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This paper deals with the finite-time stabilization problem for discrete-time Markov jump nonlinear systems with time delays
and norm-bounded exogenous disturbance. The nonlinearities in different jump modes are parameterized by neural networks.
Subsequently, a linear difference inclusion state space representation for a class of neural networks is established. Based on this,
sufficient conditions are derived in terms of linearmatrix inequalities to guarantee stochastic finite-time boundedness and stochastic
finite-time stabilization of the closed-loop system. A numerical example is illustrated to verify the efficiency of the proposed
technique.

1. Introduction

Markov jump systems (MJSs) are an important class of
stochastic dynamic systems, which are popular when model-
ing an abrupt change in the system structure and parameters,
such as component failures or repairs, changing subsystem
interconnections and environmental disturbance.This family
of systems has great practical potential in a variety of fields,
such as solar thermal central receivers systems, economic
systems, communication systems, manufacturing systems,
and networked control systems [1–4]. MJSs have been exten-
sively studied since the pioneering work on quadratic control
of MJSs [5], and many achievements have been made on
Lyapunov stochastic stability and stabilization in the last three
decades [6–18].

However, it is worth noting that the Lyapunov stochas-
tically stable systems may not possess good or expected
transient characteristics over a finite-time horizon. In many
practical problems, it is of interest to investigate the stability
of a system over a finite interval of time. For example,
referring to aircraft control, it requests that, during the

execution of a certain task, the state variables should not
exceed some threshold under all admissible pilot inputs and
in the presence of wind disturbances. Classical control theory
does not directly address this requirement, because it focuses
mainly on the asymptotic behavior of the system (over an
infinite-time interval) and does not usually specify bounds on
the trajectories. Therefore, it is necessary to limit the state in
an acceptable region and consider finite-time stability (FTS)
given by Dorato [19].

The concept of FTS has been further extended into
finite-time boundness (FTB) [20, 21], when system possesses
bounded exogenous disturbance. A linear matrix inequality
(LMI) framework has been established to distinguish FTS
and Lyapunov asymptotical stability [22–24]. Compared with
Lyapunov stochastically stable condition, FTS relaxes the
condition by allowing that the Lyapunov-like function can
increase at every sampling time instant. That is why FTS is
so attractive and widely used in practical engineering.

As MJSs are considered, a number of results on stochas-
tic FTS or stochastic FTB have been developed [25–28],
and recently, the obtained results have been extended to
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continuous-timeMJSs with nonlinearities via fuzzy or neural
network approach [24, 29, 30]. In order to make the stochas-
tic systems more manageable and satisfy the requirements
for finite-time behavior of a system in engineering fields,
it motivates us to investigate the finite-time stability and
stabilization problems for a class of MJSs. Furthermore,
time delay is a common phenomenon and is inevitable
in practice systems [31–33]. Due to the interaction among
system dynamics, stochastic jumps, and time delays, the
dynamics of MJSs with time delay become more complex
thanMJSs without time delay and time delay systems without
jumps. So far, in comparison with the literatures available
for continuous-time nonlinear MJSs with time delays, the
corresponding FTS or FTB results for discrete-time nonlinear
systems have been relatively few.

It is, therefore, the main purpose of this paper to shorten
such a gap by investigating the finite-time stabilization prob-
lem for discrete-time nonlinear MJSs with time delays. With
neural networks, the nonlinearities ofMJSs are approximated
firstly by linear difference inclusion under state-space rep-
resentation. Then, a mode-dependent finite-time controller
is developed to make the nonlinear MJSs stochastic finite-
time stabilizable for all admissible approximation errors
of the neural networks and the norm-bounded external
disturbances.The controller gains could be derived by solving
a set of LMIs. An attractive feature of the proposed scheme
is that the coupling relationship between time delay and
given finite-time horizon is explored by obtaining delay-
independent conditions.

Notations in this paper are fairly standard. 𝑅
𝑛 and 𝑅

𝑛×𝑚

denote 𝑛-dimensional Euclidean space and the set of all the
𝑛 × 𝑚 real matrices, respectively; 𝐴𝑇 (or 𝑥

𝑇) and 𝐴
−1 denote

the transpose of the matrix 𝐴 (or the vector 𝑥) and the
inverse of the matrix 𝐴, respectively. 𝜆max(𝐴) and 𝜆min(𝐴)

denote, respectively, themaximal andminimal eigenvalues of
a real matrix 𝐴, ‖𝐴‖ denotes the Euclidean norm of matrix
𝐴, 𝐸{⋅} denotes the mathematics statistical expectation of
the stochastic process or vector, 𝑙

2
[0 𝑁) is the space of

summable infinite sequence over [0 𝑁), 𝑃 > 0 stands
for a positive-definite matrix, 𝐼 is the unit matrix with
appropriate dimensions, and “∗” means the symmetric terms
in a symmetric matrix.

