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Adaptive fuzzy sliding mode controller for a class of uncertain nonlinear systems is proposed in this paper. The unknown system
dynamics and upper bounds of the minimum approximation errors are adaptively updated with stabilizing adaptive laws. The
closed-loop system driven by the proposed controllers is shown to be stable with all the adaptation parameters being bounded.The
performance and stability of the proposed control system are achieved analytically using the Lyapunov stability theory. Simulations
show that the proposed controller performs well and exhibits good performance.

1. Introduction

Recent research on fuzzy logic control has, therefore, been
devoted to model based fuzzy control systems that guarantee
not only stability, but also performance of closed-loop fuzzy
control systems [1–6]. For a systematic control design of
nonlinear systems, the Takagi-Sugeno (T-S) fuzzy model [4,
5, 7–12] has been a popular choice in industrial processes due
to its ability to represent the nonlinear system only for input-
output data without complex mathematical equations.

In an effort to improve the robustness of the adaptive
fuzzy control system, many works have been published on
the design of adaptive fuzzy sliding mode controller [13–
18], which integrates the sliding mode controller [16, 19–23]
design technique into the adaptive fuzzy control to improve
the stability and the robustness of the control system. Con-
ventionally, adaptive fuzzy sliding control systems (AFSCSs)
design is based on the assumption that the system states are
available for measurement, so the adaptive laws of AFSCS are
formulated as functions of the tracking error of the system
[21, 24–27].

However, some problems on the algorithm convergence
and conditions stabilities remainwith no response. To resolve

this problem, first is the need for accurate information on the
evolution of the system in the state space, upper bounds of
uncertainties and disturbances. The second is the knowledge
of the upper bound of theminimum approximation error.We
know that the uncertain nature of nonlinear systemsmakes it
difficult to have an analytical description of the dynamics of
the system. Moreover, the knowledge of the upper bound of
the minimum approximation error leaves the control law still
restrictive. In the further study involving a perturbed large-
scale systemwith a time-varying interconnection, an adaptive
algorithm for estimating an uncertain upper bound based on
a variable sliding control frame was proposed in [28].

In this note, based on the variable surface, a fuzzy
sliding model controller is developed for guaranteeing the
tracking performance, in particular, time-varying uncertain
parameters are approximated by fuzzy system, and the adap-
tive sliding mode control is designed so as to compensate
for any unknown reconstruction error, through parameter
adaptation law. In this way, the actual system can follow the
reference signal even in the event of a hard nonlinearity, and
fuzzy sliding mode control gives the unknown upper bound
of uncertainties that are adaptively updated with stabilizing
adaptive laws. It is proved that the closed-loop system is
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globally stable in the Lyapunov sense if the signals involved
are bounded and the system output can track the desired
reference input asymptotically.

This paper is organized as follows: some preliminaries
are provided in Section 2. Following the introduction, the
fuzzy logic system is reviewed briefly in Section 3. The
design and stability analysis for the proposed adaptive fuzzy
sliding mode controller is included in Section 4. Simulation
examples to demonstrate the performance of the proposed
method are provided in Section 5. Finally, in Section 6, we
give a brief conclusion.

2. Preliminaries

Consider the 𝑛th-order nonlinear dynamical system of the
form:

𝑥
𝑛

= 𝑓 (x) + 𝑔 (x) 𝑢 + 𝑑
𝑠
,

𝑦 = 𝑥,

(1)

where x = [𝑥,

.

𝑥, . . . , 𝑥
𝑛−1

]

𝑇

= [𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
]
𝑇

∈ 𝑅
𝑛

is vector of the system that is assumed to be available for
measurements,𝑓 and 𝑔 are unknown but bounded nonlinear
functions, 𝑢 ∈ 𝑅 and 𝑦 ∈ 𝑅 control input and output of the
system, respectively, and 𝑑

𝑠
is external disturbance. As system

(1) is required to be controllable, the nonzero condition of
input gain 𝑔(x) ̸= 0 is necessary.

