WCF,
svcutil can access the service's dynamic-link library (DLL) to learn about the contract and
generate a proxy. DLL is Microsoft's implementation of the shared library concept. If
only the service's WSDL definition is available, svcutil can read this to produce a proxy.
If only the service itself is available, svcutil can access it directly using either WS-
MetadataExchange or a simple HTTP GET to acquire the service's WSDL interface
definition, then generate the proxy. When the proxy is generated, the client can create a
new instance of the proxy, and then invoke the services by using it.

June 2007

-41 -

Es OR B0

Managing HMI utilities for control systems

One more thing remains to be specified by the client: the exact endpoint it wishes to
invoke operations on. Like a service, the client must specify the endpoint's contract, its
binding, and its address, and this is typically done in a config file. In fact, if enough
information is available, svcutil will automatically generate an appropriate client
configuration file for the target service. A practical guide about how to generate the
proxy and the configuration files for clients in Visual Studio or by using svcutil can be
found in Appendix 3.

The fact that the communication between the clients and the server has to go both ways
was made early in the design process. The possibilities for implementing this in WCF
have to be investigated. The methods that are placed on a client side and are used by a
server are referred as callbacks in WCF, and this is the term that will be used later in the
report. A callback allows the service to call back to the client [20]. Figure 12 illustrates the
services on a server and callbacks on a client side.

Client side

—>O_ Services
Callbacks]
O« Server side

Figure 12 — Services and callbacks

Although callback objects are not full services (for example, one cannot initiate a new
communication channel with a callback object), for the purposes of implementation they
can be thought of as a kind of services. An example of a callback is when the server
contacts the clients to inform them about some data updates.

The client is one who is going to host a callback object and expose a callback endpoint.
All the client need to do for hosting a callback object is to instantiate the callback object
and construct a context around it as it showed in Example 4.

class MyCallback : IMyContractCallback

{
public void OnCallback()

{3}

IMyContractCallback callback = new MyCallback();
InstanceContext context = new InstanceContext(callback);

Example 4 - Callback setup

The InstanceContext class (ServiceModel namespace from WCEF, supported in .NET 3.0
Framework) provides a constructor that takes the service instance to the host. Any public
static members of this type are thread safe. Any instance members are not guaranteed to
be thread safe. The callback methods are being executed on a thread from the thread

June 2007

—42-

Es OR B0

Managing HMI utilities for control systems

pool, it is therefore important to provide the thread safety in the callback methods and in
the object that provides it. The use of synchronization objects and locks to access the
member variable of the client is required.

June 2007

- 43 -

Es OR B0

Managing HMI utilities for control systems

5 Utility Server Prototype

After further discussing the model and architecture of Utility Framework Server
prototype, a prototype model was created. This first implementation has limited
functionality. The components that are drown with stroke lines will not be implemented
because of the time limitations (see Figure 10). This means that the prototype will not
have any communication with HMI or OPC, but so far works as a stand-alone
application for managing the utilities. An error manager component will not be
implemented either. Therefore the prototype only implements the requirements, which
were assigned to the three other components — Utility Manager Services, GUI and Ultility.
The first prototype model is presented in Figure 13.

StartClient()
RefreshData()
StopClient()

I
I
v |
Client/ Utility Manager |
Utility |
| HMI
A A I
RegisterClient() |
GetData() |
UpdateData() StartServer() | PLC
StopServer()
ShowClients()
GUI

Figure 13 - Prototype model

The client uses following services from the server: RegisterClient(), GetData() and
UpdateData(). The server has to “callback” next services from client: StartClient(),
RefreshData() and StopClient(). The first challenge is to get the communication between
the client and the server to work using the WCF technology and test its efficiency. Next
step is to create a GUI part for the server that has next functionality: StartServer(),
StopServer() and ShowClients(). Three scenarios with sequence diagrams further
describe the prototype’s functionality.

Scenario 1

The sequence diagram in Figure 14 shows the scenario when the server is started, it
registers the clients (utilities), stores the information from the clients and displays it in
the GUL

June 2007

—44 -

i

Managing HMI utilities for control systems

OR &0

Utility Utility Manager

New StartServer()
service
host

initiate connection
> Return

client
number

(key)

int key

data += key

GetData(key)

Return client
data

HRVIC
cll

String data
Datalkey]

=data

A

4 show data

Services GUI

Figure 14 - Scenario 1

2

menu event: start server
-

User

1. The service starts running after the action from the user (Menu - Start Server). If the

service is not running, the utilities will not get an answer on theirs requests (in stage

2) and will throw an exception error message.

2. The utility client initiates connection: it asks for running the RegisterClient() method
on the server side. As the result of this method, each client gets its number: the server

distributes numbers from 1 to N for each client, based on the connection time. After

getting its number, the client adds it to a data string, which already contains its name,

IP address, some text description about a client and a list of keys and values (see

scenario 2 for further information), gathered in one string.

3. The server asks the client utility for information. The utility sends its data string to
the server. On the server this data is being stored in an array.

4. The server divides the string back into logical pieces (name, description, etc) for

displaying it on GUL

Scenario 2

As it is mentioned in the stage 2 in the scenario 1, the utility client sends keys and values
as the part of the data string. These keys define the data that are used by the utility, and
the values are the current values of this data. Therefore the keys and values vary in each
utility. For example, for the Ping Client utility, the keys can be IP addresses that are
going to be monitored, and a timeout variable that defines how often the check is run.
For the SMS/Email Alarm utility, the keys are the email addresses and phone numbers
that will be alarmed. These keys and values from the client are displayed as a table on
GUI (one table for each client), resembling illustrated in Table 3.

June 2007

— 45—

Es OR B0

Managing HMI utilities for control systems

Table 3 - Keys and values

key value

P 62.73.201.5

timeout 200

Email ekatesO5@student.hia.no

The values for the keys can be changed by the user. Figure 15 describes actions that are
performed after the user changes keys’ values.

Utility Manager Q

Utility .
_ Services GUI User B
changing
activate event: values changing the keys’
confirm -~ values
button show data
_— >
E RefreshData() changes on client[key] | [_ button event: confirm E
- -
update changes
vaues UpdateData(key) update
Datalkey]

Figure 15 — Scenario 2

1. The user changes the keys’ values on GUI. This action activates a confirm button
(“Refresh” button on Figure 17).

2. If the changes are confirmed by the user, the server runs the RefreshData() method
on the client side, and sends the updates to the client.

3. The client updates the values of the updated keys and initiate running the
UpdateData() method on the server side. This method updates the data for following
client stored in the array.

Scenario 3
Third scenario describes actions for starting and stopping the clients, and it is illustrated
by the sequence diagram in Figure 16.

June 2007

—46 -

i

Managing HMI utilities for control systems

Utility

run utility
and return
result

StartClient(key)

String result

deactivate|
utility

A

repeat for] T
all clients
StopClient(key)

statuscode
e ——

Utility Manager
Services

run client[key]

ShowResult()

stop clients

stop client[key]

GUI

button event:
start client

display result

menu event
-
or button event
-

Figure 16 - Scenario 3

perform
action

perform
action

1. The method is started after clicking “Run” button on the server’s GUI (see Figure 17).
After the actions performed by the user, the server initiates starting the clients — a
callback function that runs on the client side. The results are displayed on GUL

After the actions performed by the user, the server initiates stopping the clients — a

callback function that runs on the client side. The method can be started in two ways:
after stopping the server (“Stop Server” from menuy), or by clicking “Stop” button on

GUL

5.1 Server side

The functionality of the prototype’s server side - the Utility Manager Services, is already
described by the three sequence diagrams in the scenarios. This section presents
configuration of the server. For client side to be able to see the services that is presented
by the server, the server has to be configured. Example 5 illustrates the configuration file

for the serve

T.

