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Abstract

Mobile-to-Mobile (M2M) communications are expected to play are expected to

play an important role in various �elds including ad hoc networks and intelligent

transportation systems. In such systems, extremely reliable links are required. To

cope with problems faced during the development and performance investigation of

future Mobile-to-Mobile multi-input multi-output (MIMO) communication systems, a

solid knowledge of the underlying multipath fading channel characteristics is essential.

This master thesis focuses on the modelling, analysis, and simulation of M2M

single-input single-output (SISO) and M2MMIMO channels derived from a geometric

street scattering model. Starting from this geometrical model, the corresponding

reference and simulation models are derived by applying the generalized concept of

deterministic channel modelling. The statistical properties of both the reference and

the simulation model are studied with emphasis on the amplitude distribution and the

correlation properties, which include the temporal, spatial, and frequency correlation

functions. The obtained theoretical results are con�rmed by MATLAB simulations.
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Chapter 1

Introduction

According to the World Health Organization report [1], more than one million per-

sons were killed in 2004 due to road crashes. In addition, almost 50 million persons

were injured due to the same cause. Moreover, predictions estimate that this sta-

tistics will increase by about 65% in the next 20 years. This drastic situation must

motivate e¤orts toward preventive solutions. In fact, car safety became an issue di-

rectly after the invention of automobile itself. A big progress has been achieved in

this domain since the beginning of car production. Modern cars are obviously much

safer then ancient cars. ABS system, airbag, and seatbelt are a necessity in every car

today. However, psychological studies have proven that, the safer the car is, the more

risky the driver behaviour becomes. On the other hand, the high speed of modern

cars makes crashes more dangerous. A close look at the available safety measures re-

veals that they become a¤ective only after the crash itself. This fact motivates the

introduction of new safety systems that prevent from accident rather then minimizing

their impact. Such futurist systems are under investigation by many car companies.

The principle of such systems consists in detecting accidents threat and sending a

warning to the driver. If no action is taken, the safety system takes the necessary

measures automatically. For instance, if the car is too near to another vehicle, then

there is an accident threat. This threat is detected by the safety system by measur-

ing the distance with neighbouring cars. Afterward, a warning message is sent to the

1



1 Introduction

driver. If the driver does not take the necessary measures, the safety system inter-

venes to avoid the accident. To enable this new safety system, the car must be able

to communicate with other vehicles via inter-vehicle communications system.

1.1 Inter-Vehicle Communications (IVC) State of
Art

There is a growing belief that IVC could help people to drive more safely. This

fact has motivated industrial and research groups to investigate the IVC technology

and the potential applications that could be introduced thanks to IVC. Currently

there are several projects in Europe and in the United States focusing on the devel-

opment of the IVC technology. In the following, we present European and American

projects investigating the IVC technology. Moreover, the Dedicated Short Range

Communication (DSRC) standard designed for IVC is presented. Finally, the poten-

tial applications that could be introduced thanks to IVC are discussed.

1.1.1 European Projects

In the context of the European Transport Policy, the European commission has

declared that it aims to reduce road crashes fatalities to 50% by 2010. This

target could be reached by embedding safety application in cars. One of the key

technologies for the achievement of this objective is IVC. Currently there are several

ongoing projects in Europe focusing on the development of IVC technology such as

PReVENT, CAR 2 CAR Communication Consortium, FleetNet, ADASE (Advanced

Driver Assistance Systems in Europe), and CarTALK 2000. In the following, the

PReVENT project and the CAR 2 CAR Communication Consortium are presented.

Ali Chelli 2



1 Introduction

1.1.1.1 The PReVENT Project

The European research project PReVENT [2] aims to increase road safety. To

achieve this goal several technologies are integrated together such as sensing

technology, positioning technology (GPS), and IVC technology. The PReVENT

project provides drivers with safety applications, which aims to prevent them from

crashes or mitigate their e¤ects. Moreover, safety applications help drivers to keep

safe distance from the neighbouring cars, to maintain a safe speed, and avoid over-

takingin critical situation. The PReVENT systems plan to be interoperable on a

European scale.

1.1.1.2 The CAR-2-CAR Communication Consortium

In contrast to the PReVENT project, where IVC is only a part of the picture,

the CAR-2-CAR Communication Consortium project is totally devoted to IVC. The

latter is used to increase road tra¢ c safety and e¢ ciency. The CAR-2-CAR

Communication Consortium [3] was set up by a group of carmakers among them

Audi, BMW, Honda, and Renault. The consortium includes also the electronic

company Philips.

The CAR-2-CAR communication consortium has a set of objective to achieve.

First, this organization aims to set up a European standard for car-2-car

communication. A second objective consists in promoting the allocation of an

exclusive band for CAR-2-CAR communication. Another mission of the consortium is

to push toward worldwide standard interoperability in CAR-2-CAR communication.

A major concern is given to standardization and interoperability since CAR-2-CAR

applications will yield best bene�ts to users, only if di¤erent CAR-2-CAR communi-

cation systems are interoperable.

Ali Chelli 3



1 Introduction

1.1.2 American Projects

The reduction of road crash fatalities is the top priority of the United States De-

partment of Transportation. In the United States, road crashes kill 115 and injure

8700 every day. The health care given to accident victims has the biggest cost com-

pared to any other cause of illness or injury. In this context, the �Intelligent Trans-

portation System� (ITS) was launched [4]. This national program in the United

States has as objective to improve safety by avoiding road crashes. In addition, ITS

aims to improve the e¢ ciency of the transportation system by eliminating travel de-

lays. This goal can be achieved using many technologies such as sensing technology,

and IVC technology. ITS is supported by the U.S. government through the U.S. De-

partment of Transportation (USDOT) and non-governmental organization such as In-

telligent Transportation Society of America (ITS America). The latter has supported

intelligent transportation system in the U.S. for more than 15 years. ITS America

members are active participant in the deployment of the �Intelligent Transportation

System�. Moreover, industry groups such as Vehicle Safety Communications (VSC)

Consortium are trying to enhance safety and mitigate congestion, by providing safety

systems based on IVC technology.

1.1.2.1 Vehicle Safety Communications (VSC) Consortium

The VSC Consortium [5] was funded by seven carmakers including BMW, Ford,

DaimlerChrysler, General Motors, Nissan, Toyota, and Volkswagen. This consortium

cooperates with the U.S. Department of Transportation in the VSC Project. This

project has several objectives such as estimating the potential safety application that

could be provided based on IVC. In addition, the project aims to identify the com-

munications requirement for the proposed safety applications. Moreover, this project

evaluates IVC technology and their ability to meet the needs of safety applications.
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A further task of this project is to present suggestions to standardization bodies, fo-

cusing on IVC, to make the appropriate changes in order to meet the requirements

of safety applications. Furthermore, this project investigates technical problems that

may in�uence the deployment of vehicle safety applications.

1.1.3 The Dedicated Short Range Communication Standard

The Dedicated Short Range Communication (DSRC) standard is designed for IVC.

The DSRC is still under development. The �rst draft speci�cation of DSRC was

developed by ASTM [6]. This draft is now under investigation by three IEEE working

groups:

� The IEEE 802.11p task group is focusing on the standardization of the Wireless
Access for Vehicular Environment (WAVE). This task group focus on the

design of the physical layer (PHY) and the medium access layer (MAC) [7].

� The IEEE 1609.4 task group is focusing on multi-channel coordination [8].

� The IEEE 1609.3 task group is focusing on network layer protocols and o¤ered

services [9].

The development of DSRC has been motivated by the allocation of 75 MHz of

spectrum in the 5.9 GHz band by the Federal Communication Commission (FCC) in

the U.S., for intelligent transportation services [10]. The latter aims to provide safety

and non-safety application based on vehicle-to-vehicle and vehicle-to-infrastructure

communications. These kinds of application are introduced in the context of �Intelli-

gent Transportation System�. There is a growing belief that the DSRC standard will

dominate the future vehicular communications market. The DSRC is based on IEEE

802.11a Physical layer (PHY). While the DSRC Medium Access Control (MAC) pro-

tocol is similar to the IEEE 802.11 standard. One could wonder why the DSRC is
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developed in lieu of the DSRC standard. In fact, many reasons have motivated the

development of DSRC � versus the IEEE 802.11 standard� to provide IVC.

Actually, the IEEE 802.11 uses an unlicensed band (2.4 GHz or 5 GHz). This band

is also being used by the Bluetooth standard. The proliferation of devices working in

this band along with the widespread of WiFi technology can cause high interference

level. This fact could be very harmful to IVC since the radio link must be extremely

reliable. In addition to reliability, safety applications necessitate a short response

time. The use of unlicensed band increases the number of users trying to access the

communication channel resulting in high latency. This fact makes the IEEE 802.11

standard non-suitable for IVC, especially for safety applications.

Moreover, the IEEE 802.11 was designed for indoor environment where the ter-

minals have a low speed. In contrast, in IVC, the terminals are moving very fast in

outdoor environment. In this context, it is also worth to remind that in IVC both

the transmitter and the receiver are moving as opposed to the IEEE 802.11 where it

is assumed that only the receiver is in motion. All these facts lead to a change in the

underlying multi-path radio channel, making the IEEE 802.11 non-suitable for IVC.

The 75 MHz (5.850-5.925) spectrum allocated for DSRC is split into seven 10MHz

channels. One channel is dedicated to control while six channels are service chan-

nels [6], as shown in Figure.1.1. The channel 180 and 182 are optionally combined

to o¤er 20MHz spectrum for wideband services. The channel 172 is devoted to

IVC. The DSRC/IEEE 802.11p PHY uses Orthogonal Frequency Division Multi-

plexing (OFDM) technique. Some key parameters of DSRC/IEEE 802.11p PHY are

illustrated in Table1.1.
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Figure 1.1: Frequency allocation of DSRC/IEEE 802.11p.

Data Rate (Mb/s) 3, 4, 5, 6, 9, 12, 18, 24, 27

Modulation BPSK, QPSK, 16-QAM, 64-QAM

Coding Rate 1/2, 2/3, 3/4

OFDM Symbol Duration 8�s

Guard Interval 1.6 �s

Subcarrier Spacing 156.25 KHz

Signal Bandwidth 10 MHz

Table 1.1: Key parameters in the DSRC/IEEE 802.11p PHY

1.1.4 Inter-Vehicle Technology Applications

IVC introduces a wide range of applications. These applications could be mainly

classi�ed into three categories:

1. Cooperative driver-assistance applications

2. Local �oating car data applications

3. User communication and information services
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1.1.4.1 Cooperative Driver-Assistance Applications

Cooperative driver assistance systems exploit the sensor data exchanged between

cars. The received data can be handled in two ways: either displayed to the driver, or

used by the driver assistance application as an input to control the car. For instance,

the user can be informed about unexpected obstacle. Thus, he can be prepared to face

problems. In addition, the driver assistance application can detect near threat and

avoid crashes. For instance, the application can receive a noti�cation on emergency

braking from the car ahead. In this case, the application sends a warning to the

driver. If no action is taken, the driver assistance application intervenes to avoid

collision. This class of application include two types of collision avoidance systems:

� Intersection Collision Avoidance Systems supervise the vehicle speed and its
position relatively to the intersection. In addition, the system monitors the

speed and position of other vehicles in the neighborhood using IVC technology.

In case of imminent collision, the system advises the driver of appropriate

actions to avoid the crash. It is worth to mention that one of three accidents is

an intersection accident.

� Rear-End Collision Avoidance Systems detect the presence and velocity of cars
ahead, and send warnings to the driver in order to avoid collisions. Rear-end

collisions represents one-forth of accidents. The National Highway Tra¢ c

Safety Administration (NHTSA) in U.S. estimates that this system will lead

to a 49 percent drop of rear-end crashes.

Obviously, the driver assistance application contributes e¢ ciently in increasing the

travellers�safety.
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1.1.4.2 Local Floating Car Data Applications

The �oating car data service exists today in Europe. This service consists in send-

ing messages about tra¢ c conditions to the subscribed members. This service is

characterized by a centralized architecture. In fact, the service centre collects infor-

mation from cars, treat the data, and broadcast the results to all service members.

For instance, if there is tra¢ c jam in a given location, cars present there sends a mes-

sage to the service centre. The latter broadcast the information. Hence, congestion

can be avoided. To achieve this service, a radio cellular transmission system and an

expensive service centre are needed. This high cost could be avoided using IVC.

In a two-direction route, cars can receive important information about the road

ahead from cars coming from the opposite direction. Cars can even send request to

ask about tra¢ c �ow in the road ahead. The car that has received information about

tra¢ c status, for example, must broadcast this data. In fact, the transmission system

for IVC has a limited coverage. Then cars that are interested in given information

may be located out of the coverage zone. A Car that has received a message must

broadcast it in order to convey information to other cars. This kind of application

leads to good performance especially when the penetration of IVC is high.

In order to improve driving safety, the cooperative driver assistance application

handles immediate situation by suggesting driving actions. This can be categorized

as a short-term decision. In contrast, the local �oating car data application handles

information related to tra¢ c condition in further distances. This information does

not in�uence directly the car driving, but may lead to a change in the route to go.

This decision is considered as a long-term decision.
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1.1.4.3 User Communication and Information Services

This class includes all possible applications that run on the top of TCP or UDP

protocol. It includes entertainment applications such as online games. For example,

passengers on backseat can play online games with passengers in other cars. In

addition, IVC technology does not only allow communicating with other vehicles

but also with the roadside. This feature could be very useful for the development

of various applications. For instance, shops, supermarket, and restaurants that are

placed on the road could use this feature to advertise their products and services.

Moreover, internet access point could be positioned on the roadside to provide car

passengers with internet access.

1.2 Background

In mobile radio, communication, the line-of-sight condition is not often ful�lled

due to the obstacles located between the transmitter and the receiver. The trans-

mitted signal undergoes di¤erent physical phenomena such as re�ection, di¤raction,

and scattering. These phenomena lead to signal distortion which makes it di¢ cult

to retrieve the information in the receiver side. To overcome this problem several

techniques are used such as equalization, modulation and coding. For instance, to

�nd out the appropriate coding scheme to be used for a given communication sys-

tem a detailed knowledge of the underlying fading channel is essential. Therefore,

channel modelling is necessary for the design, development, and optimization of any

communication system.

1.2.1 Generalized Concept of Deterministic Channel Modelling

In real-world, the received signal is a superposition of waves coming from all di-

rections due to the multipath propagation. This e¤ect is due to an in�nite number
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of scattering objects. Consequently, an ideal model for this phenomenon cannot be

realized since an in�nite number of scattering object need to be considered in the

simulation. To overcome this problem, di¤erent approaches have been proposed in

literature. An overview covering approaches to model spatiotemporal channel models

is given in [11]. An optical-ray tracing approach is used in [12]. The main drawback

of this approach is the high computational e¤ort required in the simulation.

To overcome this complexity the deterministic channel modelling concept has been

introduced in [13,14]. Later, the fundamental concept of deterministic channel mod-

elling has been generalized in [15]. The principle of the generalized channel modelling

consists in the following six steps:

1. A geometrical scattering model is developed assuming an in�nite number N of

scatters.

2. Starting from the geometrical scattering model a stochastic reference model is

derived.

3. Derivation of an ergodic simulation model from the reference model by using a

�nite number N of scatters.

