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Semiactive Control Methodologies for
Suspension Control with Magnetorheological

Dampers
Mauricio Zapateiro, Francesc Pozo, Hamid Reza Karimi and Ningsu Luo

Abstract—Suspension systems are one of the most critical components of transportation vehicles. They are designed to provide
comfort to the passengers, to protect the chassis and the freight. Suspension systems are normally provided with dampers that mitigate
these harmful and uncomfortable vibrations. In this paper, we explore two control methodologies (in time and frequency domain) used
to design semiactive controllers for suspension systems that make use of magnetorheological dampers. These dampers are known
because of their nonlinear dynamics which requires the use of nonlinear control methodologies for an appropriate performance. The
first methodology is based on the backstepping technique which is applied with adaptation terms and H∞ constraints. The other
methodology to be studied is the Quantitative Feedback Theory (QFT). Despite QFT is intended for linear systems, it can still be
applied to nonlinear systems. This can be achieved by representing the nonlinear dynamics as a linear system with uncertainties that
approximately represents the true behavior of the plant to be controlled. The semiactive controllers are simulated in MATLAB/Simulink
for performance evaluation.

Index Terms—Semiactive control; backstepping; Quantitative Feedback Control; Suspension control; magnetorheological damper.
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1 INTRODUCTION
Suspension systems are one of the most critical com-
ponents of a vehicle. They are designed to provide
comfort to the passengers, to protect the chassis and the
freight. In the case of aircrafts, the landing gears fulfill
these tasks. Not only are they designed to provide com-
fort during taxiing but absorb the energy during touch
down. Suspension systems are normally provided with
dampers that mitigate these harmful and uncomfortable
vibrations [1]. In general, these dampers are passive,
meaning that they are tuned once during design and
construction not allowing for further changes once they
are installed. This class of dampers is still in wide usage,
but the fact that passive dampers cannot change their
dynamics in response to different inputs is a drawback
because they may not respond as expected in every
single circumstance. This is why active and semiac-
tively tuned dampers are being widely studied. As a
result, several active and semiactive damping devices
are already installed in commercially distributed vehicles
and big efforts towards the implementation of active
and semiactive dampers in aircraft are being done [2].
Compared with passive dampers, active and semiactive
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devices can be tuned due to their flexible structure. One
of the drawbacks of active dampers is that they may
become unstable if the controller fails. On the contrary,
semiactive devices are generally stable and thus, they
act as pure passive dampers in case of control failure [3].
Among different semiactive devices, magnetorheological
(MR) fluid dampers are the one of the most attractive
and useful ones. MR dampers can generate high yield
strength, have low costs of production, require low
power, and have fast response and small size. However,
they are characterized by a nonlinear dynamics (typically
hysteresis) which makes mathematical treatment chal-
lenging, especially in the modeling and identification of
the hysteretic dynamics and the development of control
laws for its implementation through MR dampers for
vibration mitigation purposes [4].

This increasing interest in the control of active and
semiactive suspension systems has led to a number of
control methodologies. For instance, in [5], it is proposed
a semiactive controller based on a hybrid approach that
combines a nonlinear PID term based on the expression
of the shock absorber viscous force contribution; in [3],
a kind of Nonlinear Model Predictive Control algorithm
(NMPC) for semiactive landing gears is developed using
Genetic Algorithms (GA) as the optimization technique
and chooses damping performance of landing gear at
touch down to be the optimization object; in [6] a fuzzy
adaptive output feedback controller to control landing
gear shimmy through active damping is proposed; a sky-
hook semiactive control strategy was studied by Yao et
al. [7] and also by Sankaranarayanan et al. [8]. The system
was equipped with an MR damper and it was shown to
be superior to other passive and active control strategies.
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A neural network control was designed by Guo et al.
[9] for a quarter car model with a magnetorheological
damper for vibration reduction. This neural network
consists of only one hidden layer making it very fast. As
a result, the controller was able to achieve acceleration
reductions of up to 55%. Optimal control with preview
was studied by Karlsson et al. [10]. In their work, the
car acceleration was reduced and as a consequence, ride
control and passenger comfort were improved. More-
over, the preview contributed to reduce the RMS tyre
deflection and hence, vehicle landing performance was
also improved.

