
   

 

 
 

Code Generation from Cinderella-SDL 

to Embedded Platforms 

 

by 

Leiming Chen 

 

Thesis in partial fulfilment of the degree of 

Master in Technology in 

Information and Communication Technology 

 

Agder University College 

Faculty of Engineering and Science 

 

Grimstad 

Norway 

 

May 2007



Code Generation from Cinderella-SDL to Embedded Platforms 

 I  

Abstract  

SDL (Specification and description language) is increasingly adopted by many companies and 

researchers. Its simplicity and object-oriented structure can greatly ease the workload for them. 

However, the lack of concretization makes SDL not applicable when it comes to real-world 

implementation.  

 

AvR is a micro-controller which can be a platform to carry out real-world implementation. The 

micro kernel REFLEX of the AvR operating system adopted many SDL features. Here, I present a 

new code generator which can transform SDL systems into executable C programs. It is built 

specially for SDL REFLEX which is a micro kernel for the real time operating system of AVR. 

 

We analyzed some existing code generators like C-micro, C-Advanced/Basic, ConTraSt and 

Cinderella-SITE. Then, we gathered their advantages and promoted them into our solution. 

 

All the components which are helpful in building systems have been analyzed and classified; only 

necessary elements are kept in the transformation. We also provide the corresponding techniques 

used in the transformation. One test example, which is frequently used in literature, has been 

executed on AvR platform. The name of the example is “tank”.  

 

We give the name CGFR (“code generator for SDL REFLEX”) to the generator and Config to the 

supporting header generator. They can be integrated under Cinderella SDL as plug-ins.  

 

 

 

 

 

 

 

 

Keywords: code generator, embedded platform, plug-in, transformation, CGFR, SDL. 

 

 

 

 

 

 

 

 

 

 



Code Generation from Cinderella-SDL to Embedded Platforms 

   II 

Preface 

This thesis was written for Agder University College, Faculty of information and communication 

technology. The work has been carried out in the period January 2007 and May 2007. 

 

First of all, we would like to thank Professor Dr. Andreas Prinz, our supervisor at Agder 

University College, for excellent supervision and guidance throughout the project period. The 

thesis has been developed in co-operation with Cinderella Company in Copenhagen, Denmark. In 

this context we will also thank our supervisors Anders Olsen, Paul B Anderson and Torstein 

Wroldsen. Finally we would like to thank Head of Studies, Stein Bergsmark, for his contributions. 

 

 

   

 

 

 

 

 

 

Grimstad, May 2007. 

 

 

———————————————————————————————————————————————————————————————— 

Leiming Chen 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Code Generation from Cinderella-SDL to Embedded Platforms 

   III 

Table of Contents 

Abstract............................................................................................................................................ I 

Preface.............................................................................................................................................II 

Table of Contents.......................................................................................................................... III 

Chart List........................................................................................................................................V 

Table List ........................................................................................................................................V 

Figure list ........................................................................................................................................V 

Chapter 1 Introduction.............................................................................................................1 

1.1 General ......................................................................................................................1 

1.2 Problem Description..................................................................................................2 

1.3 Thesis definition........................................................................................................3 

1.4 Delimitation ..............................................................................................................3 

Chapter 2 Background..............................................................................................................4 

2.1 Overview of SDL ......................................................................................................4 

2.1.1 History...............................................................................................................4 

2.1.2 Features .............................................................................................................5 

2.1.3 SDL Elements ...................................................................................................6 

2.2 REFLEX..................................................................................................................10 

2.2.1 Overview.........................................................................................................10 

2.2.2 Kernel Features ...............................................................................................10 

Chapter 3 Analysis of Some Existing Code Generators.......................................................12 

3.1 C-micro SDL to C compiler ....................................................................................12 

3.2 C-advanced/ C-basic ...............................................................................................14 

3.3 ConTraST................................................................................................................16 

3.4 Cinderella SITE.......................................................................................................18 

3.5 Comparison among Existing Code Generators .......................................................19 

Chapter 4 Design Consideration............................................................................................20 

4.1 Motivation...............................................................................................................20 

4.2 Decision Making .....................................................................................................20 

4.3 Elements Classification and Analysis .....................................................................21 

Chapter 5 Transformation Description .................................................................................23 

5.1 Introduction.............................................................................................................23 

5.2 Element Mapping....................................................................................................23 

5.3 Structural Elements Transformation........................................................................23 

5.3.1 System.............................................................................................................24 

5.3.2 Block ...............................................................................................................25 

5.3.3 Process ............................................................................................................26 

5.3.4 Procedure ........................................................................................................27 

5.4 Definition Elements Transformation.......................................................................28 

5.4.1 Signal Definition .............................................................................................28 

5.4.2 Data Definition................................................................................................28 

5.4.3 Variable Declaration........................................................................................30 



Code Generation from Cinderella-SDL to Embedded Platforms 

   IV 

5.5 Behavior Elements Transformation.........................................................................30 

5.5.1 Start .................................................................................................................30 

5.5.2 State.................................................................................................................31 

5.5.3 Trigger.............................................................................................................32 

5.5.4 Free Actions ....................................................................................................33 

5.5.4.1 Action.......................................................................................................33 

5.5.4.2 Transition End ..........................................................................................35 

5.6 Expression...............................................................................................................36 

Chapter 6 Transformation Technique ...................................................................................39 

6.1 General ....................................................................................................................39 

6.2 Overview of the API................................................................................................39 

6.3 Element Extraction..................................................................................................40 

6.4 Principle ..................................................................................................................42 

Chapter 7 System Test.............................................................................................................43 

7.1 Results of Different Stages......................................................................................43 

7.2 Test Example...........................................................................................................44 

Chapter 8 Discussion...............................................................................................................46 

8.1 Major Findings........................................................................................................46 

8.2 Comparison with Existing C Code Generators .......................................................46 

8.3 Comparison with Manually Written Target Code....................................................47 

8.4 Alternatives .............................................................................................................47 

Chapter 9 Conclusion and Future Work...............................................................................49 

9.1 Conclusion ..............................................................................................................49 

9.2 Future Work.............................................................................................................49 

ABBREVIATIONS .......................................................................................................................51 

REFERENCE................................................................................................................................52 

Appendix A – User Manual ..........................................................................................................54 

Execution Steps.......................................................................................................................54 

User Notifications ...................................................................................................................54 

Error Handling ........................................................................................................................55 

Appendix B – Example Tanker ....................................................................................................56 

Manually Written Code...........................................................................................................56 

Generated Code.......................................................................................................................62 

 

 

 

 

 

 

 

 

 

 

 



Code Generation from Cinderella-SDL to Embedded Platforms 

   V 

Chart List 

Chart 3-1 Existing Code Generators Comparison .........................................................................19 

Chart 7-1 Process trend..................................................................................................................44 

Chart 7-2 Comparison between Generated and Manually Written Codes .....................................45 

Chart 8-1 Comparisons between CGFR and Existing Code Generators........................................47 

Chart 8-2 Comparisons among Alternatives ..................................................................................48 

Table List 

Table 3-1 C-micro Generated Files ................................................................................................13 

Table 3-2 C-Advanced/Basic Generated Files................................................................................14 

Table 4-1 Workflow........................................................................................................................21 

Table 5-1Transformation symbols ..................................................................................................23 

Figure list 

Figure 1-1: Work Principle for CGFR..............................................................................................2 

Figure 2-1 SDL Design Methodology..............................................................................................5 

Figure 2-2 System-Environment Interaction ....................................................................................7 

Figure 2-3 SDL Scope Unit Structure ..............................................................................................7 

Figure 2-4 SDL symbols ..................................................................................................................8 

Figure 2-5 Work Principle for Reflex.............................................................................................10 

Figure 4-1 SDL Element Structure.................................................................................................22 

Figure 5-1 System Syntax Diagram ...............................................................................................24 

Figure 5-2 Block Syntax Diagram .................................................................................................25 

Figure 5-3 Process Syntax Diagram...............................................................................................26 

Figure 5-4 Procedure Syntax Diagram...........................................................................................27 

Figure 5-5 Procedure Parameter Syntax Diagram..........................................................................28 

Figure 5-6 Signal Syntax Diagram.................................................................................................28 

Figure 5-7 Syntype Syntax Diagram..............................................................................................29 

Figure 5-8 Synonym Syntax Diagram............................................................................................29 

Figure 5-9 Newtype Syntax Diagram.............................................................................................29 

Figure 5-10 Variable Syntax Diagram............................................................................................30 

Figure 5-11 Timer Syntax Diagram................................................................................................30 

Figure 5-12 Behavior Element Syntax Diagram ............................................................................30 

Figure 5-13 Start Syntax Diagram..................................................................................................31 

Figure 5-14 State Syntax Diagram .................................................................................................31 

Figure 5-15 External State Syntax Diagram...................................................................................31 

Figure 5-16 Input Syntax Diagram.................................................................................................32 



Code Generation from Cinderella-SDL to Embedded Platforms 

   VI 

Figure 5-17 External Syntax Diagram1..........................................................................................32 

Figure 5-18 External Syntax Diagram2..........................................................................................32 

Figure 5-19 Save Syntax Diagram .................................................................................................33 

Figure 5-20 External Save Syntax Diagram...................................................................................33 

Figure 5-21 Output Syntax Diagram..............................................................................................33 

Figure 5-22 Task Syntax Diagram1................................................................................................34 

Figure 5-23 Task Syntax Diagram2................................................................................................34 

Figure 5-24 Set Syntax Diagram....................................................................................................34 

Figure 5-25 Reset Syntax Diagram ................................................................................................34 

Figure 5-26 Procedure Call Syntax Diagram .................................................................................34 

Figure 5-27 Create Syntax Diagram...............................................................................................35 

Figure 5-28 Decision Syntax Diagram...........................................................................................35 

Figure 5-29 Decision Question Syntax Diagram............................................................................35 

Figure 5-30 Decision Answer Syntax Diagram..............................................................................35 

Figure 5-31 Label Syntax Diagram................................................................................................35 

Figure 5-32 Join Syntax Diagram ..................................................................................................36 

Figure 5-33 Connector Syntax Diagram ........................................................................................36 

Figure 5-34 Stop Syntax Diagram..................................................................................................36 

Figure 5-35 Return Syntax Diagram ..............................................................................................36 

Figure 5-36 Infix-expression Syntax Diagram...............................................................................36 

Figure 5-37 Parenthesis-expression Syntax Diagram.....................................................................37 

Figure 5-38 Operator-application Syntax Diagram........................................................................37 

Figure 5-39 Imperative-operator Syntax Diagram .........................................................................37 

Figure 5-40 Conditional-expression Syntax Diagram....................................................................37 

Figure 6-1 Work Principle for SDL API.........................................................................................42 

  

 

 

 

 

 

 

 

 

 

 

 

 

 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen 1 ©May 2007 

Chapter 1  Introduction 

1.1 General  

From the very early stage of the computer technology until now, tremendous accelerations have 

been made by software engineers regarding the development time and language complexity for the 

different programming languages. Nowadays, in order to survive in this fast-paced and 

competitive world, manufacturers are forced to deliver more complex and complete systems in 

less time, with fewer staff and higher quality. This increases the responsibility for software 

designers to design and deliver these systems as efficient as possible. At his time, the abstraction 

of languages has increased from assembly language to high-level languages up to graphical 

models, and the abstraction has moved from the system solution space toward the application 

problem space. This trend can increase productivity, fulfill the need for constructing larger 

applications and understanding complex systems. In this climate, model-driven development is 

used to adopt a more visual, automated and reliable development process. Its capability for 

generating code from object models offers additional help for keeping pace. 

 

The model-driven methods can help developers analyze and understand a system in a great extent. 

In model-driven technology, an important proportion to reduce the complexity of the rapid 

development is using software automation tools. Design automation in general needs a formal 

system description to capture both functional and non-functional requirements, and then 

model-based code generation can produce application target code automatically from graphical 

models of system behavior or architecture. Since a lot of advantages have been found in using this, 

development tools are moving to model-based development gradually to raise the level of 

abstractions. 

 

However, until now, the model-driven methods have a common bottleneck lies in software 

automation. Because of this shortcoming, the benefit of object modeling can barely live though the 

entire products life circle without the automatic code generation. The pressure from customers 

tends to sharp the trend of changing the source code directly, resulting in out of date models. 

Generating code from object models still retains less use. Model-based code generation continues 

to be a long term trend in development tools. However, as time goes on, the enduring nature 

suggests that model based code generation is inevitable.  

 

As one of the most successful model-driven languages, SDL has been evolving to a fairly useful 

description language offering a multitude of different object-oriented features over the past 30 

years. However, not all features are necessarily required to specify SDL systems, and especially in 

embedded systems, the resulting waste of resources can be avoided. With SDL-2000 a formal 

semantics based on Abstract State Machine (ASM) was introduced, eliminating the ambiguities 

that come with the informal language definition. Additionally, the precise mathematical 

formalisms of ASMs, which are used to describe the formal semantics, provide a rigorous basis for 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 2

compilers and runtime environments. 