2. System Description and
Problem Formulation

We consider a nonlinear discrete-time MJS, which can be
described by the following mathematical model:

𝑥
𝑘+1

= 𝐴 (𝑟
𝑘
) 𝑥
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) ,

𝑥
𝑓
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𝑓
, 𝑓 ∈ {−𝑑, . . . , 0} , 𝑟 (0) = 𝑟

0
,

(1)

where 𝑥
𝑘

∈ 𝑅
𝑛 is the vector of state variables, 𝑢

𝑘
∈ 𝑅

𝑚 is the
controlled input, 𝑓(⋅) is a discrete nonlinear mapping with

𝑓(0) = 0 but not assumed to be known a prior, and 𝑤
𝑘

∈

𝑙
𝑞

2
[0 + ∞) is the exogenous disturbances satisfying
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2

2
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= 𝑖, we denote
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) ,

(3)

where 𝑟
𝑘
is a discrete-stateMarkov chain taking values in𝑀 =

{1, 2, . . . , 𝑠} with transition probabilities

Prob {𝑟
𝑘+1

= 𝑗 | 𝑟
𝑘

= 𝑖} = 𝜋
𝑖𝑗
, (4)

where 𝜋
𝑖𝑗
is the transition probabilities from mode 𝑖 to mode

𝑗 that satisfies

𝜋
𝑖𝑗

≥ 0,

𝑚

∑

𝑗=1

𝜋
𝑖𝑗

= 1, ∀𝑖, 𝑗 ∈ 𝑀. (5)

For each mode 𝑖, nonlinear function 𝑓
𝑖
(𝑥

𝑘
) is to be param-

eterized by neural networks. Such parameterization makes
sense because any nonlinear function can be approximated
arbitrarily well on a compact interval by a neural network.
Let the 𝐿-layered perceptrons 𝑁

𝑖
(𝑥

𝑘
, 𝑊

𝑟1
, 𝑊

𝑟2
, . . . , 𝑊

𝑟𝐿
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suitably trained to approximate the nonlinear term 𝑓
𝑖
(𝑥

𝑘
),

which is described in matrix-vector notation as

𝑁
𝑖
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𝑘
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(6)

where all the weight matrices 𝑊
𝑖𝑟

∈ 𝑅
𝑛𝑖𝑟×𝑛𝑖(𝑟−1) , 𝑟 = 1, . . .,

𝐿, from the (𝑟 − 1)th layer to the (𝑟 − 𝐿)th layer will
be determined via back propagation (BP) procedure [24];
the activation function vector of 𝑟th layer is defined as
𝜓
𝑖𝑟
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), 𝜙

𝑖2
(𝜍

𝑖2
), . . . , 𝜙

𝑖𝑛𝑟
(𝜍

𝑖𝑛𝑟
)]
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(7)

The maximum and minimum derivatives of activation func-
tion 𝜙

𝑖𝑙
are defined as follows:

𝑠
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(8)

For 𝑟th layer of neural network, activation function 𝜙
𝑖𝑙
can be

rewritten as the following min-max form:

𝜙
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= ℎ
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𝑖𝑙
(1) 𝑠
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) , (9)
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where ℎ
𝑖𝑙
(𝑚), 𝑚 = 0, 1, are a set of positive real numbers

associated with 𝜙
𝑖𝑙
satisfying ℎ

𝑖𝑙
(𝑚) > 0 and ℎ

𝑖𝑙
(0)+ℎ

𝑖𝑙
(1) = 1.

According to the approximation theorem, for given accu-
racy 𝜌

𝑖
> 0, there exist ideal constant weight matrices 𝑊

∗
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defined as
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} ,

(10)

where 𝐷 is a compact set 𝐷 ∈ 𝑅
𝑚, such that

max
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(11)

For each mode 𝑖, denote a set of 𝑛
𝑟
dimensional index vectors

of the 𝑟th layer as

𝛾
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= 𝛾
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𝑖
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} , (12)

where 𝜎
𝑖
is used as a binary indicator. Obviously, the 𝑟th layer

with 𝑛
𝑟
neurons has 2

𝑛𝑟 combinations of binary indicator with
𝑚 = 0, 1, and the elements of index vectors for all 𝐿 layers
neural network have 2
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𝑛2 × 2

𝑛1 combinations in the
set

Θ = 𝛾
𝑛𝐿

⊕ ⋅ ⋅ ⋅ ⊕ 𝛾
𝑛2

⊕ 𝛾
𝑛1

. (13)

By using (8) and adopting the compact representation [34],
themultilayer neural network (6) can be expressed as follows:
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where

𝐴
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Thus by means of multilayer neural network, the nonlinear
MJS (1) is translated into a group of LDIs with error bounds,
in which the different inclusion is powered by stochastic
Markov process; that is,
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where
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(17)

denotes the approximation errors of networks.

