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This paper presents an unknown input Proportional Multiple-Integral Observer (PIO) for synchronization of chaotic systems
based on Takagi-Sugeno (TS) fuzzy chaotic models subject to unmeasurable decision variables and unknown input. In a secure
communication configuration, this unknown input is regarded as a message encoded in the chaotic system and recovered by the
proposed PIO. Both states and outputs of the fuzzy chaotic models are subject to polynomial unknown input with kth derivative
zero. Using Lyapunov stability theory, sufficient design conditions for synchronization are proposed. The PIO gains matrices are
obtained by resolving linear matrix inequalities (LMIs) constraints. Simulation results show through two TS fuzzy chaotic models
the validity of the proposed method.

1. Introduction

It is well known that the chaotic systems have a complex
dynamical behavior and their fundamental characteristic
is the chaos. The chaotic systems are highly sensitive to
parameters variation and to initial conditions because the
chaos is a source of oscillation and instability. Moreover, in
the long term the behavior of the chaotic systems becomes
difficult to predict which can lead systems to instability
and undesirable performance [1]. On the other hand, the
chaotic systems constitute a good platform to investigate
the nonstandard control problems including synchronization
and stabilization.

Since Pecora and Carroll [2, 3] have introduced in 1990
the concept of chaotic synchronization between two chaotic
dynamical systems based on the Lorenz’s chaotic system
[4], the synchronization and control of chaotic systems
attract more and more attention from various disciplines.
A great deal of chaos applications have been developed in
engineering fields such as secure communication, physical

systems, system identification, and biological systems; see, for
example, [5–10].

Recently, a particular attention has been paid to the syn-
chronization and control problems for dynamical networks
due to their extensive application in fields of science and
engineering (see, e.g., [11–13]). In [11] the authors propose
a novel concept of bounded H

∞
synchronization and state

estimation to handle the time-varying nature of an array
stochastic complex network in discrete-time domain over a
finite horizon. The synchronization problem in [12] is con-
sidered for a new class of continuous-time neural networks
of neutral type with parameters, discrete-time delays, and
unbounded distributed time delays being all dependent on
the Markovian jumping mode. The sampled-data synchro-
nization control scheme in [13] is studied for a class of dynam-
ical networks with stochastic sampling. In the formwork of
state estimation, fault detection, and filtering for a class of
nonlinear systems with sensor networks, we can mention
the works of [14–17]. Indeed, in [14] the finite-horizon



2 Abstract and Applied Analysis

distributed H
∞

state estimator design scheme is proposed
for a class of discrete time-varying nonlinear systems with
both stochastic parameters and stochastic nonlinearities.The
problem of designing the distributed H

∞
filters in [15] is

considered for a class of polynomial nonlinear stochastic
systems which are represented in a state-dependent linear-
like form. The distributed finite-horizon filter is proposed in
[16] for a class of time-varying systems subject to randomly
varying nonlinearities over lossy sensor networks that involve
both the quantization errors and successive packet dropouts.
The robust fuzzy fault detection filter in [17] is designed
for a class of uncertain discrete-time Takagi-Sugeno fuzzy
systems with successive packet dropouts which involve both
the stochastic multiple time-varying discrete delays and the
infinite distributed delays.

Differentmethods and techniques for chaos synchroniza-
tion and control have been investigated including impul-
sive control [18], feedback control [19], adaptive control
[20], lag synchronization [21], sliding mode control [22],
and fuzzy control [23]. Particularly, in the chaotic secure
communication problems, some messages can be masked
efficiently and securely [24] by chaotic signals since the
chaos has the characteristic of broadband like a noise and is
consequently difficult to predict. The message in the secure
communications which is recovered by the response system
should synchronize with the drive system [25]. In framework
of a secure communication, many approaches have been
addressed such as chaos modulation [26], chaos shift key
[27], and chaos masking [28]. Among different methods
of synchronization and control for chaotic systems, the TS
fuzzy systems have received much attention from various
researches fields since the pioneering work of Takagi and
Sugeno (TS) [29]. Indeed, TS fuzzy model can approximate
a highly nonlinear analytical relation of chaotic system by
fuzzy IF-THEN rules where the implications describe local
dynamics as linear models. Then, the nonlinear behavior of
the chaotic system can exactly be obtained as an aggregation
of local linear models with nonlinear activation functions.
TS fuzzy models are widely used as a tool of analysis and
design of synchronization and control schemes because of
the mathematical analysis simplicity of their simple structure
with local dynamics, for example, [30–32].

Since because of, many practical control problems the
states are partially or fully unavailable, the state observer
methods can be used to estimate the measurements of
unavailable or failed sensors. For this reason, it is important
to design the observers for state estimation. In relation to that
state estimation observers there are many works to that deal
with stability analysis and stabilization of TS fuzzy models by
applying Lyapunov theory and derive stability conditions in
terms linear matrix inequalities constraints [33]; of among
this works we can mention the results developed in [34];
When the decision variable is chosen as unmeasurable or
unavailable state in activation functions, for example, in [35],
the robust observer is designed for unknown inputs TS fuzzy
models. Recently, in secure communication field the design
problem of unknown input observer has been investigated
in [36–39]. The authors propose in [36] a new secured
transmission scheme based on smooth adaptive unknown

input observers for chaotic synchronization and robust to
channel noise. The unknown input observer in [37] is
presented with unknown constant disturbance of parameters
and unknown input to be recovered as messages in the
master-slave configuration. The robust adaptive high-gain
fuzzy observer is designed in [32] for chaotic systems where
their parameters are assumed unknown and their states
unavailable. The author deals with, in [38], the unknown
input observer design for fuzzy systems with application to
chaotic system reconstruction within both domains, contin-
uous and discrete time, where the sufficient conditions have
been derived in terms of linear matrix inequality constraints
by using Lyapunov stability theory. Then, in [38, 39] the pole
assignment in a LMI region is considered in order to improve
the observer performance.

In the context of the unmeasurable decision variable,
the synchronization problem for chaotic systems character-
ized by TS fuzzy models was not addressed by the above
works. Our main contribution in this paper is to develop
a synchronization procedure which takes into account the
unmeasurable decision variables. The effects due to unmea-
surable decision variable and the unknown input on the
overall synchronization system (chaotic system andobserver)
are compensated with additional parameter. In addition, in
the present study the estimation of the unknown input as a
message to be reconstructed within a secure communication
concept is considered.