June 2007

—47 -

Es OR B0

Managing HMI utilities for control systems

<?xml version="1.0" encoding=""utf-8" ?>
<configuration>
<system.serviceModel>
<services>
<service name="UtilityManagerV2_MessagingService"
behaviorConfiguration="serviceBehavior'>
<endpoint contract="UtilityManagerV2. IMessagingService"
binding="netTcpBinding” />
<endpoint contract=""IMetadataExchange"
binding="mexHttpBinding" />
<host>
<baseAddresses>
<add baseAddress="net.tcp://localhost:9000"/>
<add baseAddress="http://localhost:8000"/>
</baseAddresses>
</host>
</service>
</services>

Example 5 - Configuration file

In the prototype all the clients are placed on the same computer as the server, that is why
the local base address is used. When the clients / utilities are placed on the other
machines, the only change that has to be made is that the “localhost” needs to be
changed to the server’s IP. “MessagingService” here is the service’s name, and
UtilityManagerV2 is its namespace. The available services are declared in the
IMessagingService interface and are implemented in MessagingService class. Further
description about implementation of the Utility Manager can be found in Appendix 4.

5.2 Application GUI

The .NET 2.0 Framework gives developers the choice between two application models:
the Windows application model and the Web application model. Applications that are
designed for Windows uses the Windows application model. The classes provided by
Windows Form library are designed to be used for GUI development and allows the
developers to create command windows, buttons, menus, toolbars etc — in other words
all the usual components of an application with a GUIL. Windows Form also supports
ActiveX controls. The other application model is an Active Server Pages .NET (ASP
.NET) model. It can be used for publishing both XML Web services and Web forms. ASP
NET provides the set of Web Form controls that are used to generate the Ul, usually in
the form of HTML. Web Forms also support the developing of interactive Web pages.

The .NET 3.0 Framework offers a new application model - WPF. This one among other
things can be used for creating vector-based animations. It is in a way Microsoft’s answer
to the Adobe Flash (previously known as Macromedia Flash) integrated development
environment (IDE). All the three application models are placed on top of the .NET

June 2007

- 48 -

Es OR B0

Managing HMI utilities for control systems

Framework and are using the same basic class libraries, virtual machine for running and
runtime environment.

Among these alternatives, Windows Forms was chosen for creating the GUI for the
Utility Framework Server. The decision was based on these three reasons:

e The Utility Framework Server is going to be placed on a machine with the
Windows OS. This decision was made earlier and because of other reasons. The
fact that applications using Windows Form can only be run in a Windows
environment is not a limitation in this case.

e The accessibility of the GUI on the Web was not required in this project.

e Visual Studio simplifies the development of Windows Form based applications to
a large degree, making this process less time-consuming. It also makes the
learning process easier, especially for those who have created applications before
but used different tools for the GUL

Figure 17 demonstrates how the user interface of the prototype looks.

o5 OrigoUtilityServer g@
Menu
Main Page
[] 1 :Client Ping I'm the first implemented example of utility and a client to
[] 2:Client 5kS femail alert uze this zervice. Il ping one ip and show the result if you
run me. |'m on local host now: B2.73. 201 5.
F.eyp Walue
IF B2.73.201.5
IF B2.73.201.4
IF B2.73.201.3
IF B2.73.201.2
N 2000
R] [R efrezh] [Stop]

Figure 17 - GUI example

The design of the GUI was not a priority, just the functionality. The GUI allows the user
to start and stop the server, activate and deactivate clients, and show the information
about available utilities. The list of available clients and the short description of each of
those are presented in the form. The GUI also makes it possible for the user to change the

June 2007

—49 -

Es OR B0

Managing HMI utilities for control systems

keys’ values, and to send the refresh request to the client. The client will then use the
new values while running. The results after running will also be presented in the GUL

5.3 Client side

At first a common skeleton for the clients will be described, and then an example of an
implemented client will be presented.

All the future clients of the Utility Framework Server shall consist of the next parts:
e OrigoUtilityClient class that implements the IOrigoUtilityClient interface. The class
should contain next string variables: utilities’” name, description, IP where it is
placed, and a number of keys, values and results. The OrigoUtilityClient class should
also contain the implementation of methods, which are declared in the interface; and
among them a “void main” method- the method that is responsible for running the
utility.
o UtilityCallback that implements the IUtilityCallback interface. Interface declares the
callbacks that are available for server and the UtilityCallback class contains the
implementation of those.
¢ Functional part, a class that defines utility’s own functionality
e The utility also should utilize a number of automatically generated interfaces and
classes from WCF (among those ServiceClient and ClientChannel interfaces).

Figure 24 in Appendix 4 introduces the class model for the Ping Client utility that was
mentioned numerous times previously in the project. It will now be used as the example
to describe the step-by-step rules for creating the clients.

At first, a ServiceModel (previously mentioned namespace from the WCF class library)
reference must be added to the project. Second, while the server is up and running, the
proxy for the client should be created as it described in Appendix 3. This will already
give a client an insight of available services and expected callbacks. The next step is to
implement the callback methods on client side. The class responsible for programming
logic can vary from one utility to another, but must have some necessary variables, that
were listed before. For Ping client they are: name — Client Ping; Description — some short
text description about utility’s functionality; IP — Ping Client runs a simple check to
discover where it is placed and returns it’s IP address. The same method is suggested to
be implemented in all other classes. The IP address was included as the variable to
indicated where the client is placed (locally with the server or not), mostly for testing
purposes. Keys are the variables that the client uses for running, for Ping Client they are
the IP addresses and a timeout for running a check. Values are simply the values of the
keys — list of the IP-addresses and a number that defines timeout in seconds. After these
values are updated by user, the client Ping will use the new values for running (the keys
remain the same). The forth step is to implement the utilities functionality — in this

June 2007

-50-

Es OR B0

Managing HMI utilities for control systems

example, actual content of the MyPing class, methods that perform the pings. All the
parts of the utility must be placed in the same namespace.

The four steps can seem like a lot of work, but the first three are the same for all the
clients, and those parts can be re-used without hesitation and with only minor changes.
The part that has to be developed for each utility is the forth step — the utility’s own
functionality.

June 2007

-5 -

Es OR B0

Managing HMI utilities for control systems

6 Discussion

Designing the Utility Framework server using the .NET tools was probably the best
solution for this task. And the main reason is that this choice will make it easier for Origo
to take over this project. But at the beginning of the project, other possibilities both
concerning the main solution idea, and the choice of technologies were considered.
Chapter six gives an overview of those. The chapter also contains an evaluation of the
solution.

6.1 Solution idea

The Utility Framework server and the idea to relocate the scripts from the HMI onto its
own server, was not the only solution proposal. Another idea was to create a Utility
compiler — a translator program that would help generating the scripts automatically
from the description of the script’s functionality. The Utility compiler would in this way
make it easier to change and to translate the scripts according to the customers’ needs
and requests. Figure 18 demonstrates the compiler solution.

Cimplicity HMI server

/

Compiler

Program
description

Figure 18 - Compiler solution

The strict definition of a compiler is “a computer program which converts a program
written in a programming language (called the "source code") into code which a
computer can execute (called "object code")” [22].

The right definition here would probably be a translator - a program which converts one
source code into another [22]. In what follows, the word "compiler" is frequently used to
imply "compiler, interpreter, or translator” (an interpreter is a program, which accepts a
program written in a source code, converts it into some readily executable form, and
performs a controlled execution); or in this sense, any one or a combination of these three
definitions. Figure 19 illustrates how a compiler works [30].

June 2007

52—

Es OR B0

Managing HMI utilities for control systems

Compiler
(- oeme N
n J scanner
- /! i
33| / Sarser LB
2g|// - EE
a A 4 - W m
Q g ‘;5/[checker £
m [L
\{ codegen

Figure 19 — Compiler

A compiler goes through different stages while translating from one language to another,
or in this case, translating from a description of the functionality into the script that is
suitable for the particular HMI Server. The scripts are first scanned, and then parsed,
checked and after that a new code is generated. The Symbol table manager does
translations of the syntax from one programming language to another (in this case it will
be to Visual Basic-similar language that is used for scripting in the HMI server). The
error handler removes possible errors and exceptions in the translation process. The
theory around the compilers will not be described here any further. The main point of
this section is to describe how the compiler would solve the challenges from the problem
description.