The system (1) can be rewritten in the following form:

0 = −𝑔
−1

(x) 𝑥𝑛 + 𝑔
−1

(x) 𝑓 (x) + 𝑢 + 𝑔
−1

(x) 𝑑
𝑠
. (2)

By adding 𝑥
𝑛 to both sides, we get

𝑥
𝑛

= 𝑥
𝑛

− 𝑔
−1

(x) 𝑥𝑛 + 𝑔
−1

(x) 𝑓 (x) + 𝑢 + 𝑔
−1

(x) 𝑑
𝑠
. (3)

Equation (3) can be rewritten as

𝑥
𝑛

= 𝐹 (x) + 𝑢 + 𝑑 (x) (4)

such that

𝐹 (x) = (1 − 𝑔
−1

(x)) 𝑥𝑛 + 𝑔
−1

(x) 𝑓 (x) ,

𝑑 (x) = 𝑔
−1

(x) 𝑑
𝑠
.

(5)

Assumption 1 (see [29, 30]). Assume that 𝑓(x), 𝑔(x), and 𝑑
𝑠

satisfy |𝑓(x)| ≤ 𝜇 < ∞, 0 < 𝑔min ≤ 𝑔(x) ≤ 𝑔max < ∞, and
|𝑑| ≤ 𝜅, respectively, for all x ∈ Ux ⊂ R𝑛.

Where 𝜇, 𝑔min, 𝑔max, and 𝜅 are known constants. The
control problem is to force the system output 𝑦 to follow a
given bounded reference signal 𝑦

𝑑
.

Define the tracking error as

𝑒 = 𝑦
𝑑
− 𝑦. (6)

3. Takagi-Sugeno (T-S) Fuzzy Model

Fuzzy logic systems address the imprecision of the input
and output variables directly by defining them with fuzzy

numbers (and fuzzy sets) that can be expressed in linguistic
terms. The basic configuration of the Takagi and Sugeno
[5, 8, 31] system includes a rule base, which consists of a
collection of fuzzy IF-THEN rules in the following form:

Plant Rule 𝑟:
IF 𝑥

1
is 𝐵𝑟
1
and ⋅ ⋅ ⋅ and 𝑥

𝑛
is 𝐵𝑟
𝑛
,

THEN 𝑦
𝑟
= 𝑎
𝑟

0
+ 𝑎
𝑟

1
𝑥
1
+ ⋅ ⋅ ⋅ + 𝑎

𝑟

𝑛
𝑥
𝑛
= 𝜃
𝑇

𝑟
x, (7)

where 𝐵𝑟
𝑖
are fuzzy sets and 𝜃

𝑇

𝑟
= [𝑎
𝑟

0
, 𝑎
𝑟

1
, . . . , 𝑎

𝑟

𝑛
] is a vector of

the adjustable factors on the consequence part of the fuzzy
rule, and the input vector x = [1, 𝑥

1
, . . . , 𝑥

𝑛
] ∈ 𝑅

𝑛. Let
𝑖 = 1, 2, . . . , 𝑛 denote the number of input for fuzzy logic
system, and let 𝑟 = 1, 2, . . . , 𝑚 denote the number of the fuzzy
IF-THEN rules. By using the singleton fuzzification, product
inference and centre average defuzzication, the output value
of the fuzzy system is

𝑦 (x) =
∑
𝑚

𝑟=1
𝑦
𝑟

(∏
𝑛

𝑖=1
𝜇
𝐵
𝑟

𝑖

(𝑥
𝑖
))

∑
𝑚

𝑟=1
(∏
𝑛

𝑖=1
𝜇
𝐵
𝑟

𝑖

(𝑥
𝑖
))