In the framework of a secure communication, the design
of unknown input PIO is addressed in this work for two
chaotic systems, Lorenz’ system and Rossler’s system, charac-
terized by chaotic TS fuzzy models. These models are subject
to unmeasurable decision variable and polynomial unknown
input where its 𝑘th derivative is zero. The proposed PIO
estimates both the states of the considered chaotic systems
and the polynomial unknown input. This latter is considered
as a message to encode by the chaotic system and then to
reconstruct it by the PIO. Furthermore, the integral action
included in the observer structure contributes to reduce the
results conservatism due to quadratic function. Indeed, this
parameter allows introducing an additional degree of free-
dom to be determined. By utilizing Lyapunov stability theory,
sufficient conditions are derived to design the polynomial
unknown input PIO. Then, the PIO gains parameters are
resolved in terms of linear matrix inequalities constraints.
Moreover, when the decision variables are measurable we
also discuss this particular case in our work. Finally, we
present simulation results to illustrate the effectiveness of the
proposed approach of synchronization and reconstruction.

The rest of this paper is organized as follows. In Section 2,
the considered unknown input TS fuzzy model structure is
described. This unknown input affects both the dynamics
of the TS fuzzy model and the output signal. The unknown
input PIO is designed in Section 3. In Section 4, simulation
results for two chaotic systems, Lorenz’ system and Rossler’s
system, are given. An unknown input, assumed as a message
to be received in a secure communication configuration,
is perfectly reconstructed. Finally, a conclusion and further
works end this paper.
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2. Unknown Input TS Fuzzy Model Structure

The TS fuzzy model subject to unknown input is considered
as follow:

�̇� (𝑡) =

𝑟

∑

𝑖=1

𝜇
𝑖
(𝑥) (𝐴

𝑖
𝑥 (𝑡) + 𝐵

𝑖
𝑢 (𝑡) + 𝑑

𝑖
+ 𝐹
𝑖
V (𝑡)) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) + 𝐹V (𝑡) ,

(1)

where 𝑥(𝑡) ∈ 𝑅
𝑛 represents the state vector, 𝑢(𝑡) ∈ 𝑅

𝑛
𝑢

corresponds to known input vector, V(𝑡) ∈ 𝑅
𝑛V shows the

unknown input, and 𝑦(𝑡) ∈ 𝑅
𝑛
𝑦 is the output vector. 𝐴

𝑖
∈

𝑅
𝑛×𝑛 are the state matrices, 𝐵

𝑖
∈ 𝑅
𝑛×𝑛
𝑢 are the input matrices,

𝑑
𝑖
∈ 𝑅
𝑛 is a vector system dependent, 𝐹

𝑖
∈ 𝑅
𝑛×𝑛V and 𝐹 ∈

𝑅
𝑛
𝑦
×𝑛V are the unknown input matrices, and 𝐶 ∈ 𝑅𝑛𝑦×𝑛 is the

output matrix. The activation functions 𝜇
𝑖
(𝑥) depend on the

state 𝑥(𝑡) of the system and satisfy the following conditions:
𝑟

∑

𝑖=1

𝜇
𝑖
(𝑥) = 1, ∀𝑡 ≥ 0,

0 ≤ 𝜇
𝑖
(𝑥) ≤ 1, ∀𝑖 ∈ {1, . . . , 𝑟} ,

(2)

where 𝑟 is the number of local models.

Hypothesis 1. Unknown input V(𝑡) has a polynomial form of
𝑘 − 1 degree in time whose 𝑘th derivative is equal to zero.

Let the following notations be introduced:
V̇ (𝑡) = V

1
(𝑡) ,

V̇
1
(𝑡) = V

2
(𝑡) ,

...

V̇
𝑘−1
(𝑡) = V

𝑘
(𝑡) ,

V
𝑘
(𝑡) = 0.

(3)

Note that the polynomial form allows considering a wide
variety of unknown inputs.

3. Unknown Input Proportional
Multiple-Integral Observer Design

The unknown input PIO is considered as follow:

̇̂𝑥 (𝑡) =

𝑟

∑

𝑖=1

𝜇
𝑖
(𝑥) (𝐴

𝑖
𝑥 (𝑡) + 𝐵

𝑖
𝑢 (𝑡) + 𝑑

𝑖
+ 𝐹
𝑖
V̂ (𝑡)

+ 𝐾
𝑃𝑖
(𝑦 (𝑡) − 𝑦 (𝑡))) + 𝑧

𝑥
(𝑡) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) + 𝐹V̂ (𝑡) ,

̇̂V (𝑡) =
𝑟

∑

𝑖=1

𝜇
𝑖
(𝑥)𝐾
𝐼𝑖
(𝑦 (𝑡) − 𝑦 (𝑡)) + V̂

1
(𝑡) + 𝑧V (𝑡) ,

̇̂V
𝑗
(𝑡) =

𝑟

∑

𝑖=1

𝜇
𝑖
(𝑥)𝐾
𝑗

𝐼𝑖
(𝑦 (𝑡) − 𝑦 (𝑡)) + V̂

𝑗+1
(𝑡)

+ 𝑧V𝑗 (𝑡) , for 𝑗: 1, . . . , 𝑘 − 1

if 𝑗 = 𝑘 − 1, V̂
𝑗+1
(𝑡) = 0,

(4)

where𝐾
𝑃𝑖
∈ 𝑅
𝑛×𝑛
𝑦 ,𝐾
𝐼𝑖
∈ 𝑅
𝑛V×𝑛𝑦 , and𝐾𝑗

𝐼𝑖
∈ 𝑅
𝑛V×𝑛𝑦 correspond

to proportional and integral gains, respectively. Due the effect
of the unmeasurable decision variables, the variables 𝑧

𝑥
(𝑡),

𝑧V(𝑡), and 𝑧V𝑗(𝑡) are introduced in the PIO.
According to Hypothesis 1, TS fuzzy model (1) and

unknown input PIO (4) can be rewritten, respectively, as
follow:

�̇�
𝑎
(𝑡) =

𝑟

∑

𝑖=1

𝜇
𝑖
(𝑥) (𝐴

𝑖
𝑥
𝑎
(𝑡) + 𝐵

𝑖
𝑢 (𝑡) + 𝑑

𝑖
) ,

𝑦 (𝑡) = 𝐶𝑥
𝑎
(𝑡) ,

(5)

̇̂𝑥
𝑎
(𝑡) =

𝑟

∑

𝑖=1

𝜇
𝑖
(𝑥) (𝐴

𝑖
𝑥
𝑎
(𝑡) + 𝐵

𝑖
𝑢 (𝑡) + 𝑑

𝑖
+ 𝐾
𝑖
(𝑦 (𝑡) − 𝑦 (𝑡)))

