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This paper is concerned with the issues of passivity analysis and dynamic output feedback (DOF) passive control for uncertain
switched stochastic systems with time-varying delay via multiple storage functions (MSFs) method. Firstly, based on the MSFs
method, a sufficient condition for the existence of the passivity of the underlying system is established in terms of linear matrix
inequalities (LMIs). Furthermore, the problem of dynamic output feedback passive control is investigated. Based on the obtained
passivity condition, a sufficient condition for the existence of the desired switched passive controller is derived. Finally, a numerical
example is presented to show the effectiveness of the proposed method.

1. Introduction

Switched systems consist of a family of continuous-time
or discrete-time subsystems operated by a particular type
of switching rule. According to this switching rule, one
of these subsystems will be activated along the system
trajectory at each instant of time. Switched systems have
drawn considerable attention during the past few decades
because of their applicability and significance in various
areas, such as power electronics, embedded systems, chemical
processes, and computer-controlled systems [1–4]. Analysis
and synthesis of such systems have been studied in a large
number of papers, and some research results have been
obtained in [5–18]. For example, stability and stabilization
problems were investigated in [5–7], the sliding mode con-
trol problem was studied in [8–10], the model reduction
problem was developed in [11, 12], the filtering problem was
considered in [13], output feedback control was discussed
in [14–17], and so on. In [18], the authors gave a summary
of the recent results about the stability and stabilizability of
switched systems. On the other hand, due to the presence
of random disturbance, stochastic systems also play an
important role in engineering applications and have received
much attention during the past decades. Many results on

stochastic systems and switched stochastic systems have been
reported in [19–23]. Besides, time delays frequently occur in
practical systems and are often the source of instability, and
it is of significance to study time delay systems. Recently,
many useful results on such systems have appeared in
[24–27].

It is well known that the Lyapunov function method [28]
and the average dwell time approach [29] are widely used
to study the stability of switched systems. A common Lya-
punov function for all subsystems can guarantee the stability
under an arbitrary switching signal [30], but sometimes the
common Lyapunov function is difficult to find or even might
not exist, so Lyapunov-like functions and multiple Lyapunov
functions techniques are used widely to ensure the stability
under some certain switching signals.

Recently, passivity has been investigated by many
researchers. As a special case of dissipativity, it explains
the system’s internal energy relationship from the point of
energy dissipation, and it means that the loss of energy inside
the dynamic system is not more than the energy supplied
from outside. The concept of passivity was firstly introduced
by Willems [31] and was extended by Hill and Moylan [32].
Passivity has a wide range of applications, not only because of
its desirable properties, but also because it is a powerful tool
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to analyze the stabilization of systems. Compared with the
commonly used stability theory, the use of passivity presents
a new tool to analyze the stability, and according to the
definition of passivity, storage functions induced by passivity
can provide natural candidates for Lyapunov functions to
analyze the Lyapunov stability and stabilization problem of
systems.The notion of passivity for a class of switched control
systems was developed in [33], and the relationship between
Lyapunov stability and passivity was analyzed. Because the
common storage function is hard to search, to overcome this
restriction, a notion of multiple storage functions (MSFs)
was proposed in [34]. MSFs mean that each subsystem
has its own storage function, and each storage function is
nonincreasing for zero input on the “switched on” time to
guarantee the stability of the system. Many scholars have
done a lot of research on passivity of switched systems and
have achieved fruitful research results [33–38]. A framework
of dissipativity theory for switched systems using MSFs and
multiple supply rates was set up in [34], a concept of passivity
for switched systems using MSFs was presented in [35], and
the issues of passivity, feedback equivalence, and stability
for switched nonlinear systems via MSFs approach were
investigated in [36, 37]. In [38], the dissipativity-based sliding
mode control of switched stochastic systems was studied,
and the passivity condition was established by applying
the average dwell time approach. It is worth pointing out
that the result presented in [38] is mainly on switched
stochastic delay-free systems. However, to the best of our
knowledge, the passivity analysis and control synthesis for
switched stochastic systems with time-varying delay have
not been fully investigated to date.This motivates the present
study.

In this paper, we focus on the passive analysis and DOF
passive control for a class of uncertain switched stochastic
systems with time-varying delay. The main contributions of
this paper can be summarized as follows: (i) by utilizing the
MSFs method, a passivity condition is derived in terms of
LMIs; and (ii) based on the result obtained, a DOF passive
controller is constructed for the system.

This paper is organized as follows. In Section 2, prob-
lem formulation and some necessary lemmas are given. In
Section 3, the main results are presented. Section 4 gives
a numerical example to illustrate the effectiveness of the
proposed approach. Finally, conclusions are provided in
Section 5.

Notations. The notations throughout this paper are quite
standard. 𝑅𝑛 and 𝑅𝑛×𝑚 denote the 𝑛-dimensional Euclidean
space and the set of all 𝑛 × 𝑚 real matrices, respectively.
𝐴
𝑇 and 𝐴

−1 denote the transpose and the inverse of any
square matrix 𝐴. The notation 𝐴 > 0 means that matrix
𝐴 is positive definite. 𝐼 is the identity matrix with an
appropriate dimension. The symmetric term in a matrix
is denoted by “∗.” 𝐸{⋅} is the expectation operator. diag(⋅)
denotes a block diagonalmatrix.𝐶

𝑛,𝜏
denotes the set of all𝑅𝑛-

valued continuous functions defined on the interval [−𝜏, 0].
𝐿
2
[0,∞) is the space of square integrable functions on

[0,∞).

2. Problem Formulation and Preliminaries

Consider the following uncertain switched stochastic systems
with time-varying delay:

𝑑𝑥 (𝑡) = [𝐴
𝜎(𝑡)

𝑥 (𝑡) + 𝐴
𝑑𝜎(𝑡)

𝑥 (𝑡 − 𝑑 (𝑡)) + 𝐵
𝜎(𝑡)

𝑢 (𝑡)

+𝐵V𝜎(𝑡)V (𝑡) ]𝑑𝑡 + 𝑆𝜎(𝑡)𝑥 (𝑡) 𝑑𝑤 (𝑡) ,

𝑧 (𝑡) = 𝐶
1𝜎(𝑡)

𝑥 (𝑡) + 𝐷
1𝜎(𝑡)

𝑢 (𝑡) + 𝐷
1V𝜎(𝑡)V (𝑡) ,

𝑑𝑦 (𝑡) = [𝐶
2𝜎(𝑡)

𝑥 (𝑡) + 𝐶
2𝑑𝜎(𝑡)

𝑥 (𝑡 − 𝑑 (𝑡)) + 𝐷
2V𝜎(𝑡)V (𝑡)] 𝑑𝑡

+ 𝐺
𝜎(𝑡)

𝑥 (𝑡) 𝑑𝑤 (𝑡) ,

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−𝜏, 0] ,

(1)

where 𝑥(𝑡) ∈ 𝑅
𝑛 is the state vector, 𝑢(𝑡) ∈ 𝑅

𝑚 is the control
input, 𝑧(𝑡) ∈ 𝑅

𝑞 is the output vector, V(𝑡) ∈ 𝑅
𝑝 is the

disturbance input which belongs to 𝐿
2
[0,∞), 𝑦(𝑡) ∈ 𝑅

𝑟 is
the measured output, and 𝜙(𝑡) ∈ 𝐶

𝑛,𝜏
represents the initial

state function.
𝜎(𝑡) ∈ [0,∞) → 𝑁 = {1, 2, . . . , 𝑁} is a piecewise right

continuous constant function. The switching sequence can
be described as Σ : {(𝑡

0
, 𝜎(𝑡

0
)), (𝑡

1
, 𝜎(𝑡

1
)), . . . , (𝑡

𝑘
, 𝜎(𝑡

𝑘
)), . . .},

where 𝑡
0
= 0 is the initial time, and 𝑡

𝑘
denotes the 𝑘th

switching instant. Moreover, 𝜎(𝑡) = 𝑖 means that the 𝑖th
subsystem is activated. 𝑤(𝑡) is a zero-mean Wiener process
on a probability space (Ω, 𝐹, Ρ) satisfying

