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Abstract

Co-segmentation aims at segmenting common objects from a group of images. Markov random field (MRF) has been
widely used to solve co-segmentation, which introduces a global constraint to make the foreground similar to each
other. However, it is difficult to minimize the new model. In this paper, we propose a new Markov random field-based
co-segmentation model to solve co-segmentation problem without minimization problem. In our model, foreground
similarity constraint is added into the unary term of MRF model rather than the global term, which can be minimized
by graph cut method. In the model, a new energy function is designed by considering both the foreground similarity
and the background consistency. Then, a mutual optimization approach is used to minimize the energy function. We
test the proposed method on many pairs of images. The experimental results demonstrate the effectiveness of the
proposed method.
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1 Introduction
Image segmentation is a fundamental problem for many
computer vision tasks, such as object recognition [1,2],
image understanding [3], and retrieval [4]. Due to varia-
tions of the objects, image segmentation remains a chal-
lenging problem. Recently, co-segmentation [5-15] has
attracted much attention from the community. The goal
of co-segmentation is to segment common objects from a
group of images. Unlike traditional single-image segmen-
tation, the co-segmentation method can segment multiple
images jointly rather than independently segmenting each
image based on the co-occurrence of objects in the images
[16]. Several examples can be found in Figure 1, where
six image pairs are shown. In each image pair, the co-
segmentation aims to extract the common objects from
the image pair, such as the ‘plane’ and ‘banana’ in the
first two image pairs. Compared with traditional segmen-
tation methods, co-segmentation can accurately segment
objects from images by several related images and requires
less user workload [17]. It has many potential applications
in computer vision, such as image classification, object
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recognition, and image retrieval. This paper focuses on
the co-segmentation problem.

The existing co-segmentation models address co-
segmentation as an optimization problem, which achieves
common objects by adding foreground similarity into seg-
mentation models. Both the local smoothness in each
image and the foreground similarity among the images
are considered. Many traditional segmentation methods
have been improved to solve co-segmentation method,
such as the Markov random field (MRF)-based segmen-
tation methods [5-8], random walker-based segmenta-
tion method [18], and discriminative clustering-based
segmentation method [10,19]. Analyzing these methods,
these co-segmentation methods can be concluded as the
extensions of the interactive-based segmentation meth-
ods since it is natural to replace the initial seeds manually
given in the traditional method by searching the local
similar regions shared by images.

Several well-known interactive-based segmentation
methods have been extended to solve co-segmentation
problem. MRF-based segmentation method was first
extended for co-segmentation task by Rother [5], which
introduced a global term representing foreground similar-
ity into the MRF-based image segmentation model. Kim
et al. [15] extended heat diffusion-based interactive seg-
mentation method to solve multi-class co-segmentation
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Figure 1 Some examples of co-segmentation showing six image pairs.

problem. The heat diffusion-based method spreads the
heat from the source seeds to the other pixels by pixel
similarity. To solve multiple images in co-segmentation,
the heat was diffused among the common objects by
foreground similarity. The random walker-based inter-
active segmentation method was extended to solve
co-segmentation problem in the work of Collins et al.
[18], which introduces foreground similarity constraint
into the random walker-based method. In the work of
Meng et al. [16,20], the active contour-based model
(Chan-Vese model) was extended to fit co-segmentation
task by considering both foreground similarity constraint
and background consistency.

Among these methods, MRF-based co-segmentation
methods attract much attentions since the success of the
MRF-based segmentation method on single-image seg-
mentation. Several MRF-based co-segmentation methods
have been proposed [5-8]. Their differences focus on
the formulation of foreground similarity constraints. Sev-
eral foreground similarity constraints have been added,
such as L1-norm [5], L2-norm [6], and reward strat-
egy [7]. However, it remains challenging to minimize the
MRF-based co-segmentation energy function although
many global terms have been introduced. To cope with
the minimization problem, the existing methods search
approximate solutions [5,6,8] or require user to provide
foreground appearance and locations [7]. Other methods
use saliency map [13] to obtain initial object appearance
model. For these methods, the results depend on the
accuracies of the initial appearance models.