+ 𝑧 (𝑡) ,

𝑦 (𝑡) = 𝐶𝑥
𝑎
(𝑡) ,

(6)

where

𝑥
𝑎
(𝑡) =

[
[
[
[
[

[

𝑥 (𝑡)

V (𝑡)
V
1
(𝑡)

⋅ ⋅ ⋅

V
𝑘−1
(𝑡)

]
]
]
]
]

]

, 𝑥
𝑎
(𝑡) =

[
[
[
[
[

[

𝑥 (𝑡)

V̂ (𝑡)
V̂
1
(𝑡)

⋅ ⋅ ⋅

V̂
𝑘−1
(𝑡)

]
]
]
]
]

]

,

𝑧 (𝑡) =

[
[
[
[
[

[

𝑧
𝑥
(𝑡)

𝑧V (𝑡)

𝑧V1 (𝑡)

⋅ ⋅ ⋅

𝑧V𝑘−1 (𝑡)

]
]
]
]
]

]

(7a)

with

𝑒
𝑎
(𝑡) = 𝑥

𝑎
(𝑡) − 𝑥

𝑎
(𝑡) , 𝑒

𝑎𝑦
= 𝑦 (𝑡) − 𝑦 (𝑡) , (7b)

𝐴
𝑖
=

[
[
[
[
[

[

𝐴
𝑖
𝐹
𝑖
0 0 ⋅ ⋅ ⋅ 0

0 0 𝐼
𝑛V

0 ⋅ ⋅ ⋅ 0

0 0 0 𝐼
𝑛V
⋅ ⋅ ⋅ 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝐼
𝑛V

0 0 0 0 0 0

]
]
]
]
]

]

,

𝐵
𝑖
=

[
[
[
[
[

[

𝐵
𝑖

0

0

⋅ ⋅ ⋅

0

]
]
]
]
]

]

, 𝑑
𝑖
=

[
[
[
[
[

[

𝑑
𝑖

0

0

⋅ ⋅ ⋅

0

]
]
]
]
]

]

,

𝐾
𝑖
=

[
[
[
[
[

[

𝐾
𝑃𝑖

𝐾
𝐼𝑖

𝐾
1

𝐼𝑖

⋅ ⋅ ⋅

𝐾
𝑘−1

𝐼𝑖

]
]
]
]
]

]

, 𝐶 = [𝐶 𝐹 0 ⋅ ⋅ ⋅ 0 ] ,

(7c)

where 𝐼
𝑛V
is an identity matrix.
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3.1. Unmeasurable Decision Varaiables. The dynamic error
𝑒
𝑎
(𝑡) of state estimation is given by

̇𝑒
𝑎
(𝑡) =

𝑟

∑

𝑖=1

𝜇
𝑖
(𝑥)A

𝑖
𝑒
𝑎
(𝑡) + Δ𝐴𝑥

𝑎
(𝑡) + Δ𝐵𝑢 (𝑡) + Δ𝑑 − 𝑧 (𝑡) ,

(8)

where

A
𝑖
= 𝐴
𝑖
− 𝐾
𝑖
𝐶, Δ𝐴 =

𝑟

∑

𝑖=1

𝜇
𝑖
𝐴
𝑖
, Δ𝐵 =

𝑟

∑

𝑖=1

𝜇
𝑖
𝐵
𝑖
,

Δ𝑑 =

𝑟

∑

𝑖=1

𝜇
𝑖
𝑑
𝑖
, 𝜇

𝑖
= 𝜇
𝑖
(𝑥) − 𝜇

𝑖
(𝑥) .

(9)

Remark 1. Since the activation functions satisfy the convex
sum property, we can write −1 < 𝜇

𝑖
< 1, and the

variables matricesΔ𝐴,Δ𝐵,Δ𝑑 are bounded and the following
conditions hold:


Δ𝐴

≤ 𝛿
1
, 𝛿

1
=

𝑟

∑

𝑖=1

𝛿
1𝑖
,


Δ𝐵

≤ 𝛿
2
,

𝛿
2
=

𝑟

∑

𝑖=1

𝛿
2𝑖
,


Δ𝑑

≤ 𝛿
3
, 𝛿

3
=

𝑟

∑

𝑖=1

𝛿
3𝑖

(10)

with 𝛿
1𝑖
> 0, 𝛿

2𝑖
> 0 and 𝛿

3𝑖
> 0, are the Euclidian norms of

𝐴
𝑖
, 𝐵
𝑖
, and 𝑑

𝑖
, respectively.

Theorem 2. The dynamic error (8) is asymptotically stable if
there exist a common positive definite matrix 𝑃 = 𝑃𝑇, matrices
𝑀
𝑖
and the positive scalars 𝛼 and 𝛼

0
, for all 𝑖 ∈ {1, . . . , 𝑟}, such

that:

[
𝑃𝐴
𝑖
+ 𝐴
𝑇

𝑖
𝑃 −𝑀

𝑖
𝐶 − 𝐶

𝑇

𝑀
𝑖

𝑇

+ 𝛼
0
𝛿
2

1
𝐼 𝑃

𝑃 −𝛼𝐼
] < 0, (11a)

where thematrices and parameters𝐴
𝑖
,𝐶, 𝛿
1
are defined in (7c),

and (10), respectively.
The parameters of unknown input PIO (4) are obtained by

𝐾
𝑖
= 𝑃
−1

𝑀
𝑖
, (11b)

𝑧 = 0, if 𝑒𝑎𝑦

< 𝜀,

𝑧 = 𝜎
1
𝛿
2

1

𝑥
𝑇

𝑎
𝑥
𝑎

2𝑒𝑇
𝑎𝑦
𝑒
𝑎𝑦

𝑃
−1

𝐶
𝑇

𝑒
𝑎𝑦
+ 𝜎
2
𝛿
2

2

𝑢
𝑇

𝑢

2𝑒𝑇
𝑎𝑦
𝑒
𝑎𝑦

𝑃
−1

𝐶
𝑇

𝑒
𝑎𝑦

+ 𝜎
3
𝛿
2

3

1

2𝑒𝑇
𝑎𝑦
𝑒
𝑎𝑦

𝑃
−1

𝐶
𝑇

𝑒
𝑎𝑦
, if 𝑒𝑎𝑦


≥ 𝜀

(11c)

with variables 𝑥
𝑎
, 𝑧, 𝑒

𝑎𝑦
and the parameters 𝛿

2
, 𝛿
3
are

described in (7a), (7b), (10), respectively, and 𝜎
1
= (𝛼
0
/𝜆),

𝜎
2
= ((𝛼𝛼

0
𝜆
3
)/(𝛼(𝛼

0
+ 𝜆
3
(1 + 𝜆)) − 𝛼

0
𝜆
3
)), 𝜎
3
= 𝜆
3
where

𝜆, 𝜆
3
are positive scalars arbitrarily fixed and 𝜀 is a very small

positive threshold.