Remark 1. The detailed structure and quantitative size of
error dynamics Δ𝑓

𝑖
(𝑥

𝑘
) are not needed, but only norm-

bounded assumption is required. This condition is easily
satisfied in practical cases, such as bioinformatics system,
medical diagnosis, fault diagnosis, and image and pattern
recognition. Actually, the approximation error between the
target function and the closest neural network function of
a given network family can be made as small as desired
by increasing the number of nodes [35]. Also the bounds
of norm may vary according to different nonlinearities in
different modes.

3. Main Results

Based on the LDI model (16) of networks, we consider
the following discrete-time state feedback control law for
nonlinear stochastic MJS (1):

𝑢
𝑘

= 𝐾
𝑖
𝑥
𝑘
. (18)
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The resulting closed-loop system can be obtained as follows:

𝑥
𝑘+1

= 𝐴
𝑖
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where
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𝑖
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The aim of this paper is to find some sufficient condi-
tions which guarantee stochastic finite-time boundness and
stochastic finite-time stabilization of the closed-loop system
(19).The general idea of finite-time control can be formalized
through the following definitions over a finite-time interval
for some given initial conditions.

Definition 2 (stochastic finite-time stability). A discrete-time
nonlinear MJS (1) (setting 𝑢

𝑘
= 0 and 𝑤

𝑘
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.

Definition 3 (stochastic finite-time boundness). A discrete-
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𝑘
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𝑇

𝑘
𝐺𝑥

𝑘
} < 𝑐

2

2
, 𝑘 ∈

{1, 2, . . . , 𝑁}, whenever max
𝑘0−𝑑≤𝑘≤𝑘0

𝐸{𝑥
𝑇

0
𝐺𝑥

0
} ≤ 𝑐

2

1
.

Before proceeding further, we introduce the following
lemmas which will be needed for the derivation of our main
results.

Lemma 4. The closed-loop system (19) is stochastic FTB with
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[
[
[
[
[
[

[

𝐴

𝑇

𝑖
𝑃𝑗𝐴𝑖 − (1 + 𝛼) 𝑃𝑖 + 𝑄 𝐴

𝑇

𝑖
𝑃𝑗𝐴𝑑𝑖 𝐴

𝑇

𝑖
𝑃𝑗𝐵𝑤𝑖 𝐴

𝑇

𝑖
𝑃𝑗𝐶𝑖

∗ 𝐴
𝑇

𝑑𝑖
𝑃𝑗𝐴𝑑𝑖 − 𝑄 𝐴

𝑇

𝑑𝑖
𝑃𝑗𝐵𝑤𝑖 𝐴

𝑇

𝑑𝑖
𝑃𝑗𝐶𝑖

∗ ∗ 𝐵
𝑇

𝑤𝑖
𝑃𝑗𝐵𝑤𝑖 − (1 + 𝛼) 𝑆 𝐵

𝑇

𝑤𝑖
𝑃𝑗𝐶𝑖

∗ ∗ ∗ 𝐶
𝑇

𝑖
𝑃𝑗𝐶𝑖 − (1 + 𝛼) 𝑅

]
]
]
]
]
]

]

< 0,

(21)

𝑐
2

1
max
𝑖∈𝑀

{𝜆max (�̃�
𝑖
)} + 𝑐

2

1
𝑑𝜆max (𝑄) + 𝛿

2

𝜆max (𝑆)

+ 𝑐
2

2
𝜌
2

𝑖
𝜆max (�̃�) <

𝑐
2

2
min

𝑖∈𝑀
{𝜆min (�̃�

𝑖
)}

(1 + 𝛼)
𝑁

,

(22)

where �̃�
𝑖

= 𝐺
−1/2

𝑃
𝑖
𝐺

−1/2, 𝑄 = 𝐺
−1/2

𝑄𝐺
−1/2, �̃� =

𝐺
−1/2

𝑅𝐺
−1/2, and 𝜆max(⋅), 𝜆min(⋅) indicate the maximal and

minimal eigenvalues of the augment, respectively.