GrabCut [21] is an important MRF-based co-
segmentation method, which segments the objects from
a manual rectangle setting by graph cut algorithm. The
main advantage of GrabCut is that the energy function
can be efficiently minimized by mutually applying graph
cut algorithm in polynominal time. Hence, it can be used
in many real-time applications. Furthermore, it models

the foreground and background appearance priors by a
simple rectangle setting, which is convenient compared
with the other interactive-based segmentation methods.
It is seen that performing co-segmentation based on the
GrabCut model can result in efficient optimization and
prior model generation. Meanwhile, the GrabCut model
can also benefit from co-segmentation task. The Grab-
Cut model will be more robust to initial curve setting.
The reason is that the prior provided by a pair of images
in co-segmentation is more sufficient compared with a
single image. Hence, automatically segmenting objects by
GrabCut (without manual curve setting) can be achieved
in co-segmentation task.

In this paper, we propose a new MRF-based co-
segmentation method namely mutual GrabCut (MGrab-
Cut) for common object segmentation, which extends
GrabCut [21] to solve co-segmentation. In the method,
the region outside each initial rectangle is treated as
background region. Meanwhile, the regions inside initial
rectangles are used to model unary potential of the fore-
ground. To segment similar foregrounds, we introduce the
foreground model of the other image in the unary term
of the current image. The final co-segmentation results
are achieved by graph cuts with iteratively updating unary
term of the foreground appearance model and back-
ground appearance model. The main advantage of the
proposed method is that compared with existing MRF-
based co-segmentation methods, we consider foreground
similarity into unary term rather than global term, which
results in easier minimization. Hence, the proposed model
is efficient and real time. Secondly, the proposed method
is robust to initial curve setting because the common
objects can be more accurately located by the constraint of
foreground similarity. A fixed initial curve can be used for
all pairs of images. Thirdly, since the foreground model is
dynamically updated along the iteration, a more accurate
appearance model is obtained by the proposed method.
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We test the proposed method on many pairs of images.
The experimental results demonstrate the effectiveness of
the proposed method.

The contributions of the proposed method are listed as
follows:

1. A novel MRF-based co-segmentation model is
designed. In the model, the foreground similarity
constraint is added into unary term rather than
global term, which results in the efficient
minimization by graph cut algorithm.

2. Compared with traditional GrabCut model, the
proposed model is more robust to initial curve
setting and can segment objects with fixed initial
curves. The benefit is caused by considering a pair of
images instead of a single image.

3. A mutual graph cut-based minimization method is
developed to minimize the energy pairs.

2 Related work
In image segmentation, many minimization techniques
have been used to achieve accurate object segmentation.
Boykov et al. in [22] used graph cut algorithm to min-
imize the energy in MRF-based segmentation model. In
the work of Meng et al. [16], the active contour-based
energy function was minimized by level set techniques
and the method of calculus of variations. In [17], the
shortest path algorithm achieved by dynamic program-
ming method was used for object segmentation. In the
work of Zeng et al. [23], a hybrid extended Kalman fil-
ter and switching particle swarm optimization algorithm
were proposed for model parameter estimation. In [24], a
new particle filter was developed to simultaneously iden-
tify both the states and parameters of the model. In [25],
Zineddin et al. presented a new image reconstruction
algorithm using the cellular neural network that solves the
Navier-Stokes equation, which offered a robust method
for estimating the background signal within the gene spot
region.