Proof. The proposed quadratic function of Lyapunov is
𝑉(𝑡) = 𝑒

𝑇

𝑎
(𝑡)𝑃𝑒
𝑎
(𝑡) with 𝑃 = 𝑃𝑇 > 0. The conditions ((11a),

(11b), and (11c)) guarantee the asymptotic stability of the
dynamic error of state estimation (8). The proof is partially
given in the appendix and for more details see [40].

3.2. Measurable Decision Variables Case. The design of
unknown input PIO with measurable decision variables
represents the particular case of our study developed in this
section. In this condition the unknown input PIO is as follow:

̇̂𝑥 (𝑡) =

𝑟

∑

𝑖=1

𝜇
𝑖
(𝑥) (𝐴

𝑖
𝑥 (𝑡) + 𝐵

𝑖
𝑢 (𝑡) + 𝑑

𝑖
+ 𝐹
𝑖
V̂ (𝑡)

+𝐾
𝑃𝑖
(𝑦 (𝑡) − 𝑦 (𝑡))) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) + 𝐹V̂ (𝑡) ,

̇̂V (𝑡) =
𝑟

∑

𝑖=1

𝜇
𝑖
(𝑥)𝐾
𝐼𝑖
(𝑦 (𝑡) − 𝑦 (𝑡)) + V̂

1
(𝑡) ,

̇̂V
𝑗
(𝑡) =

𝑟

∑

𝑖=1

𝜇
𝑖
(𝑥)𝐾
𝑗

𝐼𝑖
(𝑦 (𝑡) − 𝑦 (𝑡)) + V̂

𝑗+1
(𝑡) ,

for 𝑗 : 1, . . . , 𝑘 − 1

if 𝑗 = 𝑘 − 1, V̂
𝑗+1
(𝑡) = 0,

(12)

where all variables andmatrices are defined in relations ((7a),
(7b), and (7c)), and the activation functions 𝜇

𝑖
(𝑥) depend on

the measurable states.
The dynamics of the augmented state estimation error

𝑒
𝑎
(𝑡) between the TS fuzzy model (1) and PIO (12) becomes

̇𝑒
𝑎
(𝑡) =

𝑟

∑

𝑖=1

𝜇
𝑖
(𝑥) (𝐴

𝑖
− 𝐾
𝑖
𝐶) 𝑒
𝑎
(𝑡) . (13)

Theorem 3. The dynamic error (13) is asymptotically stable if
there exist a symmetric matrix 𝑄 > 0 and matrices 𝑁

𝑖
such

that the following conditions hold, for all 𝑖 ∈ {1, . . . , 𝑟}:

𝑄𝐴
𝑖
+ 𝐴
𝑇

𝑖
𝑄 −𝑁

𝑖
𝐶 − 𝐶

𝑇

𝑁
𝑖

𝑇

< 0. (14a)

The parameters of the unknown input PIO (12) are given by:

𝐾
𝑖
= 𝑄
−1

𝑁
𝑖
. (14b)

Proof. Consider the Lyapunov quadratic function 𝑉(𝑡) =

𝑒
𝑇

𝑎
(𝑡)𝑄𝑒
𝑎
(𝑡), where 𝑄 = 𝑄

𝑇

> 0. The time derivative of 𝑉(𝑡)
allows writing

�̇� =

𝑟

∑

𝑖=1

𝜇
𝑖
(𝑥) 𝑒
𝑇

𝑎
((𝐴
𝑖
− 𝐾
𝑖
𝐶)
𝑇

𝑄 + 𝑄(𝐴
𝑖
− 𝐾
𝑖
𝐶)
𝑖
) 𝑒
𝑎
. (15)

The stability condition �̇�(𝑡) < 0 is satisfied if

(𝐴
𝑖
− 𝐾
𝑖
𝐶)
𝑇

𝑄 + 𝑄(𝐴
𝑖
− 𝐾
𝑖
𝐶)
𝑖
< 0; (16)

with variables change𝑁
𝑖
= 𝑄𝐾

𝑖
; we obtain the linear matrix

inequalities ((14a) and (14b)). The proof is completed.
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Figure 1: Chaotic behavior of Lorenz fuzzy system.

The unknown input PIO gains 𝐾
𝑖
= 𝑄
−1

𝑁
𝑖
are deter-

mined by resolving these constraints. In the following section,
a simulation example is given through two chaotic systems in
order to validate this proposed approach.

4. Simulation Examples

Two chaotic systems are characterized by TS fuzzy mod-
els with unmeasurable decision variables and subjected to
unknown input. In a secure communication concept, the
unknown input is assumed as a message to be recovered
in the PIO after being encoded in the chaotic system by
means of public transmission canal.These chaotic systems are
used to show the good simultaneous reconstruction of states
and message by the proposed unknown input PIO. The first
nonlinear model is the Lorenz’s system [41], and the second
is the fourth Rossler’s system [21].

4.1. Lorenz Chaotic System. TheLorenz chaotic system [38] is
represented by following the dynamic equations:

�̇�
1
= −10𝑥

1
+ 10𝑥

2
,

�̇�
2
= 28𝑥

1
− 𝑥
2
− 𝑥
1
𝑥
3
,

�̇�
3
= 𝑥
1
𝑥
2
−
8

3
𝑥
3
.

(17)

4.1.1. TS Fuzzy Model. The Lorenz’s system can be exactly
represented by TS fuzzy model with the decision variable
𝑥
1
(𝑡) ∈ [−30, 30] as follow [42]:

Rule 1: 𝑥
1
(𝑡) is 𝜇

1
(𝑥
1
(𝑡)), THEN �̇�(𝑡) = 𝐴

1
𝑥(𝑡),

Rule 2: 𝑥
2
(𝑡) is 𝜇

2
(𝑥
1
(𝑡)), THEN �̇�(𝑡) = 𝐴

2
𝑥(𝑡),

where 𝑥(𝑡) = [𝑥
1
(𝑡), 𝑥
2
(𝑡), 𝑥
3
(𝑡)], 𝜇

1
(𝑥
1
(𝑡)) = (30 + 𝑥

1
(𝑡))/60,

𝜇
2
(𝑥
1
(𝑡)) = (30 − 𝑥

1
(𝑡))/60, and

𝐴
1
=
[
[

[

−10 10 0

28 −1 −30

0 30
−8

3

]
]

]

, 𝐴
2
=
[
[

[

−10 10 0

28 −1 30

0 −30
−8

3

]
]

]

. (18)
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Figure 2: The unknown input and its estimated.

