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A novel algorithm, called variable weight fuzzy marginal linearization (VWFML) method, is
proposed. This method can supply approximate analytic and numerical solutions to Lane-Emden
equations. And it is easy to be implemented and extended for solving other nonlinear differential
equations. Numerical examples are included to demonstrate the validity and applicability of the
developed technique.

1. Introduction

Lane-Emden equations are used to describe singular initial value problems (IVPs) relating
to second-order ordinary differential equations which have been used to model several
phenomena in mathematical physics, thermodynamics, fluid mechanics, and astrophysics
such as the theory of stellar structure, the thermal behavior of a spherical cloud of gas,
isothermal gas spheres, and theory of thermionic currents.

Lane-Emden equations, first introduced by Jonathan Homer Lane in 1870 and further
explored in detail by Emden, have the following form:

y′′ +
2
x
y′ + f

(
y
)
= 0, 0 < x ≤ 1, (1.1)
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subject to the conditions

y(0) = A, y′(0) = B, (1.2)

where A and B are constants and f(y) is a continuous real valued function.
Since Lane-Emden type equations have significant applications in many scientific

fields, various forms of f(y) have been investigated in many research works. Among them,
many attentions have been carried on the generalized Lane-Emden type equations,

y′′ +
k

x
y′ + f

(
x, y

)
= g(x), 0 < x ≤ 1, k ≥ 0, (1.3)

subject to condition (1.2), where f(x, y) is a continuous real valued function, and g ∈ C[0, 1].
Many different methods have been used to obtain solutions for the generalized

Lane-Emden equations. Wazwaz [1, 2] got approximate solutions by using the Adomian
decomposition method (ADM) and obtained the analytic solutions of some equations. But
it may be an intricate problem to calculate the so-called Adomian polynomials involved in
ADM sometimes. He [3, 4] developed a more convenient analytical technique, called the
homotopy perturbation method (HPM). Chowdhury and Hashim [5] and Yildirim and Öziş
[6] gave the solutions for a class of singular second-order IVPs of Lane-Emden type by
using HPM. Sajid et al. [7] pointed out that HPM is a special case of the homotopy analysis
method (HAM) and that it is valid only for weakly nonlinear problems. Liao [8] and Van
Gorder and Vajravelu [9] used HAM to increase the radius of convergence of series solutions
for Lane-Emden equations. Recently, Yiğider et al. studied a numerical method for solving
Lane-Emden type equations by Padé approximation in [10]. Generally, when all the above
cited analytical approaches are used to solve Lane-Emden equation, a truncated power series
solution of the true solution is obtained. By the methods such as HPM and HAM, a series of
newly achievements on the analytical solving for some nonlinear differential equations have
been proposed recently. By HAM, Ziabakhsh et al. [11, 12] studied the natural convection
of a non-Newtonian fluid between two infinite parallel vertical flat plates and the effects of
the non-Newtonian nature of fluid on the heat transfer. Jalaal et al. [13, 14] investigated the
settling behavior of solid particles using HPM, which show the capability and effectiveness
of the method and exhibit new application of it further.

Besides, many soft computing technologies are developed to deal with all types of
models for dynamic systems [15–18]. It is important to note that fuzzy modeling technology
can transfer data information into a mathematical model which can approximate the original
systemwith high accuracy [19–24]. Li et al. [25] used fuzzymodeling method to approximate
the solutions of a class of autonomous differential equation. In order to obtain the analytical
solution of the fuzzy system, Li et al. [26] introduced fuzzy marginal linearization method.
Further, Li et al. [27] proposed fuzzy inference modeling (FIM) method to approximate
the time-variant system. Wang et al. [28] proposed a dynamic fuzzy inference modeling
(DFIM) method and proved that fuzzy system generalized by this method was universal
approximators to the solutions of some nonautonomous differential equations.

However, above fuzzy modeling technology could not be used to solve the differential
equation (1.3). And when f(x, y) and g(x) in (1.3) are unknown and only input-output data
of them are obtained, how to obtain the corresponding solution is an interesting question.
Motivated by this fact, the aim of this paper is to propose a novel fuzzy modeling method to
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solve the Lane-Emden equation. This paper is organized as follows. In Section 2, we introduce
some preliminary knowledge. In Section 3, we propose a novel fuzzy modeling technology
and use it to obtain the approximate analytical solutions of the Lane-Emden equation. Some
examples are used to illustrate the validity of the proposed method in Section 4. Finally,
conclusions are presented in Section 5.