In the existing co-segmentation methods, co-
segmentation is commonly modeled as an optimization
problem, which introduces foreground similarity to
fit common object segmentation. For MRF-based co-
segmentation model, the energy function is usually
defined as

E = Upixel + Vpair + Gglobal (1)

where Upixel is the data term which evaluates the poten-
tial of the pixel to the foreground or background. Vpair is
the smoothness term to measure the smoothness of local
pixels. These two terms are single-image segmentation-
based term. The term Gglobal is the global term evaluates
the similarity between the foregrounds. By minimizing the
energy function, only common objects are extracted.

Although the global term makes the foreground simi-
lar, it also results in difficult minimization since searching
the regions with similar appearance is challenging. The
existing methods employ various global terms to cope
with the minimizations. Rother et al. [5] used L1-norm to
measure foreground similarity. The trust region graph cut
method was proposed for energy optimization. Mukher-
jee et al. [6] replaced L1-norm with L2-norm. Pseudo-
Boolean optimization was used for optimization. Instead
of penalizing foreground difference, Hochbaum and Singh
[7] rewarded foreground similarity. Vicente et al. in [8]
modified the Boykov-Jolly model for foreground similar-
ity measurement. Dual decomposition was employed for
minimization.

Other methods have also been used for co-segmentation
task. Joulin et al. [10] segmented common objects by
clustering strategy. The main idea was that the common
objects can be classified into the same class since they have
similar features. Hence, by searching a classifier based on
spectral clustering technique and positive definite kernels
that best classified the common objects, co-segmentation
was achieved. In the work of Batra et al. [11], an interac-
tive co-segmentation method which segmented common
objects through human interaction guided by an auto-
matic recommendation system was proposed. Mukherjee
et al. [12] proposed a scale-invariant co-segmentation
method to segment common objects through the fact
that the rank of the matrix corresponding to foreground
regions should be equal to 1. The algorithm of Chang et
al. [13] solved co-segmentation by a novel global energy
term which used the co-saliency model to measure fore-
ground potentials. The energy function considering both
foreground similarity and background consistency was
submodular and can be efficiently minimized by graph
cut algorithm. Vicente et al. [14] focused on interesting
object co-segmentation. A useful feature to distinguish
the common objects was trained from a total of 33 features
through random forest regression. The common objects
were segmented by loop belief propagation on a full
connected graph. Kim et al. in [15] solved multiple-class-
based co-segmentation problem by anisotropic heat diffu-
sion. By combining clustering method and random walk
segmentation method, multiple classes can be successfully
labeled from a large number of images. Recently, Joulin
et al. in [19] focused on multi-class co-segmentation,
which considers discriminative clustering and multi-class
co-segmentations into account. More accurate segmen-
tation results were obtained. Collins et al. in [18] solved
co-segmentation by random walker-based segmentation
method which added foreground consistency into tra-
ditional random walker-based method. Compared with
MRF-based co-segmentation, the random walker-based
co-segmentation method was efficient. Rubio et al. in [26]
segmented common objects by modifying the wrongly
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segmented from the other successful segmentations. A
co-segmentation framework was formulated by MRF, and
a new global term based on graph matching was pro-
posed. In the work of Meng [17], co-segmentation from a
large number of original images with similar backgrounds
was considered. A digraph was constructed by foreground
similarity and saliency values. The co-segmentation prob-
lem was formulated as the shortest path problem and was
solved by dynamic programming method.

3 The proposed model
In this section, we first introduce the GrabCut method.
Then, the proposed method is illustrated.

3.1 GrabCut segmentation
GrabCut is an interactive image segmentation method. It
has been widely used in many computer vision tasks. In
GrabCut, the image segmentation is a label problem which
assigns a label αi ∈ {0, 1}, i = 1, · · · , N to each image pix-
els zi, i = 1, · · · , N with αi = 1 for foreground and 0 for
background. N is the number of pixels. The label problem
is then set as an optimization problem by minimizing the
energy function

E(α, k, θ , z) = U(α, k, θ , z) + V (α, z) (2)

where α = (α1, . . . , αN ), z = (z1, . . . , zN ), and θ describes
image foreground and background appearance model
which is represented as