Table 1

𝜆 = 2 × 10
3

𝛼 = 5.505 × 10
4

𝛼
0
= 0.001

𝑖 1 2

𝐾
𝑝𝑖

[
[
[

[

−11.471 12.445

−22.084 10.838

−94.350 96.029

]
]
]

]

[
[
[

[

−11.057 11.926

02.100 11.650

97.909 −96.239

]
]
]

]

𝐾
𝐼𝑖

[15.123 03.344] [21.570 −03.137]

𝐾
1

𝐼𝑖
[83.889 −02.802] [79.394 01.612]

The Lorenz chaotic attractor is given in Figure 1.
The TS fuzzy model of the Lorenz chaotic system (17) is

�̇� (𝑡) =

2

∑

𝑖=1

𝜇
𝑖
(𝑥) (𝐴

𝑖
𝑥 (𝑡) + 𝐸

𝑖
V (𝑡)) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) + 𝐸V (𝑡) ,

(19)

with 𝐵
1
= 𝐵
2
= [
0

0

0

], 𝐸
1
= [
1

1

1

], 𝐸
2
= [
1

0.5

1

], 𝐸 = [ 1
1
], 𝐶 =

[ 0 0 1
0 1 1

].
The unknown input V(𝑡) is assumed as a message to be

recovered by the unknown input PIO (4).This observer plays
the role of decoder and the chaotic system the encoder within
a secure communication configuration.

4.1.2. Unknown Input PIO. Theunknown input PIO gains are
determined by resolving the LMIs constraints ((11a), (11b),
and (11c)) of Theorem 2:

𝐾
𝑖
= [𝐾
𝑇

𝑃𝑖
𝐾
𝑇

𝐼𝑖
𝐾
1𝑇

𝐼𝑖
]
𝑇

, 𝑍 = [𝑍
𝑇

𝑥
𝑍
𝑇

V 𝑍
𝑇

V1]
𝑇

. (20)

The unknown input PIO gains are given by Table 1.
The unknown input is assumed as a message to be

encoded by chaotic system with the second derivative being
zero, shown in Figure 2. The simulation results are obtained
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Figure 3: (a) The state 𝑥
1
(𝑡) and its estimated 𝑥

1
(𝑡). (b) The state 𝑥

2
(𝑡) and its estimated 𝑥

2
(𝑡). (c) The state 𝑥

3
(𝑡) and its estimated 𝑥

3
(𝑡).

with the initial conditions 𝑥
0
= [1 1 1] 𝑥

0
= [0 0 0] and

with 𝜀 = 10−3.
The unknown input and the estimated one are given in

Figure 2. Excepted around the time origin, we obtained a
good reconstruction of the unknown input. Figures 3(a), 3(b),
and 3(c) show the states 𝑥

1
(𝑡), 𝑥
2
(𝑡), and 𝑥

3
(𝑡) and their

estimated 𝑥
1
(𝑡), 𝑥
2
(𝑡), and 𝑥

3
(𝑡), respectively.

The dynamic errors of the states estimation are given
in Figure 4. The obtained simulation results show the good
reconstruction of the states and the unknown input.

Remark 4. Note that applying Theorem 3 instead of
Theorem 2 for this example leads to bad estimation. The
simulation results for this example, carried out with the
same initial conditions: 𝑥

0
= [1 1 1] and 𝑥

0
= [0 0 0],

are shown in Figure 5. Indeed, we see clearly that the best
estimation (Figure 6) is given by Theorem 2 (dashed line)
which takes into account the estimation of decision variables.

4.2. Fourth Rossler Chaotic System. The fourth Rossler
chaotic system [21] is represented by the following dynamic
equations:

�̇�
1
= −𝑥
2
− 𝑥
3
,

�̇�
2
= 𝑥
1
+ 0,254𝑥

2
+ 𝑥
4
,

�̇�
3
= 𝑥
1
𝑥
3
+ 3,

�̇�
4
= −0,5𝑥

3
+ 0,05𝑥

4
.

(21)

4.2.1. TS Fuzzy Model. The fourth Rossler’s system can be
exactly described by TS fuzzy model with the decision
variable 𝑥

1
(𝑡) ∈ [−80, 20] as follow [42]:

Rule 1: 𝑥
1
(𝑡) is 𝜇

1
(𝑥
1
(𝑡)), THEN �̇�(𝑡) = 𝐴

1
𝑥(𝑡) + 𝑑

1
,

Rule 2: 𝑥
2
(𝑡) is 𝜇

2
(𝑥
1
(𝑡)), THEN �̇�(𝑡) = 𝐴

2
𝑥(𝑡) + 𝑑

2
,
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Figure 4: The errors between states and their estimated.
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Figure 5: The errors between unknown input and its estimated.
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Figure 6: The zoom on the errors between unknown input and its
estimated.

Table 2

𝜆 = 3 × 10
3

𝛼 = 6.243 × 10
5

𝛼
0
= 6.467 × 10

−5

𝑖 1 2

𝐾
𝑝𝑖

[
[
[
[
[
[

[

011.018 001.805

−000.343 001.344

−078.779

011.208

109.443

005.138

]
]
]
]
]
]

]

[
[
[
[
[
[

[

020.387 −026.055

004.339 −013.805

166.122

028.076

−242.987

−045.031

]
]
]
]
]
]

]

𝐾
𝐼𝑖

[052.544 −006.911] [030.739 058.089]

𝐾
1

𝐼𝑖
[097.452 −008.136] [066.736 083.503]

𝐾
2

𝐼𝑖
[091.450 −008.807] [058.600 089.165]

𝐾
3

𝐼𝑖
[034.284 −001.174] [027.830 018.118]

where 𝑥(𝑡) = [𝑥
1
(𝑡), 𝑥
2
(𝑡), 𝑥
3
(𝑡), 𝑥
4
(𝑡)], 𝜇

1
(𝑥
1
(𝑡)) = (80 +

𝑥
1
(𝑡))/100, 𝜇

2
(𝑥
1
(𝑡)) = (20 − 𝑥

1
(𝑡))/100, and

𝐴
1
=
[
[
[

[

0 −1 −1 0

1 0.25 0 1

0 0 20 0

0 0 −0.5 0.05

]
]
]

]

,

𝐴
2
=
[
[
[

[

0 −1 −1 0

1 0.25 0 1

0 0 −80 0

0 0 −0.5 0.05

]
]
]

]

,

𝑑
1
= 𝑑
2
=
[
[
[

[

0

0

3

0

]
]
]

]

.