H∞ control techniques have also been extensively
studied. Du et al. [11] explored a non-fragile H∞ con-
trol for an active vehicle suspension system. The out-
put feedback controller was designed using linear ma-
trix inequalities (LMI) and GA. Their objective was to
minimize the mass acceleration, suspension deflection
and tyre deflection and the effectiveness of the con-
trollers was validated through numerical simulations
on a quarter-car model. These authors [12] have also
explored the semiactive suspension case, this time using
an MR damper. A static output feedback H∞ controller
was designed using suspension deflection and mass
velocity as feedback signals. The work was validated
through simulations of a quarter-car model. Gao et al.
[13] proposed a load-dependent controller for an active
vehicle suspension system. The multi-objective controller
was designed using LMI’s following an approach based
on a parameter-dependent Lyapunov function. The re-
sults were validated, as in the previous cases, through
simulations of a quarter-car model. Gao et al. [14] stud-
ied the effects of data sampling in an active suspension
system. To this end, they used an input delay approach
in such a way to obtain that the system with sampled
measurements was transformed into a continuous-time
system with a delay in the state. An H∞ controller
was developed using LMI’s. Gao et al. [15] went a step
further by considering the problem of the passenger
comfort. In this work, they considered the problem of
the seat suspension. The controller design is cast into a
convex multi-objective optimization problem with LMI
constraints.

Backstepping is a recursive design for systems with
nonlinearities not constrained by linear bounds. The ease
with which backstepping incorporated uncertainties and
unknown parameters contributed to its instant popular-
ity and rapid acceptance. Applications of this technique
have been recently reported ranging from robotics to in-
dustry or aerospace [16], [17], [18]. Backstepping control
has also been explored in some works about suspension
systems. For example, Zapateiro et al. [19] designed a
semiactive backstepping control combined with Neural
Network techniques for a system with MR damper. On
the other hand, Nguyen et al. [20] studied a hybrid con-
trol of active suspension systems for quarter-car models
with two-degree-of-freedom. It was implemented by
controlling the linear part with H∞ techniques and the

nonlinear part with an adaptive controller based on
backstepping. Quantitative Feedback Theory (QFT) has
also been explored in a few works. For example, one
of the first works involving QFT in active suspension
systems is that by Liberzon et al. [21]. The controller was
designed to improve cross-country mobility without the
need of state estimation. The model of the system plant
was linearized with respect to its harmonic responses,
yielding generalized describing functions in the form
of amplitude and frequency-dependent function values
that define the plant templates. In [22], Amani et al.
compared the performance of H∞ and a QFT controllers.
The results showed that the body acceleration was lower
in the QFT-controlled case than in its H∞ counterpart.
In general, the QFT performance was better or at least
comparable to that of the H∞ controller. A QFT con-
troller was also proposed by Taha et al. [23] to reduce
the chattering of the main sliding mode controller. The
QFT controller was designed inside the boundary layer
to reduce the oscillations around the sliding surface.

Previous works -theoretical and practical- on Back-
stepping and QFT (see the references above) have shown
the feasibility of practical implementation in vibrating
systems thanks to the low numerical complexity that
these control laws imply and their overall good perfor-
mance when accounting for different design constraints
at the same time. Due to the promising features of these
control techniques in different applications, in this paper,
as an extension to previous works, we propose two
different semiactive control laws based on Backstepping
and QFT for suspension systems equipped with MR
dampers. An adaptive backstepping control with H∞
techniques is presented. To the best of the authors’
knowledge, this idea has not been deeply developed,
being the work by Li and Liu [24] one example on this
topic. Their method integrates the adaptive dynamics
surface control and H∞ control techniques guaranteeing
that the output tracking error satisfies the H∞ track-
ing performance [25]. Thus, our contribution regarding
this issue is two-fold: first, this paper extends previous
works on backstepping problem; second, by utilizing
an adaptive technique, using a Lyapunov function and
a suitable change of backstepping variables, we derive
the explicit expression of the controllers to satisfy both
asymptotic stability and an H∞ performance for the
controlled system. On the other hand, we also develop
in this paper a semiactive controller based on QFT. In
order to apply the QFT, some linearization must be
performed. The interest in QFT lies in the fact that it
allows for including in the design process several con-
straints related to uncertainties, unknown disturbances,
actuator limitations and robustness. We use the approach
presented in previous works [26], [27] in which the
damper is represented as a linear system with uncertain
parameters that approximately represents its dynamics.
Then the QFT design process is followed as if it were
an uncertain linear system. The design process accounts
for robustness, disturbance rejection and control effort
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issues.
The paper is organized as follows. Section 2 presents

the mathematical details of the system to be controlled.
In Section 3, the backstepping controller is developed.
In Section 4, the QFT control formulation details are
outlined. Section 5 shows the numerical results and in
Section 6 the conclusions are drawn.