2. Preliminaries and Basic Ideas of FIM

Firstly, we introduce some basic concepts which will be used in sequel.

Definition 2.1. A fuzzy set A of X is a function from the reference set X to the unit interval
[0, 1], that is, A : X → [0, 1], x �→ A(x).

Definition 2.2. Let Ai (i = 1, . . . , n) be a group of normal fuzzy sets of X, where xi is the peak
point ofAi, that is,Ai(xi) = 1. IfAi (i = 1, . . . , n) satisfies the condition:

∑n
i=1 Ai(x) = 1 (for all

x ∈ X) and for all i, j (i /= j ⇒ xi /=xj), then A � {Ai}1≤i≤n is called a fuzzy partition of X.

Definition 2.3. The mappings wr (r = 1, 2) from [a, b] to [0, 1] are variable weights if the
following conditions hold

(a) for any x ∈ [a, b], w1(x) +w2(x) = 1;

(b) w1(a) = 1, w2(b) = 1.

Example 2.4. Let Xk = [xk, xk+1]. The following mappings are variable weights on Xk:
w1k(x) = (xk+1 − x)/(xk+1 − xk), w2k(x) = (x − xk)/(xk+1 − xk).

In the following, we will introduce FIM method. Consider a second order ordinary
differential equation

y′′ = φ
(
x, y, y′), (2.1)

where x is the independent variable, y is the unknown function, X, Y , Y ′, and Y ′′ are the
universes of x, y, y′, and y′′, respectively, and φ is a real-valued continuous function, which
explicitly contains the independent variable x. Obviously (1.3) is the special case of (2.1). In
this paper, we assume that X, Y , Y ′, and Y ′′ are real number intervals, that is, X = [a0, b0],
Y = [a1, b1], Y ′ = [a2, b2], and Y ′′ = [a3, b3].

Let (xi, yj , y
′
k, y

′′
ijk) ∈ X × Y × Y ′ × Y ′′ (i = 1, . . . , n; j = 1, . . . , m; k = 1, . . . , l) be a group

of known data from (2.1), which satisfy the following two conditions:

(1) a0 = x1 < · · · < xn = b0, a1 = y1 < · · · < ym = b1, a2 = y′
1 < · · · < y′

l = b2;

(2) y′′
ijk

= φ(xi, yj , y
′
k
), (i = 1, 2, . . . , n; j = 1, 2, . . . , m; k = 1, 2, . . . , l).

Then, we use above data information to construct fuzzy rule base. For each index i (i =
1, . . . , n), we, respectively, take yj , y′

k, and y′′
kij as the peak points of fuzzy sets Aj , Bk, and

Cijk, such that {Aj}1≤j≤m is a fuzzy partition of Y , {Bk}1≤k≤l is a fuzzy partition of Y ′, and
{Cijk}1≤i≤n,1≤j≤m,1≤k≤l is a fuzzy partition of Y ′′. Similarly, we take y′′

ijk
as peak point of fuzzy
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setDijk, such that {Dijk}1≤i≤n,1≤j≤m,1≤k≤l is a fuzzy partition of Y ′′. In this way, fuzzy rules based
on data information are represented as follows:

If y is Bj and y′ is Ck then y′′ is Dijk,

i = 1, . . . , n; j = 1, . . . , m; k = 1, . . . , l.
(2.2)

For fuzzy rules (2.2), fuzzy system generalized by FIM method can be expressed by

y′′ =
n−1∑

i=1

m∑

j=1

l∑

k=1

(
Aj

(
y
) · Bk

(
y′)) · y′′

ijk · χi(x), (2.3)

where the characteristic function χi(x) is defined as

χi(x) �
{
1, x ∈ [xi, xi+1],
0, x /∈ [xi, xi+1].

(2.4)

Remark 2.5. It can be seen that fuzzy system (2.3) is a nonlinear differential equation
with variable coefficients. When Aj(y) and Bk(y′) are, respectively, chosen as triangular
membership functions, in each local region [xi, xi+1] × [yj, yj+1] × [y′

k
, y′

k+1], (2.3) is changed
into an autonomous differential equation with constant coefficients. This fact means that (2.3)
is a two-order differential equation with piecewise constant coefficients. In [27], it is proved
that solutions of (2.3) can approximate the numerical solutions of some nonautonomous
differential equations with high accuracy.