Proof. For the closed-loop system (19), choose a stochastic
Lyapunov function candidate as

𝑉
𝑖
(𝑘) = 𝑥

𝑇

𝑘
𝑃
𝑖
𝑥
𝑘

+

𝑘−1

∑

𝑓=𝑘−𝑑

𝑥
𝑇

𝑓
𝑄𝑥

𝑓
. (23)

Simple calculation shows that

𝐸 {𝑉
𝑖
(𝑘 + 1)} − 𝑉

𝑖
(𝑘)

= 𝑥
𝑇

𝑘
(𝐴

𝑇

𝑖
𝑃
𝑗
𝐴

𝑖
− 𝑃

𝑖
+ 𝑄) 𝑥

𝑘
+ 2𝑥

𝑇

𝑘
𝐴

𝑇

𝑖
𝑃
𝑗
𝐴

𝑑𝑖
𝑥
𝑘−𝑑

+ 2𝑥
𝑇

𝑘
𝐴

𝑇

𝑖
𝑃
𝑗
𝐵
𝑤𝑖

𝑤
𝑘

+ 2𝑥
𝑇

𝑘
𝐴

𝑇

𝑖
𝑃
𝑗
𝐶
𝑖
Δ𝑓

𝑖
(𝑥

𝑘
)

+ 𝑥
𝑇

𝑘−𝑑
(𝐴

𝑇

𝑑𝑖
𝑃
𝑗
𝐴

𝑑𝑖
− 𝑄) 𝑥

𝑘−𝑑

+ 2𝑥
𝑇

𝑘−𝑑
𝐴

𝑇

𝑑𝑖
𝑃
𝑗
𝐵
𝑤𝑖

𝑤
𝑘

+ 2𝑥
𝑇

𝑘−𝑑
𝐴

𝑇

𝑑𝑖
𝑃
𝑗
𝐶
𝑖
Δ𝑓

𝑖
(𝑥

𝑘
)

+ 𝑤
Τ

𝑘
𝐵
𝑇

𝑤𝑖
𝑃
𝑗
𝐵
𝑤𝑖

𝑤
𝑘

+ 2𝑤
𝑇

𝑘
𝐵
𝑇

𝑤𝑖
𝑃
𝑗
𝐶
𝑖
Δ𝑓

𝑖
(𝑥

𝑘
) + Δ𝑓

𝑖

𝑇

(𝑥
𝑘
) 𝐶

𝑇

𝑖
𝑃
𝑗
𝐶
𝑖
Δ𝑓

𝑖
(𝑥

𝑘
)

= 𝜁
𝑇

𝑘
Ω

𝑖
𝜁
𝑘
,

(24)

where

𝑃
𝑗

≜

𝑠

∑

𝑗=1

𝜋
𝑖𝑗
𝑃
𝑗
, 𝜁

𝑘
= [𝑥

𝑇

𝑘
𝑥
𝑇

𝑘−𝑑
𝑤

𝑇

𝑘
Δ𝑓

𝑇

𝑖
(𝑥

𝑘
)]

𝑇

,

Ω
𝑖
=

[
[
[

[

𝐴
𝑇

𝑖
𝑃
𝑗
𝐴

𝑖
− 𝑃

𝑖
+ 𝑄 ∗ ∗ ∗

𝐴
𝑇

𝑑𝑖
𝑃
𝑗
𝐴

𝑖
𝐴

𝑇

𝑑𝑖
𝑃
𝑗
𝐴

𝑑𝑖
− 𝑄 ∗ ∗

𝐵
𝑇

𝑤𝑖
𝑃
𝑗
𝐴

𝑖
𝐵
𝑇

𝑤𝑖
𝑃
𝑗
𝐴

𝑑𝑖
𝐵
𝑇

𝑤𝑖
𝑃
𝑗
𝐵
𝑤𝑖

∗

𝐶
𝑇

𝑖
𝑃
𝑗
𝐴

𝑖
𝐶

𝑇

𝑖
𝑃
𝑗
𝐴

𝑑𝑖
𝐶

𝑇

𝑖
𝑃
𝑗
𝐵
𝑤𝑖

𝐶
𝑇

𝑖
𝑃
𝑗
𝐶

𝑖

]
]
]

]

.

(25)

Conditions (21) and (24) imply that

𝐸 {𝑉
𝑖
(𝑘 + 1)}

≤ (1 + 𝛼) 𝑥
𝑇

𝑘
𝑃
𝑖
𝑥
𝑘

+ (1 + 𝛼) 𝑤
𝑇

𝑘
𝑆𝑤

𝑘

+ (1 + 𝛼) Δ𝑓
𝑇

𝑖
(𝑥

𝑘
) 𝑅Δ𝑓

𝑖
(𝑥

𝑘
) + (1 + 𝛼)

𝑘−1

∑

𝑓=𝑘−𝑑

𝑥
𝑇

𝑓
𝑄𝑥

𝑓

= (1 + 𝛼) 𝑉
𝑖
(𝑘) + (1 + 𝛼) 𝑤

𝑇

𝑘
𝑆𝑤

𝑘

+ (1 + 𝛼) Δ𝑓
𝑇

𝑖
(𝑥

𝑘
) 𝑅Δ𝑓

𝑖
(𝑥

𝑘
) .

