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This paper focuses on the fuzzy variable structure control for uncertain systems with disturbance.
Specifically, the fuzzy control is introduced to estimate the control disturbance, the switching
control is included to compensate for the approximation error, and they possess the characteristic
of simpleness in design and effectiveness in attenuating the control chattering. Some typical
numerical examples are presented to demonstrate the effectiveness and advantage of the fuzzy
variable structure controller proposed.

1. Introduction

Since the pioneering works of Utkin in 1977 [1], the variable structure control (VSC) has
generated considerable interests in control field. Up to now many researches on VSC have
been carried out [2–16]. Based on VSC theory, [2] developed an adaptive fuzzy control system
design method for uncertain Takagi-Sugeno fuzzy models with norm-bounded uncertainties.
By using a high-gain observer, [3] presented an output feedback model-reference variable
structure controller to achieve global exponential stability with respect to a small residual
set without generating peaking in the control signal. In [4], the subordinated reachability
of the sliding motion is introduced to realize the control on a class of uncertain stochastic
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systems with time-varying delay. Via introducing a pseudo-inversion, the authors in [5]
discussed the adaptive control for the uncertain discrete time linear systems preceded by
hysteresis nonlinearity. In [6], a sufficient condition for existence of reduced-order sliding
mode dynamics was derived to realize the sliding mode control of a continuous-time
switched stochastic system. For VSC, one of the most intriguing properties is the insensitivity
to parameter uncertainties and external disturbance for the switching action between sliding
modes, which can lead to the generation of chattering phenomenon and make a difference
to system control performance. Therefore how to solve this problem is always a challenging
topic for VSC.

Uncertainties and disturbances exist inmany kinds of systems; this makes the practical
control problem complicated and has received much attention from scholars [17–22]. VSC
method is one of the effective solutions, and conventionally the switching term is built based
on the upper norm bound of control disturbance to satisfy the system control condition.
Therefore there exists the difference between real control disturbance and its upper norm
bound. The maximum switching amplitude can be double disturbance error upper bound.
For ease of use, the upper norm bound sometimes is taken as a constant by experience. This
may lead to the serious chattering problem. Widely acknowledged, an effective solution is
to build a unit to obtain the estimate of time-varying control disturbance. Up to now, there
exist some feasible methods, such as neural networks and genetic algorithm, to tackle the
problem. However in real application, those approaches are too complicated and need much
more control information. Corresponding control cost problem cannot be ignored.

Recently, fuzzymethod gets wide attention in the control field, corresponding research
can be seen in [23–33] and the references therein. It is also introduced to VSC area for its
characteristic of simpleness in design, and effectiveness in attenuating chattering. In this
paper, a fuzzy auxiliary controller will be built to approximate the control disturbance based
on just one feedback signal and a switching control term will be designed to compensate for
the approximation error. Some typical simulation examples will be concerned afterward to
illustrate the effectiveness of the controller given.

Notations used in this paper are fairly standard. LetRn be the n-dimensional Euclidean
space, Rn×m represents the set of n ×m real matrix, (·)(i) denotes the ith derivative of (·), and
the notation A > 0 means that A is real symmetric and positive definite, sgn(x) denotes the
operator |x|/x, and sat(·) denotes the saturated function.

2. Problem Statement

In this paper, the following high order uncertain single-input single-output (SISO) system
with disturbance is considered:

ẋi(t) = xi+1(t), i < n,

ẋn(t) = f(x, t) + Δf(x, t) + p(t) + b(t) · u(t),
(2.1)

where x(t) = (x1(t), x2(t), . . . , xn(t))
T ∈ Rn is the system state vector, f(·, t) is the nonlinear

function, Δf(·, t) is the nonlinear uncertainties, p(t) is the external disturbance, b(t) is the
nonzero coefficient of control input, and u(t) is the control input.
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Define the tracking error

E(t) = x(t) − xr(t), (2.2)

where E = (e1(t), e2(t), . . . , en(t))
T ∈ Rn, xr(t) = (xr1(t), xr2(t), . . . , xrn(t))

T ∈ Rn, and xr1(t) is
the desired trajectory with

xri(t) = xr1
(i−1)(t), i ≤ n, (2.3)

where (·)(i−1) denotes the (i − 1)th derivative of (·). Then the error dynamic system can be
expressed by