2 SUSPENSION SYSTEM MODEL

The suspension system can be modeled as a quarter
car model, as shown in Figure 1. It is composed of
two subsystems: the tyre subsystem and the suspension
subsystem. The tyre subsystem is represented by the
wheel mass mu while the suspension subsystem consists
of a sprung mass, ms, that resembles the vehicle mass.
The compressibility of wheel pneumatic is kt, while cs
and ks are the damping and stiffness of the uncontrolled
suspension system. The following state variables are
used to model the system:
• x1 is the tyre deflection
• x2 is the unsprung mass velocity
• x3 is the suspension deflection
• x4 is the sprung mass velocity.
Thus, the state space representation of the system of

Figure 1 is given by [28]:

Fig. 1. Quarter car suspension model

• Tyre subsystem:

ẋ1 = x2 − d
ẋ2 = − kt

mu
x1 + ρu

(1)

• Suspension subsystem:

ẋ3 = −x2 + x4

ẋ4 = −u (2)

where ρ = ms/mu, d is the velocity of the input distur-
bance and u is the acceleration input due to the damping
subsystem. The input u is given by:

u =
1
ms

(ksx3 + cs(x4 − x2)− fmr) (3)

where fmr is the damping force generated by the semi-
active device.

In order to formulate the backstepping controller, the
state space model of Equations (1) - (2) must be first writ-
ten in strict feedback form [29]. Therefore, the following
coordinate transformation is performed [28]:

z1 = x1 + ρ
ρ+1x3

z2 = 1
ρ+1x2 + ρ

ρ+1x4

z3 = x3

z4 = −x2 + x4

(4)

The system, represented in the new coordinates, is
given by:
• Tyre subsystem:

ż1 = z2 − d
ż2 = −kt[mu(ρ+ 1)]−1z1 + ρkt[mu(ρ+ 1)2]−1z3

(5)
• Suspension subsystem:

ż3 = z4
ż4 = ktm

−1
u z1 − ktρ[mu(ρ+ 1)]−1z3 − (ρ+ 1)u

(6)
Substitution of the expression for u (Equation (3)) into

Equation (6) yields:

ż3 =z4
ż4 =ktm−1

u z1 − ktρ[mu(ρ+ 1)]−1z3−
(ρ+ 1)m−1

s [ksx3 + cs(x4 − x2)− fmr]
=− [ktmsρ(ρ+ 1)−1 + (ρ+ 1)ksmu](mums)−1z3+

ktm
−1
u z1 − (ρ+ 1)m−1

s csz4 + (ρ+ 1)m−1
s fmr

=di − akz3 − acz4 + affmr
(7)

where ak = [ktmsρ(ρ+1)−1+(ρ+1)ksmu](mums)−1, ac =
(ρ+ 1)m−1

s cs and af = (ρ+ 1)m−1
s ; di = ktm

−1
s z1 reflects

the fact that the disturbance enters to the suspension
subsystem through the tyre subsystem.

The MR damper that the suspension system is
equipped with is modeled according to the following
Bouc-Wen model [30]:

fmr = c0(v)z4 + k0(v)z3 + α(v)ζ (8)

ζ̇ = −δ|z4|ζ|ζ|n−1 − βz4|ζ|n + κz4 (9)

where ζ is an evolutionary variable that describes the
hysteretic behavior of the damper, z4 is the piston veloc-
ity, z3 is the piston deflection and v is a voltage input
that controls the current that generates the magnetic
field; δ, β, κ and n are parameters that are chosen
so to adjust the hysteretic dynamics of the damper;
c0(v) = c0a + c0bv represents the voltage-dependent
damping, k0(v) = k0a + k0bv represents the voltage-
dependent stiffness and α(v) = αa + αbv is a voltage-
dependent scaling factor.

Now we provide the numerical values of the model
that we used in this study. This is because these numbers
are required for the QFT controller development. Thus:
αa = 332.7 N/m, αb = 1862.5 N·V/m, c0a = 7544.1
N·s/m, c0b = 7127.3 N·s·V/m, k0a = 11375.7 N/m,
k0b = 14435.0 N·V/m, δ = 4209.8 m−2, κ = 10246
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and n = 2. This is a scaled version of the MR damper
found in [31]. The parameter values of the suspension
system are [28]: ms=11739 kg, mu=300 kg, ks=252000
N/m, cs=10000 N·s/m and kt=300000 N/m.

3 BACKSTEPPING CONTROLLER FORMULA-
TION

The objective is to design an adaptive backstepping
controller to regulate the suspension deflection with the
aid of an MR damper thus providing safety and comfort
while on the road. The adaptive backstepping controller
will be designed in such a way that, for a given γ > 0, the
state-dependent error variables e1 and e2 (to be defined
later) accomplish the following H∞ performance J∞ < 0:

J∞ =
∫ ∞

0

(eTRe− γ2wTw)dt (10)

where e = (e1, e2)T is a vector of controlled signals, R =
diag{r1, r2} is a positive definite matrix and w is the
vector of incoming disturbances.