𝐸 {𝑑𝑤 (𝑡)} = 0, 𝐸 {𝑑𝑤
2

(𝑡)} = 𝑑𝑡, (2)

whereΩ is the sample space, 𝐹 is 𝜎-algebras of subsets of the
sample space, 𝑃 is the probability measure on 𝐹. 𝑑(𝑡) is the
time-varying delay satisfying

0 ≤ 𝑑 (𝑡) ≤ 𝜏, 0 ≤ ̇𝑑 (𝑡) ≤ 𝜇 < 1, (3)

where 𝜏 and 𝜇 are known constants. Consider

𝐴
𝑖
= 𝐴

𝑖
+ Δ𝐴

𝑖
(𝑡) , 𝐴

𝑑𝑖
= 𝐴

𝑑𝑖
+ Δ𝐴

𝑑𝑖
(𝑡) ,

𝑆
𝑖
= 𝑆
𝑖
+ Δ𝑆

𝑑𝑖
(𝑡) , 𝐶

2𝑖
= 𝐶

2𝑖
+ Δ𝐶

2𝑖
(𝑡) ,

𝐶
2𝑑𝑖

= 𝐶
2𝑑𝑖

+ Δ𝐶
2𝑑𝑖
(𝑡) , 𝐺

𝑖
= 𝐺

𝑖
+ Δ𝐺

𝑖
(𝑡) ,

(4)

where𝐴
𝑖
,𝐴
𝑑𝑖
, 𝐵
𝑖
, 𝐵V𝑖, 𝑆𝑖,𝐶1𝑖,𝐷1𝑖,𝐷1V𝑖,𝐶2𝑖,𝐶2𝑑𝑖,𝐷2V𝑖, and𝐺𝑖,

𝑖 ∈ 𝑁, are constant matrices with appropriate dimensions,
and Δ𝐴

𝑖
(𝑡), Δ𝐴

𝑑𝑖
(𝑡), Δ𝑆

𝑖
(𝑡), Δ𝐶

2𝑖
(𝑡), Δ𝐶

2𝑑𝑖
(𝑡), and Δ𝐺

𝑖
(𝑡),

𝑖 ∈ 𝑁, are unknown matrices representing time-varying
parameter uncertainties and assumed to be of the form

[
Δ𝐴
𝑖
(𝑡) Δ𝐴

𝑑𝑖
(𝑡) Δ𝑆

𝑖
(𝑡)

Δ𝐶
𝑖
(𝑡) Δ𝐶

𝑑𝑖
(𝑡) Δ𝐺

𝑖
(𝑡)
]

= [
𝑀
1𝑖

𝑀
2𝑖

]𝐹
𝑖
(𝑡) [𝑁

1𝑖
𝑁
2𝑖
𝑁
3𝑖
] , 𝑖 ∈ 𝑁,

(5)

where 𝑀
1𝑖
,𝑀
2𝑖
, 𝑁
1𝑖
, 𝑁
2𝑖
,and 𝑁

3𝑖
are known real constant

matrices, and 𝐹
𝑖
(𝑡) is an unknown time-varying matrix

function satisfying

𝐹
𝑇

𝑖
(𝑡) 𝐹

𝑖
(𝑡) ≤ 𝐼. (6)
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Definition 1 (see [36]). For system (1) with 𝑢(𝑡) = 0, it is said
to be stochastically passive under the switching signal 𝜎(𝑡) if
there exists a nonnegative function 𝑆

𝜎(𝑡)
(𝑥) with 𝑆

𝜎(𝑡)
(0) = 0,

such that the following inequality holds:

𝐸 {𝑆
𝜎(𝑡)

(𝑥 (𝑡)) − 𝑆
𝜎(𝑠)

(𝑥 (𝑠))} ≤ ∫

𝑡

𝑠

𝐸 {2V
𝑇

(𝜃) 𝑧 (𝜃)}𝑑𝜃,

𝑠 ≤ 𝑡 < ∞.

(7)

Remark 2. In Definition 1, the nonnegative function 𝑆
𝜎(𝑡)

(𝑥)

is called storage function. Passivity is explained by the
system internal energy relationship from the point of energy
dissipation; so the stored energy function of the system is
called storage function. Usually, a common storage function
for all subsystemsmay not exist or it may be rather difficult to
find, but each subsystem may have its own storage function;
thus, we consider the passivity under the switching signal via
MSFs method in this paper.

Definition 3 (see [36]). Let 𝑆
𝑖
be a positive semidefinite func-

tion and assume that the 𝑖th subsystem is active during the
interval [𝑡

𝑘
, 𝑡
𝑘+1
). 𝑆
𝑖
is called to be the storage-like function of

the 𝑖th subsystem if the following passivity inequality holds:

𝐸 {𝑆
𝑖
(𝑥 (𝑡)) − 𝑆

𝑖
(𝑥 (𝑠))} ≤ ∫

𝑡

𝑠

𝐸 {2V
𝑇

(𝜃) 𝑧 (𝜃)}𝑑𝜃,

𝑡
𝑘
≤ 𝑠 ≤ 𝑡 < 𝑡

𝑘+1
.

(8)

Remark 4. In Definition 3, inequality (8) indicates that the
passivity property of the 𝑖th subsystem holds when it is active.

Remark 5. Actually, the stability-theory-based Lyapunov
functions can be explained from the vision of passivity.
It is often needed to construct Lyapunov functions when
we consider the stability of the system; this process can
be transformed to the process of constructing the storage
functions to make the system passive.

Lemma 6 (see [24]). For any constant matrix 𝑅 > 0, scalar
𝑑 > 0, and vector function 𝑥(𝑡), such that the following Jensen’s
integral inequality is well defined:

−𝑑∫

𝑡

𝑡−𝑑

𝑥 (𝑠) 𝑅𝑥 (𝑠) 𝑑𝑠 ≤ −[∫

𝑡

𝑡−𝑑

𝑥 (𝑠) 𝑑𝑠]

𝑇

𝑅[∫

𝑡

𝑡−𝑑

𝑥 (𝑠) 𝑑𝑠] .

(9)

Lemma 7 (see [13]). Let 𝑈, 𝑉, 𝑊, and 𝑋 be real matrices of
appropriate dimensions with𝑋 satisfying𝑋 = 𝑋

𝑇, then for all
𝑉
𝑇

𝑉 ≤ 𝐼,𝑋 + 𝑈𝑉𝑊 +𝑊
𝑇

𝑉
𝑇

𝑈
𝑇

< 0,

(a) if and only if there exists a scalar 𝜀 > 0 such that

𝑋 + 𝜀𝑈𝑈
𝑇

+ 𝜀
−1

𝑊
𝑇

𝑊 < 0; (10)

(b) for any positive definite matrix 𝑅:

𝑈𝑊 +𝑊
𝑇

𝑈
𝑇

≤ 𝑈𝑅
−1

𝑈
𝑇

+ 𝑉
𝑇

𝑅𝑉. (11)

Lemma 8 (see [39]). 𝐴, 𝑀, 𝑁, and 𝑃 are real matrices
of appropriate dimensions. 𝐹(𝑡) is time-varying matrix with
𝐹
𝑇

(𝑡)𝐹(𝑡) ≤ 𝐼. If there exists a scalar 𝜀 > 0 such that 𝑃 −

𝜀𝑀𝑀
𝑇

> 0, then we have

(𝐴 +𝑀𝐹𝑁)
𝑇

𝑃 (𝐴 +𝑀𝐹𝑁) ≤ 𝐴
𝑇

(𝑃
−1

− 𝜀𝑀𝑀
𝑇

)
−1

𝐴

+ 𝜀
−1

𝑁
𝑇

𝑁.