4. Derivation of the deterministic simulation model by �xing all model parameters

of the stochastic simulation model.

5. Computation of the simulation model parameters by using appropriate

computation method, e.g., the Lp-norm method (LPNM).

6. Generation of one (or some few) sample function by using the deterministic

channel model with �xed parameters.
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1.2.2 Mobile-to-Mobile Channel Modelling

In IVC, the transmitter and the receiver are on the move. This fact makes the

statistical properties of the underlying radio channel di¤erent from typical cellular

channels. Hence, new channel models are required for IVC. So far, Mobile-to-Mobile

(M2M) channel modelling has been the topic of several papers. Early studies of

M2M channels have focussed on single-input single-output (SISO) systems in [15,16].

The time-varying transfer function of the M2M channel has been developed in [16].

Moreover, analytical expression for the space-time correlation function and the power

spectral density (PSD) of the complex envelope are provided in [16]. In [17], analyt-

ical expression for the level crossing rate (LCR) and the average duration of fades

(ADF) are presented. In [18], a channel model for IVC is presented. A ray-optical

approach is used to model wave propagation. The resulting channel impulse response

can be used for system simulation. In addition, simulation results are compared to

measurements from real-world M2M channels at 5.2 GHz. In [19], a simulation model

design procedure for single-input single-output (SISO) M2M channels is introduced.

The geometrical two ring scattering model constitutes the starting point in [20] for

the derivation of a reference model of a narrowband M2M multi-input multi-output

(MIMO) channel. The corresponding simulation model is presented in [21].

1.3 Thesis De�nition

In this thesis, an original M2M SISO channel model is investigated. Afterward

this model is extended to an M2M MIMO channel model. This extension is driven

by the fact that MIMO channels are attracting more and more attention thanks to

their large capacity. In fact, MIMO systems employ multiple transmit and multiple

receive antennas resulting in better system performance and larger capacity over
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traditional SISO channels. Furthermore, multi-element antennas can be placed on

car roofs. This fact makes MIMO channels very attractive for IVC. In IVC, both the

transmitter and the receiver are moving. This fact makes the statistical properties

of the underlying radio channel di¤erent from typical cellular channels. Hence, new

channel model are required for M2M communications. The latter are expected to

play an important role in various �elds including ad hoc networks and intelligent

transportation systems. In such systems, extremely reliable links are required. To

cope with problems faced during the development and performance investigation of

future M2M MIMO communication systems, a solid knowledge of the underlying

multipath fading channel characteristics is essential.

This master thesis focuses on the modelling, analysis, and simulation of M2M SISO

and M2M MIMO channels derived from geometric scattering model. In this model,

we assume that the transmitter and the receiver are surrounded by an in�nite number

of scatters. The scattering environment is modelled by a new street scattering model.

For this model, scatters are laying on the right and/or left hand side of the street.

Starting from this geometrical model, the corresponding reference and simulation

models are derived by applying the generalized concept of deterministic channel mod-

elling. The statistical properties of both the reference and the simulation model are

studied with emphasis on the amplitude distribution and the correlation properties,

which include the temporal, spatial, and frequency correlation functions. The ob-

tained theoretical results are con�rmed by MATLAB simulations.

1.4 Thesis Overview

This thesis is organized as follows. In Chapter 2, the geometrical street model is

presented and the relationship between the angle of arrival and departure is estab-

Ali Chelli 13



1 Introduction

lished. The SISO reference model is investigated in Chapter 3. First, the reference

model is derived. Afterward, statistical properties including the probability density

function, the autocorrelation function, the power spectral density, the level crossing

rate, and the average duration of fades are studied. In Chapter 4, the SISO simula-

tion model is derived. We �rst develop the stochastic simulation model. The latter is

the starting point for the derivation of the deterministic simulation model. Moreover,

parameter computation methods are presented. In Chapter 5, the SISO model is ex-

tended with respect to multi-cluster and frequency selectivity. The MIMO channel is

investigated in Chapter 6. In Chapter 7, we draw the conclusion.
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Chapter 2

The Geometrical Model

Measurement data can be used to derive channel models. Nevertheless, this type

of data is not frequently available. To overcome this problem, geometric scattering

model can be exploited to derive channel models. In literature, one can �nd several

geometric scattering models such as the one ring model [15], the two ring model [20],

and the elliptical model [22]. In this thesis, a new single bounce geometrical street

scattering model is introduced. This model is quali�ed as a single bounce model due

to the assumption that a scattering object results in a single re�ected wave when

hit by an incident wave. In real-world, a scattering object results in many scattered

waves having di¤erent directions. The single bounce assumption has been considered

in several geometrical models presented in literature. This assumption results in

model simpli�cation without a¤ecting the correctness of the model.

2.1 The Geometric Street Scattering Model

The statistical properties of the fading channel depend mainly on the arrangement

of scatters around the transmitter and the receiver. The geometric scattering model

is the starting point for the derivation of the M2M SISO channel model. To develop

our channel model, a new geometrical single bounce street model is introduced. This

model is illustrated in Figure.2.1, where the scatters S(n) (n = 1; 2; : : : ; N) lay on the

left and/or the right hand side of the street.
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2 The Geometrical Model

The angle of departure (AOD) and the angle of arrival (AOA) are denoted by

�n and �n, respectively. In this chapter, it is assumed that the scatters constitute

a single cluster having a limited length L. This assumption leads to the limitation

of the AOD �n within the interval [�min; �max]. Moreover, the transmitter (receiver)

is located at a distance hT1 (hR1) from the left hand side of the street, and at a

distance hT2 (hR2) from the right hand side of the street. The distance between the

transmitter and the receiver is denoted byD. The symbolMST , in Figure.2.1, denotes

the mobile transmitter, while MSR plays the role of the mobile receiver. In addition,

the transmitter and receiver are equipped with a single omnidirectional antenna. In

our model, we assume that the propagation occurs in the horizontal plan. The angle

between the direction of motion of the transmitter and the x-axis is denoted by  T ,

whereas  R stands for the angle between the direction of motion of the receiver and

the x-axis. The transmitter and the receiver are moving with a speed vT and vR,

respectively.

2.2 Relation Between the AOD and the AOA

To investigate the statistical properties of the channel model, the exact relationship

between the AOA and the AOD has to be taken into account. This relationship is

derived in Appendix A. The AOA �n can be expressed in terms of the AOD �n

according to the relation

�n = g(�n) =

8>><>>:
�� + g1(�n) if � � � �n � � arctan(hT2D )

g1(�n) if� arctan(hT2
D
) � �n � 0

g2(�n) if 0 � �n � arctan(hT1D )
� + g2(�n) if arctan(hT1

D
) � �n � �

(2.1)
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Figure 2.1: Geometric street scattering model for SISO channel.

where

g1(�n) = arctan

�
hR2 � tan(�n)

hT2 +D � tan(�n)

�
(2.2)

g2(�n) = arctan

�
hR1 � tan(�n)

hT1 �D � tan(�n)

�
(2.3)

while the AOD �n can be expressed as

�n = h(�n) =

8>><>>:
�� + h1(�n) if � � � �n � �� + arctan(hR2D )
h1(�n) if� � + arctan(hR2

D
) � �n � 0

h2(�n) if 0 � �n � � � arctan(hR1
D
)

� + h2(�n) if � � arctan(hR1
D
) � �n � �

(2.4)

where

h1(�n) = arctan

�
hT2 � tan(�n)

hR2 �D � tan(�n)

�
(2.5)

h2(�n) = arctan

�
hT1 � tan(�n)

hR1 +D � tan(�n)

�
. (2.6)
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Since the exact relation between the AOD �n and the AOA �n is determined, thus

the statistical properties of the SISO M2M channel model can now be investigated.

The derivation of the statistical properties of the SISO M2M channel model will

constitute the object of the next chapter.
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Chapter 3

The SISO Reference Model

In this chapter, the reference model for the M2M SISO channel is derived, start-

ing from the geometrical street model. Afterward, the statistical properties of the

reference model are analyzed. Analytical expression for the probability density, the

power spectral density, and the autocorrelation function are provided. Moreover, the

expressions of the level crossing rate and the average duration of fades are determined.

3.1 Derivation of the Reference Model

The geometrical street model presented in previous chapter describes the scattering

geometric street model for the M2M SISO channel, which constitutes the starting

point for the derivation of the corresponding reference model. From the geometric

street model illustrated in Figure.2.1, it can be seen that the nth plane wave emitted

from the transmit antenna travels over the nth scatter S(n)(n = 1; 2; : : : ; N) before

arriving at the receive antenna. It is assumed that the number of scatters is in�nite.

Consequently, the di¤use component as seen from the receiver side is composed of

an in�nite number of homogenous plane waves. Considering the geometrical model

in Figure.2.1, the link between the transmit antenna and the receive antenna can be

described by its complex channel gain given by

g(~rT ; ~rR) = lim
N!1

NX
n=1

cne
j
�
�n+

~k
(n)
T �~rT�~k(n)R �~rR�k0Dn

�
(3.1)
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where cn and �n denote the gain and the phase shift introduced by the scatter S
(n),

respectively. The gain cn is assumed to be constant and is given by

cn =

r
2�20
N

(3.2)

where 2�20 is the mean power of the received scattered components. Furthermore,

it is assumed that the phase shifts �n are independent, identically distributed (i.i.d.)

random variables, each having a uniform distribution over the interval [0; 2�).

The second phase component in (3.1), ~k(n)T � ~rT , expresses the in�uence of the
transmitter movement on the channel gain. The symbol ~k(n)T denotes the wave vector

pointing in the propagation direction of the nth transmitted plane wave, and ~rT is

the spatial translation vector of the transmitter. The scalar product ~k(n)T � ~rT can be
expressed as

~k
(n)
T � ~rT = 2�fTmax cos(�n �  T )t (3.3)

where fTmax = vT=� stands for the maximumDoppler frequency due to the transmitter

movement. The symbol vT represents the transmitter speed, while � denotes the

wavelength.

The third phase component in (3.1), ~k(n)R �~rR, expresses the in�uence of the receiver
movement on the channel gain. The symbol ~k(n)R denotes the wave vector pointing

in the propagation direction of the nth received plane wave, and ~rT is the spatial

translation vector of the receiver. The scalar product ~k(n)R � ~rR can be expressed as

~k
(n)
R � ~rR = �2�fRmax cos(�n �  R)t (3.4)

where fRmax = vR=� stands for the maximum Doppler frequency due to the receiver

movement. The symbol vR represents the receiver speed.
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The term k0Dn in (3.1) is due to the total travelled distance and can be expressed

as

k0Dn =
2�

�

�
D
(n)
T +D

(n)
R

�
(3.5)

where D(n)
T corresponds to the distance from the transmit antenna to the scatter

S(n), and D
(n)
R correspond to the distance from the scatter to the receive antenna.

The quantity D(n)
T is given by D(n)

T = hT1= sin(�n), whereas D
(n)
R is given by D(n)

R =

hR1= sin(�n).

After substituting (3.2)�(3.5) in (3.1), the complex channel gain in (3.1) can be

expressed as

g(t) = lim
N!1

r
2�20
N

NX
n=1

dn � ej
�
2�(f

(n)
T +f

(n)
R )t+�n

�
(3.6)

where

dn = e�j
2�
�
((hT1= sin(�n))+(hR1= sin(�n))) (3.7)

f
(n)
T = fTmax cos(�n �  T ) (3.8)

f
(n)
R = fRmax cos(�n �  R). (3.9)

By applying the expected operator on the di¤use component in (3.6), it can be

proven that the mean value of the complex channel gain g(t) is equal to 0. While,

the mean power of the complex channel gain g(t) is given by

V arfg(t)g = Efg�(t)g(t)g (3.10)

where E f�g is the expectation operator. It can easily be proven that the mean power
of the complex channel gain g(t) is equal to 2�20. Hence, invoking the central limit

theorem, we can conclude that the envelop jg(t)j follows a Rayleigh distribution.

3.2 Probability Density Function (PDF)
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3.2.1 Probability Density Function of the AOD

In this chapter, It is assumed that the scatters constitute a single cluster having

a limited length L as shown in Figure.2.1 on page 17. This assumption leads to the

limitation of the AOD �n within the interval [�min; �max]. Under the assumption

that the transmitter is equipped with an omnidirectional antenna, the AOD �n are

uniformly distributed over the interval [�min; �max]. Hence, the probability density

function of the AOD �n can be expressed as

p�n(�n) =

8><>:
1

��
if �min � �n � �max

0 otherwise

(3.11)

where �� = j�max � �minj.

3.2.2 Probability Density Function of the AOA

The AOA �n can be expressed in terms of the AOD �n as �n = g(�n) according to

(2.1). Based on this relationship and since the expression of the PDF of the AOD �n

is given by (3.11), then the PDF of the AOA �n denoted by p�n(�n) can be derived.

Using the transformation of random variable fundamental theorem, it is possible to

express p�n(�n) as

p�n(�n) =
p�n(�1)

jg0(�1)j
(3.12)

where g0(�n) denotes the derivative of g(�n), and �1 is the root of the equation

�n = g(�n).

Using the transformation of random variable fundamental theorem, The PDF

p�n(�n) of the AOA �n can be expressed as

p�n(�n) =

8>><>>:
1

��

hR2 � hT2
sin2(�n)

�
(hR2 � cot(�n)�D)2 + h2T2

� if � � � �n � 0

1

��

hR1 � hT1
sin2(�n)

�
(hR1 � cot(�n) +D)2 + h2T1

� if 0 � �n � �.
(3.13)
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The derivation of the PDF p�n(�n) of the AOA �n can be found in Appendix B. It

should be noted here that the parameters in�uencing the PDF p�n(�n) of the AOA �n

doesn�t include the speed of the transmitter and the receiver neither their directions

of motion.

3.2.3 Numerical and Simulation Results

In this section, we present some illustrative examples for the PDF of the AOA. In

the �rst scenario, an in�nite length cluster of scatters located on the left hand side

of the street. In this scenario, we consider that both the transmitter and the receiver

are at the same distance from left side of the street, i.e. hT1 = hR1. Under the given

conditions, the expression of the PDF of the AOA becomes

p�n(�n) =
1

��

1

sin2(�n)
�
(cot(�n) +D=hT1)

2 + 1
� . (3.14)

We study for the described scenario the in�uence of the ratio D=hT1 on the PDF of

the AOA. the obtained results are presented in Figure.3.1

Observing Figure.3.1, we can conclude that the ratio D=hT1 has a big in�uence

on the PDF of the AOA. If we �x the value of the term hT1, the results obtained

by varying the distance D are similar to those depicted in Figure.3.1. Hence, the

illustrated results shows also the in�uence of the distance between the transmitter

and the receiver on the PDF of the AOA. We can see from Figure.3.1 (a) that the

PDF of the AOA has a sinusoidal shape. This scenario occur if the transmitter and

the receiver are very near to each other. As the distance D increases as shown in 3.1

(b), a main lobe appear near to �, while a side lobe can be observed a side lobe near

to 0. If we increase the distance more and more, the PDF of the AOA approaches a

Dirac function, as shown in Figure.3.1 (c). In Figure.3.1 (d), we can observe a perfect

Dirac function located at �.
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Figure 3.1: The PDF of AOA for various values of hT1=D; scenario of an in�nite
length scatter located on the left hand side of the street

Ali Chelli 24



3 The SISO Reference Model

3 2 1 0
0.14

0.15

0.16

0.17

0.18

3 2 1 0
0

0.1

0.2

0.3

0.4

0.5

3 2 1 0
0

6

12

18

3 2 1 0
0

400

800

1200

1600

Figure 3.2: The PDF of AOA for various values of hT1=D; scenario of an in�nite
length scatter located on the right hand side of the street
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In Figure.3.2, represents the PDF of the AOA for the case where an in�nite length

cluster of scatters is located on the right hand side of the street. Both the transmitter

and the receiver are located at the same distance from the right edge of the street,

i.e., hT2 = hR2. Note also, that for a given value of the ratio D=hT2 that is equal to

D=hT1, the curves in Figure.3.2 and in Figure.3.1 are symmetric. This fact can be

also proved by using the analytical expression of the PDF of the AOA, given that the

distances hT1, hT2, hR1, and hR2 are equals.

