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This paper is concerned with the problem of robust reliable control for a class of uncertain discrete impulsive switched systems with
state delays, where the actuators are subjected to failures. The parameter uncertainties are assumed to be norm-bounded, and the
average dwell time approach is utilized for the stability analysis and controller design. Firstly, an exponential stability criterion is
established in terms of linear matrix inequalities (LMIs). Then, a state feedback controller is constructed for the underlying system
such that the resulting closed-loop system is exponentially stable. A numerical example is given to illustrate the effectiveness of the
proposed method.

1. Introduction

Switched systems are a class of dynamical systems comprised
of several continuous-time or discrete-time subsystems and
a rule that orchestrates the switching among different sub-
systems. These systems have attracted considerable attention
because of their applicability and significance in various
areas, such as power electronics, embedded systems, chemical
processes, and computer-controlled systems [1, 2]. Many
works in the field of stability analysis and control synthesis
for switched systems have appeared (see [3–11] and references
cited therein). However, in the real world, they may not cover
all the practical cases. People found that many systems are
affected not only by switching among different subsystems,
but also impulsive jumps at the switching instants. This
kind of systems is named after impulsive switched systems,
which have numerous applications in many fields, such as
mechanical systems, automotive industry, aircraft, air traffic
control, networked control, chaotic-based secure communi-
cation, quality of service in the internet, and video coding
[12].

Impulsive switched systems have received a considerable
research attention for more than one decade. The problems
of stability, controllability, and observability for impulsive

switched systems have been successfully investigated, and
a rich body of the literature has been available [13–17]. In
[13], the authors established the necessary and sufficient
conditions for controllability and controlled observability
with respect to a given switching time sequence. Some results
on the stability analysis and stabilization were developed
in [14–17]. Because time-delay exists widely in practical
environment and often causes undesirable performance, it
is necessary and significant to study time delayed systems.
Recently, such systems have stirred a great deal of research
attention [18–22]. So far, many stability conditions of impul-
sive switched systems with state delays have been obtained in
[23–26].

On the other hand, it is inevitable that the actuatorswill be
subjected to failures in a real environment. A control system
is said to be reliable if it retains certain properties when there
exist failures. When failure occurs, the conventional con-
troller will become conservative and may not satisfy certain
control performance indexes. In this case, reliable control
is a kind of effective control approach to improve system
reliability. Recently, several approaches for designing reliable
controllers have been proposed, and some of them have been
used to research the problem of reliable control for switched
systems [27–33]. In [27], a design methodology of the robust
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reliable control for switched nonlinear systems with time
delays was presented. In [32], 𝐿

∞
reliable control problem

for a class of continuous impulsive switched systems was
researched, and a state feedback controller was constructed
to restrain the outputs of the faulty actuators as well as
disturbance inputs below a specified level. However, to the
best of our knowledge, the existing results of the reliable
control for impulsive switched systems are in the continuous-
time framework, such topic on discrete impulsive switched
systems has not been fully investigated, which motivates our
present study.

In this paper, we will focus our interest on robust reliable
control problem for a class of uncertain discrete impulsive
switched systems with state delays. The dwell time approach
is utilized for the stability analysis and controller design.
The main contributions of this paper can be summarized
as follows: (i) stability and reliability of discrete impulsive
switched systems in the presence of actuators failures are
first considered; (ii) a state feedback design methodology is
proposed to achieve the exponential stability and reliability
for the underlying systems.

The remainder of the paper is organized as follows. In
Section 2, problem formulation and some necessary lemmas
are given. In Section 3, based on the dwell time approach, an
exponential stability criterion is established in terms of LMIs.
Then a delay-dependent sufficient condition for the existence
of a robust reliable controller is derived in terms of a set
of matrix inequalities. Section 4 gives a numerical example
to illustrate the effectiveness of the proposed approach.
Concluding remarks are given in Section 5.

Notations.Throughout this paper, the superscript “𝑇” denotes
the transpose, and the notation 𝑋 ≥ 𝑌 (𝑋 > 𝑌) means
that matrix𝑋−𝑌 is a positive semidefinite (positive definite,
resp.). ‖ ⋅ ‖ denotes the Euclidean norm. 𝐼 represents identity
matrixwith appropriate dimension; diag{𝑎

𝑖
}denotes diagonal

matrix with the diagonal elements 𝑎
𝑖
, 𝑖 = 1, 2, . . . , 𝑛. 𝑋−1

denotes the inverse of 𝑋. The asterisk ∗ in a matrix is used
to denote a term that is induced by symmetry. The set of all
positive integers is represented by 𝑍+.