(26)

Noting that 𝛼 ≥ 0, we can obtain from (26) that

𝑉
𝑖
(𝑘) ≤ (1 + 𝛼)

𝑘

𝑉
𝑖
(0) +

𝑘

∑

𝑓=1

(1 + 𝛼)
𝑘−𝑓+1

𝑤
𝑇

𝑓−1
𝑆𝑤

𝑓−1

+

𝑘

∑

𝑓=1

(1 + 𝛼)
𝑘−𝑓+1

𝑐
2

2
𝜌
2

𝑖
𝜆max (�̃�)
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= (1 + 𝛼)
𝑘 [

[

𝑥
𝑇

0
𝑃
𝑖
𝑥
0

+

−1

∑

𝑓=−𝑑

𝑥
𝑇

𝑓
𝑄𝑥

𝑓

+

𝑘

∑

𝑓=1

(1 + 𝛼)
1−𝑓

𝑤
𝑇

𝑓−1
𝑆𝑤

𝑓−1

+

𝑘

∑

𝑓=1

(1 + 𝛼)
1−𝑓

𝑐
2

2
𝜌
2

𝑖
𝜆max (�̃�)]

]

≤ (1 + 𝛼)
𝑁

[𝑐
2

1
max
𝑖∈𝑀

{𝜆max (�̃�
𝑖
)} + 𝑐

2

1
𝑑𝜆max (𝑄)

+ 𝛿
2

𝜆max (𝑆) + 𝑐
2

2
𝜌
2

𝑖
𝜆max (�̃�)] .

(27)

Note that

𝑉
𝑖
(𝑘) = 𝑥

𝑇

𝑘
𝑃
𝑖
𝑥
𝑘

+

𝑘−1

∑

𝑓=𝑘−𝑑

𝑥
𝑇

𝑓
𝑄𝑥

𝑓

≥ 𝑥
𝑇

𝑘
𝑃
𝑖
𝑥
𝑘

≥ min
𝑖∈𝑀

{𝜆min (�̃�
𝑖
)} 𝑥

𝑇

𝑘
𝐺𝑥

𝑘
.

(28)

According to (27)-(28), one has

𝑥
𝑇

𝑘
𝐺𝑥

𝑘
≤ ((1 + 𝛼)

𝑁

(𝑐
2

1
max
𝑖∈𝑀

{𝜆max (�̃�
𝑖
)} + 𝑐

2

1
𝑑𝜆max (𝑄)

+𝛿
2

𝜆max (𝑆) + 𝑐
2

2
𝜌
2

𝑖
𝜆max (�̃�) ) )

× (min
𝑖∈𝑀

{𝜆min (�̃�
𝑖
)})

−1

.

(29)

Condition (19) implies that, for 𝑘 ∈ {1, 2, . . . , 𝑁},𝐸{𝑥
𝑇

𝑘
𝐺𝑥

𝑘
} <

𝑐
2

2
. This completes the proof.

Now, we direct our attention to present a solution to
the problem of finite-time stabilizing controller design. Such
controller is provided by the following theorem.

Theorem 5. The closed-loop system (19) is stochastic finite-
time stabilizable via state feedback with respect to the given
(𝑐
1
, 𝑐

2
, 𝐺, 𝑁, 𝛿) and scalar 𝛼 ≥ 0, if there exist matrices 𝑋

𝑖
=

𝑋
𝑇

𝑖
> 0, 𝑌

𝑖
, 𝐻 = 𝐻

𝑇

> 0, 𝑆 = 𝑆
𝑇

> 0, and 𝑅 = 𝑅
𝑇

> 0 and
scalars 𝜆

1
, 𝜆

2
, 𝜆

3
, 𝜆

4
> 0 such that

[
[
[
[
[

[

− (1 + 𝛼) 𝑋
𝑖

𝑁
𝑇

1𝑖
0 0 𝑋

𝑖

𝑁
1𝑖

−𝑀
5𝑖

+ 𝑁
5𝑖

𝑀
3𝑖

𝑀
4𝑖

0

0 𝑀
𝑇

3𝑖
− (1 + 𝛼) 𝑆 0 0

0 𝑀
𝑇

4𝑖
0 − (1 + 𝛼) 𝑅 0

𝑋
𝑖

0 0 0 −𝐻

]
]
]
]
]