θ = {h(z; α), α = {0, 1}} (3)

where α = 0 for the background model and α = 1 for
the foreground model. h is the appearance model, which
is represented as a Gaussian mixture model. In the model,
a full-covariance Gaussian mixture with K components
is considered for the construction. With a Gaussian mix-
ture model (GMM) for the foreground or the background,
each pixel zi is assigned a unique GMM component ki
either from the background or the foreground model
according to α = 0 or 1, where k = (k1, . . . , kN ), θ =
{π(α, ki), μ(α, ki), �(α, ki), α = 0, 1, i = 1, · · · N}. Here,
π(·) are mixture weighting coefficients, and μ(·) and �(·)
are means and covariances of the distribution p(·).

The data term U(α, k, θ , z) in Equation 2 evaluates the fit
of the label α to the date z with θ and k and is represented
as

U(α, k, θ , z) =
∑

n
D(αn, kn, θ , zn) (4)

where n is the number of pixels and

D(αn, kn, θ , zn) = − log p(zn|αn, kn, θ) − log π(αn, kn).
(5)

The smoothness term V (α, z) in Equation 2 encourages
coherence in local regions and is defined as

V (α, z) = γ
∑

(m,n)∈C
[ αn �= αm] exp −β‖zm − zn‖2 (6)

where [ ·] denotes the indicator function taking values 0,1
for a predicate ·. β is constant. C is the set of pairs of neigh-
boring pixels. The pixels are neighbors if they are adjacent
either horizontally/vertically or diagonally.

Based on Equation 2, the segmentation is obtained by
minimizing Equation 2 represented as

α̂ = arg min
α

E(α, k, θ , z) (7)

By fixing k and θ , the problem in Equation 2 is solved by
minimum cut algorithm (graph cut algorithm). In Grab-
Cut, the energy minimization scheme works iteratively,
which updates k and θ by current segmentation and uses
new k and θ to obtain new segmentation by solving the
problem in Equation 2. The algorithm starts from an
initial curve setting manually. The iteration stops when
convergence criterion is satisfied.

3.2 The proposed method
Unlike single-image-based GrabCut method, a pair of
images zl, l = 0, 1 is considered in the proposed model.
Set zl

i is the ith pixel in the lth image and zl = (zl
1, . . . , zl

Nl ).
The label for image zl, l = 0, 1 is αl, l = 0, 1. The pro-
posed method sets co-segmentation as a label problem
that assigns 1 for pixels on the common objects and 0
otherwise. To segment common objects, we design a new
unary term by considering foreground similarity, which
guarantees that only common objects are considered. In
the method, the unary term is defined as

U(αl , kl , θ l , θ1−l, zl) =
⎧⎨
⎩

∑
n(λ · D1(αl

n, kl
n, θ l , zl

n) + (1 − λ)

×D2(αl
n, k1−l

n , θ1−l, zl
n)), if αl

n = 1;
D1(αl

n, kl
n, θ l, zl

n), else
(8)

where θ l and kl are the parameter sets of GMM represen-
tation of zl, which is similar to the definition in GrabCut.
λ is the scale factor to balance the impacts of the fore-
grounds in the current image and the other image. D1

evaluates the fit of the label αl to the date zl with θ l and kl

in the current image and is represented as

D1(αl
n, kl

n, θ l, zl
n) = − log p(zl

n|αl
n, kl

n, θ l) − log π(αl
n, kl

n).
(9)

The foreground similarity term D2 evaluates the simi-
larity between the foregrounds and is defined as

D2(αl
n, k1−l

n , θ1−l, zl
n) = − log p(zl

n|αl
n, k1−l

n , θ1−l)

− log π(αl
n, k1−l

n ).
(10)
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We use the smoothness term in GrabCut shown in
Equation 6 to form the smoothness term of the proposed
method. Then, the co-segmentation is set to minimize the
energy function represented as

α̂l = arg min
αl

E(αl, kl, θ l, k1−l, θ1−l, zl). (11)

We can see from Equation 10 that D2 evaluates the fit
of the pixels with αl

n = 1 in the current image to the
foreground model θ1−l in the next image. The pixels on
common objects have small D2 since they are similar to
the common objects in the next image. Hence, it intends
to be assigned 1. For other pixels, a larger D2 will be
obtained. Hence, it intends to be a background pixel.