We consider now some scenarios where the cluster of scatters has a �nite length

(see Figure.2.1 on page 17). To simulate such scenario we need to provide mainly

the length of the cluster L in addition to the angle �max and the distance hT1. The

position of the cluster is totally de�ned by this three parameters, since the angle �min

can be expressed in terms of L, hT1, and �max as

�min =

8>>><>>>:
arccot(

L

hT1
+ cot(�max)) if �max � 0

arccot(
L

hT1
+ cot(�max))� � if �max < 0.

(3.15)

In Figure.3.3 the in�uence of the parameter hR1 on the PDF of the AOA is illus-

trated. We remind that hR1 represents the distance between the receiver and the left

hand side of the street. In the current scenario a cluster of scatter having a length

of L = 10 m is considered. The maximum angle of departure �max is equal to �=2,

while the distance D is equal to 5 m, and hT1 is equal to 5 m. In Figure.3.3, the

curve with solid line represents the PDF of the AOA in case that hR1 = 3 m. Note

here that hR1 < hT1, this scenario can happen in reality if we have to cars driving

in two di¤erent columns of a road and trying to communicate using IVC. The curve

with dashed line is obtained for a value of hR1 = 5 m which is the same value as hT1.

this scenario can happen if we have one care behind another one. This scenario is
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Figure 3.3: In�uence of hT1 on the PDF of AOA.

mainly needed to avoid collision with the car ahead by using safety warnings. The

curve with dotted line is obtained for a value of hR1 = 7 m, i.e., hR1 > hT1. One can

see from the three curves that for this scenario the probability of having a wave ar-

riving from an angle 134.6� � correspond to 2.35 radium, which is the end point for

all curves depicted in Figure.3.3� is the highest. Moreover, the probability of hav-

ing a wave arriving from an angle 44.7�� correspond to 0.78 radium, which is the

end point for all curves depicted in Figure.3.3� is the lowest. furthermore, as we

decrease the value of hR1, the probability of having a wave arriving from an angle

134.6� decreases, but the probability of having a wave arriving from an angle 44.7�

increases.
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In order to verify the correctness of the obtained results, we use the Monte Carlo

Method. First a uniformly distributed random variable de�ned over the interval

[�min; �max] is generated. Using the relation between the AOA and the AOD according

to equation.2.1 on page 16, a random variable representing the AOA can be generated.

To obtain the PDF of the AOA the function histogram of Matlab is used. We generate

one million samples to guarantee the precision of the results. The obtained results

are illustrated in Figure.3.4. In the current scenario the parameters �max; L; hT1;

hR1 and D are equal to �=2, 10 m, 5 m; 5m and 5m, respectively. In the Figure.3.4,

a good �tting between the simulation and the theoretical PDF of the AOA can be

observed. Hence, the correctness of the model is veri�ed.

0.6 0.9 1.2 1.5 1.4 2.1 2.40

0.5

1

1.5

2

Figure 3.4: Theoretical and simulation results for the PDF of AOA p�n(�n).
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3.3 Doppler Power Spectral Density(PSD)

For mobile-to-mobile channels the transmitter and the receiver are on the move.

This motion results in Doppler e¤ect that causes a frequency shift for each wave. A

wave transmitted at an AOD �n and arriving to the receiver at an AOA �n undergoes

a Doppler shift according to the relation

f = fT + fR

= fT max cos(�n �  T ) + fRmax cos(�n �  R). (3.16)

In this case, the term fT represents the Doppler shift due to the motion of the trans-

mitter, while the term fR represents the Doppler shift due to the motion of the trans-

mitter. The terms  T and  R represents the direction of motion of the transmitter

and the receiver, respectively. The maximum Doppler shift due to the movement of

the transmitter is denoted by fT max. It can be expressed in term of the transmitter

speed vT , the speed of light c0, and the carrier frequency fc according to

fT max =
vT
c0
fc. (3.17)

The maximum Doppler shift due to the movement of the receiver is denoted by fRmax.

It can be expressed in term of the receiver speed vR, the speed of light c0, and the

carrier frequency fc according to

fRmax =
vR
c0
fc. (3.18)

In the frequency domain, the Doppler e¤ect results in an expansion of the transmitted

signal spectrum. In the time domain the Doppler e¤ect implicates that the impulse

response of the channel becomes time-variant.

The expression (3.16) implicates that the Doppler shift is a function of the AOD �n

and the AOA �n, which are random variables in our model. hence the Doppler shift
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f is also a random variable. Since the AOA �n can be expressed in terms of the AOD

�n according to (2.1), then f is a function of the AOD �n. Hence, the PDF pf (f) of

the Doppler frequencies f can be derived for any given p�n(�n) using the fundamental

theorem of transformation of random variables. In order to derive the expression of

pf (f), we need �rst to �nd the roots of the equation f = h(�n). The function h

is obtained by substituting �n according to 2.1, in the equation.3.16. unfortunately,

a close form solution doesn�t exists for the roots. furthermore the number of roots

depend of the considered scenario as shown in Figure.3.5. for the illustrated scenario

the value of �max; L; hR1; hT1 andD are equal to �=2, 20m, 5m and 3m, respectively.

In addition, we consider that both the transmitter and the receiver have a speed of

110 Km/h. The carrier frequency fc is equal to 900 MHz. For the scenario depicted

in Figure.3.5 (a), the direction of motion of the transmitter  T and the direction of

motion of the receiver  R are equal to � and �=2, respectively. in Figure.3.5 (b), the

direction of motion of the transmitter  T and the direction of motion of the receiver

 R are equal to 0 and �, respectively. one can see from those two scenarios that the

shape of the Doppler frequency change drastically for the same range of the AOD �n.

Moreover, for some values of f , the equation f = h(�n) has 3 roots and for other

values 2 or 1 root. For all the listed reasons the PDF pf (f) of the Doppler frequencies

f will be evaluated analytically.

The Doppler power spectral density(PSD) Sgg(f) is proportional to the PDF pf (f)

of the Doppler frequencies f , we can write

Sgg(f) = 2�
2
0 � pf (f) (3.19)

where 2�20 is the mean power of the received scattered components. Using (3.16),

it can be proved that the Doppler PSD Sgg(f) is bounded depending on the length

of the cluster of scatters L. Hence, the maximum (minimum) Doppler frequency
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Figure 3.5: Variation of the Doppler frequency f for various values of  T and  R.

fmax(�fmax) given by fmax = fT max+ fRmax (�fmax = �fT max� fRmax) is not always
reached.

3.3.1 Numerical and Simulation Results

In this section, we present some illustrative examples for the Doppler PSD. For

all the scenarios listed in this section some parameters remain constant . These

parameters are the speed of the transmitter and the receiver which is equal to 110

Km/h, the direction of motion of the transmitter and the receiver denoted by  T and

 R ,respectively, which is equal to 0. The carrier frequency has been set to 900MHz.

First, we start by studying the in�uence of the distance D separating the transmit-

ter form the receiver on the PSD of Doppler frequencies. For the considered scenario

we choose the parameters �max = 3�=4; L = 30m; �20 = 1, and hR1 = hT1 = 10m.

The obtained results are illustrated in Figure.3.6.

One can conclude from the Figure.3.6 that the contribution of negative frequency

increases as the distance D increases, while the contribution of positive frequencies

decreases as D decreases. This fact can be explained by considering the in�uence of D
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Figure 3.6: The Doppler PSD for various values of D.

on the PDF of the AOA. Let consider again the Figure.3.1, in this �gure the in�uence

of D on the PDF of the AOA is illustrated. From this Figure, one can conclude that

the probability of the event " the AOA superior to �=2" increases as the distance D

increases. This remark is of importance since all values of the AOA superior to �=2

results in negative contribution in the Doppler PSD. This e¤ect can be observed in

Figure.3.6, where an increase in the contribution of the negative frequencies can be

seen as the distance D increases.

We consider now in�uence of the distance hT1 separating the transmitter form the

left hand side of the street on the PSD of Doppler frequencies. For this purpose

we considered a scenario where the simulation parameters are given by �max = �=2;

L = 20m; and hR1 = 5m; �20 = 1, and D = 10. The obtained results are illustrated in

Figure.3.7. It can be seen from this �gure the contribution of the negative frequen-
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cies increases as the quantity hT1 decreases, while the contribution of the positive

frequencies decreases as hT1 decreases. This fact can be explained by the in�uence of

the parameter hT1 on the PDF of the AOA. From Figure.3.3, one can conclude the

probability of the event "the AOA superior to �=2" increases as the distance hT1 de-

creases. This remark is of importance, since all values of the AOA superior to �=2

results in negative contribution in the Doppler PSD. This e¤ect can be observed in

Figure.3.7, where an increase in the contribution of the negative frequencies can be

seen as the distance hT1 decreases.

100 50 0 50 100 150 2000

0.005

0.01

0.015

0.02

Figure 3.7: The Doppler PSD for various values of hT1.

In order to verify the correctness of the obtained results, we use the Monte Carlo

Method. In fact, the Doppler frequencies f can be expressed as a function of the

AOD �n, which is uniformly distributed over the interval [�min; �max]. To simulate the

Doppler PSD, we start �st by generating the AOD �n. Using the relation between the
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AOD �n and the Doppler frequencies f , a random variable representing the Doppler

frequencies can be generated. To obtain the PDF pf (f) of the Doppler frequencies

f the function histogram of Matlab is used. Afterward using the relation (3.19),

the Doppler PSD can be found. We generate one million samples to guarantee the

precision of the results. The obtained results are illustrated in Figure.3.8. In the

current scenario the parameters �max; L; hT1; hR1 and D are equal to �=2, 20 m,

15 m; 10m and 10m, respectively. In the Figure.3.4, a good �tting between the

simulation and the theoretical Doppler PSD can be observed. Hence, the correctness

of the model is veri�ed.

100 50 0 50 100 1500

0.004

0.008

0.012

0.016

Figure 3.8: Theoretical and simulation results for the PSD of the Doppler frequencies
f .

One can remarks a general feature for all the presented scenario is that the shape

of the PSD is asymmetrical.
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Two characteristics quantities can be derived from the Doppler PSD. The �rst

quantity is the average Doppler shift B(1)
gg , which is a measure of the center of gravity

of the Doppler PSD Sgg(f). The second quantity is ,which is a measure of the range

of values of the Doppler frequencies f over which Sgg(f) is essentially nonzero. The

average Doppler shift B(1)
gg is de�ned as

B(1)
gg : =

R1
�1 f � Sgg(f)dfR1
�1 Sgg(f)df

=

R1
�1 f � 2�

2
0 � pf (f)dfR1

�1 2�
2
0 � pf (f)df

=

R1
�1 f � pf (f)dfZ 1

�1
pf (f)df| {z }
=1

=

Z fu

fl

f � pf (f)df (3.20)

where the symbols fl and fu denote the maximum and the minimumDoppler shift that

can be reached for a given scenario. These two values depend mainly on the length

of the cluster of scatters L. the latter leads to the limitation of the Doppler PSD to

a relatively narrow band [fl; fu]. Since the Doppler PSD is generally asymmetrical,

the average Doppler shift is then nonzero.

The Doppler spread B(2)
gg is de�ned as

B(2)
gg : =

vuutR1
�1(f �B

(1)
gg )2 � Sgg(f)dfR1

�1 Sgg(f)df

=

sZ fu

fl

(f �B
(1)
gg ) � pf (f)df . (3.21)
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3.4 Autocorrelation Function (ACF)

The study of the ACF is of great importance. In fact the value of the ACF

at the origin correspond to the mean power of the received scattered components.

Furthermore, the shape of the ACF around the origin gives an idea about how fast

the channel changes. if the ACF is �at around the origin, then the channel changes

fast. on the contrary if the ACF changes fast drop of the ACF can be seen around

the origin, then the channel changes fast. The ACF of the complex channel gain g(t)

is de�ned as

rgg(�) := Efg�(t)g(t+ �)g. (3.22)

where (�)�denotes the complex conjugation, while E f�g is the expectation operator.
The expression of the complex channel gain g(t) is given by(3.6). Hence, the ACF

can be evaluated by substituting g(t) in (3.22)

rgg(�) = Efg�(t)g(t+ �)g

= lim
N!1

lim
M!1

2�20
N

E

( PN
n=1

PM
m=1 d

�
n � e

�j
�
2�(f

(n)
T +f

(n)
R )t+�n

�
�dm � ej

�
2�(f

(m)
T +f

(m)
R )(t+�)+�m

�
)

= lim
N!1

lim
M!1

2�20
N

E

( PN
n=1

PM
m=1 d

�
n � e

�j
�
2�(f

(n)
T +f

(n)
R )t

�
�dm � ej

�
2�(f

(m)
T +f

(m)
R )(t+�)

�
:e�j(�n��m)

)
(3.23)

Let consider the random variable � given by � = (�n � �m)mod 2�. The random

variable � is uniformly distributed over the interval [0; 2�) for all values of m and n

expect for m = n. When m = n, the random variable � is always equal to 0. Hence,

we can write

Ef�g =
�
0 if n 6= m
1 if n = m

(3.24)
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This fact allow us to simplify the expression of the ACF as follow

rgg(�) = lim
N!1

2�20
N

E

(
NX
n=1

d�n � e
�j
�
2�(f

(n)
T +f

(n)
R )t

�
� dn � ej

�
2�(f

(n)
T +f

(n)
R )(t+�)

�)

= lim
N!1

2�20
N

E

(
NX
n=1

e
j
�
2�(f

(n)
T +f

(n)
R )�

�)
. (3.25)

where the quantities f (n)T and f (n)R are given by (3.8) and (3.9), respectively. The

expectation operator has now to be applied on the remaining random variables �n.

We remind that the AOA �n can be expressed in terms of the AOD �n according to

(2.1). As the number of scatters tends to in�nity the discrete random variables �n

and �n become continuous random variables denoted by � and �, respectively. The

AOA � can be expressed in terms of � according to (2.1). The in�nitesimal power

of the di¤use component corresponding to the di¤erential angle d� is proportional to

p� (�) d�, where p� (�) denotes the distribution of �. As N ! 1, this in�nitesimal
contribution must be equal to 1=N = p� (�) d�. Consequently, it follows from (3.25)

that the ACF of the SISO reference model can be expressed as

rgg(�) = 2�
2
0

Z �max

�min

ej(2�(fT (�)+fR(�(�)))�)p� (�) d�. (3.26)

The expression �(�) emphasis the fact that the AOA � can be expressed in terms of

the AOD � according to (2.1).