(22)

The fourth Rossler chaotic attractor is given in Figure 7.
The TS fuzzy model of the fourth Rossler system (21) is

�̇� (𝑡) =

2

∑

𝑖=1

𝜇
𝑖
(𝑥) (𝐴

𝑖
𝑥 (𝑡) + 𝐸

𝑖
V (𝑡) + 𝑑

𝑖
) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) + 𝐸V (𝑡)

(23)

with 𝐵
1
= 𝐵
2
= [

0

0

0

0

], 𝐸
1
= [

1

1

1

1

], 𝐸
2
= [

1

0.5

1

1

], 𝐸 = [ 1
1
],

𝐶 = [ 0 1 0 1
0 0 1 0

].
The unknown input V(𝑡) is assumed as a message to be

encoded by the TS fuzzy model (23).

4.2.2. Unknown Input PIO. The unknown PIO gains are
obtained by resolving the LMIs constraints ((11a), (11b), and
(11c)) of Theorem 3:

𝐾
𝑖
= [𝐾
𝑇

𝑃𝑖
𝐾
𝑇

𝐼𝑖
𝐾
1𝑇

𝐼𝑖
𝐾
2𝑇

𝐼𝑖
𝐾
3𝑇

𝐼𝑖
]
𝑇

,

𝑍 = [𝑍
𝑇

𝑥
𝑍
𝑇

V 𝑍
𝑇

V1 𝑍
𝑇

V2 𝑍
𝑇

V3]
𝑇

.

(24)

The unknown PIO gains are given by Table 2.
The unknown input is assumed as a message to be

encoded by chaotic system. The best results are obtained
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Figure 7: (a) Chaotic behavior 𝑥
4
(𝑥
1
(𝑡), 𝑥
2
(𝑡)) of fourth Rossler fuzzy system. (b) Chaotic behavior 𝑥

4
(𝑥
1
(𝑡), 𝑥
3
(𝑡)) of fourth Rossler fuzzy

system. (c) Chaotic behavior 𝑥
4
(𝑥
2
(𝑡), 𝑥
3
(𝑡)) of fourth Rossler fuzzy system. (d) Chaotic behavior 𝑥

3
(𝑥
1
(𝑡), 𝑥
2
(𝑡)) of fourth Rossler fuzzy

system.
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Figure 8: The unknown input and its estimated.

with the fourth derivative being zero, shown in Figure 8. The
simulation results are obtained with the initial conditions
𝑥
0
= [0 0 0 30] and 𝑥

0
= [1 1 1 29] and with 𝜀 = 10−3.

The unknown input and the estimated one are given in
Figure 8. Excepted around the time origin, we got a good
reconstruction of the unknown input. Figures 9(a), 9(b), 9(c)
and 9(d) represent the states 𝑥

1
(𝑡), 𝑥
2
(𝑡), 𝑥
3
(𝑡), and 𝑥

4
(𝑡) and

their estimated 𝑥
1
(𝑡), 𝑥
2
(𝑡), 𝑥
3
(𝑡), and 𝑥

4
(𝑡), respectively.

The dynamic errors of the states estimation are repre-
sented in Figure 10.The obtained simulation results show the
good estimation of the states and the unknown input.

5. Conclusion

In this paper, we have addressed the synchronization and
reconstruction problem for chaotic systems. The TS fuzzy
models subjected to unmeasurable decision variables and
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Figure 9: (a) The state 𝑥
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(𝑡) and its estimated 𝑥

1
(𝑡). (b) The state 𝑥
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Figure 10: The errors between states and their estimated.

unknown inputs are employed to exactly describe the behav-
ior of two chaotic systems, Lorenz’s system and Rossler’s
system. Based on Lyapunov theory and LMI formulation, an
unknown input proportional integral observer to achieve the
synchronization and the unknown input reconstruction is
designed. To take into account a wide variety of unknown
inputs, a polynomial form with 𝑘th derivative zero is con-
sidered. Moreover, both the measurable and unmeasurable
decision variables cases are studied. Simulation results are
given to verify the effectiveness of the proposed method by
reconstructing both states and unknown inputs. In the secure
communication field, the proposed polynomial unknown
input PIO with unmeasurable decision variables presents a
good synchronization technique and messages recovering.

Motivated by the given results, the problem of diagnosis
and fault tolerant control for more complex systems will be
considered. Moreover, to reduce the conservatism due to the
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quadratic approach, nonquadratic Lyapunov functions will
be introduced in our further research.

Appendix

By using the quadratic Lyapunov function𝑉(𝑡) = 𝑒𝑇
𝑎
(𝑡)𝑃𝑒
𝑎
(𝑡)

where 𝑃 = 𝑃𝑇 > 0 and the following lemma.

Lemma A.1. For any matrices X and Y of appropriate dimen-
sions, the following property is satisfied:

𝑋
𝑇

𝑌 + 𝑌
𝑇

𝑋 ≤ 𝜆𝑋
𝑇

𝑋 + 𝜆
−1

𝑌
𝑇

𝑌 with 𝜆 > 0, (A.1)

the time-derivative of 𝑉(𝑡) leads

�̇� ≤

𝑟

∑

𝑖=1

𝜇
𝑖
(𝑥) (𝑒

𝑇

𝑎
(A
𝑇

𝑖
𝑃 + 𝑃A

𝑖
+ 𝛼
0
𝛿
2

1
𝐼 + ∝

−1

𝑃
2

) 𝑒
𝑎
)

+ 𝜎
1
𝛿
2

1
𝑥
𝑇

𝑎
𝑥
𝑎
+ 𝜎
2
𝛿
2

2
𝑢
𝑇

𝑢 + 𝜎
3
𝛿
2

3
𝐼 − 2𝑒

𝑇

𝑎
𝑃𝑧

(A.2)

with

𝛼
0
= 𝜆
1
(1 + 𝜆) , ∝

−1

= (𝜆
−1

1
+ 𝜆
−1

2
+ 𝜆
−1

3
) ,

𝜎
1
= 𝜆
1
(1 + 𝜆

−1

) = (
𝛼
0

𝜆
) ,

𝜎
2
= 𝜆
2
= (

𝛼𝛼
0
𝜆
3

𝛼 (𝛼
0
+ 𝜆
3
(1 + 𝜆)) − 𝛼

0
𝜆
3

) ,

𝜎
3
= 𝜆
3
.