By keeping kl, θ l, k1−l, and θ1−l fixed, the energy func-
tion is minimized by minimum cut method. Similar to
GrabCut, we iteratively update the foreground model and
the background model to accurately segment the common
objects. The main difference is that there are two images
in our model. Hence, we improve the iteration method
by simultaneously updating the foreground model and
the background model of two images. In the optimization
method, the initial curve is first set to each image. The
initial segmentations are obtained by treating the pixels
inside the curve as the foreground and the pixels outside
the curve as the background. Then, based on the initial
segmentation, we model the foreground model and back-
ground model θ l

k and kl for each image which are then
used to obtain the foreground potential and background
potential for each image according to Equations 9 and
10. Finally, we optimize the two energies by Equation 11
to obtain segmentation results. The segmentation results
are used as the new initial segmentations for the next
iteration. The algorithm stops when stop condition is
satisfied.

We analyze next the proposed model compared with
the GrabCut. Their difference can be found in Figure 2,
where Figure 2a shows the model of the GrabCut, which
is related to a single image. There is an initial curve C0

which separates the image Z0 into two regions, i.e., the
region inside the curve and the region outside the curve.
The GrabCut considers the region inside the curve as

the foreground and the region outside the curve as the
background. Then, the GMM of the foreground and the
background are determined based on the two regions.
The GMM is represented as k0 and θ0. For a pixel (the blue
points), there are two influences in the GrabCut model.
One is the foreground model represented by the green
lines. The other is the background model represented by
the yellow lines. Based on the two aspects, the point will
be given a label. We can see that GrabCut is sensitive to
the initial curve setting because the change of initial curve
will also change the parameters of the foreground model
and background model, which results in different segmen-
tations. Hence, for GrabCut, manually selecting the initial
curve is used for the segmentation.

The proposed model is represented in Figure 2b, where
there are two images, Z0 and Z1, rather than a single
image. For each image, there is a curve. The curve also
segments the image into two regions: the region inside the
curve and the region outside the curve. Like the analysis
of the GrabCut in Figure 2a, we consider the blue points
in Z0. We can see that there are three terms in our model.
The first two are the foreground model (the green line in
Z0) and the background model (the yellow line) in the cur-
rent image Z0. These two terms are similar to the two in
GrabCut. The third is the foreground model in Z1. For
the third influence, since only the common objects share
similar colors, the pixels on the objects will have large
response of the third term. While for a background pixel,
it has a small response, which results in the label of back-
ground. Hence, the pixels on the common objects will be
considered as foreground.

Comparing our model with GrabCut, the difference is
that we introduce the third term in our model, which
results in the segmentation of the common objects. We
can see that the third term also results in the robustness
to initial curve setting. The reason is that the initial curve
setting of the current image may change the foreground
model. However, the next image can provide the accurate
foreground model when the curve C1 covers most of the
area of the image pairs. The appearance model of the third
model can improve the label of the pixels and result in
successful segmentation. Here, we have to guarantee that

Figure 2 Difference between GrabCut and the proposed model. (a) The segmentation model of GrabCut. (b) The segmentation model of the
proposed method.
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Figure 3 The initial curve setting used in this paper. Two image pairs are shown. ν is the distance between the curve and the image edge.

the curve in the next image covers the most area on the
common objects. This can be simply satisfied by setting
the initial curve as the rectangle with small distance to the
image edge. We can see that this initial curve setting can
be used for all image pairs, which means that the proposed
method does not need to manually set the initial curve.