]

< 0,

(30)

𝜆
1
𝐺

−1

< 𝑋
𝑖
< 𝐺

−1

, 𝜆
2
𝐺

−1

< 𝐻, 𝑆 < 𝜆
3
𝐼, 𝑅 < 𝜆

4
𝐺,

(31)

[
[
[

[

−
𝑐
2

2

(1 + 𝛼)
𝑁

+ 𝛿
2

𝜆
3

+ 𝑐
2

2
𝜌
2

𝑖
𝜆
4

𝑐
1

√𝑑𝑐
1

𝑐
1

−𝜆
1

0

√𝑑𝑐
1

0 −𝜆
2

]
]
]

]

< 0. (32)

Proof. By using Schur complement, from condition (21) in
Lemma 4, it follows that

[
[
[
[
[

[

− (1 + 𝛼) 𝑃
𝑖
+ 𝑄 ∗ ∗ ∗ ∗

0 −𝑄 ∗ ∗ ∗

0 0 − (1 + 𝛼) 𝑆 ∗ ∗

0 0 0 − (1 + 𝛼) 𝑅 ∗

𝑀
1𝑖

𝑀
2𝑖

𝑀
3𝑖

𝑀
4𝑖

−𝑀
5𝑖

]
]
]
]
]

]

≤ 0,

(33)

where

𝑀
1𝑖

= [√𝜋
𝑖1

𝐴
𝑇

𝑖
, . . . , √𝜋

𝑖𝑠
𝐴

𝑇

𝑖
]

𝑇

,

𝑀
2𝑖

= [√𝜋
𝑖1

𝐴
𝑇

𝑑𝑖
, . . . , √𝜋

𝑖𝑠
𝐴

𝑇

𝑑𝑖
]
𝑇

,

𝑀
3𝑖

= [√𝜋
𝑖1

𝐵
𝑇

𝑤𝑖
, . . . , √𝜋

𝑖𝑠
𝐵
𝑇

𝑤𝑖
]
𝑇

,

𝑀
4𝑖

= [√𝜋
𝑖1

𝐶
𝑇

𝑖
, . . . , √𝜋

𝑖𝑠
𝐶
𝑇

𝑖
]
𝑇

,

𝑀
5𝑖

= diag {𝑃
−1

1
, . . . , 𝑃

−1

𝑠
} .

(34)

Performing matrix elementary transformation to the above
inequality, we have

[
[
[
[
[

[

− (1 + 𝛼) 𝑃
𝑖
+ 𝑄 𝑀

𝑇

1𝑖
0 0 0

𝑀
1𝑖

−𝑀
5𝑖

𝑀
3𝑖

𝑀
4𝑖

𝑀
2𝑖

0 𝑀
𝑇

3𝑖
− (1 + 𝛼) 𝑆 0 0

0 𝑀
𝑇

4𝑖
0 − (1 + 𝛼) 𝑅 0

0 𝑀
𝑇

2𝑖
0 0 −𝑄

]
]
]
]
]

]

≤ 0.

(35)

Performing a congruence to the above condition by
diag {𝑃

−1

𝑖
𝐼 𝐼 𝐼 𝐼}, using Schur complement, and letting

𝑋
𝑖
= 𝑃

−1

𝑖
and 𝑌

𝑖
= 𝐾

𝑖
𝑋

𝑖
, we get

[
[

[

− (1 + 𝛼) 𝑋
𝑖
+ 𝑋

𝑖
𝑄𝑋

𝑖
𝑁

𝑇

1𝑖
0 0

𝑁
1𝑖

−𝑀
5𝑖

+ 𝑁
5𝑖

𝑀
3𝑖

𝑀
4𝑖

0 𝑀
𝑇

3𝑖
− (1 + 𝛼) 𝑆 0

0 𝑀
𝑇

4𝑖
0 − (1 + 𝛼) 𝑅

]
]

]

≤ 0,

(36)
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where

𝑁
1𝑖

= [√𝜋
𝑖1

(𝐴
𝑖
𝑋

𝑖
+ 𝐵

𝑖
𝑌
𝑖
)
𝑇

, . . . , √𝜋
𝑖𝑠
(𝐴

𝑖
𝑋

𝑖
+ 𝐵

𝑖
𝑌
𝑖
)
𝑇

]