, (8)

where 𝜇
𝐵
𝑟

𝑖

(𝑥
𝑖
) is the membership function value of the fuzzy

variable 𝑥
𝑖
and ∏

𝑛

𝑖=1
𝜇
𝐵
𝑟

𝑖

(𝑥
𝑖
) is the true value of the rth

implication. Equation (8) can be rewritten as

𝑦 (x) = 𝜃
𝑇

𝜉 (x) , (9)

where 𝜃𝑇 = [𝜃
𝑇

1
, 𝜃
𝑇

2
, . . . , 𝜃

𝑚
] is an adjustable parameter vector,

𝜉(x)𝑇 = [𝜉
1

(x), . . . , 𝜉𝑚(x)] is a fuzzy basis function vector in
which, 𝜉𝑟(x), 𝑟 = 1, 2, . . . , 𝑚,

𝜉
𝑟

(x) =
∏
𝑛

𝑖=1
𝜇
𝐵
𝑟

𝑖

(𝑥
𝑖
)

∑
𝑚

𝑟=1
∏
𝑛

𝑖=1
𝜇
𝐵
𝑟

𝑖

(𝑥
𝑖
)

. (10)

The aforementioned fuzzy system has been shown to be capa-
ble of universally approximating well-defined functions over
a compact set to arbitrary degree of accuracy. For smooth
nonlinear functions 𝐹(x), 𝑑(x), they can be approximated by

𝐹 (x) = 𝜃
∗𝑇

𝑓
Ψ (x) + 𝜀,

𝑑 (x) =𝜃∗𝑇
𝑑

Ξ (x) + 𝜎,

(11)

where 𝜀 and 𝜎 are the fuzzy approximations and 𝜃
∗

𝑓
, and 𝜃

∗

𝑑

are optimal weight vectors.
And whose estimates are given by

𝐹(

x
̂
𝜃
𝑓

) =
̂
𝜃

𝑇

𝑓
Ψ (x) ,

𝑑 (

x
̂
𝜃
𝑑

) =
̂
𝜃

𝑇

𝑑
Ξ (x) .

(12)

4. Adaptive Fuzzy Sliding Mode
Controller Design

In this section, a systematic methodology is presented for
the design of stable adaptive fuzzy sliding mode controller,
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the control law and the weight adaptation rules are devel-
oped, guaranteeing the uniform ultimate boundedness of
the tracking error with respect to an arbitrary small set
around the origin. Additionally, the boundedness of all
signals involved in the closed-loop configuration is ensured.
The resetting scheme is introduced, performing on theweight
estimates 𝜃

𝑓
, 𝜃
𝑑
to guarantee the validity of the control law.

If we consider the system given by (4), the sliding surface
can be defined by

𝑆 = 𝑎
𝑛−1

𝑒 + ⋅ ⋅ ⋅ + 𝑎
1
𝑒
𝑛−2

+ 𝑒
𝑛−1

. (13)

The elements of the sliding surface are chosen such that the
polynomial 𝑎

𝑛−1
𝑝
𝑛−1

+ 𝑎
𝑛−2

𝑝
𝑛−2

+ ⋅ ⋅ ⋅ + 𝑎
0
is strictly Hurwitz

[32] (here𝑝 denotes the complex Laplace transform variable).
We propose to choose “𝑎” as follows [33]:

𝑎
𝑖
=

𝑀
𝑖





𝑒
𝑛−1−𝑖





+ 𝜂
𝑖

; 𝑖 = 1, . . . , 𝑛 − 1, (14)

where𝑀
𝑖
is a given positive scalar, and 𝜂

𝑖
is positive constant

low value.
Note that 𝑀/𝜂 represents the slope of sliding along the

surface when it is reached by the system.
By using the tracking error defined by (6), the time

derivative of (13) is

.

𝑆 =

𝑛−1

∑

𝑖=1

𝑎
𝑛−𝑖

𝑒
𝑖

+

𝑛−1

∑

𝑖=1

.

𝑎
𝑛−𝑖

𝑒
𝑖−1

+ 𝑒
𝑛

,

.