Note that other initial curve settings, such as the saliency
map-based initial curve setting or manual setting, can also
be used as the initial curve setting.

In this paper, we set the initial curve as a rectangle with
small distance (ν = 5) to the image edge; some exam-
ples are shown in Figure 3. The iteration stops when the

Figure 4 The results by the proposed method. For each block, the first row shows the original images. The results by the methods in [10,15,21]
and the proposed method are shown in the second row to the last row, respectively.
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Figure 5 The segmentation results under various λ. For each image block, the original images are shown in the first column. The results with
λ = 0.1, 0.2, 0.3, 0.4, and 0.5 are shown in the second-to-the-last column, respectively.

difference between the old segmentation and new seg-
mentation is less than a threshold Ts. The algorithm of the
proposed method is shown in Algorithm 1.

Algorithm 1 The algorithm for MGrabCut
Input: A pair of images, zl, l = 0, 1.
Output: The co-segmentation labels: α̂l, l = 0, 1.
% Parameter initialization
K = 5 for GMM, ν = 5, Ts = 0.1.
% Iteration
while The stop condition is not satisfied do

(1) Obtain initial segmentation by setting the pixels
inside the curve as the foreground and the other pixels
as background.

(2) Obtain θ l, kl by GMM for l = 0, 1.
(3) Obtain U according to Equation 8.
(4) Obtain V according to Equation 6.
(5) Obtain α̂l, l = 0, 1 by solving Equation 11.
(6) Return to (2).

end while
Output α̂l, l = 0, 1.

4 Experimental results
In this section, we introduce the experimental results. The
subjective results and objective results are illustrated.

4.1 Datasets
We use the co-saliency database given in [27]. The
co-saliency database contains 105 image pairs which

are collected from several well-known datasets, such as
the Microsoft Research Cambridge image database, the
Caltech-256 Object Categories database, and PASCAL
VOC dataset. Each image pair contains a common object.
All image pairs are considered in our method. Due to
the complexities of the backgrounds and the changes of
the foregrounds, the co-saliency dataset is challenging for
co-segmentation task.

4.2 Results of the proposed method
We first introduce the parameter setting. In Equation 8,
λ = 0.2. For GMM, we set the number of Gaussian distri-
bution N = 5 for the foreground model and N = 3 for the
background model. The stop condition of the iteration is
set as the number of the iteration for simplicity. We set the
stop number as 9.

The results of the proposed method are shown in
Figure 4, where the first row for each image block shows
the original images. The segmentation results by the pro-
posed method are shown in the fifth row. We can see that
the original images have complex backgrounds. Mean-
while, the proposed method successfully segments the
common objects from these images. For example, the ‘bus’
in the last image pair schoolbus are segmented from the
original images although the backgrounds are complex.

We also compare our method with GrabCut [21] and
several existing co-segmentations such as [10,15]. Joulin
et al. in [10] proposed co-segmentation model using dis-
criminative clustering and spectral clustering method. In
the method, a supervised classifier trained from a label of
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Figure 6 The segmentation results under different initial curve settings.

Table 1 The comparison results compared with the
existing methods in terms of the error rate

Name Method Method Method Our results
of [10] of [15] of [21]