1.2 Problem Description 

Manually writing code with the drawn system in SDL doubles workload, so automatic code 

generation from SDL is necessary because it can greatly ease the complexity and time consumed 

on this. There are already some code generators for embedded systems exist; however, none of 

them is designed for AvR micro chip family. Since an existing micro kernel SDL REFLEX has 

been developed to support SDL notations in AVR chip family, the need for code generators which 

can generate code based on the REFLEX libraries is urgent.  

 

SDL is supported by several commercial tools. HiA has academic relation with Cinderella 

Company. Furthermore, Cinderella SDL is an easy and useful SDL tool, it provides the self-create 

plug-in for users, and to use the Cinderella SDL API to transform the diagram into codes is much 

easier than read diagrams directly. So it is a good choice to choose Cinderella SDL as running 

environment to generate the implementation code for based on the REFLEX libraries. 

 

In this paper, Cinderella SDL is used as a runtime environment to transform and compile the 

system models derived from the formal semantics of SDL-92 into C code with the developed real 

time operating system for AvR micro chip. The name is given as CGFR which means code 

generator for SDL REFLEX. This transformation retains the specified system structure and 

generates understandable code that is a bit similar to the SDL/PR syntax. This, together with the 

created real time operating system for embedded platform provides system execution. The basic 

principle for CFGR is in Figure 1-1 

 

 

Figure 1-1: Work Principle for CGFR 

 

Users of the CGFR are supposed to be the students in HIA for academic study. They are supposed 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 3

to have the basic knowledge of SDL and C language. 

1.3 Thesis definition 

Cinderella is a tool to display high-level SDL specifications. In order to execute these 

specifications, they have to be turned into C code. In the master topic 30 of 2004, a real time 

operating system for embedded platforms was built in C. This operating system provides SDL 

primitives, such that an easy transformation from SDL to this operating system is possible. 

 

This task is to use this SDL operating system and to generate code directly and automatically from 

the Cinderella SDL tool and/or the Eclipse SDL plug-in produced at HiA. The restrictions in the 

operating systems have to be taken into account, and a mostly direct transformation is to be 

generated. If possible, the code generation is to be given in a high-level formalism like QVT. 

1.4 Delimitation  

In this project, we try to build a code generator which can generate code automatically from the 

SDL diagram designed system. The code will be implemented with the support of REFLEX.  

 

The support functions of REFLEX are not in our concern. If some functions do not support the 

implementation or even are not exist, we need to find other ways to solve, not to change REFLEX. 

The instructions in user manual shows how to compile and execute the generated code on AvR 

micro-chip, however, the tool itself will not make the generated files executed automatically. This 

tool is a pure code generator without any extra support. Users who want to use it need to 

implement or change other steps by themselves.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 4

Chapter 2 Background 

2.1 Overview of SDL 

2.1.1 History 

SDL is a Specification and Description Language. It is standardized as ITU (International 

Telecommunication Union) Recommendation Z.100. The purpose of SDL is Provide a language 

for unambiguous specification and description of the behavior of telecommunications systems. 

The key features of the language are:  

1. the ability to be used as a wide spectrum language from requirements to implementation 

2. suitability for real-time, stimulus-response systems 

3. presentation in a graphical form 

4. a model based on communicating processes (extended finite state machines) 

 

Although SDL is widely used in the telecommunications field, it is also now being applied to a 

diverse number of other areas ranging over aircraft, train control, medical and packaging systems. 

SDL is a general purpose description language for communicating systems. The basis for 

description of behavior is communicating Extended State Machines that are represented by 

processes. Communication is represented by signals and can take place between processes or 

between processes and the environment of the system model. Some aspects of communication 

between processes are closely related to the description of system structure. An Extended State 

Machine consists of a number of states and a number of transitions connecting the states. The 

machine starts in a transition leading to an initial state. 

 

The language has been evolving since the first Z.100 Recommendation in 1980 with updates in 

1984, 1988, 1992, 1996 and 1999. Object oriented features were included in the language in 1992. 

This was extended in the latest version (SDL-2000) to give better support for object modeling and 

for code generation. [1] 

 

Stability of the SDL language is an important attribute to users, and SDL-92 was effectively a 

superset of SDL-88. Therefore, any SDL that conforms to SDL-88 was also (with a few 

exceptions) valid SDL-92. However, SDL-92 has many advantages in the way that systems can be 

structured using object features of the language, and the most popular tools now support SDL-92 

features. [1] 

 

For SDL-2000, the opportunity was taken to remove some features that were not strongly 

supported by tools. Object modeling in SDL was strengthened and better support given for 

programming directly in SDL. In particular the data model was revised to give such features as 

global data and referenced data objects. The structuring features (blocks and processes) were 

harmonized into an agent concept. Support for ASN.1 was strengthened so that the use of ASN.1 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 5

modules with SDL no longer requires any change main body of the language. [1] 

 

Since 1999 there have been a few maintenance issues of the defining documents but SDL-2000 

itself has not really changed. The language is being reviewed again starting in 2004 and the major 

influence is likely to be UML2.0. [1] 

2.1.2 Features  

SDL is a modeling language which helps designers express and verify their design ideas in an 

adequate way. This means that the language is expressive and unambiguous; it has 

platform-independent, operational semantics and adequate support for modularization. The 

objectives of SDL are: 

1. formal description technique 

2. easy to understand both for creators (direct users) and viewers (“non constructors” of 

specifications) (graphical representation) 

3. object oriented language 

4. independent of design paradigm (e.g. functions or object oriented) 

5. independent of implementation (language, operating system, and hardware) 

 

Since SDL has evolved into a complete language, and gradually achieved the objectives, SDL 

greatly improves the success rate in software building. And both the standard text representation 

can greatly improve the portability of different graphical representation built with different SDL 

tools. 

 

The SDL has formed its own design methodology. It is shown in Figure 2-1. 

 

Figure 2-1 SDL Design Methodology 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 6

SDL adopted object-oriented method in implementing and this can improve the productivity, 

quality and reusability. Auto code generation is one of the important approaches to achieve the 

demands. It can raise the level of abstraction at which developers can work because of the moving 

trend towards model-based development of tools. 

 

Now, SDL has grown into one of the most successful formal techniques used with widespread 

usage throughout the software and the telecommunication industries. Part of the reasons for its 

general adoption is its intuitive graphical notation and excellent tool support. The tool support 

typically offers capabilities to analyze, design, implement and subsequently test systems, often 

using combinations of interrelated notations together with SDL such as Message Sequence Charts. 

2.1.3 SDL Elements  

Simply speaking, an SDL system can be viewed as process instances which communicate by 

sending signals to each other or to environment. Each single process can be described as an 

autonomous finite state machine, working concurrently with other processes, cooperating with 

them or environment through signals. A state is the only location where input can trigger a 

transition in SDL. The process performs transitions depending on the inputs. Before the process 

finally moves to a new state or same state, many transitions may occur.  

 

However, SDL has grown into a complete language and many new notations have been introduced 

into SDL to make it more object-oriented. The basic components of SDL are categorized and 

listed below: 

1. architecture 

- system, block 

2. behavior 

- processes 

3. communication 

- signals and channels 

4. data 

- abstract data types 

Here, we will introduce the basic elements in SDL step by step. 

 

In order to provide a complete specification of a given system, a SDL-system specification needs 

to be given. A SDL-system is the outermost agent that communicates with the environment. The 

environment of the system is everything in the surroundings that communicate with the system in 

an SDL-like way in Figure 2-2. 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 7

 

Figure 2-2 System-Environment Interaction 

 

A system is a set of blocks, block sets and channels. Blocks and block sets are connected with 

each other or with the environment of the system by means of channels. A channel is a one-way or 

two-way directed connection. It is characterized by the signals that it may carry.  

 

A SDL-system must define the interfaces to communicate with other components. It has a 

hierarchical structure. A complete system must contain at least one block. A block must contain at 

least one process or block, and blocks and processes must not be mixed in one block. It is shown 

in Figure 2-3. 

 

Figure 2-3 SDL Scope Unit Structure 

 

A block is a container of processes (or of blocks). Processes of a block are contained in process 

sets that are connected by signal routes. A block is created as part of creation of the enclosing 

block or system. All blocks are created as part of the system creation.  

 

Processes are the actors of SDL systems. An SDL process represents an extended finite state 

machine. Processes can be defined with an initial and a maximum number of instances. SDL 

processes can communicate by means of asynchronous message passing with other processes. 

 

The SDL process may contain a list of elements and their properties. It includes process name, 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 8

formal parameters, local variables, time and timers and the graphical representation of a FSM. The 

behaviors of the process are described in the graphical representation of the FSM. In SDL, the 

FSM is extended with data processing.  

 

Process instances can be created and terminated dynamically. A process is activated by means of 

an arriving signal. At the end of a transition, the next state is entered. Each SDL process maintains 

a set of intrinsic variables which are of the predefined data type PId (Process Identity).  

 

In the graphical representation, FSM provides all details of the behavior of the process. FSM is 

composed of certain process symbols. They are shown in Figure 2-4. 

 

Figure 2-4 SDL symbols 

 

General 

A process instance is created either initially or dynamically with a start symbol. When a process 

instance has been created, the execution of the process body starts by the execution of the 

transition that follows the start symbol.  

 

The states can determine how the process instance reacts to an input. The process states are the 

only locations where inputs can trigger the transitions.  

 

Triggers  

An input is the acceptance of a signal by a process in a certain situation (state). When a signal is 

accepted it is also consumed. An input symbol connects a state to the actions which the process 

shall take after consuming the signal mentioned in the input symbol. How to store the values is 

also conveyed with signal inside the input symbol. 

  

In some cases handling of some signals has higher priority than handling of other signals. Signals 

which take priority in a state are placed inside priority input symbols. If a state has both ordinary 

inputs and priority inputs, the first signal in the input port mentioned in a priority input is 

consumed, even if it is not the first signal in the input port.  

 

Sometimes, it is convenient to avoid dealing with a signal while in a certain state. Signals which 

should not be dealt with in a certain state are mentioned in a save symbol. They are retained in the 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 9

input port. The retained signals are available for input in a consecutive state. This allows also 

some priority on signal handling in a receiving process. 

 

The construct of continuous signal can trigger transitions by some conditions being fulfilled than 

by the reception of signals. It is especially powerful when combined with the imperative operators. 

The continuous signal symbol connects a state to the actions taken if the condition is true. 

 

In some cases, it is useful to combine the power of continuous signals and input, for modeling of 

conditional consumptions of signals. This construct is called enabling condition. This construct 

and continuous signal are often used with import and view in order to model the effect on control 

flow. 

 

Transition  

Once a process has been triggered, it can perform a series of actions before it enters a next state, 

waiting for a new trigger. A sequence of actions constitutes a transition. An action can affect other 

processes or be internal. Some of the transitions may not be considered here. 

 

Task and decision allow data to be manipulated locally and to be utilized for influencing the 

behavior of the process. Task is used to manipulate local information. Decision allows the 

execution of a process to be influenced by data values.  

 

The execution of the system depends on the existence of initial process, but in addition dynamic 

process creation can be used to represent dynamic population. 

 

A procedure is a parameterized part of a behavior graph with its own local scope. This implies that 

control can only return from a procedure by means of the return construct. The procedure can be 

used as an action or part of expression with procedure call symbol.  

 

A stop symbol indicates completion of a process instance. The process instance ceases to exist 

after executing a stop. The signal instances in its input port are thereafter discarded. 

 

Signals are the primary communication mechanism in SDL. They may carry data by means of 

parameters. All signals to and from the environment are declared at system level. Signals can be 

defined inside a block (thus only visible in the block). If there are several possible receivers of a 

signal, the signal will be delivered to an arbitrary receiver. 

 

SDL data is based on abstract data types. An abstract data type defines a type of data object by its 

functional properties i.e. by a set of operations applied to it. In SDL, data types are called “sorts” 

Variables can only be declared in processes and there are no global variables. In SDL inheritance 

and generics are supported. If you want to define a new data type, you should set the constants and 

a set of values, operators and axioms. There are many predefined data types in SDL.  

 

After all the basic elements have been introduced, it is easy to find that SDL is a rather suitable 

and complete language to describe systems. It can greatly ease the software building engineering. 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 10 

2.2 REFLEX 

2.2.1 Overview 

SDL REFLEX is created as the micro kernel of a real time operating system. The micro kernel 

provides the most essential functions to write programs for embedded computer systems. The 

kernel is especially designed to implement systems described in SDL. SDL REFLEX is primary 

implemented for Atmel’s AVR 8-bit RISC microcontroller family, and is written to compile with 

the GNU ANSI C compiler for AVR v.3.3. 