(12)

3. Main Results

In this section, we first investigate the passivity analysis of
system (1); then based on the passive condition obtained,
an output feedback controller is designed to guarantee the
passivity of the resulting closed-loop system.

3.1. Passivity Analysis

Theorem 9. Consider system (1) with 𝑢(𝑡) = 0, the system is
stochastically passive for the switching signal 𝜎(𝑡) = min{𝑖 | 𝑖 =
argmin

𝑖∈𝑁
𝑉
𝑖
(𝑥(𝑡))} if there exist symmetric positive matrices

𝑃
𝑖
, 𝑄
𝑖
, 𝑍
𝑖
, 𝑅
𝑖
and matrices 𝐿

𝑖
, 𝑖 ∈ 𝑁, with appropriate

dimensions such that

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Ξ
11

𝑃
𝑖
𝐴
𝑑𝑖

0 𝑃
𝑖
𝐵V𝑖 − 𝐶

𝑇

1𝑖
𝑆
𝑇

𝑖
𝑃
𝑖
𝐴
𝑇

𝑖
𝑃
𝑖

0

∗ − (1 − 𝜇)𝑄
𝑖

0 0 0 𝐴
𝑇

𝑑𝑖
𝑃
𝑖

0

∗ ∗ Ξ
33

0 0 0 𝐿
𝑖

∗ ∗ ∗ −𝐷
𝑇

1V𝑖 − 𝐷1V𝑖 0 𝐵
𝑇

V𝑖𝑃𝑖 0

∗ ∗ ∗ ∗ −𝑃
𝑖

0 0

∗ ∗ ∗ ∗ ∗ −𝑃
𝑖

0

∗ ∗ ∗ ∗ ∗ ∗ −𝑃
𝑖

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0,

(13)

where Ξ
11
= 𝑄

𝑖
+ 𝜏𝑍

𝑖
+ 𝐴

𝑇

𝑖
𝑃
𝑖
+ 𝑃
𝑖
𝐴
𝑖
, Ξ
33
= 𝜏𝑅

𝑖
− 𝐿
𝑇

𝑖
− 𝐿
𝑖
.

Proof. Let𝑓(𝑡) := 𝐴
𝜎(𝑡)

𝑥(𝑡)+𝐴
𝑑𝜎(𝑡)

𝑥(𝑡−𝑑(𝑡))+𝐵V𝜎(𝑡)V(𝑡), and
𝜂(𝑡)𝑑𝑡 = 𝑑𝑥(𝑡), when the 𝑖th subsystem is activated, we have

2𝜂
𝑇

(𝑡) 𝐿
𝑖
[(𝑓 (𝑡) − 𝜂 (𝑡)) 𝑑𝑡 + 𝑆

𝑖
𝑥 (𝑡) 𝑑𝑤 (𝑡)] = 0. (14)

Choose the following Lyapunov functional candidate

𝑉
𝑖
(𝑥 (𝑡) , 𝑡) = 𝑉

1𝑖
(𝑥 (𝑡) , 𝑡) + 𝑉

2𝑖
(𝑥 (𝑡) , 𝑡) + 𝑉

3𝑖
(𝑥 (𝑡) , 𝑡)

+ 𝑉
4𝑖
(𝑥 (𝑡) , 𝑡) ,

(15)
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where

𝑉
1𝑖
(𝑥 (𝑡) , 𝑡) = 𝑥

𝑇

(𝑡) 𝑃
𝑖
𝑥 (𝑡) ,

𝑉
2𝑖
(𝑥 (𝑡) , 𝑡) = ∫

𝑡

𝑡−𝑑(𝑡)

𝑥
𝑇

(𝑠) 𝑄
𝑖
𝑥 (𝑠) 𝑑𝑠,

𝑉
3𝑖
(𝑥 (𝑡) , 𝑡) = ∫

0

−𝜏

∫

𝑡

𝑡+𝜃

𝑥
𝑇

(𝑠) 𝑍
𝑖
𝑥 (𝑠) 𝑑𝑠,

𝑉
4𝑖
(𝑥 (𝑡) , 𝑡) = ∫

0

−𝜏

∫

𝑡

𝑡+𝜃

𝜂
𝑇

(𝑠) 𝑅
𝑖
𝜂 (𝑠) 𝑑𝑠.

(16)

According to the Itô formula, along the trajectory of the
system, we have

𝑑𝑉
𝑖
(𝑥 (𝑡) , 𝑡) = 𝐿𝑉

𝑖
(𝑥 (𝑡) , 𝑡) 𝑑𝑡 + 2𝑥

𝑇

(𝑡) 𝑃
𝑖
𝑆
𝑖
𝑥 (𝑡) 𝑑𝑤 (𝑡) .

(17)

Substituting (14) into (17), we get

𝑑𝑉
𝑖
(𝑥 (𝑡) , 𝑡) = 𝐿𝑉̃

𝑖
(𝑥 (𝑡) , 𝑡) 𝑑𝑡

+2[𝑥
𝑇

(𝑡) 𝑃
𝑖
𝑆
𝑖
𝑥 (𝑡) +𝜂

𝑇

(𝑡) 𝐿
𝑖
𝑆
𝑖
𝑥 (𝑡)]𝑑𝑤 (𝑡),

(18)

where 𝐿𝑉̃
𝑖
(𝑥(𝑡), 𝑡) = 𝐿𝑉

𝑖
(𝑥(𝑡), 𝑡) + 2𝜂

𝑇

(𝑡)𝐿
𝑖
[(𝑓(𝑡) − 𝜂(𝑡))].

Taking the expectation, we have

𝐸{
𝑑𝑉
𝑖
(𝑥 (𝑡) , 𝑡)

𝑑𝑡
} = 𝐸 {𝐿𝑉̃

𝑖
(𝑥 (𝑡) , 𝑡)} . (19)

For convenience, we write 𝐿𝑉̃
𝑖
= 𝐿𝑉̃

𝑖
(𝑥(𝑡), 𝑡); then it can be

obtained from (17) that

𝐿𝑉̃
𝑖
≤ 2𝑥

𝑇

(𝑡) 𝑃
𝑖
𝑓 (𝑡) + 𝑥

𝑇

(𝑡) 𝑆
𝑇

𝑖
𝑃
𝑖
𝑆
𝑖
𝑥 (𝑡) + 𝑥

𝑇

(𝑡) 𝑄
𝑖
𝑥 (𝑡)

− (1 − 𝜇) 𝑥
𝑇

(𝑡 − 𝑑 (𝑡)) 𝑄
𝑖
𝑥 (𝑡 − 𝑑 (𝑡)) + 𝜏𝑥

𝑇

(𝑡) 𝑍
𝑖
𝑥 (𝑡)

+ 𝜏𝜂
𝑇

(𝑡) 𝑅
𝑖
𝜂 (𝑡)

− ∫

𝑡

𝑡−𝑑(𝑡)

𝑥
𝑇

(𝑠) 𝑍
𝑖
𝑥 (𝑠) 𝑑𝑠 − ∫

𝑡

𝑡−𝑑(𝑡)

𝜂
𝑇

(𝑠) 𝑅
𝑖
𝜂 (𝑠) 𝑑𝑠

+ 2𝜂
𝑇

(𝑡) 𝐿
𝑖
[(𝑓 (𝑡) − 𝜂 (𝑡))] .