𝑆 = 𝑦
𝑛

𝑑
− 𝑦
𝑛

+

𝑛−1

∑

𝑖=1

𝑎
𝑛−𝑖

𝑒
𝑖

+

𝑛−1

∑

𝑖=1

.

𝑎
𝑛−𝑖

𝑒
𝑖−1

= 𝑦
𝑛

𝑑
− 𝐹 (x) − 𝑢 − 𝑑 (x) +

𝑛−1

∑

𝑖=1

𝑎
𝑛−𝑖

𝑒
𝑖

+

𝑛−1

∑

𝑖=1

.

𝑎
𝑛−𝑖

𝑒
𝑖−1

= 𝑦
𝑛

𝑑
− 𝐹 (x) − 𝑢 − 𝑑 (x) + Ae,

(15)

where 𝑛 is the 𝑛th derivative of the system, and A =

[

.

𝑎
𝑛−1

, 𝑎
𝑛−1

,

.

𝑎
𝑛−2

, . . . ,

.

𝑎
1
, 𝑎
1
], e = [𝑒, . . . , 𝑒

𝑛−3

; 𝑒
𝑛−2

, 𝑒
𝑛−2

; 𝑒
𝑛−1

]

𝑇.

Assumption 2. Let x belong to a compact setΩ
𝑥
. The optimal

weight vectors 𝜃∗
𝑓
and 𝜃
∗

𝑑
are defined as

𝜃
∗

𝑓
= arg min
̂
𝜃
𝑓
∈Ω
𝑓

[ sup
𝑥∈Ω
𝑥

[𝐹(

x
̂
𝜃
𝑓

) − 𝐹 (x)]] ,

𝜃
∗

𝑑
= arg min
̂
𝜃
𝑑
∈Ω
𝑑

[ sup
𝑥∈Ω
𝑥

[𝑑(

x
̂
𝜃
𝑑

) − 𝑑 (x)]] .

(16)

And define the constraint sets that the parameters concerned
belong to

Ω
𝑓
= {𝜃
𝑓
|






𝜃
𝑓






≤ 𝑀
𝑓
} ,

Ω
𝑑
= {𝜃
𝑑
|




𝜃
𝑑





≤ 𝑀
𝑑
} ,

(17)

where𝑀
𝑓
and𝑀

𝑔
are design parameters.

We assume that ̂𝜃
𝑓
, ̂𝜃
𝑑
, and 𝑥 never reach the boundaries

Ω
𝑓
,Ω
𝑑
, andΩ

𝑥
. We can define the minimum approximation

errors as

𝜀 = 𝐹 (x) −𝐹(

x
𝜃
∗

𝑓

) ,

𝜎 = 𝑑 (x) −𝑑(

x
𝜃
∗

𝑑

) .

(18)

It is assumed that minimum approximation errors are
bounded for all 𝑥 ∈ Ω

𝑥
:

|𝜀| ≤ 𝜀, |𝜎| ≤ 𝜎, ∀𝑥 ∈ Ω
𝑥
. (19)

The upper bound 𝜀, 𝜎 can be reduced arbitrarily. But this
choice is not always easy, that is our aim in this work to
estimate them by adaptive laws, which guarantee the stability
of the closed loop system.

The role of the fuzzy systems 𝐹(x/̂𝜃
𝑓
) and 𝑑(x/̂𝜃

𝑑
) is

to represent the unknown functions using the input-output
measurement of the target system. Also, a corrective con-
troller is defined to guarantee the stability of the closed-loop
control system and compensate the approximation errors. A
direct adaptive control law can be chosen as

𝑢 = (













𝐹(

x
̂
𝜃
𝑓

)













+












𝑑 (

x
̂
𝜃
𝑑

)












+ 𝑦
𝑛

𝑑
+ 𝜆 + Ae+̂𝜀 + ̂

𝜎) sgn (𝑆) ,

(20)

where 𝜆 is a strictly positive constant, and ̂
𝜀, ̂𝜎 are estimates

of 𝜀, 𝜎, and

sgn (𝑆) =

{
{

{
{

{

1 if 𝑆 > 0

0 if 𝑆 = 0

−1 if 𝑆 < 0.