2. Problem Formulation and Preliminaries

Consider the following uncertain discrete impulsive switched
systems with state delays:

𝑥 (𝑘 + 1) = �̂�
𝜎(𝑘)
𝑥 (𝑘) + �̂�

𝑑𝜎(𝑘)
𝑥 (𝑘 − 𝑑) + 𝐵

𝜎(𝑘)
𝑢
𝑓

(𝑘) ,

𝑘 ̸= 𝑘
𝑏
− 1, 𝑏 ∈ 𝑍

+

,

(1)

𝑥 (𝑘 + 1) = 𝐸
𝜎(𝑘+1)𝜎(𝑘)

𝑥 (𝑘) , 𝑘 = 𝑘
𝑏
− 1, 𝑏 ∈ 𝑍

+

, (2)

𝑥 (𝑘
0
+ 𝜃) = 𝜙 (𝜃) , 𝜃 = [−𝑑, 0] , (3)

where 𝑥(𝑘) ∈ 𝑅
𝑛 is the state vector. 𝑢𝑓(𝑘) ∈ 𝑅

𝑝 is the
control input of actuator fault; 𝜙(𝜃) is a discrete vector-
valued initial function. 𝑑 is discrete time delay. 𝜎(𝑘) is a
switching signal which takes its values in the finite set 𝑁 :=
{1, . . . , 𝑁}, corresponding to it is the switching sequence

𝜗 = {(𝑘
0
, 𝜎(𝑘

0
)), (𝑘

1
, 𝜎(𝑘

1
)), . . . , (𝑘

𝑏
, 𝜎(𝑘

𝑏
)), . . .}, where 𝑘

0
is

the initial time and 𝑘
𝑏
(𝑏 ∈ 𝑍

+

) denotes the 𝑏th switching
instant. Moreover, 𝜎(𝑘) = 𝑖 ∈ 𝑁means that the 𝑖th subsystem
is activated. 𝜎(𝑘 − 1) = 𝑗 and 𝜎(𝑘) = 𝑖 (𝑖 ̸= 𝑗) indicate
that 𝑘 is a switching instant at which the system is switched
from the 𝑗th subsystem to the 𝑖th subsystem. 𝑁 denotes the
number of subsystems. Note that there exists an impulsive
jump described by (2) at the switching instant 𝑘

𝑏
(𝑏 ∈ 𝑍

+

).

Remark 1. The impulsive jump at the switching instant 𝑘
𝑏
is

represented by 𝐸
𝜎(𝑘𝑏)𝜎(𝑘𝑏−1)

. The matrix 𝐸
𝑖𝑗
(𝑖, 𝑗 ∈ 𝑁) is also

used in [34].Moreover,𝐸
𝑖𝑗
is a certain real-valuedmatrixwith

appropriate dimension and means that the impulse is only
determined by the subsystems activated before and after the
specific switching instant 𝑘

𝑏
.

For each 𝑖 ∈ 𝑁, �̂�
𝑖
�̂�
𝑑𝑖

are uncertain real-valued
matrices with appropriate dimensions and satisfy

[�̂�
𝑖
𝐴
𝑑𝑖
] = [𝐴

𝑖
𝐴
𝑑𝑖
] + 𝐻

𝑖
𝐹
𝑖
(𝑘) [𝑀

1𝑖
𝑀
2𝑖
] , (4)

where 𝐴
𝑖
, 𝐴
𝑑𝑖
, 𝐻
𝑖
, 𝑀

1𝑖
, and 𝑀

2𝑖
(𝑖 ∈ 𝑁) are known real

constant matrices with appropriate dimensions. 𝐹
𝑖
(𝑘) are

unknown and possibly time-varying matrices with Lebesgue
measurable elements and satisfy

𝐹
𝑖

𝑇

(𝑘) 𝐹
𝑖
(𝑘) ≤ 𝐼. (5)

The control input of actuator fault 𝑢𝑓(𝑘) can be described as

𝑢
𝑓

(𝑘) = Ω
𝜎(𝑘)
𝑢 (𝑘) , (6)

where 𝑢(𝑘) = 𝐾
𝜎(𝑘)
𝑥(𝑘) is the control input to be designed,

Ω
𝑖
(𝑖 ∈ 𝑁) are the actuator fault matrices with the following

form:

Ω
𝑖
= diag {𝜔

𝑖1
, 𝜔
𝑖2
, . . . , 𝜔

𝑖𝑙
, . . . , 𝜔

𝑖𝑝
} , (7)

where 0 ≤ 𝜔
𝐿𝑖𝑘
≤ 𝜔

𝑖𝑘
≤ 𝜔

𝐻𝑖𝑘
, 𝜔
𝐻𝑖𝑘
≤ 1.

For simplicity, we define

Ω
10
= diag {�̃�

𝑖1
, �̃�
𝑖2
, . . . , �̃�

𝑖𝑖
, . . . , �̃�

𝑖𝑝
} ,

�̃�
𝑖𝑘
=
1

2
(𝜔
𝐿𝑖𝑘
+ 𝜔
𝐻𝑖𝑘
) ,

Ξ
2

𝑖
= diag {𝜉

𝑖1
, 𝜉
𝑖2
, . . . , 𝜉

𝑖𝑖
, . . . , 𝜉

𝑖𝑝
} ,

𝜉
𝑖𝑘
=
𝜔
𝐻𝑖𝑘
− 𝜔
𝐿𝑖𝑘

𝜔
𝐻𝑖𝑘
+ 𝜔
𝐿𝑖𝑘

,

Θ
𝑖
= diag {Θ

𝑖1
, Θ
𝑖2
, . . . , Θ

𝑖𝑖
, . . . , Θ

𝑖𝑝
} ,

Θ
𝑖𝑘
=
𝜔
𝑖𝑘
− �̃�

𝑖𝑘

�̃�
𝑖𝑘

.