ėi(t) = ei+1(t),

ėn(t) = f(x, t) − xrn(t) + d(t) + b(t) · u(t),
(2.4)

where d(t) = Δf(x, t) + p(t) is the control disturbance.
The problem to be addressed in this paper is to design a controller such that the

tracking error variable satisfies

lim
t→∞

‖E(t)‖ = lim
t→∞

‖x(t) − xr(t)‖ −→ 0. (2.5)

In this paper, the following lemma is needed

Lemma 2.1 (see [34]). If w(t) : R → R is a uniformly continuous function for t ≥ 0 and if

lim
t→∞

∫ t

0
w(s)ds (2.6)

exists and is finite, then

lim
t→∞

w(t) −→ 0. (2.7)

3. Design of Fuzzy Variable Structure Controller

In this section, the FVSCmethod is introduced to realize the control for uncertain systemwith
disturbance. First, the following sliding surface is introduced:

s(t) = CTE(t) = en(t) +
n−1∑
i=1

ciei(t), (3.1)
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where C = [c1, c2, . . . , cn−1, 1]
T is chosen such that the distribution of the roots of characteristic

equation pn−1 + cn−1pn−2 + · · · + c2p + c1 = 0 is on the left side of complex plane to make the
following system stable:

en(t) +
n−1∑
i=1

ciei(t) = 0. (3.2)

Then, we have

ṡ(t) = ėn(t) +
n−1∑
i=1

ciei+1(t)

= f(x) − xrn(t) + d(t) + b(t) · u(t) +
n−1∑
i=1

ciei+1(t).

(3.3)

Based on Lyaponov method and VSC theory, the following theoretical result can be obtained.
First, a fuzzy auxiliary controller D(t) is built to estimate the control disturbance d(t).

Corresponding fuzzy rules are given by

IF Sd(t) > 0 THEN D(t) should be increased,

IF Sd(t) < 0 THEN D(t) should be decreased,

where

Sd(t) = ṡ(t) + ε · sgn(s(t)). (3.4)

The term under consideration D(t) can take a greater value. If it is too big, this may lead
to some serious control problem in practice. Therefore in this paper, based on the integral
method, the small value ΔD(t) is recommended to replace by D(t) for their relations as
follows:

D(t) = G

∫ t

0
ΔD(s)ds, (3.5)

where G is the proportionality coefficient.
Let Sd denote the fuzzy input Sd(t), and ΔD denotes the fuzzy output ΔD(t). The

fuzzy sets of the input and the output are defined, respectively, as

Sd = {NB,NM,ZO,PM,PB},
ΔD = {NB,NM,ZO,PM,PB},

(3.6)

where NB is negative and large, NM is negative and medium, ZO is zero, PM is the positive
and medium, and PB is positive and large.
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Select the following fuzzy rules:

R1: IF Sd is PB THEN ΔD is PB,

R2: IF Sd is PM THEN ΔD is PM,

R3: IF Sd is ZO THEN ΔD is ZO,

R4: IF Sd is NM THEN ΔD is NM,

R5: IF Sd is PB THEN ΔD is NB.

Hence based on the proposed fuzzy auxiliary controller, the following theoretical
result can be concluded.

Theorem 3.1. For ε > 0, system (2.1) can track the desired trajectory (2.3) based on the following
fuzzy variable structure controller:

u(t) =
1

b(t)

[
−f(x) + xrn(t) −

n−1∑
i=1

ciei+1(t) −D(t) − ε · sgn(s(t))
]
. (3.7)

Proof. Choose the Lyapunov functional candidate as

V (t) =
1
2
s2(t). (3.8)

The time derivative of V (t) along trajectories of error model (2.4) is as

V̇ (t) = s(t)ṡ(t)

= s(t)

[
f(x) − xrn(t) + d(t) + b(t) · u(t) +

n−1∑
i=1

ciei+1(t)

]
.

(3.9)

Substituting (3.7) into (3.9), we have

V̇ (t) = s(t)
[
d(t) −D(t) − ε · sgn(s(t))]

= −w(t),
(3.10)

wherew(t) = ε|s(t)|. For ε > 0, we have V̇ ≤ 0. Integrating both sides of (3.9) from 0 to t leads
to

lim
t→∞

V (t) − V (0) ≤ − lim
t→∞

∫ t

0
w(s)ds. (3.11)

Since V (t) is positive and V (0) is finite, the following inequality can be concluded:

lim
t→∞

∫ t

0
w(s)ds ≤ V (0) < ∞. (3.12)
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Figure 1: The membership function of the fuzzy input.
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Figure 2: The membership function of the fuzzy output.