𝑇

,

𝑁
5𝑖

=

[
[
[
[
[
[

[

𝜋
𝑖1
𝐴

𝑑𝑖
𝐻𝐴

𝑇

𝑑𝑖
√𝜋

𝑖1√𝜋
𝑖2
𝐴

𝑑𝑖
𝐻𝐴

𝑇

𝑑𝑖
⋅ ⋅ ⋅ √𝜋

𝑖1√𝜋
𝑖𝑠
𝐴

𝑑𝑖
𝐻𝐴

𝑇

𝑑𝑖

√𝜋
𝑖2√𝜋

𝑖1
𝐴

𝑑𝑖
𝐻𝐴

𝑇

𝑑𝑖
𝜋
𝑖2
𝐴

𝑑𝑖
𝐻𝐴

𝑇

𝑑𝑖
⋅ ⋅ ⋅ √𝜋

𝑖2√𝜋
𝑖𝑠
𝐴

𝑑𝑖
𝐻𝐴

𝑇

𝑑𝑖

...
... d

...
√𝜋

𝑖𝑠√𝜋
𝑖1
𝐴

𝑑𝑖
𝐻𝐴

𝑇

𝑑𝑖
√𝜋

𝑖𝑠√𝜋
𝑖2
𝐴

𝑑𝑖
𝐻𝐴

𝑇

𝑑𝑖
𝜋
𝑖𝑠
𝐴

𝑑𝑖
𝐻𝐴

𝑇

𝑑𝑖

]
]
]
]
]
]

]

,

𝐴
𝑖
= ∑

𝜎𝑖∈Θ

𝜇
𝜎𝑖

𝐴
𝜎𝑖

+ 𝐴
𝑖
.

(37)

By using Schur complement to (36) and letting 𝐻 = 𝑄
−1, we

obtain the linear matrix inequality (30) inTheorem 5.
On the other hand, we consider

𝜆max (𝑋
𝑖
) =

1

𝜆min (�̃�
𝑖
)

,

𝑋
𝑖
= �̃�

−1

𝑖
= 𝐺

1/2

𝑋
𝑖
𝐺

1/2

.

(38)

Condition (22) follows that
𝑐
2

1

min
𝑖∈𝑀

{𝜆min (𝑋
𝑖
)}

+ 𝑐
2

1
𝑑𝜆max (𝑄) + 𝛿

2

𝜆max (S)

<
𝑐
2

2

max
𝑖∈𝑀

{𝜆max (𝑋
𝑖
)} (1 + 𝛼)

𝑁

.

(39)

It is easy to check that the above inequality is guaranteed by
imposing the following conditions

𝜆max (𝑋
𝑖
) < 1, 𝜆

1
< 𝜆min (𝑋

𝑖
) ,

𝜆max (𝑄) < 𝜆
2
, 𝜆max (𝑆) < 𝜆

3
,

𝑐
2

1

𝜆
1

+ 𝑐
2

1
𝑑𝜆

2
+ 𝛿

2

𝜆
3

<
𝑐
2

2

(1 + 𝛼)
𝑁

(40)

which are equivalent to conditions (31)-(32). This completes
the proof.

Remark 6. It is worth pointing out that Theorem 5 is not a
delay-dependent sufficient criterion, which is conservative
when the delay is small. Delay-dependent result can be devel-
oped in the same way by choosing a Lyapunov functional
that includes more entries, as was done in [36], or delay
fractioning approach that can be employed as was done in
[31–33].

Remark 7. The coupling relationship between time delay and
given finite-time horizon of the underlying system is obtained
through a finite-time stable constraint (32) in Theorem 5.
From condition (32), it can be seen that, in given finite-time
horizon, if the time delay 𝑑 is larger, constraint (32) is more
difficult to be satisfied, whichmeans that the existence of time
delay increases the instability of system.

4. Numerical Example

Consider discrete-time Markov jump nonlinear system (1)
with three operation modes and the following data:

𝐴
1

= [
0.88 −0.05

0.40 −0.72
] , 𝐴

𝑑1
= [

−0.2 0.1

0.2 0.15
] ,

𝐵
1

= [
2

1
] , 𝐵

𝑤1
= [

0.4

0.5
] , 𝐶

1
= [

0

0.1
] ,

𝐴
2

= [
2 0.24

0.80 0.32
] , 𝐴

𝑑2
= [

−0.6 0.4

0.2 0.6
] ,

𝐵
2

= [
1

−1
] , 𝐵

𝑤2
= [

0.2

0.6
] , 𝐶

2
= [

0

0.3
] ,

𝐴
3

= [
−0.8 0.16

0.80 0.64
] , 𝐴

𝑑3
= [

−0.3 0.1

0.2 0.5
] ,

𝐵
3

= [
1

1
] , 𝐵

𝑤2
= [

0.1

0.3
] , 𝐶

3
= [

0

0.5
] ,

𝑓
1

(𝑥
𝑘
) = 𝑓

2
(𝑥

𝑘
) = 𝑓

3
(𝑥

𝑘
) = sin (𝑥

1𝑘
) cos (𝑥

2𝑘
) .

