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This paper addresses theH
∞
filtering problem for discrete fuzzy stochastic systems with time-varying delay and sensor saturation.

Random noise depending on state and external disturbance is also taken into account. A decomposition approach is employed to
solve the characteristic of sensor saturation. The scaled small gain (SSG) theorem is extended to the stochastic systems, which
is employed to handle with the time-varying delay by transforming the original system into the form of an interconnected
system consisting of two subsystems. By the proposed Lyapunov-Krasovskii function, the scaled small gains of the subsystems
are analyzed, respectively. Sufficient conditions for the stochastic stability of the filtering error system with a prescribedH

∞
level

are established such that the gains of theH
∞
filter can be obtained explicitly. Finally, simulation results are presented to demonstrate

the effectiveness of the proposed approach.

1. Introduction

In recent years, the control and filtering problems for Takagi-
Sugeno (T-S) fuzzy systems, which have been employed to
solve a great deal of issues in control and filtering fields, have
drawn a great attention of many researchers [1–4]. Described
by a set of If-Then rules, the T-S fuzzy system can approximate
any given continuous function in a compact set ofR𝑛 at any
preciseness [5–7]. Consequently, it has become one of the
most useful and popular research platforms in fuzzy logic
control (FLC), since many nonlinear systems can be analyzed
by using the properties of conventional linear systems via
T-S fuzzy model. A great number of significant results have
been reported in the literatures [8–11]. In particular, a great
effort has been devoted to the filtering problems for T-S fuzzy
systems. Among the existing filtering approaches, theKalman
filtering is popular and useful due to its easy implementing
and good performance in many engineering problems [12].
However, the Kalman filtering has strict constraints that a
precise model of the system is available and all error terms
and measurements have Gaussian distributions, which are
hard to reach in many practical dynamics. Meanwhile, H

∞

filtering, which only requires that the noise sources to be
arbitrary signals with bounded energy or bounded average
power instead of Gaussian noises, has arguably become
another useful and important filtering method for T-S fuzzy
systems.

On the other hand, a large number of practical engineer-
ing problems encounter time-delay phenomenon, which is
always a source of poor performance and even instability of
the systems [13, 14]. Over the past few years, a great interest
has been devoted to time-delay systems, andmany significant
results have been reported by the Lyapunov method [3,
15–17]. On the other hand, an input-output (IO) approach
developed from the SSG theorem that has been introduced
for constant delay [18, 19] and then extended to time-varying
delay [20]. In contrast to the time-independent methods [15],
less conservative results could be achieved by this approach,
which analyzes the stability of the system by transforming the
system into the form of two interconnected subsystems [20,
21], especially for small time delays [22]. It should be noted
that a proper approximation to the time delay plays the key
role in this method, andmany approximation approaches are
proposed to pursue smaller approximation error. Recently,
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a method for estimating the time-varying delay by the upper
and lower delay bounds was introduced in [23], which has a
much smaller resulting error than the other one-term ones
[24–26]. This motivates this research to extend this approach
toH
∞

filtering problems for T-S fuzzy systems.
In practical engineering, sensor saturation is one of the

most popular phenomena that limits the performance of
sensors on various aspects significantly.When sensors cannot
provide the enough amplitude signals due to the physical or
safety constraints [18, 27], a complicated controller is needed
for a good resulting performance. In recent years, researchers
have paid a great attention to filtering problems with sensor
saturation [28, 29]. However, it should be noted that in [28]
the output of the system is only the sum of a linear term and a
nonlinear one, whichmeans that the outputmodel is a special
class of nonlinear sensor model, rather than a general form,
and the filtering method in [28] cannot be utilized for the
stochastic systems directly [30, 31].

Motivated by the above reasons, we investigate the H
∞

filtering problem for discrete-time T-S fuzzy stochastic sys-
temswith time-varying delay and senor saturation. A decom-
position approach is applied to handle with the characteristic
of the sensor saturation, and random noise subject to state
and external-disturbance is also considered. A new model
transformation is employed to transform the original system
into a form of two interconnected subsystems. Based on
the SSG theorem developed to stochastic systems and the
proposed Lyapunov-Krasovskii function, the SSG of each
subsystem is analyzed to establish the sufficient conditions
under which the filtering error system is stochastically stable
with a prescribedH

∞
performance level 𝛾. Then, the corre-

spondingH
∞
filter design technique is proposed. Finally, an

illustrative example is presented to show the effectiveness of
the proposed method.

The remainder of this paper is organized as follows. In
Section 2, the problem of H

∞
filtering is formulated for

T-S fuzzy stochastic systems with time-varying delay and
sensor saturation. Section 3 presents the results for H

∞

performance analysis and H
∞

filter design. A numerical
example is provided to demonstrate the effectiveness of the
designedfiltering technique in Section 4, andwe conclude the
paper with Section 5.

Notation. Throughout this paper, R𝑛 represents the 𝑛-
dimensional Euclidean space, R𝑛×𝑚 is the set of all 𝑛 × 𝑚

real matrices, and the superscripts “−1” and “𝑇”, respectively,
stand for the matrix inverse and matrix transpose. Sym{𝐴} is
the shortened notation for 𝐴 + 𝐴

𝑇, and the notation 𝑃 > 0

(resp., 𝑃 ≥ 0), for 𝑃 ∈ R𝑛×𝑛, means that 𝑃 is real symmetric
and positive definite (resp., semidefinite). The symmetric
elements of the symmetric matrix are represented by an
asterisk (∗), and the block diagonal matrices are denoted by
diag{⋅ ⋅ ⋅}. G

1
∘ G
2
means the series connection of mapping

G
1
and G

2
⋅ E{⋅} denotes the expectation operator with

respect to probability measure, and for vector 𝑥(𝑘), ‖𝑥‖
𝐸
2

=

E{∑∞
𝑛=0

‖𝑥(𝑛)‖
2

}
1/2.