(8)

Thus, we have

Ω
𝑖
= Ω

𝑖0
(𝐼 + Θ

𝑖
) ,

Θ𝑖
 ≤ Ξ

2

𝑖
≤ 𝐼, (9)

where |Θ
𝑖
| = diag{|Θ

𝑖1
|, |Θ

𝑖2
|, . . . , |Θ

𝑖𝑖
|, . . . , |Θ

𝑖𝑝
|}.

Before ending this section, we introduce the following
definitions and lemmas.
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Definition 2 (see [34]). Let 𝑁
𝜎
(𝑘
0
, 𝑘) denote the switching

number of 𝜎(𝑘) during the interval [𝑘
0
, 𝑘). If there exist𝑁

0
≥

0 and 𝜏
𝑎
≥ 0 such that

𝑁
𝜎
(𝑘
0
, 𝑘) ≤ 𝑁

0
+
𝑘 − 𝑘

0

𝜏
𝑎

, ∀𝑘 ≥ 𝑘
0
, (10)

then 𝜏
𝑎
and 𝑁

0
are called the average dwell time and the

chatter bound, respectively.

Remark 3. In this paper, the average dwell time method is
used to restrict the switching number during a time interval
such that the stability of system (1), (2), and (3) can be
guaranteed.

Definition 4 (see [35]). The system (1), (2), and (3) is said to
be exponentially stable if its solution satisfies

‖𝑥 (𝑘)‖ ≤ 𝜂
𝑥 (𝑘0)

ℎ
𝜌
−(𝑘−𝑘0), ∀𝑘 ≥ 𝑘

0
, (11)

for any initial condition 𝑥(𝑘
0
+ 𝜃), 𝜃 = [−𝑑, 0], where 𝜂 > 0

and 𝜌 > 1 is the decay rate, ‖𝑥(𝑘
0
)‖
ℎ
= max

𝑘0−𝑑≤𝑘≤𝑘0
‖𝑥(𝑘)‖.

Lemma 5 (see [35]). For a given matrix 𝑆 = [ 𝑆11 𝑆12
𝑆
𝑇

12
𝑆22

], where
𝑆
11
, 𝑆
22
are square matrices, then the following conditions are

equivalent:

(i) 𝑆 < 0,
(ii) 𝑆

11
< 0, 𝑆

22
− 𝑆
𝑇

12
𝑆
−1

11
𝑆
12
< 0,

(iii) 𝑆
22
< 0, 𝑆

11
− 𝑆
12
𝑆
−1

22
𝑆
𝑇

12
< 0.

Lemma 6 (see [36]). Let 𝑈, 𝑉,𝑊, and 𝑋 be real matrices of
appropriate dimensions with𝑋 satisfying𝑋 = 𝑋𝑇, then for all
𝑉
𝑇

𝑉 ≤ 𝐼,𝑋+𝑈𝑉𝑊+𝑊𝑇𝑉𝑇𝑈𝑇 < 0, if and only if there exists
a scalar 𝜀 such that 𝑋 + 𝜀𝑈𝑈𝑇 + 𝜀−1𝑊𝑇𝑊 < 0.

Lemma 7 (see [37]). For matrices 𝑄
1
, 𝑄
2
with appropriate

dimensions, there exists a positive scalar 𝜀 such that

𝑄
1
Σ𝑄
2
+ 𝑄

𝑇

2
Σ
𝑇

𝑄
𝑇

1
≤ 𝜀𝑄

1
𝑈𝑄
𝑇

1
+ 𝜀
−1

𝑄
𝑇

2
𝑈𝑄
2

(12)

holds, whereΣ is a diagonalmatrix and𝑈 is a known real-value
matrix satisfying |Σ| ≤ 𝑈.

3. Main Results

3.1. Stability Analysis. In this subsection, we consider the
exponential stability of the following uncertain discrete
impulsive switched systems with state delays:

𝑥 (𝑘 + 1) = �̂�
𝜎(𝑘)
𝑥 (𝑘) + �̂�

𝑑𝜎(𝑘)
𝑥 (𝑘 − 𝑑) ,

𝑘 ̸= 𝑘
𝑏
− 1, 𝑏 ∈ 𝑍

+

,

(13)

𝑥 (𝑘 + 1) = 𝐸
𝜎(𝑘+1)𝜎(𝑘)

𝑥 (𝑘) , 𝑘 = 𝑘
𝑏
− 1, 𝑏 ∈ 𝑍

+

, (14)

𝑥 (𝑘
0
+ 𝜃) = 𝜙 (𝜃) , 𝜃 = [−𝑑, 0] . (15)

Theorem 8. Consider system (13), (14), and (15), for given
positive scalars 𝑑, 0 < 𝛼 < 1, if there exist positive

definite symmetric matrices 𝑋
𝑖
, 𝑁
𝑖
(𝑖 ∈ 𝑁) with appropriate

dimensions and positive scalars 𝜀
𝑖
such that

[
[
[
[
[
[
[
[
[
[

[

−𝛼𝑋
𝑖

0 𝑋
𝑖
𝐴
𝑇

𝑖
𝑋
𝑖
𝑋
𝑖
𝑀
𝑇

1𝑖

∗ −𝛼
𝑑

𝑁
𝑖

𝑁
𝑖
𝐴
𝑇

𝑑𝑖
0 𝑁

𝑖
𝑀
𝑇

2𝑖

∗ ∗ −𝑋
𝑖
+ 𝜀
𝑖
𝐻
𝑖
𝐻
𝑇

𝑖
0 0

∗ ∗ ∗ −𝑁
𝑖

0

∗ ∗ ∗ ∗ −𝜀
𝑖
𝐼

]
]
]
]
]
]
]
]
]
]