(41)

Now, a single hidden layer neural network with 2 hidden
neurons was chosen to approximate the nonlinear functions
𝑓
𝑖
(𝑥

𝑘
). All parameters of activation functions associated with

the hidden layer were chosen to be 𝑞
𝑖𝑙

= 0.5 and 𝜆
𝑖𝑙

= 1.
For these activation functions, we have 𝑠

𝑖𝑙
(0, 𝜙

𝑖𝑙
) = 0 and

𝑠
𝑖𝑙
(1, 𝜙

𝑖𝑙
) = 1. The connection weights are trained offline by

using BP algorithm. The initial weights and state vector are
placed by uniformly distributed randomnumbers in [−1 1].
After 1000 training steps, the optimal approximation weights
are as follows:

𝑊
∗

1
= [

−0.86017 −0.81881

−0.95025 0.96405
] ,

𝑊
∗

2
= [−0.57752 −0.58342] .

(42)

The upper bound of approximation error is estimated as 𝜌
𝑖
=

0.022. Obviously, in this case, we haveΘ = 2
2

×2
1. According

to (15), 𝐴
𝜎𝑖
can be obtained as follows:

𝐴
𝑖1

= 𝐴
𝑖2

= 𝐴
𝑖3

= 𝐴
𝑖4

= 𝐴
𝑖5

= 𝐴
1⊕[0,0,0]

𝑇

= 𝐴
0⊕[𝑖,𝑗,𝑘]

𝑇 [
0 0

0 0
] , (𝑖, 𝑗, 𝑘 ∈ {0, 1}) ,

𝐴
𝑖6

= 𝐴
1⊕[1,0]

𝑇 = [
0 0

0.49677 0.47288
] ,

𝐴
𝑖7

= 𝐴
1⊕[0,1]

𝑇 = [
0 0

0.55439 −0.56245
] ,

𝐴
𝑖8

= 𝐴
1⊕[1,1]

𝑇 = [
0 0

1.0512 −0.089567
] .

(43)

The initial state and initial mode are taken as 𝑥
0

=

[−0.3 0.4]
𝑇 and 𝑟

0
= 1, respectively. The iterative step is

taken as 𝑁 = 7. The mode path from time step 0 to time
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Figure 1: Jump modes.
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Figure 2: State trajectory of free MJS.

step 7 is generated randomly and it is shown in Figure 1. Let
𝑐
1

= 0.5, 𝑐
2

= 2, 𝑁 = 7, 𝐺 = I, 𝑑 = 0.5, 𝛼 = 0.5, and 𝛿
2

= 1.
By solving the matrix inequalities in Theorem 5, we have the
following controller gains:

𝐾
1

= [−0.9304 −0.0683] ,

𝐾
2

= [−1.7231 0.3654] ,

𝐾
3

= [1.1486 −0.1588] .

(44)

The state trajectories of the free and controlled MJLS (16)
are drawn in Figures 2 and 3, respectively. It could be
seen that the free MJLS (16) is not stochastic FTB because
the trajectory exceeds the given bound 𝑐

2

2
. However, the

trajectory is limited between the two ellipsoids regions by
employing the proposed control move which satisfactorily
justify that the closed-loop MJLS (16) is stochastic FTB.

It should be pointed out that, in the simulation example,
as long as the choice of initial condition is satisfied with
‖𝑥

𝑇

0
𝑅
𝑟
𝑥
0
‖ ≤ 𝑐

1
, then the system is robustly finite-time

stabilizable; that is, system trajectories stay within a given
bound.

0 1 2 3
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1

2

3

−3 −2 −1

−3

−2

−1

x1

x
2

Figure 3: State trajectory under finite-time control.

5. Conclusions

The finite-time stabilization problem for discrete-timeMark-
ovian jump nonlinear system with time delay and norm-
bounded exogenous disturbance is investigated in this paper.
The nonlinearities are parameterized by multilayer neu-
ral network and the relationship between time delay and
given finite-time horizon is explored with delay-independent
conditions. The proposed framework is versatile and can
accommodate a number of challenging design problems
including finite-time control and filtering of discrete-time
or continuous-time nonlinear MJS with parameter uncer-
tainties, time delays, and so on. The future work can con-
sider some delay-dependent approaches or delay fractioning
approaches to reduce the conservativeness introduced by
time delay.
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