2. Problem Formulation

We consider the following nonlinear fuzzy dynamic
described by a Takagi-Sugeno (T-S) stochastic model:

𝑅
𝑖: If 𝜁

1
(𝑘) is 𝐹𝑖

1
, 𝜁
2
(𝑘) 𝑖𝑠 𝐹

𝑖

2
and . . ., and 𝜁

𝑠
(𝑘) is 𝐹𝑖

𝑠
,

Then

𝑥 (𝑘 + 1) = 𝐴
𝑖
𝑥 (𝑘) + 𝐴

𝑑𝑖
𝑥 (𝑘 − 𝜏

𝑘
) + 𝐵
𝑖
V (𝑘)

+ [𝐸
𝑖
𝑥 (𝑘) + 𝐺

𝑖
V (𝑘)] 𝑤 (𝑘) ,

𝑦 (𝑘) = 𝜙 (𝐶
𝑖
𝑥 (𝑘)) + 𝐷

𝑖
V (𝑘) ,

𝑧 (𝑘) = 𝐿
𝑖
𝑥 (𝑘) ,

(1)

where𝑅𝑖, 𝑖 ∈ {1, 2, . . . , 𝑛}, denotes the 𝑖th fuzzy inference rule,
𝑛 is the number of the inference rules, 𝐹𝑖

𝑗
, 𝑗 ∈ {1, 2, . . . , 𝑠},

are fuzzy sets, and 𝜁(𝑘) = [𝜁
1
(𝑘), 𝜁
2
(𝑘), . . . , 𝜁

𝑠
(𝑘)] are some

measurable premise variables of the system. 𝑥(𝑘) ∈ R𝑛 is the
state vector, 𝑦(𝑘) ∈ R𝑚 is the measured output, and 𝑧(𝑘) ∈
R𝑝 is the signal to be estimated. 𝐴

𝑖
∈ R𝑛×𝑛, 𝐴

𝑑𝑖
∈ R𝑛×𝑛,

𝐵
𝑖
∈ R𝑛×𝑞, 𝐶

𝑖
∈ R𝑚×𝑛, 𝐷

𝑖
∈ R𝑚×𝑞, 𝐿

𝑖
∈ R𝑝×𝑛, 𝐸

𝑖
∈ R𝑛×𝑛,

and 𝐺
𝑖
∈ R𝑛×𝑞 are known constant matrices. 𝜏

𝑘
is the time-

varying delay satisfying

𝑑
1
≤ 𝜏
𝑘
≤ 𝑑
2
, (2)

where 𝑑
1
> 0 and 𝑑

2
> 0 denote the lower and upper bounds

of the delays, respectively. We define the delay interval as
𝑑
12
= 𝑑
2
− 𝑑
1
.

In the system (1),𝑤(𝑘) is a random process with standard
one dimension on a probability space (Ω,F,P), where Ω
denotes the sample space, and P is the probability measure
on F, which is the 𝜎-algebra of subsets of the sample space.
The sequence of 𝑤(𝑘) is generated by (𝑤(𝑘))

𝑘∈N, where N is
the set of natural numbers, such that E{𝑤(𝑘)} = 0, E{𝑤(𝑘)2} =
1, and E{𝑤(𝑖)𝑤(𝑗)} = 0 for 𝑖 ̸= 𝑗.

The exogenous disturbance V(𝑘) ∈ R𝑞 is assumed
to belong to L

𝐸
2

([0,∞);R𝑞), which denotes the space
of 𝑘-dimensional nonanticipatory square-integrable process
𝑓(⋅) = (𝑓(𝑘))

𝑘∈N on N with respect to (F
𝑘∈N), such that

𝑓

2

𝐸
2

= E{
∞

∑

𝑘=0

𝑓(𝑘)

2

} =

∞

∑

𝑘=0

E {𝑓(𝑘)

2

} < ∞. (3)

The defuzzified output of the T-S fuzzy system (1) is
inferred as

Σ : 𝑥 (𝑘 + 1) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃
𝑘
) {𝐴
𝑖
𝑥 (𝑘) + 𝐴

𝑑𝑖
𝑥 (𝑘 − 𝜏

𝑘
) + 𝐵
𝑖
V (𝑘)

+ [𝐸
𝑖
𝑥 (𝑘) + 𝐺

𝑖
V (𝑘)] 𝑤 (𝑘)} ,

𝑦 (𝑘) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃
𝑘
) {𝜙 (𝐶

𝑖
𝑥 (𝑘)) + 𝐷

𝑖
V (𝑘)} ,

𝑧 (𝑘) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃
𝑘
) 𝐿
𝑖
𝑥 (𝑘) ,

(4)
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where

ℎ
𝑖
(𝜃
𝑘
) =

𝜇
𝑖
(𝜃
𝑘
)

∑
𝑟

𝑗=1
𝜇
𝑗
(𝜃
𝑘
)
, 𝜇

𝑖
(𝜃
𝑘
) =

𝑠

∏

𝑖=1

𝐹
𝑖

𝑗
(𝜃
𝑗𝑘
) . (5)

Then, we have 𝜇
𝑖
(𝜃
𝑘
) ≥ 0, (𝑖 = 1, 2, . . . , 𝑟) and ∑𝑟

𝑖=1
𝜇
𝑖
(𝜃
𝑘
) >

0, which implies that ℎ
𝑖
(𝜃
𝑘
) ≥ 0 (𝑖 = 1, 2, . . . , 𝑟) and

∑
𝑟

𝑖=1
ℎ
𝑖
(𝜃
𝑘
) = 1.