Assume that ak and ac (in Equation (7)) are uncertain
constant parameters whose estimated values are âk and
âc, respectively. Thus, the errors between the estimates
and the actual values are given by:

ãk = ak − âk (11)
ãc = ac − âc (12)

Let ad = kt[mu(ρ + 1)]−1, an = ρkt[mu(ρ + 1)2]−1 and
am = ktm

−1
u . From Equations (5) - (6), it can be shown

that the transfer functions from d(t) and fmr(t) to z1(t)
are:
Z1(s)
D(s)

=
−s(s2 + acs+ ak)

s4 + acs3 + (ad + ak)s2 + adacs+ adak − aman
(13)

Z1(s)
Fmr(s)

=
anaf

s4 + acs3 + (ad + ak)s2 + adacs+ adak − aman
(14)

If the poles of the transfer functions of Equations
(13) and (14) are in the left side of the s plane, then
we can guarantee the bounded input - bounded output
(BIBO) stability of Z1(s) for any bounded input D(s)
and Fmr(s). Thus, the disturbance input di(t) in Equation
(7) is also bounded. This boundedness condition will be
used later in the controller formulation.

Finally, since di(t) is the only disturbance input to
the suspension subsystem, the vector w of the H∞
performance objective as given in Equation (10) becomes:

J∞ =
∫ ∞

0

(eTRe− γ2d2
i )dt (15)

In order to begin with the adaptive backstepping
design, we firstly define the following error variable and
its derivative:

e1 = z3 (16)
ė1 = ż3 = z4 (17)

Now, the following Lyapunov function candidate is
chosen:

V1 =
1
2
e21 (18)

whose first-order derivative is:

V̇1 = e1ė1 = e1z4 (19)

Equation (17) can be stabilized with the following
virtual control input:

z4d = −r1e1 (20)
ż4d = −r1ė1 = −r1z4 (21)

where r1 > 0. Now define a second error variable and
its derivative:

e2 = z4 − z4d (22)

ė2 = ż4 − ż4d (23)

Therefore,

V̇1 = e2z4 = e1(e2 − r1e1) = e1e2 − r1e21 (24)

On the other hand, the derivatives of the errors of the
uncertain parameter estimations are given by:

˙̃ak = − ˙̂ak (25)

˙̃ac = − ˙̂ac (26)

Now, an augmented Lyapunov function candidate is
chosen:

V = V1 +
1
2
e22 +

1
2rk

ã2
k +

1
2rc

ã2
c (27)

Thus, by using Equations (22) - (26) and the fact that
ak = ãk + âk and ac = ãc+ âc, the derivative of V yields:

V̇ =e1ė1 + e2ė2 + r−1
k ãk ˙̃ak + r−1

c ãc ˙̃ac
=e1e2 − r1e21 + e2di − akz3e2 − acz4e2 + affmre2−
r1z4e2 − r−1

k ãk ˙̂ak − r−1
c ãcȧc

=e1e2 − r1e21 + e2di + affmre2 − r1z4e2 − r−1
k ãk ˙̂ak−

(ãk + âk)z3e2 − (ãc + âc)z4e2 − r−1
c ãc ˙̂ac

=e1e2 − r1e21 + e2di − ãk(z3e3 + r−1
k

˙̂ak)− âkz3e2−
ãc(z4e2 + r−1

c
˙̂ac)− âcz4e2 + affmre2 − r1z4e2

(28)

Now consider the following adaptation laws:

z3e1 + r−1
k

˙̂ak = 0 (29)

z4e2 + r−1
c

˙̂ac = 0 (30)

Substitution of Equations (29) and (30) into Equation
(28) yields:

V̇ = −r1e21+e2di+e2(e1−âkz3−âcz4+affmr−r1z4) (31)

By choosing the following control law:

fmr = −e1 − âkz3 − âcz4 − r1z4 + r2e2 + e2(2γ)−2

af
(32)
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with γ > 0 and r2 > 0, we get:

V̇ =− r1e21 + e2di − r2e22 − e22(2γ)−2

=− r1e21 + e2di − r2e22 − e22(2γ)−2 + γ2d2
i − γ2d2

i

=− r1e21 − r2e22 + γ2d2
i − (γdi − e2(2γ)−2)2

V̇ ≤− r1e21 − r2e22 + γ2d2
i

(33)

The objective of guaranteeing global boundedness of
trajectories is equivalently expressed as rendering V̇
negative outside a compact region. As stated earlier, the
disturbance input di is bounded as long as the poles of
the transfer functions (13) and (14) are in the left side
of the s plane. When this is the case, the boundedness
of the input disturbance di guarantees the existence of
a small compact region D ⊂ R2 (depending on γ and
di itself) such that V̇ is negative outside this set. More
precisely, when r1e21+r2e22 < γ2d2

i , V̇ is positive and then
the error variables are increasing values. Finally, when
the expression r1e