(21)

Theorem 1. Consider the nonlinear system described by (4),
and suppose that Assumptions 1 and 2 are satisfied.The control
law is provided by (20), and the parameters adaptation laws
are given by

.

̂
𝜃
𝑓
= 𝛾
𝑓
Ψ
𝑓
(x) 𝑆,

.

̂
𝜃
𝑑
= 𝛾
𝑑
Ξ
𝑑
(x) 𝑆,

.

̂
𝜀 = 𝑆𝛾

𝜀
,

.

̂
𝜎 = 𝑆𝛾

𝜎
.

(22)

Then, the desired tracking performance can be achieved as 𝑆
becomes asymptotically stable and all adaptation parameters
remain bounded.
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Proof. Taking into account the minimum approximation
errors (18) and control law (20), the sliding surface (15) can
be rewritten as

.

𝑆 = 𝑦
𝑛

𝑑
− (













𝐹(

x
̂
𝜃
𝑓

)













+












𝑑 (

x
̂
𝜃
𝑑

)












+𝑦
𝑛

𝑑
+ 𝑙 + Ae + ̂

𝑒 +
̂
𝑠) sgn (𝑆)

− 𝐹 (x) − 𝑑 (x) + Ae.

(23)

Defining the parameters errors ̃𝜃
𝑓
=
̂
𝜃
𝑓
− 𝜃
∗

𝑓
, ̃𝜃
𝑑
=
̂
𝜃
𝑑
− 𝜃
∗

𝑑
.

We choose the Lyapunov function candidate as follows:

𝑉 =

1

2

𝑆
2

+

1

2𝛾
𝑓

̂
𝜃

𝑇

𝑓

̂
𝜃
𝑓
+

1

2𝛾
𝑑

̂
𝜃

𝑇

𝑑

̂
𝜃
𝑑
+

1

2𝛾
𝑒

̂
𝑒

2

+

1

2𝛾
𝑠

̂
𝑠

2

̃
𝜀 = 𝜀 −

̂
𝜀,

̃
𝜎 = 𝜎 −

̂
𝜎,

(24)

where 𝛾
𝑓
, 𝛾
𝑑
, 𝛾
𝜀
, and 𝛾

𝜎
are positive constants. The time

derivative of (24) can be obtained as follows:

.

𝑉 = 𝑆

.

𝑆 +

1

𝛾
𝑓

̃
𝜃

𝑇

𝑓

.

̃
𝜃
𝑓
+

1

𝛾
𝑑

̃
𝜃

𝑇

𝑑

.

̃
𝜃
𝑑
+

1

𝛾
𝜀

̃
𝜀

.

̃
𝜀 +

1

𝛾
𝜎

̃
𝜎

.

̃
𝜎

= 𝑆(𝑦
𝑛

𝑑
− 𝐹 (x) −(













𝐹(

x
̂
𝜃
𝑓

)













+












𝑑 (

x
̂
𝜃
𝑑

)












+𝑦
𝑛

𝑑
+ 𝜆 + Ae

+
̂
𝜀 +

̂
𝜎) sgn (𝑆) − 𝑑 (x) + Ae)

+

1

𝛾
𝑓

̃
𝜃

𝑇

𝑓

.

̃
𝜃
𝑓
+

1

𝛾
𝑑

̃
𝜃

𝑇

𝑑

.

̃
𝜃
𝑑
+

1

𝛾
𝜀

̃
𝜀

.

̃
𝜀 +

1

𝛾
𝜎

̃
𝜎

.

̃
𝜎

≤ |𝑆| |Ae| + |𝑆| 𝑦
𝑛

𝑑
− 𝑆(













𝐹(

x
̂
𝜃
𝑓

)













+












𝑑 (

x
̂
𝜃
𝑑

)












+ �̈�
𝑑

+𝜆 + Ae+̂𝜀 + ̂
𝜎) sgn (𝑆)

− 𝑆𝐹 (x) − 𝑆𝑑 (x) + 1

𝛾
𝑓

̃
𝜃

𝑇

𝑓

.