(20)

It follows that

𝐿𝑉̃
𝑖
(𝑥 (𝑡)) − 2V

𝑇

(𝑡) 𝑧 (𝑡)

≤ 𝜉
𝑇

(𝑡) (Ξ + Ξ
1
+ Ξ
𝑇

1
+ Ξ
2
) 𝜉 (𝑡)

− ∫

𝑡

𝑡−𝑑(𝑡)

[𝑥
𝑇

(𝑠) 𝜂
𝑇

(𝑠)] [
𝑍
𝑖
0

0 𝑅
𝑖

] [
𝑥 (𝑠)

𝜂 (𝑠)
] 𝑑𝑠,

(21)

where

𝜉
𝑇

(𝑡) = [𝑥
𝑇

(𝑡) 𝑥
𝑇

(𝑡 − 𝑑 (𝑡)) 𝜂
𝑇

(𝑡) V𝑇 (𝑡)] ,

Ξ
1
= 𝐿̃

𝑖
𝐴, 𝐿̃

𝑇

𝑖
= [0 0 𝐿

𝑇

𝑖
0] ,

𝐴 = [𝐴
𝑖
𝐴
𝑑𝑖

0 𝐵V𝑖] ,

Ξ
2
= [𝑆

𝑖
0 0 0]

𝑇

𝑃
𝑖
[𝑆
𝑖
0 0 0] ,

Ξ =
[
[
[

[

Ξ
11

𝑃
𝑖
𝐴
𝑑𝑖

0 𝑃
𝑖
𝐵V𝑖 − 𝐶

𝑇

1𝑖

∗ − (1 − 𝜇)𝑄
𝑖

0 0

∗ ∗ Ξ
33

0

∗ ∗ ∗ −𝐷
𝑇

1V𝑖 − 𝐷1V𝑖

]
]
]

]

.

(22)

By Lemma 7 and Schur complement lemma, we can obtain
from (13) that

Ξ + Ξ
1
+ Ξ
𝑇

1
+ Ξ
2
< 0; (23)

then the following inequality can be obtained:

𝐸{
𝑑𝑉
𝑖
(𝑥 (𝑡) , 𝑡)

𝑑𝑡
} = 𝐸 {𝐿𝑉

𝑖
(𝑥 (𝑡) , 𝑡)} < 2𝐸 {V

𝑇

(𝑡) 𝑧 (𝑡)} .

(24)

For 𝑡
𝑘
≤ 𝑠 < 𝑡 < 𝑡

𝑘+1
, the following inequality holds:

𝐸 {𝑉
𝜎(𝑡𝑘)

(𝑥 (𝑡) , 𝑡) − 𝑉
𝜎(𝑡𝑘)

(𝑥 (𝑠) , 𝑠)} < ∫

𝑡

𝑠

𝐸 {2V
𝑇

(𝑠) 𝑧 (𝑠)} 𝑑𝑠.

(25)

When the switching signal is chosen as 𝜎(𝑡) = min{𝑖 | 𝑖 =
argmin

𝑖∈𝑁
𝑉
𝑖
(𝑥(𝑡))}, for 𝑡

𝑘
≤ 𝑡 < 𝑡

𝑘+1
, one obtains

𝐸 {𝑉
𝜎(𝑡𝑘)

(𝑥 (𝑡) , 𝑡) − 𝑉
𝜎(𝑡0)

(𝑥 (0) , 0)}

= 𝐸{∫

𝑡1

0

𝐿𝑉
𝜎(𝑡0)

(𝑥 (𝑠) , 𝑠) 𝑑𝑠 + ∫

𝑡2

𝑡1

𝐿𝑉
𝜎(𝑡1)

(𝑥 (𝑠) , 𝑠) 𝑑𝑠

+ ⋅ ⋅ ⋅ ∫

𝑡

𝑡𝑘

𝑉
𝜎(𝑡𝑘)

(𝑥 (𝑡) , 𝑡) 𝑑𝑠}

+ 𝐸{

𝑘

∑

𝑔=1

(𝑉
𝜎(𝑡𝑔)

(𝑥 (𝑡
𝑔
) , 𝑡
𝑔
) − 𝑉

𝜎(𝑡𝑔−1)
(𝑥 (𝑡

𝑔
) , 𝑡
𝑔
))}

< ∫

𝑡

0

𝐸 {2V
𝑇

(𝑠) 𝑧 (𝑠)} 𝑑𝑡.

(26)

This completes the proof.

Remark 10. The passive condition presented in Theorem 9
is delay dependent, and it is obtained by constructing an
appropriate multiple Lyapunov functions. Some other meth-
ods dealing with time delay systems, such as delay divisioning
method and input-output method, can also be utilized to
investigate the systems under consideration, and this will be
our further work.

When the matrix parameters in system (1) are deter-
mined, according toTheorem 9, we have the following result.
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Corollary 11. Consider the nominal system in (1), it is stochas-
tically passive under the switching signal 𝜎(𝑡) = min{𝑖 | 𝑖 =
argmin

𝑖∈𝑁
𝑉
𝑖
(𝑥(𝑡))} if there exist symmetric positive matrices

𝑃
𝑖
, 𝑄
𝑖
, 𝑅
𝑖
and matrices 𝐿

𝑖
, 𝑖 ∈ 𝑁, with appropriate dimensions

such that

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Γ
11

𝑃
𝑖
𝐴
𝑑𝑖

0 𝑃
𝑖
𝐵V𝑖 − 𝐶

𝑇

1𝑖
𝑆
𝑇

𝑖
𝑃
𝑖
𝐴
𝑇

𝑖
𝑃
𝑖

0

∗ − (1 − 𝜇)𝑄
𝑖
0 0 0 𝐴

𝑇

𝑑𝑖
𝑃
𝑖

0

∗ ∗ Γ
33

0 0 0 𝐿
𝑖

∗ ∗ ∗ −𝐷
𝑇

1V𝑖 − 𝐷1V𝑖 0 𝐵
𝑇

V𝑖𝑃𝑖 0

∗ ∗ ∗ ∗ −𝑃
𝑖

0 0

∗ ∗ ∗ ∗ ∗ −𝑃
𝑖

0

∗ ∗ ∗ ∗ ∗ ∗ −𝑃
𝑖

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

<0,

(27)

where Γ
11
= 𝑄

𝑖
+ 𝜏𝑍

𝑖
+ 𝐴

𝑇

𝑖
𝑃
𝑖
+ 𝑃
𝑖
𝐴
𝑖
, Γ
33
= 𝜏𝑅

𝑖
− 𝐿
𝑇

𝑖
− 𝐿
𝑖
.

3.2. DOF Passivity Analysis. In this subsection, we focus
on designing a DOF passive controller for system (1) such
that the corresponding closed-loop system is stochastically
passive.

Consider a full-order DOF passive controller with the
following form:

Σ
𝑘
: {
𝑑𝑥 (𝑡) = 𝐴

𝑘𝜎(𝑡)
𝑥 (𝑡) 𝑑𝑡 + 𝐵

𝑘𝜎(𝑡)
𝑑𝑦 (𝑡)

𝑢 (𝑡) = 𝐶
𝑘𝜎(𝑡)

𝑥 (𝑡) ,
(28)

where 𝑥 ∈ 𝑅𝑛 is the controller state; 𝐴
𝑘𝑖
, 𝐵
𝑘𝑖
, and 𝐶

𝑘𝑖
, 𝑖 ∈ 𝑁,

are matrices to be determined.
Applying this controller to system (1), we obtain the

following closed-loop system:

Σ
𝑐
:

{{

{{

{

𝑑𝜉 (𝑡) = [𝐴
𝑐𝑖
𝜉 (𝑡) + 𝐴

𝑐𝑑𝑖
𝐻𝜉 (𝑡 − 𝑑 (𝑡)) + 𝐵

𝑐V𝑖V (𝑡)] 𝑑𝑡

+𝑆
𝑐𝑖
𝜉 (𝑡) 𝑑𝑤 (𝑡)