]

< 0. (16)

Then, under the following average dwell time scheme:

𝜏
𝑎
> 𝜏
∗

𝑎
= −

ln 𝜇
ln𝛼

+ 1, (17)

the system is exponentially stable, where 𝜇 ≥ 1 satisfies

[
[
[

[

−𝜇𝑋
𝑖
𝑋
𝑖
𝐸
𝑇

𝑗𝑖
𝑋
𝑖

∗ −𝑋
𝑗

0

∗ ∗ −𝑁
𝑗

]
]
]

]

< 0,

𝛼𝑁
𝑖
≤ 𝜇𝑁

𝑗
, ∀𝑖, 𝑗 ∈ 𝑁, 𝑖 ̸= 𝑗.

(18)

Proof. Choose the following piecewise Lyapunov function
candidate for system (13), (14), and (15):

𝑉 (𝑘) = 𝑉
𝜎(𝑘)
(𝑘) , (19)

and the form of each 𝑉
𝜎(𝑘)
(𝑘) is given by

𝑉
𝜎(𝑘)
(𝑘) = 𝑉

1𝜎(𝑘)
(𝑘) + 𝑉

2𝜎(𝑘)
(𝑘) , (20)

where

𝑉
1𝜎(𝑘)

(𝑘) = 𝑥
𝑇

(𝑘) 𝑃
𝜎(𝑘)
𝑥 (𝑘) ,

𝑉
2𝜎(𝑘)

(𝑘) =

𝑘−1

∑

𝑟=𝑘−𝑑

𝑥
𝑇

(𝑟) 𝑅
𝜎(𝑘)
𝑥 (𝑟) 𝛼

𝑘−𝑟−1

.

(21)

Let 𝑘
1
, . . . , 𝑘

𝑏
denote the switching instants during the

interval [𝑘
0
, 𝑘). Without loss of generality, assume that the 𝑖th

subsystem is activated at the switching instant 𝑘
𝑏−1

, and the
𝑗th subsystem is activated at the switching instant 𝑘

𝑏
.

When 𝑘 ∈ [𝑘
𝑏−1
, 𝑘
𝑏
− 1), 𝑏 ∈ 𝑍+, 𝜎(𝑘) = 𝜎(𝑘 + 1) = 𝑖

(𝑖 ∈ 𝑁), along the trajectory of system (13), (14), and (15), we
have

𝑉
𝑖
(𝑥 (𝑘 + 1)) − 𝛼𝑉

𝑖
(𝑥 (𝑘))

= 𝑥
𝑇

(𝑘 + 1) 𝑃
𝑖
𝑥 (𝑘 + 1)

+

𝑘

∑

𝑟=𝑘+1−𝑑

𝑥
𝑇

(𝑟) 𝑅
𝑖
𝑥 (𝑟) 𝛼

𝑘−𝑟

− 𝛼𝑥
𝑇

(𝑘) 𝑃
𝑖
𝑥 (𝑘)

−

𝑘−1

∑

𝑟=𝑘−𝑑

𝑥
𝑇

(𝑟) 𝑅
𝑖
𝑥 (𝑟) 𝛼

𝑘−𝑟

.

(22)
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Thus,

𝑉
𝑖
(𝑥 (𝑘 + 1)) − 𝛼𝑉

𝑖
(𝑥 (𝑘)) = 𝑋

𝑇

(𝑘) 𝜑
𝑖
𝑋 (𝑘) , (23)

where

𝜑
𝑖
= (
𝑅
𝑖
− 𝛼𝑃

𝑖
0

0 −𝛼
𝑑

𝑅
𝑖

) +(

�̂�
𝑇

𝑖

�̂�
𝑇

𝑑𝑖

)𝑃
𝑖
(�̂�
𝑖
�̂�
𝑑𝑖
) ,

𝑋 (𝑘) = [𝑥
𝑇

(𝑘) 𝑥
𝑇

(𝑘 − 𝑑)]
𝑇

.

(24)

Thus, if the following inequality holds:

(
𝑅
𝑖
− 𝛼𝑃

𝑖
0

0 −𝛼
𝑑

𝑅
𝑖

) +(

�̂�
𝑇

𝑖

�̂�
𝑇

𝑑𝑖

)𝑃
𝑖
(�̂�
𝑖
�̂�
𝑑𝑖
) < 0, (25)

then we have

𝑉
𝑖
(𝑥 (𝑘 + 1)) < 𝛼𝑉

𝑖
(𝑥 (𝑘)) . (26)

Using diag{𝑃−1
𝑖
, 𝑅
−1

𝑖
} to pre- and postmultiply the left term

of (25) and applying Lemma 5, we can obtain that (25) is
equivalent to the following inequality:

(

(

−𝛼𝑃
−1

𝑖
0 𝑃

−1

𝑖
�̂�
𝑇

𝑖
𝑃
−1

𝑖

∗ −𝛼
𝑑

𝑅
−1

𝑖
𝑅
−1

𝑖
�̂�
𝑇

𝑑𝑖
0

∗ ∗ −𝑃
−1

𝑖
0

∗ ∗ ∗ −𝑅
−1

𝑖

)

)

< 0. (27)

Denote that 𝑋
𝑖
= 𝑃

−1

𝑖
, 𝑁
𝑖
= 𝑅

−1

𝑖
, then substituting (4) into

(27) and applying Lemma 6, we can obtain that (16) and (27)
are equivalent.

