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In this work, input-to-state stability of Lur’e hyperbolic distributed complex-valued parameter control systems has been addressed.
Using comparison principle, delay-dependent sufficient conditions for the input-to-state stability in complex Hilbert spaces are
established in terms of linear operator inequalities. Finally, numerical computation illustrates our result.

1. Introduction

Up to now, the overwhelming majority of stability analysis
and control theory concerning the distributed parameter sys-
tems are all limited to the case where distributed parameter is
real valued [1, 2]. In this work, complex-valued systems that
appear in such fields as quantum mechanics [3] and neural
network [4] have been, for the first time, extended to the
case of distributed complex-valued parameter systems where
delay-dependent sufficient conditions for the input-to-state
stability in complex Hilbert spaces are established in terms of
linear operator inequality.

In this work, two new crucial lemmas used in complex
Hilbert spaces will be developed and thereby ourmain results
are given with detailed illustrations.

2. Preliminaries

Quantum control system, one of the major study intensities
of control system, is a typical complex-valued distributed
parameter system as also complex-valued neural network.
Owing to the significance of this type of distributed parame-
ter system, in view of the typical nonlinearity of Lur’e control

system, consider the following Lur’e hyperbolic distributed
complex-valued parameter control systems:

Σ
0
:

{{

{{

{

̇𝜉 (𝑡) = 𝐴𝜉 (𝑡) + 𝐵𝜉 (𝑡 − ℎ) + 𝐶𝑢 (𝑡) + 𝐷𝜂 (𝑡) ,

𝑧 (𝑡) = 𝑀𝜉 (𝑡) + 𝑁𝜉 (𝑡 − ℎ) + 𝑅𝑢 (𝑡) ,

𝜂 (𝑡) = −𝜑 (𝑡, 𝑧 (𝑡))

(1)

with the Neumann boundary condition 𝑤
(𝑖)
(0, 𝑡) =

𝑤
(𝑖)
(𝜋, 𝑡) = 0 (𝑖 = 0, 1) and the initial condition

𝑤(𝑥, 𝑡) = 𝜙(𝑥, 𝑡), 𝑡 ∈ [−ℎ, 0] in complex Hilbert spaces

H = {𝑤 : 𝑤 (𝑥, 𝑡) = 𝜙 (𝑥, 𝑡) , 𝑡 ∈ [−ℎ, 0] ,

|𝑤| ∈ 𝑊
2,2

((0, 𝜋) ,R) s.t.

boundary condition 𝑤 (0, 𝑡) = 𝑤 (𝜋, 𝑡) = 0} ,

(2)

where 𝑤(𝑥, 𝑡) is the complex-valued state, 𝑖 is the imaginary
unit, 𝑎

0
> 0, 𝑎

1
< 0, and

𝜉 (𝑡) := [
𝑤 (𝑥, 𝑡)

𝑤
𝑡 (𝑥, 𝑡)

] , 𝑢 (𝑡) := [
𝑢
1 (𝑥, 𝑡)

𝑢
2 (𝑥, 𝑡)

] ,

𝜂 (𝑡) := [
𝜂
1
(𝑥, 𝑡)

𝜂
2
(𝑥, 𝑡)

] , 𝐴 := [
0 1

𝑎
0
∇
2
− 𝑖𝑎
1
∇ −𝜇

0

] ,
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𝐵 := [
0 0

−𝑎
2
−𝜇
1

] 𝐶 := [
0 0

−𝑖𝑏
1
𝑏
2

] ,

𝐷 := [
0 0

𝑐
1
𝑐
2

] , 𝑀 = [
𝑚
1

0

0 𝑚
2

] ,

𝑁 = [
0 0

𝑛
1
𝑛
2

] , 𝑅 = [
0 0

𝑟
1
𝑟
2

]

(3)

and where 𝜑(𝑡, 𝑧(𝑡)) : 𝑅 × 𝐻 → 𝐻 is an abstract nonlinear
function satisfying the following sector condition:

⟨𝜑 (𝑡, 𝑧 (𝑡)) − 𝐾
1
𝑧 (𝑡) , 𝜑 (𝑡, 𝑧 (𝑡)) − 𝐾

2
𝑧 (𝑡)⟩ ≤ 0 (4)

with operators

𝐾
1
:= [

𝑘
11

𝑘
12

𝑝
11
∇
2
+ 𝑝
12

𝑘
13

] , 𝐾
2
:= [

𝑘
21

𝑘
22

𝑝
11
∇
2
+ 𝑝
22

𝑘
23

] .