In this paper, the sensor saturation is described by the
saturation function 𝜙(⋅) : R𝑚 → R𝑚 satisfying 𝜙 ∈ [𝐾

1
, 𝐾
2
],

for some given diagonal matrices 𝐾
1
≥ 0, 𝐾

2
≥ 0 with

𝐾
2
> 𝐾
1
, such that

(𝜙(𝜁) − 𝐾
1
𝜁)
𝑇

(𝜙 (𝜁) − 𝐾
2
𝜁) ≤ 0, ∀𝜁 ∈ R

𝑚

. (6)

Furthermore, the nonlinear function 𝜙(𝜁) can be decom-
posed into a linear and a nonlinear part

𝜙 (𝜁) = 𝜙
𝑠
(𝜁) + 𝐾

1
𝜁, (7)

where the nonlinearity 𝜙
𝑠
(𝜁) belongs to Φ

𝑠
, where

Φ
𝑠
= {𝜙
𝑠
: 𝜙
𝑇

𝑠
(𝜁) (𝜙
𝑠
(𝜁) − 𝐾𝜁) ≤ 0} , 𝐾 ≜ 𝐾

2
− 𝐾
1
. (8)

For the fuzzy system (1), we construct the following
filter with full order to estimate the system states 𝑥(𝑘) from
measured output 𝑦(𝑘):

F :

{{{{

{{{{

{

�̂� (𝑘 + 1) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃
𝑘
) {𝐴Fi�̂� (𝑘) + 𝐵Fi𝑦 (𝑘)} ,

�̂� (𝑘) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃
𝑘
) 𝐿
𝑖
�̂� (𝑘) ,

(9)

where �̂�(𝑘) ∈ R𝑛 is the filter state vector, �̂�(𝑘) ∈ R𝑝 is the
estimate of 𝑧(𝑘), and 𝐴

𝐹
∈ R𝑛×𝑛 and 𝐵

𝐹
∈ R𝑛×𝑚 are the filter

gains to be determined.
Define the following error variables:

𝑒
𝑥
(𝑘) = 𝑥 (𝑘) − �̂� (𝑘) , 𝑒 (𝑘) = [𝑥

𝑇

(𝑘) 𝑒
𝑇

𝑥
(𝑘)]
𝑇

,

𝑒
𝑧
(𝑘) = 𝑧 (𝑘) − �̂� (𝑘) .

(10)

Combining the system (1) and the filter (9) yields the filtering
error system as follows:

E :

{{{{{{{{{

{{{{{{{{{

{

𝑒 (𝑘+1) =

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

{𝐴
𝑖𝑗
𝑒 (𝑘)+𝐴

𝑑𝑖
𝐼
𝐾
𝑒 (𝑘 − 𝜏

𝑘
)

+𝐵
𝑖𝑗
V (𝑘) [𝐸

𝑖
𝐼
𝐾
𝑒 (𝑘)+𝐺

𝑖
V (𝑘)] 𝑤 (𝑘)

+𝐵Fi𝜙 (𝐶𝑗𝑒 (𝑘))} ,

𝑒
𝑧
(𝑘) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃
𝑘
) 𝐿
𝑖
𝑒 (𝑘) ,

(11)

where

𝐴
𝑖𝑗
= [

𝐴
𝑖

0

𝐴
𝑖
− 𝐴Fi − 𝐵Fi𝐾1𝐶𝑗 𝐴Fi

] , 𝐴
𝑑𝑖
= [

𝐴
𝑑𝑖

𝐴
𝑑𝑖

] ,

𝐵
𝑖𝑗
= [

𝐵
𝑖

𝐵
𝑖
− 𝐵Fi𝐷𝑗

] , 𝐸
𝑖
= [

𝐸
𝑖

𝐸
𝑖

] , 𝐺
𝑖
= [

𝐺
𝑖

𝐺
𝑖

] ,

𝐵Fi = [
0

−𝐵Fi
] , 𝐶

𝑗
= [𝐶
𝑗
0] ,

𝐿
𝑖
= [0 𝐿

𝑖
] , 𝐼

𝐾
= [𝐼
𝑛
0] .

(12)

Furthermore, the following definitions will be used in this
paper.

Definition 1 (see [32]). For the system in (1) with 𝜔(𝑘) = 0,
the system is stochastically stable if for any 𝜓(𝑘) ∈ R𝑛,

E{
∞

∑

𝑘=0

‖𝑥(𝑘)‖
2

} ≤ 𝜃E {‖𝑥(0)‖2} . (13)

Definition 2 (see [33]). A mapping G : 𝑢(𝑘) → 𝑦(𝑘) is said
to be input-output stable in the mean square if there exists
𝛾 ≥ 0, such that

𝑦(𝑘)
𝐸
2

= ‖G(𝑢)‖
𝐸
2

≤ 𝛾‖𝑢(𝑘)‖
𝐸
2

. (14)

Then, the main objective of this paper is as follows.

H
∞

Filtering Problem. Given a scalar 𝛾 > 0, the gains𝐴Fi and
𝐵Fi of the filter (9) are designed such that for any time-delay
𝜏(𝑘) satisfying (2), the filter error system (11) is stochastically
stable under V(𝑘) = 0, and for any given integer 𝛾, the
followingH

∞
performance index
‖𝑧 (𝑘) − �̂� (𝑘)‖

𝐸
2

≤ 𝛾‖V (𝑘)‖
𝐸
2

(15)

holds for any function 𝜙(⋅) ∈ [𝐾
1
, 𝐾
2
].

3. Filtering Performance Analysis

In this section, we focus on the filter performance analysis
based on the developed SSG theorem. By the developed SSG
theorem to the stochastic systems and a new model transfor-
mation to the system E in (11), the sufficient conditions are
proposed, under which the system E is stochastically stable
with a prescribedH

∞
performance index.