A study of the existing utilities would have to be performed before creating the compiler.
After comparing the utilities with the same or very similar functionality that were
implemented in the different HMIs, main similarities and differences between them
would be found. After analyzing the similarities, a skeleton for a script would be created.
The skeleton is a part of the script that remains the same independently of the version of
the HMI server. The differences between the utilities provide specifications for the part
of the scripts that will differ from one HMI to another. The difference can not only be
caused by the HMI version. Some constants have to be defined for each particular HMI
server. The compiler then has to create the complete script by combining those parts. In
other words, it has to create the script based on three specifications:

e The script’s functionality

e The version of the HMI server

e Some constants that are specified for the particular HMI.

To explain possible similarities and differences in scripts, an example will be used. As for
the example, the Network Monitor (also referred as Client Ping) utility will be used.
From one HMI server to another, the main functionality remains the same: to ping the
PLCs on the network. It most likely means that methods, received parameters and return
values will remain the same as well. They will create the “skeleton” of the script that
stays unchanged without regard to the HMI. On the other hand, the list of the network
addresses that are going to be checked varies from one HMI system to another. This list

June 2007

-53 -

Es OR B0

Managing HMI utilities for control systems

is the constant that is specifically created for the particular HMI. And if the utility uses
some built-in functions from the HMI server, those could also vary from one version to
another. In some cases, there could be some changes in the syntax of the utility. These
differences are the examples of changes that have to be made according to parameters
determined by the HMI version. The compiler should take it all into consideration when
generating the scripts. Figure 20 illustrates preliminary parameters for generating the
scripts by the compiler.

Description of -
the sF():ript's HMI Specific
functionality parameters constants

Compiler

'
=)

Script

Figure 20 - Generating scripts

Additionally the description of the script’s functionality should be standardized in a way
that allows the compiler to understand it. Creating the standard language for such a
description and describing the programs by using it is a time-consuming process, but it
only has to be done once — or once for each particular program. As to the bit that is
changed according to the HMI version, the new description has to be created for each
new version of the HM]I, if the compiler is going to be used for generating scripts for it.
The specific constants differ for each script and that is why they have to be defined for
each new script.

If created, the compiler will simplify the process of rewriting the scripts over and over.
The developers would not have to rewrite the same scripts; they only have to specify to
the compiler the part that differs in the script (assuming that they have already created
the standard language and used it for describing the skeletons of the existing utilities).
The compiler will automate the procedure of adjusting the scripts to the HMI and then
solve the first challenge, reusability. The scripts are still being dependent of the HMI, but
the problem of dependency is limited in this case. Now the only problem is that the
developers have to find and describe the specifications for each new HMI version.
Assuming that the number of different kinds of HMI servers that Origo is using today is
limited, the problem of dependency nearly disappears afterwards.

June 2007

—-54-—

Es OR B0

Managing HMI utilities for control systems

About the error handling challenge, the problem will not disappear completely. In
contrast to the Utility Framework Server, where the scripts are relocated from the HMI,
in this case the scripts are still running directly on the HMI (as shown in Figure 4) and
that is why they still can cause the crash of it. The chance that this happens is getting
smaller. When the scripts are written manually, the errors are located in scripts and can
also be different for each one of them. This makes it difficult to find and to prevent them.
When the compiler is used to generate the scripts, the appearance of the errors is
centralized in the compiler. The errors can still appear, but after the error has been
located once, it can be corrected directly on the compiler. The errors in the scripts that
have been caused by this error on the compiler are the same, and they can be fixed by re-
compiling the utilities. The error handling process becomes more automated and less
time-consuming. Assuming the compiler would be well tested before use, and the new
generated scripts will be re-tested subsequently, the risk that a critical error occurs is
minimal. The conclusion is that the error handling will benefit from the compiler
solution, along with the other two challenges. Table 4 was set up to summarize which
challenges the different solutions solve.

Table 4 - Challenges and solutions ideas

Challenges Reusability Dependency Error handling
Solutions
Scripting on HMI - - -
Utility Compiler + + +/—
Utility Framework + + +
Server

Even thought the compiler also shows the possibility of improvement in all the three
challenges, the Utility Server Framework was chosen as the solution idea. The time-
consuming matter of the first stage in creating the Utility compiler — to gather the
differences and similarities with the scripts, was one of the reasons the Utility
Framework became the chosen solution in the end. And when Origo only agreed to
provide a very limited number of examples of the existing scripts, it was not enough
information for creating the Utility compiler. To conclude, the Utility Server Framework
is easier in the development, better suits the challenges and also is the solution that was
preferred by the external supervisor.

6.2 Choosing the technology

A number of technologies are available for developing distributed applications. Already
at the early stage of the work it was decided to use the .NET Framework, but several
other solutions are available, and these will be discussed later in this section. At first, the
choice of WCF as the tool for building the distributed system is going to be explained.

June 2007

— 55—

Es OR B0

Managing HMI utilities for control systems

In fact, NET Remoting was considered as the main option at the beginning of the project.
The .NET Remoting is a stable and established technology, in distinction to the relatively
new WCEF. It would not be a problem to find information about it, as it has been well
documented by numerously sources by now. The learning curve would probably be
easier as well, as it would be easier to get help from the teaching supervisors. Despite
these arguments, the WCF was chosen at last. The main motivation for choosing WCF in
preference to .NET Remoting was the fact that it is a relatively new technology that is
exiting to learn more about. The external supervisor of the project, Origo, has also
showed a desire for a closer look and research on this new technology, so they could
later debate on using it and eventually get an easier start by using this report.

During the work this choice did not caused any regrets; even though it caused some
challenges at the beginning. It was also discovered that choosing the .NET Remoting
would probably have create some problems later in the project, the problems that were
avoided by using WCF. One of the examples is the implementation of callbacks — the
methods where clients have to act like a server, and a server acts like a client. Callbacks
became one of the central mechanisms in the final prototype; the number of callback-
methods is almost equal to the number of services provided by the server. One of the
examples of callback is the decision that the clients would be the first to initiate the
connection with the server. WCF provides all the rules and methods for implementing
the callbacks. In fact, implementing the callbacks is not much harder than implementing
usual services (or methods provided by the server for use by the clients). But how could
it be done using .NET Remoting? There a developer had to attach his client to an instance
of a remotely hosted MarshalByRefObject (a class from the .NET 2.0 class library, that
enables access to objects across application domain boundaries in applications that uses
Remoting) and simply subscribe to events published by that object. This model is no
longer available in WCF and there are reasons for it. This architecture is known to be
unstable and difficult to use.

WCF also has other benefits. In order to understand them, the previous Microsoft
products that could be used for building the distributed systems are shortly presented
here. There are numerous other tools and each of them was specialized for its own
purposes. For example, to build basic interoperable Web services, the best choice was
ASP.NET Web services, more commonly referred to as ASMX. To connect two .NET
Framework-based applications, .NET Remoting sometimes was the right approach. If an
application required distributed transactions and other more advanced services, its
creator was likely to use Enterprise Services, the NET Framework's successor to COM+.
To exploit the latest Web services specifications, such as WS-Addressing and WS-
Security, a developer could build applications that used Web Services Enhancements
(WSE), Microsoft's initial implementation of these emerging specifications. And to create
queued, message-based applications, a Windows-based developer would use Microsoft
Message Queuing (MSMQ) [14].

June 2007

— 56 -

Es OR B0

Managing HMI utilities for control systems

The WCF was made to gather all these earlier Microsoft technologies (or support for
them) at one place. Rather than forcing developers to choose one of several possibilities,
WCF lets them create distributed applications that address all of the problems solved by
the technologies it subsumes. While Microsoft will still support these -earlier
technologies, most new applications that would previously have used any of them will
instead be built on WCF.

Table 5 is brought from article [14] and illustrates the relation between the technologies
and use purposes.

Table 5 - WCF and previous Microsoft’s technologies

Technology | ASMX .NET Enterprise WSE MSMQ | WCF
Purpose Remoting Services
Interoperable Web Yes Yes
Services
NET - .NET Yes Yes
Communication
Distributed Yes Yes
Transactions, etc.
Support for WS-* Yes Yes
Specifications
Queued Yes Yes
Messaging

WCF made the life of Windows developers easier by unifying disparate technologies.
The other benefit lies in the fact that the WCF's basic communication mechanism is
SOAP. Using SOAP standard for communication allows WCF applications to
communicate with other software running on other platforms, at least with other
applications that support standard Web services.