(5)

Before proceeding, we shall introduce some notations and
definitions as follows.

The set of such controls that are measurable and locally
essentially bounded in complex Hilbert spaces U with the
supremum norm ‖𝑢‖sup := sup{‖𝑢(𝑡)‖ : 𝑡 ≥ −ℎ} < ∞ is
denoted byL

∞
.

For each 𝜙 ∈ 𝐶([−ℎ, 0],H) and 𝑢 ∈ L
∞
, we denote

by 𝑤(𝑡, 𝜙, 𝑢) the solution trajectory of systems (1) with initial
state 𝜙 and control input 𝑢.

Definition 1. A function 𝛾 : R
+

→ R
+
is said to be a

class K-function if it is continuous, zero at zero and strictly
increasing. A function 𝛽 : R

+
×R
+
→ R
+
is said to be a class

KL-function if for each fixed 𝑡 ≥ 0, the function 𝛽(⋅, 𝑡) is a
classK-function and for each fixed 𝑠 ≥ 0, the function 𝛽(𝑠, ⋅)
is decreasing and 𝛽(𝑠, 𝑡) → 0 as 𝑡 → ∞.

In what follows, we will have a position to define the
concept of input-to-state stability (ISS) in complex Hilbert
spaces.

Definition 2. System (1) is called input-to-state stable (ISS) in
complex Hilbert spaces if there exist a classKL-function 𝛽 :

R
+
× R
+
→ R
+
and a class K-function 𝛾 : R

+
→ R
+
such

that for any initial state 𝜙 ∈ 𝐶([−ℎ, 0],H) and any bounded
control input 𝑢 ∈ L

∞
, it holds that

𝑥 (𝑡, 𝜙, 𝑢)
 ≤ 𝛽 (

𝜙
ℎ
, 𝑡) + 𝛾 (‖𝑢‖sup) , (6)

where ‖𝜙‖
ℎ
:= sup{‖𝜙(𝜃)‖ : −ℎ ≤ 𝜃 ≤ 0}.

As a key tool for developing the input-to-state stability
in this work, some lemmas will be presented and proved as
follows.

Lemma 3 (see [5]). The following inequality holds:

⟨𝑤 (𝑥, 𝑡) , 𝑖∇𝑤 (𝑥, 𝑡)⟩ ≤
1

2
(⟨𝑤 (𝑥, 𝑡) , 𝑤 (𝑥, 𝑡)⟩

− ⟨𝑤 (𝑥, 𝑡) , ∇
2
𝑤 (𝑥, 𝑡)⟩) .

(7)

Lemma 4 (see [5]). The following inequality holds:

⟨𝑤 (𝑥, 𝑡) , ∇
2
𝑤 (𝑥, 𝑡)⟩ ≤ −

1

2
⟨𝑤 (𝑥, 𝑡) , 𝑤 (𝑥, 𝑡)⟩ . (8)

Lemma 5 (see comparison principle [6]). If the function
𝑔(𝑥, 𝑦) is continuous and satisfies a Lipschitz condition, then
the implication

𝐷
+
𝑚(𝑥) ≤ 𝑔 (𝑥,𝑚 (𝑥))

𝐷
+
𝑢 (𝑥) ≥ 𝑔 (𝑥, 𝑢 (𝑥))

𝑚 (𝑥
0
) ≤ 𝑢 (𝑥

0
)

}

}

}

⇒ 𝑚(𝑥) ≤ 𝑢 (𝑥) for 𝑡 ≥ 𝑡
0

(9)

is true for continuous functions𝑚(𝑥) and 𝑢(𝑥).

In the sequel, we shall give ourmain results using Lemmas
3, 4, and 5.

3. Main Results

Theorem 6. Given a scalar 𝛽 > 0, if there exist scalars
𝑞
01
, 𝑞
02
, 𝑞
03

> 0, 𝑝
1
> 0, 𝜀 > 0 and positive definite real-

valued matrices𝑄 > 0 and 𝑃
1
> 0 such that the following LMIs

hold:

− (𝑎
0
− ℎ
3
) −

1

2
𝑎
1
< 0, 𝑎

0
> 0, 𝑎

1
< 0, (10)

𝑞
02
− 𝑞
03
𝛽 > 0, (11)