̃
𝜃
𝑓
+

1

𝛾
𝑑

̃
𝜃

𝑇

𝑑

.

̃
𝜃
𝑑
+

1

𝛾
𝜀

̃
𝜀

.

̃
𝜀 +

1

𝛾
𝜎

̃
𝜎

.

̃
𝜎

= − 𝜆 |𝑆| − |𝑆|













𝐹(

x
̂
𝜃
𝑓

)













− |𝑆|












𝑑 (

x
̂
𝜃
𝑑

)












− |𝑆|
̂
𝜀

− |𝑆|
̂
𝜎 − 𝑆𝐹 (x) − 𝑆𝑑 (x)

+

1

𝛾
𝑓

̃
𝜃

𝑇

𝑓

.

̃
𝜃
𝑓
+

1

𝛾
𝑑

̃
𝜃

𝑇

𝑑

.

̃
𝜃
𝑑
+

1

𝛾
𝜀

̃
𝜀

.

̃
𝜀 +

1

𝛾
𝜎

̃
𝜎

.

̃
𝜎

= − 𝜆 |𝑆| − |𝑆|













𝐹(

x
̂
𝜃
𝑓

)













− |𝑆|












𝑑 (

x
̂
𝜃
𝑑

)












− |𝑆|
̂
𝜀

− |𝑆|
̂
𝜎 − 𝑆(𝐹(

x
𝜃
∗

𝑓

) + 𝜀)

− 𝑆(𝑑(

x
𝜃
∗

𝑑

) + 𝜎) +

1

𝛾
𝑓

̃
𝜃

𝑇

𝑓

.

̃
𝜃
𝑓
+

1

𝛾
𝑑

̃
𝜃

𝑇

𝑑

.

̃
𝜃
𝑑

+

1

𝛾
𝜀

̃
𝜀

.

̃
𝜀 +

1

𝛾
𝜎

̃
𝜎

.

̃
𝜎

≤ − 𝜆 |𝑆| − |𝑆|













𝐹(

x
̂
𝜃
𝑓

)













− |𝑆|












𝑑 (

x
̂
𝜃
𝑑

)












− |𝑆|
̂
𝜀 − |𝑆|

̂
𝜎

+ |𝑆|













𝐹(

x
̂
𝜃
𝑓

)













− |𝑆|












𝑑 (

x
̂
𝜃
𝑑

)












− 𝑆
̃
𝜃
𝑓
Ψ (x) − 𝑆

̃
𝜃
𝑑
Ξ (x) + |𝑆| 𝜀 + |𝑆| 𝜎 +

1

𝛾
𝑓

̃
𝜃

𝑇

𝑓

.

̃
𝜃
𝑓

+

1

𝛾
𝑑

̃
𝜃

𝑇

𝑑

.

̃
𝜃
𝑑
+

1

𝛾
𝜀

̃
𝜀

.

̃
𝜀 +

1

𝛾
𝜎

̃
𝜎

.

̃
𝜎

= − 𝜆 |𝑆| − 𝑆
̃
𝜃
𝑓
Ψ (x) − 𝑆

̃
𝜃
𝑑
Ξ (x) + |𝑆|

̃
𝜀 + |𝑆|

̃
𝜎

+

1

𝛾
𝑓

̃
𝜃

𝑇

𝑓

.

̃
𝜃
𝑓
+

1

𝛾
𝑑

̃
𝜃

𝑇

𝑑

.

̃
𝜃
𝑑
+

1

𝛾
𝜀

̃
𝜀

.

̃
𝜀 +

1

𝛾
𝜎

̃
𝜎

.

̃
𝜎

= − 𝜆 |𝑆| +
̃
𝜃

𝑇

𝑓
(−𝑆Ψ

𝑓
(x) + 1

𝛾
𝑓

.