6.3 Similar technologies from other vendors

Microsoft is of course not the only vendor supplying software for creating client - server
based systems, although it got the main focus in this project. In fact, many others
vendors exist and they provided almost a countless number of different technologies
through the last years. Some of the technologies have expired; some projects were never
tinished or never became popular among developers, but there are still many of them
that exist and work today. This section is dedicated to giving a general view on some of
them.

Among the other vendors, Sun Microsystems is probably the most familiar. They
developed popular technologies for performing remote procedure calls like Java Remote
Method Invocation API or simply Java RMI. RPC (remote procedure call) is a protocol
that is used for constructing distributed, client-server based applications. It is based on

June 2007

-57-—

Es OR B0

Managing HMI utilities for control systems

extending the concept of conventional or local procedure calling, and allows a computer
program running on one host to call a procedure in a different address space, or host, as
the calling procedure without the programmer needing to explicitly code for this. The
two processes may be on the same system, or they may be on different systems with a
network connecting them. Java RMI allowed in other words creating a distributed
system — a whole system of which the components can be placed on different machines
on a network, and have to be reached remotely when the application is executed. One of
the drawbacks of Java RMI is that it only supports making calls from one java virtual
machine (JVM) to another, resulting in that both server and client side applications have
to be created in Java and therefore use JVM for running.

For supporting code running in a non-JVM framework, Sun Microsystems joined Object
Management Group (OMG), where Apple and Hewlett-Packard are amongst the other
members, and they created a Common Object Request Broker Architecture. CORBA is a
standard that allows the components of the distributed system to be written in multiple
computer languages. Both Java RMI and CORBA try to map object oriented design onto
the network. The main problem with CORBA became its largeness, or its 'everything to
everyone' nature. CORBA tried to solve all the common problems in distributed systems,
but didn’t give the description of solving the concrete ones. The other problem was
already previously mentioned in this report. CORBA hides locations of the objects and
makes no difference in treating the local or remote ones. As time showed, it is not always
necessary and not always the most efficient architecture for designing a system; and it is
definitely not the simplest one.

Web services are another attempt to implement RPC between platforms. Using Web
services a .NET client can call a remote procedure implemented in Java on a UNIX server
(and vice versa). The other advantage of web services is simplicity and standardization.
The most of the current technologies for creating the web services use previously
mentioned SOAP and WSDL standards for message exchanging. XML-RPC is also
widely used. XML-RPC is a RPC protocol that uses XML to encode its calls and HTTP as
a transport mechanism.

There are a number of frameworks are available today, and most of them are written in
Java. The Java Enterprise Edition, Sun Open Net Environment, Apache Axis and gSoap
are some examples of the frameworks and architectures that can be used for Web service
development and deployment. All the 4 mentioned uses SOAP and WSDL standards and
that is why they can create the services that are available for the clients written on the
other languages than the services themselves. The first two were created in Java; Apache
Axis is created partially in Java and partially in C++, and the last one gSOAP is written
only in C++. Apache Axis and gSoap are the open source (which means that both code
and application are available for downloading) frameworks for developing only web
services.

June 2007

- 58 -

Es OR B0

Managing HMI utilities for control systems

The Java Enterprise Edition and the Sun Open Net Environment frameworks are much
bigger systems and are designed for developing complete enterprise solutions. They are
among of the major alternatives to the .NET Framework. JEE SDK is free for
downloading, while Sun ONE is available on CD/DVD for purchasing.

There are also available several Integrated Development Environments (IDEs) that
support web services (and also of course other programs) written on java, among those
are Intelli] IDEA, Sun Java Studio Creator/Enterprise, NetBeans and Eclipse. The first
two require the purchase of license; while NetBeans and Eclipse are the most powerful
open source extensible platforms.

As for WCF, Service Component Architecture (SCA) from vendors of Java EE technology
(as IBM, BEA, Oracle, SAP, IONA, and others) is a new alternative. SCA is a set of
specifications which describe a model for building applications and systems using
principles of SOA. SCA allows developing the systems using the components written not
only with different programming languages, but also using frameworks and
environments commonly used with those languages. For developing distributed
systems, SCA supports a number of communication technologies, for example web
services, messaging systems and RPC. SCA looks much alike WCF, but there are also
some differences. Table 6 shortly summarizes some of the similarities and the differences
of these two [23].

Table 6 - SCA and WCF

Features SCA WCF
Dividing business logic and yes yes
communication methods

Easily defined service interfaces yes yes
Wrapping different yes yes
communication information into

bindings

Relying on the WS-* yes yes
specifications

Supporting one-way calls, yes yes

asynchronous calls, two-way
interactions and message

notification
Supporting session management yes yes
for calls
Supporting programming A number of languages, A number of
languages including C++, Java, languages too, but all
COBOL, and PHP as well those must be build
as XML, BPEL, and XSLT on the .NET
June 2007

59—

Es OR B0

Managing HMI utilities for control systems

Framework’s CLR
Using framework Can be build on top of the .NET Framework
various systems (for

example, Enterprise Java

Bean (EJB) and Spring)
Using of Service Data Objects yes no
(SDO) as a standard approach
for passing data

SCA uses SDO, which is the only industry standard for data access in SOA; WCF doesn’t
dictate what approach should be used for data. Main advantages of SCA are that it is less
technology dependent and that it is available for all existing Java platform technologies
and C++. The main challenges will probably be to become relevant for a large number of
users. Without Microsoft’s support, SCA does not have the advantage that WCF has -
WCF is easily available for developers that are working on Windows platforms, because
it is included in Windows Vista operating system. More information about SCA and
comparing it to WCF is available from [24]. Nevertheless, there is no doubt that a
competition between .NET and JEE is good for both of them and at the end for the
developers.

6.4 Evaluation of the solution

This project’s final solution consists of two parts: the ideal system and the prototype
solution. The ideal system was designed to implement all the requirements, and this was
described in the report. This ideal system is created to be reliable, reusable and scalable
solution, according to the COP and SOA principles. The whole system is constructed by
the number of components. This makes it easier to update some features of the system,
without changing the whole implementation. For example, for changing the GUI,
changes will only concern the GUI component as long as the GUI's interface remains
unchanged. Using the WCF for communication with the utilities makes it easy to add
and remove the utilities, as long at these are created by following the rules.

Nevertheless, there are some issues that have not been discussed before. One of them is
security. Security issues with communication in the developed solution were not the part
of this project. One of the reasons for it is that the future system will be placed on a
closed network (that is physically locked in a room) and will not be exposed to internet.
In view of the IO principles, there is a possibility that the system will be transported
onshore in the future. It will then have to become more open, and the services will have
to be exposed to the utilities /clients or probably communicate with HMI through the
internet connection. In these new conditions, the security issues with the system have to
be reviewed, and additionally implemented.

The implemented prototype has shown some new issues.

June 2007

- 60 -

Es OR B0

Managing HMI utilities for control systems

To simplify the implementation, all the messages between the server and the utility is
now sending as strings. It could be suggested considering looking at the XML format as
the other possibility. Using the XML can probably further simplify creating the utilities,
by using the same description format. Example 6 shows how the Ping Client can be
described by using the XML format. In the current implementation all the parts of the

",y

description are combined in one string and divided with sign “;”.