3. Approximate Analytic Solutions of the Lane-Emden Equation Based
on Variable Weight Fuzzy Marginal Linearization Method

From (2.3), we find that in each local region it is still a nonlinear differential equation. Hence,
it is difficult for us to get the corresponding analytical solution for it. In this section, we
propose a novel fuzzy modeling method, called variable weight fuzzy marginal linearization
(VMFML) method, and utilize this technology to obtain the approximate analytical solution
for Lane-Emden equation. For simplicity, we introduce some denotations.

Let {[xi, xi+1) × [yj, yj+1) × [y′
k
, y′

k+1)} (i = 1, . . . , n; j = 1, . . . , m; k = 1, . . . , l) be a
partition of X × Y × Y ′, where [xn, xn+1) � {xn}, [ym, ym+1) � {ym} and [y′

l, y
′
l+1) � {y′

l}.
Similarly, {(xi−1, xi] × [yj , yj+1) × [y′

k
, y′

k+1)} (i = 1, . . . , n; j = 1, . . . , m; k = 1, . . . , l) is another
partition of X × Y × Y ′, where (x0, x1] � {x1}. Further, we, respectively, divide [xi, xi+1) ×
[yj, yj+1) × [y′

k, y
′
k+1) and (xi−1, xi] × [yj, yj+1) × [y′

k, y
′
k+1) into 4 pieces and let

(
i, j, k

)
r1r2

� [xi, xi+1) ×
[
yj+r1/2, yj+(r1+1)/2

) ×
[
y′
k+r2/2

, y′
k+(r2+1)/2

)
,

(
i, j, k

)
r1r2

� (xi−1, xi] ×
[
yj+r1/2, yj+(r1+1)/2

) ×
[
y′
k+r2/2

, y′
k+(r2+1)/2

)
,

(3.1)



Mathematical Problems in Engineering 5

where r1 = 1, 2; r2 = 1, 2; yj+1/2 � (yj + yj+1)/2, y′
k+1/2 � (y′

k + y′
k+1)/2, j = 1, . . . , m − 1; k =

1, . . . , l − 1. The characteristic functions on (i, j, k)r1r2 and (i, j, k)r1r2 are, respectively, denoted
as χ(i,j,k)r1r2

and χ(i,j,k)r1r2
, that is,

χ(i,j,k)r1r2

(
x, y, y′) �

⎧
⎪⎨

⎪⎩

1,
(
x, y, y′) ∈ [xi, xi+1) ×

[
yj+r1/2, yj+(r1+1)/2

) ×
[
y′
k+r2/2

, y′
k+(r2+1)/2

)
,

0,
(
x, y, y′) /∈ [xi, xi+1) ×

[
yj+r1/2, yj+(r1+1)/2

) ×
[
y′
k+r2/2

, y′
k+(r2+1)/2

)
.

χ(i,j,k)r1r2

(
x, y, y′) �

⎧
⎪⎨

⎪⎩

1,
(
x, y, y′) ∈ (xi−1, xi] ×

[
yj+r1/2, yj+(r1+1)/2

) ×
[
y′
k+r2/2

, y′
k+(r2+1)/2

)
,

0,
(
x, y, y′) /∈ (xi−1, xi] ×

[
yj+r1/2, yj+(r1+1)/2

) ×
[
y′
k+r2/2

, y′
k+(r2+1)/2

)
.

(3.2)

In the following, we will introduce the basic idea of VMFML method.
For any (x, y, y′) ∈ X × Y × Y ′, without loss of generality, we assume that (x, y, y′) ∈

(i, j, k)r1r2 . For any j ∈ {1, . . . , m} and k ∈ {1, . . . , l}, by fuzzy marginal linearization
technology, we takeAj(y) as triangular membership function and Bk(y′) as rectangle-shaped
membership function, then fuzzy system (2.3) can be changed into

y′′ =
yj+1 − y

yj+1 − yj
· y′′

ij(k+r2)
+

y − yj

yj+1 − yj
· y′′

ij(k+r2)
. (3.3)