(A.3)

And taking into account (11c) we obtain

2𝑒
𝑇

𝑎
𝑃𝑧 = 2𝑒

𝑇

𝑎
𝑃𝜎
1
𝛿
2

1

𝑥
𝑇

𝑎
𝑥
𝑎

2𝑒𝑇
𝑎𝑦
𝑒
𝑎𝑦

𝑃
−1

𝐶
𝑇

𝑒
𝑎𝑦

+ 2𝑒
𝑇

𝑎
𝑃𝜎
2
𝛿
2

2

𝑢
𝑇

𝑢

2𝑒𝑇
𝑎𝑦
𝑒
𝑎𝑦

𝑃
−1

𝐶
𝑇

𝑒
𝑎𝑦

+ 2𝑒
𝑇

𝑎
𝑃𝜎
3
𝛿
2

3

1

2𝑒𝑇
𝑎𝑦
𝑒
𝑎𝑦

𝑃
−1

𝐶
𝑇

𝑒
𝑎𝑦

= 𝜎
1
𝛿
2

1
𝑥
𝑇

𝑎
𝑥
𝑎
+ 𝜎
2
𝛿
2

2
𝑢
𝑇

𝑢 + 𝜎
3
𝛿
2

3
𝐼.

(A.4)

Then, the relation (A.2) becomes

�̇� ≤

𝑟

∑

𝑖=1

𝜇
𝑖
(𝑥) 𝑒
𝑇

𝑎
(A
𝑇

𝑖
𝑃 + 𝑃A

𝑖
+ 𝛼
0
𝛿
2

1
𝐼 + ∝

−1

𝑃
2

) 𝑒
𝑎
. (A.5)

The condition of stability �̇�(𝑡) < 0 (for all 𝑖 = 1, . . . , 𝑟) is
satisfied if

A
𝑇

𝑖
𝑃 + 𝑃A

𝑖
+ 𝛼
0
𝛿
2

1
𝐼 + ∝

−1

𝑃
2

+ 𝛼
−1

𝑃
2

< 0. (A.6)

The Schur complement of condition (A.6) with variables
given in (9) allows writing the LMI (11a).

References

[1] G. Jiang, G. Chen, and W. K. Tang, “Stabilizing unstable
equilibria of chaotic systems from a state observer approach,”
IEEE Transactions on Circuits and Systems II, vol. 51, no. 6, pp.
281–288, 2004.

[2] L. M. Pecora and T. L. Carroll, “Synchronization in chaotic
systems,” Physical Review Letters, vol. 64, no. 8, pp. 821–824,
1990.

[3] T. L. Carroll and L. M. Pecora, “Synchronizing chaotic circuits,”
IEEE Transactions on Circuits and Systems, vol. 38, no. 4, pp.
453–456, 1991.

[4] E. N. Lorenz, “Deterministic nonperiodic flow,” Journal of the
Atmospheric Sciences, vol. 20, no. 2, pp. 130–141, 1963.

[5] J. Yang, G. Hu, and J. Xiao, “Chaos synchronization in coupled
chaotic oscillators with multiple positive lyapunov exponents,”
Physical Review Letters, vol. 80, no. 3, pp. 496–499, 1998.

[6] S. Boccaletti, C. Grebogi, Y.-C. Lai, H. Mancini, and D. Maza,
“The control of chaos: theory and applications,” Physics Reports,
vol. 329, no. 3, pp. 103–197, 2000.

[7] S. Boccaletti, J. Kurths, G. Osipov, D. L. Valladares, and C.
S. Zhou, “The synchronization of chaotic systems,” Physics
Reports, vol. 366, no. 1-2, pp. 1–101, 2002.

[8] E. M. Shahverdiev, “Synchronization in systems with multiple
time delays,” Physical Review E, vol. 70, no. 6, Article ID 067202,
4 pages, 2004.

[9] J. Xu, L. Min, and G. Chen, “A chaotic communication scheme
based on generalized synchronization and hash functions,”
Chinese Physics Letters, vol. 21, no. 8, pp. 1445–1448, 2004.

[10] J. W. Haefner, Modeling Biological Systems: Principles and
Applications, Springer, New York, NY, USA, 2005.

[11] B. Shen, Z. Wang, and X. Liu, “Bounded 𝐻
∞

synchroniza-
tion and state estimation for discrete time-varying stochastic
complex networks over a finite horizon,” IEEE Transactions on
Neural Networks, vol. 22, no. 1, pp. 145–157, 2011.

[12] Y. Liu, Z. Wang, J. Liang, and X. Liu, “Synchronization of
coupled neutral-type neural networks with jumping-mode-
dependent discrete and unbounded distributed delays,” IEEE
Transactions on Cybernetics, vol. 43, no. 1, pp. 102–114, 2013.

[13] B. Shen, Z. Wang, and X. Liu, “Sampled-data synchronization
control of dynamical networks with stochastic sampling,” IEEE
Transactions on Automatic Control, vol. 57, no. 10, pp. 2644–
2650, 2012.

[14] D. Ding, Z. Wang, H. Dong, and H. Shu, “Distributed 𝐻
∞

state estimation with stochastic parameters and nonlinearities
through sensor networks: the finite-horizon case,” Automatica,
vol. 48, no. 8, pp. 1575–1585, 2012.

[15] B. Shen, Z. Wang, Y. S. Hung, and G. Chesi, “Distributed 𝐻
∞

filtering for polynomial nonlinear stochastic systems in sensor
networks,” IEEE Transactions on Industrial Electronics, vol. 58,
no. 5, pp. 1971–1979, 2011.

[16] H. Dong, Z.Wang, and H. Gao, “Distributed filtering for a class
of time-varying systems over sensor networkswith quantization
errors and successive packet dropouts,” IEEE Transactions on
Signal Processing, vol. 60, no. 6, pp. 3164–3173, 2012.

[17] H. Dong, Z. Wang, J. Lam, and H. Gao, “Fuzzy-model-based
robust fault detection with stochastic mixed time delays and
successive packet dropouts,” IEEE Transactions on Systems,
Man, and Cybernetics B, vol. 42, no. 2, pp. 365–376, 2012.

[18] B. Wanga, J. Wang, and S. M. Zhong, “Impulsive synchroniza-
tion control for chaotic systems,” Procedia Engineering, vol. 15,
pp. 2721–2726, 2011.