𝑧 (𝑡) = 𝐶
𝑐𝑖
𝜉 (𝑡) + 𝐷

𝑐V𝑖V (𝑡) ,

(29)

where

𝜉
𝑇

(𝑡) = [𝑥
𝑇

(𝑡) 𝑥
𝑇

(𝑡)] ,

𝐴
𝑐𝑖
= 𝐴

𝑐𝑖
+ Δ𝐴

𝑐𝑖
(𝑡) , 𝐴

𝑐𝑑𝑖
= 𝐴

𝑐𝑑𝑖
+ Δ𝐴

𝑐𝑑𝑖
(𝑡) ,

𝑆
𝑐𝑖
= 𝑆
𝑐𝑖
+ Δ𝑆

𝑐𝑖
(𝑡) , 𝐻 = [𝐼 0] ,

𝐴
𝑐𝑖
= [

[

𝐴
𝑖

𝐵
𝑖
𝐶
𝑘𝑖

𝐵
𝑘𝑖
𝐶
2𝑖

𝐴
𝑘𝑖

]

]

, 𝐴
𝑐𝑑𝑖

= [

[

𝐴
𝑑𝑖

𝐵
𝑘𝑖
𝐶
2𝑑𝑖

]

]

,

𝐵
𝑐V𝑖 = [

𝐵V𝑖

𝐵
𝑘𝑖
𝐷
2V𝑖
] , 𝑆

𝑐𝑖
= [

[

𝑆
𝑖

𝐵
𝑘𝑖
𝐺
𝑖

]

]

𝐻,

𝐶
𝑐𝑖
= [𝐶

1𝑖
𝐷
1𝑖
𝐶
𝑘𝑖
] , 𝐷

𝑐V𝑖 = 𝐷1V𝑖,

𝑀̃
1𝑖
= [

[

𝑀
1𝑖

𝐵
𝑘𝑖
𝑀
2𝑖

]

]

, 𝑁̃
1𝑖
= 𝑁

1𝑖
,

𝑁̃
2𝑖
= 𝑁

2𝑖
, 𝑁̃

3𝑖
= 𝑁

3𝑖
.

(30)

Then, the output feedback passive controller design problem
can be converted into the problem of passivity analysis of the
closed-loop system (29).

Theorem 12. Consider system (29), it is stochastically passive
for the switching signal 𝜎(𝑡) = min{𝑖 | 𝑖 = argmin

𝑖∈𝑁
𝑉
𝑖
(𝑥(𝑡))}

if there exist symmetric positivematrices𝑃
𝑖
,𝑄
𝑖
,𝑅
𝑖
andmatrices

𝐿
𝑐𝑖
, 𝑖 ∈ 𝑁, with appropriate dimensions such that the following

matrix inequality holds:

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Θ
11

𝑃
𝑖
𝐴
𝑐𝑑𝑖

0 𝑃
𝑖
𝐵
𝑐V𝑖 − 𝐶

𝑇

𝑐𝑖
𝑆
𝑇

𝑐𝑖
𝑃
𝑖
𝐴
𝑇

𝑐𝑖
𝑃
𝑖

0

∗ − (1 − 𝜇)𝑄
𝑖

0 0 0 𝐴
𝑇

𝑐𝑑𝑖
𝑃
𝑖

0

∗ ∗ Θ
33

0 0 0 𝐿
𝑐𝑖

∗ ∗ ∗ −𝐷
𝑇

𝑐V𝑖 − 𝐷𝑐V𝑖 0 𝐵
𝑇

𝑐V𝑖𝑃𝑖 0

∗ ∗ ∗ ∗ −𝑃
𝑖

0 0

∗ ∗ ∗ ∗ ∗ −𝑃
𝑖

0

∗ ∗ ∗ ∗ ∗ ∗ −𝑃
𝑖

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0,

(31)

where Θ
11

= 𝐻
𝑇

𝑄
𝑖
𝐻 + 𝜏𝐻

𝑇

𝑍
𝑖
𝐻 + 𝐴

𝑇

𝑐𝑖
𝑃
𝑖
+ 𝑃

𝑖
𝐴
𝑐𝑖
, Θ
33

=

𝜏
2

𝐻
𝑇

𝑅
𝑖
𝐻 − 𝐿

𝑇

𝑐𝑖
− 𝐿
𝑐𝑖
.

Proof. Let 𝑔(𝑡) := 𝐴
𝑐𝑖
𝜉(𝑡) + 𝐴

𝑐𝑑𝑖
𝜉(𝑡 − 𝑑(𝑡)) + 𝐵

𝑐V𝑖V(𝑡) and
𝜍(𝑡)𝑑𝑡 = 𝑑𝜉(𝑡), then we have

2𝜍
𝑇

(𝑡) 𝐿
𝑐𝑖
[(𝑔 (𝑡) − 𝜍 (𝑡)) 𝑑𝑡 + 𝑆

𝑐𝑖
𝜉 (𝑡) 𝑑𝑤 (𝑡)] = 0. (32)

Choose the following Lyapunov functional candidate:

𝑉
𝑖
(𝜉 (𝑡) , 𝑡)

= 𝜉
𝑇

(𝑡) 𝑃
𝑖
𝜉 (𝑡) + ∫

𝑡

𝑡−𝑑(𝑡)

𝜉
𝑇

(𝑠)𝐻
𝑇

𝑄
𝑖
𝐻𝜉 (𝑠) 𝑑𝑠

+ ∫

0

−𝜏

∫

𝑡

𝑡+𝜃

𝜉
𝑇

(𝑠)𝐻
𝑇

𝑍
𝑖
𝐻𝜉 (𝑠) 𝑑𝑠

+ ∫

0

−𝜏

∫

𝑡

𝑡+𝜃

𝜍
𝑇

(𝑠)𝐻
𝑇

𝑅
𝑖
𝐻𝜍 (𝑠) 𝑑𝑠.

(33)

From the relation between 𝜉(𝑡) and 𝑥(𝑡), we obtain

𝐻𝜉 (𝑡) = 𝑥 (𝑡)

𝐻𝜉 (𝑡 − 𝑑 (𝑡)) = 𝑥 (𝑡 − 𝑑 (𝑡)) .

(34)
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Denote 𝜁
𝑇

(𝑡) = [𝜉
𝑇

(𝑡) 𝑥
𝑇

(𝑡 − 𝑑(𝑡)) 𝜍
𝑇

(𝑡) V𝑇(𝑡)], then
following the proof line ofTheorem 9, it can be obtained form
(31) that

𝐿𝑉
𝑖
(𝜉 (𝑡) , 𝑡) − 2V

𝑇

(𝑡) 𝑧 (𝑡) < 0. (35)

It follows that

𝐸{
𝑑𝑉
𝑖
(𝜉 (𝑡) , 𝑡)

𝑑𝑡
} = 𝐸 {𝐿𝑉

𝑖
(𝜉 (𝑡) , 𝑡)} < 2𝐸 {V

𝑇

(𝑡) 𝑧 (𝑡)} .

(36)

For 𝑡
𝑘
≤ 𝑠 < 𝑡 < 𝑡

𝑘+1
, one obtains

𝐸 {𝑉
𝜎(𝑘)

(𝜉 (𝑡) , 𝑡) − 𝑉
𝜎(𝑘)

(𝜉 (𝑠) , 𝑠)} < ∫

𝑡

𝑠

𝐸 {2V
𝑇

(𝑠) 𝑧 (𝑠)} 𝑑𝑠.

(37)

Under the switching signal 𝜎(𝑡) = min{𝑖 | 𝑖 = argmin
𝑖∈𝑁

𝑉
𝑖

(𝑥(𝑡))}, for 𝑡
𝑘
≤ 𝑡 < 𝑡

𝑘+1
, we obtain

𝐸 {𝑉
𝜎(𝑡𝑘)

(𝜉 (𝑡) , 𝑡) − 𝑉
𝜎(𝑡0)

(𝜉 (0) , 0)}

= 𝐸{∫

𝑡1

0

𝐿𝑉
𝜎(𝑡0)

(𝜉 (𝑠) , 𝑠) 𝑑𝑠 + ∫

𝑡2

𝑡1

𝐿𝑉
𝜎(𝑡1)

(𝜉 (𝑠) , 𝑠) 𝑑𝑠

+ ⋅ ⋅ ⋅ ∫

𝑡

𝑡𝑘

𝑉
𝜎(𝑡𝑘)

(𝜉 (𝑡) , 𝑡) 𝑑𝑠}

+ 𝐸{

𝑘

∑

𝑔=1

(𝑉
𝜎(𝑡𝑔)

(𝜉 (𝑡
𝑔
) , 𝑡
𝑔
) − 𝑉

𝜎(𝑡𝑔−1)
(𝜉 (𝑡

𝑔
) , 𝑡
𝑔
))}

< ∫

𝑡

0

𝐸 {2V
𝑇

(𝑠) 𝑧 (𝑠)} 𝑑𝑡.