<name>Ping Client</name>

<desc>l am the Ffirst implemented client...</desc>
<IP>62.73.201.5</1P>

<key>I1P</key>

<value>62.73.201.4</value>

Example 6 - XML client description

Thread safety is the other issue. As it is implemented in a current prototype version, an
array where the server stores the data from all clients is declared as global static variable.
If all the clients were using this array for writing and accessing the information, it could
cause the risk of deadlocks. In the current prototype implementation, the array is not
being accessed directly by clients, but the server itself performs operations for filling it
with data. This has not caused any problems during the testing that was performed as a
part of developing process, but can probably be a hidden danger for the future
development, when the number of clients greatly increases. The other issue is that this
method can possibly bring delays, caused by the fact that the server has to perform
numerous write operations, when it once started and being accessed by, for example, 100
clients. This should be therefore tested. In case of problems, the other solution could be
to allow clients to access the static array, but to set service’s ConcurrencyMode to Multiple
(it is an option in WCF), and to lock the access for the array for all others while one client
is performing some operations with it. It is probable that this solution can also cause the
delays, and therefore it is important to test how it works with multiple clients. The other
solution that could probably be considered as an option, in case of a large number of
clients, is to use the database solution (instead of a static array).

Several parts of this task were challenging at the beginning, it also was one of the reasons
that made this particular task interesting. The .NET Framework, C# programming
language and the standards and technologies of software in industry were the new fields
of study for the author of this report, and because of this the research stage of the project
was time-consuming and sometimes even confusing; but the final results of this project
are considered satisfying.

June 2007

-61-

Es OR B0

Managing HMI utilities for control systems

7 Conclusion and further work

Chapter seven consists of two parts: the first one presents the summation of the project
and the second one gives suggestions for further development.

7.1 Conclusion

This report describes the problems and proposes solutions for customizing control and
automation systems by using the HMI servers. The customizing of HMI servers (like one
called Cimplicity from the vendor GE Fanuc) is done today at Origo Engineering AS by
scripting directly on the HMI. The scripting approach causes challenges with reusability,
dependency and error handling in the scripts. A solution that can simplify the
customising process at Origo was proposed, developed and presented as the Utility
Framework Server as a part of this thesis. By implementing the prototype and utility
example of the ideal solution, the main principles of the Utility Framework Server were
illustrated in practice.

The challenges that Origo experiences today appeared to be common for large modern
software systems. Software developers have tried to find a way to create reliable and
reusable systems for quite some time now, and an amount of techniques and
programming architectures have been created during this time. Some of them have
claimed to solve similar problems to those listed in the problem description. Especially
component oriented programming and service oriented architecture were considered in
this report. They were chosen as the solution techniques for developing the Utility
Framework Server.

The two main ideas considered for the solution were the Utility Framework Server and
the Utility Compiler. After research and analysis, the Utility Framework Server was
chosen as the best solution for the current challenges. Earlier in the report it is shown
exactly how the use of the Utility Framework Server will improve the current situation,
and how it will solve the existing problems. Using the Utility Framework Server can
benefit the developers directly, and the customers indirectly since the developing process
will take less time and also become less expensive.

The implementation of the prototype of the ideal solution has been described. Even
though this prototype has a limited functionality, it helped to discover and put the
power of WCF to use. During the work with the prototype, some new challenges were
discovered (deadlocks and delays in the multiple thread handling). Solution methods for
these challenges were further suggested. The prototype was implemented to simplify the
further development process of the Utility Framework Server and give the developers a
good start, which is my contribution with this project.

June 2007

-62 -

Es OR B0

Managing HMI utilities for control systems

7.2 Further work

The fully-functional Utility Framework Server solution is a final goal for future work.
The work can be divided into following next stages:
¢ Implement the remaining components of the Utility Framework Server
¢ Implement an amount of utilities with different functionality
e Test the concurrency handling and thread safety among the utilities
e Test the implementation against the simulator of the HMI server, also by using
different HMIs
e Combine the hardware and software part, creating the whole ready-to-use
solution.
e DPlace it on the same network with the HMI server and the PLCs.
e Test the implementation in the “real” working environment.
e Document the solution (the final system description and a user manual)

June 2007

- 63 -

Es OR B0

Managing HMI utilities for control systems

Abbreviations
API Application programming interface
ASMX ASP.NET Web services
ASP Active Server Pages
CLR Common Language Runtime
COM Component Object Model
cor Component Oriented Programming

CORBA Common Object Request Broker Architecture
DCOM Distributed Component Object Model

DLL Dynamically linked library

DSL Domain Specific Language

EXE stays for “executable”, in automatically running files
FTP File Transfer Protocol

GC Garbage Collection (in computer science)

GUI Graphical User Interface

ICT Information and Communications Technology

IDE Integrated Development Environment

IPC Inter process communication over named pipes

J2EE, JEE Java (2) Platform, Enterprise Edition
Java RMI Java Remote Method Invocation API
JVM Java Virtual Machine

HMI Human Machine Interface

HTTP Hypertext Transfer Protocol

MSMQ Microsoft Message Queuing

OLE Object Linking and Embedding
OMG Object Management Group
OPC OLE for Process Control
RPC Remote procedure call
p2p Peer-to-peer
PLC Programmable Logical Controller
SDK Software Development Kit
SMTP Simple Mail Transfer Protocol
SOA Service Oriented Architecture
originally stood for Simple Object Access Protocol, and lately also Service
SOAP Oriented Architecture Protocol
June 2007

- 64 -

i

Managing HMI utilities for control systems

OR &0

Sun ONE
TCP

Ul

URL
WCF
WCS
WPF
WSE
WWEF
XML

Sun Open Net Environment
Transmission Control Protocol

User Interface

Uniform Resource Locator

Windows communication foundation
Windows CardSpace

Windows Presentation Foundation
Web Services Enhancements
Windows Workflow Foundation

Extensible Markup Language

June 2007

— 65 -

Es OR B0

Managing HMI utilities for control systems

References

[1] Stortinget: white paper nr.38 (2003 — 2004); “About the Petroleum activity”. The Royal
Ministry of Oil and Energy, May, 2004.

[2] An article about user interface from Wikipedia
http://en.wikipedia.org/wiki/User interface (26.05.2007)

[3] “OPC (OLE for Process Control) Specification and its Developments” (by Li Zheng',
Hiroyuki Nakagawa, OPC Council; Japan, Yamatake Corporation, Volume 2, Aug. 2002).

Available from http://ieeexplore.ieee.org

[4] "Standards-Based Approach Integrates Utility Applications" by D. Becker, H. Falk, J.
Gillerman, S. Mauser, R.Podmor, L. Schneberger (IEEE Computer Applicarions in Power,
Vo01.13, pp.13-20, Oct. 2000). Available from http://ieeexplore.ieee.org

[5] “OPC the de facto standard for real time communication” by Renee Pattle, Jurgen
Ramisch (Parallel and Distributed Real-Time Systems, 1997). Available from
http://ieeexplore.ieee.org

[6] “OLE for Process Control (OPC) for New Industrial Automation Systems” by Yoh
Shimanuki, Japan (Systems, Man, and Cybernetics, 1999). Available from

http://ieeexplore.ieee.org

[7] ”"The Distributed Data Integration and Performance Evaluation in Power Automation
System” by Xu Hong, Wang JianHua, Zheng Shi Quan from Institute of Electrical
Engineering (Parallel and Distributed Computing, Applications and Technologies, 2003).
Available from http://ieeexplore.ieee.org

[8] “Human Machine Interface using OPC (OLE for process control)” by M.Raafay
Anwar, Osama Anwar, Syed Faisal Shamim and Ahmer Ali Zahid (Dec. 2004). Available
from http://ieeexplore.ieee.org

[9] “Complete information guide about Cimplicity HMI”, GE Fanuc Automation 2006,
available from http://www.gefanuc.com/Downloads/en/cimplicityhmi databook.pdf

[10] Book: Programming .NET Components, Second Edition by Juval Lowy, O’'Reilly
(July 2005)

[11] Book: C# 2.0 the complete reference, Second Edition by Herbert Schildt, (2006,
The McGraw-Hill Companies)

June 2007

- 66 -

http://en.wikipedia.org/wiki/User_interface
http://ieeexplore.ieee.org/
http://ieeexplore.ieee.org/
http://ieeexplore.ieee.org/
http://ieeexplore.ieee.org/
http://ieeexplore.ieee.org/
http://ieeexplore.ieee.org/
http://www.gefanuc.com/Downloads/en/cimplicityhmi_databook.pdf

Es OR B0

Managing HMI utilities for control systems

[12] An article about Service Oriented Architecture from Wikipedia,
http://en.wikipedia.org/wiki/Service-oriented architecture (26.05.2007)