2
1 + r2e

2
2 is greater than γ2d2

i , V̇ is then
negative. This implies that all the closed-loop trajectories
have to remain bounded, as we wanted to show. Now,
under zero initial conditions, we can write:∫ ∞

0

V̇ dt ≤ −
∫ ∞

0

r1e
2
1 dt−

∫ ∞
0

r2e
2
2 dt+

∫ ∞
0

γ2d2
i dt

V |t=∞ − V |t=0 ≤ −
∫ ∞

0

eTRe dt+ γ2

∫ ∞
0

d2
i dt

J∞ =
∫ ∞

0

(eTRe− γ2d2
i ) dt ≤ −V |t=∞ ≤ 0

(34)

Thus, the adaptive backstepping controller satisfies
the H∞ performance and the asymptotic stability of the
system is guaranteed.

The control force given by Equation (32) can be used
to drive an actively controlled damper. However, the fact
that semiactive devices cannot inject energy into a sys-
tem, makes necessary the modification of this control law
in order to implement it with a semiactive damper; that
is, semiactive dampers cannot apply force to the system,
only absorb it. There are different ways to perform this
[26], [32]. In this work, we will calculate the MR damper
voltage making use of its mathematical model. Thus, the
following control law is proposed:

v =
−e1 − âzz3 + âcz4 + r1z4 − r2e2

af (c0bz4 + k0bz3 + αbζ)
+

−e2(2γ)−2 + af (c0az4 + k0az3 + αaζ)
af (c0bz4 + k0bz3 + αbζ)

(35)

provided that af (c0bz4 + k0bz3 + αbζ) 6= 0; otherwise,
v = 0.

The same process followed to obtain the control law
of Equation (32) can be used to demonstrate that the
control law of Equation (35) does stabilize the system.
Begin by replacing Equation (8) into Equation (31) in
order to obtain:

V̇ =− r1e21 + e2di + e2[e1 − âkz3 − âcz4+
af (c0az4 + k0az3 + αaζ)+
af (c0bz4 + k0bz3 + αbζ)v − r1z4]

(36)

Thus, by replacing the control law of Equation (35)
into Equation (36) we also get V̇ ≤ −r1e21 − r2e22 + γ2d2

i

and, as previously stated, the stability of the system is
guaranteed.

4 QUANTITATIVE FEEDBACK THEORY

QFT is a frequency control methodology based on the
notion that feedback is necessary only when there is
uncertainty and non-measurable disturbances actuating
on the plant. The basic developments with QFT are
focused on the control design problem for uncertain
linear time invariant (LTI) systems like the one shown
in Figure 2. In this figure, R represents the command
input set, P is the plant set and T is the closed loop
transfer function set. For each R(s) ∈ R and P (s) ∈ P,
the output will be Y (s) = T (s)R(s) for some T (s) ∈ T.
For a large class of problems, a pair of controllers F (s)
and G(s) can be found to guarantee Y (s) = T (s)R(s).

Fig. 2. Schematic of the QFT control system.

The uncertain plant model P (s) and its frequency and
time domain specifications are represented in the Nichols
chart through the use of Horowitz-Sidi bounds. These
bounds determine the regions where the nominal loop
transfer function L0(s) = G(s)P0(s)H(s) may lie so that
all the design specifications can be achieved [33]. The
controller development is explained in what follows.

In order to begin with the QFT controller formulation,
first recall the suspension subsystem as given in Equa-
tion (7). The Laplace transform from the damper force
fmr to the deflection z3(t) is given by:

Z3(s) =
mu

(
ms

mu
+ 1
)2

∆a(s)
Fmr(s) +

ms

(
ms

mu
+ 1
)
kt

∆a(s)
Di(s)

(37)

∆a(s) =(mums +m2
s)s

2 +
(
mucs +

m2
scs
mu

+ 2msmu

)
s+

m2
s

mu
(kt + ks) + 2ks(ms +mu)

(38)

where Di(s) = kt/muZi(s) is the input disturbance. Since
the MR damper is a nonlinear device, an approximation
to an uncertain linear plant is proposed to solve this
problem. Consider the MR damper model of Equation
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(8). It can be decomposed into two parts: one linear and
the other nonlinear. Thus:

flin = (c0a + c0bv)z4 + (k0a + k0bv)z3 = a1z4 + a2z3 (39)

fnonlin = (αa + αbv)ζ0 = αbζ0vd (40)

fmr = flin + fnonlin (41)

vd =
αa
αb

+ v (42)

From Equations (39) - (42), it is observed that the
parameters a1 and a2 vary only with the input voltage.
The third parameter, ζ0 is a bounded parameter. See
Figure 3: at high velocities, ζ is approximately constant
and thus, ζ0 could take either the maximum or the
minimum value depending on the signs of the velocity.
In this way, Equation (8) can be seen as a linear system
with three uncertain parameters, namely, a1, a2 and
ζ0 which describes the dynamics of the damper. The
damper dynamics now appear to follow the Bingham
model. Figure 4 illustrates this approach with a sinu-
soidal displacement excitation at three different levels of
voltage.