The channel gain g(t) is complex then it could be written in the form

g(t) = g
I
(t) + jg

Q
(t) (3.27)

where g
I
(t) and g

Q
(t) are the inphase and the quadrature components of the chan-

nel gain, respectively. The autocorrelation functions rg
I
g
I
(�) and rg

I
g
Q
(�) can be
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expressed as

rg
I
g
I
(�) = 1=2 Refrgg(�)g (3.28)

rg
I
g
Q
(�) = 1=2 Imfrgg(�)g. (3.29)

Since rg
I
g
Q
(�) is nonzero, then the inphase and the quadrature components of the

channel gain are correlated.

3.4.1 Numerical Results

In this section some numerical results are presented for various scenarios. In order

to eliminate the e¤ect of the speed of the transmitter and the receiver on the ACF

the temporal separation � is normalized. In typical cellular channel where only the

receiver is moving the normalization consists in multiplying � by fmax; where fmax =

(v=c0)f0. But since we have an M2M channel then the normalization di¤ers from

the one used in typical cellular channels. In fact, we can distinguish between two

cases. if the transmitter and the receiver have the same speed, then the quantity

fT max = fRmax. For this situation, the normalization could be done by multiplying �

by either fT max or fRmax; since they are equal. However, if the transmitter and the

receiver have di¤erent speeds, no solution has been found. One may think to use the

relative speed to normalize the temporal separation which is a fallacy. For instance, if

the transmitter and the receiver have the same speed and the same direction of motion,

then the relative speed is equal to zero. If we use the relative speed to normalize the

temporal separation � ; we will multiply � by 0. In the following scenarios, only cases

where the transmitter and the receiver have similar speed are considered. In order to

illustrate the in�uence of di¤erent parameters on the absolute value of the ACF we

present in the following obtained results for various scenarios. In the Figure.3.9(a),

we illustrate the in�uence of the length of the cluster of scatters L on the absolute
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value of the ACF. In the current scenario, the parameters �max; hT1; hR1, D; �20;  R;

 T are equal to �=2, 10 m, 10 m; 20m; 0:5, � and 0, respectively. From Figure.3.9(a),

it can be seen the as we decrease the length of the cluster the ACF becomes more

�at around the origin. Hence, the channel changes slowly in case that the length of

the cluster is small. On the contrary, if the length of the cluster increases the channel

changes fast.

In the Figure.3.9(b), we illustrate the in�uence of the position of the cluster of

scatter given by �max on the absolute value of the ACF. By varying the value of �max,

we are in fact shifting the cluster along the left edge of the street. In the current

scenario the parameters L; hT1; hR1, D; �20;  R;  T are equal to 10 m, 10 m, 10 m;

20m; 0:5; 0 and 0, respectively. From Figure.3.9(b), it can be seen the as we decrease

the value of �max the ACF becomes more �at around the origin. Hence, the channel

changes slowly in case that the value of �max is small. On the contrary, if the the

value of �max is near to � the channel changes fast.
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Figure 3.9: Absolute value of ACF: (a) for various values of L and (b) or various
values of �max.
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In the Figure.3.10(a), we illustrate the in�uence of the position of the receiver

relatively to the left hand side of the street, given by hR1, on the absolute value of the

ACF. By varying the value of hR1, we are in fact shifting the the receiver along a line

perpendicular to the left edge of the street. In the current scenario the parameters

�max; L; hT1, D; �20;  R;  T are equal to �=2; 40 m, 20 m, 1 m; 0:5, 0 and 0,

respectively. From Figure.3.9(a), it can be seen the as we increase the value of hR1

the ACF becomes more �at around the origin. Hence, the channel changes slowly

for big values of hR1. On the contrary, if the the value of hR1 is small the channel

changes fast.

In the Figure.3.10(b), we illustrate the in�uence of the position of the transmitter

relatively to the left hand side of the street, given by hT1, on the absolute value of

the ACF. By varying the value of hT1, we are in fact shifting the the transmitter

along a line perpendicular to the left edge of the street. In the current scenario the

parameters �max; L; hR1, D; �20;  R;  T are equal to �=2; 40 m, 20 m, 1 m; 0:5, 0

and 0, respectively. From Figure.3.10(b), it can be seen the as we increase the value

of hT1 the ACF becomes more �at around the origin. Hence, the channel changes

slowly for big values of hT1. On the contrary, if the the value of hT1 is small the

channel changes fast.

Hence, the variation of hR1 or hT1 leads to the same e¤ect. Nevertheless, the

variation of hR1 has stronger in�uence on the absolute value of the ACF, as it can be

seen from Figure.3.10.

In the Figure.3.11, we illustrate the in�uence of the direction of motion of the

receiver given by  R on the absolute value of the ACF. In the current scenario the

parameters �max; L; hR1,hT1; D; �20;  T are equal to �=2; 20 m, 10 m, 10 m, 20

m; 0:5; and 0, respectively. From Figure.3.11, it can be seen that for a value of  R

equals to � the most �at ACF is obtained. Hence the channel changes slowly if the
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Figure 3.10: Absolute value of ACF: (a) for various values of hR1 and (b) or various
values of hT1.

transmitter and the receiver are moving toward each other. For a value of  R equals

to �=2; a very fast drop can be seen around the origin then the channel changes fast

for this case. The plot of the ACF for a value of  R equals to 3�=4; shows that we

can�t reach a general conclusion about the e¤ect of  R on the absolute value of the

ACF. In other words, we can�t say that an increase in the value of  R leads to a faster

channel changes.

3.5 Level-Crossing Rate (LCR)

Let denote by �(t) the envelope of The channel gain g(t); i.e., �(t) = jg(t)j. The
LCR, denoted by N�(r), is the average number of crossings per second at which the

envelope �(t) crosses a speci�ed signal level r with positive (or negative) slope. The

LCR is de�ned as

N�(r) =

Z 1

0

_x p� _�(r; _x)d _x (3.30)

where p� _�(r; _x) denotes the joint probability density function of the process �(t) and

its time derivative _�(t). In Section 3.1, it has been shown that the envelope �(t)
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Figure 3.11: Absolute value of ACF for various values of  R .

follows a Rayleigh distribution. Hence, the LCR of the Rayleigh process �(t) can be

expressed as

N�(r) =

r
�

2�
� r
 0
e
� r2

2 0 (3.31)

where

� = �� 0 �
_�
2

0

 0
. (3.32)

The quantities  0; � 0; and _�0 are given by

 0 = rg
I
g
I
(0)

=
1

2
Re frgg(0)g

= �20 (3.33)

� 0 =
d2

d� 2
rg
I
g
I
(�)

����
�=0

=
1

2

d2

d� 2
Re frgg(�)g

����
�=0

(3.34)
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_�0 =
d2

d� 2
rg
I
g
Q
(�)

����
�=0

=
1

2

d2

d� 2
Im frgg(�)g

����
�=0

(3.35)

Hence, the LCR can now be evaluated. In order to illustrate the in�uence of

di¤erent parameters on the LCR we present in the following obtained results for

various scenarios. In the Figure.3.12(a), we illustrate the in�uence of the length of

the cluster of scatters L on the LCR. In the current scenario, the parameters �max;

hT1; hR1, D; �20;  R;  T are equal to �, 5 m, 5 m; 15m; 0:5, 0 and 0, respectively.

From Figure.3.12(a), it can be seen the as we decrease the length of the cluster the

LCR decreases. Hence, the channel changes slowly in case that the length of the

cluster is small. On the contrary, if the length of the cluster increases the channel

changes fast. which con�rm the result obtained in the previous section.

In the Figure.3.12(b), we illustrate the in�uence of the position of the cluster of

scatter given by �max on the LCR. In the current scenario the parameters L; hT1;

hR1, D; �20;  R;  T are equal to 10 m, 10 m, 10 m; 2m; 0:5; 0 and 0, respectively.

From Figure.3.12(b), it can be seen that as we decrease the value of �max the LCR

decreases. Hence, the channel changes slowly in case that the value of �max is small.

On the contrary, the channel changes fast for large values of �max. This statement

con�rm the result obtained when we have studied the ACF.

3.6 Average Duration of Fades (ADF)

The ADF, denoted by T��(r), is the expected value for the length of time intervals

over which the envelope �(t) is below a speci�ed signal level r. The ADF is de�ned
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Figure 3.12: Normalized LCR: (a) for various values of L and (b) or various values of
�max.

as

T��(r) =
F��(r)

N�(r)
(3.36)

where

F��(r) =

Z r

0

p�(x)dx (3.37)

Since �(t) follows a Rayleigh process, we can write

F��(r) = 1� e�(r
2�2 0) (3.38)

Hence, the ADF can be expressed as

T��(r) =

r
2�

�
�  0
r

�
e(r

2�2 0) � 1
�

(3.39)

In order to illustrate the in�uence of di¤erent parameters on the ADF we present

in the following obtained results for various scenarios. In the Figure.3.13(a), we

illustrate the in�uence of the length of the cluster of scatters L on the ADF. In the

current scenario, the parameters �max; hT1; hR1, D; �20;  R;  T are equal to �, 5 m,

5 m; 15m; 0:5, 0 and 0, respectively. From Figure.3.13(a), it can be seen that as we
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increase the length of the cluster the LCR increases. The maximum value of the ADF

is reached for an in�nite length cluster.

In the Figure.3.13(b), we illustrate the in�uence of the position of the cluster of

scatter given by �max on the LCR. In the current scenario the parameters L; hT1;

hR1, D; �20;  R;  T are equal to 10 m, 10 m, 10 m; 2m; 0:5; 0 and 0, respectively.

From Figure.3.13(b), it can be seen that as we decrease the value of �max the ADF

decreases.
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Figure 3.13: ADF: (a) for various values of L and (b) or various values of �max.

Ali Chelli 45



Chapter 4

The SISO Simulation Model

Computer simulations are essential for the design optimization and test of mobile

communication systems. In order to perform the necessary simulations for a given

communication system, the realization of a channel simulator is required. In the

reference model, an in�nite number of scatter is assumed. Hence, the reference model

cannot be used to realize a channel simulator. To overcome this problem a stochastic

simulation model is derived from the reference model by limiting the number of scatter

to a �nite value N . Furthermore, a deterministic channel model can be obtained from

the stochastic simulation model, by �xing all model parameters. Finally, appropriate

parameter computation methods are used to determine the model parameters, such

that the statistical properties of the simulation model and the reference model �t

together. This procedure is an application for the concept of deterministic channel

modelling described in [14].

4.1 The Stochastic Simulation Model

A stochastic simulation model can be derived from the reference model described in

Chapter 3 by considering a �nite number of scatters N . Thus, the di¤use component

can be expressed as
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ĝ(t) =
NX
n=1

cn � ej(2�fnt+�n) (4.1)

The phases �n are still i.i.d. random variables, each with a uniform distribution on

the interval [0; 2�). The amplitude cn and the frequency fn are constant, Therefore,

ĝ(t) represents a stochastic process. The di¤use component ĝ(t) can be seen as a

�nite sum-of-sinusoids with constant gains, constant Doppler frequencies, and random

phases.

4.1.1 Statistical Properties

In this section, the statistical properties of the stochastic simulation model are

derived. The mean value of the stochastic simulation model can be evaluated by

applying the expectation operator on the phase shifts �n.Hence, the mean value can

be expressed as

m̂g = Efĝ(t)g = 0 (4.2)

The ACF of the stochastic simulation model, which is de�ned as

r̂gg(�) : = Efĝ�(t)ĝ(t+ �)g

= E

� PN
n=1

PM
m=1 cne

�j(2�fnt)

�cmej(2�fm(t+�)) � e�j(�n��m)
�

(4.3)

Let consider the random variable � given by � = (�n � �m)mod 2�. The random

variable � is uniformly distributed over the interval [0; 2�) for all values of m and n

expect for m = n. When m = n, the random variable � is always equal to 0. Hence,

we can write

Ef�g =
�
0 if n 6= m
1 if n = m

(4.4)
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This fact allow us to simplify the expression of the ACF as follow

r̂gg(�) =

NX
n=1

c2n e
j(2�fn�) (4.5)

The mean value of the stochastic process ĝ(t) is constant, and that the ACF of

ĝ(t) depends only on the time separation � . Hence, the stochastic process ĝ(t) is wide

sense stationary.

Now we derive the PSD of the stochastic simulation model, which is the Fourier

Transform of the ACF. Hence, the PSD can be written as

Ŝgg(f) = Ffr̂gg(�)g

=

Z +1

�1
r̂gg(�)e

�j2�f�d�

=
NX
n=1

c2n �(f � fn) (4.6)

where Ff�g denotes the Fourier transform and �(�) denotes the delta function.
The average Doppler shift of the stochastic simulation model can be expressed as

B(1)
gg =

R +1
�1 fŜgg(f)dfR +1
�1 Ŝgg(f)df

(4.7)

=

R +1
�1 f

PN
n=1 c

2
n �(f � fn)dfR +1

�1
PN

n=1 c
2
n �(f � fn)df

(4.8)

=

PN
n=1 c

2
n fnPN

n=1 c
2
n

(4.9)

The Doppler spread B(2)
gg of the stochastic simulation model can be expressed as

B(2)
gg =

vuutR +1
�1 (f �B

(1)
gg )2Ŝgg(f)dfR +1

�1 Ŝgg(f)df

=

vuutPN
n=1 c

2
n(fn �B

(1)
gg )2PN

n=1 c
2
n

(4.10)
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The level-crossing rate of the stochastic simulation model can be expressed as

N�(r) =

r
�

2�
� r
 0
e
� r2

2 0 (4.11)

where

� = �� 0 �
_�
2

0

 0
. (4.12)

The quantities  0; � 0; and _�0 are given by

 0 = r̂g
I
g
I
(0)

=
1

2
Re fr̂gg(0)g

=
1

2

NX
n=1

c2n (4.13)

� 0 =
d2

d� 2
r̂g
I
g
I
(�)

����
�=0

=
1

2

d2

d� 2
Re fr̂gg(�)g

����
�=0

= �1
2

NX
n=1

c2n(2�fn)
2 (4.14)

_�0 =
d2

d� 2
r̂g
I
g
Q
(�)

����
�=0

=
1

2

d2

d� 2
Im fr̂gg(�)g

����
�=0

=
NX
n=1

�c2nfn (4.15)
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The ADF of the stochastic simulation model can be expressed as

T��(r) =
F��(r)

N�(r)
(4.16)

=

r
2�

�
�  0
r

�
e
r2

2 0 � 1
�

(4.17)

4.1.2 Ergodicity

In this section, we study the ergodicity of the stochastic process ĝ(t). If a process

is mean value ergodic, then it is possible to evaluate its mean value using temporal

average over one sample function instead of averaging over the whole ensemble of

sample functions. The same statement holds for the evaluation of the autocorrelation

function if the process is autocorrelation ergodic.

We start �rst by checking the ergodicity with respect to the mean value. The

statistical average m̂g of ĝ(t) has been evaluated in the previous section and is equal

to 0. The temporal average ~mg of ĝ(t) is de�ned as

~mg : = hĝ(t)i

= lim
T�!1

1

2T

Z T

�T
ĝ(t)dt (4.18)

= lim
T�!1

1

2T

NX
n=1

cn �
Z T

�T
ej(2�fnt+�n)dt

= 0 (4.19)

where h�i stands for the time average operator. Hence, ~mg = m̂g and the stochastic

process ĝ(t) is mean value ergodic.