Based on Lemma 2.1, we can obtain

lim
t→∞

w(t) = lim
t→∞

ε|s(t)| −→ 0. (3.13)

Hence

lim
t→∞

E(t) −→ 0. (3.14)

This means the system control can be achieved based on the fuzzy VSC proposed. The proof
of Theorem 3.1 is thus completed.

Remark 3.2. The fuzzy auxiliary controller is constructed based on the feedback signal Sd =
ṡ(t) + ε · sgn(s(t)), the employed fuzzy rule is simple, and essentially used to keep Sd at zero.
Hence it can be concluded that V̇ (t) = s(t)ṡ(t) = −ε|s(t)| ≤ 0. This completes our proof.
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Figure 3: The time response of d(t) and D(t) in case 1.
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Figure 4: The time response of the tracking error in case 1.

We can see that the fuzzy auxiliary controller and the sliding mode controller come
together to realize the effective control on system (2.1).

4. Numerical Example

In this section, we will verify the proposed methodology by giving an illustrative example.
First consider the following disturbed system

ẋ1(t) = x2(t),

ẋ2(t) = f(x, t) + d(t) + b(t) · u(t),
(4.1)
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Figure 5: The time response of the control input in case 1.
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Figure 6: Time response of d(t) and D(t) for case 2.

where

f(x, t) = −0.5x2(t) + x1(t) − x1
3(t), b(t) = 133,

d(t) = 50 exp

[
− (t − 1.5)2

2 · 0.22
]
− 20 exp

[
− (t − 3)2

2 · 0.12
]
.

(4.2)

For simulation purposes, we consider the step size 0.001 second, the initial condition x0 =
[−1,−1]T , the desired trajectory xr(t) = sin(2πt), and the control parameters η = 1.0, r = 1.0,
G = 800, c = 150. The membership function of the input and the output of fuzzy system are
shown in Figures 1–2. First, we adopt the general VSCmethod via fixingD(t) = max{|d(t)|} =
50. The simulation results are shown in Figures 3–5. Next, we adopt the general VSC method
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Figure 7: Time response of the tracking error for case 2.
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Figure 8: Time response of u(t) for case 2.

via fixing D(t) = max{|d(t)|} = 20. The simulation results are shown in Figures 6–8. Finally,
we employ the given fuzzy VSC method. The simulation results are shown in Figures 9–11.

Remark 4.1. Figures 3, 6, and 9 show the time response of control disturbance d(t) and its
estimate D(t). Figures 4, 7, and 10 show the time response of the tracking error. Figures
5, 8 and 11 show the time response of the control input. In case 1, the control disturbance
D(t) is fixed at 50, which is bigger than the upper bound of d(t). From Figures 3–5 it can be
seen, when d(t)/= 50, that there is an obvious chattering phenomenon in control input for the
estimation error of d(t). In case 2, the control disturbance D(t) is fixed at 20, which is less
than the upper bound of d(t). From Figures 6–8 it can be seen, when d(t) ≥ 20, that there
exists a big tracking error because the VSC can not be guaranteed at this moment. In case
3, the control disturbance d(t) is estimated by the fuzzy auxiliary controller. From Figures
9–11 it can be seen that the control for the given system is realized within 1 second and the
chattering phenomenon is reduced distinctly, which demonstrates the effectiveness of the
presented fuzzy VSC method.
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Figure 9: The time response of d(t) and D(t) in case 3.
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Figure 10: The time response of the tracking error in case 3.
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Figure 11: The time response of the control input in case 3.
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Remark 4.2. From the simulation results, we can see that the chattering phenomenon
is reduced effectively by using the proposed fuzzy controller however there still exists
the switching term ε · sgn(s(t)) in control signal although ε is a small constant. To
further overcome the control chattering phenomenon, the switching term ε · sgn(s(t)) is
recommended to be substituted for ε · sat(s(t)).

5. Conclusion

In this paper, the fuzzy variable structure control problem has been studied. The fuzzy control
method and the switching control method have been employed to realize the control for
uncertain system with disturbance, they possess the characteristic of simpleness in design
and effectiveness in attenuating the control chattering, and aresuitable for the application in
engineering. Some typical numerical examples have been included afterward to demonstrate
the effectiveness of the given controller.