2𝑝
1
𝛽 + 𝑎
1
(𝑞
02
− 𝑞
03
𝛽) > 0,

(𝑎
0
− ℎ
3
) (𝑞
02
− 𝑞
03
𝛽) − 𝑝

1
𝛽 > 0,

(12)

Γ := [

1

2
(𝑎
0
− ℎ
3
) 𝑞
03
+
3

4
𝑎
1
𝑞
03

0

0 0

] + [
𝑞
01

𝑞
02

𝑞
02

𝑞
03

] > 0, (13)

R
[
[
[
[

[

𝑄𝐴 + (𝑄𝐴)
𝑇

+ 𝑄 𝑄 (𝐵 − 𝐷𝐾
1𝑚
𝑁)

∗ −𝑒
−2𝛽ℎ

𝑄

∗ ∗

∗ ∗

𝑄𝐷 − 𝜀𝑀
𝑇
(𝐾
2𝑚

− 𝐾
1𝑚
)
𝑇

𝑄 (𝐶 − 𝐷𝐾
1𝑚
𝑅)

−𝜀𝑁
𝑇
(𝐾
2𝑚

− 𝐾
1𝑚
)
𝑇

0

−2𝜀𝐼 −𝜀 (𝐾
2𝑚

− 𝐾
1𝑚
) 𝑅

∗ −2𝑃
1

]
]
]
]
]
]

]

<0,

(14)
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where

𝑄 := [
𝑞
01
+
1

2
(𝑎
0
− ℎ
3
) 𝑞
03
+
3

4
𝑎
1
𝑞
03

𝑞
02

𝑞
02

𝑞
03

] ,

𝐴 := [

𝛽 1

−ℎ
1
−
1

2
(𝑎
0
− ℎ
3
) −

3

4
𝑎
1
𝛽 − 𝜇
0
− ℎ
2

] ,

𝐾
1𝑚

:= [
𝑘
11

𝑘
12

𝑝
12

𝑘
13

] , 𝐾
2𝑚

:= [
𝑘
21

𝑘
22

𝑝
22

𝑘
23

] ,

ℎ
1
:= 𝑐
1
𝑘
11
𝑚
1
+ 𝑐
2
𝑝
12
𝑚
1
,

ℎ
2
:= 𝑐
1
𝑘
12
𝑚
2
+ 𝑐
2
𝑘
13
𝑚
2
,

ℎ
3
:= 𝑐
2
𝑝
11
𝑚
1

> 0.

(15)

Then system (1) is input-to-state stable with decay rate 𝛽 > 0.

Proof. Using the loop transformation technique [7], it comes
to conclude that the absolute input-to-state stability of system
(1) in the sector [𝐾

1
, 𝐾
2
] is equivalent to that of the following

system:

̇𝜉 (𝑡) = (𝐴 − 𝐷𝐾
1
𝑀)𝜉 (𝑡) + (𝐵 − 𝐷𝐾

1
𝑁) 𝜉 (𝑡 − ℎ)

+ 𝐷𝜂 (𝑡) + (𝐶 − 𝐷𝐾
1
𝑅) 𝑢 (𝑡) ,

𝑧 (𝑡) = 𝑀𝜉 (𝑡) + 𝑁𝜉 (𝑡 − ℎ) + 𝑅𝑢 (𝑡) ,

𝜂 (𝑡) = −𝜑 (𝑡, 𝑧 (𝑡)) ,

𝜉 (𝑡) = 𝜙 (𝑡) , for 𝑡 ∈ [−ℎ, 0]

(16)

in the sector [0, 𝐾
2
− 𝐾
1
], where abstract nonlinear function

𝜑(𝑡, 𝑧(𝑡)) satisfies

⟨𝜑 (𝑡, 𝑧 (𝑡)) , 𝜑 (𝑡, 𝑧 (𝑡)) − (𝐾
2
− 𝐾
1
) 𝑧 (𝑡)⟩ ≤ 0. (17)

Choose the following Lyapunov-Krasovskii functional in
complex Hilbert spaces:

𝑉 (𝑡) = ⟨𝜉 (𝑡) , 𝑃𝜉 (𝑡)⟩ + ∫

0

−ℎ

𝑒
2𝛽𝜃

⟨𝜉 (𝑡 + 𝜃) , 𝑄𝜉 (𝑡 + 𝜃)⟩ d𝜃.