−10 −5 0 5 10
−1.5

−1

−0.5

0

0.5

1

1.5

velocity [cm/s]

z
 [

1
/m

]

Fig. 3. Example of a hysteresis loop.

Fig. 4. Description of the MR damper as an uncertain
plant.

The Laplace transform of Equation (41) is:

Fmr(s) = a1sZ4(s) + a2Z3(s) + αbζ0Vd(s) (43)

Substitution of Equation (43) into Equation (37) yields:

Z3(s) =
mu

(
ms

mu
+ 1
)2

αaζ0

∆sa(s)
Vd(s) +

ms

(
ms

mu
+ 1
)
kt

∆sa(s)
Di(s)

=P (s)Vd(s) +D∗i (s)
(44)

∆sa(s) =(m2
s +mums)s2 +

(
m2
s

mu
+ 2ms +mu

)
(cs + a1)s+

m2
s

mu
(kt + ks + a2) + (2ms +mu)(ks + a2)

(45)

Thus, the controller can then be designed for the
uncertain plant P (s) with unknown input disturbance
D∗i (s) and the input voltage can be obtained from v =
−(vd + αa/αb). In this case, we assume that the sprung
mass and the tyre stiffness are the parameters that vary
the most with respect to the others. Thus, the uncer-
tain parameters of the plant are: a1 ∈ [754.41, 4318.06]
N·s/m, a2 ∈ [1137, 6855.07] N/m, ζ0 ∈ {−1.11, 1.11}
m−1 (only one of two values), kt ∈ [240000, 360000]
N/m and ms ∈ [9391, 14087] kg. The other parameters
are those given in Section 2. The controller design pa-
rameters are: robust performance Ws1 = 2, disturbance
rejection Ws3 = 0.03 and control effort Ws4 = 150.

The next step in the controller design is to generate
the templates. This is a representation in the Nichols
chart of the plant model P (jω) at each frequency of
interest and for each possible value of the uncertain
parameters. Figure 5 shows the templates for this model
for the frequencies 10, 30 and 60 rad/s. Now the design
specifications are transformed into a set of restriction
curves or bounds, known as Horowitz-Sidi bounds, for
each frequency of interest in the Nichols chart. For each
frequency and each design specification, there is one
bound but only the most restrictive ones per frequency
are kept. The bounds for this problem are shown in
Figure 6. The dotted blue, red and green lines are the
bounds. The dotted magenta line is the closed loop
response L0(s) with a proportional controller with gain
K = 1. The objective now is to move the closed loop
response line as close as possible to the bounds in such
a way that at each frequency of interest, it lies below the
bound. This is done by adding a gain, poles and zeros to
the controller. The black solid line is the result of doing
this. The resulting controller is:

G1(s) =
61.34(5.4× 10−3s+ 1)(6.84× 10−2s+ 1)

(2.83× 10−3s2 + 5.72× 10−2s+ 1)
×

(1.49× 10−4s2 + 1.04× 10−2s+ 1)
(2.60× 10−4s2 + 7.77× 10−3s+ 1)

(46)

Figure 6 shows that the closed-loop response lies right
next to the bounds at the frequencies of interest and
does not cross the ray (0, 180o). Thus, according to QFT,
the closed loop system using this controller is stable in
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the presence of uncertainties. Finally, Figure 7 shows the
performance of the controller regarding the design spec-
ifications (robustness, disturbance rejection and control
effort). In all cases, the closed loop response lies below
the limits imposed and thus, the design requirements are
achieved.
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Fig. 5. Templates of the suspension system with MR
damper.
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5 NUMERICAL RESULTS

The controllers of Equations (35) and (46) were im-
plemented in MATLAB/Simulink in order to evaluate
their performance. Each simulation was run during 10
seconds. The performance indices shown in Table 1
were used to numerically compare the controller perfor-
mance with the case when there is no controller. Indices
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Fig. 7. Performance analysis of the controller of Equation
46 (robustness, disturbance rejection and control effort).