Acknowledgments

This work was partially supported by the Key Projects of Xihua University (Z1120946),
the National Key Basic Research Program (973), China (no. 2012CB215202), the 111 Project
(B12018), the National Natural Science Foundation of China (nos. 61174058, and 61170030),
and the Engineering and Physical Sciences Research Council, UK (EP/F029195).

References

[1] V. I. Utkin, “Variable structure systems with sliding modes,” IEEE Transactions on Automatic Control,
vol. 22, no. 2, pp. 212–222, 1977.

[2] H. H. Choi, “Adaptive controller design for uncertain fuzzy systems using variable structure control
approach,” Automatica, vol. 45, no. 11, pp. 2646–2650, 2009.

[3] J. P. V. S. Cunha, R. R. Costa, F. Lizarralde, and L. Hsu, “Peaking free variable structure control of
uncertain linear systems based on a high-gain observer,” Automatica, vol. 45, no. 5, pp. 1156–1164,
2009.

[4] H. Xing, C. C. Gao, and D. Li, “Sliding mode variable structure control for parameter uncertain
stochastic systems with time-varying delay,” Journal of Mathematical Analysis and Applications, vol.
355, no. 2, pp. 689–699, 2009.

[5] X. Chen, T. Hisayama, and C. Y. Su, “Pseudo-inverse-based adaptive control for uncertain discrete
time systems preceded by hysteresis,” Automatica, vol. 45, no. 2, pp. 469–476, 2009.

[6] L. Wu, D. W. C. Ho, and C. W. Li, “Sliding mode control of switched hybrid systems with stochastic
perturbation,” Systems and Control Letters, vol. 60, no. 8, pp. 531–539, 2011.

[7] Z. Lin, Y. Xia, P. Shi, and H. Wu, “Robust sliding mode control for uncertain linear discrete systems
independent of time-delay,” International Journal of Innovative Computing, Information and Control, vol.
7, no. 2, pp. 869–880, 2011.

[8] T. E. Lee, J. P. Su, K. W. Yu, and K. H. Hsia, “Multi-objective fuzzy optimal design of alpha-beta
estimators for nonlinear variable structure control,” International Journal of Innovative Computing,
Information and Control, vol. 7, no. 5, pp. 2123–2140, 2011.

[9] S. Qu, Z. Lei, Q. Zhu, and H. Nouri, “Stabilization for a class of uncertain multi-time delays system
using sliding mode controller,” International Journal of Innovative Computing, Information and Control,
vol. 7, no. 7, pp. 4195–4205, 2011.

[10] Y. Niu andD.W. C. Ho, “Stabilization of discrete-time stochastic systems via slidingmode technique,”
Journal of the Franklin Institute, vol. 349, pp. 1497–1508, 2012.

[11] T. Jia, Y. Niu, and Y. Zou, “Sliding mode control for stochastic systems subject to packet losses,”
Information Sciences, vol. 217, pp. 117–126, 2012.



12 Mathematical Problems in Engineering

[12] L. Wu and D.W. C. Ho, “Sliding mode control of singular stochastic hybrid systems,” Automatica, vol.
46, no. 4, pp. 779–783, 2010.

[13] H. R. Karimi, “A sliding mode approach to H∞ synchronization of master-slave time-delay systems
withMarkovian jumping parameters and nonlinear uncertainties,” Journal of the Franklin Institute, vol.
349, no. 4, pp. 1480–1496, 2012.

[14] L. Wu, P. Shi, and H. Gao, “State estimation and sliding-mode control of markovian jump singular
systems,” IEEE Transactions on Automatic Control, vol. 55, no. 5, pp. 1213–1219, 2010.

[15] B. Jiang, P. Shi, and Z. Mao, “Sliding mode observer-based fault estimation for nonlinear networked
control systems,” Circuits, Systems, and Signal Processing, vol. 30, no. 1, pp. 1–16, 2011.

[16] M. Liu, P. Shi, L. Zhang, and X. Zhao, “Fault tolerant control for nonlinear Markovian jump systems
via proportional and derivative sliding mode observer technique,” IEEE Transactions on Circuits and
Systems, vol. 58, pp. 2755–2764, 2011.