Now let examine if the process ĝ(t) is autocorrelation ergodic. The ACF of ĝ(t) is

given by

r̂gg(�) =
NX
n=1

c2n e
j(2�fn�) (4.20)
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as shown in the previous section. The temporal ACF of ĝ(t) is given by

~rgg(�) : = hĝ�(t)ĝ(t+ �)i

= lim
T�!1

1

2T

Z T

�T
ĝ�(t)ĝ(t+ �)dt (4.21)

= lim
T�!1

1

2T

Z T

�T

NX
n=1

MX
m=1

cne
�j(2�fnt+�n) � cmej(2�fm(t+�)+�m)

=

NX
n=1

c2n e
j(2�fn�). (4.22)

Hence, ~rgg(�) = r̂gg(�) and the stochastic process ĝ(t) is mean autocorrelation ergodic.

4.2 The Deterministic Simulation Model

A sample function of the stochastic process ĝ(t) is obtained by choosing constant

phases �n, determined by the outcomes of a random generator with uniform distri-

bution over [0; 2�). To realize a stochastic process, an in�nite number of sample

functions is needed, which makes it non-realizable. We can cope with this problem,

since we are dealing with an ergodic stochastic process. In such a situation, a sin-

gle sample function denoted by ~g(t) is su¢ cient. The realization of ~g(t) represents

the deterministic simulation model for an M2M SISO frequency-nonselective Rayleigh

fading channel. Time averages has to be used in order to analyse the properties of the

deterministic MIMO channel simulator. For instance, the ACF of the deterministic

simulation model is de�ned as

~rgg(�) : = h~g�(t)~g(t+ �)i

=

NX
n=1

c2n e
j(2�fn�). (4.23)
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4.3 Parameter Computation Method

In order to obtain a channel simulator that emulates the statistical fading behav-

iour of the M2M SISO channel with great deal of precision, parameter computation

methods are invoked. A good parameter computation method is the one that lead to

a good �tting between the statistical properties of the simulation model and the refer-

ence model. In our current problem the model parameters that has to be determined

are only the Doppler frequencies fn. The Doppler gains has the same expression as

in the reference model and are given by (3.2). In the following we present the para-

meter computation methods used to determine the simulation model parameters for

the SISO M2M channel.

4.3.1 Modi�ed Method of Equal Area

The method of equal area (MEA) has been described in detail in [14]. To determine

the value of the model parameters fn, let consider the PSD Sgg(f) of a complex

channel gain g(t). In our reference model, the PSD is generally asymmetrical and

bounded within the interval [fl; fu]. To determine the value of the model parameters

fn, we divide the area under the PSD into N equal areas. This could be done by

evaluating the set of frequencies ffngNn=1 in such a way that

Z fn

fl

Sgg(f)df =
2�20n

N
; 8n = 1; 2; :::; N (4.24)

where 2�20 is the mean power of the received scattered component. Numerical technics

could be used to evaluate the Doppler frequencies fn.

The Modi�ed MEA is similar to the MEA method except the fact that we have

to divide the area under the PSD into 2N subarea. Only the odd frequencies will be
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used in the simulation model i.e.,

Z fn

fl

Sgg(f)df =
2�20(2n� 1)

2N
; 8n = 1; 2; :::; N . (4.25)

The obtained set of Doppler frequencies ffngNn=1 is used in the simulation model.

4.3.2 Lp-Norm Method (LPNM)

The LPNM has been described in detail in [14]. To determine the set of frequen-

cies ffngNn=1 using the LPNM method, It is required to minimize the following error

norm:

E =

�
1

�max

Z �max

0

jrg(�)� ~rg(�)jp d�
�1=p

(4.26)

the quantity �max determine the range over which the approximation is rg(�) � ~rg(�)
is of interest.

4.4 Numerical and Simulation Results

In order to asses the performance of the MMEA and the LPNMmethod, we cosider

a scenario where the parameters �max; L, hT1; hR1, D; �20;  R;  T are equal to �=2, ,

2 m; 10 m, 10 m; 20m; 0.5, 0 and 0, respectively. The results illustrated in Figure.4.1

are obtained using the MMEA. The results illustrated in Figure.4.2 are obtained using

the Lp-norm method.
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Figure 4.1: ACFs of the reference and the simulation model (MMEA N = 25).
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Figure 4.2: ACFs of the reference and the simulation model (Lp-norm method
N = 25).
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Chapter 5

Model Extension

In this chapter, we will illustrate how the proposed SISO channel model can be

extended to multiple clusters of scatter as well as to frequency-selectivity.

5.1 Extension to Multiple Clusters of Scatters

We consider a propagation scenario where C clusters of scatters located on the left
and/or right hand side of the street. In order to distinguish between di¤erent clusters

a subscript (�)c (c = 1; 2; :::; C) is added to all a¤ected symbols gc(t); �c; �c etc. We
start by deriving the statistical properties of the multi-cluster scenario. Afterward,

numerical and simulation results are presented.

5.1.1 Statistical Properties

the PDF p�(�) of the AOD � in a multi-cluster propagation scenario can be ex-

pressed as

p�(�) =
CX
c=1

bcp�c(�c). (5.1)

where bc is a weighting factor. Since the area under the PDF p�(�) is equal to

1, we need to impose the boundary condition
PC

c=1 bc = 1. The expression of the

weighting factor must re�ect the contribution of each cluster in the received scattered
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Figure 5.1: Geometrical street model with several clusters of scatters.

component. One may think that the contribution of each cluster is proportional to

its length L, which is not right. In fact, if we place a cluster of a length L near to

the transmitter (e.g.,�max � �=2) it has higher contribution than a cluster of length

L located far from the transmitter (e.g.,�max � �). Since the transmitter is equipped

with an omnidirectional antenna, we can conclude that the contribution of a given

cluster is proportional to the angle of spreading ��c given by ��c = j�max c � �min cj.
Hence, we can express bc as

bc =
��cPC
c=1��c

. (5.2)
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The PDF p�(�) of the AOA � in a multi-cluster propagation scenario can be expressed

as

p�(�) =

CX
c=1

bcp�c(�c). (5.3)

where bc is the same weighting factor used for the PDF of the AOD �.

In a multi-cluster propagation scenario the complex channel gain denoted by z(t)

results from the superposition of the received scattered components of all C clusters.
Hence, the complex channel gain z(t) can be expressed as

z(t) =
CX
c=1

wcgc(t) (5.4)

where wc is a weighting factor. We impose the boundary condition
PC

c=1wc = 1; in

order to normalize the mean power of z(t) to 2�20. A relation between bc and wc will

be established later. Thus, the ACF in the multi-cluster case can be expressed as

rzz(�) = E fz�(t)z(t+ �)g

= E

( CX
c=1

CX
d=1

wcg
�
c (t)wdgd(t+ �)

)

=
CX
c=1

CX
d=1

wcwdE fg�c (t)gd(t+ �)g (5.5)

Since the e¤ect of di¤erent clusters are independent, we can writeE fg�c (t)gd(t+ �)g =
E fg�c (t)gE fgd(t+ �)g if c 6= d. As shown in Section 3.1, the expected value of the

channel gain is equal to zero. Hence, the expression of rzz(�) can be simpli�ed as

rzz(�) =

CX
c=1

w2c � rgcgc(�) (5.6)

= 2�20

Z �max

�min

ej(2�(fT (�)+fR(�(�)))�)p� (�) d�. (5.7)

The expression of the ACF rgcgc(�) is given by
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rgcgc(�) = 2�
2
0

Z �max c

�min c

ej(2�(fT (�c)+fR(�c(�c)))�)p�c (�c) d�c (5.8)

Substituting (5.8) in (5.6), it can be proven that wc and bc are related according to

the relation

w2c = bc. (5.9)

The PSD Szz(f) can be obtained by applying the inverse Fourier transform on the

ACF rzz(�). Hence, the PSD can be expressed

Szz(f) = F�1 frzz(�)g

= F�1

( CX
c=1

w2c � rgcgc(�)
)

=
CX
c=1

w2c � Sgcgc(f) (5.10)

where F�1 f�g stands for the inverse Fourier transform.

5.1.2 Numerical and Simulation Results

To illustrate the statistical properties of a multi-cluster propagation case, we con-

sider a scenario with two clusters. The �rst cluster is located on the left hand side of

the street (�max = 90�) having a length L = 5m. The second cluster is located on the

right hand side of the street (�max = �21:81�). The distance separating the trans-
mitter and the receiver from both scatter is equal to 2m. The value of �maxis equal

to 0.055 s. For the described scenario, we represent the PDF of AOA and the power

spectral density in Figure.5.2 and Figure.5.3 ,respectively. In addition, the ACF of

the reference and the simulation model is illustrated in Figure.5.4 ,where the MMEA

is used to determine the model parameters. In Figure.5.5 ,the ACF of the simulation

model is obtained using the Lp-norm method. A better performance can be observed

when using the Lp-norm method.
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Figure 5.2: PDF of AOA for a multi-cluster scenario.

5.2 Extension to Frequency-Selectivity

So far, all the presented scenarios can be classi�ed in the category of frequency

non-selective channels. In real-world, the multipath propagation results in received

waves having di¤erent propagation delays and di¤erent path gains. The hypothesis of

frequency non-selectivity is justi�ed only if the propagation delays can be neglected in

comparison to the symbol duration. This statement holds for narrowband transmis-

sion systems. In wideband transmission systems the symbol duration is much smaller

than in narrowband transmission systems. In such cases, we cannot any more neglect

the propagation delays. This fact results in another category of channels so-called fre-

quency non-selective channels. In this Section, a wide-sense stationary uncorrelated

scattering (WSSUS) model is assumed.

5.2.1 The Reference Model

We consider a propagation scenario with L discrete propagation paths. In order to
distinguish between di¤erent paths, a subscript (�)` (` = 1; 2; :::; L) is added to all
a¤ected symbols. The `th path introduces a gain a` and a propagation delay � 0`. The
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Figure 5.3: PSD for a multi-cluster scenario.

complex channel gain associated with the `th path is denoted by g`(t). The impulse

response of the reference model can be expressed as

h(� 0; t) =
LX
`=1

a`g`(t)�(�
0 � � 0`) (5.11)

where �(�) is the delta function.
The time-variant transfer function denoted byH(f 0; t) can be obtained by applying

the Fourier transform on the impulse response h(� 0; t) with respect to � 0. Hence, using

(5.11), we can write

H(f 0; t) =
LX
`=1

a`g`(t)e
�j2�f 0� 0` (5.12)
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Figure 5.4: ACFs of the reference and the simulation model for a multi-cluster scenario
(MMEA, N = 25).

Using the expression of H(f 0; t), we can determine the frequency correlation func-

tion (FCF) denoted by r� 0(�0), which is de�ned as

r� 0(�
0) : = E fH�(f 0; t)H(f 0 + �0; t)g (5.13)

= E

( LX
`=1

a`g
�
` (t)e

j2�f 0� 0`

LX
k=1

akgk(t)e
�j2�(f 0+�0)� 0k

)
(5.14)

=
LX
`=1

LX
k=1

a`ake
j2�f 0� 0`e�j2�(f

0+�0)� 0kE fg�` (t)gk(t)g (5.15)

Since a WSSUS model is assumed, di¤erent paths are uncorrelated and we can write

E fg�` (t)gk(t)g =
�

0 if ` 6= k
2�20 if ` = k

(5.16)

Hence, it follows

r� 0(�
0) = 2�20

LX
`=1

a2`e
�j2��0� 0` . (5.17)

The values of a` and � 0` can be obtained from speci�cation or measurement data.

Inter-vehicle communication systems are intended to operate the 5.9 GHz band. For
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Figure 5.5: ACFs of the reference and the simulation model for a multi-cluster scenario
(Lp-norm method, N = 25).

this band there exists no power delay pro�le speci�cation. For this reason, we will

use the COST 207 speci�cation [23], originally designed for GSM. The choice of this

speci�cation is due to the fact that COST 207 is designed for outdoor propagation

environment. In fact, inter-vehicle communication systems are intended to operate

in an outdoor environment. The power delay pro�le of a 12-path channel model

according to COST 207 is illustrated in Table.5.1.

Path Delay (�s) Fractional power Path Delay (�s) Fractional power

1 0.0 0.092 7 1.3 0.046

2 0.1 0.115 8 1.7 0.074

3 0.3 0.231 9 2.3 0.051

4 0.5 0.127 10 3.1 0.032

5 0.8 0.115 11 3.2 0.018

6 1.1 0.074 12 5.0 0.025

Table 5.1: Speci�cation of the PDP for Typical Urban channel according to COST
207 (12-path)
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Figure 5.6: Partition of a cluster of scatters into L pairs.

5.2.2 The Simulation Model

In order to extend the simulation model to frequency selectivity let consider a

cluster of length L. If we �rst assume that the channel is frequency non-selective,

then the channel complex gain of the simulation model could be written as

~g(t) =

r
2�20
N

NX
n=1

dn � ej
�
2�(f

(n)
T +f

(n)
R )t+�n

�
. (5.18)

We remind that

dn = e�j
2�
�
((hT1= sin(�n))+(hR1= sin(�n))) (5.19)

f
(n)
T = fTmax cos(�n �  T ) (5.20)

f
(n)
R = fRmax cos(�n �  R). (5.21)

Let partition the cluster into L pairs of segments I` (` = 1; 2; :::; L) limited by
�` and �`�1 as it is shown in Figure.5.6.
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Each pair of segment correspond to a propagation path `. In order to determine

the gain a` and a propagation delay � 0` associated to each segment we use the following

procedure. We �rst express the propagation delay as

� 0n =
dn
c0

(5.22)

=
e�j

2�
�
((hT1= sin(�n))+(hR1= sin(�n)))

c0
(5.23)

where c0 is the speed of light. We remind that the AOD �n and the AOA �n are

related according to (2.1). Substituting �n in the expression of � 0n, we can express �
0
n

as a function of the AOD �n �
0
n = h(�n). Hence, for a given � 0` we can determine

the corresponding AOD �`. Unfortunately, no close form solution exists for �`, to

overcome this problem numerical technics are used to evaluate �`. The angle �`

determine the limit of each segment I`. Now, for all the AOD �n within the interval

[�`�1; �`], we perform the following assignments:

� 0n ! � 0` (5.24)

dn ! dn;` (5.25)

f
(n)
T ! f

(n;`)
T (5.26)

f
(n)
R ! f

(n;`)
R (5.27)

�n ! �n;` (5.28)

where n = 1; 2; :::; N and ` = 1; 2; :::;L. Using this procedure, we are in
fact gathering all the propagation delays � 0n which are within the interval

�
� 0`�1; �

0
`

�
together. In fact, the di¤erence between the delays � 0`�1 � � 0n � � 0` can be neglected.