When 𝑘 = 𝑘
𝑏
−1, 𝜎(𝑘+1) = 𝜎(𝑘

𝑏
) = 𝑗, 𝜎(𝑘) = 𝜎(𝑘

𝑏
−1) =

𝑖, 𝑖 ̸= 𝑗, along the trajectory of system (13), (14), and (15), we
have

𝑉
𝑗
(𝑥 (𝑘

𝑏
)) = 𝑥

𝑇

(𝑘
𝑏
) 𝑃
𝑗
𝑥 (𝑘

𝑏
) +

𝑘𝑏−1

∑

𝑟=𝑘𝑏−𝑑

𝑥
𝑇

(𝑟) 𝑅
𝑗
𝑥 (𝑟) 𝛼

𝑘𝑏−𝑟−1,

𝑉
𝑖
(𝑥 (𝑘

𝑏
− 1)) = 𝑥

𝑇

(𝑘
𝑏
− 1) 𝑃

𝑖
𝑥 (𝑘

𝑏
− 1)

+

𝑘𝑏−2

∑

𝑟=𝑘𝑏−1−𝑑

𝑥
𝑇

(𝑟) 𝑅
𝑖
𝑥 (𝑟) 𝛼

𝑘𝑏−𝑟−2,

𝑉
𝑗
(𝑥 (𝑘

𝑏
)) − 𝜇𝑉

𝑖
(𝑥 (𝑘

𝑏
− 1))

= 𝑥
𝑇

(𝑘
𝑏
− 1) (𝐸

𝑇

𝑗𝑖
𝑃
𝑗
𝐸
𝑗𝑖
− 𝜇𝑃

𝑖
) 𝑥 (𝑘

𝑏
− 1)

+

𝑘𝑏−1

∑

𝑟=𝑘𝑏−𝑑

𝑥
𝑇

(𝑟) 𝑅
𝑗
𝑥 (𝑟) 𝛼

𝑘𝑏−𝑟−1

− 𝜇

𝑘𝑏−2

∑

𝑟=𝑘𝑏−1−𝑑

𝑥
𝑇

(𝑟) 𝑅
𝑖
𝑥 (𝑟) 𝛼

𝑘𝑏−𝑟−2

= 𝑥
𝑇

(𝑘
𝑏
− 1) (𝐸

𝑇

𝑗𝑖
𝑃
𝑗
𝐸
𝑗𝑖
− 𝜇𝑃

𝑖
+ 𝑅
𝑗
) 𝑥 (𝑘

𝑏
− 1)

− 𝜇𝑥
𝑇

(𝑘
𝑏
− 1 − 𝑑) 𝑅

𝑖
𝑥 (𝑘

𝑏
− 1 − 𝑑) 𝛼

𝑑−2

+

𝑘𝑏−2

∑

𝑟=𝑘𝑏+1−𝑑

𝛼
𝑘𝑏−𝑟−2𝑥

𝑇

(𝑟) (𝛼𝑅
𝑗
− 𝜇𝑅

𝑖
) 𝑥 (𝑟) .

(28)

From (18), we can get the following inequalities for all 𝑖, 𝑗 ∈
𝑁, 𝑖 ̸= 𝑗:

𝐸
𝑇

𝑗𝑖
𝑃
𝑗
𝐸
𝑗𝑖
− 𝜇𝑃

𝑖
+ 𝑅
𝑗
< 0,

𝛼𝑅
𝑗
− 𝜇𝑅

𝑖
≤ 0.

(29)

Then, it is not difficult to get
𝑉
𝑗
(𝑥 (𝑘

𝑏
)) < 𝜇𝑉

𝑖
(𝑥 (𝑘

𝑏
− 1)) , 𝑖 ̸= 𝑗. (30)

Thus, for 𝑘 ∈ [𝑘
𝑏
, 𝑘
𝑏+1
), we have

𝑉
𝜎(𝑘)
(𝑥 (𝑘)) < 𝛼

𝑘−𝑘𝑏𝑉
𝜎(𝑘𝑏)

(𝑥 (𝑘
𝑏
))

< 𝜇𝛼
𝑘−𝑘𝑏𝑉

𝜎(𝑘𝑏−1)
(𝑥 (𝑘

𝑏
− 1)) .