Similarly, when Aj(y) is chosen as rectangle-shaped membership function and Bk(y′) is
chosen as triangular membership function, fuzzy system (2.3) can be changed into

y′′ =
y′
k+1 − y′

y′
k+1 − y′

k

· y′′
ij(k+r2)

+
y′ − y′

k

y′
k+1 − y′

k

· y′′
ij(k+r2)

. (3.4)

Furthermore, we take sum of the right side of expressions (3.3) and (3.4) and subtract a
constant, the corresponding fuzzy system in the local region (i, j, k)r1r2 is represented as

y′′ = d
(1)
ijk

+ d
(2)
ijk
y + d

(3)
ijk
y′, (3.5)

where

d
(1)
ijk

=
yj+1y

′′
ij(k+r2)

− yjy
′′
i(j+1)(k+r2)

yj+1 − yj
+
y′
(k+1)y

′′
i(j+r1)k

− y′
ky

′′
i(j+r1)(k+1)

y′
k+1 − y′

k

− y′′
i(j+r1)(k+r2)

, (3.6)

d
(2)
ijk =

y′′
i(j+1)(k+r2)

− y′′
ij(k+r2)

yj+1 − yj
, (3.7)

d
(3)
ijk

=
y′′
i(j+r1)(k+1)

− y′′
i(j+r1)k

y′
k+1 − y′

k

. (3.8)
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By characteristic function, we can obtain fuzzy system on X × Y × Y ′ as follows:

y′′ � f
(
x, y, y′) �

n∑

i=1

m∑

j=1

l∑

k=1

(
d
(1)
ijk

+ d
(2)
ijk
y + d

(3)
ijk
y′
)
· χ(i,j,k)r1r2

(
x, y, y′). (3.9)

Remark 3.1. It is easy to see that (3.9) is a piecewise linear differential equation. In each local
region (i, j, k)r1r2 , (3.9) transfers into a linear differential equation and the corresponding
coefficients can be computed by input-output data of the original system. By expressions
(3.5)–(3.8), it is easy to prove that the right-hand side f(x, y, y′) is an interpolation function
of φ(x, y, y′), that is, f(xi, yj , y

′
k) = y′′

ijk = φ(xi, yj , y
′
k), i = 1, . . . , n; j = 1, . . . , m; k = 1, . . . , l. By

numerical analysis theory, we know that when we obtain enough data information on (2.1),
f(x, y, y′) can approximate φ(x, y, y′) with the specified accuracy. This fact means that (3.6)
can be used to describe the nonlinear differential equation (2.1).

Then, we will solve the initial value problem of (3.9).
Given an initial value problem as

y′′ =
n∑

i=1

m∑

j=1

l∑

k=1

(
d
(1)
ijk + d

(2)
ijky + d

(3)
ijky

′
)
· χ(i,j,k)r1r2

(
x, y, y′), (3.10)

subject to the conditions y(0) = y0 and y′(0) = y′
0.

First, we can determine the local region which the initial vector (0, y0, y
′
0) locates

in. Suppose that (0, y0, y
′
0) ∈ [x1, x2) × [yj, yj+1/2) × [y′

k, y
′
k+1/2). By (3.9) the corresponding

piecewise equation can be written as

y′′ = d
(1)
1jk + d

(2)
1jky + d

(3)
1jky

′, (3.11)

and the corresponding coefficients can be computed by expressions (3.6)–(3.8). Since it is
a linear ode, we can get the corresponding analytical solution and denote it as y1. Then,
we take (x2, y1(x2), y′

1(x2)) as the initial vector and search the next region which it moves
in. And we can solve the corresponding piecewise linear equation with the initial value
(y1(x2), y′

1(x2)). In this way, by transferring initial value piece by piece and solving the
corresponding piecewise linear equation, we can obtain analytical solution of (3.9).