 

The working principle for REFLEX is shown in Figure 2-5. 

 

Figure 2-5 Work Principle for Reflex 

 

SDL REFLEX is a small, portable and efficient pre-emptive microkernel for real time operating 

system. It has been designed specifically for resource-constraint embedded systems. SDL 

REFLEX controls access to system resources and schedules program processes according to 

process priority. By introducing the process concept, the internal system operation is coordinated 

and synchronization can be performed between processes.  

 

The processes communicate with each other through signals. A signal is actually a message which 

is sent from one process to another in order to inform the receiver of an event, or to send some 

data. Each process has its own FIFO queue for incoming signals, in which received signals are 

stored. When a signal is consumed, it is removed from the FIFO queue. All the actions a process 

performs are usually responses to received signals. All interaction with the SDL REFLEX 

microkernel is through a set of system services. 

2.2.2 Kernel Features 

Down below is a list of the system services mapping that has been designed to “reflex” the 

behavior of SDL. These are only the most prominent features. 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 11 

1. CREATE->CREATE(process_code,process_priority,process_stacksize) 

2. INPUT->INPUT(signal1,signal2,…) 

3. SIGNAL->SIGNAL(number-of-arguments, argument1,…) 

4. OUTPUT->OUTPUT(signal,destination,argument1,…) 

5. TIMER->NEW_TIMER() 

6. SET->SET(duration,TIMER) 

7. RESET->RESET(TIMER) 

8. ACTIVE->ACTIVE(TIMER) 

9. STOP->STOP() 

10. SAVE->SAVE(signal1,signal2,…) 

11. START->START() 

12. PID->SELF(), SENDER(), PARENT() and OFFSPRING() 

 

In addition to the previously mentioned functions which are described in SDL, there are more 

functions in SDL REFLEX which isn’t described in SDL, but is critical to completely implement 

the behavior of SDL. 

1. WAIT_SIGNAL() 

2. GET_SIGNAL_DATA(parameter1,…) 

 

In this REFLEX supporting service, there are several SDL features are not supported, they are 

listed below: 

1. system structure 

2. communication (channels, signal routes) 

3. constructs (package, type, service, context parameters) 

4. imported/exported 

5. continuous signal 

6. enabling condition 

7. view 

8. spontaneous signal 

 

This system service is not complete and several places need to be modified. However, it supplies a 

basis supporting libraries for codes generated from SDL diagrams. 

 

 

 

 

 

 

 

 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 12 

Chapter 3 Analysis of Some Existing Code 

Generators 

The auto code generation from models has been in use for several years. There are some 

code-generators exist. However, most of them are commercial tools and they are not free. In this 

chapter, a detailed analysis of these tools will be given. In order to have a systematic structure and 

related subjects of these tools, the related areas which will be concerned are: 

1. application area 

2. supporting libraries 

3. generated files 

4. user setting 

3.1 C-micro SDL to C compiler 

C-micro SDL to C compiler is developed by Telelogic Tau for code generation. It can analyze SDL 

systems and generate C programs from them. The generated code can be compiled on C-micro 

RTOS, which is a library with a configurable SDL kernel. The C-micro Library and the SDL 

Target Tester target library are not available as a pre-linked library but are delivered as source to 

enable scaling of the kernel. The C-micro SDL to C compiler handles SDL concepts according to 

the semantics of the SDL-92. 

 

Application Area 

 

The Telelogic Tau itself contains the drawing panel in which SDL diagram system can be drawn. 

The C-micro SDL to C compiler extracts all the properties from the SDL diagram can transform it 

into C. 

  

The application areas for the C-micro SDL to C Compiler are: generation of applications，
including embedded system applications with real time characteristics and generation of target 

debug applications. The generated code combined with the C-micro library is highly optimized, 

which is unavoidable for microcontrollers and real-time applications. 

 

Supporting Libraries 

 

The C-micro library consists of a configurable SDL kernel together with all the necessary SDL 

data handling functions. The collection of C functions and C modules make up the so called SDL 

machine.  

 

The C files, which are generated by the C-micro SDL to C Compiler, can only be used in 

connection with the C-micro Library and the SDL Target Tester. It is not possible to validate and 

simulate the SDL system with the C code generated by C-micro as this code is only suitable for 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 13 

target applications. 

 

Generated files 

 

There are several steps that must be carried out before the generated implementation files can be 

compiled and linked together with the C-micro Library. Together with generated implementation 

file, all the generated files are listed in the table 3-1 below: 

configuration file configure SDL characteristics 

environment header file define the environment functions 

symbol file store symbolic information 

group file process names 

implementation file implementation details 

Table 3-1 C-micro Generated Files 

 

User Setting 

 

The users can set the directives of the generated C code, and some other properties of the system. 

It is possible for user to set up full, user-defined, or no separation directives in the organizer’s 

Make dialogue interface. Priorities can be assigned to processes and signals using directive #PRIO 

 

Summary 

 

The C-micro SDL to C Compiler is a user-friendly tool. Users can define a structure and the 

properties of the generated files. It take most of the properties into consideration except the 

restrictions of the C-micro itself.  

 

Many options can be chosen from the users which affect the analysis of the SDL system. 

Furthermore, a lot of error checks are performed automatically before code generation starts. This 

makes it possible to improve written SDL specifications before any run-time testing must be done. 

 

The main short coming of using C-micro is the cost per license. It is not free. 

 

 

 

 

 

 

 

 

 

 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 14 

3.2 C-advanced/ C-basic 

The C-advanced/C-basic SDL to C Compiler is also developed by Telelogic Tau for code 

generation. It can translate your SDL system into a C program that you can compile and link 

together with a runtime library to form an executable program, such as a simulator, a validator or, 

in the case of C-advanced, an application. The C-advanced/C-basic SDL to C Compiler handles 

the majority of SDL concepts according to the definition of SDL-92. 

 

Application Areas 

 

The same as C-micro, C-advanced/C-basic can also read the SDL diagram from the drawing panel 

and extract the elements to transform. 

 

There are a number of application areas for C-advanced/C-basic SDL to C compiler: functional 

simulation and debugging of protocol specifications, debugging of system designs described in 

SDL, generation of applications, including embedded system applications with real time 

characteristics, performance simulations and simulation of the behavior behind a user interface 

prototype. 

 

Supporting Libraries 

 

Unlike C-micro library which has a complete SDL kernel for embedded platforms, the runtime 

library for C-advanced/C-basic is used for normal C simulation. It is not so high optimized for 

embedded systems. 

 

Generated Files 

 

Except the implementation C files, the C-advanced/C-basic SDL to C Compiler can generate a 

number of support files. These files are in the table 3-2. 

system header file configure normal characteristics 

environment header define the environment functions 

signal file store signals 

implementation file implementation details 

Table 3-2 C-Advanced/Basic Generated Files 

 

User Setting 

 

The C-advanced/C-basic SDL to C Compiler recognizes a number of directives given mainly in 

SDL comments. Some of the important ones are listed here: selecting File Structure for Generated 

Code– Directive #SEPARATE, specifying Names in Generated Code– Directive #NAME, 

assigning Priorities – Directive #PRIO. 

 

Summary  



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 15 

 

The C-advanced/C-basic SDL to C Compiler is also user-friendly and easy to use. Users can 

define the structure of the generated code and some other properties as well. There are some other 

features for them. The partitioning concept is a way to divide one SDL system into several 

applications. As a special case this also means that it is possible to simulate and validate selected 

parts of a system. The difference between partitioning and separation should be noted. The 

partitioning feature is a way to select the parts of an SDL system which should be handled, while 

the separation feature is a way to select the file structure for the generated files. 

 

However, C-advanced/C-basic is not designed specially embedded platforms; the generated codes 

can compile smoothly if connected with libraries. Since the resource consuming and stack size 

which are of crucial importance to RTOS are not considered, it is not 100% suited for embedded 

platforms. Another shortcoming is that it is not free as well. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 16 

3.3 ConTraST 

ConTraSt is a configurable C++ code generator that provides a mapping of SDL specification in 

SDL/PR to an object oriented C++ representation. The transformation from one high level 

language to another allows for the configuration of supported language features, giving it the 

name “a configurable transpiler”. The intention is to obtain the object oriented structure and 

thereby increase the readability and traceability of the generate code. This code is compiled 

together with an SDL runtime environment, which was derived by manually transforming the 

formal semantics of SDL-2000 into C++, preserving both structure and behavior. This provides 

continuous traceability from the SDL specification to the executing system, including its runtime 

environment. 

 

Application Areas 

 

ConTraSt takes SDL/PR file as the source file. It means any SDL specification file with text 

format can be transformed using ConTraSt. 

 

The application area for ConTraSt is mainly for simulation of the systems. To execute the 

generated C++ files on real time embedded platform, some requirements need to be specified. For 

example, the implementation language needs to be C++.   

  

Supporting Libraries 

 

High level languages have the same view of the object-oriented structure. Temporally, ConTrasT 

does not have special supporting libraries to base.  

 

Generated Files 

 

Only C++ files are generated since the high level transformation posses the object-oriented 

structure. 

 

User Setting 

 

Automatic code generation makes the whole code generation process does not require any user 

special settings. 

 

Summary  

 

The feature in transformation is to exploit and retain the given object oriented structure of 

SDL/PR, allowing for a successive traceability from an SDL specification to its C++ 

representation. This is achieved by the inheritance of C++ classes, each representing one specific 

SDL-96 object. Most of these objects, such as plain data types or signals, can be described by 

simple classes with parameters, while processes with corresponding types are represented by the 

use of template classes. Therefore, a complete SDL system specification can be transformed into 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 17 

an object oriented C++ representation. A hierarchical composition of classes is used to implement 

the visibility of definitions and variables, which also allows for the application of identifiers with 

scope information. 

 

As a C++ transpiler, ConTraST can simulate the SDL system with its runtime environment in an 

efficient way. However, to execute the codes on real platforms need to require the platforms have 

C++ library support. The ConTraSt is a free code generator. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 18 

3.4 Cinderella SITE 

Cinderella SITE is a code-generator that generates ANSI C++ from SDL. It is closely integrated 

with the Cinderella SDL. Cinderella SITE supports most of SDL-96 plus selected parts of 

SDL-2000, including exception handling. Code generation errors are reported in the Cinderella 

SDL in the explorer view.  

 

Application Areas 

 

Different from the ConTrasT, Cinderella SDL can take both graphical and textual SDL 

specification in Cinderella tool and transform it into target C++. The main application area is 

simulation. 

 

Supporting Libraries 

 

High level languages have the same view of the object-oriented structure; it does not need special 

supporting libraries to base.  

 

Generated Files 

 

Only C++ files are generated since the simulation does not need special support. 

 

User Setting 

 

Automatic code generation makes the whole code generation process does not require any user 

special settings. 

 

Summary 

 

SITE also allows for the generation of code that produces MSC when executed. The MSC 

generation feature is decorated with implementation that links back to the SDL model to facilitate 

execution tracing.  

 

The SITE code generator supports the environment models like: CORBA, COM and DLL 

plug-ins. 

 

However, like other C++ generators, to execute the codes on real platforms need to require the 

platforms have C++ library support. SITE plug-in in Cinderella SDL is a commercial version; it 

can transform graphical SDL system. There is also a free academic version which can transform 

textual specified SDL system. 

 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 19 

3.5 Comparison among Existing Code Generators   

After we have analyzed some existing code generators, a comparison among them is made. This is 

shown in chart 3-1. We compared these tools from five aspects: portability (p), executable (e), 

integrity (i), structure (s) and user-friendly (f). 

0%

20%

40%

60%

80%

100%

p e i s f

C-micro

C-advanced/basic

ConTraSt

SITE

 

Chart 3-1 Existing Code Generators Comparison 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 20 

Chapter 4 Design Consideration 

4.1 Motivation 

SDL is a one of the most successful modeling language which helps designers express and verify 

their design ideas in an adequate way. SDL adopted object-oriented method in implementing and 

this can greatly improve the productivity, quality and reusability. Auto code generation from SDL 

is one of the approaches to achieve these conveniences.  

 

In the master topic 30 of 2004, a real time operating system for embedded platforms was built in C. 

This operating system can provide SDL primitives, such that an easy transformation from SDL to 

this operating system is possible. Until now, the students and teachers in HIA need to draw the 

SDL system diagram and at the same time write same C code to implement on AVR platforms. It 

doubles the workload for them, so the need for a C code generator is urgent and necessary. 

 

There are already some C code generators exist, however, as we mentioned before, most of them 

are commercial. At the same time, their generated codes can only work with their own supporting 

libraries. So if we choose to use other code generators, the REFLEX can not work and the 

payment for them is a bit heavy. 