(38)

This completes the proof.

3.3. DOF Passivity Controller Design. InTheorem 12, we have
obtained a sufficient condition under which the closed-
loop system ∑

𝑐
is stochastically passive, but the designed

parameters have not been given. The following theorem
presents a controller design method and gives all parameters
of the controller.

Theorem 13. Consider system (1), there exists a controller (28)
such that the closed-loop system ∑

𝑐
is stochastically passive for

the switching signal 𝜎(𝑡) = min{𝑖 | 𝑖 = argmin
𝑖∈𝑁

𝑉
𝑖
(𝑥(𝑡))} if

there exist scalars 𝜀 > 0, 𝛽 > 0, and positive definite symmetric
matrices Ω

𝑖
, Υ
𝑖
, 𝑄
𝑖
, 𝑅
𝑖
, 𝑍
𝑖
and matrices 𝑋

𝑖
, 𝑌
𝑖
, 𝑇
𝑖
, 𝑖 ∈ 𝑁, with

appropriate dimensions such that, for all 𝑖 ∈ 𝑁,

[
[
[
[
[
[
[
[
[
[

[

Ψ
11

Ψ
12

0 Ψ
14

Ψ
15

Ψ
16

0 𝑈
1

∗ Ψ
22

0 0 0 Ψ
26

0 𝑈
2

∗ ∗ 2𝛽𝜓 0 0 0 −𝛽𝜓 𝑈
3

∗ ∗ ∗ Ψ
44

0 Ψ
46

0 0

∗ ∗ ∗ ∗ 𝜓 0 0 𝑈
1

∗ ∗ ∗ ∗ ∗ 𝜓 0 0

∗ ∗ ∗ ∗ ∗ ∗ 𝜓 𝑈
4

∗ ∗ ∗ ∗ ∗ ∗ ∗ 𝑉

]
]
]
]
]
]
]
]
]
]

]

< 0, (39)

where

Ψ
11
= [

𝐴𝑖Ω𝑖 + 𝐵𝑖𝑌𝑖 + Ω𝑖𝐴
𝑇

𝑖
+ 𝑌
𝑇

𝑖
𝐵
𝑇

𝑖
𝐴𝑖 + 𝑇

𝑇

𝑖

∗ Υ𝑖𝐴𝑖 + 𝑋𝑖𝐶2𝑖 + 𝐴
𝑇

𝑖
Υ𝑖 + 𝐶

𝑇

2𝑖
𝑋
𝑇

𝑖

],

Ψ
12
= [

[

𝐴
𝑑𝑖

Υ
𝑖
𝐴
𝑑𝑖
+ 𝑋

𝑖
𝐶
2𝑑𝑖

]

]

,

Ψ
14
= [

[

𝐵V𝑖 − Ω𝑖𝐶
𝑇

1𝑖
− 𝑌

𝑇

𝑖
𝐷
𝑇

1𝑖

Υ
𝑖
𝐵V𝑖 + 𝑋𝑖𝐷2V𝑖 − 𝐶

𝑇

1𝑖

]

]

,

Ψ
15
= [

[

Ω
𝑖
𝑆
𝑇

𝑖
0

𝑆
𝑇

𝑖
𝑆
𝑇

𝑖
Υ
𝑖
+ 𝐺

𝑇

𝑖
𝑋
𝑖

]

]

,

Ψ
16
= [

Ω
𝑖
𝐴
𝑇

𝑖
+ 𝑌

𝑇

𝑖
𝐵
𝑇

𝑖
𝑇
𝑇

𝑖

𝐴
𝑇

𝑖
𝐴
𝑇

𝑖
Υ
𝑖
+ 𝐶

𝑇

2𝑖
𝑋
𝑇

𝑖

] ,

Ψ
22
= − (1 − 𝜇)𝑄

𝑖
, Ψ

44
= −𝐷

𝑇

1V𝑖 − 𝐷1V𝑖,

Ψ
26
= [𝐴

𝑇

𝑑𝑖
𝐴
𝑇

𝑑𝑖
Υ
𝑖
+ 𝐶

𝑇

2𝑑𝑖
𝑋
𝑇

𝑖
] ,

Ψ
46
= [𝐵

𝑇

V𝑖 𝐵
𝑇

V𝑖Υ𝑖 + 𝐷
𝑇

2V𝑖𝑋
𝑇

𝑖
] , 𝜓 = [

−Ω
𝑖
−𝐼

−𝐼 −Υ
𝑖

] ,

𝑈
1
= [

𝑀
1𝑖

0 0 Ω
𝑖
Ω
𝑖
𝑁
𝑇

1𝑖
Ω
𝑖
𝑁
𝑇

3𝑖
Ω
𝑖
Ω
𝑖
0

Υ
𝑖
𝑀
1𝑖
+ 𝑋

𝑖
𝑀
2𝑖
0 0 0 𝑁

𝑇

1𝑖
𝑁
𝑇

3𝑖
𝐼 𝐼 0

],

𝑈
2
= [0 0 0 0 𝑁

𝑇

2𝑖
0 0 0 0] ,

𝑈
3
= [

0 0 0 0 0 0 0 0 Ω
𝑖

0 0 0 0 0 0 0 0 𝐼
] ,

𝑈
4
= [

𝑀
1𝑖

0 0 0 0 0 0 0 0

Υ
𝑖
𝑀
1𝑖
+ 𝑋

𝑖
𝑀
2𝑖
0 𝑆

𝑇

𝑖
Υ
𝑖
+ 𝐺
𝑇

𝑖
𝑋
𝑇

𝑖
0 0 0 0 0 0

],

𝑈
5
= [

0 𝑀
1𝑖

0 0 0 0 0 0 0

0 Υ
𝑖
𝑀
1𝑖
+ 𝑋

𝑖
𝑀
2𝑖
0 0 0 0 0 0 0

] ,

𝑉 = diag {−𝜀𝐼, −𝜀𝐼, −𝐼, −𝐼, −𝜀−1𝐼, −𝜀−1𝐼, −𝑄−1
𝑖
, −𝜏

−1

𝑍
−1

𝑖
,

−𝑅
−1

𝑖
} .