Abstract and Applied Analysis 11

[19] C. Tao, C. Yang, Y. Luo, H. Xiong, and F. Hu, “Speed feedback
control of chaotic system,” Chaos, Solitons and Fractals, vol. 23,
no. 1, pp. 259–263, 2005.

[20] Y. Yu, “Adaptive synchronization of a unified chaotic system,”
Chaos, Solitons and Fractals, vol. 36, no. 2, pp. 329–333, 2008.

[21] C. Li, X. Liao, and K.-W. Wong, “Lag synchronization of
hyperchaos with application to secure communications,”Chaos,
Solitons and Fractals, vol. 23, no. 1, pp. 183–193, 2005.

[22] M. S. Tavazoei and M. Haeri, “Determination of active sliding
mode controller parameters in synchronizing different chaotic
systems,”Chaos, Solitons and Fractals, vol. 32, no. 2, pp. 583–591,
2007.

[23] J. G. Barajas-Ramı́rez, G. Chen, and L. S. Shieh, “Fuzzy chaos
synchronization via sampled driving signals,” International
Journal of Bifurcation and Chaos in Applied Sciences and
Engineering, vol. 14, no. 8, pp. 2721–2733, 2004.

[24] T. Liao and S. Tsai, “Adaptive synchronization of chaotic systems
and its application to secure communications,” Chaos, solitons
and fractals, vol. 11, no. 9, pp. 1387–1396, 2000.

[25] C.-J. Cheng, “Robust synchronization of uncertain unified
chaotic systems subject to noise and its application to secure
communication,” Applied Mathematics and Computation, vol.
219, no. 5, pp. 2698–2712, 2012.

[26] T. Yang, “Secure communication via chaotic parameter modu-
lation,” IEEE Transactions on Circuits and Systems I, vol. 43, no.
9, pp. 817–819, 1996.

[27] H. Dedieu, M. P. Kennedy, and M. Hasler, “Chaos shift keying:
modulation and demodulation of a chaotic carrier using self-
synchronizing Chua’s circuits,” IEEE Transactions on Circuits
and Systems II, vol. 40, no. 10, pp. 634–642, 1993.

[28] K. M. Cuomo, A. V. Oppenheim, and S. H. Strogatz, “Synchro-
nization of Lorenz-based chaotic circuits with applications to
communications,” IEEE Transactions on Circuits and Systems II,
vol. 40, no. 10, pp. 626–633, 1993.

[29] T. Takagi and M. Sugeno, “Fuzzy identification of systems and
its applications to modeling and control,” IEEE Transactions on
Systems, Man and Cybernetics, vol. 15, no. 1, pp. 116–132, 1985.

[30] K. Lian, T. Chiang, C. Chiu, and P. Liu, “Synthesis of fuzzy
model-based designs to synchronization and secure commu-
nications for chaotic systems,” IEEE Transactions on Systems,
Man, and Cybernetics B, vol. 31, no. 1, pp. 66–83, 2001.

[31] J.-H. Kim, C.-W. Park, E. Kim, and M. Park, “Adaptive syn-
chronization of T-S fuzzy chaotic systems with unknown
parameters,”Chaos, Solitons and Fractals, vol. 24, no. 5, pp. 1353–
1361, 2005.

[32] C.-H. Hyun, C.-W. Park, J.-H. Kim, andM. Park, “Synchroniza-
tion and secure communication of chaotic systems via robust
adaptive high-gain fuzzy observer,”Chaos, Solitons and Fractals,
vol. 40, no. 5, pp. 2200–2209, 2009.

[33] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear
Matrix Inequalities in System and Control Theory, SIAM Studies
in Applied Mathematics, Society for Industrial and Applied
Mathematics, Philadelphia, Pa, USA, 1994.

[34] K. Tanaka and H. O. Wang, Fuzzy Control System Design and
Analysis. A Linear Matrix Inequality Approach, John Wiley &
Sons, New York, NY, USA, 2001.

[35] M. Chadli and H. R. Karimi, “Robust observer design for
unknown inputs Takagi-Sugeno models,” IEEE Transactions on
Fuzzy Systems, vol. 21, no. 1, pp. 158–164, 2013.

[36] H. Dimassi, A. Loria, and S. Belghith, “A new secured trans-
mission scheme based on chaotic synchronization via smooth

adaptive unknown-input observers,” Communications in Non-
linear Science and Numerical Simulation, vol. 17, no. 9, pp. 3727–
3739, 2012.

[37] M. Chen and W. Min, “Unknown input observer based chaotic
secure communication,” Physics Letters A, vol. 372, no. 10, pp.
1595–1600, 2008.

[38] M. Chadli and I. Zlinka, “Unknown input observer design for
fuzzy systems with application to chaotic system reconstruc-
tion,”Computers andMathematics with Applications, vol. 66, no.
2, pp. 147–154, 2013.

[39] M. Chadli, A. Akhenak, J. Ragot, and D. Maquin, “State and
unknown input estimation for discrete time multiple model,”
Journal of the Franklin Institute, vol. 346, no. 6, pp. 593–610,
2009.

[40] T. Youssef, M. Chadli, H. R. Karimi, and M. Zelmat, “Design of
unknown inputs proportional integral observers for TS fuzzy
models,” Neurocomputing Journal, vol. 210, no. 163, p. 174, 2013.

[41] X. Meng, Y. Yu, G. Wen, and R. Chen, “Chaos synchronization
of unified chaotic system using fuzzy logic controller,” in
Proceedings of the IEEE International Conference on Fuzzy
Systems (FUZZ ’08), pp. 544–547, June 2008.

[42] K. Tanaka, T. Ikeda, and H. O. Wang, “A unified approach
to controlling chaos via an LMI-based fuzzy control system
design,” IEEE Transactions on Circuits and Systems I, vol. 45, no.
10, pp. 1021–1040, 1998.



Submit your manuscripts at
http://www.hindawi.com

 Operations
Research

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Mathematical Problems 
in Engineering

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

ISRN 
Applied 
Mathematics

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2013

International Journal of

Combinatorics

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Journal of Function Spaces

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

ISRN 
Geometry

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2013

Advances in

Mathematical Physics

ISRN 
Algebra

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Probability
and
Statistics

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

ISRN 
Mathematical 
Analysis

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Journal of
Applied Mathematics

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

 Advances in

Decision
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Stochastic Analysis
International Journal of

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013

The Scientific 
World Journal

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

ISRN 
Discrete 
Mathematics 

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2013