(31)

Repeating the above manipulation, one has that

𝑉
𝜎(𝑘)
(𝑥 (𝑘))

< 𝛼
𝑘−𝑘𝑏𝑉

𝜎(𝑘𝑏)
(𝑥 (𝑘

𝑏
))

< 𝜇𝛼
𝑘−𝑘𝑏𝑉

𝜎(𝑘𝑏−1)
(𝑥 (𝑘

𝑏
− 1))

≤ 𝜇𝛼
𝑘−𝑘𝑏𝛼

𝑘𝑏−1−𝑘𝑏−1𝑉
𝜎(𝑘𝑏−1)

(𝑥 (𝑘
𝑏−1
))

= 𝜇𝛼
𝑘−𝑘𝑏−1−1𝑉

𝜎(𝑘𝑏−1)
(𝑥 (𝑘

𝑏−1
))

< 𝜇
2

𝛼
𝑘−𝑘𝑏−1−1𝑉

𝜎(𝑘𝑏−1−1)
(𝑥 (𝑘

𝑏−1
− 1))

< ⋅ ⋅ ⋅

< 𝜇
𝑏

𝛼
𝑘−𝑘0−𝑏𝑉

𝜎(𝑘0)
(𝑥 (𝑘

0
)) .

(32)
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From Definition 2, we know that 𝑏 = 𝑁
𝜎
(𝑘
0
, 𝑘), then

𝑏 ≤ 𝑁
0
+
𝑘 − 𝑘

0

𝜏
𝑎

. (33)

It follows that

𝑉
𝜎(𝑘)
(𝑥 (𝑘))

< 𝜇
𝑏

𝛼
𝑘−𝑘0−𝑏𝑉

𝜎(𝑘0)
(𝑥 (𝑘

0
))

≤ (𝜇𝛼
−1

)
𝑁0+(𝑘−𝑘0)/𝜏𝑎

𝛼
𝑘−𝑘0𝑉

𝜎(𝑘0)
(𝑥 (𝑘

0
))

= (𝜇𝛼
−1

)
𝑁0

𝑒
((𝑘−𝑘0)/𝜏𝑎)(ln 𝜇−ln𝛼)𝑒(𝑘−𝑘0) ln𝛼𝑉

𝜎(𝑘0)
(𝑥 (𝑘

0
))

= (𝜇𝛼
−1

)
𝑁0

𝑒
((ln 𝜇−ln𝛼)/𝜏𝑎+ln𝛼)(𝑘−𝑘0)𝑉

𝜎(𝑘0)
(𝑥 (𝑘

0
)) ,

(34)

that is,

‖𝑥 (𝑘)‖ < 𝜂
𝑥 (𝑘0)

ℎ
𝜌
−(𝑘−𝑘0), ∀𝑘 ≥ 𝑘

0
, (35)

where

𝜂 = √
max

𝑖∈𝑁
{𝜆max (𝑋

−1

𝑖
) + 𝑑𝜆max (𝑁

−1

𝑖
)}

min
𝑖∈𝑁
𝜆min (𝑋

−1

𝑖
)

(𝜇𝛼
−1

)
𝑁0/2

,

𝜌 = 𝑒
−((ln 𝜇−ln𝛼)/𝜏𝑎+ln𝛼)/2,

𝑥 (𝑘0)
ℎ
= max
𝑘0−𝑑≤𝑘≤𝑘0

‖𝑥 (𝑘)‖ .

(36)

Then under the average dwell time scheme (17), it is easy to
get that 𝜌 > 1, which implies that the system (13), (14), and
(15) is exponentially stable.

This completes the proof.

Remark 9. When 𝜇 = 1, conditions (18) can be reduced to the
following inequalities:

[
[

[

−𝑋
𝑖
𝑋
𝑖
𝐸
𝑇

𝑗𝑖
𝑋
𝑖

∗ −𝑋
𝑗

0

∗ ∗ −𝑁
𝑗

]
]

]

< 0,

𝛼𝑁
𝑖
≤ 𝑁

𝑗
, ∀𝑖, 𝑗 ∈ 𝑁, 𝑖 ̸= 𝑗,

(37)

then 𝜏∗
𝑎
= 1.

Remark 10. It should be noted that some stability results of
discrete delayed systems with and without impulsive jumps
have been obtained by using standard Lyapunov-Krasovskii
function approach (see [5, 7, 38]). In this paper, these stability
criteria are extended to discrete impulsive switched delayed
system (1), (2), and (3). However, due to that there exist
impulsive jumps described by (2) at the switching instants,
the criterion inTheorem 8 is different from the existing ones.
The result is essential for designing the reliable controller for
system (1), (2), and (3).

3.2. Robust Reliable Control. In this subsection, we are inter-
ested in designing a state feedback controller such that the
resulting closed-loop system is exponentially stable.

For system (1), (2), and (3), under switching controller
𝑢(𝑘) = 𝐾

𝜎(𝑘)
𝑥(𝑘), the corresponding closed-loop system is

given by

𝑥 (𝑘 + 1) = (�̂�
𝜎(𝑘)
+ 𝐵
𝜎(𝑘)
Ω
𝜎(𝑘)
𝐾
𝜎(𝑘)
) 𝑥 (𝑘)

+ �̂�
𝑑𝜎(𝑘)

𝑥 (𝑘 − 𝑑) , 𝑘 ̸= 𝑘
𝑏
− 1, 𝑏 ∈ 𝑍

+

,

(38)

𝑥 (𝑘 + 1) = 𝐸
𝜎(𝑘+1)𝜎(𝑘)

𝑥 (𝑘) , 𝑘 = 𝑘
𝑏
− 1, 𝑏 ∈ 𝑍

+

, (39)

𝑥 (𝑘
0
+ 𝜃) = 𝜙 (𝜃) , 𝜃 = [−𝑑, 0] . (40)