[17] H. R. Karimi, “Robust synchronization and fault detection of uncertain master-slave systems with
mixed time-varying delays and nonlinear perturbations,” International Journal of Control, Automation
and Systems, vol. 9, no. 4, pp. 671–680, 2011.

[18] H. R. Karimi, “Adaptive H∞ synchronization problem of uncertain master-slave systems with
mixed time-varying delays and nonlinear perturbations: an LMI approach,” International Journal of
Automation and Computing, vol. 8, no. 4, pp. 381–390, 2011.

[19] H. R. Karimi, M. Zapateiro, and N. Luo, “Stability analysis and control synthesis of neutral systems
with time-varying delays and nonlinear uncertainties,” Chaos, Solitons and Fractals, vol. 42, no. 1, pp.
595–603, 2009.

[20] H. R. Karimi and P. Maass, “Delay-range-dependent exponential H∞ synchronization of a class of
delayed neural networks,” Chaos, Solitons and Fractals, vol. 41, no. 3, pp. 1125–1135, 2009.

[21] H. R. Karimi, B. Lohmann, B. Moshiri, and P. J. Maralani, “Wavelet-based identification and
control design for a class of nonlinear systems,” International Journal of Wavelets, Multiresolution and
Information Processing, vol. 4, no. 1, pp. 213–226, 2006.

[22] H. R. Karimi and H. Gao, “Mixed H2/H∞ output-feedback control of second-order neutral systems
with time-varying state and input delays,” ISA Transactions, vol. 47, no. 3, pp. 311–324, 2008.

[23] H. Yang, P. Shi, J. Zhang, and J. Qiu, “RobustH∞ control for a class of discrete time fuzzy systems via
delta operator approach,” Information Sciences, vol. 184, no. 1, pp. 230–245, 2012.

[24] Z. Wu, P. Shi, H. Su, and J. Chu, “Reliable H∞ control for discrete-time fuzzy systems with infinite-
distributed delay,” IEEE Transactions on Fuzzy Systems, vol. 20, no. 1, pp. 22–31, 2012.

[25] Q. Zhou, P. Shi, J. Lu, and S. Xu, “Adaptive output feedback fuzzy tracking control for a class of
nonlinear systems,” IEEE Transactions on Fuzzy Systems, vol. 19, no. 5, pp. 972–982, 2011.

[26] X. Su, P. Shi, and L. Wu, “A novel approach to filter design for T-S fuzzy discrete-time systems with
time-varying delay,” IEEE Transactions on Fuzzy Systems. In press.

[27] Z. Gao, B. Jiang, P. Shi, and Y. Xu, “Fault accommodation for near space vehicle attitude dynamics via
T-S fuzzy models,” International Journal of Innovative Computing, Information and Control, vol. 6, no. 11,
pp. 4843–4856, 2010.

[28] Z. Pei and P. Shi, “Fuzzy risk analysis based on linguistic aggregation operations,” International Journal
of Innovative Computing Information and Control, vol. 7, no. 12, pp. 7105–7117, 2011.

[29] G. Wang, P. Shi, and C. Wen, “Fuzzy approximation relations on fuzzy n-cell number space and their
applications in classification,” Information Sciences, vol. 181, no. 18, pp. 3846–3860, 2011.

[30] J. Zhang, P. Shi, and Y. Xia, “Robust adaptive sliding-mode control for fuzzy systems with
mismatched uncertainties,” IEEE Transactions on Fuzzy Systems, vol. 18, no. 4, pp. 700–711, 2010.

[31] Q. Zhou, P. Shi, S. Xu, and H. Li, “Adaptive output feedback control for nonlinear time-delay systems
by fuzzy approximation approach,” IEEE Transactions on Fuzzy Systems. In press.

[32] X. Zhao, Y. Xu, Z. Zhang, and P. Shi, “Design of PSO fuzzy neural network control for ball and plate
system,” International Journal of Innovative Computing Information and Control, vol. 7, no. 12, pp. 7091–
7103, 2011.

[33] K. Zhang, B. Jiang, and P. Shi, “Fault estimation observer design for discrete-time Takagi-Sugeno
fuzzy systems based on piecewise Lyapunov functions,” IEEE Transactions on Fuzzy systems, vol. 20,
no. 1, pp. 192–200, 2012.

[34] H. Khalil, Nonlinear Systems, Macmillan, New York, NY, USA, 1992.