amira 0.0970 0.2633 0.1562 0.1289

banan 0.0645 0.1419 0.0327 0.0295

cdcartoona 0.1684 0.0351 0.0671 0.0186

cdbeabeara 0.2722 0.2634 0.0462 0.0207

cdboara 0.0945 0.0877 0.0391 0.0189

cdboata 0.1424 0.1727 0.1761 0.0398

cdcora 0.2934 0.3749 0.3249 0.2253

cddoga 0.1868 0.5232 0.1630 0.2000

cdleopardb 0.2913 0.1696 0.0589 0.0861

cdflamingoa 0.2510 0.1839 0.0501 0.0159

cdpandad 0.5769 0.1322 0.0202 0.0269

cdpersona 0.3882 0.2899 0.3578 0.1958

duck 0.0885 0.0634 0.0766 0.0400

horse 0.0985 0.3317 0.0427 0.0314

kim 0.2115 0.1418 0.0396 0.0432

Ilama 0.2115 0.2005 0.0430 0.1126

mcow 0.2030 0.1319 0.0159 0.0243

pvoccarb 0.5565 0.2323 0.0688 0.0595

pvochorseb 0.2903 0.1074 0.0561 0.0651

pvoccata 0.2184 0.1033 0.0743 0.0137

pvocmotoa 0.5180 0.2718 0.0184 0.0498

pvocsheepb 0.4949 0.3688 0.5120 0.3354

pvoctrain 0.1660 0.3507 0.1237 0.0575

rimg008a 0.4584 0.1339 0.0269 0.0077

rimg010a 0.2721 0.0929 0.0225 0.1047

rimg014a 0.1770 0.2859 0.0199 0.0232

rimg017a 0.3957 0.0471 0.6477 0.2988

rimg023a 0.0523 0.0113 0.0047 0.0036

rimg029a 0.4178 0.0945 0.2015 0.0104

stone 0.0093 0.1612 0.0146 0.0069

the images corresponds to a separation. The label lead-
ing to the maximal separation of the two classes is the
co-segmentation result. The searching problem is solved
by relaxing to a continuous convex optimization problem.
Superpixels are generated by the method in Ncuts [28].
The results by the method in [10] are shown in the sec-
ond row of each image block in Figure 4. It is seen that the
common objects are successfully segmented from original
images by [10], such as the ‘boats’ in boats. Meanwhile,
there are unsuccessful segmentations, such as first image
pairs kim. These unsuccessful segmentations are caused
by the complexity and similarity of the background.

The method in [15] focuses on segmenting multiple
common objects, which uses color information to label
the similar objects. By using linear anisotropic diffusion
method into co-segmentation, the co-segmentation is
molded as a K-way segmentation problem that maximizes
the temperature on anisotropic heat diffusion. Greedy
algorithm is employed for optimization. In the experi-
ment, the code released by the author is used. The intra-
image Gaussian weights and the number of segments (K)
are adjusted to obtain more accurate results. The results
by the method in [15] are shown in the third row of each
image block in Figure 4. We can see that the method
achieves successful segmentation on several classes, such
as boats and faces2. Unsuccessful results are also obtained,

Figure 7 The error 1.0 rate by the methods in [10,15,21], and the
proposed method.
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Figure 8 The error rates with various λ. The x-axis represents the λ.
The y-axis represents the corresponding error rates.

such as kim and schoolbus. The reason is mainly caused by
the fact that the complex background interferes with the
common object extraction.

For GrabCut, we use the same initial curve for fair com-
parison. The results by the GrabCut-based method are
shown in the fourth row in each image block of Figure 4.
It is seen that GrabCut successfully segments the com-
mon objects from the original images, such as the ‘car’
in the first image of car. There are also unsuccessful seg-
mentations, such as the ‘butterfly’ in the first image of
butterfly where the red flower is also segmented as the
foreground. The unsuccessful segmentations are caused
by the fact that it is not enough to distinguish the objects
from the background by only considering a single image.
For example, the red flower is located inside the initial
curve. Hence, GrabCut segments the red flower as the
foreground. For MGrabCut, the red flower is segmented
as the background since there are no similar regions in the
next images.

Furthermore, we show the segmentation results under
different scale λ which balances the foreground poten-
tial that is similar to the foregrounds in the current
image or the other image. The results by various λ are
shown in Figure 5, where the original images are shown
in the first column of each image block. The results
with λ = 0.1, 0.2, 0.3, 0.4, and 0.5 are shown in the
second-to-the-last column, respectively. Six image pairs
are shown. We can see that the proposed method is
robust to λ. Meanwhile, slight differences are obtained
by adjusting λ. A small λ results in segmentation similar
to single-image segmentation, which may contain redun-
dant regions, such as the segmentation of plane. While a
large λ induces to the segmentation of common objects.
However, several regions may be lost, such as the segmen-
tation of train. Hence, we set λ = 0.2 for the trade-off

between single-image segmentation and common object
segmentation.