Hence, we assign to the corresponding propagation path a delay � 0` and a gain a`

for all ` = 1; 2; :::;L. In this manner, we partition the N scatters S(n) into L pairs
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of segment. Each pair contains N` scatters. We have to verify that the relationPL
`=1N` = N holds. The described procedure has been proposed in[?]. Following

this procedure, the simulation model channel gain ~g(t) given by (5.18) can be now

used to express the impulse response of the frequency-selective SISO simulation model

as

~h(� 0; t) =

LX
`=1

a`

s
2�20
N`

NX̀
n=1

dn;` � ej
�
2�(f

(n;`)
T +f

(n;`)
R )t+�n;`

�
�(� 0 � � 0`) (5.29)

The time-variant transfer function of the simulation model denoted by ~H(f 0; t) can

be obtained by applying the Fourier transform on the impulse response ~h(� 0; t) with

respect to � 0. Hence, we can write

~H(f 0; t) =
LX
`=1

a`

s
2�20
N`

NX̀
n=1

dn;` � ej
�
2�(f

(n;`)
T +f

(n;`)
R )t+�n;`

�
e�j2�f

0� 0` (5.30)

Using the expression of ~H(f 0; t), we can determine the FCF of the simulation

model, denoted by ~r� 0(�0), which is de�ned as

~r� 0(�
0) : =

D
~H�(f 0; t) ~H(f 0 + �0; t)

E
= 2�20

LX
`=1

a2`e
�j2��0� 0` . (5.31)

One can observe that the FCF of the simulation model, given by (5.31), and the

FCF of the reference model, given by (5.17), are equals. In Figure.5.7, the absolute

value of the FCF is evaluated for both the reference model and the simulation model.

From this �gure a good �tting between the FCF of the reference model and the FCF

of the simulation model can be seen. The values of the path gain al; and the path

delay � 0` are obtained from COST 207 (12-path) shown in Table.5.1.
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Figure 5.7: Absolute value of the FCFs jr� 0(�0)j (reference model) and j~r� 0(�0)j (sim-
ulation model) according to the 12-path TU COST 207.
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Chapter 6

The Mobile-to-Mobile MIMO

Channel

In this chapter, an original M2M MIMO channel model is investigated. This in-

vestigation is driven by the fact that MIMO channels are attracting more and more

attention thanks to their large capacity. This feature is needed for high data rate

applications. The gain of capacity o¤ered by MIMO channels over traditional SISO

channels is illustrated in [24,25]. Furthermore, multielement antennas can be placed

on car roofs, which makes MIMO channels very attractive for inter-vehicle commu-

nications. The scattering environment is modelled by the geometric street scattering

model. This geometrical model allows the establishment of the exact relationship be-

tween the AOA and the AOD. This relationship is taken into account for the derivation

of the reference model. Starting from the reference model, and applying the concept

of deterministic channel modelling [14], a simulation model for an M2M channel is

developed. Moreover, the statistical properties of both the reference and the simula-

tion model are studied. Analytical solutions are provided for the 3D space-time CCF,

the 2D space CCF, and the temporal ACF.
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6 The Mobile-to-Mobile MIMO Channel

6.1 The Geometric Street Scattering Model

The geometrical street model for a MIMO M2M channel is the starting point

for the derivation of the proposed M2M MIMO channel model. The geometrical

street model for a MIMO channel is very similar to the geometrical model for a SISO

channel. Nevertheless, it has to be mentioned that for MIMO channel the transmitter

and the receiver are equipped with multielement antennas. The geometrical street

model for a MIMO M2M channel is illustrated in Figure.6.1. The symbol MST in

Figure.6.1 denotes the mobile transmitter, while MSR plays the role of the mobile

receiver. Moreover, the transmitter (receiver) is equipped with MT (MR) antenna

elements, constituting a uniform linear antenna array. The antenna element spacing

at the receiver and the transmitter antenna are denoted by �T and �R, respectively.

It is assumed that the transmitter antenna dimensions are small compared to

the quantity min fhT1; hT2g. Analogously, the receiver antenna dimension are small
compared to the quantity min fhR1; hR2g. Consequently, the following inequalities
(MT � 1) �T � min fhT1; hT2g and (MR�1)�R � min fhR1; hR2g hold. The angle T
(R) describes the tilt angle of the transmit (receive) antenna array.

6.2 The Reference Model

6.2.1 Derivation of the Reference Model

The geometric street model presented in Figure.6.1 describes the scattering geo-

metric street model for the M2MMIMO channel, which constitutes the starting point

for the derivation of the reference model. From this �gure it can be seen that the

nth plane wave emitted from the lth transmit antenna element A(l)T (l = 1; 2; : : : ;MT )

travels over the nth scatter S(n)(n = 1; 2; : : : ; N) before arriving at the kth receive an-
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Figure 6.1: Geometric street scattering model for an MT �MR MIMO channel.

tenna element A(k)R (k = 1; 2; : : : ;MR). It is assumed that the number of scatters is

in�nite. Consequently, the di¤use component as seen from the receiver side is com-

posed of an in�nite number of homogenous plane waves. Considering the geometrical

model in Figure.6.1, the link between the lth transmit antenna element A(l)T and the

kth receive antenna element A(k)R can be described by its complex channel gain given

by

gkl(~rT ; ~rR) = lim
N!1

NX
n=1

cne
j
�
�n+

~k
(n)
T �~rT�~k(n)R �~rR�k0Dn

�
(6.1)

where cn and �n denote the gain and the phase shift introduced by the scatter S
(n)

respectively. Since �T � min fhT1; hT2g holds, the waves emerging from di¤erent

transmit antenna elements arrive at a particular scatter S(n) at approximately the

same angle. Analogously, the waves emerging from a particular scatter S(n) arrive

at di¤erent receive antenna elements at approximately the same angle, since �R �
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min fhR1; hR2g. The gain cn is assumed to be constant and given by

cn =

r
2�20
N

(6.2)

where 2�20 is the mean power of the received scattered components. Furthermore,

it is assumed that the phase shifts �n are independent, identically distributed (i.i.d.)

random variables, each having a uniform distribution over the interval [0; 2�).

The second phase component in (6.1), ~k(n)T � ~rT , expresses the in�uence of the
transmitter movement on the channel gain. The symbol ~k(n)T denotes the wave vector

pointing in the propagation direction of the nth transmitted plane wave, and ~rT is

the spatial translation vector of the transmitter. The scalar product ~k(n)T � ~rT can be
expressed as

~k
(n)
T � ~rT = 2�fTmax cos(�n �  T )t (6.3)

where fTmax = vT=� stands for the maximumDoppler frequency due to the transmitter

movement. The symbol vT represents the transmitter speed, while � denotes the

wavelength.

The third phase component in (6.1), ~k(n)R �~rR, expresses the in�uence of the receiver
movement on the channel gain. The symbol ~k(n)R denotes the wave vector pointing

in the propagation direction of the nth received plane wave, and ~rT is the spatial

translation vector of the receiver. The scalar product ~k(n)R � ~rR can be expressed as

~k
(n)
R � ~rR = �2�fRmax cos(�n �  R)t (6.4)

where fRmax = vR=� stands for the maximum Doppler frequency due to the receiver

movement. The symbol vR represents the receiver speed.

The term k0Dn in (6.1) is due to the total travelled distance and can be expressed

as

k0Dn =
2�

�

�
D
(l;n)
T +D

(n;k)
R

�
(6.5)
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where D(l;n)
T denotes the distance from the lth transmit antenna element A(l)T to the

scatter S(n), while D(n;k)
R is the distance between the scatter S(n) to the kth receive an-

tenna element A(k)R . The assumptions (MT � 1) �T � min fhT1; hT2g, (MR � 1)�R �
min fhR1; hR2g, and

p
1 + x � 1+x=2 (x� 1) allow us to approximate the previously

described distances as follows:

D
(l;n)
T � D

(n)
T � (MT � 2l + 1)

�T
2
cos(�n � T ) (6.6)

D
(n;k)
R � D

(n)
R � (MR � 2k + 1)

�R
2
cos(�n � R) (6.7)

where D(n)
T and D(n)

R correspond to the distances shown in Figure.6.1. The quantity

D
(n)
T is given by D(n)

T = hT1= sin(�n) whereas D
(n)
R is given by D(n)

R = hR1= sin(�n).

After substituting (6.2)�(6.5) in (6.1) and using the approximations in (6.6) and

(6.7), the complex channel gain in gkl(t) can be expressed as

gkl(t) = lim
N!1

r
2�20
N

NX
n=1

dnalnbkne
j
�
2�(f

(n)
T +f

(n)
R )t+�n

�
(6.8)

where

dn = e
�j 2�

�

�
hT1

sin(�n)
+

hR1
sin(�n)

�
(6.9)

aln = ej�
�T
�
(MT�2l+1) cos(�n�T ) (6.10)

bkn = ej�
�R
�
(MR�2k+1) cos(�n�R) (6.11)

f
(n)
T = fTmax cos(�n �  T ) (6.12)

f
(n)
R = fRmax cos(�n �  R). (6.13)

The AOA �n can be expressed in terms of the AOD �n according to (2.1). In

fact, this relation has been developed for a SISO channel, although still hold for a

MIMO channel. This statement results from the assumption that the waves emerg-

ing from di¤erent transmit antenna elements arrive at a particular scatter S(n) at

approximately the same angle , since �T � min fhT1; hT2g. Moreover, the waves
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emerging from a particular scatter S(n) arrive at di¤erent receive antenna elements

at approximately the same angle, since �R � min fhR1; hR2g.
After studying the statistical properties of the di¤use component in (6.8), it can

be proven that the mean value and the mean power of gkl(t) are equals to 0 and 2�20,

respectively. Hence, invoking the central limit theorem, we can conclude that the

envelop jgkl(t)j follows a Rayleigh distribution.
By combining all the di¤use components gkl(t) (k = 1; :::;MR; l = 1; :::;MT ) of the

A
(l)
T � A

(k)
R link, we obtain the channel matrix G(t) := [gkl(t)], which describes the

reference model of the proposed M2M MIMO frequency-nonselective Rayleigh fading

channel completely.

6.2.2 Correlation Functions of the Reference Model

The 3D space-time CCF of the links A(l)T � A
(k)
R and A(l

0)
T � A

(k0)
R is de�ned as the

correlation between the channel gains gkl(t) and gk0l0(t) according to

�kl;k0l0(�T ; �R; �) := Efg�kl(t)gk0l0(t+ �)g (6.14)

The expectation operator is �rst applied on the phase shifts �n. This allow us to

express the 3D space-time CCF as

�kl;k0l0(�T ; �R; �) = lim
N!1

2�20
N

NX
n=1

E

�
c
(n)
ll0 d

(n)
kk0e

j2�
�
f
(n)
T +f

(n)
R

�
�

�
(6.15)

where

c
(n)
ll0 = ej2�

�T
�
(l�l0) cos(�n�T ) (6.16)

d
(n)
kk0 = ej2�

�R
�
(k�k0) cos(�n�R) (6.17)

and the quantities f (n)T and f (n)R are given by (6.12) and (6.13), respectively.

The expectation operator has now to be applied on the remaining random variables

�n. We remind that the AOA �n can be expressed in terms of the AOD �n according
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to (2.1). As the number of scatters tends to in�nity the discrete random variables �n

and �n become continuous random variables denoted by � and �, respectively. The

AOA � can be expressed in terms of � according to (2.1). The in�nitesimal power

of the di¤use component corresponding to the di¤erential angle d� is proportional to

p� (�) d�, where p� (�) denotes the distribution of �. As N ! 1, this in�nitesimal
contribution must be equal to 1=N = p� (�) d�. Consequently, it follows from (6.15)

that the 3D space-time CCF of the reference model can be expressed as

�kl;k0l0(�T ; �R; �) =

Z �max

�min

cll0(�T ; �)dkk0(�R; g(�))

2�20:e
j2�(fT (�)+fR(g(�)))�p� (�) d� (6.18)

where

cll0(�T ; �) = ej2�
�T
�
(l�l0) cos(��T ) (6.19)

dkk0(�R; �) = ej2�
�R
�
(k�k0) cos(g(�)�R) (6.20)

fT (�) = fTmax cos(��  T ) (6.21)

fR(g(�)) = fRmax cos(g(�)�  R). (6.22)

The function g(�) expresses the relation between the AOA � and the AOD � according

to (2.1).

The temporal ACF of the channel gain gkl(t) is de�ned as rgkl(�) := Efg�kl(t)gk0l0(t+
�)g. The temporal ACF can be derived from the 3D space-time CCF by setting the

antenna spacing to zero, i.e.,

rgkl(�) = �kl;k0l0(0; 0; �)

= 2�20

Z �max

�min

ej2�(fT (�)+fR(g(�)))�p� (�) d�. (6.23)
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It has to be mentioned that the temporal ACFs rgkl(�) of the channel gains gkl(t)

are identical for all links A(l)T �A
(k)
R . This statement holds also for the one-ring model

presented in [15] as well as for the elliptical model in [22].

The 2D space-time CCF �kl;k0l0(�T ; �R) is de�ned as �kl;k0l0(�T ; �R) := Efg�kl(t)gk0l0(t)g,
which is equal to the 3D space-time CCF �kl;k0l0(�T ; �R; �) by setting � to zero, i.e.,

�kl;k0l0(�T ; �R) = �kl;k0l0(�T ; �R; 0): Therefore,

�kl;k0l0(�T ; �R) = 2�20

Z �max

�max

cll0(�T ; �)

dkk0(�R; g(�))p� (�) d�. (6.24)

In case of isotropic scattering, the AOD are uniformly distributed over the interval

[�min; �max]. Thus, the probability density function of the AOD is given by p� (�) =

1=��, where �� = j�max � �minj.
The common reference model described above is non-realizable since the number

of scatters N is in�nite. Nevertheless, the reference model constitutes the basis for

the development of a simulation model, as we will see in the next section.

6.3 The Simulation Model

In this section, a stochastic simulation model is developed. Starting from the

reference model and limiting the number of scatters N to a �nite number, we can

obtain a stochastic simulation model. The corresponding deterministic simulation

model is obtained by �xing all model parameters. Finally, appropriate parameter

computation methods are used to determine the model parameters, such that the

statistical properties of the simulation model and the reference model �t together.

This procedure is an application for the concept of deterministic channel modelling

described in [14].
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6.3.1 The Stochastic Simulation Model

A stochastic simulation model can be derived from the reference model by consid-

ering a �nite number of scatters N . Thus, the di¤use component of the link A(l)T �A
(k)
R

can be expressed as

ĝkl(t) =

r
2�20
N

NX
n=1

dnalnbkne
j
�
2�(f

(n)
T +f

(n)
R )t+�n

�
(6.25)

for k = 1; :::;MR; l = 1; :::;MT ; where dn, aln, bkn, f
(n)
T and f (n)R are given by (6.9)�

(6.13).

The phases �n are still i.i.d. random variables, each with a uniform distribution

on the interval [0; 2�). The AODs �n and the AOAs �n are constant. Therefore,

ĝkl(t) represents a stochastic process. The di¤use component ĝkl(t) can be seen as a

�nite sum-of-sinusoids with constant gains, constant Doppler frequencies, and random

phases. This category of stochastic processes is wide sense stationary and ergodic, as

proven in Chapter 4.