3.1. SSGTheorem for Stochastic Systems

Lemma 3 (stochastic small gain theorem [34]). Consider the
following interconnected system consisting of two subsystems in
Figure 1:

S
1
: 𝜀 (𝑡) = G𝜖 (𝑡) , S

2
: 𝜖 (𝑡) = Δ𝜀 (𝑡) . (16)

Then, the closed loop systems are input-output stable in mean
square for all the subsystems G and Δ satisfying

G(𝑢1)
𝐸
2

≤ 𝑘
1

𝑢1
𝐸
2

, 𝑘
1
> 0,

Δ (𝑢2)
𝐸
2

≤ 𝑘
2

𝑢2
𝐸
2

, 𝑘
2
> 0

(17)

if 𝑘
1
𝑘
2
< 1.
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𝑦2

𝑦 𝑦1

𝑢2

𝑢1

+

𝑢 −

G

Δ

Figure 1: The interconnection subsystems.

Proof. Considering (16) yields

𝑦
𝐸
2

≤ 𝑘
1

𝑢1
𝐸
2

= 𝑘
1

𝑢 − Δ(𝑦)
𝐸
2

≤ 𝑘
1
(‖𝑢‖
𝐸
2

+ 𝑘
2

𝑦
𝐸
2

) .

(18)

Obviously,

𝑦
𝐸
2

≤
𝑘
1

1 − 𝑘
1
𝑘
2

‖𝑢‖
𝐸
2

, (19)

which implies that the closed loop is input-output stable in
mean square.

Corollary 4 (stochastic SSG theorem [34]). Consider the
system described in (16). The system is input-output stable in
mean square if ‖𝑇

𝜖
∘ G ∘ 𝑇

𝜀
‖ < 1 holds for some nonsingular

matrices 𝑇
𝑦
and 𝑇

𝛿
with ‖𝑇

𝜀
∘ Δ ∘ 𝑇

𝜖
‖ ≤ 1.

The proof of Corollary 4 can be readily obtained by
following the similar lines of Lemma 3.

3.2. A New Model Transformation. To transform the systems
(11) into the form of (16), we express 𝑥(𝑘 − 𝜏

𝑘
) as

𝑥 (𝑘 − 𝜏
𝑘
) =

1

2
𝑥 (𝑘 − 𝑑

1
) +

1

2
𝑥 (𝑘 − 𝑑

2
) +

𝑑
12

2
𝜖 (𝑘) , (20)

where (1/2)[𝑥(𝑘 − 𝑑
1
) + 𝑥(𝑘 − 𝑑

2
)] is the approximation of

𝑥(𝑘 − 𝜏
𝑘
), and (𝑑

12
/2)𝜖(𝑘) denotes the approximation error.

Then, the system E can be rewritten as follows:

E :

{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{

{

𝑒 (𝑘+1) =

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

{𝐴
𝑖𝑗
𝑒 (𝑘) +

1

2
𝐴
𝑑𝑖

× [𝑥 (𝑘−𝑑
1
)+𝑥 (𝑘−𝑑

2
) + 𝑑
12
𝜖 (𝑘)]

+𝐵
𝑖𝑗
V (𝑘) +[𝐸

𝑖
𝐼
𝐾
𝑒 (𝑘) +𝐺

𝑖
V (𝑘)]

× 𝑤 (𝑘) , +𝐵Fi𝜙 (𝐶𝑗𝑒 (𝑘)) } ,

𝑒
𝑧
(𝑘) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃
𝑘
) 𝐿
𝑖
𝑒 (𝑘) .

(21)

Define 𝜀(𝑘) = E{𝑥(𝑘 + 1)} − 𝑥(𝑘), and we have

𝜖 (𝑘) =
2

𝑑
12

[𝑥 (𝑘 − 𝜏
𝑘
) −

1

2
𝑥 (𝑘 − 𝑑

1
) −

1

2
𝑥 (𝑘 − 𝑑

2
)]

=
1

𝑑
12

[

[

𝑘−𝜏
𝑘
−1

∑

𝑖=𝑘−𝑑
2

𝜀 (𝑖) −

𝑘−𝑑
1
−1

∑

𝑖=𝑘−𝜏
𝑘

𝜀 (𝑖)]

]

=
1

𝑑
12

[

[

𝑘−𝑑
1
−1

∑

𝑖=𝑘−𝑑
2

𝛽 (𝑖) 𝜀 (𝑖)]

]

,

(22)

where

𝛽 (𝑖) ≜ {
1, when 𝑖 ⩽ 𝑘 − 𝜏

𝑘
− 1,

−1, when 𝑖 > 𝑘 − 𝜏
𝑘
− 1.

(23)

Then, obviously the system (21) can be rewritten in the form
as follows:

E
1
: 𝜎 (𝑘) =

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

G𝜉 (𝑘) , E
2
: 𝜖 (𝑘) = Δ𝜀 (𝑘) , (24)

where

𝜉 (𝑘) = [𝑒
𝑇

(𝑘) 𝑥
𝑇

(𝑘−𝑑
1
) 𝑥
𝑇

(𝑘−𝑑
2
) 𝜖 (𝑘) V (𝑘) 𝜙

𝑠
(𝐶
𝑗
𝑥(𝑘))]

𝑇

,

𝜎 (𝑘) = [𝑒
𝑇

(𝑘 + 1) 𝜀
𝑇

(𝑘) 𝑒
𝑇

𝑧
(𝑘)]
𝑇

, G = [G𝑇
1

G𝑇 G𝑇
3
]
𝑇

,

G
1
= [𝐴
𝑖𝑗

1

2
𝐴
𝑑𝑖

1

2
𝐴
𝑑𝑖

𝑑
12

2
𝐴
𝑑𝑖

𝐵
𝑖𝑗

𝐵Fi] ,

G
2
= [𝐴

𝑖
− 𝐼 0

1

2
𝐴
𝑑𝑖

1

2
𝐴
𝑑𝑖

𝑑
12

2
𝐴
𝑑𝑖

𝐵
𝑖
0] ,

G
3
= [𝐿
𝑖
0
𝑝×(3𝑛+𝑚+𝑞)

] .