Theorem 11. Consider the system (1), (2), and (3), for given
positive scalars𝑑 and𝛼 < 1; suppose there exist positive definite
symmetric matrices 𝑋

𝑖
, 𝑁
𝑖
, any matrices𝑊

𝑖
with appropriate

dimensions, and positive scalars 𝜀
𝑖
, 𝛾
𝑖
, 𝑖 ∈ 𝑁, such that

(
(
(

(

−𝛼𝑋𝑖 0 𝑋𝑖𝐴
𝑇

𝑖
+𝑊
𝑇

𝑖
Ω
𝑇

𝑖0
𝐵
𝑇

𝑖
𝑋𝑖 𝑋𝑖𝑀

𝑇

1𝑖
𝑊
𝑇

𝑖

∗ −𝛼
𝑑
𝑁𝑖 𝑁𝑖𝐴

𝑇

𝑑𝑖
0 𝑁𝑖𝑀

𝑇

2𝑖
0

∗ ∗ −𝑋𝑖 + 𝜀𝑖𝐻𝑖𝐻
𝑇

𝑖
+ 𝛾𝑖𝐵𝑖Ω𝑖0Ξ

2

𝑖
Ω
𝑇

𝑖0
𝐴
𝑇

𝑖
0 0 0

∗ ∗ ∗ −𝑁𝑖 0 0

∗ ∗ ∗ ∗ −𝜀𝑖𝐼 0

∗ ∗ ∗ ∗ ∗ −𝛾𝑖(Ξ
2

𝑖
)

−1

)
)
)

)

< 0.

(41)

Then, under the reliable controller

𝑢 (𝑘) = 𝐾
𝜎(𝑘)
𝑥 (𝑘) , 𝐾

𝑖
= 𝑊

𝑖
𝑋
−1

𝑖
(𝑖 ∈ 𝑁) , (42)

and the average dwell time scheme (17) with 𝜇 satisfying (18),
the corresponding closed-loop system (38), (39), and (40) is
exponentially stable.

Proof. FromTheorem 8, we know that system (38), (39), and
(40) is exponentially stable if (18) and the following inequality
hold:

[
[
[
[
[
[
[
[
[
[
[
[

[

−𝛼𝑋
𝑖

0 𝑋
𝑖
�̃�
𝑇

𝑖
𝑋
𝑖
𝑋
𝑖
𝑀
𝑇

1𝑖

∗ −𝛼
𝑑

𝑁
𝑖

𝑁
𝑖
𝐴
𝑇

𝑑𝑖
0 𝑁

𝑖
𝑀
𝑇

2𝑖

∗ ∗ −𝑋
𝑖
+ 𝜀
𝑖
𝐻
𝑖
𝐻
𝑇

𝑖
0 0

∗ ∗ ∗ −𝑁
𝑖

0

∗ ∗ ∗ ∗ −𝜀
𝑖
𝐼

]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (43)
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where �̃�
𝑖
= 𝐴

𝑖
+𝐵
𝑖
Ω
𝑖
𝐾
𝑖
,Ω
𝑖
= Ω

𝑖0
(𝐼 +Θ

𝑖
), and |Θ

𝑖
| ≤ Ξ

2

𝑖
≤ 𝐼;

it can be obtained that (43) can be rewritten as the following
inequality:

(

−𝛼𝑋𝑖 0 𝑋𝑖𝐴
𝑇

𝑖
+ (𝐾𝑖𝑋𝑖)

𝑇
Ω
𝑇

𝑖0
𝐵
𝑇

𝑖
𝑋𝑖 𝑋𝑖𝑀

𝑇

1𝑖

∗ −𝛼
𝑑
𝑁𝑖 𝑁𝑖𝐴

𝑇

𝑑𝑖
0 𝑁𝑖𝑀

𝑇

2𝑖

∗ ∗ −𝑋𝑖 + 𝜀𝑖𝐻𝑖𝐻
𝑇

𝑖
0 0

∗ ∗ ∗ −𝑁𝑖 0

∗ ∗ ∗ ∗ −𝜀𝑖𝐼

)

+(

0

0

𝐵𝑖Ω𝑖0

0

0

)Θ
𝑖
(

𝐾𝑖𝑋𝑖

0

0

0

0

)

𝑇

+ (

𝐾𝑖𝑋𝑖

0

0

0

0

)Θ
𝑇

𝑖
(

0

0

𝐵𝑖Ω𝑖0

0

0

)

𝑇

< 0.

(44)

Denote that𝑊
𝑖
= 𝐾

𝑖
𝑋
𝑖
, then according to Lemmas 5 and 7,

we can easily get that (44) holds if (41) is satisfied, that is to
say, (41) guarantees that (43) is tenable.

This completes the proof.

Remark 12. In Theorem 11, a reliable controller design
method is proposed for discrete impulsive switched delayed
system (1), (2), and (3) with actuator fault. It is noted that a
kind of matrix Ω

𝑖
(𝑖 ∈ 𝑁), which is successfully adopted in

[27, 28], is introduced to describe all the situations that may
be encountered in the actuator.