 

Now, the better option left is to develop a new and free SDL C code generator. It can take the 

supporting library REFLEX into consideration and generate the corresponding C code. If this code 

generator works, it can greatly ease the workload for students and teachers in HIA and reduce the 

time between system design and implementation. 

 

I have some research experience in model driven technology. This project of code generation just 

belongs to this field. I have learned SDL last semester in the course formal methods. It seems SDL 

is an easy and friendly tool. All the related knowledge I posses can support this project.   

4.2 Decision Making 

Cinderella SDL is a very useful and user-friendly SDL tool, it almost provides all the features 

contained in SDL-92 semantics. Cinderella Company also has academic relationships with HIA; 

the students can use Cinderella SDL free in courses. I have used Cinderella SDL last semester. So 

I am familiar with it. Based on these, Cinderella SDL is chosen as the SDL system building 

environment. 

 

The Cinderella API is a feature which allows you to invoke external programs from Cinderella 

SDL. This way, Cinderella SDL can be extended and customized to accommodate special needs. 

Cinderella SDL itself provides a very useful plug-in folder for users who want to develop their 

own function program. These plug-in files are written in C++, and compiled into DLL extension 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 21 

files. They can use internal Cinderella API functions to extract all the needed components out. It is 

easier than reading in the SDL text specification and parses it directly. So I chose to use C++ to 

program and compile the program into DLL extension file as plug-in.  

 

After we have made all the things clear, we made a workflow table 4-1 for future work. 

Stage 1: Study Cinderella API and the examples 

Stage 2: Practice to extract all elements needed 

Stage 3: Adopt the structure in extraction 

Stage 4: Compile the generated codes 

Stage 5: Test code on AvR micro controller 

Table 4-1 Workflow 

4.3 Elements Classification and Analysis 

In SDL, the elements are classified as architecture, behavior, communication and data four 

sections. However, in element transformation, this classification is proper. In order to give a clear 

and systematic structure of the SDL elements, we try to categorize all the basic and important 

elements into three main types: 

1. Structural element. These kinds of elements have their own scope diagrams.  

2. Definition element. Elements specified in text symbol. 

3. Behavior element. Elements specified in behavior description area. 

 

The structural element consists of system, block, process and procedure diagram elements. In 

definition element field, signal definition, data definition and variable declaration will be found. 

Behavior elements are used to specify the behaviors of process. It contains symbols which 

composite the behaviors of the process. They are classified as: start, state-trigger and free action. 

There are still some detailed categorizations left. We will shoe the whole element structure in 

Figure 4-1. 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 22 

Figure 4-1 SDL Element Structure  

 

In order to simplify the difficulty of the projects, some of the features are not taken into 

consideration, they are listed below: 

1. Constructs. They are not so critical in building a system especially for embedded platform.  

2. Imported and exported features. In target C program, to posses variables in different 

functions is a bit tricky to implement. 

3. Continuous signal and enable condition. Not critical in describing systems.  

 

We keep other elements and transform them with proper treatments. The element mapping from 

source SDL attributes to target C code will be introduced in next chapter.  

 

 

 

 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 23 

Chapter 5 Transformation Description 

5.1 Introduction 

To transform source SDL diagram into target C code, a detailed mapping from SDL diagram 

contained features to C functional codes need to be specified. In this chapter, a detailed description 

of transformations will be supplied.  

 

Every element which has been analyzed and considered to be taken is transformed with a detailed 

description including where it is used and which form it should be like in target C. 

5.2 Element Mapping 

According to the element analysis from last chapter, all the units in a SDL diagram can be divided 

into three main categories: structural element, definition element and behavior element. Except the 

normal categories, there is a very common type used in SDL. It is “expression”. The expression is 

used almost in all the elements existing in the SDL, so it is separated as an important part and will 

be given its own transformation section. 

 

The mapping of each element will be given one by one following these categories. The source 

syntax diagram with necessary explanations comes first, then transformed target C code format 

with the properties specified in syntax diagram 

 

In the transformation specification, some of the symbols may be used for structuring the flexibility 

and simplicity. They are listed in the table 5-1: 

“::” the function of the element 

“<>” name of the element 

“{}” hold keywords 

“*” number of the elements is 0 or more 

“+” number of the elements is 1 or more 

“->” properties belong to element 

Table 5-1Transformation symbols 

5.3 Structural Elements Transformation 

In this section, all the structural elements will be introduced according to the range size which 

they can in charge of. The sequence is: system, block, process and procedure. 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 24 

5.3.1 System 

The syntax diagram of the system is shown in Figure 5-1. 

 

Figure 5-1 System Syntax Diagram 

The system contains a system-heading defining <system-name>. The system also may contain 

textual definitions in the def-elem which stands for definition elements. The def-elem will be 

introduced in definition element section. The block-elem stands for block element which will be 

introduced later. 

 

The name of the system is <system-name>, so the generated files are <system-name>.c and 

<system-name>.h. The <system-name>.c file should contain some basic information such as 

header files and basic type definitions.  

 

/ system-name.c / 

#include <stdlib.h> 

#include <sdl_io.h> 

#include <string.h> 

#include “<system-name>.h” 

 

typedef unsigned int natural; 

typedef bool boolean; 

typedef unsigned int integer; 

typedef unsigned char character; 

typedef string charstring; 

typedef float duration; 

typedef float time; 

typedef float real; 

def-elem::dcl; 

block-elem::dcl; 

block-elem::iden_process; 

SIGNAL def-elem::.signal_dcl; 

block-elem::signal_dcl; 

block-elem::ini_process; 

int main(void) 

{ 

def-elem::signal_ini; 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 25 

block-elem::crt_process; 

START(); 

return 0; 

} 

block-elem::trans; 

 

/ <system-name>.h / 

#ifndef system-name_h 

#def system-name_h 

block-elem::set_process_pri; 

block-elem.process-elem::set_process_size; 

#define timer_standard 100; 

5.3.2 Block 

The block-elem has the referenced syntax diagram of Figure 5-2. 

  

Figure 5-2 Block Syntax Diagram 

The structure of the block-elem is almost the same as system. The block-elem contains a 

block-heading defining the block-name. The block-elem also may contain textual definitions in the 

def-elem. A process-elem defines process elements in a block-elem. There may be procedure-elem 

exist as well. They belong to procedure elements. 

 

The block in target code does not have practical effect. However, it will give boundary signs such 

as “******” to inform program readers where codes come to. There are a list of block element 

functions will be transformed. 

 

dcl: 

def-elem::dcl; 

 

iden_process: 

process-elem::iden; 

 

signal_dcl: 

def-elem::signal_dcl; 

 

init_process: 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 26 

process-elem::ini; 

 

crt_process: 

process-elem::crt; 

 

set_process_pri: 

process-elem::set_pri; 

 

set_process_size 

process-elem::set_size; 

 

trans: 

//****************************<block-name> start********************************* 

procedure-elem:implen; 

process-elem::implen; 

//****************************<block-name> end********************************** 

5.3.3 Process 

The syntax diagram of process-elem is shown in Figure 5-3. 

 

Figure 5-3 Process Syntax Diagram 

A process-heading defines the <process-name>. The process-elem also may contain textual 

definitions in the def-elem. In process scope, the behavior-des-elem stands for behavior elements 

which will be introduced in behavior element. A process-graph-area defines the behavior of a 

process in a process-elem. The procedure-elem may exist in this scope.  

 

The process scope may contain procedure element, so the generated code will show as a range 

with the same signs of block element. The process element itself will be transformed to a C 

function without return values. There is also a list of functions in process element. 

 

iden: 

PID <process-name>; 

 

ini: 

void <process-name>_code(void); 

 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 27 

crt: 

<process-name>=CREATE(<process-name>_code,<process-name>-pri, 

<process-name>-stacksize); 

 

implen: 

//****************************<process-name> start******************************** 

procedure-elem::ini; 

void <process-name>(){ 

def-elem::var_dcl; 

def-elem:: dcl; 

behavior-des-elem::enum_state; 

behavior-des-elem::temp_sig; 

behavior-des-elem::start; 

behavior-des-elem::switch_state; 

} 

procedure-elem:implen; 

//****************************<process-name> end******************************** 

 

set-pri: 

#define <process-name>-pri 5; 

 

set-size: 

#define <process-name>-stacksize 100; 

5.3.4 Procedure 

The syntax diagram for procedure-elem is shown in Figure 5-4 

 

Figure 5-4 Procedure Syntax Diagram 

A procedure-heading defines the <procedure-name> and procedure-parameters. The 

procedure-elem also may contain textual definitions in the def-elem. A procedure-graph-area 

defines the behavior of a procedure in a behavior-des-elem. 

 

Unlike process element, procedure element can have return value in its transformed C function. 

The syntax diagram of procedure-parameters is shown in Figure 5-5. 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 28 

 

Figure 5-5 Procedure Parameter Syntax Diagram 

 

ini: 

procedure-parameter->return-data-type procedure-name (procedure-paramters-> 

procedure-parameter1,procedure-parameter2,….); 

 

implen: 

//****************************<procedure-name> start****************************** 

procedure-parameters::return procedure-name(procedure-paramters::pars); 

{ 

def-elem::dcl; 

behavior-des-elem::start; 

} 

//****************************<procedure-name> end****************************** 

5.4 Definition Elements Transformation 

The text symbol contains def-elem local to the scope it belongs to. It has three categorizes: signal 

definition, data definition and variable declaration. 

5.4.1 Signal Definition 

The syntax diagram for signal-definition in the def-elem is shown in Figure 5-6 

 

Figure 5-6 Signal Syntax Diagram 

 

signal_dcl: 

SIGNAL <signal-name>; 

 

signal_ini: 

SIGNAL NEW_SIGNAL(signal-parameter1,signal-parameter2,…); 

5.4.2 Data Definition 

In the data-definition, three data types are concerned: syntype-definition, synonym-definition and 

datatype-definition (only for array). The functions supplied here belong to def-elem::dcl. 

 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 29 

Syntype Definition: 

 

The syntax diagram of syntype definition is shown in Figure 5-7. 

 

Figure 5-7 Syntype Syntax Diagram 

 

The syntype belongs to the existing data type. When the syntype is invoked, the range can be used 

to specify the other data types (for array). 

 

dcl: 

typedef syntype-name data-type-identifier; 

 

Synonym Definition: 

 

As the Figure 5-8 shows, the name of the synonym is <synonym-name> and the data type is 

data-type-identifier. 

 

Figure 5-8 Synonym Syntax Diagram 

 

dcl: 

data-type-identifier synonym-name=expression; 

 

Data Type Definition: 

 

A data-type-definition introduces a set of values and a set of operators. Defining a new data type, 

ordering the operators and making axioms for it is too complex. Here only the array data type 

definition is adopted. As Figure 5-9 shows, the name of the array is <array-name>, and the two 

parameters are index data type (index-dt) and element data type (element-dt).  

 

Figure 5-9 Newtype Syntax Diagram 

The index-data-type-no stands for the range number of the index data type, normally the index 

data type is syntype data. 

 

dcl: 

typedef element-data-type array-name[index-data-type-no]; 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 30 

5.4.3 Variable Declaration 

The variable declaration includes two categories: variable definition and timer definition 

 

Variable Definition: 

 

A variable is defined by a variable definition. A number of variables may be declared in a single 

variable-definition construct. The syntax diagram is shown in Figure 5-10 

 

Figure 5-10 Variable Syntax Diagram 

var_dcl 

data-type-identifier variable-name=expression; 

 

Timer Definition: 

 

A timer-definition is the declaration of a timer instance in a process or service. In the 

timer-definition the <timer-name> forms the defined timer. The syntax diagram is shown in Figure 

5-11 

 

 

Figure 5-11 Timer Syntax Diagram 

var_dcl: 

Timer timer-name=NEW_TIMER(); 

5.5 Behavior Elements Transformation 

Behavior description provides all details of the behaviors of processes. As we mentioned before, 

the behavior element can be classified into three groups: start, state—trigger and free actions. The 

syntax diagram is shown in Figure 5-12. We will follow this structure to give instructions. 

 

Figure 5-12 Behavior Element Syntax Diagram 

5.5.1 Start 

The start symbol can be found both in process and procedure units. Although the symbols between 

them are a bit different, the principle and the internal syntax are the same. They can be 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 31 

transformed equally. 

 

The syntax diagram for start is in Figure 5-13. 

 

Figure 5-13 Start Syntax Diagram 

 

The start symbol itself is transformed to nothing. However in the process initiation, the start 

symbol will trigger other transitions until it comes to a state or a stop symbol.  

start: 

transition::trans; 

5.5.2 State 

Although the state symbols in process and procedures are the same, the way to treat them is 

different. So they need to be classified into two sections.  

 

Process state: 

 

The syntax diagram of state symbol is shown in Figure 5-14 and the external syntax diagram is 

shown in Figure 5-15. 