(25)

Furthermore, the SSGof themappingΔdenoted by 𝛾(Δ
𝑇
) has

an upper bound.

Lemma 5. 𝛾(Δ
𝑇
) has an upper bound

𝛾 (Δ
𝑇
) = sup

‖𝑇𝜖 (𝑘)‖
𝐸
2

‖𝑇𝜀 (𝑘)‖
𝐸
2

≤ 1. (26)

Proof. According to the fact that |𝛽(𝑖)| = 1, by using Jensen’s
inequality, it can be derived under zero initial condition

‖𝑇𝜖(𝑘)‖
2

𝐸
2

= E
{

{

{

∞

∑

𝑗=0

[𝜖
𝑇

(𝑗) 𝑍𝜖 (𝑗)]
}

}

}

≤
2

𝑑2
12

E
{

{

{

∞

∑

𝑖=0

[

[

𝑑
12

𝑖−𝑑
1
−1

∑

𝑗=𝑖−𝑑
2

𝛽
2

(𝑗) 𝜖
𝑇

(𝑗) 𝜖 (𝑗)]

]

}

}

}
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=
1

𝑑
12

E
{

{

{

−𝑑
1
−1

∑

𝑗=−𝑑
2

∞

∑

𝑖=0

𝜖
𝑇

(𝑖 + 𝑗) 𝜖 (𝑖 + 𝑗)
}

}

}

≤
1

𝑑
12

E
{

{

{

−𝑑
1
−1

∑

𝑗=−𝑑
2

∞

∑

𝑖=0

𝜖
𝑇

(𝑖) 𝜖 (𝑖)
}

}

}

≤ E
{

{

{

∞

∑

𝑗=0

[𝜀
𝑇

(𝑗) 𝑍𝜀 (𝑗)]
}

}

}

= ‖𝑇𝜀(𝑘)‖
2

𝐸
2

,

(27)

where 𝑍 = 𝑇
𝑇

𝑇, which implies 𝛾(Δ
𝑇
) ≤ 1. The proof is

completed.

FromLemmas 3 and 5, the systemE in (11) is input-output
stable in mean square if the SSG of the subsystemE

1
satisfies

the conditions in Lemma 3, which will be investigated in the
following section.

3.3. H
∞

Performance Analysis. In this section, the H
∞

performance of the filtering error system is analyzed by
the SSG of the subsystem E

1
in (24) in order to establish

the conditions under which the H
∞

performance index is
guaranteed for the filtering error system (11).

Theorem 6. Suppose that the system matrices 𝐴
𝑖
, 𝐴
𝑑𝑖
, 𝐵
𝑖
, 𝐶
𝑖
,

𝐷
𝑖
, and 𝐿

𝑖
represent a fixed system. Given the filter matrices

𝐴Fi, 𝐵Fi and integers 𝑑
2
> 𝑑
1
≥ 0 and a constant 𝛾 > 0,

the filtering error system (21) is input-output stable in mean
square with anH

∞
performance attention level 𝛾 for any time-

varying delay satisfying (2) if there exist matrices 𝑃 > 0, 𝑄
𝑖
>

0, 𝑖 = 1, 2, such that

Ψ
𝑖𝑗
≜ [

Ξ
1

[Γ
𝑇

2
𝑍 Γ
𝑇

3
Γ
𝑇

1
𝑃]

∗ diag {−𝑍, −𝐼
𝑝
, −𝑃}

] < 0, (28)

where

Ξ
1
= [

Ξ
11

[0 0 0 𝐼
𝑇

𝑘
𝐸
𝑇

𝑖
𝑃𝐺
𝑖
𝐼
𝑇

𝑘
𝐶
𝑇

𝑗
𝐾
𝑇
]

∗ diag {−𝑄
1
, −𝑄
2
, −𝑍, 𝛼

𝑖
, −2𝐼
𝑚
}
] ,

Γ
1
= [𝐴
𝑖𝑗

1

2
𝐴
𝑑𝑖

1

2
𝐴
𝑑𝑖

1

2
𝑑
12
𝐴
𝑑𝑖

𝐵
𝑖𝑗
𝐵Fi] ,

Γ
2
= [𝐴
𝑖
− 𝐼 0

1

2
𝐴
𝑑𝑖

1

2
𝐴
𝑑𝑖

1

2
𝑑
12
𝐴
𝑑𝑖

𝐵
𝑖
0] ,

Γ
3
= [𝐿
𝑖
0
𝑝×(3𝑛+𝑚+𝑞)

] , 𝛼
𝑖
= −𝛾
2

𝐼
𝑞
+ 𝐺
𝑇

𝑖
𝑃𝐺
𝑖
,

Ξ
11
= −𝑃 + 𝐼

𝑇

𝐾
(𝑄
1
+ 𝑄
2
+ 𝐸
𝑇

𝑖
𝑃𝐸
𝑖
) 𝐼
𝐾
.