[13] The figure is copied from the diagram “Stack .NET 3.0 in Vista” by Thomas Lee
(under GNU Free documentation license), found in spring 2007 at:
http://en.wikipedia.org/wiki/Windows Communication Foundation

[14] Introducing Indigo: An Early Look by David Chappell, Chappell & Associates
February 2005, available from http://msdn2.microsoft.com/en-us/library/aa480188.aspx

[15] W3C "Web Services Description Language (WSDL) 1.17, 2001, available from
http://www.w3.org/TR/wsdl

[16] W3C “UDDI Version 2.04 API” (Published Specification, 2002), available from
http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm

[17] W3C ”SOAP Version 1.2 Part 1: Messaging Framework”, 2007 , available from
http://www.w3.org/TR/soapl2-partl/

[18] “Second-Generation (WS-*) Web Services” by Thomas Erl (2004), available from
http://www.soaspecs.com/page2.asp

[19] “Introduction to Building Windows Communication Foundation Services” by
Clemens Vasters (Newtelligence AG, September 2005), available from
http://msdn2.microsoft.com/en-us/library/aa480190.aspx

[20] Book: Programming WCF services by Juwal Lowy First Edition (February 2007),
O'Reilly

[21] Web Services Glossary (W3C Working Group Note, February 2004), available
from http://www.w3.org/TR/ws-gloss/

[22] “An Elementary Discussion of Compiler/Interpreter Writing”, R. L. GLASS
(Boeing Company, 1969 Seattle, Washington) available from http://portal.acm.org/

[23] “Foundations for Service-Oriented Applications: Comparing WCF and SCA” by
David Chapel, December 2005. Available from
http://www.davidchappell.com/HTML email/Opinari Nol5 12 05.html

[24] "SCA relationship with Windows Communication Framework" by Mike Edwards
(IBM, Mar 20, 2007) available from
http://www.osoa.org/display/Main/SCA+relationship+with+Windows+Communication+
Framework

June 2007

-67 -

http://en.wikipedia.org/wiki/Service-oriented_architecture
http://en.wikipedia.org/wiki/Windows_Communication_Foundation
http://msdn2.microsoft.com/en-us/library/aa480188.aspx
http://www.w3.org/TR/wsdl
http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm
http://www.w3.org/TR/soap12-part1/
http://www.soaspecs.com/page2.asp
http://msdn2.microsoft.com/en-us/library/aa480190.aspx
http://www.w3.org/TR/ws-gloss/
http://portal.acm.org/
http://www.davidchappell.com/HTML_email/Opinari_No15_12_05.html
http://www.osoa.org/display/Main/SCA+relationship+with+Windows+Communication+Framework
http://www.osoa.org/display/Main/SCA+relationship+with+Windows+Communication+Framework

Es OR B0

Managing HMI utilities for control systems

[25] “Writing a “Hello, World” service and client with WCF” sample, found in
February 2007 at http://wcf.netfx3.com/content/BuildingHelloWorld.aspx

[26] "Programming Indigo: The Programming Model" by David Pallmann, 2005
available from http://msdn2.microsoft.com/en-us/library/aa480201.aspx or from book:
Programming Indigo Beta Ed edition by David Pallmann (Microsoft Press, 2005)

[27] Picture from http://www.photojojo.com/content/wp-
content/uploads/2006/06/photo _lego blocks.jpg (26.05.2007)

[28] MatriconOPC’s official website http://www.matrikonopc.com/index.aspx
(26.05.2007)

[29] The figure is inspired by the model “Web Services” by H. Voormann (under GNU
Free documentation license), found in spring 2007 at:
http://en.wikipedia.org/wiki/Image:Webservices.png

[30] The figure “Compiler phases” is copied from the lecture “Abstract Syntax” given
by Andreas Prinz in subject IKT408 “Software Engineering and Compiler Design”
(spring semester 2006). The lecture is available from Fronter-system at HiA.

June 2007

- 68 -

http://wcf.netfx3.com/content/BuildingHelloWorld.aspx
http://msdn2.microsoft.com/en-us/library/aa480201.aspx
http://www.photojojo.com/content/wp-content/uploads/2006/06/photo_lego_blocks.jpg
http://www.photojojo.com/content/wp-content/uploads/2006/06/photo_lego_blocks.jpg
http://www.matrikonopc.com/index.aspx
http://en.wikipedia.org/wiki/Image:Webservices.png

Es OR B0

Managing HMI utilities for control systems

Appendix 1

Beginning with WCF and “Hello World!” example

The first natural step in learning WCF was to implement HelloWorld example for en
service/client using WCF technology. This went relatively nice with minor complications
due to some difficulties with finding propitiate information about it.

First problem was to install all the needed components. 3.0 Net Framework is not the
part of the latest Visual Studio (2005), and in order to all libraries come up and will be
usable from it, the additional components has to be installed:

e NET Framework 3.0 SDK
This is the part of Windows Vista, but since Windows XP is used in this project, the
framework has to be installed additionally. This is the only part that needs to be installed
in case if Visual Studio will not be used in a development.

e WCF extension for Visual Studio
As it was mentioned before, WCF is not a standard part of Visual Studio 2005, as the
framework itself came long before the final version of .NET 3.0 Framework. This
extension includes new libraries to Visual Studio, that are needed for running the WCF
applications from Visual Studio; or else one gets error messages because of the lacking
class libraries.

It also was some problems with HelloWorld tutorial that was found at [25] and used as
an example. The problems were caused by some writing errors in the code. But after
some testing and failing, and some changes in code, it worked.

Regardless to what communication protocol a developer is planning to use later, it can
be practical to create a HTTP base address at first. Hosting the service in a HTTP mode
simplifies getting metadata for automatic generating the configuration file. There still
some problems with this in WCF when for example the TCP protocol is used, even
thought it should also be possible. It is therefore usefull to implement a host in a HTTP
mode at the beginning. This HTTP adress can be deleted or changed to TCP afterwards.
When the service is up and running, the HTTP-hosted service will be available from any
web browser on the specifyed baseaddress; and the developer will be presented with the
service’s homepage as it is shown in Figure 21. The description on what should be done
further and an example on the service’s client are presented there.

June 2007

- 69—

Es OR B0

Managing HMI utilities for control systems

-

.
) MessagingService Service - Mozilla Firefox E]@
File Edit wiew History Bookmarks Tools Help
v v I\{"J ﬁ [] heepefflocalhost:so0o) x| [* g,
—
vou have created a service,
To test this service, vou will need to create a client and use it to call the service. You can do this using
the swcoutil.exe tool from the comrand line with the following syntax:
svcutil.exe http://localhost:8000/
This will generate a configuration file and a code file that contains the client class, Add the two files to
vour client application and use the generated client class to call the Service. For example:
C#
class Test
{
static woid Hain|)
{
MessagingierviceClient client = new MessaginglerviceClient() !
f4 TUze the 'client' wariahle to call operations on the service.
f4 Alwawys closSe the client.
client.Close():
+
+ (gt |
Dane

Figure 21 - Service's homepage

More information about programming WCF can be found in [26].

June 2007

-70 -

Es OR B0

Managing HMI utilities for control systems

Appendix 2

Bindings and theirs reliability in WCF
Bindings

WCF offers 9 standard bindings:

e Basic Binding
Implemented by BasicHttpBinding class, it is the binding for classic web service; it
inherits principles from earlier ASP’s web services (ASMX). Using this binding allows
old clients to use new web services.

e TCP binding
Offered by NetTcpBinding, it allows machines to communicate through internet by
using TCP protocol. TCP binding supports optional reliability, transactions and security.