̃
𝜃
𝑓
)

+
̃
𝜃

𝑇

𝑑
(−𝑆Ξ

𝑑
(x) 𝑢 +

1

𝛾
𝑑

.

̃
𝜃
𝑑
)

+
̃
𝜀 (𝑆 +

1

𝛾
𝜀

.

̃
𝜀) +

̃
𝜎(𝑆 +

1

𝛾
𝑑

.

̃
𝜎) .

(25)

Choosing a fuzzy rule adaptive method as

.

̃
𝜃
𝑓
= 𝛾
𝑓
Ψ
𝑓
(x) 𝑆,

.

̃
𝜃
𝑔
= 𝛾
𝑑
Ξ
𝑑
(x) 𝑆,

.

̃
𝜀 = −𝑆𝛾

𝜀
,

.

̃
𝜎 = −𝑆𝛾

𝜎

(26)
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or equivalently, by definition
.

̂
𝜃
𝑓
= 𝛾
𝑓
Ψ
𝑓
(x) 𝑆,

.

̂
𝜃
𝑔
= 𝛾
𝑑
Ξ
𝑑
(x) 𝑆,

.

̂
𝜀 = 𝑆𝛾

𝜀
,

.

̂
𝜎 = 𝑆𝛾

𝜎

(27)

yields
.

𝑉 = −𝜆 |𝑆| . (28)

Integrating both sides of (28), we have ∫

∞

0

.

𝑉𝑑𝑡 ≤

−∫

∞

0

(1/2)|𝑆|𝑑𝑡, and thus, the following equation holds:

∫

∞

0

|𝑆| 𝑑𝑡 ≤ 2 (𝑉 (0) − 𝑉 (∞)) . (29)

As 𝑉(0) is bounded and also 0 ≤ 𝑉(∞) ≤ 𝑉(0) from (28),
∫

∞

0

|𝑆|𝑑𝑡 is also bounded from (29). Using Barbalat’s lemma,
[19, 34] |𝑆| → 0 for 𝑡 → ∞.

From the moment where the sliding surface is designed
and constructed to be attractive, we can also see that
lim
𝑡→∞

𝑒 = 0.Therefore, the closed-loop system is asymptot-
ically stable and the position tracking objective is achieved.
The modified projection adaptive laws are given in [7].

5. Simulation Example

We illustrate the validity of the design approach by an
example of robot arm tracking control with a single degree
of freedom as Figure 1 shows.

The dynamic equations of such a system are given by

𝑥
(3)

= 𝑓 (x) + 𝑔 (x) 𝑢 + 𝑑,

𝑦 = 𝑥,

(30)

where

𝑓 (x) = −

𝑟

𝐿

𝑥
3
− (

𝑔

𝑙

cos (𝑥
1
) +

𝐾
𝑏
𝑁
2

𝐾
𝑡

𝐿𝑚𝑙
2

)𝑥
2
−

𝑟𝑔

𝐿𝑙

sin (𝑥
1
) ,

𝑔 (x) = 𝐾
𝑡
𝑁

𝐿𝑚𝑙
2
,

x = [𝑥
1
, 𝑥
2
, 𝑥
3
]
𝑇

,

(31)

where 𝑥
1
is the angular position (rad), 𝑥

2
is the angular

velocity (rad/s), 𝑥
3
is the angular acceleration (rad/s2), 𝑢(𝑡)

is the applied force (control signal) (N), and 𝑑 is the external
disturbance. The simulation parameters are given in Table 1.

According to (30), we choose the sliding surface as 𝑆 =

𝑒
(2)

+𝑎
2
𝑒
(1)

+𝑎
1
𝑒.The following parameters are chosen so that

x1

Figure 1: Robot arm.

Table 1: Simulation parameters.