The 3D space-time CCF between ĝkl(t) and ĝk0l0(t) is de�ned as

�̂kl;k0l0(�T ; �R; �) := Efĝ�kl(t)ĝk0l0(t+ �)g. (6.26)

By applying the expectation operator on the random phases �n, the 3D space-time

CCF of the stochastic simulation model can expressed as

�̂kl;k0l0(�T ; �R; �) =
2�20
N

NX
n=1

dkk0(�R; g(�n))

cll0(�T ; �n)e
j2�(fT (�n)+fR(g(�n)))� . (6.27)

The realization of the channel matrix, de�ned as Ĝ(t) := [ĝkl(t)], is called the sto-

chastic simulation model for an M2M MIMO frequency-nonselective Rayleigh fading

channel.
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6.3.2 The Deterministic Simulation Model

A sample function of the stochastic process ĝkl(t) is obtained by choosing con-

stant phases �n, determined by the outcomes of a random generator with uniform

distribution over [0; 2�). To realize a stochastic process, an in�nite number of sample

functions is needed, which makes it non-realizable. We can cope with this problem,

since we are dealing with an ergodic stochastic process. In such a situation, a sin-

gle sample function denoted by ~gkl(t) is su¢ cient. Since ~gkl(t) is deterministic and

time-variant, it follows that the channel matrix eG(t) := [~gkl(t)] is also determinis-

tic and time-variant. The realization of eG(t) represents the deterministic simulation
model for a M2M MIMO frequency-nonselective Rayleigh fading channel. Time av-

erages has to be used in order to analyse the properties of the deterministic MIMO

channel simulator. For instance, the 3D space-time CCF between ~gkl(t) and ~gk0l0(t)

is de�ned as

~�kl;k0l0(�T ; �R; �) := h~g�kl(t)~gk0l0(t+ �)i (6.28)

It can be proven that (6.28) results in

~�kl;k0l0(�T ; �R; �) = �̂kl;k0l0(�T ; �R; �) (6.29)

where �̂kl;k0l0(�T ; �R; �) is the 3D space-time CCF of the stochastic simulation model

given by (6.27). Hence, the proposed MIMO channel simulator is ergodic with respect

to the 3D space-time CCF.

The 2D space-time CCF ~�kl;k0l0(�T ; �R) is de�ned as

~�kl;k0l0(�T ; �R) := h~g�kl(t)~gk0l0(t)i . (6.30)
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Moreover, the temporal ACF of the deterministic process ~gkl(t) can be determined

as

~rgkl(�) : = h~g�kl(t)~gkl(t+ �)i

=
2�20
N

NX
n=1

ej2�(fT (�n)+fR(g(�n)))� . (6.31)

6.3.3 Parameter Computation Method

In the simulation model, the Doppler gains have the same expression as in the

reference model, and are given by (6.2). Then, the only parameters to be determined

are the Doppler frequencies. The latter are closely related to the AOAs and AODs.

Since the AOAs can be expressed in terms of the AODs, we need to focus on the

computation of the AODs �n (n = 1; :::; N). In order to evaluate the set of AOD

f�ngNn=1, we use �rst the Modi�ed Method of Equal Area and then the Lp-norm
method (LPNM).

6.3.3.1 Modi�ed Method of Equal Area

The method of equal area (MEA) has been described in detail in [14]. To determine

the value of the AODs �n for the simulation model, let consider the PDF p�(�) of

the AOD � given by

p�(�) =

8><>:
1

��
if �min � � � �max

0 otherwise.

(6.32)

To determine the value of the model parameters �n, we divide the area under the

PDF into N equal areas. This could be done by evaluating the set of AODs f�ngNn=1
in such a way thatZ �n

�min

p�(�)d� =
1

��

n

N
; 8n = 1; 2; :::; N (6.33)
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The Modi�ed MEA is similar to the MEA method except the fact that we have to

divide the area under the PDF into 2N subarea. Only the odd AOD will be used in

the simulation model i.e.,Z �n

�min

p�(�)d� =
1

��

(2n� 1)
2N

; 8n = 1; 2; :::; N . (6.34)

Hence, the model parameters can be expressed as

�n =
��

N
(n� 1

2
) + �min; 8n = 1; 2; :::; N . (6.35)

6.3.3.2 Lp-Norm Method (LPNM)

The LPNM has been described in detail in [14]. To determine the set of AOD

f�ngNn=1 using the LPNM method, It is required to minimize the following error

norm:

E
(p)
1 :=

8<: 1

�max

�maxZ
0

jrgkl(�)� ~rgkl(�)j
p d�

9=;
1=p

(6.36)

E
(p)
2 :=

8<: 1

�Tmax�Rmax

�TmaxZ
0

�RmaxZ
0

���kl;k0l0(�T ; �R)� ~�kl;k0l0(�T ; �R)��p d�Td�R
9=;
1=p

(6.37)

where p = 1; 2; ::: , while the quantities �max; �Tmax and �Rmax determine the max-

imum range over which the approximations rgkl(�) � ~rgkl(�) and �kl;k0l0(�T ; �R) �
~�kl;k0l0(�T ; �R) are of interest.

To optimize the model parameters �n(n = 1; 2; :::; N), two ways could be used.

One way is to use the Fletcher-Powell algorithm [26] to perform a joint distribution

of both error norms E(p)1 and E(p)2 . Another way consists in replacing �n in (6.31) by

�0n, which allows the minimization of the error norms E
(p)
1 and E(p)2 independently.

The latter alternative is applied in order to assess the performance of the proposed
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M2M MIMO channel simulator. It is worth mentioning that the LPNM has been

successfully used for the one-ring model[15], and the two-ring model[21].

6.4 Performance Evaluation and Simulation Results

The channel simulator has as a purpose to emulate the statistical fading behaviour

of the M2M MIMO channel with a great deal of precision. The performance of the

channel simulator can be assessed through the comparison of its statistical properties

to those of the reference model. The ACF and the 2D space CCF can be considered

as suitable statistical quantities for this assessment.

In order to illustrate the performance of our channel simulator, we consider two

simulation scenarios. In the �rst scenario we assign to the variables �max; L; hT1;

hR1; D; �
2
0;  R;  T ; T ; R ,fT max; fRmax the values �=2; 10m, 5m, 5m, 5m, 0.5, 0,

0, �=2; �=2, 91Hz; 91Hz; respectively.

Figure.6.2 illustrates both the ACF of the reference model (rg11(�)) and the ACF of

the simulation model (~rg11(�)). The MMEAmethod is used to optimize the simulation

model parameters, where N = 25, and �max = 0:06 s. A good �tting between the two

ACFs can be observed. Moreover, Figure.6.2 demonstrates that the actual simulation

results match with the theoretical results of ~rg11(�) according to (6.31).

In Figure.6.3, the Lp-norm method is used to optimize the simulation model para-

meters by minimizing the error norm E
(p)
1 , where N = 25, p = 2, and �max = 0:06 s.

A good �tting between the ACF of the reference model (rg11(�)) and the ACF of the

simulation model (~rg11(�)) can be observed. The Lp-norm method results in better

�tting than the MMEA.
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Figure 6.2: Time ACFs rg11(�) (reference model) and ~rg11(�) (simulation model) with
N = 25 (MMEA, �max = 0:06 s, fT max = fRmax = 91Hz).

The 2D space CCF of the reference model �11;22(�T ; �R) is evaluated according to

(6.24), taking into account the parameters listed above. The obtained results are

shown in Figure.6.4. The absolute error between the 2D space CCFs of the ref-

erence model (�11;22(�T ; �R)) and the simulation model (~�11;22(�T ; �R)) is de�ned as

"11;22(�T ; �R) =
���11;22(�T ; �R)� ~�11;22(�T ; �R)��. In Figure.6.5, we illustrate the ab-

solute error "11;22(�T ; �R); the shown results are obtained using the MMEA. The re-

sults obtained using the Lp-norm method are illustrated in Figure.6.6, the illustrated

absolute error is obtained by minimizing the error norm E
(p)
2 using the Lp-norm

method. A better �tting is obtained using the Lp-norm method. For this case the

maximum absolute error is equal to 10�3 in the range �T = �R =3�.

In a second scenario, we just change the receiver antenna tilt T to �=4. The ob-

tained result for the 2D CCF are illustrated in Figure.6.7. In Figure.6.8, we illustrate

the absolute error. In this case we use the MMEA to evaluate model parameters. In
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Figure 6.3: Time ACFs rg11(�) (reference model) and ~rg11(�) (simulation model) with
N = 25 (Lp-norm method, p = 2, �max = 0:06 s, fT max = fRmax = 91Hz).

Figure.6.9, we illustrate the absolute error. In this case we use the Lp-norm method

to evaluate model parameters.

Consequently, the simulation model and the reference model have almost identical

temporal and spatial correlation properties.
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Figure 6.4: The 2D space CCF �11;22(�T ; �R) of the reference model
(T = �=2; R = �=2).
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Figure 6.5: Absolute error "11;22(�T ; �R) (MMEA, N = 25, T = �=2; R = �=2).
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Figure 6.6: Absolute error "11;22(�T ; �R) (Lp-norm method, N = 25; p = 2,
T = �=2; R = �=2).
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Figure 6.7: The 2D space CCF �11;22(�T ; �R) of the reference model
(T = �=2; R = �=4).
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Figure 6.8: Absolute error "11;22(�T ; �R) (MMEA, N = 25; T = �=2; R = �=4).
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Figure 6.9: Absolute error "11;22(�T ; �R) (Lp-norm method, N = 25; p = 2,
T = �=2; R = �=4).
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Chapter 7

Conclusions

In this thesis, an original narrowband M2M SISO channel model has been derived

starting from an authentic geometric street scattering model. The reference model for

the M2M SISO channel and the corresponding simulation model have been developed

in this thesis. We have studied the statistical properties of the reference and simula-

tion model. The performance of the developed channel simulator has been assed by

comparing the statistical properties of both the simulation and the reference model.

The quality of the provided channel simulator has been proved.

Moreover, the M2M SISO channel model has been extended to an M2M MIMO

channel model. Starting from the reference model of the MIMO channel where an

in�nite number of scatters is assumed, the simulation model has been derived using

the generalized concept of deterministic channel modelling. The performance of the

MIMO channel simulator has been assessed through the comparison of its statisti-

cal properties of the simulation model and the reference model. It has been shown

that the proposed channel simulator emulates the behaviour of the underlying fading

channel with a great deal of precision.

Moreover, the proposed channel simulators are very useful for the test, design, and

analysis of futurist inter-vehicle communication systems.

The presented MIMO channel can be extended with respect to multi-cluster and

frequency selectivity. In addition, the capacity of the proposed channel model can be

studied.
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Appendix A
Relation Between the AOD and
the AOA

In this appendix, the exact relationship between the AOA and the AOD is derived,

by considering the location of the scattering object and geometrical properties. The

position of the scattering object has a direct in�uence on this relationship. In fact,

three cases have to be distinguished. The �rst case corresponds to the situation

where the scattering object is located behind the transmitter and the receiver. The

second case corresponds to the situation where the scattering object is between the

transmitter and the receiver. The third case corresponds to the situation where the

scattering object is in front of the transmitter and the receiver. Moreover, for each of

the three mentioned cases, we have to distinguish between two situations. In the �rst

situation, the scatter is on the left hand side of the street. In the second situation,

the scatter is on the right hand side of the street.

A.1Scattering Object Located Behind the
Transmitter and the Receiver

This case corresponds to the situation where the scattering object is located behind

the transmitter and the receiver. We �rst consider the situation where the scatter

S(n) is on the left hand side of the street, as shown in Figure.A.1.

Based on Figure.A.1, the AOA �n can be expressed in terms of the AOD �n and

vice versa. We start �rst by expressing the AOA �n in terms of the AOD �n. The

angle �n, illustrated in Figure.A.1, is supplementary to �n, then tan(�n) = � tan(�n).
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Figure A.1: Scenario of scatter behind the transmitter and the receiver on the left
hand side of the street.

Based on trigonometry rules, the quantity tan(�n) can be expressed as tan(�n) =

hR1=(D + x). On the other hand, the angles �n and n are supplementary, thus

tan(�n) = � tan(n). In addition, the quantity tan(n) can be expressed as tan(n) =
hT1=x, then x = �hT1= tan(�n). Substituting x in the expression of tan(�n), we
obtain tan(�n) = (hR1 � tan(�n)= (D � tan(�n)� hT1)). Hence, the AOA �n can be

expressed in terms of �n according to

�n = � + arctan

�
hR1 � tan(�n)

hT1 �D � tan(�n)

�
. (A.1)

Next, we express the AOD �n in terms of the AOA �n. The amount tan(n)

is given by tan(n) = hT1=x, while tan(�n) = �hR1=(D + x). Hence, tan(n) =

�hT1 � tan(�n)= (D � tan(�n) + hR1). Since �n and n are supplementary, then �n can

be expressed as

�n = � � arctan
�
�hT1 � tan(�n)

D � tan(�n) + hR1

�
= � + arctan

�
hT1 � tan(�n)

D � tan(�n) + hR1

�
. (A.2)
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Figure A.2: Scenario of scatter behind the transmitter and the receiver on the right
hand side of the street.

In Figure.A.2, the scatter S(n) is located on the right hand side of the street behind

the transmitter and the receiver. Based on this �gure, a relationship between the AOD

�n and the AOA �n can be established. The bottom part of Figure.A.2 is �ctive, it

is only depicted to show that this case is symmetric to the situation represented

in Figure.A.1. In fact, the angles �n and �n can be expressed as �n = ��0n and
�n = ��0n. The angle �0n can be expressed in terms of �0n according to (A.1). Note
that the terms hT1and hR1 in (A.1) has to be replaced by hT2 and hR2, respectively.

Hence, we can write

�n = ��0n
= �� � arctan

�
hR2 � tan(�0n)

hT2 �D � tan(�0n)

�
= �� � arctan

�
�hR2 � tan(�n)
hT2 +D � tan(�n)

�
�n = �� + arctan

�
hR2 � tan(�n)

hT2 +D � tan(�n)

�
. (A.3)
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In the same way, we can express the AOD �n in terms of the AOA �n. The angle �0n

can be expressed in terms of the angle �0n according to (A.2). It is worth to mention

that the terms hT1 and hR1 in (A.2) has to be replaced by hT2 and hR2, respectively.

Hence, we can write

�n = ��0n
= �� � arctan

�
hT2 � tan(�0n)

hR2 +D � tan(�0n)

�
= �� � arctan

�
�hT2 � tan(�n)

hR2 �D � tan(�n)

�
�n = �� + arctan

�
hT2 � tan(�n)

hR2 �D � tan(�n)

�
. (A.4)

A.2Scattering Object Located Between the
Transmitter and the Receiver

This case corresponds to the situation where the scattering object is located be-

tween the transmitter and the receiver. We �rst consider the situation where the

scatter S(n) is on the left hand side of the street, as shown in Figure.A.3.

Based on Figure.A.3, the AOA �n can be expressed in terms of the AOD �n and vice

versa. We start �rst by expressing the AOA �n in terms of the AOD �n. The angle �n,

illustrated in Figure.A.3, is supplementary to �n, then tan(�n) = � tan(�n). Based on
trigonometry rules, the quantity tan(�n) can be expressed as tan(�n) = hR1=(D�x).
On the other hand, x = hT1= tan(�n).Substituting x in the expression of tan(�n), we

obtain tan(�n) = (hR1 � tan(�n)= (D � tan(�n)� hT1)). Hence, the AOA �n can be

expressed in terms of �n as

�n = � + arctan

�
hR1 � tan(�n)

hT1 �D � tan(�n)

�
(A.5)
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Figure A.3: Scenario of scatter between the transmitter and the receiver on the left
hand side of the street.