(29)

Proof. Choose the following Lyapunov-Krasovskii func-
tional:

𝑉 (𝑘) = 𝑉
1
(𝑘) + 𝑉

2
(𝑘) (30)

with

𝑉
1
(𝑘) = 𝑒

𝑇

(𝑘) 𝑃𝑒 (𝑘) ,

𝑉
2
(𝑘) =

𝑘−1

∑

𝑖=𝑘−𝑑
1

𝑥
𝑇

(𝑖) 𝑄
1
𝑥 (𝑖) +

𝑘−1

∑

𝑖=𝑘−𝑑
2

𝑥
𝑇

(𝑖) 𝑄
2
𝑥 (𝑖) ,

(31)

where 𝑃 > 0 and 𝑄
𝑖
> 0, 𝑖 = 1, 2 are the matrices to be

determined.
Define Δ𝑉(𝑘) = E{𝑉(𝑘 + 1)} − 𝑉(𝑘), then we have

Δ𝑉
1
(𝑘)

= E {𝑒𝑇 (𝑘+1) 𝑃𝑒 (𝑘+1)}−𝑒𝑇 (𝑘) 𝑃𝑒 (𝑘)

≤

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

{(
𝜉
𝑇

(𝑘) Γ
𝑇

1
𝑃Γ
1
𝜉 (𝑘)−𝑒

𝑇

(𝑘) 𝑃𝑒 (𝑘)

−2𝜙
𝑠
(𝐶
𝑗
𝑥 (𝑘)) [𝜙

𝑠
(𝐶
𝑗
𝑥 (𝑘))−𝐾𝐶

𝑗
𝑥 (𝑘)]

)} ,

Δ𝑉
2
(𝑘) = 𝑥

𝑇

(𝑘) 𝑄
1
𝑥 (𝑘) − 𝑥

𝑇

(𝑘 − 𝑑
1
) 𝑄
1
𝑥 (𝑘 − 𝑑

1
)

+ 𝑥
𝑇

(𝑘) 𝑄
2
𝑥 (𝑘) − 𝑥

𝑇

(𝑘 − 𝑑
2
) 𝑄
2
𝑥 (𝑘 − 𝑑

2
) .

(32)

Then, define

𝐽
𝑠
= E{

∞

∑

𝑘=0

[𝜀
𝑇

(𝑘) 𝑍𝜀 (𝑘) − 𝜖
𝑇

(𝑘) 𝑍𝜖 (𝑘)

+𝑒
𝑇

𝑧
(𝑘) 𝑒
𝑧
(𝑘) − 𝛾

2

V
𝑇

(𝑘) V (𝑘)] } ,

(33)

which together with (30) yields

𝐽
𝑠
≤ 𝐽
𝑠
+ 𝑉 (∞) − 𝑉 (0)

= E{
∞

∑

𝑘=0

(
Δ𝑉 (𝑘) + 𝜀

𝑇

(𝑘) 𝑍𝜀 (𝑘) − 𝜖
𝑇

(𝑘) 𝑍𝜖 (𝑘)

+𝑒
𝑇

𝑧
(𝑘) 𝑒
𝑧
(𝑘) − 𝛾

2V𝑇 (𝑘) V (𝑘)
)}

= E
{

{

{

∞

∑

𝑘=0

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

[

[

𝜉
𝑇

(𝑘)(

Ξ
1
+ Γ
𝑇

1
𝑃Γ
1

+Γ
𝑇

2
𝑍Γ
2
+ Γ
𝑇

3
Γ
3

)𝜉 (𝑘)]

]

}

}

}

.

(34)

By the Schur complement, it can be verified that 𝐽
𝑠
< 0 is

guaranteed byΨ
𝑖𝑗
< 0, which implies that if𝑍 = 𝑇

𝑇

𝑇, we have
𝛾(G
𝑇
) < 1, where G is defined in (24). According to Lemmas

3 and 5, it is shown that the system E in (11) is input-output
stable in mean square.

Furthermore, 𝐽
𝑠
< 0 implies that

‖𝑇𝜀(𝑘)‖
2

𝐸
2

+
𝑒𝑧(𝑘)


2

𝐸
2

< ‖𝑇𝜖(𝑘)‖
2

𝐸
2

+ 𝛾
2

‖V(𝑘)‖
2

𝐸
2

, (35)

which together with (30) yields ‖𝑒
𝑧
(𝑘)‖
2

𝐸
2

< 𝛾
2

‖V(𝑘)‖2
𝐸
2

. The
proof is completed.

Theorem 6 shows the conditions under which the system
E in (11) is input-output stable in mean square with a
prescribedH

∞
performance index.Moreover, the conditions

for stochastic stability of the system E can be reached by
the Lyapunov-Krasovskii functional method, which will be
discussed in the following theorem.
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Theorem 7. For the forward system E in (24), if Theorem 6
holds, then, the system E is stochastically stable for V(𝑘) = 0.

Proof. For the LKF defined in (30), we have

Δ𝑉
𝑐
(𝑘) = Δ𝑉 (𝑘) + 𝜀

𝑇

(𝑘) 𝑍𝜀 (𝑘) − 𝜖
𝑇

(𝑘) 𝑍𝜖 (𝑘)

= 𝜉
𝑇

1
(𝑘) (Ξ̃

1
+ Γ̃
𝑇

1
𝑃Γ̃
1
+ Γ̃
𝑇

2
𝑍Γ̃
2
) 𝜉
1
(𝑘) ,

(36)

with

𝜉
1
(𝑘) = [𝑒

𝑇

(𝑘) 𝑥
𝑇

(𝑘 − 𝑑
1
) 𝑥
𝑇

(𝑘 − 𝑑
2
) 𝜖(𝑘) 𝜙

𝑠
(𝐶
𝑗
𝑥(𝑘))]

𝑇

,

Ξ̃
1
= [

Ξ
11

[0 0 0 𝐼
𝑇

𝑘
𝐶
𝑇

𝑗
𝐾
𝑇

]

∗ diag {−𝑄
1
, −𝑄
2
, −𝑍, −2𝐼

𝑚
}
] ,

Γ̃
1
= [𝐴
𝑖𝑗

1

2
𝐴
𝑑𝑖

1

2
𝐴
𝑑𝑖

𝑑
12

2
𝐴
𝑑𝑖

𝐵Fi] ,

Γ̃
2
= [𝐴
𝑖
− 𝐼 0

1

2
𝐴
𝑑𝑖

1

2
𝐴
𝑑𝑖

𝑑
12

2
𝐴
𝑑𝑖

0] ,

(37)

where Ξ
11
is defined in (28).