J1 - J3 show the ratio between the peak response of
the controlled suspension system (displacement, velocity
and acceleration) and that of the uncontrolled system.
Indices J4 - J6 are the normalized ITSE (integral of the
time squared error) signals that indicate how much the
displacement, velocity and acceleration are attenuated
compared to the uncontrolled case. Index J7 is the rela-
tive maximum control effort with respect to the weight
of the suspension system. Small indices indicate good
control performance.

Index Definition

J1 =
max|x3(t)|cont
max|x3(t)|unc

Norm. peak suspension deflection.

J2 =
max|x4(t)|cont
max|x4(t)|unc

Norm. peak sprung mass velocity.

J3 =
max|ẋ4(t)|cont
max|ẋ4(t)|unc

Norm. peak sprung mass acceleration.

J4 =
R T
0 tx2

3cont(t) dtR T
0 tx2

3unc(t) dt
Norm. suspension deflection ITSE.

J5 =
R T
0 tx2

4cont(t) dtR T
0 tx2

4unc(t) dt
Norm. sprung mass velocity ITSE.

J6 =
R T
0 tẋ2

4cont(t) dtR T
0 tẋ2

4unc(t) dt
Norm. sprung mass acceleration ITSE.

J7 =
max|fmr(t)|

ws
Maximum control effort.

TABLE 1
Performance indices.

As a matter of comparison, the performances of the
controllers discussed in this paper will be contrasted to
another designed by the authors in a previous work [26].
The controller is a modification of the clipped optimal
controller approach by Dyke et al. [34]. The commanding
voltage to the MR damper is computed according to:

v = VmaxH(fmr − fmeas)fmeas (47)
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where Vmax is the maximum allowed voltage (5 V
in this case), H· is the Heaviside function, fmeas is the
actual MR damper force as measured by a sensor and
fmr is the control forced computed by the following QFT
controller:

G2(s) =
176168(3.78× 10−2s2 + 1.86× 10−1s+ 1)

6.91× 10−2s2 + 1.38× 10−1s+ 1
×

3.07× 10−4s2 + 1.76× 10−2s+ 1
6.27× 10−4s” + 1.87× 10−2s+ 1

(48)

Before proceeding with the controller performance, we
will examine the dynamics of the suspension system
when subject to a bump on the road and to a random
input. The behavior of the system is analyzed in the
case when the voltage is set to 0 V, that is, no current
is flowing through the MR damper coils. The results
are shown in Figures 8 and 9, the suspension system
dynamics is practically the same as if there were no
damper installed. The effect of such low damping is
minimum and in consequence, it does not destabilize
the system.
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Fig. 8. Suspension subsystem when the damper is in the
‘off’ mode subject to a bump input.

In order to analyze the controllers, we begin by sim-
ulating the response when the suspension system is
subject to a bump on the road. Figure 10 depicts the
tyre deflection and the unsprung mass velocity. The
suspension deflection, the sprung mass velocity and
acceleration are depicted in Figure 11. A comparison of
both controllers with respect to the uncontrolled case
is presented there. First of all, it is worth noting that
the tyre deflection and the unsprung mass velocity are
reduced with both controllers despite these variables
were not directly included in the controller formulation.
The suspension deflection peak is reduced with both
controllers and this signal is attenuated along the time.
The effect of the backstepping controller is notorious
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Fig. 9. Suspension subsystem when the damper is in the
‘off’ mode subject to a random input.

here due to the suspension deflection reduction. The
sprung mass velocity peak is not reduced with any
controller; instead it remains almost the same as in the
uncontrolled case. However, the attenuation of the veloc-
ity is achieved along the time as it can be observed. The
same thing happens with the acceleration. In this case,
however, there is an increase in the peak acceleration
although it is thereafter attenuated by both controllers.
Figure 12 shows the control effort of the damper using
both controllers as well as the control signals.
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Fig. 10. Disturbance input and tyre subsystem system
response when subject to a bump on the road.

The values of the performance indices for this case are
shown in Table 2. The indices confirm some of the visual
observations. In fact, both controllers reduce the peak
deflection but the peak velocity and peak acceleration are
increased. However, both controllers are able to reduce
the three signals along the time if we compare them



10

0 2 4 6 8 10
−0.2

0

0.2
s
u

s
p

. 
d

e
fl
. 

[m
]

0 2 4 6 8 10
−0.5

0

0.5

1

s
p

r.
 m

a
s
s
 v

e
l.
 [

m
/s

]

0 2 4 6 8 10
−5

0

5

10

s
p

r.
 m

a
s
s
 a

c
c
e

l.
 [

m
/s

2
]

time [s]

 

 

unc MCOP QFT Backstepping.