(40)

Moreover, if the above condition is feasible, then a DOF passive
controller realization is given by

𝐴
𝑘𝑖
= 𝑃

−1

𝑖12
(𝑇
𝑖
− Υ
𝑖
𝐴
𝑖
Ω
𝑖
− 𝑋

𝑖
𝐶
2𝑖
Ω
𝑖
− Υ
𝑖
𝐵
𝑖
𝑌
𝑖
)𝑊

−𝑇

𝑖12

𝐵
𝑘𝑖
= 𝑃

−1

𝑖12
𝑋
𝑖
, 𝐶

𝑘𝑖
= 𝑌
𝑖
𝑊
−𝑇

𝑖12
,

(41)

where 𝑃
𝑖12

and𝑊
𝑖12

are any nonsingular matrices and satisfy

Ω
𝑖
Υ
𝑖
+𝑊

𝑖12
𝑃
𝑇

𝑖12
= 𝐼. (42)

Proof. According to Theorem 12, let the matrices 𝑃
𝑖
and 𝑃−1

𝑖

be partitioned as

𝑃
𝑖
:= [

𝑃
𝑖11

𝑃
𝑖12

∗ 𝑃
𝑖22

] , 𝑃
−1

𝑖
:= [

𝑊
𝑖11

𝑊
𝑖12

∗ 𝑊
𝑖22

] , (43)
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where 𝑃
𝑖11

∈ 𝑅
𝑛

× 𝑅
𝑛,𝑊

𝑖11
∈ 𝑅
𝑛

× 𝑅
𝑛, and 𝑃

𝑖12
,𝑊
𝑖12

are non-
singular matrices. Then, define the following matrices:

𝐽
𝑖
:= [

𝑊
𝑖11

𝐼

𝑊
𝑇

𝑖12
0
] , 𝐽

𝑖
:= [

𝐼 𝑃
𝑖11

0 𝑃
𝑇

𝑖12

] . (44)

From 𝑃
−1

𝑖
𝑃
𝑖
= 𝐼, we have

𝑊
𝑖11
𝑃
𝑖11
+𝑊

𝑖12
𝑃
𝑇

𝑖12
= 𝐼,

𝑊
𝑇

𝑖12
𝑃
𝑖11
+𝑊

𝑖22
𝑃
𝑇

𝑖12
= 0,

(45)

and 𝑃
𝑖
𝐽
𝑖
= 𝐽
𝑖
, 𝑃−1
𝑖
𝐽
𝑖
= 𝐽
𝑖
.

By using Lemmas 7 and 8 and Schur complement lemma,
we can get that (31) is equivalent to the following inequality:

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Σ
11

Σ
12

0 𝑃
𝑖
𝐵
𝑐V𝑖 − 𝐶

𝑇

𝑐𝑖
𝑆
𝑇

𝑐𝑖
𝑃
𝑖
𝐴
𝑇

𝑐𝑖
𝑃
𝑖

0 𝑃
𝑖
𝑀̃
1𝑖

0

∗ Σ
22

0 0 0 𝐴
𝑇

𝑐𝑑𝑖
𝑃
𝑖

0 0 0

∗ ∗ Σ
33

0 0 0 𝐿
𝑐𝑖

0 0

∗ ∗ ∗ −𝐷
𝑇

𝑐V𝑖 − 𝐷𝑐V𝑖 0 𝐵
𝑇

𝑐V𝑖𝑃𝑖 0 0 0

∗ ∗ ∗ ∗ −𝑃
𝑖

0 0 𝑃
𝑖
𝑀̃
1𝑖

0

∗ ∗ ∗ ∗ ∗ −𝑃
𝑖

0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝑃
𝑖

0 𝑃
𝑖
𝑀̃
1𝑖

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀𝐼

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0,

(46)

where

Σ
11
= 𝐻

𝑇

𝑄
𝑖
𝐻 + 𝜏𝐻

𝑇

𝑍
𝑖
𝐻 + 𝐴

𝑇

𝑐𝑖
𝑃
𝑖
+ 𝑃
𝑖
𝐴
𝑐𝑖
+ 𝜀𝐻

𝑇

× (𝑁
𝑇

1𝑖
𝑁
1𝑖
+ 𝑁

𝑇

3𝑖
𝑁
3𝑖
)𝐻,

Σ
12
= 𝑃
𝑖
𝐴
𝑐𝑑𝑖
+ 𝜀𝐻

𝑇

𝑁
𝑇

1𝑖
𝑁
2𝑖
,

Σ
22
= − (1 − 𝜇)𝑄

𝑖
+ 𝜀𝑁

𝑇

2𝑖
𝑁
2𝑖
,

Σ
33
= 𝜏𝐻

𝑇

𝑅
𝑖
𝐻 − 𝐿

𝑇

𝑖
− 𝐿
𝑖
.

(47)

Pre- and post-multiplying (46) by matrices diag{𝐽𝑇
𝑖
, 𝐼, 𝐽

𝑇

𝑖
,

𝐼, 𝐽
𝑇

𝑖
, 𝐽
𝑇

𝑖
, 𝐽
𝑇

𝑖
, 𝐼, 𝐼, 𝐼, 𝐼} and diag{𝐽

𝑖
, 𝐼, 𝐽

𝑖
, 𝐼, 𝐽

𝑖
, 𝐽
𝑖
, 𝐽
𝑖
, 𝐼, 𝐼, 𝐼, 𝐼},

respectively, and denoting 𝐿
𝑖
:= 𝛽𝑃

𝑖
, Ω
𝑖
:= 𝑊

𝑖11
, Υ
𝑖
:= 𝑃

𝑖11
,

𝑋
𝑖
:= 𝑃

𝑖12
𝐵
𝑘𝑖
, 𝑌
𝑖
:= 𝐶

𝑘𝑖
𝑊
𝑇

𝑖12
, and

𝑇
𝑖
:= (𝑃

𝑖11
𝐴
𝑖
+ 𝑃
𝑖12
𝐵
𝑘𝑖
𝐶
2𝑖
)𝑊
𝑖11
+ 𝑃
𝑖11
𝐵
𝑖
𝐶
𝑘𝑖
𝑊
𝑇

𝑖12

+ 𝑃
𝑖12
𝐴
𝑘𝑖
𝑊
𝑇

𝑖12
,

(48)

we have

[
[
[
[
[
[
[
[
[
[
[
[
[

[

Ψ̃
11

Ψ̃
12

0 Ψ
14

Ψ̃
15

Ψ
16

0 Ψ
18

0

∗ Ψ̃
22

0 0 0 Ψ
26

0 0 0

∗ ∗ Ψ
33

0 0 0 −𝛽𝜓 0 0

∗ ∗ ∗ Ψ
44

0 Ψ
46

0 0 0

∗ ∗ ∗ ∗ 𝜓 0 0 Ψ
58

0

∗ ∗ ∗ ∗ ∗ 𝜓 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ 𝜓 0 Ψ
79

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀𝐼

]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (49)

where

Ψ̃
11
= Ψ

11
+ 𝜀 [

Ω
𝑖

𝐼
] (𝑄

𝑖
+ 𝜏𝑍

𝑖
+ 𝑁

𝑇

1𝑖
𝑁
1𝑖
+ 𝑁

𝑇

3𝑖
𝑁
3𝑖
) [Ω

𝑖
𝐼] ,

Ψ̃
12
= Ψ

12
+ 𝜀 [

Ω
𝑖

𝐼
]𝑁

𝑇

1𝑖
𝑁
2𝑖
,

Ψ̃
22
= Ψ

22
+ 𝜀𝑁

𝑇

2𝑖
𝑁
2𝑖
,

Ψ̃
15
= [

[

Ω
𝑖
𝑆
𝑇

𝑖
Ω
𝑖
𝑆
𝑇

𝑖
Υ
𝑖
+ Ω

𝑖
𝐺
𝑇

𝑖
𝑋
𝑇

𝑖

𝑆
𝑇

𝑖
𝑆
𝑇

𝑖
Υ
𝑖
+ 𝐺

𝑇

𝑖
𝑋
𝑇

𝑖

]

]

,

Ψ
33
= 𝛽𝜓 + 𝜀 [

Ω
𝑖

𝐼
] 𝑅
𝑖
[Ω
𝑖
𝐼] ,

Ψ
18
= Ψ

58
= Ψ

79
= [

[

𝑀
1𝑖

Υ
𝑖
𝑀
1𝑖
+ 𝑋

𝑖
𝑀
2𝑖

]

]

.