Figure 6 displays some segmentation results under dif-
ferent initial curve settings. Three image pairs are shown.
For each image pair, we segment the common objects
by three initial curve settings, i.e., the initial curves that
cover most parts of the common objects, the initial curves
that partially cover the common objects, and the initial
curves that cover only one of most parts of the common
objects. The results of the three initial curve settings are
shown in each row. From Figure 4, we can see that the
proposed method can achieve successful segmentation in
these image pairs with various initial curve settings, which
demonstrates that the proposed model is robust to the
initial curve setting.

4.3 Objective results
We introduce next the objective evaluation. We evalu-
ate the segmentation performance based on the error rate
which is defined as the ratio of the number of wrongly
segmented pixels to the total number of pixels. The error
rate is small when the object is accurately segmented.
Since there are 105 image pairs, we only show the error
rates of the 30 image pairs here. The error rates are
shown in Table 1. We can see that the proposed method
successfully segments the common objects in most of
the image pairs. Meanwhile, there are several unsuccess-
ful segmentations, such as ‘cdcora’ and ‘pvocsheepb’. The
reason for the unsuccessful segmentation is that the com-
mon objects have color variations, which does not fulfill
our assumption that the common objects have similar
colors.

The error rates of the existing method such as the meth-
ods in [10,15,21] are also shown for comparison. From
the results, we can see that the proposed method achieves
the lowest error rates in most of the image pairs. We
also calculate the average error rate of all image pairs for
comparison. The error rates by the existing methods and
the proposed method are shown in Figure 7. We can see
that the proposed method obtains the smallest mean error
rate, which demonstrates the effectiveness of the proposed
method. Compared with the original GrabCut method
[21], we can see that the MGrabCut achieves lower error
rates. The improvements are a benefit from considering
foreground similarity.

The error rates with various λ are shown in Figure 8,
where the error rate is shown in the y-axis. The x-
axis displays different λ. We can see that the error
rate is smallest when λ = 0.2, which means that

Table 2 The computational complexities for the comparison methods and our method

Methods [7] [10] [29] [21] [16] Ours

Computational complexity O(n log n) O(n2) O(n2) O(n log n) O(n2) O(n log n)
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considering the foregrounds of both the current image
and the other image will result in a more accurate
co-segmentation.

4.4 Computational complexity analysis
In the proposed method, the minimization is achieved by
graph cut algorithm. Since there are pairs of images, the
computational complexity of the proposed method is two
times that of the graph cut algorithm O(n log n), which
equals to O(n log n). Hence, the computational complexity
of the proposed method is O(n log n), which has the same
computational complexity with the existing graph cut-
based segmentation methods such as [7,21]. Meanwhile,
because of the efficiency of the graph cut minimization,
the computational complexity of the proposed method is
lower than the computational complexities of the other
co-segmentation methods such as [10,16,29], as shown in
Table 2. It is seen that the computational complexity of
the proposed method is low compared with the existing
methods.

5 Conclusions
This paper proposes a new co-segmentation model by
extending GrabCut to MGrabCut. To consider common
object segmentation, we introduce the foreground appear-
ance model of the other image to construct the unary
term of current images. Both the foreground similarity
and background consistency are considered to design our
model. The common objects are finally segmented by
mutually updating the foreground model and the back-
ground model of two images. The experimental results
demonstrate the effectiveness of the proposed method.
In the future, we will extend the proposed model to
solve images with more than two images. Furthermore,
other local features will be considered for more accurate
segmentation.
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