On the other hand, if we take (i, j, k)r1r2 (r1 = 1, 2; r2 = 1, 2; j = 1, . . . , m − 1; k =
1, . . . , l − 1) as the local region of universe X × Y × Y ′, using fuzzy marginal linearization
technology, we can obtain another fuzzy system as follows:

y′′ =
n∑

i=1

m∑

j=1

l∑

k=1

(
d
(1)
ijk + d

(2)
ijky + d

(3)
ijky

′
)
· χ(i,j,k)r1r2

(
x, y, y′), (3.12)
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where

d
(1)
ijk =

yj+1y
′′
(i+1)j(k+r2)

− yjy
′′
(i+1)(j+1)(k+r2)

yj+1 − yj
+
y′
(k+1)y

′′
(i+1)(j+r1)k

− y′
k
y′′
(i+1)(j+r1)(k+1)

y′
k+1 − y′

k

− y′′
(i+1)(j+r1)(k+r2)

,

d
(2)
ijk =

y′′
(i+1)(j+1)(k+r2)

− y′′
(i+1)j(k+r2)

yj+1 − yj
,

d
(3)
ijk =

y′′
(i+1)(j+r1)(k+1)

− y′′
(i+1)(j+r1)k

y′
k+1 − y′

k

.

(3.13)

Obviously, both (3.9) and (3.12) can describe (2.1) and the analytical solutions of them
can be obtained. The differences between them are that the coefficients of (3.9) in the local
region [xi, xi+1]×[yj+r1/2, yj+(r1+1)/2)×[y′

k+r2/2
, y′

k+(r2+1)/2
) are computed by data (xi, yj , y

′
k
, y′′

ijk
),

(xi, yj , y
′
k+1, y

′′
ij(k+1)), (xi, yj+1, y

′
k
, y′′

i(j+1)k),(xi, yj+1, y
′
k+1, y

′′
i(j+1)(k+1)).

On the other hand, the corresponding coefficients of (3.12) in the local region
[xi, xi+1] × [yj+r1/2, yj+(r1+1)/2) × [y′

k+r2/2
, y′

k+(r2+1)/2
) are deduced by data (xi+1, yj , y

′
k
, y′′

(i+1)jk),
(xi+1, yj , y

′
k+1, y

′′
(i+1)j(k+1)), (xi+1, yj+1, y

′
k
, y′′

(i+1)(j+1)k), and (xi+1, yj+1, y
′
k+1, y

′′
(i+1)(j+1)(k+1)). For a

given initial value y(0) = y0 and y′(0) = y′
0, by transferring initial value technology, we

can solve the corresponding analytical solutions of (3.9) and (3.12) denote them as ϕ1(x) and
ϕ2(x), respectively. In order to describe (2.1) better, we take variable weighted sum of ϕ1(x)
and ϕ2(x), and denote

ϕ(x) =
n−1∑

k=1

(
ω1k(x) · ϕ1(x) +ω2k(x) · ϕ2(x)

) · χk(x), (3.14)

as the approximation analytical solution of (2.1), where w1k(x) = (xk+1 − x)/(xk+1 − xk) and
w2k(x) = (x − xk)/(xk+1 − xk).

In this way, we use variable weight fuzzymarginal linearization (VWFML) technology
to obtain the approximation analytical solution for (2.1).

Next, we also take (2.1) as example to summarize basic processes of VWFLMmethod.

Step 1. Determine the universes of x, y, and y′ and denote them as X, Y , and Y ′.

Step 2. Divide the universes and let xi, yj , y′
k
be the partition points of X, Y , and Y ′, where

i = 1, . . . , n; j = 1, . . . , m; k = 1, . . . , l.

Step 3. By (2.1), compute the corresponding output data y′′
ijk = φ(xi, yj , y

′
k).

Step 4. Using expressions (3.6)–(3.8) and data information (xi, yj , y
′
k, y

′′
ijk) (i = 1, . . . , n−1; j =

1, . . . , m; k = 1, . . . , l), deduce the coefficients of piecewise equation and construct the
corresponding fuzzy system (3.9).

Step 5. For given initial value, by transferring initial value technology, solve above fuzzy
system and denote the solution as ϕ1(x).
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Step 6. By expression (3.13) and data information (xi+1, yj , y
′
k, y

′′
(i+1)jk) (i = 2, . . . , n; j =

1, . . . , m; k = 1, . . . , l), we can also deduce the coefficients of piecewise equation and construct
another fuzzy system (3.12).

Step 7. Similarly, by transferring initial value technology, we can solve this fuzzy system
(3.12) and denote the solution as ϕ2(x).