(18)

It follows from (18) that

�̇� (𝑡) + 2𝛽𝑉 (𝑡) − 2 ⟨𝑢 (𝑡) , 𝑃
1
𝑢 (𝑡)⟩ − 2𝜀 ⟨𝜂 (𝑡) , 𝜂 (𝑡)⟩

−2𝜀 ⟨𝜂 (𝑡) , (𝐾2−𝐾1) (𝑀𝜉 (𝑡)+𝑁𝜉 (𝑡−ℎ)+𝑅𝑢 (𝑡))⟩

= ⟨𝜒 (𝑡) , Ξ𝜒 (𝑡)⟩ ,

(19)

where

𝜒 (𝑡) :=

[
[
[

[

𝜉 (𝑡)

𝜉 (𝑡 − ℎ)

𝜂 (𝑡)

𝑢 (𝑡)

]
]
]

]

, (20)

Ξ :=

[
[
[

[

(𝐴 − 𝐷𝐾
1
𝑀+ 𝛽𝐼)

∗
𝑃 + 𝑃 (𝐴 − 𝐷𝐾

1
𝑀+ 𝛽𝐼) + 𝑄

∗

∗

∗

𝑃 (𝐵 − 𝐷𝐾
1
𝑁) 𝑃𝐷 − 𝜀𝑀

∗
(𝐾
2
− 𝐾
1
)
∗

𝑃 (𝐶 − 𝐷𝐾
1
𝑅)

−𝑒
−2𝛽ℎ

𝑄 −𝜀𝑁
∗
(𝐾
2
− 𝐾
1
)
∗

0

∗ −2𝜀𝐼 −𝜀 (𝐾
2
− 𝐾
1
) 𝑅

∗ ∗ −2𝑃
1

]
]
]

]

.

(21)

Taking the operators

𝑃 :=[
𝑞
01
−(𝑎
0
𝑞
03
+𝑝
1
) ∇
2
+𝑖𝑎
1
𝑞
03
∇+𝑝
1
∇
2
+ ℎ
3
𝑞
03
∇
2
𝑞
02

𝑞
02

𝑞
03

] ,

𝑄 > 0

(22)

the proof is given in the following steps.

Step 1.Toprove that operator𝑃 is self-adjoint positive definite
operator:

Using Lemmas 3 and 4 and inequality (10), we have that

⟨𝑤 (𝑥, 𝑡) , − (𝑎0 − ℎ
3
) 𝑞
03
∇
2
𝑤 (𝑥, 𝑡)⟩

+ ⟨𝑤 (𝑥, 𝑡) , 𝑖𝑎1𝑞03∇𝑤 (𝑥, 𝑡)⟩

≥ (− (𝑎
0
− ℎ
3
) 𝑞
03
−
𝑎
1
𝑞
03

2
) ⟨𝑤 (𝑥, 𝑡) , ∇

2
𝑤 (𝑥, 𝑡)⟩

+
𝑎
1
𝑞
03

2
⟨𝑤 (𝑥, 𝑡) , 𝑤 (𝑥, 𝑡)⟩

≥ (−
1

2
) (− (𝑎

0
− ℎ
3
) 𝑞
03
−
𝑎
1
𝑞
03

2
) ⟨𝑤 (𝑥, 𝑡) , 𝑤 (𝑥, 𝑡)⟩

+
𝑎
1
𝑞
03

2
⟨𝑤 (𝑥, 𝑡) , 𝑤 (𝑥, 𝑡)⟩

(23)

from which it follows that

⟨𝜉 (𝑡) , 𝑃𝜉 (𝑡)⟩

≥ ⟨[
𝑤 (𝑥, 𝑡)

𝑤
𝑡
(𝑥, 𝑡)

] , ([

1

2
(𝑎
0
− ℎ
3
) 𝑞
03
+
3

4
𝑎
1
𝑞
03

0

0 0

]

+ [
𝑞
01

𝑞
02

𝑞
02

𝑞
03

]) [
𝑤 (𝑥, 𝑡)

𝑤
𝑡
(𝑥, 𝑡)

]⟩ .