(50)

Applying Schur complement lemma, one obtains

[
[
[
[
[
[
[
[
[
[
[
[
[

[

Ψ̃
11

Ψ̃
12

0 Ψ
14

Ψ̃
15

Ψ
16

0 Ψ
18

0

∗ Ψ̃
22

0 0 0 Ψ
26

0 0 0

∗ ∗ Ψ
33

0 0 0 −𝛽𝜓 0 0

∗ ∗ ∗ Ψ
44

0 Ψ
46

0 0 0

∗ ∗ ∗ ∗ 𝜓 0 0 Ψ
58

0

∗ ∗ ∗ ∗ ∗ 𝜓 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ 𝜓 0 Ψ
79

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀𝐼

]
]
]
]
]
]
]
]
]
]
]
]
]

]

+ 𝜐
𝑇

𝜗 + 𝜗
𝑇

𝜐 < 0,

(51)

where

𝜐 = [Ω
𝑖
0 0 0 0 0 0 0 0 0 0 0 0 0] ,

𝜗 = [0 0 0 0 0 0 0 𝑆
𝑇

𝑖
Υ
𝑖
+ 𝐺

𝑇

𝑖
𝑋
𝑇

𝑖
0 0 0 0 0 0] .

(52)

Then by Lemma 7 and Schur complement lemma, we can
obtain (39) and the parameters of the designed passive
controller.

Remark 14. It should be noted that the dissipativity-based
sliding mode control of switched stochastic delay-free sys-
temswas studied in [38]. However, the focus of our work is on
DOF passive controller design for switched stochastic delay
systems, and this is also the major contribution of the paper.

Remark 15. Theorem 13 proposes a design method of the
DOF passive controller for system (1). For the prescribed
positive definite symmetric matrices 𝑄

𝑖
, 𝑅
𝑖
, and 𝑍

𝑖
, we can

solve the inequality (39) easily by LMI Toolbox in MATLAB.
However, when these matrices are unknown, the inequality
is no longer a LMI. In this case, we can use an iterative
algorithm involving a nonlinear optimization problem with
LMI constraint in [20] to solve it.
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The procedure of the passive controller design can be
concluded as follows:

(1) by solving LMI (39), we can get the feasible solution
of the positive definite symmetric matricesΩ

𝑖
, Υ
𝑖
, 𝑄
𝑖
,

𝑅
𝑖
, and 𝑍

𝑖
and any matrices𝑋

𝑖
, 𝑌
𝑖
, and 𝑇

𝑖
.

(2) Applying singular value decomposition to (42), we
can obtain the nonsingular matrices 𝑃

𝑖12
,𝑊
𝑖12
.

(3) According to (41), we can calculate the controller
parameters 𝐴

𝑘𝑖
, 𝐵
𝑘𝑖
, and 𝐶

𝑘𝑖
.

4. Numerical Example

In this section, we present a numerical example to show the
effectiveness of the proposed design method in the previous
section. Consider system (1) with parameters as follows:

Subsystem 1.

𝐴
1
= [

0.2 0.3

0.1 0.5
] , 𝐴

𝑑1
= [

0.1 0

0 0.4
] ,

𝐵
1
= [

0.2

0.6
] , 𝐵V1 = [

0.3

−0.1
] ,

𝑆
1
= [

−0.4 −1

−1 0.2
] , 𝐶

21
= [

0.1 −0.4

−0.2 0.6
] ,

𝐶
2𝑑1

= [
0.3 −0.2

−0.4 0.5
] , 𝐷

2V1 = [
0.1

−0.5
] ,

𝐺
𝑑1
= [

−0.2 0.5

−0.1 0.3
] , 𝐶

11
= [0.1 0.8] ,

𝐷
11
= 0.5, 𝐷

1V1 = 0.4,

𝑀
11
= 𝑀

21
= diag {0.1, 0.1} ,

𝑁
11
= 𝑁

21
= 𝑁

31
= diag {0.2, 0.2} ,

𝐹
1
= diag {sin (0.01𝑡), sin (0.01𝑡)} .

(53)

Subsystem 2.

𝐴
2
= [

−0.1 0.5

−0.8 0.6
] , 𝐴

𝑑2
= [

0.3 0

0 0.9
] ,

𝐵
2
= [

0.5

−0.1
] , 𝐵V2 = [

−0.1

0.2
] ,

𝑆
2
= [

−0.2 0

0 0.1
] , 𝐶

22
= [

0.1 0

0.1 0.5
] ,

𝐶
2𝑑2

= [
−0.3 0

0 −0.4
] , 𝐷

2V2 = [
−0.1

0.6
] ,

𝐺
2
= [

0.6 0.2

−0.3 0.5
] , 𝐶

12
= [0.2 0.3] ,

𝐷
12
= 0.8, 𝐷

1V2 = 0.6,

𝑀
12
= 𝑀

22
= diag {0.2, 0.2} ,

𝑁
12
= 𝑁

22
= 𝑁

32
= diag {0.1, 0.1} , 𝜏 = 0.5.

(54)

Choose 𝜀
1
= 𝜀
2
= 1 and matrices 𝑄

1
, 𝑄
2
, 𝑅
1
, 𝑅
2
, 𝑍
1
, and 𝑍

2

as follows:
𝑄
1
= diag {0.5, 0.5} , 𝑄

2
= diag {0.2, 0.2} ,

𝑅
1
= diag {0.1, 0.1} , 𝑅

2
= diag {0.2, 0.2} ,

𝑍
1
= diag {0.1, 0.1} , 𝑍

2
= diag {0.4, 0.4} .

(55)

In this case, solving (39) inTheorem 13, we can obtain

Ω
1
= [

0.2537 0.0407

0.0407 0.7178
] , Ω

2
= [

0.5373 0.2054

0.2054 0.2056
] ,

Υ
1
= [

0.2688 −0.2717

−0.2717 0.4615
] , Υ

2
= [

1.6648 −0.2134

−0.2134 0.3725
] ,

𝑋
1
= [

0.3467 0.6160

−0.1359 −1.8058
] , 𝑋

2
= [

−0.2034 −0.2568

−0.0305 −0.6650
] ,

𝑌
1
= [−0.7717 −3.4812] , 𝑌

2
= [−1.9639 0.2288] ,

𝑇
1
= [

−0.5048 0.2014

−0.3514 −1.0718
] , 𝑇

2
= [

−0.4001 0.6342

−0.3454 −1.4366
] .

(56)

Then from (42), matrices 𝑃
112

, 𝑊
112

, 𝑃
212

, and 𝑊
212

can be
obtained:

𝑃
112

= [
−0.9484 −0.3170

−0.3170 0.9484
] , 𝑊

112
=[
−0.9101 −0.2513

−0.3901 0.5864
],

𝑃
212

= [
−0.2956 0.9553

0.9553 0.2956
] , 𝑊

212
= [

−0.0077 0.1539

1.0121 0.0012
] .

(57)

From (41), we can get the DOF passive controller parameters
as follows:

𝐴
𝑘1
= [

−0.0413 −2.3349

2.1534 −9.1815
] , 𝐵

𝑘1
=[
−0.2857 −0.0119

−0.2388 −1.9080
],

𝐶
𝑘1
= [2.1013 −4.5387] , 𝐴

𝑘2
=[

−1.3064 −4.8026

−0.0733 6.5615
],

𝐵
𝑘2
= [

0.0310 −0.5594

−0.2034 −0.4419
] , 𝐶

𝑘2
=[0.2407 −12.7494].

(58)

Let the disturbance input V(𝑡) = 0.02𝑒
−0.1𝑡 sin(𝑡); simula-

tion results are shown in Figures 1–3, where the initial states
𝑥(0) = [1 −2]

𝑇 and 𝑥(0) = [0 0]
𝑇. The switching signal

is depicted in Figure 1. Under the obtained passivity-based
controller, trajectories of states𝑥

1
and𝑥

2
are shown in Figures

2 and 3, respectively. From simulation results, we can see that
the designed passivity-based controller can guarantee that the
corresponding closed-loop system is stable; this shows the
effectiveness of the proposed method.

5. Conclusions

This paper has investigated the problem of DOF passive
control for a class of switched stochastic systems with time-
varying delay. By utilizing MSFs method, a delay-dependent
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sufficient condition for the existence of stochastic passivity
was derived in terms of LMIs. In addition, aDOFpassive con-
troller design method was proposed. A numerical example
was presented to illustrate the effectiveness of the proposed
method.
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