Fig. 11. Suspension subsystem response when subject
to a bump on the road (suspension deflection, sprung
mass velocity and sprung mass acceleration).
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Fig. 12. MR damper response when subject to a bump
on the road.

with the uncontrolled case. The greater peak velocity and
acceleration achieved with the backstepping controller
may be caused by the greater control effort as can be
seen in index J7. In this case, the backstepping controller
performs better than the QFT controller. In comparison
to these controllers, the QFT-modified clipped optimal
controller shows a high peak in the suspension deflection
caused by the low damping required to keep the system
under acceptable limits. Furthermore, since the QFT-
modified controller switches between two control levels,
the transition between these states makes the system to
respond in a less smooth way than that expected with
the other controllers that continously change the control
level by taking every possible value in the voltage range.

Index Backstepping QFT MCOP
J1 0.4287 0.6112 0.8207

J2 1.3864 1.1567 1.0935

J3 1.2965 1.2052 1.0772

J4 0.0715 0.2094 0.3733

J5 0.2777 0.2495 0.5529

J6 0.6742 0.4350 0.7176

J7 0.4395 0.3915 0.1453

TABLE 2
Performance indices of the road bump disturbance case.

In a second simulation, the system was subject to a
random input. This input is shown in Figure 13 as well
as the tyre deflection and the unsprung mass velocity.
The suspension deflection, sprung mass velocity and
acceleration are shown in Figure 14. The MR damper
response is shown in Figure 15. As in the previous case,
the tyre deflection and the unsprung mass velocity are
kept within the limits of the uncontrolled case although
there is no apparent reduction in these signals. With re-
spect to the suspension deflection it is possible to observe
a reduction when compared to the uncontrolled case.
Table 3 provides us with a better insight in this case. As
depicted in Figure 14, there is a considerable reduction
in the suspension deflection as well as a low reduction
in the sprung mass velocity. However, according to the
indices, both controllers increase the peak sprung mass
acceleration. In this case, the QFT controller performs
better reducing both velocity and acceleration and with
less control effort than the backstepping controller. As
in the previous case, the QFT-modified clipped optimal
controller does not perform as good as any of the other
controllers.
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Fig. 13. Disturbance input and tyre subsystem response
when subject to a random unevenness on the road.
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Fig. 14. Suspension subsystem response when subject
to a random unevenness on the road (suspension de-
flection, sprung mass velocity and sprung mass acceler-
ation).
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Fig. 15. MR damper response when subject to a random
unevenness on the road.

6 CONCLUSIONS

In this paper we have proposed two different semiactive
controllers for a suspension system that makes use of
a magnetorheological damper. This class of damper
is known due to its nonlinear dynamics that makes
mandatory the use of nonlinear control techniques for
an appropriate performance. We have gone one step
beyond with respect to previous works at designing
two semiactive controllers that make use of the full
range of the voltage control signal and considering the
nonlinearities involved in the MR damper dynamics.

Index Backstepping QFT MCOP
J1 0.5118 0.6848 0.8950

J2 0.9337 0.9893 1.2722

J3 1.2146 1.1264 1.4936

J4 0.2191 0.4080 0.6876

J5 0.5359 0.5645 0.8000

J6 0.8905 0.7581 1.2368

J7 0.4441 0.3325 0.3717

TABLE 3
Performance indices of the random unevennes

disturbance case.

The first semiactive controller was designed following
the adaptive backstepping technique with some H∞
constraints. This technique allowed us for including
the nonlinearities and uncertainties of the system in a
single nonlinear control law. The second controller was
designed with QFT methodology. Since QFT requires a
linear time invariant system model for its development,
we proposed a representation of the MR damper
dynamics as a linear plant with uncertain parameters
that approximated its dynamics. Both controllers were
simulated in MATLAB/Simulink. Both controllers
showed a satisfactory performance since important
variables such as deflection were reduced and/or
kept within acceptable limits. Despite the controllers
performed differently in the scenarios studied, they both
accomplished the objective of reducing the response of
the suspension system.

In futures works it is worth exploring the possibility
of implementing switching systems in order to model
the nonlinear dynamics of the MR damper and thus,
improve the performance of the control systems. Some
recent works could provide us with the tools for imple-
menting such a system (see for instance [25] and [35]).
Furthermore, it is worth exploring the effect of time
delays in measurements and communication channels.
Time delays are inherent to most modern control systems
and, if not handles appropriately, may become problem-
atic in the system. Electronic suspension control systems
implemented in vehicles such as cars, trains, trucks and
airplanes, share the resources in a large system with
a high number of tasks and thus, it is mandatory to
account for the delays inherent to it. Discretization and
inclusion of time-delay constraints are to be added to
the controllers proposed in this work in order to keep
the good performance when implemented in control
networks.
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