 

Figure 5-14 State Syntax Diagram 

 

Figure 5-15 External State Syntax Diagram 

The process states have several places to be set. First, all the distinguishing states in a process 

should be enumerated before the behavior-des-elem starts and set a temporary state for later use. 

enum_state; 

Enum{ state-name1,state-name2,…} 

current-state=state-name1; 

 

When the process transitions come to a state symbol, according to the switch structure based on all 

the states in the process, the direction will be a case fork combined with the state-name: 

switch_state: 

switch(current-state) 

{ 

case state-name1:trigger::trans; 

              break; 

case state-name2:trigger::trans; 

              break; 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 32 

………….. 

Default: break; 

} 

 

Procedure Sate: 

 

The state symbol in procedures has the same syntax diagram used in process. However, the state 

symbol itself will not be transformed into target code. The state symbol will be used to trigger 

next transitions. 

state: 

trigger::trans; 

5.5.3 Trigger 

There are several kinds of trigger symbols. In this project, input and save will be considered and 

taken. The functions supplied here all belong to trigger::trans; 

 

Input: 

 

It is different in SDL and target C code. In target, except input symbol, additional functions need 

to be specified in target codes. They are signal-waiting function and signal-parameters-getting 

function. All these functions work together can do the same function in RTOS as in SDL.  

 

The syntax diagram for input is in Figure 5-16 

 

Figure 5-16 Input Syntax Diagram 

The external syntax for input and transitions after input is shown in Figure 5-17 and Figure 5-18. 

 

Figure 5-17 External Syntax Diagram1 

 
Figure 5-18 External Syntax Diagram2 

 

Before the process begins, create a temporary signal variable to use for storing signal receiving.  

temp_sig: 

SIGNAL receive; 

 

trans: 

INPUT(signal-identifier1, signal-identifier2,…,endlist); 

receive=WAIT_SIGNAL(); 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 33 

GET_SIGNAL_DATE(&variable1,&variable2,…); 

if(receive== signal-identifier1){transition::trans} 

else if (receive== signal-identifier2){transition::trans} 

…. 

else{transition::trans} 

 

If the situation happens in procedure, the result is like: 

trans: 

INPUT(signal-identifier1, signal-identifier2,…,endlist); 

WAIT_SIGNAL(); 

GET_SIGNAL_DATE(&variable1,&variable2,…); 

transition::trans; 

 

Save: 

 

The save symbol is another trigger, the syntax diagram of save is shown in Figure 5-19 and the 

external relation diagram is shown in Figure 5-20 

 

Figure 5-19 Save Syntax Diagram 

 
Figure 5-20 External Save Syntax Diagram 

trans: 

SAVE(signal-identifier1,signal-identifier2,…,endlist); / SAVE(none); 

5.5.4 Free Actions 

The free actions can be separated into two types: action and transition end. The output, set/reset, 

task, procedure call and create belongs to action. The decision, join and connection, next-state, 

return and stop belong to transition end. All the functions here belong to transition::trans. 

5.5.4.1 Action 

Output: 

 

The syntax of the output is shown in Figure 5-21. 

  

Figure 5-21 Output Syntax Diagram 

 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 34 

The output in target codes needs to specify the destination process. The destination has the format 

of the destination Pid, so it is specified as destination. 

trans: 

OUTPUT(signal-identifier, destination, &variable1,&variable2,…); 

 

Task: 

 

The task has two formats shown in Figure 5-22 and Figure 5-23 

 

Figure 5-22 Task Syntax Diagram1 

 

Figure 5-23 Task Syntax Diagram2 

trans: 

variable=expression;/ informal-text,… 

 

Set/Reset 

 

The set has the format in Figure 5-24 

 

Figure 5-24 Set Syntax Diagram 

 

The reset has the format in Figure 5-25 

 

Figure 5-25 Reset Syntax Diagram 

trans: 

SET(expression*timer-standard,timer-identifier);/ RESET(,timer-identifier); 

 

Procedure call: 

 

The call specifies the name of the procedure and the parameters. In Figure 5-26 

 

Figure 5-26 Procedure Call Syntax Diagram 

trans: 

procedure-name(procedure-parameter1, procedure-parameter2,…) 

 

Create: 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 35 

The process instance is created in the same block as the process in which the create-request is 

interpreted.The syntax diagram is shown in Figure 5-27 

  
Figure 5-27 Create Syntax Diagram 

 

trans: 

CREATE(process-identifier,process-identifier_pri,process-identifier_size); 

 

5.5.4.2 Transition End 

Decision: 

The external syntax diagram of decision is shown in Figure 5-28 

 

Figure 5-28 Decision Syntax Diagram 

The syntax diagram of decision is shown in Figure 5-29. 

 

Figure 5-29 Decision Question Syntax Diagram 

The answer is shown in Figure 5-30 

 
Figure 5-30 Decision Answer Syntax Diagram 

Assume all the options have the range. 

trans: 

if((expression1==range1)==true){transition::trans} 

else if((expression2==range2)==true){transition::trans} 

………. 

else{transition::trans} 

 

Join and Connection: 

 

The syntax diagram is shown in Figure 5-31 

  

Figure 5-31 Label Syntax Diagram 

There are two types: out-connector and in-connector. Their symbols are shown in Figure 5-32 and 

Figure 5-33. 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 36 

 

Figure 5-32 Join Syntax Diagram 

 

Figure 5-33 Connector Syntax Diagram 

trans: 

goto label-name;/ label-name: transition::trans; 

 

Stop: 

 

The syntax diagram of stop symbol is shown in Figure 5-34 

 

Figure 5-34 Stop Syntax Diagram 

 

trans: 

transition::trans; 

STOP(); 

 

Return: 

 

The syntax diagram is shown in Figure 5-35 

 
Figure 5-35 Return Syntax Diagram 

trans: 

expression::expr; 

5.6 Expression 

The expressions which have been taken into account are infix-expression, parenthesis-expression, 

operator-application, imperative-application and conditional-expression. They will be introduced 

separately. 

 

Infix-expression: 

 

The syntactic form used is the infix form, as shown in Figure 5-36 

 

Figure 5-36 Infix-expression Syntax Diagram 

expr: 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 37 

expression dynamic-operator expression;/monadic-operator expression; 

 

Parenthesis-expression: 

 

The syntax diagram is in Figure 5-37 

 

Figure 5-37 Parenthesis-expression Syntax Diagram 

expr: 

(expression) 

 

Operator-application: 

 

The syntax diagram is in Figure 5-38 

 

Figure 5-38 Operator-application Syntax Diagram 

The format depends on kind of the operator-identifier belongs to. The operators need to be 

changed are: “or”, “and” and “//”. They will be changed to “||”, “&&” and “strcat”. 

 

expr: 

expression operator-identifier expression;/strcat(expression1.expression2); 

 

Imperative-operator: 

 

The situations considered in imperative-operator is shown in Figure 5-39 

 

Figure 5-39 Imperative-operator Syntax Diagram 

 

expr: 

Pid SELF()/SENDER()/PARENT()/OFFSPRING() 

bool ACTIVE(TIMER timer-name); 

procedure-name(procedure-parameter1, procedure-parameter2,…); 

 

Conditional-expression: 

 

The syntax diagram is in Figure 5-40. 

  

Figure 5-40 Conditional-expression Syntax Diagram 

expr: 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 38 

if(expression1){exprssion2}else{expression3} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 39 

Chapter 6 Transformation Technique 

The last chapter gives a detailed element mapping from source SDL diagram properties to target C 

code. In this chapter, we will illustrate how to make the transformation work. In this introduction, 

the structure in analyzing elements will be kept. 

6.1 General 

This project takes Cinderella SDL as running environment, so the API of Cinderella SDL is 

invoked. The Cinderella API is a feature which allows you to invoke external programs from 

Cinderella SDL. This way, Cinderella SDL can be extended and customized to accommodate 

special needs. Typical such add-ons can be:  

1. Various kinds of post-analysis tools which checks that certain company specific or 

methodology specific rules are obeyed.  

2. Filters which flattens the SDL specification some way, for example in order to overcome 

limitations imposed by other tools.  

3. Code generators.  

 

There is a very simple way to invoke the API. It is to build a SDL plug-in which is written in C++ 

and further to be compiled to a DLL file. Cinderella SDL can invoke this plug-in, and adopt the 

functions to obtain elements from the SDL based diagram. 

6.2 Overview of the API 

The Capi is the topmost class representing the API. It consists of two parts: The internal 

representation of the concrete syntax and the derived properties for the entities in the internal 

representation. Syntaxtree is the internal representation of the SDL specification. Propertiestree 

is the information derived from the internal representation. Propertiestree should be regarded as a 

representation of the SDL entities on a normalized convenient form. In order to take a SDL 

diagram into parsing, the corresponding API tree of the diagram needs to be initialized. 

 

The Syntaxtree contains the internal representing derived from the concrete syntax. Together with 

Propertiestree, the Syntaxtree constitutes the contents of API tree which is the root class 

defining the whole API. Inside Syntaxtree, spellmap is the list of spellnumbers assigned to the 

names of the specification. This can be used to extract elements using their spellnumbers. 

 

The Propertiestree contains the properties which are derived from Syntaxtree during analysis. 

Together with Syntaxtree, the Propertiestree constitute the contents of API tree which is the root 

class defining the whole API. The most important part of Propertiestree is the dictionaries of the 

entities defined in the SDL specification. There is one dictionary for each Qaulifierelementkind. 

Each dictionary consists of a list of Quals, each representing an entity of the given 

Qaulifierelementkind. A Qual contains information about all relevant information for an entity. 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 40 

The Propertiestree has two important functions. The selectqualdict() return the first Qual in the 

dictionary indicated by the Qaulifierelementkind parameter. To traverse the whole dictionary, 

apply Qual::next() until NULL is reached or use traversedict(). The traversedict 

(Qaulifierelementkind ,int (*func)(Qual*) ) applies the function func on each Qual contained in 

the dictionary indicated by the Qaulifierelementkind. If the function returns FALSE, the traversal 

will stop. 

 

There are some crucial attributes in the API tree; they are Qual, Diagram and Symbol. 

 

Any SDL entity that can be defined in an SDL specification has a Qual associated. A Qual consist 

of a number of fields which are common to all entities such as name and defining scope unit. It 

also contains a part which is specific to the entity kind. For example, the entities which can have a 

behavior graph associated (operators, processes, process types, procedures, services and service 

types) have a GraphD in the Qual which contains information about states and transitions.  

 

The Diagram class represents the diagram. No distinction is made between a diagram and a 

diagram page. Those terms both refer to an object of class Diagram. A Diagram retains 

information about e.g. the kind of diagram, the heading symbols of the diagram, the contained 

symbols, the semantic descriptor (Qual) for the scope unit and the corresponding reference symbol 

for the diagram. Even though every diagram page of a scopeunit has the same heading according 

to SDL, separate heading symbols exist for each diagram page. This is in order to allow scaling 

and positioning of the symbols in individual pages. The function traversesymbols(int 

(*func)(Symbol *),int allpages,int skipheading=TRUE) traverse all symbols of the diagram. For 

each symbol, the argument function func is called. If func returns FALSE, the traversal will stop 

and traversesymbols() returns. If the argument allpages is TRUE, all pages of the diagram will be 

traversed. If skipheading is TRUE, traversesymbols will skip the heading symbols of page(s).  

 

Symbol represents an SDL symbol. The function uniqueid() is the unique identity of the symbol 

within the (linked) file or specification in which it occurs. The identity is persistent to save and 

open. The traverseoutgoing(int (*func)(Symbol *,Symbol *)) traverse all symbols having the 

symbol as originating endpoint. For each symbol, the function func is called with the symbol as 

parameter. The traverseincoming(int (*func)(Symbol *)) traverse all symbols having the symbol 

as destination endpoint. For each symbol, the function func is called with the symbol as parameter. 

The Symbol has some class members which can be used to specify for a particular symbol.  

6.3 Element Extraction 

The order for element extraction is: structural element extraction, definition element extraction, 

behavior element extraction and expression extraction. 

 

Structural Element Extraction: 

 

The function selectdictqual(elemtkind) invoked. By setting the elementkind, the properties for this 

kind of structural element can be extracted one by one. To extract the scope units system, block, 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 41 

process and procedure, the elementkind needs to be set to SYSTEMQUAL, BLOCKQUAL, 

PROCESSQUAL and PROCEDUREQUAL. Every time invoking the function, one Qual is 

extracted out. The next() function is used to select the next one.  

 

In the transformation, the belonging relationships of different scopes need to be checked. The 

function sur() will be used to check if the scope element belongs to another element. 

 

Definition Element Extraction 

 

The elements contained in definition element are: signal, data type and variable. They need 

separate ways to be selected. 