Define (Ξ̃
1
+ Γ̃
𝑇

1
𝑃Γ̃
1
+ Γ̃
𝑇

2
𝑍Γ̃
2
) asΦ

𝑖𝑗
. It can be shown that

Φ
𝑖𝑗
< 0, if Theorem 6 holds. Then, we can always find a small

scalar 𝜆 > 0, such that

Φ
𝑖𝑗
< [

−𝜆𝐼
𝑛
0

0 0
] , (38)

which implies that

E {𝑉
𝑐
(𝑘 + 1) − 𝑉

𝑐
(𝑘)} ≤ −𝜆𝑥

𝑇

(𝑘) 𝑥 (𝑘) < 0. (39)

For any positive integer 𝑅, by summing up the inequality
on both sides from 𝑘 = 0, . . . , 𝑅, we obtain

E {𝑉
𝑐
(𝑅) − 𝑉

𝑐
(0)} ≤ −𝜆

𝑅

∑

𝑘=0

𝑥
𝑇

(𝑘) 𝑥 (𝑘) < 0, (40)

which implies that when 𝑅 → ∞,
∞

∑

𝑘=0

E {𝑥𝑇 (𝑘) 𝑥 (𝑘)} ≤ 1

𝜆
E {𝑉
𝑐
(0) − 𝑉

𝑐
(∞)}

≤
1

𝜆
E {𝑉
𝑐
(0)} < 𝜃E {‖𝑥(0)‖2} ,

(41)

which indicates that the systems in (24) are stochastically
stable according to Definition 1. The proof is completed.

Remark 8. It is well known that free-weighting matrices are
introduced a lot to estimate the upper bound of the term
(1/𝑑
12
) ∑
−𝑑
1
−1

𝑖=−𝑑
2

𝜖
𝑇

(𝑘 + 𝑖)𝑍𝜖(𝑘 + 𝑖), while in this paper, Jensen’s
inequality is employed instead of such weighting matrices,
which reduce the NoV of the proposed conditions to 3𝑛2+3𝑛.
It is remarkably smaller than the results in some existing
literatures, such as 9𝑛

2

+ 3𝑛 [35], and 11𝑛
2

+ 2.5𝑛 [16],
13𝑛
2

+ 5𝑛 [36], and 31𝑛2 + 7𝑛 [17], which demonstrates the
computational advantage of the proposed approach obviously
[24].

4. H
∞

Filter Design

This section is devoted to the H
∞

filter design problem for
the system (1) based on Theorem 6. Sufficient conditions for
the existence of the H

∞
filter are provided in the following

theorem.

Theorem9. Consider the discrete-time fuzzy stochastic system
in (1), for a given constant 𝛾 > 0, if there exist matrices 0 < 𝑋 ∈

R𝑛×𝑛, 0 < 𝑌 ∈ R𝑛×𝑛, 𝐴Fi ∈ R𝑛×𝑛, and 𝐵Fi ∈ R𝑛×𝑚, such that
the following LMI holds:

Ψ̃
𝑖𝑗
≜ [

[

Ξ̃
1
[Γ
𝑇

2
𝑍 Γ
𝑇

3
Γ
𝑇

𝐶
𝑋 Γ
𝑇

𝐶
𝑌 + Γ
𝑇

𝐹
]

∗ diag {−𝑍, −𝐼
𝑝
, −𝑋, −𝑌}

]

]

< 0, (42)

where

Ξ̃
1
= [

[

Ξ̃
11

[0
𝑛×4𝑛

𝐸
𝑇

𝑖
(𝑋 + 𝑌)𝐺

𝑖
𝐶
𝑇

𝑗
𝐾
𝑇

]

∗ diag {𝑌, −𝑄
1
, −𝑄
2
, −𝑍, �̃�

𝑖
, −2𝐼
𝑚
}

]

]

,

Γ
𝐶
= [𝐴
𝑖
0

1

2
𝐴
𝑑𝑖

1

2
𝐴
𝑑𝑖

1

2
𝑑
12
𝐴
𝑑𝑖

𝐵
𝑖
0] ,

Γ
𝐹
= [−𝐵Fi𝐾1𝐶𝑗 − 𝐴Fi 𝐴Fi 0

𝑛×3𝑛
−𝐵Fi𝐷𝑗 −𝐵Fi] ,

�̃�
𝑖
= −𝛾
2

𝐼
𝑞
+ 𝐺
𝑇

𝑖
(𝑋 + 𝑌)𝐺

𝑖
,

Ξ̃
11
= −𝑋 + 𝑄

1
+ 𝑄
2
+ 𝐸
𝑇

𝑖
(𝑋 + 𝑌) 𝐸

𝑖
,

(43)

then, the system E in (11) is stochastically stable with H
∞

performance level 𝛾, and the filter gains are given by

𝐴Fi = 𝑌
−1

𝐴Fi, 𝐵Fi = 𝑌
−1

𝐵Fi. (44)

Proof. Define 𝑃 introduced inTheorem 6 as

𝑃 = [
𝑋 0

0 𝑌
] , (45)

where 0 < 𝑋 ∈ R𝑛×𝑛 and 0 < 𝑌 ∈ R𝑛×𝑛 are to be determined
such that solvability of (28) is satisfied.