Remark 13. It should be noted that 𝛼 plays a key role in
obtaining the infimum of the average dwell time 𝜏

𝑎
. From

Theorem 11, it is easy to see that a larger 𝛼 will be favorable to
the solvability of inequality (41), which leads to a larger value
for the average dwell time 𝜏

𝑎
. Considering these, we can first

select a larger𝛼 to guarantee the feasible solution of inequality
(41) and then decrease 𝛼 to obtain the suitable infimum of the
average dwell time 𝜏

𝑎
.

The detailed procedure of controller design can be given
in the following algorithm.

Algorithm 14. We have the following.
Step 1. Given the system matrices and positive constants 𝜀

𝑖
,

𝛾
𝑖
, and 0 < 𝛼 < 1, by solving the LMI (41), we can get the

solutions of the matrices𝑊
𝑖
, 𝑋
𝑖
, and𝑁

𝑖
. Then the controller

gain matrices can be obtained by (42).
Step 2. Substitute matrices 𝑋

𝑖
and 𝑁

𝑖
into (18), then solving

(18), we can find the infimum of 𝜇.
Step 3.Then the average dwell time 𝜏

𝑎
can be obtained by (17).

4. Numerical Example

In this section, we present an example to illustrate the
effectiveness of the proposed approach. Consider system (1),
(2), and (3) with parameters as follows:

𝐴
1
= [
2 −5

1 −1.5
] , 𝐴

𝑑1
= [
−0.4 0

−0.1 −0.1
] ,

𝐵
1
= [
−0.4 0

−0.1 −0.1
] , 𝐻

1
= [
0.1 0

0.1 0.1
] ,

𝑀
11
= [
0.2 −0.3

0 −0.2
] , 𝑀

21
= [
0.1 0

0.1 0.22
] ,

𝐹
1
= [

sin (0.5𝜋𝑘) 0

0 sin (0.2𝜋𝑘)] ,

𝐴
2
= [
1 0

3 −1
] , 𝐴

𝑑2
= [
−0.2 0

−0.4 0.3
] ,

𝐵
2
= [
−0.2 0

−0.4 0.3
] , 𝐻

2
= [
0.2 0.1

0.1 0.3
] ,

𝑀
12
= [
0.2 0

0.2 0.1
] , 𝑀

22
= [
0.2 0

0 0.2
] ,

𝐹
2
= [

sin (0.5𝜋𝑘) 0

0 sin (0.2𝜋𝑘)] ,

𝐸
12
= [
3.5 0

0 3.6
] , 𝐸

21
= [
3 0

0 4
] .

(45)

The fault matricesΩ
𝑖
= diag{𝜔

𝑖1
, 𝜔
𝑖2
} (𝑖 = 1, 2), where

0.4 ≤ 𝜔
11
≤ 0.5, 0.5 ≤ 𝜔

12
≤ 0.6,

0.5 ≤ 𝜔
21
≤ 0.6, 0.4 ≤ 𝜔

22
≤ 0.5.

(46)

Then we can obtain

Ω
10
= [
0.55 0

0 0.45
] , Ξ

2

1
=
[
[

[

1

11
0

0
1

9

]
]

]

,

Ω
20
= [
0.45 0

0 0.55
] , Ξ

2

2
=
[
[

[

1

9
0

0
1

11

]
]

]

.

(47)

Given 𝛼 = 0.7, 𝜀
1
= 𝜀
2
= 0.1, 𝛾

1
= 0.3, 𝛾

2
= 0.3, then

solving the matrix inequality (41) in Theorem 11, we get

𝑋
1
= [
0.0095 0.0046

0.0046 0.0058
] ,

𝑁
1
= [
0.0203 0.0116

0.0116 0.0573
] ,

𝑊
1
= [
−0.0192 −0.0902

0.0657 0.0170
] ,

𝑋
2
= [
0.0106 0.0098

0.0098 0.0445
] ,

𝑁
2
= [
0.0528 0.0383

0.0383 0.1505
] ,

𝑊
2
= [

0.1124 0.0990

−0.0113 0.1886
] .

(48)
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Figure 1: Switching signal.
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Figure 2: State trajectories of the closed-loop system.

Then from (42), the controller gain matrices can be obtained

𝐾
1
= [
8.9155 −22.5632

8.9651 −4.1574
] ,

𝐾
2
= [
10.6963 −0.1343

−6.2374 5.6124
] .

(49)

According to conditions (18), we can get 𝜇 = 11.5633.
From (17), it can be obtained that 𝜏∗

𝑎
= 7.863. Choosing 𝜏

𝑎
=

8, the simulation results are shown in Figures 1 and 2, where
the initial value 𝑥(0) = [3 4]𝑇, 𝑥(𝜃) = 0, and 𝜃 ∈ [−𝑑, 0).
Figure 1 depicts the switching signal, and the state trajectories
of the closed-loop system are shown in Figure 2.

From Figures 1 and 2, it can be observed that the
designed controller can guarantee the asymptotic stability of
the closed-loop system. This demonstrates the effectiveness
of the proposed method.

5. Conclusions

This paper has investigated the problem of robust reliable
control for a class of uncertain discrete impulsive switched
systems with state delays. By employing the average dwell
time approach, an exponential stability criterion has been
proposed in terms of a set of LMIs. On the basis of the
obtained stability criterion, the robust reliable controller has
been designed. An illustrative example has also been given to
illustrate the applicability of the proposed approach.
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