 

The signal definition can be extracted from the properties tree directly because the elementkind 

can be set to SIGNALQUAL. So a Quallist of signals in the diagram is selected. We just need 

next() function to access them one by one. The data type definition can be declared with scopes in 

any level. The elementkind can also be set to SORTQUAL. A sortlist will be extracted from the 

syntax tree. However, in this project, we prefer to extract the data type definition element in scope 

unit.  

 

The text symbol for each scope unit needs to be parsed, the definitionlist() function will return a 

definition element list. The data type definition and variable declaration can be extracted from the 

definition element list. The alt_syntypedef(), alt_newtypedef(), alt_synonymdef(), alt_vardef(), 

alt_timerdef() and alt_prsymbol() are used to extract different definition elements. The next() 

will also be invoked to select the next definition element.  

 

Behavior Element Extraction 

 

Behavior elements are represented as symbols. Every behavior element kind has a corresponding 

symbol kind. The function kind() can be used to switch the parsed symbol kind. This will let 

every element kind receive proper treatment.  

 

All behavior elements belong to process or procedure Quals. To traverse the behavior symbols 

with the same properties in a scope unit, the function traversesymbols(symbolfunc,1,1) is used. 

But this function need diagram of the Qual, the function q_diagram() is called to exchange the 

Qual element to Diagram.   

 

The function traverseoutgoing() is used to check the next symbol this symbol reaches. This 

function is called by symbols. If a certain symbol is found, for example, start or state symbols, 

then this function can be used to check the next symbol. The nesting will be used to check the 

symbols automatically one by one until it comes to a certain situation. 

 

There are many kinds of behavior element symbols: start, state-trigger and free action. Every kind 

has their own way to select the basic attributes. The state symbol has a state name list to be 

accessed, the statenamelist() returns the list of state names that is specified in the state symbol. If 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 42 

starred() is TRUE, the list of names are those specified in parenthesis after the asterisk character. 

The inputvarlist() returns the list of signals specified in the input. The signallist() returns the list 

of signals specified in the save symbol. In output symbol, the outputsiglist() returns the list of 

signals specified to be sent in the output symbol. Another function reachable() also needs to be 

invoked to check the destination of the signal. The question() returns the expression which is 

specified inside the decision symbol.  

 

Expression Extraction 

 

Expressions also have several kinds, the same as symbols, every kind has its own functions can be 

invoked to check the wanted attributes. First, the alt_kind() function is used to move the 

expression to the right type. Then different functions can be called directly. For example, in 

infix-expression, three functions lexpr(),infixop() and rexpr() will separately get the expressions 

and operators. The most basic and useful function is based on Id class. The class Id represents the 

information that is associated to an identifier. It consists all the information in the indivisible 

component, especially for name() function to get name of the component.   

6.4 Principle 

Then the techniques used in the transformation belong to model-driven techniques. It parses the 

attributes of the SDL diagram represented system and takes them by building the syntax tree of the 

system. The work principle can be shown in Figure 6-1. 

 

Figure 6-1 Work Principle for SDL API 

 

 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 43 

Chapter 7 System Test 

7.1 Results of Different Stages 

To obtain the correctness of the different steps in this project, we try to divide the time into several 

periods and verify the results achieved at that time. 

 

Component extractions: 

 

This is the first stage. After the analysis of the elements of the SDL system, necessary components 

are classified and marked with highest priorities. The structural element, definition element and 

behavior element are tested one by one. 

 

The system, block, process and procedure can be extracted with full properties it possesses. The 

name, contained unit, unit belongs to and parameters are extracted 100% correct. 

 

The definition elements taken into account are signal definition, data type definition and variable 

declaration. Signals can be selected easily with full properties. Data type define three basic new 

data types, they have limitations in showing presenting some properties in target C code. The 

variable declaration enjoys the full interpretation as signals. In this section, separate extraction can 

be achieved 100%. However, predictable risk of property failing exist. 

 

Almost all the behavior element symbols can be extracted with rather exact precision. Two kinds 

of symbols have problem. The destination of the output signal and relationship between decision 

question and option answer are still under construction. The completeness is 90%. 

 

Structural extractions: 

 

After we know how to extract information from a single unit, the connection among them and the 

reassembling the structure in target code are the trickiest things.  

 

Within structural elements, their relationships of belonging are things we need to check. The range 

size they in charge of have been tested with full correctness. 

 

The definition elements are not fully distributed according to the scope unit. However, the 

interpretation among them has no difficulty. It is correct 100%. 

 

Coming to behavior elements, using outgoing() functions can supply the passed symbols. There 

are some problems unsolved in this stage. Join and connector have not been taken into consider. 

Decision loops are the tricky part to be extracted in right manner. It will effect the format of 

generated code. 90% of this stage has been completed. 

 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 44 

Tool test: 

 

After the plug-in has been generated, it is put into Cinderella plug-in folder. The name is given 

CGFR. It can generate target file every time it is invoked. The working promise is 100%. 

 

Compile test: 

 

When the codes are generated, they are compiled under WinAvR C compiler. At first, none of the 

generated files can be compiled. After changing of some attributes, all the generated files can be 

compiled without errors. The plug-ins have grown into 2. One is CGFR, one generates header file 

with name config. The correctness is 100%. 

 

Implementation test: 

 

REFLEX has some problem in solving the input signals due to the confusion of different version 

control. Many examples can not be executed on AvR chip with REFLEX based functions. In order 

to have the verification of the result, we redesigned a small and simple supporting header function 

and use the AvR self brought circuit-switch input signals to take place of input signals. By doing 

so, we are completely successful in implementing the generated code of an example “tanker”. The 

result of the generated code has the same effect as the manually written one. However, due to the 

time constraints, we have not implemented other generated codes. The stage can only count 60%. 

 

Based on the tests we have, a line chart 7-1 is made to show the process of the test. 

00.20.40.60.811.2

Feb March April May
compling errorimplementationerror

 

Chart 7-1 Process trend 

7.2 Test Example 

The example “tank” is tested and it is fully operational. So we will give a brief introduction to this 

example and the compare manually written codes and generated codes. Full code generation and 

manually comparison are also provided in appendix B. 

 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 45 

The tank is auto water warmer. It can sense empty, full and temperature automatically, then it will 

adopt corresponding actions. If the tank is empty, water will be injected. If the tank senses full, 

water will be stopped and warmer starts to work. If the temperature comes to a certain grade, it 

will stop heating and sleep until water cooled or empty. 

 

Compare chart 7-2 between codes generated (gc) and manually written codes (mc) from three 

aspects number of the files (nof), simplicity (s) and comparability (c). 

00.511.52
nof s c gcmc

 

Chart 7-2 Comparison between Generated and Manually Written Codes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 46 

Chapter 8 Discussion 

8.1 Major Findings 

Before all the work start, we made a systematic analyze of some existing code generators. By 

catching the most attractive points in these generators, we get to know most of the significant 

features a code generator needs to take care.  

 

Then we changed our focus on REFLEX. The REFLEX supports some of the SDL notations 

which can be transformed from SDL directly. We tried to find these functions and list them for 

further usage. 

 

When comes to the real transformation, we try to gather all the elements and classify them into 

several groups. Some of them are essential in describing a system; they are kept and transformed 

with full interpretation. In opposite, some of them which are not so critical are omitted in order to 

simplify the project.  

 

Finally, we developed a new code generator which can generate C codes from SDL system 

diagram specification. The codes can be implemented on AvR micro-chip with the support from 

the micro-kernel REFLEX. The name of the generator is given as CGFR. We also designed 

another plug-in (Config) which generates the supporting header files for implementation code. 

Users of CGFR can change the user defined the property values in the header file. The two 

plug-ins can be put under Cinderella SDL and integrated with it. The C++ source code of the code 

generators and plug-in DLL files can be found on cvs http://kildekode.hia.no/ in the CGFR folder. 

8.2 Comparison with Existing C Code Generators 

Due to the complexity and time constraints, the details of SDL elements are not fully expanded. 

The whole system is transformed into one single C implementation file with a user defining 

header file, this is not as good as other C generators since they all have their own generating 

structure for users to choose. And there are several elements in transformation are not considered. 

Only the kernel properties are chosen to be transformed.  

 

Here, we will make a comparison between CGFR and existing C generators. The detail 

information is shown in the chart 8-1. The aspects taken into consideration are: integrity (i), 

simplicity (s), structure (t) and user-friendly (f). 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 47 

0%20%40%60%80%100%
i s t f

C-microC-AdvancedCGFR
 

Chart 8-1 Comparisons between CGFR and Existing Code Generators 

8.3 Comparison with Manually Written Target Code   

The generated target code can be compiled well. It shows that the generated code is correct in 

logic and semantics. However, compared to manually written code, it is a bit different. 

 

First is the simplicity. Because this tool will transform all the elements and structure within the 

regulations, so even sometime the code can be simplified, it would not do such a thing. 

 

Second is the flexibility. It is easy and flexible to define variables and some informal texts in SDL, 

and this can be well transformed manually, because system designers know how it comes. But to 

fit for the transformation, some additional constraints need to be set, like designers need to specify 

all the variants in text area and etc.  

 

However, in general, the similarity of the generated code is very high except for some defined 

structure as we mentioned in simplicity features. 

8.4 Alternatives 

Although we think that the method we used is the most direct and shortest way, there are some 

other ways to generate code from SDL specifications. Here, we list them as alternatives for further 

discussion. 

 

The first method we want mention is parsing the PR SDL specification and generate target C code 

from that. Because PR SDL specification has unique format for one system even their GR form is 

a bit different, it can expand the usage range. Independent tool is needed because the source file 

has no running environment to be based on.  

 

The other way is to use other existing code generators which are under construction of special 

development groups. These tools are very complete and mature. They handle many aspects and 

the codes generated have been tested and verified for many times. However, they are commercial 

version.    



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 48 

 

A comparison chart 8-2 clearly shows their advantage and disadvantages in three aspects: cost 

advantage (ca), functionality advantage (fa) and portability advantage (pa). 

0%20%40%60%80%100%
ca fa pa

CGFRPR GeneratorExsting Generator
 

Chart 8-2 Comparisons among Alternatives 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 49 

Chapter 9 Conclusion and Future Work 

9.1 Conclusion  

In this thesis, we discussed and developed a new C code generator CGFR. The micro kernel 

REFLEX will provide the SDL notations support to implement the codes under the real time 

operating system for AvR micro-chip. Based on the model-driven technology which can enhance 

the software building, we proposed and developed several possible solutions to build the code 

generator. 

 

We began our research from analyzing some existing code generators such as C-micro, 

C-Advanced/Basic, ConTraSt and Cinderella SITE. It is very important for us to study the 

methods and bright points and adopt them to our project. 

 

To extract all the necessary elements and their properties out, we changed our focus on Cinderella 

SDL API. It is an easy API to use and test. All the corresponding functions to the elements will 

contribute later in the transformation. By further studying the API functions, we expanded the 

element range and let them fit into the transformation requirement. 

 

At last, we built the exact mapping between the source and target. Following this mapping, the 

transformation can be executed fluently. After the code generator CGFR has been created, the 

generated codes can be compiled without any errors and implemented on the AvR platform 

successfully. A detailed user manual is provided in the appendix A as well.  

 

According to complexity, functionality and dependency of the C codes needed in our project, 

CGFR can manage designed systems with basic elements. Our solution makes it possible for 

software designers to change the configurations according to their needs. 

9.2 Future Work 

As SDL is planned to be a profile of UML 2.0, some of SDL concepts is to be removed and 

redefined. So there is substantially much work to redefine the SDL REFLEX as well as the 

corresponding code generation, we would like to invite programmers to join for further 

development.  