Using TCP binding implies that both communicating sides - clients and services have to
use WCF.

e DPeer network binding
It is implemented by NetPeerTcpBinding class and uses peer network for message
exchanging.

e [PCbinding
Offered by NetNamePipeBinding class, it is allows the service and the client to
communicate when they are placed on the same machine. Since this communication
method doesn’t allow connections from the outside, it makes it the most secure one.

e Web Service (WS) binding
Offered by WSHttpBinding, it uses HTTP and HTTPS for transport. It is a more secure
version of web services, provided by basic binding.

e Federated WS binding
Implemented by WSFederationHttpBinding class, this binding offers support for
federated security.

e Duplex WS binding
Offered by WSDualHttpBinding class, it allows bidirectional communication between
the service and clients, permitting DualCallback — a callback (a call that initiated by
client) that opens a connection channel that goes both ways from client to service and
back.

June 2007

-71 -

Es OR B0

Managing HMI utilities for control systems

e MSMQ
Implemented by NetMsmqgBinding class, this binding uses MSMQ for transport. MSMQ
allows disconnected work between service and clients, by querying and later delivering
of messages.

e MSMQ integration binding
Offered by MsmgqlntegrationBinding class, it converts WCF messages to and from
MSMQ messages [20].

Bindings Reliability

WCF like other service-oriented technologies separates between transport reliability and
message reliability. Transport reliability offers point-to-point guaranteed delivery at the
network packet level, and the order of packets. It also guarantees that each message will
be delivered just once. Message reliability guarantees the message delivery at higher
level, regardless to how many packages are required for this. Message reliability
provides end-to-end guaranteed delivery and order of messages. Message reliability is
based on an industry standard for reliable message-based communication that maintains
a session at the transport level [20].

In WCEF, reliability is controlled and configured in the binding. AS it was mention before,
WCF allows using different communication methods, and this is also done defined by
bindings. Table 7 is brought from [20] and gives an overview of the possible bindings
and there reliability and order reliability.

Table 7 - WCF bindings

Name Supports Default Supports Default
reliability reliability ordered ordered
BasicHttpBinding No N/A No N/A
NetTcpBinding Yes Off Yes On
NetPeerTcpBinding No N/A No N/A
NetNamedPipeBinding No N/A Yes N/A
WSHttpBinding Yes Off Yes On
WSFederationHttpBinding Yes Off Yes On
WSDualHttpBinding Yes Off Yes On
NetMsmgBinding No N/A No N/A
MsmglIntegrationBinding No N/A No N/A

Reliability is not supported by the BasicHttpBinding, NetPeerTcpBinding, and two last
MSMQ - bindings. The reason for that is that BasicHttpBinding is oriented towards
ASMX service world, which does not have reliability. NetPeerTcpBinding is designed for

June 2007

-72-

Es OR B0

Managing HMI utilities for control systems

broadcast scenarious. MSMQ bindings are for disconnected calls, where no transport
session is possible.

Different bindings also use different encoding methods for transport. Bindings that use
HTTP or HTIPS transport (as those that are offered by BasicHttpBinding,
WSHttpBinding, WSFederationHttpBinding and WSDualHttpBinding classes) use Text
/MTOM encoding. MTOM - Message Transmission Optimization Mechanism, is a
mechanism for transferring large binary attachments as non-text messages (for example,
pictures) as raw bytes, allowing for smaller messages. The remainder bindings use
binary encoding.

More information about bindings and a method that describes how to choose the binding
for the implementation can be found in [20].

June 2007

-73-

Es OR B0

Managing HMI utilities for control systems

Appendix 3

Generating the Proxy in Visual Studio

The proxy for client can be generated automatically in Visual Studio. One has to launch
the service and then select Add service reference, as showed on the next figure. URL for
the service is the address for service that one defined before and listed in configuration
file for Server application. Figure 22 illustrates it.

Solution Explorer - Solution ‘Ul ,, - [2 |

il —
j Solution "UtilikvManagery2' (2 projects)
= (58 Finglientyz

[+~ [=d] Properties

4 =l References

I= Hdd FElrerence.

Add Web Refe

| Add Service Reference...

] Program.cs
= [uUtilityManageryz
[+~ |=d| Properties
+J References
i3 App.config
= _=| HoskForm. cs
‘%] HostForm.designer.cs
‘%] HostFarm.resx
‘ﬁ Services.cs
] UtilityHast cs

Add Service Reference

Enker the service URI and reference name and click OK to add all the available
SErVICES,

Service URI:

htkpifflocalhost: @000| Browse ...

Service reference name:
|localhost

[oK] [Cancel

Figure 22 - Proxy in Visual Studio

Visual Studio then generates a new folder Service References with two files in it:
localhost._map
localhost.cs

The first one is a configuration file similar to one that is on server side, the other one
contains information about all available services. Example 7 and Example 8 illustrate
these two files that have been generated for the MessagingService and
MessagingServiceCallback that are avilable on the localhost.

June 2007

—-74-

i

OR GO

Managing HMI utilities for control systems

<?xml version="1.0" encoding=""utf-8"7>
<ServiceReference>
<ProxyGenerationParameters
ServiceReferenceUri="http://localhost:8000/""
Name=""localhost""
NotifyPropertyChange="False"
UseObservableCol lection="False">
</ProxyGenerationParameters>
<EndPoints>
<EndPoint
Address="net.tcp://localhost:9000/"

BindingConfiguration="NetTcpBinding_IMessagingServicel™

Contract="PingClientV2_localhost. IMessagingService"
>

</EndPoint>
</EndPoints>
</ServiceReference>

Example 7 - localhost.map

The base address that was specified for the server is the same as in Example 1. The
address has two endpoinds, and they both are also specifyed in the configuration file on
a client side.

In this example one service RegisterClient() and one callback StartClient() are avilable.
First method returns int (a whole numerical value), the other method declared void and
does not return anything, but takes an int variable as parameter. All this specifyed in the
code illustrated in Example 8. The comments for the code are also presented.

June 2007

- 75—

Es OR B0

Managing HMI utilities for control systems

namespace PingClientV2.localhost //namespace

{
[System.CodeDom.Compiler.GeneratedCodeAttribute(''System.ServiceModel",
"3.0.0.0")] //using the 3.0 for running

[System.ServiceModel .ServiceContractAttribute(ConfigurationName="PingClI
ientV2.localhost. IMessagingService",
CallbackContract=typeof(PingClientV2.localhost. IMessagingServiceCallbac
K)1

//service’s interface

public interface IMessagingService

//the list of available services

[System.ServiceModel .OperationContractAttribute(Action="http://tempuri.
org/IMessagingService/RegisterClient",
ReplyAction="http://tempuri.org/IMessagingService/RegisterClientRespons
e"]

}

[System.CodeDom.Compiler.GeneratedCodeAttribute(''System.ServiceModel",
"3.0.0.0")]
public interface IMessagingServiceCallback
{
// ... the description of avilable callbacks
[System.ServiceModel .OperationContractAttribute(lIsOneWay=true,
Action="http://tempuri.org/IMessagingService/StartClient'")]
void StartClient(int key);
b

//generating the service channel
[System.CodeDom.Compiler.GeneratedCodeAttribute(*'System.ServiceModel™,
"3.0.0.0")]

public interface IMessagingServiceChannel :
PingClientV2.localhost. IMessagingService,
System.ServiceModel . IClientChannel

{

// further services the endpoint address and binding are presented
public
MessagingServiceClient(System.ServiceModel . InstanceContext
callbacklnstance, System.ServiceModel.Channels.Binding binding,
System.ServiceModel .EndpointAddress remoteAddress) :
base(callbacklnstance, binding, remoteAddress)
{

}

// services contract iIs presented
public int RegisterClient()

{
+

int RegisterClient();

return base.Channel .RegisterClient();

Example 8 - localhost.cs

June 2007

-76 -

Es OR B0

Managing HMI utilities for control systems

Without Visual Studio, it is possible to generate proxy with the SvcUtil.exe build-in
command-line utility from Microsoft .NET Framework SDK, where the endpoint’s
address has to be provided. Proxy.cs is the name for generated file (will be output.cs by
default). Example 9 illustrates it.

Svcutil
http://localhost/Uti lityManagerV2/MessagingService.cvs/out:Proxy.cs

Example 9 - Proxy with SvcUtil.exe

June 2007

-77 -

Es OR B0

Managing HMI utilities for control systems

Appendix 4

Appendix 4 presents two class diagrams and some examples from the code with
comments, to give a better overview on the practical part of this project. Class diagrams
relates mostly to the Utility Framework Server design (chapter 4). All the code examples
are from the prototype solution (chapter 5).