Then, we have

[
𝐴
𝑇

𝑖
𝐴
𝑇

𝑖
− 𝐴
𝑇

Fi − 𝐶
𝑇

𝑗
𝐾
𝑇

1
𝐵
𝑇

Fi
0 𝐴

𝑇

Fi
] [

𝑋 0

0 𝑌
]

= [
𝐴
𝑇

𝑖
𝑋 𝐴
𝑇

𝑖
𝑌 − 𝐴

𝑇

Fi𝑌 − 𝐶
𝑇

𝑗
𝐾
𝑇

1
𝐵
𝑇

Fi𝑌

0 𝐴
𝑇

Fi𝑌
] ,

[𝐵
𝑇

𝑖
𝐵
𝑇

𝑖
− 𝐷
𝑇

𝑗
𝐵
𝑇

Fi] [
𝑋 0

0 𝑌
]

= [𝐵
𝑇

𝑖
𝑋 𝐵
𝑇

𝑖
𝑌 − 𝐷

𝑇

𝑗
𝐵
𝑇

Fi𝑌] .

(46)

Define 𝐴Fi = 𝑌𝐴Fi, 𝐵Fi = 𝑌𝐵Fi, which together with (28)
yields (42). The proof is completed.
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5. Numerical Example

In this section, an example is provided to demonstrate
effectiveness of the filter design method proposed in the
preceding sections.

Example 10. Consider the system (1) with the following
parameters:

𝐴
1
= [

[

−0.28 −0.01 −0.02

−0.2 −0.25 −0.29

0.03 −0.04 −0.23

]

]

,

𝐴
𝑑1
= [

[

0.01 0.02 0

0.01 0 0.01

0 0 −0.01

]

]

,

𝐸
1
= [

[

−0.11 0.1 1.66

0 0.46 −0.47

0.47 −0.11 −0.43

]

]

, 𝐵
1
=[

[

−2.02

3.83

1.39

]

]

,

𝐶
1
= [

−0.11 0.05 −0.1

0.69 0.35 0.48
] , 𝐿

1
=[

0.1 0.1 0.1

0.12 0.1 0.19
] ,

𝐺
1
= [−0.21 0.61 0.15]

𝑇

, 𝐷
1
=[0.3 −0.3]

𝑇

,

𝐴
2
= [

[

−0.35 0.0 0.01

−0.59 −0.24 0.02

0.1 −0.06 −0.72

]

]

,

𝐴
𝑑2
= [

[

0.01 0.02 0

0.01 0 0.01

0 0 0.01

]

]

,

𝐸
2
= [

[

−0.12 −0.11 0.38

0.11 0.64 −0.18

−0.31 −0.63 −0.6

]

]

, 𝐵
2
=[

[

2.04

−3.25

−0.93

]

]

,

𝐶
2
= [

−0.2 −0.1 −0.2

0.5 0.2 0.21
] , 𝐿

2
=[

0.2 0.19 0.2

0.1 0.1 0.2
] ,

𝐺
2
= [−0.43 2.11 0.51]

𝑇

, 𝐷
2
=[0.1 0.47]

𝑇

,

(47)

and the saturation parameters are selected as

𝐾
1
= [

0.6 0

0 0.7
] , 𝐾

2
= [

0.8 0

0 0.8
] , (48)

the membership functions are

ℎ
1
(𝜃) =

1 − sin (𝑥
1
)

2
, ℎ

1
(𝜃) =

1 + sin (𝑥
1
)

2
, (49)

and the noises V(𝑘) are assumed to be V(𝑘) = 1/(0.1 + 𝑘
2

),
which satisfy the constraint in (3), and set 𝑑

1
= 1 and 𝑑

2
= 2.
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To design the H
∞

filter, by solving the LMI condition
(42) under the prescribed disturbance level 𝛾 = 1.2, it can
be obtained that

𝐴
𝐹1
= [

[

−0.0001 −0.0008 0.0021

0.0001 0.0005 −0.0013

0.0000 0.0002 −0.0006

]

]

,

𝐵
𝐹1
= [

[

−0.5877 1.4425

1.2489 −2.1186

0.5082 −0.5446

]

]

,
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𝐴
𝐹2
= [

[

−0.0002 −0.0005 0.0012

0.0002 0.0000 0.0002

0.0000 0.0001 −0.0002

]

]

,

𝐵
𝐹2
= [

[

1.0949 2.0782

−0.9802 −3.5244

0.0898 −1.1212

]

]

.

(50)

Assume the sensor saturation as

𝜙 (𝑦) =
𝐾
1
+ 𝐾
2

2
𝑦 +

𝐾
2
− 𝐾
1

2
sin (𝑦) , (51)

which satisfies (8), and the initial conditions as 𝑥(0) =

[1.5 0 − 1]
𝑇, 𝑥(−1) = 𝑥(−2) = [1 0.1 − 0.6]

𝑇. By
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Figure 6: 𝑧
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Figure 7: 𝑒
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calculation, it can be obtained that the ‖𝑒
𝑧
(𝑘)‖
2

𝐸
2

= 0.0095

and ‖V(𝑘)‖2
𝐸
2

= 3.0810 that yields 𝛾 = 0.0555 which is below
the given 𝛾 = 1.2, which demonstrates effectiveness of the
proposed filter design. In addition, the trajectories of state
variable 𝑥(𝑘) and its estimate �̂�(𝑘) are shown in Figures 2, 3,
and 4, 𝑧(𝑘) and its estimate �̂�(𝑘) are given in Figures 5 and 6,
and 𝑒
𝑧
(𝑘) = 𝑧(𝑘) − �̂�(𝑘) is provided in Figure 7.

6. Conclusion

This paper addresses theH
∞

filtering problem for T-S fuzzy
systems subject to sensor saturation. The plant is consid-
ered with random noise depending on state and external-
disturbance. The system is transformed into an input-output
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form consisted of two interconnected subsystems. Based on
the SSG theorem developed to stochastic systems and the
proposed Lyapunov-Krasovskii function, sufficient condi-
tions under which the H

∞
filter can be achieved with the

prescribedH
∞

performance index are established. Finally, a
numerical example is presented to demonstrate the effective-
ness of the proposed filter design scheme.
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