 

Based on our work, following issues can be interesting for further research: 

1. adaptation of new SDL elements into REFLEX 

2. a more steady REFLEX supported RTOS 

3. new Cinderella SDL API functions 

4. other ways to simulate the constructs in SDL  

5. obtain the object-oriented structure in transformation 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 50 

6. more elements properties can be added 

7. more user defined directives can be added 

8. a SDL PR file parser and compiler 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 51 

ABBREVIATIONS  

RTOS Real Time Operating System 

UML Unified Modeling Language 

PR SDL Textual Phrase Representation 

GR SDL Graphic Representation 

SDL Specification and Description Language 

AVR A family of RISC Microcontrollers from Atmel 

API Application Programming Interface 

CGFR Code Generation for SDL REFLEX 

MDA Model-driven Architecture 

QVT Queries/Views/Transformations 

ConTraSt A Configurable SDL Transpiler and Runtime Environment 

SITE SDL Integrated Tool Environment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 52 

REFERENCE 

[1] SDL history from SDL forum (visited Feb, 2007) 

   URL: http://www.sdl-forum.org/SDL/index.htm 

 

[2] SDL notation from Wikipedia (visited Feb, 2007) 

   URL: http://en.wikipedia.org/wiki/Specification_and_Description_Language 

 

[3] Telelogic, maker of Tau, an SDL Design Tool (visited Feb, 2007) 

   URL: http://www.telelogic.com/ 

 

[4] Cinderella SDL Design Tool (visited Feb, 2007) 

   URL: http://www.cinderella.dk/ 

 

[5] SanDriLa SDL Design Tool (visited Feb, 2007) 

   URL: http://www.sdl.sandrila.co.uk/ 

 

[6] SDL Integrated Tool Environment (visited Feb, 2007) 

   URL: http://www2.informatik.hu-berlin.de/SITE/index.html.en 

 

[7] Code generations from Wikipedia (visited Feb, 2007) 

   URL: http://en.wikipedia.org/wiki/Code_generator 

 

[8] MDA from Wikipedia (visited Feb, 2007) 

   URL: http://en.wikipedia.org/wiki/Model-driven_architecture 

 

[9] QVT from Wikipedia (visited Feb, 2007) 

   URL: http://en.wikipedia.org/wiki/QVT 

 

[10] AVR from Wikipedia (visited Feb, 2007) 

   URL: http://en.wikipedia.org/wiki/Atmel_AVR 

 

[11] UML from Wikipedia (visited Feb, 2007) 

   URL: http://en.wikipedia.org/wiki/Unified_Modeling_Language 

 

[12] How to build DLLs (visited March, 2007) 

   URL: http://www.codeproject.com/dll/DLL_EZ_Build_EZ_Usage.asp 

 

[13] Bruce Eckel: “Thinking in C++ 2nd Edition” 2003 

 

[14] A. Olsen, O. Færgemand, B. Møller-Pedersen, R. Reed and J.R.W. Smith: “Systems 

engineering using SDL-92” 1994 ISBN: 0-444-89872-7 

 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 53 

[15] Cinderella SDL: “Cinderella SDL API document”  

 

[16] Telelogic Tau: “Telelogic Tau 4.2 User’s Manual”  

 

[17] Torstein Wroldsen, Ståle Tveitane: “A Real Time Operating System for embedded platforms” 

2004 

 

[18] Ingmar Fliege1, Rudiger Grammes1, and Christian Weber2: “A Configurable SDL Transpiler 

and Runtime Environment” 2005 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 54 

Appendix A – User Manual 

Execution Steps 

The CGFR is designed as plug-ins for Cinderella SDL. The plug-in is in DLL format. There are 

two DLL files in the CGFR, one generates user defined header files like setting priority and stack 

size for process, the other is the real implementation C code which users do not suppose to check 

or change. The DLL file which generates header file is config.dll, the name of the implementation 

code DLL file is CGFR.dll. In order to make the CGFR work, the steps below should be followed: 

1. Put the two DLL files into the Cinderella SDL plug-in folder. 

2. Start Cinderella SDL, click tools menu, a menu list will be found. There is a plug-in item. 

3. In the plug-in item, two items will be found. One is called config, the other is called CGFR. 

4. First, click the config item, a header file will be found at the same location as the SDL file.  

5. Then, click the CGFR item, the implementation file will be found at the same location. 

6. In order to change the process priority and stack size, users need to access to the header file, 

change the corresponding items with the identity of the same process name. 

7. In order to change the timer standard, access to the header file, change the timer standard 

item. 

8. To implement the generated code, copy them into the platform and execute them. 

User Notifications 

Because in the CGFR, there are many properties not considered. So users of the CGFR need to 

follow the instructions in order to generate the right code for implementation. 

 

The listed of constraints need to be noticed are: 

1. users are not supposed to draw any type constructs 

2. users are not supposed to draw any service constructs 

3. users are not supposed to draw any operator constructs 

4. process can have parameters, but they do not effect transformation result  

5. the outermost scope can only have one system 

6. export and import properties of variables should not appear 

7. the first letter of state name should have lower case 

8. signallist and signalset should not appear 

9. data types are restricted to string and array 

10. every variable used in the process or procedure scope need to be specified in textarea 

11. continuous signal should not be used 

12. informal texts should follow C format 

 

These restrictions need to be followed in drawing the system model in SDL. They will show no 

errors in SDL representations, however, in transformation, they need to be considered as 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 55 

restrictions. 

Error Handling 

In Cinderella these constraints will show no error warnings, so when users step into the constraints 

above, the corresponding error handling will analyze these points and give warnings to users. 

These warnings will be presented on the message box of the Cinderella.  

 

The corresponding warnings users may find in running are: 

1. if type constructs exist, show “type warning” 

2. if service constructs exist, show “service warning” 

3. if operator constructs exist, show “operator warning” 

4. if more than one system exist, show “system warning” 

5. export and import errors will be identified when compiling the generated files, it shows 

“variable undeclared” 

6. if the first letter of state name is lower case, errors will be identified when compiling the 

generated files, it shows “state-name undeclared ” 

7. if variable not declared in the text area used, errors will be identified when compiling the 

generated files, it shows “variable undeclared”  

8. if continuous signal exist, shows “continuous warning” 

9. if two processes or procedures share the same name in different block, errors will be 

identified when compiling the generated files, it shows “process-name_code redefined”  

 

When the generated files can not be compiled correctly, they can check this error handling and 

check where the problem is.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 56 

Appendix B – Example Tanker 

Manually Written Code 

tanker.c 

#include <stdlib.h> 

#include <sdl_io.h> 

#include "tank_io.h" 

 

Pid Initialisator; 

 

SIGNAL  

    Tank_blitt_varm, Tank_blitt_kald, Tank_blitt_full, 

    Tank_blitt_tom, Init_TS, Init_SM; 

 

void Initialisator_kode (void); 

void SensorMonitor_kode (void); 

void TankStyring_kode (void); 

 

void main(void) 

{ 

    init_tank_io(); 

    Tank_blitt_varm = NEW_SIGNAL(0); 

    Tank_blitt_kald = NEW_SIGNAL(0); 

    Tank_blitt_full = NEW_SIGNAL(0); 

    Tank_blitt_tom  = NEW_SIGNAL(0); 

    Init_TS         = NEW_SIGNAL(1,sizeof(unsigned int)); 

    Init_SM         = NEW_SIGNAL(2,sizeof(Pid),sizeof(unsigned int)); 

    Initialisator   = CREATE(Initialisator_kode,10,200); 

    START(); 

} 

 

void Initialisator_kode (void) 

{ 

    Pid TS_prosess; 

    unsigned int tank_nr; 

 

    CREATE (TankStyring_kode,5,200); 

    TS_prosess = OFFSPRING(); 

    tank_nr = 1; 

    OUTPUT(Init_TS,TS_prosess,&tank_nr); 

    CREATE(SensorMonitor_kode,7,200); 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 57 

    OUTPUT(Init_SM,OFFSPRING(),&TS_prosess,&tank_nr); 

    CREATE (TankStyring_kode,5,200); 

    TS_prosess = OFFSPRING(); 

    tank_nr = 2; 

    OUTPUT(Init_TS,TS_prosess,&tank_nr); 

    CREATE(SensorMonitor_kode,7,200); 

    OUTPUT(Init_SM,OFFSPRING(),&TS_prosess,&tank_nr); 

    STOP(); 

} 

 

void SensorMonitor_kode (void) 

{ 

    Pid min_tank; 

    int tank_nr; 

    boolean er_aktiv, tank_var_varm, tank_var_tom, tank_var_full; 

    TIMER tid_for_sjekk; 

    enum{Venter_init_data, Venter} tilstand = Venter_init_data; 

     

    tid_for_sjekk = NEW_TIMER(); 

    while(1) 

    { 

        switch(tilstand) 

        { 

            case Venter_init_data: 

                INPUT(Init_SM, END_LIST); 

                SAVE(NONE); 

                WAIT_SIGNAL(); 

                GET_SIGNAL_DATA(&min_tank,&tank_nr); 

                tank_var_varm= false; 

                tank_var_tom = false; 

                tank_var_full = false; 

                SET(10, tid_for_sjekk); 

                tilstand = Venter; 

                break; 

            case Venter: 

                INPUT(tid_for_sjekk, END_LIST); 

                SAVE(NONE); 

                WAIT_SIGNAL(); 

                SET(10, tid_for_sjekk); 

                tank_tom(tank_nr, &er_aktiv); 

                if (er_aktiv && !tank_var_tom) 

                    OUTPUT(Tank_blitt_tom, min_tank); 

                tank_var_tom = er_aktiv; 

                tank_full(tank_nr, &er_aktiv); 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 58 

                if (er_aktiv && !tank_var_full) 

                    OUTPUT(Tank_blitt_full, min_tank); 

                tank_var_full = er_aktiv; 

                tank_varm(tank_nr, &er_aktiv); 

                if (er_aktiv) 

                { 

                    if(!tank_var_varm) 

                        OUTPUT(Tank_blitt_varm, min_tank); 

                } 

                else 

                { 

                    if(tank_var_varm) 

                        OUTPUT(Tank_blitt_kald, min_tank); 

                } 

                tank_var_varm = er_aktiv; 

                break; 

        } 

    } 

} 

 

void TankStyring_kode (void) 

{ 

    int tank_nr; 

    enum {Venter_init_data,Venter_paa_tom,Fyller,Varmer,Vedlikeholder}  

        tilstand = Venter_init_data; 

    SIGNAL mottatt; 

     

    while (1) 

    { 

        switch (tilstand){ 

            case Venter_init_data: 

                INPUT(Init_TS, END_LIST); 

                SAVE(NONE); 

                WAIT_SIGNAL(); 

                GET_SIGNAL_DATA(&tank_nr); 

                varme_av(tank_nr); 

                kran_av(tank_nr); 

                tilstand = Venter_paa_tom; 

                break; 

        

            case Venter_paa_tom: 

                INPUT(Tank_blitt_tom, END_LIST); 

                SAVE(NONE); 

                WAIT_SIGNAL(); 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 59 

                kran_paa(tank_nr); 

                tilstand = Fyller; 

                break; 

           

            case Fyller : 

                INPUT(Tank_blitt_full, END_LIST); 

                SAVE(NONE); 

                WAIT_SIGNAL(); 

                kran_av(tank_nr); 

                varme_paa(tank_nr); 

                tilstand = Varmer; 

                break; 

           

            case Varmer : 

                INPUT(Tank_blitt_varm, Tank_blitt_tom, END_LIST); 

                SAVE(NONE); 

                mottatt = WAIT_SIGNAL(); 

                if (mottatt == Tank_blitt_varm) 

                { 

                    varme_av(tank_nr); 

                    tilstand = Vedlikeholder; 

                } 

                else /* if (mottatt == Tank_blitt_tom) */ 

                { 

                    varme_av(tank_nr); 

                    kran_paa(tank_nr); 

                    tilstand = Fyller; 

                } 

                break; 

           

            case Vedlikeholder : 

                INPUT(Tank_blitt_kald, Tank_blitt_tom, END_LIST); 

                SAVE(NONE); 

                mottatt = WAIT_SIGNAL(); 

                if (mottatt == Tank_blitt_kald) 

                { 

                    varme_paa(tank_nr); 

                    tilstand = Varmer; 

                } 

                else /* if (Tank_blitt_tom) */ 

                { 

                    kran_paa(tank_nr); 

                    tilstand = Fyller; 

                } 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 60 

                break; 

        } 

    } 

} 

tanker_io.c 

#include "tank_io.h" 

#include <sdl_io.h> 

 

#define    tank_1_tom   0x01 

#define    tank_1_full  0x02 

#define    tank_1_varm  0x04 

#define    tank_2_tom   0x10 

#define    tank_2_full  0x20 

#define    tank_2_varm  0x40 

 

#define    kran_1    0x01 

#define    varme_1   0x02 

#define    kran_2    0x10 

#define    varme_2   0x20 

 

static unsigned char lamper;  

 

void tank_tom( int tank_nr, boolean * aktiv)  

{ 

   switch (tank_nr) { 

        case 1  :  

            *aktiv = ((switchRead() & tank_1_tom) != 0); 

            break; 

        case 2  :  

            *aktiv = ((switchRead() & tank_2_tom) != 0); 

            break; 

        default :  

            *aktiv = false; 

            break; 

   } 

} /* END tank_tom */ 

 

void tank_full( int tank_nr, boolean * aktiv)  

{ 

   switch (tank_nr)  

   { 

        case 1  :  

            *aktiv = ((switchRead() & tank_1_full) != 0); 

            break; 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 61 

        case 2  :  

            *aktiv = ((switchRead() & tank_2_full) != 0); 

            break; 

        default :  

            *aktiv =  false; 

            break; 

   } 

} /* END tank_full */ 

 

void tank_varm( int tank_nr, boolean * aktiv) { 

   switch (tank_nr)  

   { 

        case 1  :  

            *aktiv = ((switchRead() & tank_1_varm) != 0); 

            break; 

        case 2  : 

            *aktiv =  ((switchRead() & tank_2_varm) != 0); 

            break; 

        default :  