Mass of the pole 𝑚 = 5 kg
The half-length of the pole 𝑙 = 0.5m
The acceleration due to gravity 𝐺 = 9.8

Resistance 𝑟 = 1.5

Inductance 𝐿 = 0.5

Electromotive force constant 𝐾
𝑏
= 0.2

Constant torque motor 𝐾
𝑡
= 0.3

Reduction ratio 𝑁 = 60

the characteristic function of the surface is the negative real
part

𝑀
1
= 8, 𝜂

1
= 1, 𝑀

2
= 15 𝜂

2
= 1. (32)

To construct two fuzzy logic systems, 𝐹(x/̂𝜃
𝑓
) and

𝑑(x/̂𝜃
𝑑
) as given in (12), the initial consequent parameters of

fuzzy rules are chosen randomly in the interval [−1.2, 1.2].
The initial values of x are given as [0 0 0]

𝑇.
This interval will be sufficiently covered by threemember-

ship functions for position, velocity, and angular acceleration.
Then, we have 27 rules.

Let the learning rate 𝛾
𝑓
= 0.05, 𝛾

𝑑
= 20, 𝛾

𝜀
= 100, 𝛾

𝜎
=

500, 𝑘
𝑑
= 6, and𝑀 = 40.

The control objective is tomaintain the system to track the
desired angle trajectory, 𝑦

𝑑
= sin(𝑡), and to test the proposed

control, we introduced parametric variations and external
disturbances given by Δ𝑚 = 0.1 sin(𝑥), 𝑑 = 0.125 × sin(2𝑡),
respectively.

Figures 2–5 show the simulation results obtained in the
case where the system is subjected to external disturbances
and parametric variations. Figures 2, 3, and 4 show the rapid
convergence of the system output to the reference signal. In
Figure 5, we can see that the control signal is smooth and
that the actual and desired trajectories are superposed, after
a short transitional arrangement whereby the error is signif-
icant between the two outputs, this is due to disturbances,
initial conditions, and initialization of adjustable parameters.

Figures 2–4 show that the effect of parametric perturba-
tions is negligible, with less stress to the control level despite
greater external disturbances. Similarly, the results obtained
in [35] show that the tracking error is about 8% whereas it is
less than 2, 5% in our case.
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Figure 2: Trajectories of the state 𝑥
1
(𝑡) of tracking control of the

desired 𝑦
𝑑
(𝑡) for the robot arms.
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Figure 3: Trajectories of the state 𝑥
2
(𝑡) of tracking control of the

desired .𝑦
𝑑
(𝑡) for the robot arm.

It can be seen in Figures 2–5 that the advantage of our
controller is its ability to eliminate the effect of fluctuations
in the transient response with less effort on the control
law; moreover, an estimation of the upper bound of error
is performed without needing their prior knowledge, which
allows the control law to be less restrictive regarding the
conditions of stability.

6. Conclusion

In this paper, the output tracking control problem has been
considered for a class of uncertain nonlinear systems. The
unknown functions in systems are not linearly parameterized
and have no a priori knowledge of the bounded functions.
Fuzzy logic systems are used to approximate these unknown
nonlinear functions. By sliding mode design technique, the
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ÿd
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Figure 4: Trajectories of the state 𝑥
3
(𝑡) of tracking control of the

desired �̈�
𝑑
(𝑡) for the robot arm.

1220 4 86 10

0

5

10

20 

−10

−5

−20

Time (s) 

Figure 5: Trajectories of the control input 𝑢(𝑡) of the tracking
control for robot arm.

adaptive fuzzy tracking control scheme has been developed
for nonlinear systems. The proposed controllers guarantee
that the outputs of the closed-loop system follow the reference
signals, and achieve uniform ultimate boundedness of all the
signals in the closed-loop system. It is proved in theory and
shown in simulation that the closed-loop system is stable
and the output tracks the given reference signal satisfactorily.
Future work will deal with the delay systems in the type 2
fuzzy systems taking into account uncertainties and a novel
nonlinearity slidingmode surface and an application to a real
process.
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