(24)

In view of LMI (13), positive definiteness of operator 𝑃 is
verified.
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Step 2. In view of Lemmas 3 and 4 and inequalities (11)-(12),
direct computation can obtain that

⟨𝑤 (𝑥, 𝑡) , (−𝑖𝑎1 (𝑞02 − 𝑞
03
𝛽)∇ + 𝑝

1
𝛽∇
2
)𝑤 (𝑥, 𝑡)⟩

= ⟨𝑤 (𝑥, 𝑡) , (−𝑖𝑎1 (𝑞02 − 𝑞
03
𝛽)∇)𝑤 (𝑥, 𝑡)⟩

+ ⟨𝑤 (𝑥, 𝑡) , 𝑝
1
𝛽∇
2
𝑤 (𝑥, 𝑡)⟩

≤
1

2
(−𝑎
1
(𝑞
02
− 𝑞
03
𝛽) ⟨𝑤 (𝑥, 𝑡) , 𝑤 (𝑥, 𝑡)⟩

+(2𝑝
1
𝛽+𝑎
1
(𝑞
02
−𝑞
03
𝛽)) ⟨𝑤 (𝑥, 𝑡) , ∇

2
𝑤 (𝑥, 𝑡)⟩)

≤
1

2
(−𝑝
1
𝛽 −

3

2
𝑎
1
(𝑞
02
− 𝑞
03
𝛽)) ⟨𝑤 (𝑥, 𝑡) , 𝑤 (𝑥, 𝑡)⟩

(25)

from which it is easy to obtain, in view of LMI (14), that

⟨𝜒 (𝑡) , Ξ𝜒 (𝑡)⟩ ≤

⟨𝜒(𝑡) ,

[
[
[
[

[

𝑄𝐴 + (𝑄𝐴)
𝐻

+ 𝑄 𝑄 (𝐵 − 𝐷𝐾
1𝑚
𝑁)

∗ −𝑒
−2𝛽ℎ

𝑄

∗ ∗

∗ ∗

𝑄𝐷 − 𝜀𝑀
𝑇
(𝐾
2𝑚

− 𝐾
1𝑚
)
𝑇

𝑄 (𝐶 − 𝐷𝐾
1𝑚
𝑅)

−𝜀𝑁
𝑇
(𝐾
2𝑚

− 𝐾
1𝑚
)
𝑇

0

−2𝜀𝐼 −𝜀 (𝐾
2𝑚

− 𝐾
1𝑚
) 𝑅

∗ −2𝑃
1

]
]
]
]

]

𝜒 (𝑡)⟩

(26)

which implies that the inequality �̇�(𝑡) + 2𝛽𝑉(𝑡) −

2⟨𝑢(𝑡), 𝑃
1
𝑢(𝑡)⟩ ≤ 0 holds for any 𝜒(𝑡) satisfying (17)

and hence along the solution trajectories of system (16), by
virtue of Lemma 5, we have that

𝜆min (Γ) ‖𝑤 (𝑥, 𝑡)‖
2
≤ 𝑉 (𝑡) ≤ 𝑒

−2𝛽𝑡
𝑉 (0)

+
1

𝛽
sup
𝑡≥0

⟨𝑢 (𝑡) , 𝑃
1
𝑢 (𝑡)⟩

= 𝑒
−2𝛽𝑡

𝑉 (0) +
1

𝛽
𝜆max (𝑃1) sup

𝑡≥0

‖𝑢 (𝑡)‖
2

≤ (𝑒
−𝛽𝑡

√𝑉 (0) + √
𝜆max (𝑃1)

𝛽
sup
𝑡≥0

‖𝑢 (𝑡)‖)

2

.

(27)

It follows from (27) that

‖𝑤 (𝑥, 𝑡)‖ ≤
1

√𝜆min (Γ)
(𝑒
−𝛽𝑡

√𝑉 (0) + √
𝜆max (𝑃1)

𝛽
‖𝑢‖sup) .

(28)

And hence from Definition 2, the proof is completed.

Remark 7. To illustrate the utility of stability criteria estab-
lished in this paper, applying Theorem 6 to the Lur’e dis-
tributed complex-valued parameter control systems (1) with
coefficients 𝑎

0
= 30, 𝑎

1
= −0.12, 𝑎

2
= 3, 𝜇

0
=

20, 𝜇
1
= −0.2, 𝐶 = [

0 0

−4𝑖 −2
] , 𝐷 = [

0 0

−0.3 0.8
] , 𝑀 =

[
1 0

0 2
] , 𝑁 = [

0 0

1.2 0.3
] , 𝑅 = [

0 0

0.7 0.4
] , 𝐾
1𝑚

= [
1 0

0 0.2
] , 𝐾
2𝑚

=

[
2 0

0 0.9
] , 𝑝
11

= 1, ℎ
1
= −0.30, ℎ

2
= 0.32, and ℎ

3
= 0.80

yields that system (1) is input-to-state stable with decay rate
𝛽 = 0.30 and maximum delay ℎmax = 2.2421.
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