Figure 23 presents the class diagram for the server side of the solution.

Q IHostForm

S - N 1)
IOUFServises FS HostForm 3
Interface Class
-+ Form
[=] Methods .
W GetData() : string = F'_EIdS
% RegisterClient() : int ¥ m_serviceHost : ServiceHost
“ UpdateData() : void [=I Methods
N = 2% AddClient() : void
4" AddMessage() : void
Q IOUFServises % GUIEventsMethods() : void
e v i : Vo
OUFServices = L 2 ShowClients() : void)
Class
Q IHMIConnector Q IOPCConnector
) s ~ s ™
= Fields HMIConnector » OPCConnector =
2# callback : IUtilityCallback Class Class
N
[=l Methods [= Methods
e ~ : VO : VoI
IUtilityCallback % L] convertData()_. void L] convertData()_. void
e i getData() : void i getData() : void
W setData() : void W setData() : void
N J N J
[=I Methods
% RefreshData() : string (P IErrorManager
% StartClient() : void e ~
' StopClient() : void ErrorManager R
- / Class
[=I Methods
i CheckErrorStatus() : boolean
i DetectErrors() : void
@ ShoweErrors() : void
N J

Figure 23 - Class diagram, server side

Most of the classes and interfaces have the same names as the components and interfaces
in Figure 10. Interfaces IOUFServices and IUtilityCallback introduce the services and
callbacks that are implemented in the prototype. HostForm (and interface IHostForm)
represents the GUI component. The HMIConnector, OPCConnector and ErrorManager
components were not implemented in the current prototype.

Example 10 and Example 11 show the implementation of the interfaces for the services
(IMessagingService) and callbacks (IMessagingServiceCallback) in the prototype.

June 2007

- 78 -

i

OR B0

Managing HMI utilities for control systems

//interface for the prototype’s services
public interface IMessagingService

//the list of services from the prototype
//method gets the information from the client and stores it in the
array
[OperationContract]
string GetData(string message);
// method distributes the numbers for the clients, returns int value
[OperationContract]
int RegisterClient();
// method updates the data from client,takes two parameters: int — is
the clients number, and the string — is the data
[OperationContract(1sOneWay = true)]
void UpdateData(int key, string data);
}

Example 10 - IMassagingService interface

//interface for the prototype’s callnacks
public interface IMessagingServiceCallback

//the list of callbacks from the prototype
//method that allows the server to run the client, takes iInt value
that is the clients number as a parameter
[OperationContract(1sOneWay = true)]
void StartClient(int key);
//method that allows the server to stop the running client, , takes
int value that is the clients number as a parameter
[OperationContract(IsOneWay = true)]
void StopClient(int key);
//method that allows the server to updates variables on the client
side (keys’ values), takes two parameters: int — is the clients
number, and the string — is the data
[OperationContract(1sOneWay = true)]
void RefreshData(int key, string data);

}
Example 11 — IMessagingServiceCallback interface

Example 12 illustrates the implementation of the service class (MessagingService) in the
prototype, and among other things the implementation of the RegisterClient() service.
Example 13 illustrates how the client uses this service.

June 2007

-79 —

i

OR B0

Managing HMI utilities for control systems

//prototype’s service class
public class MessagingService : IMessagingService
{ //region allows to select a region of code and make it

collapsible

#region IMessagingService Members
//declaration of a variable for client counter

private static int ClientCounter = 1;
//identifies callback = 0

IMessagingServiceCal lback callback = null;
//declares an arraylist of storing the clients

public IMessagingServiceCallback[] Clients = null;
//declares a static arraylist of storing the information

public static ArraylList desc = new ArrayList();
public MessagingService() { //constructor
//creates an array for clients with size 100

Clients = new IMessagingServiceCallback[100];

//an example of the service’s implementation: service RegisterClient
public int RegisterClient()

//local variable
int newClientkey = ClientCounter++;
//adds the new client to the client’s array
Clients[newClientKey] =
OperationContext.Current.GetCal IbackChannel<IMessagingServiceCal lback
>0;
//the method returns int value
return newClientKey;
} //... more methods here
#endregion //end of region

}
}

Example 12 - The service's class implementation

namespace Client //client’s namespace

{

public class OrigoutilityClient : 10rigoUtilityClient //class
that implements the client

{
// see section 4.3 for this part
InstanceContext context = new InstanceContext(new
MessagingServiceCallback());
MessagingServiceClient client = new

MessagingServiceClient(context);

public static void Main(string[] args)

{
int key = client.RegisterClient(); //client using the
RegisterClient() method from the server side
} /7/... more implementations
}

}

Example 13 - Client calling the service

June 2007

- 80 -

Es OR B0

Managing HMI utilities for control systems

Figure 24 presents the class diagram for the client side of the solution. It is created by
using the Ping Client as an example client.

~ i . . o) 4 i) i e
10rigoUtilityClient 2 I0UFServises 1= I0UFServisesChannel 2
Interface Interface Interface

-+ I0UFServises
I
[=I Methods [=I Methods e nannel
W CallService() : void ¥ GetData() : string
% ReturnResult() : string % RegisterClient() . int
% Run() : void % UpdateData() : void
¥ Stop() : void N %
N J
Q IUtilityCallback
) R . e)
(P 10rigoUtilityClient Q I0UFServises UtilityCallback E3
1 N\ 1 ; Class
OrigoUtilityClient = OUFServicesClient %
Class Class
[=I Methods
= Fields [= Methods e RefreshData() :YO'd
o) . . & StartClient() : void
W info : string % OUFServicesClient() . Lo
O Kevs - siri L % StopClient() : void
¥ keys:s ring[] \)
&# m_proxy : OUFServicesClient
¢ mylP : strin "~
v my] nd PingClient =
\..d name : string Class
result : string
& values : string[] B Methods
=) [SEHEES % my_ping() : string
W CallService() : void _
i main() : void
N J

Figure 24 - Class diagram, client side

Example 14 shows the implementation of the callback in the prototype, and how it
resembles to the service’s implementation. How the server side calls the callback also
resembles to the client calling the service, and an example for it (from the
MessagingService class) is presented in Example 15

[Cal lbackBehavior(UseSynchronizationContext=true)]

class MessagingServiceCallback : IMessagingServiceCallback,
I0rigoUtilityClient

{
#region IMessagingServiceCallback Members
public void StartClient(int key) {
// method’s implementation here
}
#endregion
}

}
Example 14 — MessagingServiceCallback

June 2007

-81-

Es OR B0

Managing HMI utilities for control systems

//. ..
public void RunClient(int key)

callback =

OperationContext.Current.GetCal IbackChannel<IMessagingServiceCallback
>0

callback.StartClient(key);

}
//. ..

Example 15 - Server side calling the callback

June 2007

-82-

	Abstract
	Preface
	Table of contents
	Figure List
	Table List
	Example List
	1 Introduction
	1.1 Problem statement
	1.2 Work description
	1.3 Importance of the project
	1.4 Delimitations
	1.5 Motivation
	1.6 Report outline

	2 Background
	2.1 General software
	2.1.4.1 Address
	2.1.4.2 Binding
	2.1.4.3 Contracts

	2.2 Software in control and automation systems

	3 Problem research and state of the art
	3.1 Challenges today
	3.2 Modern software technologies

	4 Design of the Utility Framework Server
	4.1 System Requirements
	4.2 How does the Utility Framework Server implement the requirements?
	4.3 Use-case model
	4.4 Component model
	4.5 The Utilities

	5 Utility Server Prototype
	5.1 Server side
	5.2 Application GUI
	5.3 Client side

	6 Discussion
	6.1 Solution idea
	6.2 Choosing the technology
	6.3 Similar technologies from other vendors
	6.4 Evaluation of the solution

	7 Conclusion and further work
	7.1 Conclusion
	7.2 Further work

	Abbreviations
	References
	Appendix 1
	Appendix 2
	Appendix 3
	Appendix 4