Next, we express the AOD �n in terms of the AOA �n. The amount tan(�n)

is given by tan(�n) = hT1=x, while tan(�n) = �hR1=(D � x). Then, tan(�n) =

hT1 � tan(�n)= (D � tan(�n) + hR1). Hence, �n can be expressed as

�n = arctan

�
hT1 � tan(�n)

hR1 +D � tan(�n)

�
(A.6)

In Figure.A.4, the scatter S(n) is located on the right hand side between the trans-

mitter and the receiver. Based on this �gure, a relationship between the AOD �n and

the AOA �n can be established. The bottom part of Figure.A.4 is �ctive, it is only de-

picted to show that this case is symmetric to the situation represented in Figure.A.3.

In fact, the angles �n and �n can be expressed as �n = ��0n and �n = ��0n. The angle
�0n can be expressed in terms of �

0
n according to (A.5), except that the terms hT1and
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Figure A.4: Scenario of scatter between the transmitter and the receiver on the right
hand side of the street.

hR1 has to be replaced by hT2 and hR2, respectively. Hence, we can write

�n = ��0n
= �� � arctan

�
hR2 � tan(�0n)

hT2 �D � tan(�0n)

�
= �� � arctan

�
�hR2 � tan(�n)
hT2 +D � tan(�n)

�
�n = �� + arctan

�
hR2 � tan(�n)

hT2 +D � tan(�n)

�
(A.7)

In the same way, we can express the AOD �n in terms of the AOA �n. The angle

�0n can be expressed according to (A.6). It is worth to mention that the terms hT1
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and hR1 has to be replaced by hT2 and hR2, respectively. Hence, we can write

�n = ��0n
= � arctan

�
hT2 � tan(�0n)

hR2 +D � tan(�0n)

�
= � arctan

�
�hT2 � tan(�n)

hR2 �D � tan(�n)

�
�n = arctan

�
hT2 � tan(�n)

hR2 �D � tan(�n)

�
(A.8)

A.3Scattering Object Located in Front of the
Transmitter and the Receiver

This case corresponds to the situation where the scattering object is located in

front of the transmitter and the receiver. We �rst consider the situation where the

scatter S(n) is on the left hand side of the street, as shown in Figure.A.5.

Figure A.5: Scenario of scatter in front of the transmitter and the receiver on the left
hand side of the street.
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Based on Figure.A.5, the AOA �n can be expressed in terms of the AOD �n and

vice versa. We start �rst by expressing the AOA �n in terms of the AOD �n. Based

on trigonometry rules, the quantity tan(�n) can be expressed as tan(�n) = hR1=x. On

the other hand, the quantity tan(�n) can be expressed as tan(�n) = hT1=(D + x).

Substituting x in the expression of tan(�n), we can express the AOA �n in terms of

�n as

�n = arctan

�
hR1 � tan(�n)

hT1 �D � tan(�n)

�
(A.9)

The AOD �n can be also expressed in terms of the AOA �n. The amount tan(�n)

is given by tan(�n) = hR1=x, while tan(�n) = hT1=(D + x). Hence, the AOD �n can

be expressed as

�n = arctan

�
hT1 � tan(�n)

hR1 +D � tan(�n)

�
(A.10)

Figure A.6: Scenario of scatter in front of the transmitter and the receiver on the
right hand side of the street.

in Figure.A.6, the scatter S(n) is located on the right hand side of the street in front

of the transmitter and the receiver. Based on this �gure, a relationship between �n
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and �n can be established. The bottom part of Figure.A.6 is �ctive, it is only depicted

to show that this case is symmetric to the situation represented in Figure.A.5. In

fact, the angles �n and �n can be expressed as �n = ��0n and �n = ��0n. The angle
�0n can be expressed in terms of �

0
n according to (A.9). Note that the terms hT1and

hR1, in (A.9), has to be replaced by hT2 and hR2, respectively. Hence, we can write

�n = ��0n
= � arctan

�
hR2 � tan(�0n)

hT2 �D � tan(�0n)

�
= � arctan

�
�hR2 � tan(�n)
hT2 +D � tan(�n)

�
�n = arctan

�
hR2 � tan(�n)

hT2 +D � tan(�n)

�
(A.11)

In the same way, we can express the AOD �n in terms of the AOA �n. The angle

�0n can be expressed according to (A.10). It is worth to mention that the terms hT1

and hR1 has to be replaced by hT2 and hR2, respectively. Hence, we can write

�n = ��0n
= � arctan

�
hT2 � tan(�0n)

hR2 +D � tan(�0n)

�
= � arctan

�
�hT2 � tan(�n)

hR2 �D � tan(�n)

�
�n = arctan

�
hT2 � tan(�n)

hR2 �D � tan(�n)

�
. (A.12)

Hence, we can express the AOA �n in terms of the AOD �n according to the

relation

�n = g(�n) =

8>><>>:
�� + g1(�n) if � � � �n � � arctan(hT2D )

g1(�n) if� arctan(hT2
D
) � �n � 0

g2(�n) if 0 � �n � arctan(hT1D )
� + g2(�n) if arctan(hT1

D
) � �n � �

(A.13)
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where

g1(�n) = arctan

�
hR2 � tan(�n)

hT2 +D � tan(�n)

�
(A.14)

g2(�n) = arctan

�
hR1 � tan(�n)

hT1 �D � tan(�n)

�
(A.15)

while the AOD �n can be expressed as

�n = h(�n) =

8>><>>:
�� + h1(�n) if � � � �n � �� + arctan(hR2D )
h1(�n) if� � + arctan(hR2

D
) � �n � 0

h2(�n) if 0 � �n � � � arctan(hR1
D
)

� + h2(�n) if � � arctan(hR1
D
) � �n � �

(A.16)

where

h1(�n) = arctan

�
hT2 � tan(�n)

hR2 �D � tan(�n)

�
(A.17)

h2(�n) = arctan

�
hT1 � tan(�n)

hR1 +D � tan(�n)

�
. (A.18)
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Appendix B
Derivation of the Probability Den-
sity Function of the AOA

The AOA �n can be expressed in terms of the AOD �n as �n = g(�n) according to

(2.1) on page (16). Based on this relationship and since the expression of the PDF of

the AOD �n is given by (3.11), then the PDF of the AOA �n denoted by p�n(�n) can

be derived. Using the transformation of random variable fundamental theorem, it is

possible to express p�n(�n) as

p�n(�n) =
p�n(�i)

jg0(�i)j
(B.1)

where g0(�n) denotes the derivative of g(�n), and �i is the root of the equation

�n = g(�n). For all value of �n the equation �n = g(�n) has one solution. In fact, for

each emitted wave we obtain only one received wave. The location of the scattering

object in�uence the expression of the function g(�n), hence we need to consider

di¤erent cases for the derivation of the PDF p�n(�n)of the AOA �n.

First, we consider the case where the scatter is behind the transmitter and the

receiver and on the left hand side of the street as shown in Figure.A.1 on page 88.

For this case, the AOA �n can then be expressed as �n = g(�n) = � + g2(�n),

where g2(�n) is given by equation (2.3). This function has one root given by �1 =

� + arctan (hT1 � tan(�n)= (hR1 +D � tan(�n))). The slope g0(�n) can be evaluated as
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follow

g0(�n) = g02(�n)

=
d

d�n

�
arctan

�
hR1 � tan(�n)

hT1 �D � tan(�n)

��
=

1

1 + (hR1 � tan(�n)= (hT1 �D � tan(�n)))2
� (1 + tan

2(�n)) � hR1 � hT1
(hT1 �D � tan(�n))2

g0(�n) =
(1 + tan2(�n)) � hR1 � hT1

(hT1 �D � tan(�n))2 + (hR1 � tan(�n))2
. (B.2)

Before evaluating the amount g0(�1), it is worth to remind that tan(�1) is given by

tan(�1) = (hT1 � tan(�n)= (hR1 +D � tan(�n))). Hence, g0(�1) can be evaluated as
follow

g0(�1) =
(1 + tan2(�1)) � hR1 � hT1

(hT1 �D � tan(�1))2 + (hR1 � tan(�1))2

=

"
1 +

�
hT1 � tan(�n)

hR1 +D � tan(�n)

�2#
� hR1 � hT1�

hT1 �D �
�

hT1 � tan(�n)
hR1 +D � tan(�n)

��2
+

�
hR1 �

�
hT1 � tan(�n)

hR1 +D � tan(�n)

��2
=

�
(hR1 +D � tan(�n))2 + (hT1 � tan(�n))2

�
(1 + tan2(�n)) � hR1 � hT1

=
cos2(�n)

�
(hR1 +D � tan(�n))2 + (hT1 � tan(�n))2

�
hR1 � hT1

g0(�1) =
sin2(�n)

�
(hR1 � cot(�n) +D)2 + h2T1

�
hR1 � hT1

(B.3)

Hence, for the case shown in Figure.A.1, the PDF of the AOA is given by

p�n(�n) =
p�n(�1)

jg0(�1)j

=
1

��

hR1 � hT1
sin2(�n)

�
(hR1 � cot(�n) +D)2 + h2T1

� (B.4)
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Second, we consider the case where the scatter is behind the transmitter and the

receiver and on the right hand side of the street as shown in Figure.A.2 on page 89.

For this case, the AOA �n can then be expressed as �n = g(�n) = �� + g1(�n),

where g2(�n) is given by equation (2.2). This function has one root given by �2 =

�� + arctan (hT2 � tan(�n)= (hR2 �D � tan(�n))). The slope g0(�n) is given by

g0(�n) =
(1 + tan2(�n)) � hR2 � hT2

(hT2 +D � tan(�n))2 + (hR2 � tan(�n))2
(B.5)

; hence, the amount g0(�2) can be expressed as

g0(�2) =
sin2(�n)

�
(hR2 � cot(�n)�D)2 + h2T2

�
hR2 � hT2

. (B.6)

Hence, for the case shown in Figure.A.2, the PDF of the AOA is given by

p�n(�n) =
p�n(�2)

jg0(�2)j

=
1

��

hR2 � hT2
sin2(�n)

�
(hR2 � cot(�n)�D)2 + h2T2

� (B.7)

Afterward, we consider the case where the scatter is between the transmitter and

the receiver and on the left hand side of the street as shown in Figure.A.3 on page

91. For this case, the AOA �n can then be expressed as �n = g(�n) = � + g2(�n).

This function has one root given by �3 = arctan (hT1 � tan(�n)= (hR1 +D � tan(�n))).
The slope g0(�n) is given by

g0(�n) =
(1 + tan2(�n)) � hR1 � hT1

(hT1 �D � tan(�n))2 + (hR1 � tan(�n))2
(B.8)

; hence, the amount g0(�3) can be expressed as

g0(�3) =
sin2(�n)

�
(hR1 � cot(�n) +D)2 + h2T1

�
hR1 � hT1

. (B.9)
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Hence, for the case shown in Figure.A.3, the PDF of the AOA is given by

p�n(�n) =
p�n(�3)

jg0(�3)j

=
1

��

hR1 � hT1
sin2(�n)

�
(hR1 � cot(�n) +D)2 + h2T1

� (B.10)

Now, we consider the case where the scatter is between the transmitter and the

receiver and on the right hand side of the street as shown in Figure.A.4 on page 92.

For this case, the AOA �n can then be expressed as �n = g(�n) = �� + g1(�n). This
function has one root given by �4 = arctan (hT2 � tan(�n)= (hR2 �D � tan(�n))). The
slope g0(�n) is given by

g0(�n) =
(1 + tan2(�n)) � hR2 � hT2

(hT2 +D � tan(�n))2 + (hR2 � tan(�n))2
(B.11)

; hence, the amount g0(�4) can be expressed as

g0(�4) =
sin2(�n)

�
(hR2 � cot(�n)�D)2 + h2T2

�
hR2 � hT2

. (B.12)

Hence, for the case shown in Figure.A.4, the PDF of the AOA is given by

p�n(�n) =
p�n(�4)

jg0(�4)j

=
1

��

hR2 � hT2
sin2(�n)

�
(hR2 � cot(�n)�D)2 + h2T2

� (B.13)

Let consider the case where the scatter is in front of the transmitter and the receiver

and on the left hand side of the street as shown in Figure.A.5 on page 93. For this

case, the AOA �n can then be expressed as �n = g(�n) = g2(�n). This function has

one root given by �5 = arctan (hT1 � tan(�n)= (hR1 +D � tan(�n))). The slope g0(�n)
is given by

g0(�n) =
(1 + tan2(�n)) � hR1 � hT1

(hT1 �D � tan(�n))2 + (hR1 � tan(�n))2
(B.14)
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; hence, the amount g0(�5) can be expressed as

g0(�5) =
sin2(�n)

�
(hR1 � cot(�n) +D)2 + h2T1

�
hR1 � hT1

. (B.15)

Hence, for the case shown in Figure.A.5, the PDF of the AOA is given by

p�n(�n) =
p�n(�5)

jg0(�5)j

=
1

��

hR1 � hT1
sin2(�n)

�
(hR1 � cot(�n) +D)2 + h2T1

� (B.16)

Finally, we consider the case where the scatter is in front of the transmitter and

the receiver and on the right hand side of the street as shown in Figure.A.6 on page

94. For this case, the AOA �n can then be expressed as �n = g(�n) = g1(�n). This

function has one root given by �6 = arctan (hT2 � tan(�n)= (hR2 �D � tan(�n))). The
slope g0(�n) is given by

g0(�n) =
(1 + tan2(�n)) � hR2 � hT2

(hT2 +D � tan(�n))2 + (hR2 � tan(�n))2
(B.17)

; hence, the amount g0(�5) can be expressed as

g0(�6) =
sin2(�n)

�
(hR2 � cot(�n)�D)2 + h2T2

�
hR2 � hT2

. (B.18)

Hence, for the case shown in Figure.A.6, the PDF of the AOA is given by

p�n(�n) =
p�n(�6)

jg0(�6)j

=
1

��

hR2 � hT2
sin2(�n)

�
(hR2 � cot(�n)�D)2 + h2T2

� (B.19)
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Finally, The PDF p�n(�n) of the AOA �n can be expressed as

p�n(�n) =

8>>>><>>>>:
1

��

hR2 � hT2
sin2(�n)

�
(hR2 � cot(�n)�D)2 + h2T2

� if � � � �n � 0

1

��

hR1 � hT1
sin2(�n)

�
(hR1 � cot(�n) +D)2 + h2T1

� if 0 � �n � �.

(B.20)

Ali Chelli 102



ABBREVIATIONS

ACF Autocorrelation Function

ADF Average Duration of Fades

AOA Angle of Arrival

AOD Angle of Departure

DSRC Dedicated Short Range Communication

FCC Federal Communication Commission

ITS Intelligent Transportation System

IVC Inter-Vehicle Communications

LCR Level Crossing Rate

LPNM Lp-Norm Method

M2M Mobile-to-Mobile

MAC Medium Access layer

MIMO Multi-Input Multi-Output

MMEA Modi�ed Method of Equal Area

NHTSA National Highway Tra¢ c Safety Administration

PDF Probability Density Function

PHY Physical layer

PSD Power Spectral Density

SISO Single-Input Single-Output

TCP Transmission Control Protocol

UDP User Datagram Protocol

USDOT U.S. Department of Transportation

VSC Vehicle Safety Communications

WAVE Wireless Access for Vehicular Environment
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