Step 8. We take weighted sum of ϕ1(x) and ϕ2(x), that is,

ϕ(x) =
n−1∑

k=1

(
ω1k(x) · ϕ1(x) +ω2k(x) · ϕ2(x)

) · χk(x), (3.15)

where w1k(x) = (xk+1 − x)/(xk+1 − xk) and w2k(x) = (x − xk)/(xk+1 − xk).

Remark 3.2. In many physical problems when differential equation models are unknown and
only some data information of the investigated systems are known, by VWFML method we
can still set up dynamic models and obtain corresponding approximation analytical solutions
for the problems.

4. Numerical Results

In this section, we will use VWFML method to solve four Lane-Emden equations. The
former two equations are of original type Lane-Emden equations and the latter two are of
generalized type.

Example 4.1. Consider the linear singular initial value problem:

y′′ +
2
x
y′ + y = 6 + 12x + x2 + x3, (4.1)

subject to the initial conditions y(0) = 0 and y′(0) = 0. The exact solution for this equation is
y(x) = x2 + x3.

The solution, which is generated from this Lane-Emden equation of classical
astrophysics, has a proven physical foundation and can be used to calculate the radius of
electron in an electromagnetic mass model.

Let n = 5, m = 5, and l = 5. Figure 1, respectively, shows curves of exact solution
and approximate solutions obtained by VWFML method, DFIM method, and FIM method.
Table 1 shows the coefficients of piecewise (3.9) and (3.12). In Figure 2, the absolute error
curves among them are given, where “crossed line” denotes the absolute error curve between
the approximate solution obtained by VWFML method and the exact solution, “· · · ” denotes
the absolute error curve between the approximate solution obtained by FIM method and the
exact solution, and “–∗–” denotes the absolute error curve between the approximate solution
obtained by DFIMmethod and the exact solution. Table 2 presents the errors among the exact
solution and the approximate solutions obtained by them.

In this simulation, the approximation results are satisfying. In fact, the number of
divided local regions is not large, which means that we can get all the coefficients of (3.9) and
(3.12) without a great deal of computation. Accordingly, the approximate analytic solution
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Figure 1: Solution curves of Example 4.1.
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Figure 2: Error curves of Example 4.1.

can be found for Example 4.1. From Figure 2 and Table 2, it is clear that for solving this
equation VWFML technology is more effective than DFIM and FIM, and the corresponding
amount of error data is smaller.

Example 4.2. Consider isothermal gas spheres equation:

y′′ +
2
x
y′ + ey = 0, (4.2)

subject to the initial conditions y(0) = 0, y′(0) = 0.
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Table 1: Coefficients of (3.9) and (3.12).

Example 4.1 (n = 5, m = 5, l = 5)

k x d
(1)
ijk

d
(2)
ijk

d
(3)
ijk

d
(1)
ijk d

(2)
ijk d

(3)
ijk

1 (0, 0.25] 0 0 0 −1 −8 9.0781
2 (0.25, 0.5] −1.0000 −8.0000 9.0781 −1.0000 −4.0000 12.3750
3 (0.5, 0.75] −1.0000 −4.0000 12.3750 −1.0000 −2.6667 15.9844
4 (0.75, 1] −1.0000 −2.6667 15.9844 −1.0000 −2.0000 20.0000

Table 2: Errors of different approximate solutions for Example 4.1.

Example 4.1 (n = 5, m = 5, l = 5)

x
Error of Error of Error of FIM
VWFML DFIM

0.1 0.0067 0.0052 0.0125
0.2 0.0087 0.0059 0.0176
0.3 −0.0027 0.0028 0.0035
0.4 0.0029 −0.0035 0.0041
0.5 0.0010 −0.0345 −0.0027
0.6 0.0008 −0.0689 −0.0081
0.7 0.0072 −0.0991 −0.0070
0.8 0.0027 −0.1306 −0.0169
0.9 0.0107 −0.1678 −0.0146
1 0.0117 −0.2096 −0.0193

This type of equation has been used to model the thermal behavior of a spherical cloud
of gas acting under the mutual attraction of its molecules. Isothermal gaseous sphere, in
which the temperature remains constant, subjects to the classical laws of thermodynamics
when one seeks to determine the density and electric force of an electron gas in the
neighborhood of a hot body in thermal equilibrium. It is worthy to notice that this equation
is nonlinear and has no analytic solution.