            *aktiv =  false; 

            break; 

   } 

} /* END tank_varm */ 

 

void kran_paa ( int tank_nr)  

{ 

   switch (tank_nr)  

   { 

        case 1  : lamper |= kran_1; break; 

        case 2  : lamper |= kran_2; break; 

   }  

   OUTPUT(LED_WRITE, ENV, &lamper); 

} /* END kran_paa */ 

 

void kran_av ( int tank_nr)  

{ 

   switch (tank_nr)  

   { 

        case 1  : lamper &= ~kran_1; break; 

        case 2  : lamper &= ~kran_2; break; 

   } 

   OUTPUT(LED_WRITE, ENV, &lamper); 

} /* END kran_av */ 

 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 62 

void varme_paa ( int tank_nr)  

{ 

   switch (tank_nr)  

   { 

        case 1  : lamper |= varme_1; break; 

        case 2  : lamper |= varme_2; break; 

   }  

   OUTPUT(LED_WRITE, ENV, &lamper); 

} /* END varme_paa */ 

 

void varme_av ( int tank_nr)  

{ 

   switch (tank_nr)  

   { 

        case 1  : lamper &= ~varme_1; break; 

        case 2  : lamper &= ~varme_2; break; 

   } 

   OUTPUT(LED_WRITE, ENV, &lamper); 

} /* END varme_av */ 

 

void init_tank_io (void)  

{ 

    lamper = 0; 

    OUTPUT(LED_WRITE, ENV, &lamper); 

} /* END init_tank_io */ 

tanker_io.h 

#ifndef TANK_IO_H 

#define TANK_IO_H 

typedef enum {false,true} boolean; 

void tank_tom( int tank_nr, boolean * aktiv); 

void tank_full( int tank_nr, boolean * aktiv); 

void tank_varm( int tank_nr, boolean * aktiv); 

void kran_paa ( int tank_nr); 

void kran_av ( int tank_nr); 

void varme_paa ( int tank_nr); 

void varme_av ( int tank_nr); 

void init_tank_io (void); 

#endif /* TANK_IO_H */ 

Generated Code 

tanker.c 

#include <stdlib.h> 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 63 

#include <sdl_io.h> 

#include <string.h> 

#include "tanker.h" 

 

typedef unsigned int natural; 

typedef enum{false, true} boolean; 

typedef unsigned int integer; 

typedef unsigned char character; 

typedef char charstring[20]; 

typedef float duration; 

typedef float time; 

typedef float real; 

 

 

Pid initialisator, sensormonitor, tankstyring; 

 

SIGNAL tid_for_sjekk, init_ts, init_sm, tank_blitt_tom, tank_blitt_full, 

  tank_blitt_kald, tank_blitt_varm; 

 

void initialisator_code(void); 

void sensormonitor_code(void); 

void tankstyring_code(void); 

 

int main(void) 

{ 

  tid_for_sjekk = NEW_SIGNAL(0); 

  init_ts = NEW_SIGNAL(1, sizeof(natural)); 

  init_sm = NEW_SIGNAL(2, sizeof(Pid), sizeof(natural)); 

  tank_blitt_tom = NEW_SIGNAL(0); 

  tank_blitt_full = NEW_SIGNAL(0); 

  tank_blitt_kald = NEW_SIGNAL(0); 

  tank_blitt_varm = NEW_SIGNAL(0); 

  initialisator = CREATE(initialisator_code, initialisator_pri, initialisator_size); 

  START(); 

  return 0; 

} 

//**************tanker_system block start**************** 

//**************initialisator process start***************** 

void init_tank_io (void); 

void initialisator_code(void) 

{ 

  Pid ts_prosess; 

  natural temp1; 

  natural temp2; 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 64 

  SIGNAL receive; 

  temp1 = 1; 

  temp2 = 2; 

  init_tank_io(); 

  CREATE(tankstyring_code, tankstyring_pri, tankstyring_size); 

  ts_prosess = OFFSPRING(); 

  OUTPUT(init_ts, ts_prosess, &temp1); 

  CREATE(sensormonitor_code, sensormonitor_pri, sensormonitor_size); 

  OUTPUT(init_sm, OFFSPRING(), &ts_prosess, &temp1); 

  CREATE(tankstyring_code, tankstyring_pri, tankstyring_size); 

  ts_prosess = OFFSPRING(); 

  OUTPUT(init_ts, ts_prosess, &temp2); 

  CREATE(sensormonitor_code, sensormonitor_pri, sensormonitor_size); 

  OUTPUT(init_sm, OFFSPRING(), &ts_prosess, &temp2); 

  STOP(); 

} 

void init_tank_io (void)  

{ 

    natural lamper; 

    lamper = 0; 

    OUTPUT(LED_WRITE, ENV, &lamper); 

} 

//**************initialisator process end***************** 

//**************sensormonitor process start************** 

void tank_varm(natural tank_nr, boolean *aktiv); 

void tank_full(natural tank_nr, boolean *aktiv); 

void tank_tom(natural tank_nr, boolean *aktiv); 

void sensormonitor_code(void) 

{ 

  Pid min_tank; 

  natural tank_nr; 

  boolean er_aktiv; 

  boolean tank_var_varm; 

  boolean tank_var_tom; 

  boolean tank_var_full; 

  TIMER tid_for_sjekk = NEW_TIMER(); 

  enum{venter, venter_init_data} current_state = venter; 

  SIGNAL receive; 

  current_state = venter_init_data; 

  while (1) 

  { 

    switch (current_state) 

    { 

      case venter: 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 65 

        { 

          INPUT(tid_for_sjekk, END_LIST); 

          SAVE(NONE); 

          receive = WAIT_SIGNAL(); 

          if (receive == tid_for_sjekk) 

          { 

            SET((unsigned int)(0.1*timer_standard), tid_for_sjekk); 

            tank_tom(tank_nr, &er_aktiv); 

            if (er_aktiv && !(tank_var_tom)) 

              OUTPUT(tank_blitt_tom, min_tank); 

            tank_var_tom = er_aktiv; 

            tank_full(tank_nr, &er_aktiv); 

            if (er_aktiv && !(tank_var_full)) 

              OUTPUT(tank_blitt_full, min_tank); 

            tank_var_full = er_aktiv; 

            tank_varm(tank_nr, &er_aktiv); 

            if ((er_aktiv) == false) 

            { 

              if (tank_var_varm) 

                OUTPUT(tank_blitt_kald, min_tank); 

              tank_var_varm = er_aktiv; 

              current_state = venter; 

            } 

            else if ((er_aktiv) == true) 

            { 

              if (!(tank_var_varm)) 

                OUTPUT(tank_blitt_varm, min_tank); 

              tank_var_varm = er_aktiv; 

              current_state = venter; 

            } 

          } 

        } 

        break; 

      case venter_init_data: 

        { 

          INPUT(init_sm, END_LIST); 

          SAVE(NONE); 

          receive = WAIT_SIGNAL(); 

          if (receive == init_sm) 

          { 

            GET_SIGNAL_DATA(&min_tank, &tank_nr); 

            tank_var_varm = false; 

            tank_var_tom = false; 

            tank_var_full = false; 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 66 

            SET((unsigned int)(0.1*timer_standard), tid_for_sjekk); 

            current_state = venter; 

          } 

        } 

        break; 

      default: 

        break; 

    } 

  } 

} 

 

void tank_varm(natural tank_nr, boolean *aktiv) 

{ 

  switch (tank_nr)  

   { 

        case 1  :  

            *aktiv = ((switchRead() & tank_1_varm) != 0); 

            break; 

        case 2  : 

            *aktiv =  ((switchRead() & tank_2_varm) != 0); 

            break; 

        default :  

            *aktiv =  false; 

            break; 

   } 

} 

 

void tank_full(natural tank_nr, boolean *aktiv) 

{ 

  switch (tank_nr)  

   { 

        case 1  :  

            *aktiv = ((switchRead() & tank_1_full) != 0); 

            break; 

        case 2  :  

            *aktiv = ((switchRead() & tank_2_full) != 0); 

            break; 

        default :  

            *aktiv =  false; 

            break; 

   } 

} 

 

void tank_tom(natural tank_nr, boolean *aktiv) 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 67 

{ 

  switch (tank_nr) { 

        case 1  :  

            *aktiv = ((switchRead() & tank_1_tom) != 0); 

            break; 

        case 2  :  

            *aktiv = ((switchRead() & tank_2_tom) != 0); 

            break; 

        default :  

            *aktiv = false; 

            break; 

   } 

} 

//**************sensormonitor process end************** 

//**************tankstyring process start**************** 

void varme_av(natural tank_nr); 

void varme_paa(natural tank_nr); 

void kran_av(natural tank_nr); 

void kran_paa(natural tank_nr); 

void tankstyring_code(void) 

{ 

  natural tank_nr; 

  enum{varmer, fyller, vedlikeholder, venter_paa_tom, venter_init_data} 

 current_state = venter_init_data; 

  SIGNAL receive; 

  current_state = venter_init_data; 

  while (1) 

  { 

    switch (current_state) 

    { 

      case varmer: 

        { 

          INPUT(tank_blitt_tom, tank_blitt_varm, END_LIST); 

          SAVE(NONE); 

          receive = WAIT_SIGNAL(); 

          if (receive == tank_blitt_tom) 

          { 

            varme_av(tank_nr); 

            kran_paa(tank_nr); 

            current_state = fyller; 

          } 

          else if (receive == tank_blitt_varm) 

          { 

            varme_av(tank_nr); 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 68 

            current_state = vedlikeholder; 

          } 

        } 

        break; 

      case fyller: 

        { 

          INPUT(tank_blitt_full, END_LIST); 

          SAVE(NONE); 

          receive = WAIT_SIGNAL(); 

          if (receive == tank_blitt_full) 

          { 

            kran_av(tank_nr); 

            varme_paa(tank_nr); 

            current_state = varmer; 

          } 

        } 

        break; 

      case vedlikeholder: 

        { 

          INPUT(tank_blitt_tom, tank_blitt_kald, END_LIST); 

          SAVE(NONE); 

          receive = WAIT_SIGNAL(); 

          if (receive == tank_blitt_tom) 

          { 

            kran_paa(tank_nr); 

            current_state = fyller; 

          } 

          else if (receive == tank_blitt_kald) 

          { 

            varme_paa(tank_nr); 

            current_state = varmer; 

          } 

        } 

        break; 

      case venter_paa_tom: 

        { 

          INPUT(tank_blitt_tom, END_LIST); 

          SAVE(NONE); 

          receive = WAIT_SIGNAL(); 

          if (receive == tank_blitt_tom) 

          { 

            kran_paa(tank_nr); 

            current_state = fyller; 

          } 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 69 

        } 

        break; 

      case venter_init_data: 

        { 

          INPUT(init_ts, END_LIST); 

          SAVE(NONE); 

          receive = WAIT_SIGNAL(); 

          if (receive == init_ts) 

          { 

            GET_SIGNAL_DATA(&tank_nr); 

            varme_av(tank_nr); 

            kran_av(tank_nr); 

            current_state = venter_paa_tom; 

          } 

        } 

        break; 

      default: 

        break; 

    } 

  } 

} 

 

void varme_av(natural tank_nr) 

{ 

  switch (tank_nr)  

   { 

        case 1  : lamper &= ~varme_1; break; 

        case 2  : lamper &= ~varme_2; break; 

   } 

   OUTPUT(LED_WRITE, ENV, &lamper); 

} 

 

void varme_paa(natural tank_nr) 

{ 

  switch (tank_nr)  

   { 

        case 1  : lamper |= varme_1; break; 

        case 2  : lamper |= varme_2; break; 

   }  

   OUTPUT(LED_WRITE, ENV, &lamper); 

} 

 

void kran_av(natural tank_nr) 

{ 



Code Generation from Cinderella-SDL to Embedded Platforms 

Leiming Chen  ©May 2007 70 

  switch (tank_nr)  

   { 

        case 1  : lamper &= ~kran_1; break; 

        case 2  : lamper &= ~kran_2; break; 

   } 

   OUTPUT(LED_WRITE, ENV, &lamper); 

} 

 

void kran_paa(natural tank_nr) 

{ 

  switch (tank_nr)  

   { 

        case 1  : lamper |= varme_1; break; 

        case 2  : lamper |= varme_2; break; 

   }  

   OUTPUT(LED_WRITE, ENV, &lamper); 

} 

//**************tankstyring process end*************** 

//**************tanker_system block end************** 

tanker.h 

#ifndef tanker_h 

#define tanker_h 

 

#define initialisator_pri 5 

#define initialisator_size 100 

#define sensormonitor_pri 5 

#define sensormonitor_size 100 

#define tankstyring_pri 5 

#define tankstyring_size 100 

#define timer_standard 1000 

#endif 

 

 

 