From [1, 5], we know that the 6-term series solutions of this equation obtained by
ADM and HPM are the same. Obviously, in Figure 3 we find that solutions obtained by
VWFML method are very close to solutions of ADM method, where “· · · ” denotes the
solution obtained by ADM method and “crossed line” denotes the solution obtained by
VWFML method.

For the consistency of the comparison and without loss of generality, chosen the same
initial value and the same independent variable values, Table 3 shows the approximations
of solutions for Example 4.2, respectively, obtained by ADM method and VWFML method.
Further, in Figure 4, the curves obtained by the above two methods are given. Since Lane-
Emden equations are singular initial value problems, the accuracy of solutions near zero point
is important, whatever the solution is gotten from approximate analytical method or from
numerical method. From simulation results, we can see that if the number of local regions
increased in VWFML method, the accuracy of the approximation solution can be improved
evidently, especially when the independent variable is near the initial value 0. Besides, the
solutions of Lane-Emden equations converge rapidly in a very small region (0 < x < 1), and
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in Figure 3 the approximate curve follows the trend appropriately. This implies that VWFML
method can describe the isothermal gas spheres equation with high accuracy degree.

Example 4.3. Consider the linear initial value problem:

y′′ +
8
x
y′ + xy = x5 − x4 + 44x2 − 30x, (4.3)

subject to the initial conditions y(0) = 0, y′(0) = 0. The exact solution is y(x) = x4 − x3.
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Table 3: Solutions of Example 4.2.

x
6-term ADM VWFML solution VWFML solution

solution (n = m = l = 5) (n = 15, m = l = 10)
0.1 −0.0016658 0.0019471 0.0014253
0.2 −0.0066534 −0.0062487 −0.0062547
0.3 −0.014933 −0.012383 −0.014411
0.4 0.026456 −0.023321 −0.025868
0.5 −0.041154 −0.037287 −0.04051
0.6 −0.058945 −0.054402 −0.058256
0.7 −0.079728 −0.074936 −0.079011
0.8 −0.10339 −0.098012 −0.10264
0.9 −0.12981 −0.12426 −0.12904
1 −0.15886 −0.15302 −0.15806
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Figure 5: Solution curves of Example 4.3.

Let n = 15, m = 5, and l = 5. The curves of exact solution of Example 4.3 and the
corresponding approximate solution obtained by VWFML method are shown in Figure 5,
where “· · · ” denotes the exact solution and “crossed line” denotes the approximate solution
obtained by VWFML method.

Example 4.4. We consider the nonlinear initial value problem:

y′′ +
6
x
y′ + 14y = −4y lny, (4.4)

subject to the initial conditions y(0) = 1, y′(0) = 0. The exact solution is y(x) = e−x
2
.
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Figure 7: Solution curves of Example 4.4 (x ∈ [0, 3]).

Let n = 7,m = 5, and l = 5. The interval of independent variable is chosen as [0, 1]. The
curves of exact solution of Example 4.4 and the corresponding approximate solution obtained
by VWFML method are shown in Figure 6, where “· · · ” denotes the exact solution and
“crossed line” denotes the approximate solution obtained by VWFML method. Furthermore,
the interval of independent variable is extended as [0, 3] and let n = 15, m = 10, and l = 10.
The simulation result is shown in Figure 7.
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Remark 4.5. From Examples 4.3 and 4.4, it can be seen that VWFML method is effective
for solving generalized Lane-Emden type differential equations. Furthermore, if the solving
interval is extended, VWFML method can also provide approximate solutions in the larger
domains with high accuracy degree.

Remark 4.6. Comparison with some analytical solutions, solutions of VWFML methods are
totally dependent on the dividing points of independent variable interval, which means
that the proposed technique can be presented in a general way. In particular, when the
objective equation is unknown and only some data information can be obtained, equation
determined by VWFML method can be solved analytically and the corresponding solution
can approximate the solution of objective equation with high accuracy.

5. Conclusion

In this paper, we apply VWFML method to obtain the approximate analytical and numerical
solution for Lane-Emden type differential equation. Some numerical examples show that by
relatively minor data information, solutions obtained by VWFML method can approximate
the corresponding solutions of Lane-Emden type equations with high accuracy. This means
that VWFML method can be utilized to solve and analyze complex nonlinear differential
equations in practical application.
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